1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
|
\documentclass[oneside]{article}
\usepackage{enumerate}
\usepackage[leqno]{amsmath}
\allowdisplaybreaks[1]
\begin{document}
\thispagestyle{empty}
\small
\begin{verbatim}
The Project Gutenberg EBook of Groups of Order p^m Which Contain Cyclic
Subgroups of Order p^(m-3), by Lewis Irving Neikirk
Copyright laws are changing all over the world. Be sure to check the
copyright laws for your country before downloading or redistributing
this or any other Project Gutenberg eBook.
This header should be the first thing seen when viewing this Project
Gutenberg file. Please do not remove it. Do not change or edit the
header without written permission.
Please read the "legal small print," and other information about the
eBook and Project Gutenberg at the bottom of this file. Included is
important information about your specific rights and restrictions in
how the file may be used. You can also find out about how to make a
donation to Project Gutenberg, and how to get involved.
**Welcome To The World of Free Plain Vanilla Electronic Texts**
**eBooks Readable By Both Humans and By Computers, Since 1971**
*****These eBooks Were Prepared By Thousands of Volunteers!*****
Title: Groups of Order p^m Which Contain Cyclic Subgroups of Order p^(m-3)
Author: Lewis Irving Neikirk
Release Date: February, 2006 [EBook #9930]
[Yes, we are more than one year ahead of schedule]
[This file was first posted on November 1, 2003]
Edition: 10
Language: English
Character set encoding: US-ASCII
*** START OF THE PROJECT GUTENBERG EBOOK GROUPS OF ORDER P^M ***
Produced by Cornell University, Joshua Hutchinson, Lee Chew-Hung,
John Hagerson, and the Online Distributed Proofreading Team.
\end{verbatim}
\normalsize
\newpage
\begin{center}
\noindent \Large GROUPS OF ORDER $p^m$ WHICH CONTAIN CYCLIC
SUBGROUPS OF ORDER $p^{m-3}$
\bigskip
\normalsize\textsc{by}
\bigskip
\large LEWIS IRVING NEIKIRK
\footnotesize\textsc{sometime harrison research fellow in
mathematics}
\bigskip
\large 1905
\end{center}
\newpage
\begin{center}
\large \textbf{INTRODUCTORY NOTE.}
\end{center}
\normalsize
This monograph was begun in 1902-3. Class I, Class II, Part I, and
the self-conjugate groups of Class III, which contain all the groups with
independent generators, formed the thesis which I presented to the Faculty
of Philosophy of the University of Pennsylvania in June, 1903, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.
The entire paper was rewritten and the other groups added while the
author was Research Fellow in Mathematics at the University.
I wish to express here my appreciation of the opportunity for scientific
research afforded by the Fellowships on the George Leib Harrison Foundation
at the University of Pennsylvania.
I also wish to express my gratitude to Professor George H.\
Hallett for his kind assistance and advice in the preparation of
this paper, and especially to express my indebtedness to Professor
Edwin S.\ Crawley for his support and encouragement, without which
this paper would have been impossible.
\begin{flushright}
\textsc{Lewis I.\ Neikirk.}
\end{flushright}
\footnotesize \textsc{ University Of Pennsylvania,} \textit{May,
1905.} \normalsize
\newpage
\begin{center}
\large GROUPS OF ORDER $p^m$, WHICH CONTAIN CYCLIC SUBGROUPS OF
ORDER $p^{(m-3)}$\footnote{Presented to the American Mathematical
Society April 25, 1903.}
\bigskip \normalsize \textsc{by}
\bigskip \textsc{lewis irving neikirk}
\bigskip\textit{Introduction.}
\end{center}
The groups of order $p^m$, which contain self-conjugate cyclic
subgroups of orders $p^{m-1}$, and $p^{m-2}$ respectively, have
been determined by \textsc{Burnside},\footnote{\textit{Theory of
Groups of a Finite Order}, pp.\ 75-81.} and the number of groups of
order $p^m$, which contain cyclic non-self-conjugate subgroups of
order $p^{m-2}$ has been given by
\textsc{Miller}.\footnote{Transactions, vol.\ 2 (1901), p.\ 259, and
vol.\ 3 (1902), p.\ 383.}
Although in the present state of the theory, the actual tabulation
of all groups of order $p^m$ is impracticable, it is of importance
to carry the tabulation as far as may be possible. In this paper
\textit{all groups of order} $p^m$ ($p$ being an odd prime)
\textit{which contain cyclic subgroups of order $p^{m-3}$ and none
of higher order} are determined. The method of treatment used is
entirely abstract in character and, in virtue of its nature, it is
possible in each case to give explicitly the generational
equations of these groups. They are divided into three classes,
and it will be shown that these classes correspond to the three
partitions: $(m-3,\, 3)$, $(m-3,\, 2,\, 1)$ and $(m-3,\, 1,\, 1,\, 1)$, of
$m$.
We denote by $G$ an abstract group $G$ of order $p^m$ containing
operators of order $p^{m-3}$ and no operator of order greater than
$p^{m-3}$. Let $P$ denote one of these operators of $G$ of order
$p^{m-3}$. The $p^3$ power of every operator in $G$ is contained
in the cyclic subgroup $\{P\}$, otherwise $G$ would be of order
greater than $p^m$. The complete division into classes is effected
by the following assumptions:
\begin{enumerate}[I.]
\item There is in $G$ at least one operator $Q_1$, such that
$Q{}_1^{p^2}$ is not contained in $\{P\}$.
\item The $p^2$ power of every operator in $G$ is contained in
$\{P\}$, and there is at least one operator $Q_1$, such that
$Q{}_1^p$ is not contained in $\{P\}$.
\item The $p$th power of every operator in $G$ is
contained in $\{P\}$.
\end{enumerate}
\newpage
The number of groups for Class I, Class II, and Class III,
together with the total number, are given in the table below:
\bigskip
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
& I & II$_1$ & II$_2$ & II$_3$ & II & III & Total \\ \hline
$p>3$ & & & & & & & \\
$m>8$ & 9 & $20+p$ & $6+2p$ & $6+2p$ & $32+5p$ & 23 & $64+5p$ \\ \hline
$p>3$ & & & & & & & \\
$m=8$ & 8 & $20+p$ & $6+2p$ & $6+2p$ & $32+5p$ & 23 & $63+5p$ \\ \hline
$p>3$ & & & & & & & \\
$m=7$ & 6 & $20+p$ & $6+2p$ & $6+2p$ & $32+5p$ & 23 & $61+5p$ \\ \hline
$p=3$ & & & & & & & \\
$m>8$ & 9 & 23 & 12 & 12 & 47 & 16 & 72 \\ \hline
$p=3$ & & & & & & & \\
$m=8$ & 8 & 23 & 12 & 12 & 47 & 16 & 71 \\ \hline
$p=3$ & & & & & & & \\
$m=7$ & 6 & 23 & 12 & 12 & 47 & 16 & 69 \\ \hline
\end{tabular}
\bigskip \bigskip
\begin{center}
\Large\textit{Class} I.\normalsize
\end{center}
1. \textit{General notations and relations.}---The group $G$ is
generated by the two operators $P$ and $Q_1$. For brevity we
set\footnote{With J.~W.\ \textsc{Young}, \textit{On a certain
group of isomorphisms}, American Journal of Mathematics, vol.\ 25
(1903), p.\ 206.}
\begin{equation*}
Q{}_1^a\, P^b\, Q{}_1^c\, P^d \cdots = [a,\, b,\, c,\, d,\, \cdots].
\end{equation*}
Then the operators of $G$ are given each uniquely in the form
\begin{equation*}
[y,\, x] \quad \left( \begin{aligned}y &= 0,\, 1,\, 2,\, \cdots,\, p^3-1 \\
x &= 0,\, 1,\, 2,\, \cdots,\, p^{m-3}-1
\end{aligned} \right) .
\end{equation*}
We have the relation
\begin{equation}
Q{}_1^{p^3} = P^{hp^3}. %% 1
\end{equation}
\noindent There is in $G$, a subgroup $H_1$ of order $p^{m-2}$, which
contains $\{P\}$ self-con\-ju\-gate\-ly.\footnote{\textsc{Burnside}:
\textit{Theory of Groups}, Art.\ 54, p.\ 64.} The subgroup $H_1$ is
generated by $P$ and some operator $Q{}_1^y P^x$ of $G$; it then
contains $Q{}_1^y$ and is therefore generated by $P$ and
$Q{}_1^{p^2}$; it is also self-conjugate in $H_2 = \{Q{}_1^p, P\}$
of order $p^{m-1}$, and $H_2$ is self-conjugate in $G$.
From these considerations we have the
equations\footnote{\textit{Ibid.}, Art.\ 56, p.\ 66.}
\begin{align}
Q{}_1^{-p^2}\,P\,Q{}_1^{p^2} &= P^{1+kp^{m-4}}, \\ %% 2
Q{}_1^{-p}\,P\,Q{}_1^p &= Q{}_1^{\beta p^2}\,P^{\alpha_1}, \\ %% 3
Q{}_1^{-1}\,P\,Q_1 &= Q{}_1^{bp}\,P^{a_1}. %% 4
\end{align}
\medskip
2. \textit{Determination of $H_1$. Derivation of a formula for
$[yp^2, x]^s$.}---From (2), by repeated multiplication we obtain
\begin{gather*}
[-p^2,\, x,\, p^2] = [0,\, x(1 + kp^{m-4})]; \\
\intertext{and by a continued use of this equation we have}
[-yp^2,\, x,\, yp^2] = [0,\, x(1 + kp^{m-4})^y] = [0,\, x(1 + kyp^{m-4})] \qquad (m > 4)
\end{gather*}
\noindent and from this last equation,
\begin{equation}
[yp^2,\, x]^s = \bigl[syp^2,\, x\{s + k \tbinom{s}{2}yp^{m-4}\}\bigr]. %% 5
\end{equation}
\medskip
3. \textit{Determination of $H_2$. Derivation of a formula for
$[yp,\, x]^s$.}---It follows from (3) and (5) that
\begin{equation*}
[-p^2,\, 1,\, p^2] = \left[\beta\frac{\alpha_1^p-1}{\alpha_1-1}p^2,\,
\alpha_1^p\left \{ 1+\frac{\beta k}{2}
\frac{\alpha_1^p-1}{\alpha_1-1} p^{m-4}\right \} \right] \quad (m > 4).
\end{equation*}
\noindent Hence, by (2),
\begin{gather*}
\beta\frac{\alpha_1^p - 1}{\alpha_1 - 1}p^2 \equiv 0 \pmod{p^3}, \\
\alpha{}_1^p \left \{ 1 + \frac{\beta k}{2}
\frac{\alpha{}_1^p-1}{\alpha_1 - 1} p^{m-4} \right \} +
\beta\frac{\alpha{}_1^p - 1}{\alpha_1 - 1}hp^2
\equiv 1 + kp^{m-4} \pmod{p^{m-3}}. \\
\intertext{From these congruences, we have for $m > 6$}
\alpha{}_1^p \equiv 1 \pmod{p^3}, \qquad \alpha_1 \equiv 1 \pmod{p^2}, \\
\intertext{and obtain, by setting}
\alpha_1 = 1 + \alpha_2 p^2, \\
\intertext{the congruence}
\frac{(1 + \alpha_2 p^2)^p - 1}{\alpha_2 p^3}(\alpha_2 + h\beta)p^3
\equiv kp^{m-4} \pmod{p^{m-3}}; \\
\intertext{and so}
(\alpha_2 + h\beta)p^3 \equiv 0 \pmod{p^{m-4}}, \\
\intertext{since}
\frac{(1+\alpha_2 p^2)^p-1}{\alpha_2 p^3} \equiv 1 \pmod{p^2}.
\end{gather*}
\noindent From the last congruences
\begin{gather}
(\alpha_2 + h\beta)p^3 \equiv kp^{m-4} \pmod{p^{m-3}}. \\ %% 6
\intertext{Equation (3) is now replaced by}
Q{}_1^{-p}\,P\, Q{}_1^{-p} = Q{}_1^{\beta p^2} P^{1 + \alpha_2 p^2}. %% 7
\end{gather}
\noindent From (7), (5), and (6)
\begin{equation*}
[-yp,\, x,\, yp] = \left[\beta xyp^2,\, x\{1 + \alpha_2 yp^2\}
+ \beta k \tbinom{x}{2}yp^{m-4}\right].
\end{equation*}
\noindent A continued use of this equation gives
\begin{multline}
[yp,\, x]^s = [syp + \beta \tbinom{s}{2}xyp^2, \\
xs + \tbinom{s}{2} \{\alpha_2 xyp^2 + \beta k\tbinom{x}{2}yp^{m-4}\} +
\beta k\tbinom{s}{3}x^2yp^{m-4}]. %% 8
\end{multline}
\medskip
4. \textit{Determination of $G$.}---From (4) and (8),
\begin{gather*}
[-p,\, 1,\, p] = [Np,\, a{}_1^p + Mp^2]. \\
\intertext{From the above equation and (7),}
a{}_1^p \equiv 1 \pmod{p^2}, \qquad a_1 \equiv 1 \pmod{p}.
\end{gather*}
Set $a_1 = 1 + a_2 p$ and equation (4) becomes
\begin{equation}
Q{}_1^{-1}\, P\, Q_1 = Q{}_1^{bp}\, P^{1 + a_2 p}. %% 9
\end{equation}
\noindent From (9), (8) and (6)
\begin{gather*}
[-p^2,\, 1,\, p^2] = \left[\frac{(1 + a_2 p)^{p^2}-1}{a_2 p}bp,
(1 + a_2 p)^{p^2}\right], \\
\intertext{and from (1) and (2)}
\frac{(1 + a_2 p)^{p^2} - 1}{a_2 p}bp \equiv 0 \pmod{p^3}, \\
(1 + a_2 p)^{p^2} + bh\frac{(1 + a_2 p)^{p^2} - 1}{a_2 p}p
\equiv 1 + kp^{m-4} \pmod{p^{m-3}}.
\end{gather*}
\noindent By a reduction similar to that used before,
\begin{equation}
(a_2 + bh)p^3 \equiv kp^{m-4} \pmod{p^{m-3}}. %% 10
\end{equation}
The groups in this class are completely defined by (9), (1) and (10).
These defining relations may be presented in simpler form by a suitable
choice of the second generator $Q_1$. From (9), (6), (8) and (10)
\begin{gather*}
[1,\, x]^{p^3} = [p^3,\, xp^3] = [0,\, (x + h)p^3] \quad (m > 6), \\
\intertext{and, if $x$ be so chosen that}
x + h \equiv 0 \pmod{p^{m-6}}, \\
\intertext{$Q_1\, P^x$ is an operator of order $p^3$ whose $p^2$
power is not contained in $\{P\}$. Let $Q_1\, P^x = Q$. The group
$G$ is generated by $Q$ and $P$, where}
Q^{p^3} = 1, \quad P^{p^{m-3}} = 1. \\
\intertext{Placing $h = 0$ in (6) and (10) we find}
\alpha_2 p^3 \equiv a_2 p^3 \equiv k p^{m-4} \pmod{p^{m-3}}.
\end{gather*}
\noindent Let $\alpha_2 = \alpha p^{m-7}$, and $a_2 = ap^{m-7}$.
Equations (7) and (9) are now replaced by
\begin{equation}
\left.
\begin{aligned}
Q^{-p}\, P\, Q^p &= Q^{\beta p^2} P^{1 + \alpha p^{m-5}},\\
Q^{-1}\, P\, Q &= Q^{bp} P^{1 + ap^{m-6}}.
\end{aligned}
\right. %% 11
\end{equation}
As a direct result of the foregoing relations, the groups in this
class correspond to the partition $(m-3,\, 3)$. From (11) we
find\footnote{For $m = 8$ it is necessary to add
$a^2\binom{y}{2}p^4$ to the exponent of $P$ and for $m = 7$ the
terms $a(a + \frac{abp}{2})\binom{y}{2}p^2 + a^3\binom{y}{3}p^3$
to the exponent of $P$, and the term $ab\binom{y}{2}p^2$ to the
exponent of $Q$. The extra term $27ab^2 k\binom{y}{3}$ is to be
added to the exponent of $P$ for $m = 7$ and $p = 3$.}
\begin{equation*}
[-y,\, 1,\, y] = [byp,\, 1 + ayp^{m-6}] \qquad (m > 8).
\end{equation*}
It is important to notice that by placing $y = p$ and $p^2$ in the
preceding equation we find that\footnote{For $m = 7,\,
ap^2-\frac{a^2p^3}{2} \equiv ap^2 \pmod{p^4},\, ap^3 \equiv kp^3
\pmod{p^4}$. For $m = 7$ and $p = 3$ the first of the above
congruences has the extra terms $27(a^3 + ab\beta k)$ on the left
side.}
\begin{equation*}
b \equiv \beta \pmod{p}, \qquad a \equiv \alpha \equiv k \pmod{p^3}
\qquad (m > 7).
\end{equation*}
A combination of the last equation with (8) yields\footnote{For $m
= 8$ it is necessary to add the term $a\binom{y}{2}xp^4$ to the
exponent of $P$, and for $m = 7$ the terms $x\{a(a +
\frac{abp}{2})\binom{y}{2}p^2 + a^3\binom{y}{3}p^3\}$ to the
exponent of $P$, with the extra term $27ab^2 k\binom{y}{3}x$ for
$p = 3$, and the term $ab\binom{y}{2}xp^2$ to the exponent of
$Q$.}
\begin{multline}
[-y,\, x,\, y] = [bxyp + b^2\tbinom{x}{2}yp^2, \\
x(1 + ayp^{m-6}) + ab\tbinom{x}{2}yp^{m-5} +
ab^2\tbinom{x}{3}yp^{m-4}] \qquad (m > 8). %% 12
\end{multline}
\newpage
From (12) we get\footnote{For $m = 8$ it is necessary to add the
term $\frac{1}{2} axy \binom{s}{2}[\frac{1}{3}y(2s - 1) - 1]p^4$
to the exponent of $P$, and for $m=7$ the terms
\begin{multline*}
x \Bigl\{ \frac{a}{2} \bigl( a + \frac{ab}{2} p \bigr)
\bigl(\frac{2s-1}{3} y - 1 \bigr) \tbinom{s}{2}yp^2 +
\frac{a^{3}}{3!} \bigl(\tbinom{s}{2}y^2 - (2s - 1)y + 2 \bigr) yp^3 \\
+ \frac{a^2 bxy^2}{2} \tbinom{s}{3} \frac{3s-1}{2}p^3 + \frac{a^2 b}{2}
\bigl( \frac{s(s - 1)^2 (s - 4)}{4!}y - \tbinom{s}{3} \bigr) yp^3 \Bigr\}
\end{multline*}
\noindent with the extra terms
\begin{equation*}
27abxy \Bigl\{ \frac{bk}{3!}\bigl[\tbinom{s}{2}y^2 - (2s - 1)y + 2\bigr] \tbinom{s}{3}
+ x(b^2 k + a^2)(2y^2 + 1)\tbinom{s}{3} \Bigr\},
\end{equation*}
\noindent for $p=3$, to the exponent of $P$, and the terms
$\frac{ab}{2} \bigl\{ 2s - \frac{1}{3}y - 1 \bigr\} \tbinom{s}{2}xyp^2$
to the exponent of $Q$.} %% END OF FOOTNOTE
\begin{multline}
[y,\, x]^s = \bigl[ys + by\bigl\{(x +b\tbinom{x}{2}p)\tbinom{s}{2} + x\tbinom{s}{3}p\bigr\}p, \\
xs + ay\bigl\{(x+b\tbinom{x}{2}p + b^2\tbinom{x}{3}p^2)\tbinom{s}{2} \\
+ (bx^2 p + 2b^2 x\tbinom{x}{2}p^2)\tbinom{s}{3} + bx^2\tbinom{s}{4}p^2\bigr\}p^{m-6}\bigr]
\qquad (m > 8). %% 13
\end{multline}
\medskip
5. \textit{Transformation of the Groups.}---The general group $G$
of Class I is specified, in accordance with the relations (2) (11)
by two integers $a$, $b$ which (see (11)) are to be taken mod
$p^3$, mod $p^2$, respectively. Accordingly setting
\begin{gather*}
a = a_1 p^\lambda, \quad b = b_1 p^\mu,
\intertext{where}
dv[a_1,\, p] = 1, \quad dv[b_1,\, p] = 1 \qquad (\lambda = 0,\, 1,\, 2,\, 3;\; \mu = 0,\, 1,\, 2),
\intertext{we have for the group $G = G(a,\, b) = G(a,\, b)(P,\, Q)$ the
generational determination:}
G(a,\, b):\; \left \{
\begin{gathered}
Q^{-1}\, P\, Q = Q^{b_1 p^{\mu + 1}} P^{1 + a_1 p^{m + \lambda - 6}} \\
Q^{p^3} = 1, \quad P^{p^{m-3}} = 1.
\end{gathered} \right.
\end{gather*}
Not all of these groups however are distinct. Suppose that
\begin{gather*}
G(a,\, b)(P,\, Q) \sim G(a',\, b')(P',\, Q'),
\intertext{by the correspondence}
C = \left[\begin{array}{cc}
Q, & P \\
Q'_1, & P'_1 \\
\end{array} \right],
\intertext{where}
Q'_1 = Q'^{y'} P'^{x'p^{m-6}}, \qquad \hbox{ and } \qquad P'_1 = Q'^y P'^x,
\end{gather*}
\noindent with $y'$ and $x$ prime to $p$.
Since
\begin{gather*}
Q^{-1}\, P\, Q = Q^{bp} P^{1 + ap^{m-6}}, \\
\intertext{then}
{Q'}_1^{-1}\, P'_1\, Q'_1 = {Q'}_1^{bp} {P'}_1^{1 + ap^{m-6}}, \\
\intertext{or in terms of $Q'$, and $P'$}
\begin{aligned}
\bigl[y + b'xy'p &+ b'^2\tbinom{x}{2}y'p^2, x(1 + a'y'p^{m-6}) + a'b'\tbinom{x}{2}y'p^{m-5} \\
&+ a'b'^2\tbinom{x}{3}y'p^{m-4}\bigr] = [y + by'p, x + (ax + bx'p)p^{m-6}] \qquad (m > 8)
\end{aligned}
\end{gather*}
\noindent and
\begin{gather}
by' \equiv b'xy' + b'^2\tbinom{x}{2}y'p \pmod{p^2}, \\ %% 14
ax + bx'p \equiv a'y'x + a'b'\tbinom{x}{2}y'p + a'b'^2\tbinom{x}{3}y'p^2 \pmod{p^3}. %% 15
\end{gather}
\noindent The necessary and sufficient condition for the simple
isomorphism of these two groups $G(a,\, b)$ and $G(a',\, b')$ is, that
the above congruences shall be consistent and admit of solution
for $x$, $y$, $x'$ and $y'$. The congruences may be written
\begin{gather*}
b_1 p^\mu \equiv b'_1 xp^{\mu'} + {b'}_1^2\tbinom{x}{2}p^{2\mu' + 1} \pmod{p^2}, \\
\begin{aligned}
a_1 xp^{\lambda} + b_1 x'p^{\mu + 1} &\equiv \\
y'\{a'_1 xp^{\lambda'} &+ a'_1 b'_1\tbinom{x}{2}p^{\lambda'+\mu'+1}
+ a'_1 {b'}_1^2\tbinom{x}{3}p^{\lambda'+2\mu'+2}\} \pmod{p^3}.
\end{aligned}
\end{gather*}
\noindent Since $dv[x,\, p] = 1$ the first congruence gives $\mu =
\mu'$ and $x$ may always be so chosen that $b_1 = 1$.
We may choose $y'$ in the second congruence so that $\lambda =
\lambda'$ and $a_1 = 1$ except for the cases $\lambda' \ge \mu + 1
= \mu' + 1$ when we will so choose $x'$ that $\lambda = 3$.
The type groups of Class I for $m > 8$\footnote{For $m = 8$ the
additional term $ayp$ appears on the left side of the congruence
(14) and $G(1,\, p^2)$ and $G(1,\, p)$ become simply isomorphic. The
extra terms appearing in congruence (15) do not effect the result.
For $m = 7$ the additional term $ay$ appears on the left side of
(14) and $G(1,\, 1)$, $G(1,\, p)$, and $G(l,\, p^2)$ become simply
isomorphic, also $G(p,\, p)$ and $G(p,\, p^2)$.} are then given by
\begin{multline}
G(p^\lambda,\, p^\mu):\; Q^{-1}\, P\, Q = Q^{p^{1+\mu}}
P^{1+p^{m-6+\lambda}},\, Q^{p^3} = 1,\, P^{p^{m-3}} = 1 \\
\left(
\begin{aligned}
\mu = 0,\, 1,\, 2;\;& \lambda = 0,\, 1,\, 2;\; \lambda \ge \mu; \\
\mu = 0,\, 1,\, 2;\;& \lambda = 3
\end{aligned} \right)
\tag{I}.
\end{multline}
Of the above groups $G(p^\lambda,\, p^\mu)$ the groups for $\mu = 2$ have
the cyclic subgroup $\{P\}$ self-conjugate, while the group $G(p^3,\, p^2)$
is the abelian group of type $(\mbox{$m-3$},\, 3)$.
\bigskip \bigskip
\begin{center}
\Large\textit{Class} II. \normalsize
\end{center}
\setcounter{equation}{0}
1. \textit{General relations.}
There is in $G$ an operator $Q_1$ such that $Q{}_1^{p^2}$ is contained in
$\{P\}$ while $Q{}_1^p$ is not.
\begin{equation}
Q{}_1^{p^2} = P^{hp^2}. %% 1
\end{equation}
The operators $Q_1$ and $P$ either generate a subgroup $H_2$ of order
$p^{m-1}$, or the entire group $G$.
\bigskip
\begin{center}
\large\textit{Section} 1. \normalsize
\end{center}
2. \textit{Groups with independent generators.}
Consider the first possibility in the above paragraph. There is in
$H_2$, a subgroup $H_1$ of order $p^{m-2}$, which contains $\{P\}$
self-conjugately.\footnote{\textsc{Burnside}, \textit{Theory of
Groups}, Art.\ 54, p.\ 64.} $H_1$ is generated by $Q{}_1^p$ and $P$.
$H_2$ contains $H_1$ self-conjugately and is itself self-conjugate
in $G$.
From these considerations\footnote{\textit{Ibid.}, Art.\ 56, p.\ 66.}
\begin{align}
Q{}_1^{-p}\, P\, Q{}_1^p &= P^{1 + kp^{m-4}}, \\ %% 2
Q{}_1^{-1}\, P\, Q &= Q{}_1^{\beta p} P^{\alpha_1}. %% 3
\end{align}
\medskip
3. \textit{Determination of $H_1$ and $H_2$.}
From (2) we obtain
\begin{equation}
[yp,\, x]^s = \bigl[syp,\, x\bigl\{s + k\tbinom{s}{2}yp^{m-4}\bigr\}\bigr] \quad (m > 4), %% 4
\end{equation}
\noindent and from (3) and (4)
\begin{equation*}
[-p,\, 1,\, p] = \left[\frac{\alpha{}_1^p - 1}{\alpha_1 - 1}\beta p,\,
\alpha{}_1^p\left\{1 + \frac{\beta k}{2}
\frac{\alpha{}_1^p-1}{\alpha_1-1} p^{m-4} \right\} \right].
\end{equation*}
A comparison of the above equation with (2) shows that
\begin{gather*}
\frac{\alpha{}_1^p - 1}{\alpha_1 - 1} \beta p \equiv 0 \pmod{p^2}, \\
\alpha{}_1^p \left\{1 + \frac{\beta k}{2}\frac{\alpha{}_1^p-1}{a_1-1}
p^{m-4} \right\} + \frac{\alpha{}_1^p - 1}{\alpha_1 - 1} \beta hp
\equiv 1 + kp^{m-4} \pmod{p^{m-3}},
\end{gather*}
\noindent and in turn
\begin{equation*}
\alpha{}_1^p \equiv 1 \pmod{p^2}, \qquad \alpha_1 \equiv 1 \pmod{p} \qquad (m > 5).
\end{equation*}
Placing $\alpha_1 = 1 + \alpha_2 p$ in the second congruence, we obtain
as in Class I
\begin{equation}
(\alpha_2 + \beta h)p^2 \equiv kp^{m-4} \pmod{p^{m-3}} \qquad (m > 5). %% 5
\end{equation}
Equation (3) now becomes
\begin{equation}
Q{}_1^{-1}\, P\, Q_1 = Q^\beta P^{1 + \alpha_2 p}. %% 6
\end{equation}
\noindent The generational equations of $H_2$ will be simplified
by using an operator of order $p^2$ in place of $Q_1$.
From (5), (6) and (4)
\begin{gather*}
[y,\, x]^s = [sy + U_s p,\, sx + W_s p]
\intertext{in which}
\begin{aligned}
U_s &= \beta \tbinom{s}{2}xy, \\
W_s &= \alpha_2 \tbinom{s}{2}xy + \Bigl\{ \beta k \bigl[\tbinom{s}{2}\tbinom{x}{2}
+ \tbinom{s}{3}x^2 y\bigr] \\
& \qquad \qquad \qquad + \frac{1}{2}\alpha k\bigl[\frac{1}{3!}s(s - 1)(2s - 1)y^2
- \tbinom{s}{2}y\bigr]x \Bigr\} p^{m-5}.
\end{aligned}
\end{gather*}
Placing $s = p^2$ and $y = 1$ in the above
\begin{gather*}
[Q_1\, P^x]^{p^2} = Q{}_1^{p^2} P^{xp^2} = P^{(x+h)p^2}.
\intertext{If $x$ be so chosen that}
(x + h) \equiv 0 \pmod{p^{m-5}} \qquad (m > 5)
\end{gather*}
\noindent $Q_1 P^x$ will be the required $Q$ of order $p^2$.
Placing $h = 0$ in congruence (5) we find
\begin{equation*}
\alpha_2 p^2 \equiv kp^{m-4} \pmod{p^{m-3}}.
\end{equation*}
Let $\alpha_2 = \alpha p^{m-6}$. $H_2$ is then generated by
\begin{equation*}
Q^{p^2} = 1, \quad P^{p^{m-3}} = 1.
\end{equation*}
\begin{equation}
Q^{-1}\, P\, Q = Q^{\beta p} P^{1 + \alpha p^{m-5}}. %% 7
\end{equation}
Two of the preceding formul\ae\ now become
\begin{gather}
[-y,\, x,\, y] = \bigl[\beta xyp,\, x(1 + \alpha yp^{m-5}) + \beta k\tbinom{x}{2}yp^{m-4}\bigr], \\ %% 8
[y,\, x]^s = [sy + U_s p,\, xs + W_s p^{m-5}], %% 9
\end{gather}
\noindent where
\begin{equation*}
U_s = \beta \tbinom{s}{2}xy
\end{equation*}
\noindent and\footnote{For $m = 6$ it is necessary to add the terms
$\frac{ak}{2} \left \{ \frac{s(s - 1)(2s - 1)}{3!}y^2 - \tbinom{s}{2}y \right \}p$
to $W_s$.}
\begin{equation*}
W_s = \alpha \tbinom{s}{2}xy + \beta k\bigl\{\tbinom{s}{2}\tbinom{x}{2}
+ \tbinom{s}{3}x^2\bigr\}yp \quad (m > 6).
\end{equation*}
\medskip
4. \textit{Determination of $G$.}
Let $R_1$ be an operation of $G$ not in $H_2$. $R{}_1^p$ is in $H_2$. Let
\begin{equation}
R{}_1^p = Q^{\lambda p} P^{\mu p}. %% 10
\end{equation} %% 10
Denoting $R{}_1^a\, Q^b\, P^c\, R{}_1^d\, Q^e\, P^f \cdots$ by the symbol $[a,\, b,\, c,\,
d,\, e,\, f,\, \cdots]$, all the operations of $G$ are contained in the set $[z,\,
y,\, x]$; $z = 0,\, 1,\, 2,\, \cdots,\, p - 1$; $y = 0,\, 1,\, 2,\, \cdots,\, p^2 - 1$; $x = 0,\,
1,\, 2,\, \cdots,\, p^{m-3} - 1$.
The subgroup $H_2$ is self-conjugate in $G$. From
this\footnote{\textsc{Burnside}, \textit{Theory of Groups}, Art.\
24, p.\ 27.}
\begin{gather}
R{}_1^{-1}\, P\, R_1 = Q^{b_1} P^{a_1}, \\ %% 11
R{}_1^{-1}\, Q\, R_1 = Q^{d_1} P^{c_1 p^{m-5}}. %% 12
\end{gather}
\noindent In order to ascertain the forms of the constants in (11)
and (12) we obtain from (12), (11), and (9)
\begin{gather*}
[-p,\, 1,\, 0,\, p] = [0,\, d{}_1^p + Mp,\, Np^{m-5}].
\intertext{By (10) and (8)}
R{}_1^p\, Q\, R{}_1^p = P^{-\mu p}\, Q\, P^{\mu p} = Q\, P^{-a\mu p^{m-4}}.
\intertext{From these equations we obtain}
d{}_1^p \equiv 1 \pmod p \quad \hbox{ and } \quad d_1 \equiv 1 \pmod p .
\end{gather*}
\noindent Let $d_1 = 1 + dp$. Equation (12) is replaced by
\begin{equation}
R{}_1^{-1}\, Q\, R_1 = Q^{1+dp} P^{e_1 p^{m-5}}. %% 13
\end{equation}
\noindent From (11), (13) and (9)
\begin{gather*}
[-p,\, 0,\, 1,\, p] = \left[\frac{a{}_1^p - 1}{a_1 - 1}b_1 + Kp,\, a{}_1^p + b_1 Lp^{m-5}\right]
\intertext{in which}
K = a_1 b_1 \beta \sum_1^{p-1}\tbinom{a{}_1^y}{2}.
\intertext{By (10) and (8)}
R{}_1^{-p}\, P\, R{}_1^p = Q^{-\lambda p} P\, Q^{\lambda p} = P^{1 + a \lambda p^{m-4}},
\intertext{and from the last two equations}
a{}_1^p \equiv 1 \pmod{p^{m-5}}
\intertext{and}
a_1 \equiv 1 \pmod{p^{m-6}} \quad (m > 6); \qquad a_1 \equiv 1 \pmod{p} \quad (m = 6).
\end{gather*}
Placing $a_1 = 1 + a_2 p^{m-6} \quad (m > 6)$; \qquad $a_1 = 1 + a_2 p \quad (m=6)$.
\begin{equation*}
K \equiv 0 \pmod{p},
\end{equation*}
\noindent and\footnote{$K$ has an extra term for $m = 6$ and $p =
3$, which reduces to $3b_1 c_1$. This does not affect the
reasoning except for $c_1 = 2$. In this case change $P^2$ to $P$
and $c_1$ becomes $1$.}
\begin{gather*}
\frac{a{}_1^p - 1}{a_1 - 1}b_1 \equiv b_1 p \equiv 0 \pmod{p^2},
\qquad b_1 \equiv 0 \pmod p.
\intertext{Let $b_1 = bp$ and we find}
a{}_1^p \equiv 1 \pmod{p^{m-4}}, \qquad a_1 \equiv 1 \pmod{p^{m-5}}.
\end{gather*}
Let $a_1 = 1 + a_3 p^{m-5}$ and equation (11) is replaced by
\begin{equation}
R{}_1^{-1}\, P\, R_1 = Q^{bp} P^{1 + a_3 p^{m-5}}. %% 14
\end{equation}
\noindent The preceding relations will be simplified by taking for
$R_1$ an operator of order $p$. This will be effected by two
transformations.
From (14), (9) and (13)\footnote{The extra terms appearing in the
exponent of $P$ for $m=6$ do not alter the result.}
\begin{gather*}
[1,\, y]^p = \Bigl[p,\, yp,\, \frac{-c_1 y}{2} p^{m-4}\Bigr]
= \Bigl[0,\, (\lambda + y)p,\, \mu p - \frac{c_1 y}{2} p^{m-4}\Bigr],
\intertext{and if $y$ be so chosen that}
\lambda + y \equiv 0 \pmod{p},
\end{gather*}
\noindent $R_2 = R_1\, Q^y$ is an operator such that $R{}_2^p$ is in
$\{P\}$.
Let
\begin{gather*}
R{}_2^p = P^{lp}.
\intertext{Using $R_2$ in the place of $R_1$, from (15), (9) and (14)}
[1,\, 0,\, x]^p = \Bigl[p,\, 0,\, xp + \frac{ax}{2} p^{m-4}\Bigr] =
\Bigl[0,\, 0,\, (x + l)p + \frac{ax}{2} p^{m-4}\Bigr],
\intertext{and if $x$ be so chosen that}
x + l + \frac{ax}{2} p^{m-5} \equiv 0 \pmod{p^{m-4}},
\end{gather*}
\noindent then $R = R_2 P^x$ is the required operator of order $p$.
$R^p = 1$ is permutable with both $Q$ and $P$. Preceding equations now
assume the final forms
\begin{align}
Q^{-1}\, P\, Q & = Q^{\beta p} P^{1 + ap^{m-5}}, \\ %% 15
R^{-1}\, P\, R & = Q^{bp} P^{1 + ap^{m-4}}, \\ %% 16
R^{-1}\, Q\, R & = Q^{1 + dp} P^{cp^{m-4}}, %% 17
\end{align}
with $R^p = 1$, $Q^{p^2} = 1$, $P^{p^{m-3}} = 1$.
The following derived equations are necessary\footnote{For $m=6$
the term $a^2 \tbinom{x}{2} xp^2$ must be added to the exponent of
$P$ in (18).}
\begin{align}
[0,\, -y,\, x,\, 0,\, y] &= \bigl[0,\, \beta xyp,\, x(1 + \alpha yp^{m-5}) + \alpha
\beta \tbinom{x}{2}yp^{m-4}\bigr], \\ %% 18
[-y,\, 0,\, x,\, -y] &= \bigl[0,\, bxyp,\, x(1 + ayp^{m-4})
+ ab\tbinom{x}{2} yp^{m-4}\bigr], \\ %% 19
[-y,\, x,\, 0,\, y] &= [0,\, x(1 + dyp),\, cxyp^{m-4}]. %% 20
\end{align}
From a consideration of (18), (19) and (20) we arrive at the
expression for a power of a general operator of $G$.
\begin{equation}
[z,\, y,\, x]^s = [sz,\, sy + U_s p,\, sx + V_s p^{m-5}], %% 21
\end{equation}
\noindent where\footnote{When $m = 6$ the following terms are to
be added to $V_s$: $\frac{a^2 x}{2} \left\{\frac{s(s - 1)(2s - 1)}{3!}y^2
- \tbinom{s}{2}y\right\}p.$}
\begin{align*}
U_s &= \tbinom{s}{2} \{bxz +\beta xy + dyz \}, \\
V_s &= \tbinom{s}{2} \Bigl\{\alpha xy + \bigl[axz + \alpha \beta \tbinom{x}{2}y
+ cyz + ab\tbinom{x}{2}z\bigr]p\Bigr\} \\
& \qquad \qquad \qquad + \alpha\tbinom{s}{3} \{bxz + \beta xy + dyz \} xp.
\end{align*}
\medskip
5. \textit{Transformation of the groups.} All groups of this
section are given by equations (15), (16), and (17) with $a,\, b,\,
\beta,\, c,\, d = 0,\, 1,\, 2,\, \cdots ,\, p - 1$, and $\alpha = 0,\, 1,\, 2,\,
\cdots ,\, p^2 - 1$, independently. Not all these groups, however,
are distinct. Suppose that $G$ and $G'$ of the above set are
simply isomorphic and that the correspondence is given by
\begin{equation*}
C = \left[
\begin{matrix}
R, & Q, & P \\
R'_1, & Q'_1, & P'_1 \\
\end{matrix}
\right],
\end{equation*}
\noindent in which
\begin{align*}
R'_1 &= R'^{z''} Q'^{y''p} P'^{x''p^{m-4}}, \\
Q'_1 &= R'^{z'} Q'^{y'} P'^{x'p^{m-5}}, \\
P'_1 &= R'^z Q'^y P'^x,
\end{align*}
\noindent where $x$, $y'$ and $z''$ \textit{are prime} to $p$.
The operators $R'_1$, $Q'_1$, and $P'_1$ must be independent since
$R$, $Q$, and $P$ are, and that this is true is easily verified.
The lowest power of $Q'_1$ in $\{P'_1\}$ is $Q'{}_1^{p^2} = 1$ and
the lowest power of $R'_1$ in $\{Q'_1, P'_1\}$ is $R'{}_1^p = 1$.
Let $Q'{}_1^{s'} = P'{}_1^{sp^{m-5}}$.
This in terms of $R'$, $Q'$, and $P'$ is
\begin{gather*}
\Bigl[s'z',\, y'\bigl\{s' + d'\tbinom{s'}{2}z'p\bigr\},\, s'x'p^{m-5} +
c'\tbinom{s'}{2}y'z'p^{m-4}\Bigr] = [0,\, 0,\, sxp^{m-5}]. \\
\intertext{From this equation $s'$ is determined by}
s'z' \equiv 0 \pmod{p} \\
y'\{s' + d'\tbinom{s}{2}z'p\} \equiv 0 \pmod{p^2},
\intertext{which give}
s'y' \equiv 0 \pmod{p^2}.
\intertext{Since $y'$ is prime to $p$}
s' \equiv 0 \pmod{p^2}
\end{gather*}
\noindent and the lowest power of $Q'_1$ contained in $\{P'_1\}$
is $Q'{}_1^{p^2} = 1$.
Denoting by ${R'}_1^{s''}$ the lowest power of $R'_1$ contained in
$\{Q'_1, P'_1\}$.
\begin{equation*}
{R'}_1^{s''} = {Q'}_1^{s'p} {P'}_1^{sp^{m-4}}.
\end{equation*}
This becomes in terms of $R'$, $Q'$, and $P'$
\begin{gather*}
[s''z'',\, s''y''p,\, s''x''p^{m-4}] = [0,\, s'y'p,\, \{s'x' + sx\}p^{m-4}].
\intertext{$s''$ is now determined by}
s''z'' \equiv 0 \pmod{p}
\intertext{and since $z''$ is prime to $p$}
s'' \equiv 0 \pmod{p}.
\end{gather*}
\noindent The lowest power of $R'_1$ contained in $\{Q'_1, P'\}$ is therefore
${R'}_1^p = 1$.
Since $R$, $Q$, and $P$ satisfy equations (15), (16), and (17) $R'_1$,
$Q'_1$, and $P'_1$ also satisfy them. Substituting in these equations the
values of $R'_1$, $Q'_1$, and $P'_1$ and reducing we have in terms of
$R'$, $Q'$, and $P'$
\begin{gather}
[z,\, y + \theta_1 p,\, x + \phi_1 p^{m-5}] =
[z,\, y + \beta y'p,\, x(1 + \alpha p^{m-5}) + \beta xp^{m-4}], \\ %% 22
[z,\, y + \theta_2 p,\, x + \phi_2 p^{m-4}] =
[z,\, y + by'p,\, x(1 + ap^{m-4}) + bx'p^{m-4}], \\ %% 23
[z',\, y' + \theta_3 p,\, (x' + \phi_3 p)p^{m-5}] =
[z',\, y'(1 + dp),\, x(1 + dp)p^{m-5} + cxp^{m-4}], %% 24
\end{gather}
\noindent in which
\begin{align*}
\theta_1 &= d'(yz' - y'z) + x(b'z' + \beta'y'), \\
\theta_2 &= d'yz'' + b'xz'', \\
\theta_3 &= d'y'z'', \\
\phi_1 &= \alpha'xy' + \bigl\{\alpha'(\beta'y' + b'z')\tbinom{x}{2} +
a'xz + c'(yz'-y'z)\bigr\}p, \\
\phi_2 &= \alpha'xy'' + a'xz'' + \alpha'b'\tbinom{x}{2}z'' + c'yz'', \\
\phi_3 &= c'yz''.
\end{align*}
A comparison of the members of the above equations give six congruences
between the primed and unprimed constants and the nine indeterminates.
\begin{align*}
\theta_1 &\equiv \beta y' \pmod{p}, \tag{I} \\
\phi_1 &\equiv \alpha x + \beta x'p \pmod{p^2}, \tag{II} \\
\theta_2 &\equiv by' \pmod{p}, \tag{III} \\
\phi_2 &\equiv ax + bx' \pmod{p}, \tag{IV} \\
\theta_3 &\equiv dy' \pmod{p}, \tag{V} \\
\phi_3 &\equiv cx + dx' \pmod{p}. \tag{VI}
\end{align*}
The necessary and sufficient condition for the simple isomorphism of
the two groups $G$ and $G'$ is, \textit{that the above congruences shall be
consistent and admit of solution for the nine indeterminates, with the
condition that $x$, $y'$ and $z''$ be prime to $p$.}
For convenience in the discussion of these congruences, the groups are
divided into six sets, and each set is subdivided into 16 cases.
The group $G'$ is taken from the simplest case, and we associate with
this case all cases, which contain a group $G$, simply isomorphic with
$G'$. Then a single group $G$, in the selected case, simply isomorphic
with $G'$, is chosen as a type.
$G'$ is then taken from the simplest of the remaining cases and we proceed
as above until all the cases are exhausted.
Let $\kappa = \kappa_1 p^{\kappa_2}$, and $dv_1[\kappa_1 ,\, p] = 1$
$(\kappa = a,\, b,\, \alpha ,\, \beta ,\, c,$ and $d)$.
The six sets are given in the table below.
\begin{center}
\large I. \normalsize
\smallskip
\begin{tabular}{|c|c|c||c|c|c|}
\hline
&$\alpha_2$&$d_2$& &$\alpha_2$&$d_2$ \\ \hline
$A$& 0 & 0 &$D$& 2 & 0 \\ \hline
$B$& 0 & 1 &$E$& 1 & 1 \\ \hline
$C$& 1 & 0 &$F$& 2 & 1 \\ \hline
\end{tabular}
\end{center}
\medskip
The subdivision into cases and the results are given in Table II.
\begin{center}
\large II. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
&$a_2$&$b_2$&$\beta_2$&$c_2$& $A$ & $B$ & $C$ & $D$ & $E$ & $F$ \\ \hline
1& 1 & 1 & 1 & 1 & & & & & & \\ \hline
2& 0 & 1 & 1 & 1 &$A_1$& $B_1$ & &$C_2$& & $E_2$ \\ \hline
3& 1 & 0 & 1 & 1 &$A_1$& &$C_1$&$D_1$& & \\ \hline
4& 1 & 1 & 0 & 1 &$A_1$& &$C_1$&$D_1$& & $E_4$ \\ \hline
5& 1 & 1 & 1 & 0 &$A_1$& &$C_1$&$D_1$& & $E_5$ \\ \hline
6& 0 & 0 & 1 & 1 &$A_1$& $B_3$ &$C_2$&$C_2$& $E_3$ & $F_3$ \\ \hline
7& 0 & 1 & 0 & 1 &$A_1$& $B_4$ &$C_2$&$C_2$& & $E_7$ \\ \hline
8& 0 & 1 & 1 & 0 &$A_1$& $B_5$ &$C_2$&$C_2$& $E_5$ & $E_5$ \\ \hline
9& 1 & 0 & 0 & 1 &$A_1$& $B_3$ &$C_1$&$D_1$& $E_3$ & $F_3$ \\ \hline
10& 1 & 0 & 1 & 0 &$A_1$& &$C_2$&$C_2$& &$E_{10}$ \\ \hline
11& 1 & 1 & 0 & 0 &$A_1$& & * &$C_1$& &$E_{11}$ \\ \hline
12& 0 & 0 & 0 & 1 &$A_1$& $B_3$ &$C_2$&$C_2$& * & $E_3$ \\ \hline
13& 0 & 0 & 1 & 0 &$A_1$&$B_{10}$& * & * &$E_{10}$&$E_{10}$ \\ \hline
14& 0 & 1 & 0 & 0 &$A_1$&$B_{11}$&$C_2$&$C_2$&$E_{11}$&$E_{11}$ \\ \hline
15& 1 & 0 & 0 & 0 &$A_1$&$B_{10}$&$C_2$&$C_2$&$E_{10}$&$E_{10}$ \\ \hline
16& 0 & 0 & 0 & 0 &$A_1$&$B_{10}$& * & * &$E_{10}$&$E_{10}$ \\ \hline
\end{tabular}
\footnotesize The groups marked (*) divide into two or three parts. \normalsize
\end{center}
\medskip
Let $ad - bc = \theta_1 p^{\theta_2}$, $\alpha_1 d - \beta c =
\phi_1 p^{\phi_2}$ and $\alpha_1 b - a\beta = \chi_1 p^{\chi_2}$ with
$\theta_1$, $\phi_1$, and $\chi_1$ prime to $p$.
\begin{center}
\large III. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c||c|c|c|c|c|}
\hline
* &$\theta_2$&$\phi_2$&$\chi_2$& & * &$\theta_2$&$\phi_2$&$\chi_2$& \\ \hline
$C_{11}$& & 1 & &$D_1$&$D_{13}$& 1 & & &$D_1$ \\ \hline
$C_{11}$& & 0 & &$C_1$&$D_{13}$& 0 & & &$C_2$ \\ \hline
$C_{13}$& 1 & & &$C_1$&$D_{16}$& 1 & & &$C_1$ \\ \hline
$C_{13}$& 0 & & &$C_2$&$D_{16}$& 0 & & &$C_2$ \\ \hline
$C_{16}$& 1 & 1 & &$D_1$&$E_{12}$& & & 1 &$F_3$ \\ \hline
$C_{16}$& 1 & 0 & &$C_1$&$E_{12}$& & & 0 &$E_3$ \\ \hline
$C_{16}$& 0 & & &$C_2$& & & & & \\ \hline
\end{tabular}
\newpage
6. \textit{Types.}
\end{center}
The type groups are given by equations (15), (16) and (17) with the
values of the constants given in Table IV.
\begin{center}
\large IV. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c|c|c||c|c|c|c|c|c|c|}
\hline
& $a$ &$b$&$\alpha$&$\beta$& $c$ &$d$& &$a$&$b$&$\alpha$&$\beta$& $c$ &$d$ \\ \hline
$A_1$ & 0 & 0 & 1 & 0 & 0 & 1 &$E_1$ & 0 & 0 & $p$ & 0 & 0 & 0 \\ \hline
$B_1$ & 0 & 0 & 1 & 0 & 0 & 0 &$E_2$ & 1 & 0 & $p$ & 0 & 0 & 0 \\ \hline
$B_3$ & 0 & 1 & 1 & 0 & 0 & 0 &$E_3$ & 0 & 1 & $p$ & 0 & 0 & 0 \\ \hline
$B_4$ & 0 & 0 & 1 & 1 & 0 & 0 &$E_4$ & 0 & 0 & $p$ & 1 & 0 & 0 \\ \hline
$B_5$ & 0 & 0 & 1 & 0 & 1 & 0 &$E_5$ & 0 & 0 & $p$ & 0 & 1 & 0 \\ \hline
$B_{10}$& 0 & 1 & 1 & 0 &$\kappa$& 0 &$E_7$ & 1 & 0 & $p$ & 1 & 0 & 0 \\ \hline
$B_{11}$& 0 & 0 & 1 & 1 & 1 & 0 &$E_{10}$& 0 & 1 & $p$ & 0 &$\kappa$& 0 \\ \hline
$C_1$ & 0 & 0 & $p$ & 0 & 0 & 1 &$E_{11}$& 0 & 0 & $p$ & 1 & 1 & 0 \\ \hline
$C_2$ &$\omega$& 0 & $p$ & 0 & 0 & 1 &$F_1$ & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$D_1$ & 0 & 0 & 0 & 0 & 0 & 1 &$F_3$ & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline
\end{tabular}
\footnotesize
\begin{align*}
\kappa &= 1, \hbox{ and a non-residue } \pmod{p}, \\
\omega &= 1, 2, \cdots, p - 1.
\end{align*}
\normalsize
\end{center}
\medskip
The congruences for three of these cases are completely analyzed as
illustrations of the methods used.
\medskip
\begin{equation*} B_{10}. \end{equation*}
The congruences for this case have the special forms.
\begin{gather*}
b'xz' \equiv \beta y' \pmod{p}, \tag{I} \\
\alpha'y' \equiv \alpha \pmod{p}, \tag{II} \\
b'xz'' \equiv by' \pmod{p}, \tag{III} \\
\alpha'xy'' + \alpha'b'\tbinom{x}{2}z'' + c'yz'' \equiv ax + bx' \pmod{p}, \tag{IV} \\
d \equiv 0 \pmod{p}, \tag{V} \\
c'y'z'' \equiv cx \pmod{p}. \tag{VI}
\end{gather*}
Since $z'$ is unrestricted (I) gives $\beta \equiv 0$ or $\not\equiv 0 \pmod{p}$.
From (II) since $y' \not\equiv 0, \alpha \not\equiv 0 \pmod{p}$.
From (III) since $x, y', z'' \not\equiv 0$, $b \not\equiv 0 \pmod{p}$.
In (IV) $b \not\equiv 0$ and $x'$ is contained in this congruence alone,
and, therefore, $a$ may be taken $\equiv 0$ or $\not\equiv 0 \pmod{p}$.
(V) gives $d \equiv 0 \pmod{p}$ and (VI), $c \not\equiv 0 \pmod{p}$.
Elimination of $y'$ between (III) and (VI) gives
\begin{equation*}
b'c'z''^{2} \equiv bc \pmod{p}
\end{equation*}
\noindent so that $bc$ is a quadratic residue or non-residue (mod $p$)
according as $b'c'$ is a residue or non-residue.
The types are given by placing $a = 0$, $b = 1$, $\alpha = 1$, $\beta = 0$,
$c = \kappa$, and $d = 0$ where $\kappa$ has the two values, 1 and a
representative non-residue of $p$.
\medskip
\begin{equation*} C_2. \end{equation*}
The congruences for this case are
\begin{gather*}
d'(yz' - y'z) \equiv \beta y' \pmod{p}, \tag{I} \\
\alpha'_1 xy' + a'xz' \equiv \alpha_1 x + \beta x' \pmod{p}, \tag{II} \\
d'yz'' \equiv by' \pmod{p}, \tag{III} \\
a'xz'' \equiv ax + bx' \pmod{p}, \tag{IV} \\
d'z'' \equiv d \pmod{p}, \tag{V} \\
cx + dx' \equiv 0 \pmod{p}. \tag{VI}
\end{gather*}
Since $z$ appears in (I) alone, $\beta$ can be either $\equiv 0$ or
$\not\equiv 0 \pmod{p}$. (II) is linear in $z'$ and, therefore, $\alpha
\equiv 0$ or $\not\equiv 0 \pmod{p}$, (III) is linear in $y$ and,
therefore, $b \equiv 0$ or $\not\equiv 0$.
Elimination of $x'$ and $z''$ between (IV), (V), and (VI) gives
\begin{equation*}
a'd^2 \equiv d'(ad - bc) \pmod{p}.
\end{equation*}
\noindent Since $z''$ is prime to $p$, (V) gives $d \not\equiv 0 \pmod{p}$, so that
$ad - bc \not\equiv 0 \pmod{p}$. We may place $b = 0$, $\alpha = p$,
$\beta = 0$, $c = 0$, $d = 1$, then $a$ will take the values $1, 2, 3, \cdots,
p - 1$ giving $p - 1$ types.
\medskip
\begin{equation*} D_1. \end{equation*}
The congruences for this case are
\begin{align*}
d'(yz' - y'z) &\equiv \beta y' \pmod{p}, \tag{I} \\
\alpha_1 x + \beta x' &\equiv 0 \pmod{p}, \tag{II} \\
d'yz'' &\equiv by' \pmod{p}, \tag{III} \\
ax + bx' &\equiv 0 \pmod{p}, \tag{IV} \\
d'z'' &\equiv d \pmod{p}, \tag{V} \\
cx + dx' &\equiv 0 \pmod{p}. \tag{VI}
\end{align*}
\noindent $z$ is contained in (I) alone, and therefore $\beta \equiv 0$ or
$\not\equiv 0 \pmod{p}$.
(III) is linear in $y$, and $b \equiv 0$ or $\not\equiv 0 \pmod{p}$.
(V) gives $d \not\equiv 0 \pmod{p}$.
Elimination of $x'$ between (II) and (VI) gives $\alpha_1 d - \beta c
\equiv 0 \pmod{p}$, and between (IV) and (VI) gives $ad - bc \equiv 0
\pmod{p}$. The type group is derived by placing $a = 0$, $b = 0$, $\alpha = 0$,
$\beta = 0$, $c = 0$ and $d = 1$.
\bigskip
\begin{center}
\large\textit{Section} 2. \normalsize
\end{center}
\setcounter{equation}{0}
1. \textit{Groups with dependent generators.} In this section, $G$ is generated
by $Q_1$ and $P$ where
\begin{equation}
Q{}_1^{p^2} = P^{hp^2}. %% 1
\end{equation}
\noindent There is in $G$, a subgroup $H_1$, of order $p^{m-2}$, which contains $\{P\}$
self-con\-ju\-gate\-ly.\footnote{\textsc{Burnside}, \textit{Theory of Groups},
Art.\ 54, p.\ 64.} $H_1$ either contains, or does not contain $Q{}_1^p$. We will
consider the second possibility in the present section, reserving the first for
the next section.
\medskip
2. \textit{Determination of $H_1$.} $H_1$ is generated by $P$ and some other operator
$R_1$ of $G$. $R{}_1^p$ is contained in $\{P\}$. Let
\begin{equation}
R{}_1^p = P^{lp}. %% 2
\end{equation}
\noindent Since $\{P\}$ is self-conjugate in $H_1$,\footnote{\textsc{Burnside},
\textit{Theory of Groups}, Art.\ 56, p.\ 66.}
\begin{equation}
R{}_1^{-1}\, P\, R_1 = P^{1 + kp^{m-4}} %% 3
\end{equation}
\noindent Denoting $R{}_1^a\, P^b\, R{}_1^c\, P^d \cdots$ by the symbol $[a,\, b,\, c,\, d,\,
\cdots]$ we derive from (3)
\begin{gather}
[-y,\, x,\, y] = [0,\, x(1 + kyp^{m-4})] \qquad (m > 4), %% 4
\intertext{and}
[y,\, x]^s = \Bigl[sy,\, x\bigl\{s + k\tbinom{s}{2}yp^{m-4}\bigr\}\Bigr] %% 5
\end{gather}
\noindent Placing $s = p$ and $y = 1$ in (5) we have, from (2)
\begin{gather*}
[R_1\, P^x]^p = R{}_1^p P^{xp} = P^{(l + x)p}.
\intertext{Choosing $x$ so that}
x + l \equiv 0 \pmod{p^{m-4}},
\end{gather*}
\noindent $R = R_1 P^x$ is an operator of order $p$, which will be used in the place
of $R_1$, and $H = \{R, P\}$ with $R^p = 1$.
\medskip
3. \textit{Determination of $H_2$.} We will now use the symbol $[a,\, b,\, c,\, d,\, e,\, f,\,
\cdots]$ to denote $Q{}_1^a\, R^b\, P^c\, Q{}_1^d\, R^e\, P^f \cdots$.
$H_1$ and $Q_1$ generate $G$ and all the operations of $G$ are given by
$[x,\, y,\, z]$ ($z = 0,\, 1,\, 2,\, \cdots,\, p^2 - 1$; $y = 0,\, 1,\, 2,\, \cdots,\, p - 1$;
$x = 0,\, 1,\, 2,\, \cdots,\, p^{m-3} - 1$), since these are $p^m$ in number and
are all distinct. There is in $G$ a subgroup $H_2$ of order $p^{m-1}$
which contains $H_1$ self-conjugately. $H_2$ is generated by $H_1$ and
some operator $[z,\, y,\, x]$ of $G$. $Q{}_1^z$ is then in $H_2$ and $H_2$
is the subgroup $\{Q{}_1^p, H_1\}$. Hence,
\begin{gather}
Q{}_1^{-p}\, P\, Q{}_1^p = R^\beta P^{\alpha_1}, \\ %% 6
Q{}_1^{-p}\, P\, Q{}_1^p = R^{b_1} P^{ap^{m-4}}. %% 7
\end{gather}
\noindent To determine $\alpha_1$ and $\beta$ we find from (6), (5) and (7)
\begin{multline*}
[-p^2,\, 0,\, 1,\, p^2] = \biggl[ 0,\, \frac{\alpha{}_1^p - b{}_1^p}{\alpha_1 - b_1}
\beta,\, \alpha{}_1^p\Bigl\{1 + \frac{\beta k}{2}\frac{\alpha{}_1^p - 1}
{\alpha_1 - 1}p^{m-4} \Bigr\} \\
+ a\beta\Bigl\{ p\frac{\alpha{}_1^{p-1}}{\alpha_1 - b_1} -
\frac{\alpha{}_1^p - b{}_1^p}{(\alpha_1 - b_1)^2}
\Bigr\}p^{m-4} \biggr].
\end{multline*}
\noindent By (1)
\begin{gather*}
Q{}_1^{-p^2}\, P\, Q{}_1^{p^2} = P,
\intertext{and, therefore,}
\frac{\alpha{}_1^p - b{}_1^p}{\alpha_1 - b_1}\beta \equiv 0 \pmod{p}, \\
\alpha{}_1^p \equiv 1 \pmod{p^{m-4}}, \qquad \hbox{ and } \qquad
\alpha_1 \equiv 1 \pmod{p^{m-5}} \quad (m > 5).
\end{gather*}
Let $\alpha_1 = 1 + \alpha_2 p^{m-5}$ and equation (6) is replaced by
\begin{equation}
Q{}_1^{-p}\, P\, Q{}_1^p = R^\beta P^{1 + \alpha_2 p^{m-5}}. %% 8
\end{equation}
To find $a$ and $b_1$ we obtain from (7), (8) and (5)
\begin{gather*}
[-p^2,\, 1,\, 0,\, p^2] = \Bigl[0,\, b{}_1^p,\, a\frac{b{}_1^p - 1}{b_1 - 1}p^{m-4} \Bigr].
\intertext{By (1) and (4)}
Q{}_1^{-p^2}\, R\, Q{}_1^{p^2} = P^{-lp^2} R\, P^{lp^2} = R,
\intertext{and, hence,}
b{}_1^p \equiv 1 \pmod{p}, \qquad a\frac{b{}_1^p - 1}{b_1 - 1} \equiv 0 \pmod{p},
\end{gather*}
\noindent therefore $b_1 = 1$.
Substituting $b_1 = 1$ and $\alpha_1 = 1 + \alpha_2 p^{m-5}$ in the
congruence determining $\alpha_1$ we obtain $(1 + \alpha_2 p^{m-5})^p
\equiv 1 \pmod{p^{m-3}}$, which gives $\alpha_2 \equiv 0 \pmod{p}$.
Let $\alpha_2 = \alpha p$ and equations (8) and (7) are now replaced by
\begin{align}
Q{}_1^p\, P\, Q{}_1^p &= R^\beta P^{1 + \alpha p^{m-4}}, \\ %% 9
Q{}_1^{-p}\, R\, Q{}_1^p &= RP^{ap^{m-4}}. %% 10
\end{align}
From these we derive
\begin{align}
[-yp,\, 0,\, x,\, yp] &= \Bigl[0,\, \beta xy,\, x + \bigl\{\alpha xy
+ a\beta x\tbinom{y}{2} + \beta k\tbinom{x}{2}y\bigr\}p^{m-4}\Bigr], \\ %% 11
[-yp,\, x,\, 0,\, yp] &= [0,\, x,\, axyp^{m-4}]. %% 12
\end{align}
A continued use of (4), (11), and (12) yields
\begin{equation}
[zp,\, y,\, x]^s = [szp,\, sy + U_s,\, sx + V_sp^{m-4}] %% 13
\end{equation}
\noindent where
\begin{align*}
U_s &= \beta\tbinom{s}{2}xz, \\
V_s &= \tbinom{s}{2}\Bigl\{\alpha xz + \beta k\tbinom{s}{2}z + kxy
+ ayz\Bigr\} + \beta k\tbinom{s}{3}x^2 z \\
& \qquad \qquad \qquad + \frac{1}{2}a\beta\Bigl\{\frac{1}{3!}s(s - 1)(2s - 1)z^2
- \tbinom{s}{2}z\Bigr\}.
\end{align*}
\medskip
4. \textit{Determination of $G$.}
Since $H_2$ is self-conjugate in $G_1$ we have
\begin{align}
Q{}_1^{-1}\, P\, Q_1 &= Q{}_1^{\gamma p} R^\delta P^{\epsilon_1}, \\ %% 14
Q{}_1^{-1}\, R\, Q_1 &= Q{}_1^{cp} R^d P^{ep^{m-4}}. %% 15
\end{align}
From (14), (15) and (13)
\begin{gather*}
[-p,\, 0,\, 1,\, p] = [\lambda p,\, \mu,\, \epsilon{}_1^p + vp^{m-4}]
\intertext{and by (9) and (1)}
\lambda p \equiv 0 \pmod{p^2}, \qquad
\epsilon{}_1^p + \nu p^{m-4} + \lambda hp \equiv 1 + \alpha p^{m-4}
\pmod{p^{m-3}},
\intertext{from which}
\epsilon{}_1^p \equiv 1 \pmod{p^2}, \quad \hbox{ and } \quad \epsilon_1 \equiv 1 \pmod{p}
\qquad (m > 5).
\end{gather*}
Let $\epsilon_1 = 1 + \epsilon_2 p$ and equation (14) is replaced by
\begin{equation}
Q{}_1^{-1}\, P\, Q_1 = Q{}_1^{\gamma p} R^\delta P^{1 + \epsilon_2 p}. %% 16
\end{equation}
From (15), (16), and (13)
\begin{gather*}
[-p,\, 1,\, 0,\, p] = \left[c\frac{d^p - 1}{d - 1}p,\, d^p,\, Kp^{m-4} \right]
\intertext{where}
K = \frac{d^p - 1}{d - 1}e + \sum_{1}^{p-1} acd\frac{d^n(d^n - 1)}{2}.
\end{gather*}
By (10)
\begin{gather*}
d^p \equiv 1 \pmod{p}, \qquad \hbox{ and } \qquad d = 1
\intertext{and by (1)}
chp^2 \equiv ap^{m-4} \pmod{p^{m-3}}.
\end{gather*}
Equation (15) is now replaced by
\begin{equation}
Q{}_1^{-1}\, R\, Q_1 = Q{}_1^{cp} R P^{ep^{m-4}}. %% 17
\end{equation}
A combination of (17), (16) and (13) gives
\begin{equation*}
[-p,\, 0,\, 1,\, p] = \Bigl[\bigl\{\gamma\frac{(1 + \epsilon_2 p)^p - 1}
{\epsilon_2 p^2} + c\delta\frac{p - 1}{2} \bigr\}p^2,\, 0,\, (1 +
\epsilon_2 p)^p \Bigr].
\end{equation*}
By (9)
\begin{equation*}
\Bigl\{\gamma\frac{(1 + \epsilon_2 p)^p - 1}{\epsilon_2 p^2} + c\delta
\frac{p - 1}{2}\Bigr\}hp^2 + (1 + \epsilon_2 p)^p \equiv 1 + \alpha p^{m-4}
\pmod{p^{m-3}},
\end{equation*}
\noindent $\beta \equiv 0 \pmod{p}.$
A reduction of the first congruence gives
\begin{gather*}
\frac{(1 + \epsilon_2 p)^p - 1}{\epsilon p^2}\bigl\{\epsilon_2 + \gamma h\bigr\}p^2
\equiv \Bigl\{\alpha - a\delta\frac{p - 1}{2}\Bigr\}p^{m-4} \pmod{p^{m-3}}
\intertext{and, since}
\frac{(1 + \epsilon_2 p)^p - 1}{\epsilon_2 p^2} \equiv 1 \pmod{p}, \qquad
(\epsilon_2 + \gamma h)p^2 \equiv 0 \pmod{p^{m-4}}
\end{gather*}
\noindent and
\begin{equation}
(\epsilon_2 + \gamma h)p^2 \equiv \bigl(\alpha + \frac{a\delta}{2}\bigr)p^{m-4}
\pmod{p^{m-3}}. %% 18
\end{equation}
From (17), (16), (13) and (18)
\begin{align}
[-y,\, x,\, 0,\, y] &= \Bigl[cxyp,\, x,\, \bigl\{exy + ac\tbinom{x}{2}y\bigr\}p^{m-4}\Bigr], \\ %% 19
[-y,\, 0,\, x,\, y] &= \Bigl[x\bigl\{\gamma y + c\delta\tbinom{y}{2}\bigr\}p,\,
\delta xy,\, x(1 + \epsilon_2 yp) + \theta p^{m-4}\Bigr] %% 20
\end{align}
\noindent where
\begin{multline*}
\theta = \Bigl\{e\delta x + a\delta\gamma x + \epsilon_2 \left(\alpha
+ \frac{a\delta}{2}\right)x\Bigr\}\tbinom{y}{2} \\
+ \frac{1}{2}ac \Bigl\{\frac{1}{3!}y(y-1)(2y-1)\delta^2
- \tbinom{y}{2}\delta\Bigr\} \\
+ \bigl\{\alpha\gamma y + \delta ky + a\delta xy^2
+ (ac\delta^2 y + ac\delta) \tbinom{y}{2}\bigr\} \tbinom{x}{2}.
\end{multline*}
From (19), (20), (4) and (18)
\begin{equation*}
\{Q_1\, P^x\}^{p^2} = Q{}_1^{p^2} P^{xp^2} = P^{(h+x)p^2}.
\end{equation*}
If $x$ be so chosen that
\begin{equation*}
h + x \equiv 0 \pmod{p^{m-5}}
\end{equation*}
\noindent $Q = Q_1\, P^x$ is an operator of order $p^2$ which will be used in place
$Q_1$ and $Q^{p^2} = 1$.
Placing $h = 0$ in (18) we get
\begin{equation*}
\epsilon_2 p^2 \equiv 0 \pmod{p^{m-4}}.
\end{equation*}
Let $\epsilon_2 = \epsilon p^{m-6}$ and equation (16) is replaced by
\begin{equation}
Q^{-1}\, P\, Q = Q^{\gamma p} R^\delta P^{1 + \epsilon p^{m-5}} %% 21
\end{equation}
The congruence
\begin{gather*}
ap^{m-4} \equiv chp^2 \pmod{p^{m-3}}
\intertext{becomes}
ap^{m-4} \equiv 0 \pmod{p^{m-3}}, \qquad \hbox{ and } \qquad a \equiv 0 \pmod{p}.
\end{gather*}
\noindent Equations (19) and (20) are replaced by
\begin{align}
[-y,\, x,\, 0,\, y] &= [cxyp,\, x,\, exyp^{m-4}] \\ %% 22
[-y,\, 0,\, x,\, y] &= \Bigl[ \bigl\{\gamma y + c\delta\tbinom{y}{2} \bigr\}xp,\,
\delta xy,\, x(1 + \epsilon yp^{m-5}) + \theta p^{m-4} \Bigr] %% 23
\end{align}
\noindent where
\begin{equation*}
\theta = e\delta x\tbinom{y}{2} + \bigl\{\alpha\gamma y + \delta ky +
\alpha c\delta\tbinom{y}{2}\bigr\}\tbinom{x}{2}.
\end{equation*}
A formula for any power of an operation of $G$ is derived from (4),
(22) and (23)
\begin{equation}
[z,\, y,\, x]^s = [sz + U_s p,\, sy + V_s,\, sx + W_s p^{m-5}] %% 24
\end{equation}
\noindent where
\begin{align*}
U_s &= \tbinom{s}{2}\bigl\{\gamma xz + cyz\bigr\} + \frac{1}{2}c\delta x
\Bigl\{\frac{1}{3!}s(s - 1)(2s - 1)z^2 - \tbinom{s}{2}z\Bigr\}, \\
V_s &= \delta \tbinom{s}{2}xz, \\
W_s &= \tbinom{s}{2} \Bigl\{\epsilon xz + \bigl[(a\gamma + \delta k)\tbinom{x}{2}z + eyz + kxy\bigr]p\Bigr\} \\
& \qquad \qquad + \tbinom{s}{3}\bigl\{\epsilon \gamma x + \epsilon y + \delta kx \bigr\}xzp
+ \frac{1}{2}c \delta \epsilon \bigl\{\frac{1}{2}(s - 1)z^2 - z\bigr\} \tbinom{s}{3}xp \\
& \qquad \qquad + \frac{1}{2}\bigl\{\delta ex + \alpha c \delta \tbinom{x}{2}\bigr\}
\bigl\{\frac{1}{3!}s(s - 1)(2s - 1)z^2 - \tbinom{s}{2}z\bigr\}p.
\end{align*}
\medskip
5. \textit{Transformations of the groups.} Placing $y = 1$ and $x = -1$ in (22)
we obtain (17) in the form
\begin{equation*}
R^{-1}\, Q\, R = Q^{1-cp} P^{-ep^{m-4}}.
\end{equation*}
\noindent A comparison of the generational equations of the present section with
those of Section 1, shows that groups, in which $\delta \equiv 0 \pmod{p}$,
are simply isomorphic with those in Section 1, so we need consider only
those cases in which $\delta \not\equiv 0 \pmod{p}$.
All groups of this section are given by
\begin{equation*}
G: \left\{ \begin{aligned}
R^{-1}\, P\, R &= P^{1 + kp^{m-4}}, \\
Q^{-1}\, P\, Q &= Q^{\gamma p} R^\delta P^{1 + \epsilon p^{m-5}}, \\
Q^{-1}\, R\, Q &= Q^{cp} R\, P^{\epsilon p^{m-4}}. \\ \end{aligned}
\right. \tag*{(25), (26), (27)}
\end{equation*}
\noindent $R^p = 1$, $Q^{p^2} = 1$, and $P^{p^{m-3}} = 1$, $(k,\, \gamma,\, c,\, e = 0,\, 1,\,
2,\, \cdots ,\, p - 1$; $\delta = 1,\, 2,\, \cdots,\, p - 1$; $\epsilon = 0,\, 1,\, 2,\, \cdots,\,
p^2 - 1)$.
Not all these groups, however, are distinct. Suppose that $G$ and $G'$ of
the above set are simply isomorphic and that the correspondence is given by
\begin{equation*}
C = \left[\begin{matrix}R, & Q, & P \\
R'_1, & Q'_1, & P'_1 \\ \end{matrix} \right] .
\end{equation*}
\noindent Since $R^p = 1$, $Q^{p^2} = 1$, and $P^{p^{m-3}} = 1$, $R'{}_1^p = 1$,
$Q'{}_1^{p^2} = 1$ and $P'{}_1^{p^{m-3}}$.
The forms of these operators are then
\begin{align*}
P'_1 &= Q'^z R'^y P'^x, \\
R'_1 &= Q'^{z'p} R'^{y'} P'^{x'p^{m-4}}, \\
Q'_1 &= Q'^{z''} R'^{y''}P'^{x''p^{m-5}}, \
\end{align*}
\noindent where $dv[x,\, p] = 1$.
Since $R$ is not contained in $\{P\}$, and $Q^p$ is not contained in
$\{R, P\}$ $R'_1$ is not contained in $\{P'_1\}$, and $Q'{}_1^p$ is not contained in
$\{R'_1, P'_1\}$.
Let
\begin{gather*}
{R'}_1^{s'} = {P'}_1^{sp^{m-4}}.
\intertext{This becomes in terms of $Q'$, $R'$ and $P'$}
[s'z'p,\, s'y',\, s'x'p^{m-4}] = [0,\, 0,\, sxp^{m-4}],
\intertext{and}
s'y' \equiv 0 \pmod{p}, \qquad s'z' \equiv 0 \pmod{p}.
\end{gather*}
\noindent Either $y'$ or $z'$ is prime to $p$ or $s'$ may be taken $= 1$.
Let
\begin{gather*}
{Q'}_1^{s''p} = {R'}_1^{s'} P'{}_1^{sp^{m-4}},
\intertext{and in terms of $Q'$, $R'$ and $P'$}
[s''z''p,\, 0,\, s''x''p^{m-4}] = [s'z'p,\, s'y',\, (s'x' + sx)p^{m-4}],
\intertext{from which}
s''z'' \equiv s'z' \pmod{p}, \qquad \hbox{ and } \qquad s'y' \equiv 0 \pmod{p}.
\intertext{Eliminating $s'$ we find}
s''y'z'' \equiv 0 \pmod{p},
\end{gather*}
\noindent $dv[y'z'',\, p] = 1$ or $s''$ may be taken $= 1$. We have then $z''$, $y'$
and $x$ \textit{prime to} $p$.
Since $R$, $Q$ and $P$ satisfy equations (25), (26) and (27) $R'_1$, $Q'_1$
and $P'_1$ do also. These become in terms of $R'$, $Q'$ and $P'$.
\begin{align*}
[z + \Phi'_1 p,\, y,\, x + \Theta'_1 p^{m-4}] &= [z,\, y,\, x(1 + kp^{m-4})], \\
[z + \Phi'_2 p,\, y + \delta'xz'',\, x + \Theta'_2 p^{m-5}] &= [z + \Phi_2 p,\,
y + \delta y',\, x + \Theta_2 p^{m-5}], \\
[(z' + \Phi'_3)p,\, y',\, \Theta'_3 p^{m-4}] &= [(z' + \Phi_3)p,\, y,\, \Theta'_3 p^{m-4}],
\end{align*}
\noindent where
\begin{align*}
\Phi'_1 &= -c'yz', \quad \Theta'_1 = \epsilon'xz' + k'xy' - e'y'z, \\
\Phi'_2 &= \Bigl\{\gamma'z'' + c'\delta'\tbinom{z}{2}\Bigr\}x + c'(yz'' - y''z), \\
\Theta'_2 &= \epsilon'xz'' + \Bigl\{\tbinom{x}{2}\bigl[\alpha'\gamma'z''
+ \alpha'c'\delta'\tbinom{z''}{2} + \delta'k'z''\bigr] \\
& \qquad \qquad \qquad + \delta'e'x \tbinom{z''}{2} + e'(yz'' - y''z) + k'xy''\Bigr\}p, \\
\Phi_2 &= \gamma z'' + \delta z' + c'\delta y'z, \quad \Theta_2 \equiv
\epsilon x + (\gamma x'' + \delta x + e'\delta y'z)p, \\
\Phi'_3 &= c'y'z'', \quad \Theta'_3 = e'y'z'', \quad \Phi_3 = cz'', \quad
\Theta_3 = ex + cx''.
\end{align*}
A comparison of the members of these equations give seven congruences
\begin{align*}
\Phi'_1 &\equiv 0 \pmod{p}, \tag{I} \\
\Theta'_1 &\equiv kx \pmod{p}, \tag{II} \\
\Phi'_2 &\equiv \Phi_2 \pmod{p}, \tag{III} \\
\delta'xz'' &\equiv \delta y' \pmod{p}, \tag{IV} \\
\Theta'_2 &\equiv \Theta_2 \pmod{p^2}, \tag{V} \\
\Phi_3' &\equiv cz'' \pmod{p}, \tag{VI} \\
\Theta'_3 &\equiv \Theta_3 \pmod{p}. \tag{VII}
\end{align*}
The necessary and sufficient condition for the simple isomorphism of $G$
and $G'$ is, \textit{that these congruences be consistent and admit of solution
for the nine indeterminants with $x$, $y'$, and $z''$ prime to $p$}.
Let $\kappa = \kappa_1 p^{\kappa_2},\, dv[\kappa_1,\, p] = 1\; (\kappa = k,\,
\delta,\, \gamma,\, \epsilon,\, c,\, e)$.
The groups are divided into three parts and each part is subdivided into
16 cases.
The methods used in discussing the congruences are the same as those
used in Section 1.
\medskip
6. \textit{Reduction to types.} The three parts are given by
\begin{center}
\large I. \normalsize
\smallskip
\begin{tabular}{|c|c|c|} \hline
& $\epsilon_2$ & $\delta_2$ \\ \hline
$A$ & 0 & 0 \\ \hline
$B$ & 1 & 0 \\ \hline
$C$ & 2 & 0 \\ \hline
\end{tabular}
\end{center}
The subdivision into cases and the results of the discussion of the
congruences are given in Table II.
\medskip
\begin{center}
\large II. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c|c|c|c|} \hline
&$k_2$&$\gamma_2$&$c_2$&$e_2$& $A$ & $B$ & $C$ \\ \hline
1 & 1 & 1 & 1 & 1 & & & $B_1$ \\ \hline
2 & 0 & 1 & 1 & 1 & & & $B_2$ \\ \hline
3 & 1 & 0 & 1 & 1 & $A_2$ & $B_1$ & $B_1$ \\ \hline
4 & 1 & 1 & 0 & 1 & & & $B_4$ \\ \hline
5 & 1 & 1 & 1 & 0 & & & $B_5$ \\ \hline
6 & 0 & 0 & 1 & 1 & * & $B_2$ & $B_2$ \\ \hline
7 & 0 & 1 & 0 & 1 & $A_4$ & & $B_7$ \\ \hline
8 & 0 & 1 & 1 & 0 & $A_5$ & $B_5$ & $B_5$ \\ \hline
9 & 1 & 0 & 0 & 1 & $A_4$ & $B_4$ & $B_4$ \\ \hline
10 & 1 & 0 & 1 & 0 & $A_5$ & $B_5$ & $B_5$ \\ \hline
11 & 1 & 1 & 0 & 0 & $A_4$ & $B_4$ & $B_4$ \\ \hline
12 & 0 & 0 & 0 & 1 & $A_4$ & $B_7$ & $B_7$ \\ \hline
13 & 0 & 0 & 1 & 0 & $A_5$ & $B_5$ & $B_5$ \\ \hline
14 & 0 & 1 & 0 & 0 & $A_4$ & $B_7$ & $B_7$ \\ \hline
15 & 1 & 0 & 0 & 0 & $A_4$ & $B_4$ & $B_4$ \\ \hline
16 & 0 & 0 & 0 & 0 & $A_4$ & $B_7$ & $B_7$ \\ \hline
\end{tabular}
\end{center}
$A_6$ divides into two parts.
The groups of $A_6$ in which $\delta k + \epsilon\gamma \equiv 0 \pmod{p}$
are simply isomorphic with the groups of $A_1$ and those in which $\delta
k + \epsilon\gamma \not\equiv 0 \pmod{p}$ are simply isomorphic with the
groups of $A_2$. The types are given by equations (25), (26) and (27) where
the constants have the values given in Table III.
\begin{center}
\large III. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c|c|c|} \hline
& $k$ & $\delta$ & $\gamma$ & $\epsilon$ & $c$ & $e$ \\ \hline
$A_1$ & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline
$A_2$ & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline
$A_4$ & 0 & 1 & 0 & 1 & 1 & 0 \\ \hline
$A_5$ & 0 & 1 & 0 & 1 & 0 & $\omega$ \\ \hline
$B_1$ & 0 & 1 & 0 & $p$ & 0 & 0 \\ \hline
$B_2$ & 1 & 1 & 0 & $p$ & 0 & 0 \\ \hline
$B_4$ & 0 & 1 & 0 & $p$ & 1 & 0 \\ \hline
$B_5$ & 0 & 1 & 0 & $p$ & 0 & $\kappa$ \\ \hline
$B_7$ & 1 & 1 & 0 & $p$ & $\omega$ & 0 \\ \hline
\end{tabular}
\footnotesize
\begin{align*}
\kappa &= 1, \hbox { and a non-residue } \pmod{p}, \\
\omega &= 1, 2, \cdots, p - 1.
\end{align*}
\normalsize
\end{center}
A detailed analysis of several cases is given below, as a general
illustration of the methods used.
\medskip
\begin{equation*} A_1. \end{equation*}
The special forms of the congruences for this case are
\begin{align*}
\epsilon'xz' &\equiv kx \pmod{p}, \tag{II} \\
\gamma z'' + \delta z' &\equiv 0 \pmod{p}, \tag{III} \\
\delta'xz'' &\equiv \delta y' \pmod{p}, \tag{IV} \\
\epsilon'xz'' &\equiv \epsilon x \pmod{p}, \tag{V} \\
cz'' &\equiv 0 \pmod{p}, \tag{VI} \\
ex &\equiv 0 \pmod{p}. \tag{VII}
\end{align*}
\noindent Congruence (IV) gives $\delta \not\equiv 0 \pmod{p}$, from (II) $k$ can be
$\equiv 0$ or $\not\equiv 0 \pmod{p}$, (III) gives $\gamma \equiv 0$
or $\not\equiv 0$, (V) gives $\epsilon \not\equiv 0$, (VI) and (VII)
give $c \equiv e \equiv 0 \pmod{p}$. Elimination of $x$, $z'$ and $z''$
between (II), (III) and (V) gives $\delta k + \gamma\epsilon \equiv 0
\pmod{p}$. If $k \equiv 0$, then $\gamma \equiv 0 \pmod{p}$ and
if $k \not\equiv 0$, then $\gamma \not\equiv 0 \pmod{p}$.
\medskip
\begin{equation*} A_2. \end{equation*}
The congruences for this case are
\begin{align*}
\epsilon'xz' + k'xy' &\equiv kx \pmod{p}, \tag{II} \\
\gamma x'' + \delta z' &\equiv 0 \pmod{p}, \tag{III} \\
\delta'xz'' &\equiv \delta y' \pmod{p}, \tag{IV} \\
\epsilon'xz'' &\equiv \epsilon x \pmod{p}, \tag{V} \\
cz'' &\equiv 0 \pmod{p}, \tag{VI} \\
ex &\equiv 0 \pmod{p}. \tag{VII}
\end{align*}
\noindent Congruence (III) gives $\gamma \equiv 0$ or $\not\equiv 0$, (IV) gives
$\delta \not\equiv 0$, (V) $\epsilon \not\equiv 0$, (VI) and (VII) give $c
\equiv e \equiv 0 \pmod{p}$. Elimination of $x$, $z'$, and $z''$ between
(II), (III) and (V) gives
\begin{gather*}
\delta k + \gamma\epsilon \equiv k'\delta y' \pmod{p}
\intertext{from which}
\delta k + \gamma\epsilon \not\equiv 0 \pmod{p}.
\end{gather*}
\noindent If $k \equiv 0$, then $\gamma\not\equiv 0$, and if $\gamma \equiv 0$ then
$k \not\equiv 0 \pmod {p}$.
Both $\gamma$ and $k$ can be $\not\equiv 0 \pmod{p}$ provided the above
condition is fulfilled.
\medskip
\begin{equation*} A_5. \end{equation*}
The congruences for this case are
\begin{align*}
\epsilon'xz'-e'y'z &\equiv kx \pmod p, \tag{II} \\
\gamma z'' + \delta z' &\equiv 0 \pmod p, \tag{III} \\
\delta'xz'' &\equiv \delta y' \pmod p, \tag{IV} \\
\epsilon'xz'' &\equiv ex \pmod p, \tag{V} \\
cz'' &\equiv 0 \pmod p, \tag{VI} \\
e'y'z'' &\equiv ex \pmod p. \tag{VII}
\end{align*}
\noindent (II) and (III) are linear in $z$ and $z'$ so $k$ and $\gamma$ are $\equiv
\hbox{ or } \not\equiv 0 \pmod{p}$ independently, (IV) gives $\delta \not
\equiv 0$, (V) give $\epsilon \not\equiv 0$, (VI) $c \equiv 0$, and (VII)
$e \not\equiv 0$.
Elimination between (IV), (V), and (VII) gives
\begin{equation*}
\delta'e'\epsilon^2 \equiv \delta e \epsilon'^2 \pmod{p}.
\end{equation*}
The types are derived by placing $\epsilon = \delta = 1$, and $e = 1, 2,
\cdots, p - 1$.
\begin{equation*} B_5. \end{equation*}
The congruences for this case are
\begin{align*}
-e'y'z &\equiv kx \pmod{p}, \tag{II} \\
\gamma z'' + \delta z' &\equiv 0 \pmod{p}, \tag{III} \\
\delta'xz'' &\equiv \delta y' \pmod{p}, \tag{IV} \\
\epsilon'_1 xz'' + \delta'e'x\tbinom{z''}{2} + e'yz''
&\equiv e_1 x + \gamma x'' + \delta x'
\pmod{p}, \tag{V} \\
cz'' &\equiv 0 \pmod{p}, \tag{VI} \\
e'y'z'' &\equiv ex \pmod{p}. \tag{VII}
\end{align*}
\noindent (II), and (III) being linear in $z$ and $z'$ give $k \equiv 0 \hbox{ or }
\not\equiv 0$, and $\gamma \equiv 0 \hbox{ or } \not\equiv 0 \pmod{p}$,
(IV) gives $\delta \not\equiv 0$, (V) being linear in $x'$ gives
$\epsilon_1 \equiv 0 \hbox{ or } \not\equiv 0 \pmod{p}$, (VI) gives $c
\equiv 0$ and (VII) $e \not\equiv 0$.
Elimination of $x$ and $y'$ from (IV) and (VII) gives
\begin{equation*}
\delta'e'z''^2 \equiv \delta e \pmod{p}.
\end{equation*}
$\delta e$ is a quadratic residue or non-residue $\pmod{p}$ according as
$\delta'e'$ is a residue or non-residue.
The two types are given by placing $\delta = 1$, and $e = 1$ and a
non-residue $\pmod{p}$.
\bigskip
\begin{center}
\textit{Section} 3.
\end{center}
\setcounter{equation}{0}
1. \textit{Groups with dependent generators continued.} As in Section 2, $G$
is here generated by $Q_1$ and $P$, where
\begin{equation*}
Q{}_1^{p^2} = P^{hp^2}.
\end{equation*}
\noindent $Q{}_1^p$ is contained in the subgroup $H_1$ of order $p^{m-2}$, $H_1
= \{Q{}_1^p, P\}$.
\medskip
2. \textit{Determination of $H_1$.} Since $\{P\}$ is self-conjugate in $H_1$
\begin{equation}
Q{}_1^{-p}\, P\, Q{}_1^p = P^{1 + kp^{m-4}}. %% 1
\end{equation}
\noindent Denoting $Q{}_1^a\, P^b\, Q{}_1^c\, P^d \cdots$ by the symbol $[a, b, c, d,
\cdots]$, we have from (1)
\begin{equation}
[-yp,\, x,\, yp] = [0,\, x(1 + kyp^{m-4})] \qquad (m > 4). %% 2
\end{equation}
\noindent Repeated multiplication with (2) gives
\begin{equation}
[yp, x]^s = \Bigl[syp, x\bigl\{s + k\tbinom{s}{2}yp^{m-4}\bigr\}\Bigr]. %% 3
\end{equation}
\medskip
3. \textit{Determination of $H_2$.} There is a subgroup $H_2$ of order $p^{m-1}$
which contains $H_1$ self-conjugately.\footnote{\textsc{Burnside}, \textit{Theory of
Groups}, Art.\ 54, p.\ 64.} $H_2$ is generated by $H_1$ and some operator
$R_1$ of $G$. $R{}_1^p$ is contained in $H_1$, in fact in $\{P\}$,
since if $R{}_1^{p^2}$ is the first power of $R_1$ in $\{P\}$, then $H_2
= \{R_1, P\}$, which case was treated in Section 1.
\begin{equation}
R{}_1^p = P^{lp}. %% 4
\end{equation}
Since $H_1$ is self-conjugate in $H_2$
\begin{align}
R{}_1^{-1}\, P\, R_1 &= Q{}_1^{\beta p} P^{\alpha_1}, \\
R{}_1^{-1}\, Q^p\, R_1 &= Q{}_1^{bp} P^{\alpha_1 p}.
\end{align}
Using the symbol $[a, b, c, d, e, f, \cdots]$ to denote $R{}_1^a\, Q{}_1^b\,
P^c\, R{}_1^d\, Q{}_1^e\, P^f \cdots$, we have from (5), (6) and (3)
\begin{equation}
[-p,\, 0,\, 1,\, p] = [0,\, \beta Np,\, \alpha{}_1^p + Mp], %% 7
\end{equation}
\noindent and by (4)
\begin{equation*}
\alpha{}_1^p \equiv 1 \pmod{p}, \qquad \hbox{ and } \qquad \alpha_1 \equiv 1 \pmod{p}.
\end{equation*}
Let $\alpha_1 = 1 + \alpha_2 p$ and (5) is now replaced by
\begin{equation}
R{}_1^{-1}\, P\, R_1 = Q{}_1^{\beta p} P^{1 + \alpha_2 p}.
\end{equation}
From (6), (8) and (3)
\begin{gather*}
[-p,\, p,\, 0,\, p] = \bigl[0,\, b^p p,\, a_1 \frac{b^p - 1}{b - 1}p + a_1 Up^2\bigr],
\intertext{and by (4) and (2)}
R{}_1^{-p}\, Q{}_1^p\, R{}_1^p = Q{}_1^p
\end{gather*}
\noindent and therefore $b^p \equiv 1 \pmod{p}$, and $b = 1$. Placing
$b = 1$ in the above equation the exponent of $P$ takes the form
\begin{gather*}
a_1 p^2 (1 + U'p) = a_1 \frac{\left\{1 + (\alpha_2 + \beta h)p\right\}^p
- 1}{(\alpha_2 + \beta h)p^2}p^2
\intertext{from which}
a_1 p^2 (1 + U'p) \equiv 0 \pmod{p^{m-3}}
\intertext{or}
a_1 \equiv 0 \pmod{p^{m-5}} \quad (m > 5).
\end{gather*}
Let $a_1 = ap^{m-5}$ and (6) is replaced by
\begin{equation}
R{}_1^{-1}\, Q{}_1^p\, R_1 = Q{}_1^p\, P^{ap^{m-4}}. %% 9
\end{equation}
(7) now has the form
\begin{gather*}
[-p,\, 0,\, 1,\, p] = [0,\, \beta Np,\, (1 + \alpha_2 p)^p + Mp^2],
\intertext{where}
N = p \quad \hbox{ and } \quad M = \beta h \left\{ \frac{(1 + \alpha_2 p)^p - 1}
{\alpha_2 p^2} -1 \right\},
\intertext{from which}
(1 + \alpha_2 p)^p + \frac{(1 + \alpha_2 p)^p - 1}{\alpha_2 p^2}\beta hp^2
\equiv 1 \pmod{p^{m-3}}
\intertext{or}
\frac{(1 + \alpha_2 p)^p - 1}{\alpha_2 p^2}\{\alpha_2 + \beta h\}p^2
\equiv 0 \pmod{p^{m-3}}
\intertext{and since}
\frac{(1 + \alpha_2 p)^p - 1}{\alpha_2 p^2} \equiv 1 \pmod{p}
\end{gather*}
\begin{equation}
(\alpha_2 + \beta h)p^2 \equiv 0 \pmod{p^{m-3}}. %% 10
\end{equation}
From (8), (9), (10) and (3)
\begin{align}
[-y,\, 0,\, x,\, y] &= [0,\, \beta xyp,\, x(1+\alpha_2 yp)+\theta p^{m-4}], \\ %% 11
[-y,\, xp,\, 0,\, y] &= [0,\, xp,\, axyp^{m-4}], %% 12
\end{align}
\noindent where
\begin{equation*}
\theta = a \beta x \tbinom{y}{2} + \beta k \tbinom{x}{2} y.
\end{equation*}
By continued use of (11), (12), (2) and (10)
\begin{equation}
[z,\, yp,\, x]^s = [sz,\, (sy + U_s)p,\, xs+ V_s p], %% 13
\end{equation}
\noindent where
\begin{align*}
U_s &= \beta \tbinom{s}{2} xz \\
V_s &= \tbinom{s}{2} \Bigl\{ \alpha_2 xz + \bigl[ayz + kxy + \beta k\tbinom{x}{2}z \bigr]
p^{m-5} \Bigr\} \\ & \qquad \qquad +\Bigl\{\beta\tbinom{s}{3}x^2 z + \frac{1}{2}a\beta
\Bigl[\frac{1}{3!} s(s - 1)(2s - 1)z^2 - \tbinom{s}{2}z\Bigr]x \Bigr\}p^{m-5}.
\end{align*}
Placing in this $y = 0$, $z = 1$ and $s = p$,\footnote{Terms of the form
$(Ax^2 + Bx)p^{m-4}$ in the exponent of $P$ for $p = 3$ and $m > 5$ do not
alter the result.}
\begin{gather*}
(R_1\, P^x)^p = R{}_1^p\, P^{xp} = P^{(x+l)p},
\intertext{determine $x$ so that}
x + l \equiv 0 \pmod{p^{m-4}},
\end{gather*}
then $R = R_1 P^x$ is an operator of order $p$ which will be used in the
place of $R_1$, $R^p = 1$.
\medskip
4. \textit{Determination of $G$.} Since $H_2$ is self-conjugate in $G$
\begin{align}
Q{}_1^{-1}\, P\, Q_1 &= R^\gamma\, Q{}_1^{\delta p}\, P^{\epsilon_1}, \\ %% 14
Q{}_1^{-1}\, R\, Q_1 &= R^c\, Q{}_1^{dp}\, P^{e_1 p}. %% 15
\end{align}
From (15)
\begin{gather*}
(R^c\, Q{}_1^{dp}\, P^{e_1 p})^p = 1,
\intertext{by (13)}
Q{}_1^{dp^2}\, P^{e_1 p^2} = P^{(e_1 + dh)p^2} = 1,
\end{gather*}
\noindent and
\begin{equation}
(e_1+ dh)p^2 \equiv 0 \pmod{p^{m-3}}. %% 16
\end{equation}
From (14), (15) and (13)
\begin{equation}
[0,\, -p,\, 1,\, 0,\, p] = [L,\, Mp,\, \epsilon_1^p + Np]. %% 17
\end{equation}
By (1)
\begin{equation*}
\epsilon{}_1^p \equiv 1 \pmod{p}, \qquad \hbox{ and } \qquad \epsilon_1 \equiv 1 \pmod{p}.
\end{equation*}
Let $\epsilon_1 = 1 + \epsilon_2 p$ and (14) is replaced by
\begin{equation}
Q{}_1^{-1}\, P\, Q_1 = R^\gamma\, Q{}_1^{\delta p}\, P^{1 + \epsilon_2 p}. %% 18
\end{equation}
From (15), (18), and (13)
\begin{equation*}
[0,\, -p,\, 0,\, 1,\, p] = \left[c_p,\, \frac{c^p - 1}{c - 1}dp,\, Kp \right].
\end{equation*}
Placing $x = 1$ and $y =-1$ in (12) we have
\begin{equation}
[0,\, -p,\, 0,\, 1,\, p] = [1,\, 0,\, -ap^{m-4}], %% 19
\end{equation}
and therefore $c^p \equiv 1 \pmod{p}$, and $c = 1$. (15) is now replaced by
\begin{equation}
Q{}_1^{-1}\, R\, Q_1 = R\, Q{}_1^{dp}\, P^{e_1 p}. %% 20
\end{equation}
Substituting $1 + \epsilon_2 p$ for $\epsilon_1$ and 1 for $c$ in (17)
gives, by (16)
\begin{gather*}
[0,\, -p,\, 1,\, p] = [0,\, Mp^2,\, (1 + \epsilon_2 p)^p + Np^2],
\intertext{where}
M = \gamma d \frac{p-1}{2} + \delta\frac{(1 + \epsilon_2 p)^p - 1}{\epsilon_2 p^2}
\intertext{and}
N = \frac{e_1\gamma}{(\epsilon_2 + \delta h)p^2} \left\{\frac{[1 + (\epsilon_2 +
\delta h)p]^p - 1}{(\epsilon_2 + \delta h)p} - p \right\}.
\end{gather*}
By (1)
\begin{gather*}
(1 + \epsilon_2 p)^p + (N + Mh)p^2 \equiv 1 + kp^{m-4} \pmod{p^{m-3}},
\intertext{or reducing}
\psi(\epsilon_2 + \delta h)p^2 \equiv kp^{m-4} \pmod{p^{m-3}},
\intertext{where}
\psi = \frac{(1 + \epsilon_2 p)^p - 1}{\epsilon_2 p^2} + N -
e_1 \gamma \frac{p-1}{2}.
\end{gather*}
Since
\begin{equation*}
\psi = 1 \pmod{p}.
\end{equation*}
\begin{equation}
(\epsilon_2 + \delta h)p^2 \equiv kp^{m-4} \pmod{p^{m-3}}. %% 21
\end{equation}
From (18), (20), (13), (16) and (21)
\begin{align}
[0,\, -y,\, x,\, 0,\, y] &= [\gamma xy,\, \theta_1 p,\, x + \phi_1 p], \\ %% 22
[0,\, -y,\, 0,\, x,\, y] &= [x,\, dxyp,\, \phi_2 p], %% 23
\end{align}
\noindent where
\begin{align*}
\theta_1 &= d\gamma x\tbinom{y}{2} + \delta xy + \beta\gamma\tbinom{x}{2}y, \\
\phi_1 &= \epsilon_2 xy + \alpha_2\gamma\tbinom{x}{2}y + e_1\gamma
\tbinom{y}{2}x + \bigl\{x\tbinom{y}{2}(\epsilon_2 k + \delta \gamma) \\
& \qquad + \frac{1}{2}ad\left[\frac{1}{3!}y(y - 1)(2y - 1)\gamma^2 -
\frac{y}{2}\gamma\right]x + a\gamma^2 dx\frac{1}{3!}y(y + 1)(y - 1) \\
& \qquad + e_1\gamma k\tbinom{y}{3}x + \frac{1}{2}a\beta\left[\frac{1}{3!}x(x - 1)(2x - 1)\gamma^2 y^2
- \tbinom{x}{2}\gamma y\right] \\
& \qquad \qquad + \tbinom{x}{2}(a + k)\left[dy\tbinom{y}{2}
+ \delta y\right] + \beta\gamma \tbinom{x}{3}\bigr\}p^{m-5}, \\
\phi_2 &= e_1 xy + \left\{e_1 k\tbinom{y}{2} + ad\tbinom{x}{2}y \right\}p^{m-5}.
\end{align*}
Placing $x = 1$ and $y = p$ in (23) and by (16)
\begin{gather*}
Q{}_1^{-p}\, R\, Q{}_1^p = R,
\intertext{and by (19)}
a \equiv 0 \pmod{p}.
\end{gather*}
A continued multiplication, with (11), (22), and (23), gives
\begin{gather*}
(Q_1\, P^x)^{p^2} = Q{}_1^{p^2}\, P^{xp^2} = P^{(x + l)p^2}.
\intertext{Let $x$ be so chosen that}
(x + l) \equiv 0 \pmod{p^{m-5}},
\end{gather*}
\noindent then $Q = Q_1\, P^x$ is an operator of order $p^2$ which will be used in
place of $Q_1$, $Q^{p^2} = 1$ and
\begin{equation*}
h \equiv 0 \pmod{p^{m-5}}.
\end{equation*}
From (21), (10) and (16)
\begin{equation*}
\epsilon_2 p^2 \equiv kp^{m-4}, \qquad \alpha_2 p^2 \equiv 0 \qquad \hbox{ and }
\qquad e_1 p^2 \equiv 0 \pmod{p^{m-3}}.
\end{equation*}
\noindent Let $\epsilon_2 = \epsilon p^{m-6}$, $\alpha_2 = \alpha p^{m-5}$ and
$e_1 = ep^{m-5}$. Then equations (18), (20) and (8) are replaced by
\begin{gather*}
G: \left\{ \begin{aligned}
Q^{-1}\, P\, Q &= R^\gamma\, Q^{\delta p}\, P^{1 + \epsilon p^{m-5}}, \\
Q^{-1}\, R\, Q &= R\, Q^{dp}\, P^{ep^{m-4}}, \\
R^{-1}\, P\, R &= Q^{\beta p}\, P^{1 + \alpha p^{m-4}}, \\ \end{aligned} \right.
\tag*{(24), (25), (26)} \\
R^p = 1, \qquad Q^{p^2} = 1, \qquad P^{p^{m-3}} = 1.
\end{gather*}
\setcounter{equation}{26}
(11), (22) and (23) are replaced by
\begin{align}
[-y,\, 0,\, x,\, y] &= [0,\, \beta xyp,\, x + \phi p^{m-4}], \\ %% 27
[0,\, -y,\, x,\, 0,\, y] &= [\gamma xy,\, \theta_1 p,\, x + \phi_1 p^{m-5}], \\ %% 28
[0,\, -y,\, 0,\, x,\, y] &= [x,\, dxyp,\, \phi_2 p^{m-4}], %% 29
\end{align}
\noindent where
\begin{gather*}
\phi = \alpha xy + \beta k\tbinom{x}{2}y, \quad
\theta_1 = d\gamma\tbinom{y}{2}x + \delta xy + \beta\gamma\tbinom{x}{2}y, \\
\phi_1 = exy + \left\{e\gamma x\tbinom{y}{2} + \tbinom{x}{2}\left(\alpha\gamma y +
d\gamma k\tbinom{y}{2} + \delta ky\right) + \beta\gamma y\tbinom{x}{3}\right\}p, \\
\phi_2 = exy.
\end{gather*}
\noindent A formula for a general power of any operator of $G$ is derived from (27),
(28) and (29)
\begin{equation}
[0,\, z,\, 0,\, y,\, 0,\, z]^s = [0,\, sz + U_s p,\, 0,\, sy + V_s,\, 0,\, sx + W_s p^{m-5}], %% 30
\end{equation}
\noindent where
\begin{align*}
U_s &= \tbinom{s}{2}\left\{\delta xz + dyz + \beta xy + \beta\gamma \tbinom{x}{2}z \right\} \\
& \qquad + \frac{1}{2}dx \left\{ \frac{1}{3!}s(s - 1)(2s - 1)z^2 - \tbinom{s}{2}z \right\}x
+ \beta\gamma\tbinom{s}{2}x^2 z, \\
V_s &= \gamma\tbinom{s}{2}xz, \displaybreak \\
W_s &= \tbinom{s}{2} \left\{\epsilon xz + \left[axy + eyz + (\beta ky + \alpha\beta
\gamma + \delta kz)\tbinom{x}{2}\right]p \right\} \\
& \qquad + \tbinom{s}{3}\left\{\alpha\gamma x^2 z + dkxyz + \delta kx^2 z +
\beta kx^2 y + 2\beta\gamma k\tbinom{x}{2}xz\right\}p \\
& \qquad + \beta yk\tbinom{s}{4}x^3 zp + \frac{1}{2}\left\{\frac{1}{3!}s(s - 1)(2s - 1)z^2
- \frac{s}{2}z \right\} \left\{e\gamma x + d\gamma k\tbinom{x}{2}\right\}p \\
& \qquad + \frac{1}{2}d\gamma k\left[\frac{1}{2}(s - 1)z^2 - z\right]\tbinom{s}{3}x^2.
\end{align*}
\noindent A comparison of the generational equations of the present section with those
of Sections 1 and 2, shows that, $\gamma \equiv 0 \pmod{p}$ gives groups
simply isomorphic with those of Section 1, while $\beta \equiv 0 \pmod{p}$,
groups simply isomorphic with those of Section 2 and we need consider only
the groups in which $\beta$ and $\gamma$ are prime to $p$.
\medskip
5. \textit{Transformation of the groups.} All groups of this section are given by
equations (24), (25), and (26), where $\gamma, \beta = 1, 2, \cdots, p - 1$;
$\alpha, \delta, d, e = 0, 1, 2, \cdots, p - 1$; and $\epsilon = 0, 1,
2, \cdots, p^2 - 1$.
Not all of these, however are distinct. Suppose that $G$ is simply
isomorphic with $G'$ and that the correspondence is given by
\begin{equation*}
C = \left[\begin{matrix}R, & Q, & P \\
R'_1, & Q'_1, & P'_1 \\ \end{matrix} \right].
\end{equation*}
\noindent An inspection of (30) gives
\begin{align*}
R'_1 &= Q'^{z''p}\, R'^{y''}\, P'^{x''p^{m-4}}, \\
Q'_1 &= Q'^{z'}\, R'^{y'}\, P'^{x'p^{m-5}}, \\
P'_1 &= Q'^z\, R'^y\, P'^x,
\end{align*}
\noindent with $dv[x,\, p] = 1$. Since $Q^p$ is not in $\{P\}$, and $R$ is not in
$\{Q^p, P\}$, ${Q'}_1^p$ is not in $\{P'_1\}$ and $R'_1$ is not in
$\{{Q'}_1^p, P'_1\}$. Let
\begin{gather*}
{Q'}_1^{s'p} = {P'}_1^{sp^{m-4}}.
\intertext{This is in terms of $R'$, $Q'$, and $P'$,}
[0,\, s'z'p,\, s'x'p^{m-4}] = [0,\, 0,\, sxp^{m-4}].
\intertext{From which}
s'z'p \equiv 0 \pmod{p^2},
\intertext{and $z'$ must be prime to $p$, since otherwise $s' \hbox{ can } = 1$. Let}
{R'}_1^{s''} = {Q'}_1^{s'p}\, {P'}_1^{sp^{m-4}},
\intertext{or in terms of $R'$, $Q'$, and $P'$,}
[s''y'',\, s''z''p,\, s''x''p^{m-4}] = [0,\, s'z'p,\, (sx + s'x')p^{m-4}]
\intertext{and}
s''z'' \equiv s'z' \pmod{p}, \qquad s''y'' \equiv 0 \pmod{p},
\end{gather*}
\noindent and $y''$ is prime to $p$, since otherwise $s''$ can $= 1$. Since $R$,
$Q$, and $P$ satisfy equations (24), (25) and (26), $R'_1$, $Q'_1$, and
$P'_1$ must also satisfy them. These become when reduced in terms of $R'$,
$Q'$ and $P'$
\begin{align*}
[0,&\, z + \theta'_1 p,\, 0,\, y + \gamma'xz',\, 0,\, x + \psi'_1 p^{m-5}] \\
& \qquad \qquad \qquad \qquad \qquad = [0,\, z + \theta_1 p,\, 0,\, y + \gamma y'',\, 0,\, x + \psi_1 p^{m-5}], \\
[0,&\, (z'' + \theta'_2)p,\, 0,\, y'',\, 0,\, (x'' + \psi_2)p^{m-4}] \\
& \qquad \qquad \qquad \qquad \qquad = [0,\, (z'' + \theta_2)p,\, 0,\, y'',\, 0,\, (x'' + \psi_2)p^{m-4}], \\
[0,&\, z + \theta'_3p,\, 0,\, y,\, 0,\, x + \psi'_3 p^{m-4}]
= [0,\, z + \theta_3p,\, 0,\, y,\, 0,\, x + \psi_3 p^{m-4}],
\end{align*}
\noindent where
\begin{align*}
\theta'_1 &= d'(yz' - y'z) + x\left\{d'\gamma'\tbinom{z'}{2} + \delta'z' +
\beta'y'\right\} + \beta'\gamma'\tbinom{x}{2}z', \\
\theta_1 &= \gamma z'' + \delta z' + d'\gamma y''z, \\
\psi'_1 &= \epsilon'xz' + \bigl\{e'\gamma'x\tbinom{z'}{2} + \tbinom{x}{2}\left[\alpha'
\gamma'z' + \gamma'\epsilon'd'k'\tbinom{z'}{2} + \delta'\epsilon k'z' +
\beta'k'y'\right] \\
& \qquad + \beta'\gamma'\tbinom{x}{3}z' + e'(yz' - y'z) + \alpha'xy'\bigr\}p, \\
\psi_1 &= \epsilon x + \{\delta x' + \gamma x'' + e'\gamma y''z\}p, \\
\theta'_2 &= d'y''z', \qquad \theta_2 = dz', \qquad \psi'_2 = e'y''z, \qquad
\psi_2 = dx' + ex, \\
\theta'_3 &= \beta'xy'' - d'y''z, \qquad \theta_3 = \beta z', \\
\psi_3 &= \epsilon'xz'' - e'y''z + \alpha'xy'' + \beta'\epsilon'\tbinom{x}{2}y'',
\qquad \psi_3 = \alpha x + \beta x'.
\end{align*}
A comparison of the two sides of these equations give seven congruences
\begin{align*}
\theta'_1 &\equiv \theta_1 \pmod{p}, \tag{I} \\
\gamma'xz' &\equiv \gamma y'' \pmod{p}, \tag{II} \\
\psi'_1 &\equiv \psi_1 \pmod{p^2}, \tag{III} \\
\theta'_2 &\equiv \theta_2 \pmod{p}, \tag{IV} \\
\psi'_2 &\equiv \psi_2 \pmod{p}, \tag{V} \\
\theta'_3 &\equiv \theta_3 \pmod{p}, \tag{VI} \\
\psi'_3 &\equiv \psi_3 \pmod{p}. \tag{VII}
\end{align*}
(VI) is linear in $z$ provided $d' \not\equiv 0 \pmod{p}$ and $z$ may be
so determined that $\beta \equiv 0 \pmod{p}$ and therefore all groups in
which $d' \not\equiv 0 \pmod{p}$ are simply isomorphic with groups in
Section 2.
Consequently we need only consider groups in which $d' \equiv 0 \pmod{p}$.
As before we take for $G'$ the simplest case and associate with it all
simply isomorphic groups $G$. We then take as $G'$ the simplest case left
and proceed as above.
Let $\kappa = \kappa_1 p^{\kappa_2}$ where $dv[\kappa_1, p] = 1, (\kappa =
\alpha, \beta, \gamma, \delta, \epsilon, d, e)$.
For convenience the groups are divided into three sets and each set is
subdivided into eight cases.
The sets are given by
\begin{equation*}
\begin{matrix}
A: & \epsilon_2 = 0, & \beta_2 = 0, & \gamma_2 = 0, \\
B: & \epsilon_2 = 1, & \beta_2 = 0, & \gamma_2 = 0, \\
C: & \epsilon_2 = 2, & \beta_2 = 0, & \gamma_2 = 0.
\end{matrix}
\end{equation*}
The subdivision into cases and results of the discussion are given in
Table I.
\begin{center}
\large I. \normalsize
\smallskip
\begin{tabular}{|c|c|c|c|c|c|c|} \hline
& $\delta_2$ & $e_2$ & $\alpha_2$ & $A$ & $B$ & $C$ \\ \hline
1 & 1 & 1 & 1 & & & $B_1$ \\ \hline
2 & 0 & 1 & 1 & $A_1$ & $B_1$ & $B_1$ \\ \hline
3 & 1 & 0 & 1 & & & $B_3$ \\ \hline
4 & 1 & 1 & 0 & $A_1$ & $B_1$ & $B_1$ \\ \hline
5 & 0 & 0 & 1 & $A_3$ & $B_3$ & $B_3$ \\ \hline
6 & 0 & 1 & 0 & $A_1$ & $B_1$ & $B_1$ \\ \hline
7 & 1 & 0 & 0 & $A_3$ & $B_3$ & $B_3$ \\ \hline
8 & 0 & 0 & 0 & $A_3$ & $B_3$ & $B_3$ \\ \hline
\end{tabular}
\end{center}
\medskip
6. \textit{Reduction to types.} The types of this section are given by equations
(24), (25) and (26) with $\alpha = 0, \beta = 1, \lambda = 1$ or a
quadratic non-residue (mod $p$), $\delta \equiv 0; \epsilon = l, e = 0, 1,
2, \cdots, p - 1;$ and $\epsilon = p, e = 0, 1,$ or a
non-residue (mod $p$), $2p+6$ in all.
The special forms of the congruences for these cases are given below.
\medskip
\begin{equation*} A_1. \end{equation*}
\begin{align*}
\beta'\gamma'\tbinom{x}{2}z' + \beta'xy'
&\equiv \gamma z'' + \delta z' \pmod{p}, \tag{I} \\
\gamma'xz' &\equiv \gamma y'' \pmod{p}, \tag{II} \\
\epsilon'xz' &\equiv \epsilon x \pmod{p}, \tag{III} \\
dz' &\equiv 0 \pmod{p}, \tag{IV} \\
ex &\equiv 0 \pmod{p}, \tag{V} \\
\beta'xy'' &\equiv \beta z' \pmod{p}, \tag{VI} \\
\epsilon'xz'' + \beta'\epsilon'\tbinom{x}{2}y'
&\equiv \alpha x + \beta x' \pmod{p}. \tag{VII}
\end{align*}
(I) is linear in $z''$ and $\delta \equiv 0$ or $\not\equiv 0$, (II)
gives $\gamma \not\equiv 0$, (III) $\epsilon \not\equiv 0$, (IV) and (V)
$d \equiv e \equiv 0$, (VI) $\beta \not\equiv 0$, (VII) is linear in $x'$
and $\alpha \equiv 0$ or $\not\equiv 0 \pmod{p}$.
Elimination of $y''$ and $z'$ between (II) and (VI) gives
\begin{equation*}
\beta'\gamma'x^2 \equiv \beta\gamma \pmod{p}
\end{equation*}
\noindent and $\beta\gamma$ is a residue or non-residue $\pmod{p}$ according as
$\beta'\gamma'$ is a residue or non-residue.
\medskip
\begin{equation*} A_3. \end{equation*}
\begin{align*}
\beta'\gamma'\tbinom{x}{2}z' + \beta'xy'
&\equiv \gamma z'' + \delta z' \pmod{p}, \tag{I} \\
\gamma'xz' &\equiv \gamma y'' \pmod{p}, \tag{II} \\
\epsilon'z' &\equiv \epsilon \pmod{p}, \tag{III} \\
d &\equiv 0 \pmod{p}, \tag{IV} \\
e'y''z' &\equiv ex \pmod{p}, \tag{V} \\
\beta'xy'' &\equiv \beta z' \pmod{p}, \tag{VI} \\
\epsilon'xz'' - e'y''z + \beta'\epsilon'\tbinom{x}{2}y'
&\equiv \alpha x + \beta x' \pmod{p}. \tag{VII}
\end{align*}
(I) is linear in $z''$ and $\delta \equiv 0$ or $\not\equiv 0$. (II)
gives $\gamma \not\equiv 0$, (III) $\epsilon \not\equiv 0$, (V) $e \not
\equiv 0$ and (VI) $\beta \not\equiv 0$. (VII) is linear in $x'$ and
$\alpha \equiv 0$ or $\not\equiv 0 \pmod{p}$.
Elimination between (II) and (VI) gives
\begin{gather*}
\beta'\gamma'x^2 \equiv \beta\gamma \pmod{p},
\intertext{and between (II), (III), and (IV) gives}
\epsilon'^2 \gamma e \equiv \epsilon^2\gamma'e' \pmod{p}.
\end{gather*}
$\beta\gamma$ is a residue, or non-residue, according as $\beta'\gamma'$ is
or is not, and if $\gamma$ and $\epsilon$ are fixed, $e$ must take the
$(p - 1)$ values $1, 2, \cdots, p - 1$.
\medskip
\begin{equation*} B_1. \end{equation*}
\begin{align*}
\beta'\gamma'\tbinom{x}{2}z' + \beta'xy'
&\equiv \gamma z'' + \delta z' \pmod{p}, \tag{I} \\
\gamma'xz' &\equiv \gamma y'' \pmod{p}, \tag{II} \\
\epsilon'_1 xz' + \beta'xz'\tbinom{x}{3}
&\equiv \epsilon_1 x + \delta x' + \gamma x'' \pmod{p}, \tag{III} \\
ex &\equiv 0 \pmod{p}, \tag{IV} \\
\beta'xy'' &\equiv \beta z' \pmod{p}, \tag{VI} \\
\alpha x + \beta x' &\equiv 0 \pmod{p}. \tag{VII}
\end{align*}
(I) gives $\delta \equiv 0$ or $\not\equiv 0$, (II) $\gamma \not
\equiv 0$, (III) is linear in $x''$ and gives $\epsilon_1 \equiv 0$
or $\not\equiv 0$, (V) $e = 0$, (VI) $\beta \not\equiv 0$ and
(VII) is linear in $x'$ and gives $\alpha \equiv 0$ or $\not\equiv 0$.
Elimination between (II) and (VI) gives
\begin{equation*}
\beta'\gamma'x^2 \equiv \beta\gamma \pmod{p}.
\end{equation*}
\newpage
\begin{equation*} B_3. \end{equation*}
\begin{align*}
\beta'\gamma'\tbinom{x}{2}z' + \beta'xy'
&\equiv \gamma\beta'' + \delta z' \pmod{p}, \tag{I} \\
\gamma'xz' &\equiv \gamma y' \pmod{p}, \tag{II} \\
\epsilon'_1 xz' + e'\gamma'x\tbinom{z'}{2} + \beta'\gamma'\tbinom{x}{3} &+ e'(yz' - y'z) \\
&\equiv \epsilon_1 x + \delta x' + \gamma x'' + e'\gamma zy'' \pmod{p},
\tag{III} \\
e'y''z' &\equiv ex \pmod{p}. \tag{V} \\
\beta'xy'' &\equiv \beta z' \pmod{p}, \tag{VI} \\
-e'y''z &\equiv \alpha x + \beta x' \pmod{p}. \tag{VII} \\
\end{align*}
(I) gives $\delta\equiv 0$ or $\not\equiv 0$, (II) $\gamma \not
\equiv 0$, (III) is linear in $x''$ and gives $\epsilon_1 \equiv 0$ or
$\not\equiv 0$, (V) $e \not\equiv 0$, (VI) $\beta \not\equiv 0$, (VII) is
linear in $x'$ and gives $\alpha \equiv 0$ or $\not\equiv 0 \pmod{p}$.
Elimination of $y''$ and $z'$ between (II) and (VI) gives
\begin{gather*}
\beta'\gamma'x^2 \equiv \beta\gamma \pmod{p},
\intertext{and between (V) and (VI) gives}
\beta'e'y''^2 \equiv \beta e \pmod{p}
\end{gather*}
\noindent and $\beta\gamma$ and $\beta e$ are residues or non-residues, independently,
according as $\beta'\gamma'$ and $\beta'e'$ are residues or non-residues.
\bigskip \bigskip
\begin{center}
\Large\textit{Class} III.\normalsize
\end{center}
\setcounter{equation}{0}
1. \textit{General relations.} In this class, the $p$th power of every operator of
$G$ is contained in $\{P\}$. There is in $G$ a subgroup $H_1$ of order
$p^{m-2}$, which contains $\{P\}$ self-conjugately.\footnote{\textsc{Burnside},
\textit{Theory of Groups}, Art.\ 54, p.\ 64.}
\medskip
2. \textit{Determination of $H_1$.} $H_1$ is generated by $P$ and some operator
$Q_1$ of $G$.
\begin{equation*}
Q{}_1^p = P^{hp}.
\end{equation*}
\noindent Denoting $Q{}_1^a\, P^b\, Q{}_1^c\, P^d \cdots$ by the symbol $[a, b, c, d,
\cdots]$, all operators of $H_1$ are included in the set $[y, x]; (y = 0,
1, 2, \cdots, p - 1, x = 0, 1, 2, \cdots, p^{m-3} - 1)$.
Since $\{P\}$ is self-conjugate in $H_1$\footnote{\textit{Ibid.}, Art.\ 56, p.\ 66.}
\begin{gather}
Q{}_1^{-1}\, P\, Q_1 = P^{1 + kp^{m-4}}. %% 1
\intertext{Hence}
[-y,\, x,\, y] = [0,\, x(1 + kyp^{m-4})] \qquad (m > 4). %% 2
\intertext{and}
[y,\, x]^s = \left[sy, x\left\{s + ky \tbinom{s}{2}p^{m-4} \right\}\right]. %% 3
\end{gather}
\noindent Placing $y = 1$ and $s = p$ in (3), we have,
\begin{gather*}
[Q_1\, P^x]^p = Q{}_1^p\, P^{xp} = P^{(x + h)p}
\intertext{and if $x$ be so chosen that}
(x + h) \equiv 0 \pmod{p^{m-4}},
\end{gather*}
\noindent $Q = Q_1\, P^x$ will be an operator of order $p$ which will be used in place
of $Q_1$, $Q^p = 1$.
\medskip
3. \textit{Determination of $H_2$.} There is in $G$ a subgroup $H_2$ of order
$p^{m-1}$, which contains $H_1$ self-conjugately. $H_2$ is generated by
$H_1$, and some operator $R_1$ of $G$.
\begin{equation*}
R{}_1^p = P^{lp}.
\end{equation*}
We will now use the symbol $[a, b, c, d, e, f, \cdots]$ to denote $R{}_1^a$ $Q^b$
$P^c$ $R{}_1^d$ $Q^e$ $P^f$ $\cdots$.
The operations of $H_2$ are given by $[z, y, x];$ $(z, y = 0, 1, \cdots, p - 1$;
$x = 0, 1, \cdots, p^{m-3} - 1)$. Since $H_1$ is self-conjugate in $H_2$
\begin{align}
R{}_1^{-1}\, P\, R_1 &= Q{}_1^\beta P^{\alpha_1}, \\ %% 4
R{}_1^{-1}\, Q\, R_1 &= Q{}_1^{b_1} P^{\alpha p^{m-4}}. %% 5
\end{align}
From (4), (5) and (3)
\begin{gather*}
[-p,\, 0,\, 1,\, p] = \left[0,\, \frac{\alpha{}_1^p - b{}_1^p}{\alpha_1 - b_1}\beta,\,
\alpha{}_1^p + \theta p^{m-4} \right] = [0,\, 0,\, 1], \\
\intertext{where}
\theta = \frac{\alpha{}_1^p \beta k}{2}\frac{\alpha{}_1^p - 1}{\alpha_1-1}
+ a\beta \left\{\frac{\alpha{}_1^p - 1}{\alpha_1 - b_1}p -
\frac{\alpha{}_1^p - b{}_1^p}{(\alpha_1 - b_1)^2}\right\}.
\end{gather*}
\noindent Hence
\begin{equation}
\frac{\alpha{}_1^p - b{}_1^p}{\alpha_1 - b_1}\beta \equiv 0 \pmod{p}, \qquad
\alpha{}_1^p + \theta p^{m-4} \equiv 1 \pmod{p^{m-3}}, %% 6
\end{equation}
\noindent and $\alpha{}_1^p \equiv 1 \pmod{p^{m-4}}$, or $\alpha_1 \equiv 1
\pmod{p^{m-5}} \qquad (m > 5)$, $\alpha_1 = 1 + \alpha_2 p^{m-5}.$ Equation (4)
is replaced by
\begin{equation}
R{}_1^{-1}\, P\, R_1 = Q^\beta P^{1 + \alpha_2 p^{m-5}},
\end{equation}
From (5), (7) and (3).
\begin{equation*}
[-p,\, 1,\, 0,\, p] = \left[0,\, b{}_1^p,\, a\frac{b{}_1^p - 1}{b - 1} p^{m-4} \right].
\end{equation*}
\noindent Placing $x = lp$ and $y = 1$ in (2) we have $Q^{-1} P^{lp} Q = P^{lp}$, and
\begin{equation*}
b{}_1^p \equiv 1 \pmod{p}, \qquad a\frac{b{}_1^p - 1}{b_1 - 1} \equiv 0
\pmod{p}.
\end{equation*}
\noindent Therefore, $b_1 = 1$.
Substituting 1 for $b_1$ and $1 + \alpha_2 p^{m-5}$ for $\alpha_1$ in
congruence (6) we find
\begin{equation*}
(1 + \alpha_2 p^{m-5})^p \equiv 1 \pmod{p^{m-3}}, \qquad \hbox{ or } \qquad
\alpha_2 \equiv 0 \pmod{p}.
\end{equation*}
Let $\alpha_2 = \alpha p$ and equations (7) and (5) are replaced by
\begin{align}
R{}_1^{-1}\, P\, R_1 &= Q^\beta P^{1 + \alpha p^{m-4}}, \\ %% 8
R{}_1^{-1}\, Q\, R_1 &= Q P^{\alpha p^{m-4}}. %% 9
\end{align}
From (8), (9) and (3)
\begin{align}
[-y,\, 0,\, x,\, y] &= \Bigl[0,\, \beta xy,\, x + \bigl\{\alpha xy + a\beta x \tbinom{y}{2} +
\beta ky\tbinom{x}{2}\bigr\}p^{m-4}\Bigr], \\ %% 10
[-y,\, x,\, 0,\, y] &= [0,\, x,\, axyp^{m-4}]. %% 11
\end{align}
From (2), (10), and (11)
\begin{equation}
[z,\, y,\, x]^s = [sz,\, sy + U_s,\, sx + V_s p^{m-4}], %% 12
\end{equation}
\noindent where
\begin{align*}
U_s &= \beta \tbinom{s}{2}xz, \\
V_s &= \tbinom{s}{2}\left\{\alpha xz + kxy + ayz + \beta k\tbinom{x}{2}z\right\} \\
& \qquad \qquad + \beta k\tbinom{s}{3}x^2 z + \frac{1}{2}a\beta\tbinom{s}{2} \left\{\frac{1}{3!}
(2s - 1)z - 1\right\}xz.
\end{align*}
Placing $z = 1$, $y = 0$, and $s = p$ in (12)\footnote{The terms of the form
$(Ax + Bx^2)p^{m-4}$ which appear in the exponent of $P$ for $p = 3$
do not alter the conclusion for $m > 5$.}
\begin{equation*}
[R_1\, P^x]^p = R{}_1^p\, P^{xp} = P^{(x+l)p}.
\end{equation*}
If $x$ be so chosen that
\begin{equation*}
x + l \equiv 0 \pmod{p^{m-4}}
\end{equation*}
\noindent then $R =R_1 P^x$ is an operator of order $p$ which will be used in
place of $R_1$, and $R^p = 1$.
\medskip
4. \textit{Determination of $G$.} $G$ is generated by $H_2$ and some operation
$S_1$.
\begin{equation*}
S{}_1^p = P^{\lambda p}.
\end{equation*}
Denoting $S{}_1^a\, R^b\, Q^c\, P^d \cdots$ by the symbol $[a, b, c, d, \cdots]$
all the operators of $G$ are given by
\begin{equation*}
[v,\, z,\, y,\, x];\, (v,\, z,\, y = 0, 1, \cdots, p - 1; x = 0, 1, \cdots, p^{m-3} - 1).
\end{equation*}
Since $H_2$ is self-conjugate in $G$
\begin{align}
S{}_1^{-1}\, P\, S_1 &= R^\gamma Q^s P^{\epsilon_1}, \\ %% 13
S{}_1^{-1}\, Q\, S_1 &= R^c Q^d P^{ep^{m-4}}, \\ %% 14
S_1\, R\, S_1 &= R^f Q^g P^{jp^{m-4}}. %% 15
\end{align}
From (13), (14), (15), and (12)
\begin{gather*}
[-p,\, 0,\, 0,\, 1,\, p] = [0,\, L,\, M,\, \epsilon{}_1^p + Np^{m-4}] = [0,\, 0,\, 0,\, 1]
\intertext{and}
\epsilon{}_1^p \equiv 1 \pmod{p^{m-4}} \qquad \hbox{ or } \qquad
\epsilon_1 \equiv 1 \pmod{p^{m-5}} \quad (m > 5).
\end{gather*}
\noindent Let $\epsilon_1 = 1 + \epsilon_2 p^{m-5}$. Equation (13) is
now replaced by
\begin{equation}
S{}_1^{-1}\, P\, S_1 = R^\gamma Q^\delta P^{1 + \epsilon_2 p^{m-5}}. %% 16
\end{equation}
If $\lambda = 0 \pmod{p}$ and $\lambda = \lambda'p,$
\begin{multline*}
[1,\, 0,\, 0,\, 1]^p = \left[p,\, 0,\, 0,\, p + \epsilon\tbinom{p}{2}p^{m-5} + Wp^{m-4}\right] \\
= [0,\, 0,\, 0,\, p + \lambda'p^2 + W'p^{m-4}]
\end{multline*}
\noindent and for $m>5$ $S_1 P$ is of order $p^{m-3}$. We will take this in place
of $S_1$ and assume $dv [\lambda, p] = 1$.
\begin{equation*}
S{}_1^{p^{m-3}} = 1.
\end{equation*}
\noindent There is in $G$ a subgroup $H'_1$ of order $p^{m-2}$ which contains
$\{S_1\}$ self-conjugately. $H'_1 = \{S_1,\, S^v_1\, R^z\, Q^y\, P^x\}$ and the
operator $T= R^z\, Q^y\, P^x$ is in $H'_1$.
There are two cases for discussion.
\smallskip
$1^\circ$. Where $x$ is prime to $p$.
$T$ is an operator of $H_2$ of order $p^{m-3}$ and will be taken as $P$.
Then
\begin{gather*}
H'_1 = \{S_1, P\}.
\intertext{Equation (16) becomes}
S{}_1^{-1}\, P\, S_1 = P^{1 + \epsilon p^{m-4}}.
\end{gather*}
\noindent There is in $G$ a subgroup $H'_2$ of order $p^{m-1}$ which contains $H'_1$
self-conjugately.
\begin{equation*}
H'_2 = \{H'_1,\, S{}_1^{v'}\, R^{z'}\, Q^{y'}\, P^{x'}\}.
\end{equation*}
\noindent $T' = R^{z'}Q^{y'}$ is in $H'_2$ and also in $H_2$ and is taken as $Q$,
since $\{P, T'\}$ is of order $p^{m-2}$.
$H'_2 = \{H'_1, Q\} = \{S_1, H_1\}$ and in this case $c$ may be taken
$\equiv 0 \pmod{p}$.
\smallskip
$2^\circ$. \textit{Where $x = x_1 p$.} $P^p$ is in $\{S_1\}$ since $\lambda$ is
prime to $p$. In the present case $R^z\, Q^y$ is in $H'_1$ and also in $H_2$.
If $z \not\equiv 0 \pmod{p}$ take $R^z\, Q^y$ as $R$; if $z \equiv 0
\pmod{p}$ take it as $Q$.
\begin{gather*}
H'_1 = \{S_1, R\} \quad \hbox{ or } \quad \{S_1,Q\},
\intertext{and}
R^{-1}\, S_1\, R = S{}_1^{1 + k'p^{m-4}} \qquad \hbox{ or } \qquad
Q^{-1}\, S_1\, Q = S{}_1^{1 + k''p^{m-4}}.
\intertext{On rearranging these take the forms}
S{}_1^{-1}\, R\, S_1 = R\,S{}_1^{np^{m-4}} = R\,P^{jp^{m-4}} \quad \hbox{ or }
\quad S_1^{-1}\, Q\, S_1 = Q\,S{}_1^{n'p^{m-4}} = Q\,P^{ep^{m-4}},
\end{gather*}
\noindent and either $c$ or $g$ may be taken $\equiv 0 \pmod{p}$,
\begin{equation}
cg \equiv 0 \pmod{p}. %% 17
\end{equation}
\noindent From (14), (15), (16), (12) and (17)
\begin{equation*}
[-p,\, 0,\, 1,\, 0,\, p] = \left[0,\, c\frac{d^p - f^p}{d - f},\, d^p,\, Wp^{m-4}\right].
\end{equation*}
Place $x = \lambda p$ and $y = 1$ in (12)
\begin{gather*}
Q^{-1}\, P^{\lambda p}\,Q = P^{\lambda p} \qquad \hbox{ or } \qquad
S{}_1^p\, Q\, S{}_1^p = Q,
\intertext{and}
d^p \equiv 1 \pmod{p}, \qquad d = 1.
\end{gather*}
\noindent Equation (14) is replaced by
\begin{equation}
S{}_1^{-1}\, Q\, S_1 = R^c\, Q\, P^{ep^{m-4}}. %% 18
\end{equation}
From (15), (18), (17), (16) and (12)
\begin{equation*}
[-p,\, 1,\, 0,\, 0,\, p] = \left[0,\, f^p,\, \frac{d^p - f^p}{d - f}g, W'p^{m-4}\right].
\end{equation*}
\noindent Placing $x = \lambda p,\, y = 1$ in (10)
\begin{equation*}
R^{-1}\, P^{\lambda p}\, R = P^{\lambda p},
\end{equation*}
\noindent and $f^p \equiv 1 \pmod{p},\, f = 1$. Equation (15) is replaced by
\begin{equation}
S{}_1^{-1}\, R\, S_1 = R\, Q^g\, P^{jp^{m-4}}. %% 19
\end{equation}
\noindent From (16), (18), (19) and (12)
\begin{equation*}
S{}_1^{-p}\, P\, S{}_1^p = P^{1 + \epsilon_2 p^{m-4}} = P
\end{equation*}
\noindent and $\epsilon_2 \equiv 0 \pmod{p}$. Let $\epsilon_2 = \epsilon p$ and (16)
is replaced by
\begin{equation}
S{}_1^{-1}\, P\, S_1 = R^\gamma\, Q^\delta\, P^{1 + \epsilon p^{m-4}}. %% 20
\end{equation}
\noindent Transforming both sides of (1), (8) and (9) by $S_1$
\begin{align*}
S{}_1^{-1} Q^{-1} S_1 \cdot S{}_1^{-1} P S_1 \cdot S{}_1^{-1} Q S_1 &=
S{}_1^{-1} P^{1 + kp^{m-4}} S_1, \\
S{}_1^{-1} R^{-1} S_1 \cdot S{}_1^{-1} P S_1 \cdot S{}_1^{-1} R S_1 &=
S{}_1^{-1} Q^\beta S_1 \cdot S{}_1^{-1} P^{1 + \alpha p^{m-4}} S_1, \\
S{}_1^{-1} R^{-1} S_1 \cdot S{}_1^{-1} Q S_1 \cdot S{}_1^{-1} R S_1 &=
S{}_1^{-1} Q S_1 \cdot S{}_1^{-1} P^{ap^{m-4}} S_1.
\end{align*}
\noindent Reducing these by (18), (19), (20) and (12) and rearranging
\begin{align*}
\bigl[0,&\, \gamma,\, \delta + \beta c,\, 1 + \left \{ \epsilon + \alpha c + k + ac\delta +
a\beta\tbinom{c}{2} - a\gamma \right \} p^{m-4} \bigr] \\
& \qquad \qquad \qquad = [0,\, \gamma,\, \delta, 1 + (\epsilon + k)p^{m-4}]. \\
[0,&\, \gamma,\, \beta + \delta,\, 1 + \{kg + \epsilon + \alpha + a\delta -
a\gamma g\}p^{m-4}] \\
& \qquad \qquad \qquad = \Bigl[0,\, \gamma + \beta c,\, \beta + \delta,\, 1
+ \bigl\{\epsilon + \alpha + \beta e + \alpha\tbinom{\beta}{2}c
+ a\beta\gamma\bigr\}p^{m-4}\Bigr], \\
[0,&\, c,\, 1,\, (e + a)p^{m-4}] = [0,\, c,\, 1,\, (e + a)p^{m-4}].
\end{align*}
The first gives
\begin{gather}
\beta c \equiv 0 \pmod{p}, \\ %% 21
ac + ac\delta - a\gamma \equiv 0 \pmod{p}. %% 22
\intertext{Multiplying this last by $g$}
ag\gamma \equiv 0 \pmod{p}. %% 23
\intertext{From the second equation above}
gk + \alpha\delta \equiv \beta e + a\beta\gamma \pmod{p}. %% 24
\intertext{Multiplying by $c$}
ac\delta \equiv 0 \pmod{p}. %% 25
\end{gather}
These relations among the constants \textit{must be satisfied} in order that our
equations should define a group.
From (20), (19), (18) and (12)
\begin{align}
[-y,\, 0,\, 0,\, x,\, y] &= [0,\, \gamma xy + \chi_1 (x, y),\, \delta xy + \phi_1
(x, y),\, x + \Theta_1 (x, y)p^{m-4}], \\ %% 26
[-y,\, 0,\, x,\, 0,\, y] &= [0,\, cxy,\, x,\, \Theta_2 (x, y)p^{m-4}], \\ %% 27
[-y,\, x,\, 0,\, 0,\, y] &= [0,\, x,\, gxy,\, \Theta_3 (x, y)p^{m-4}], %% 28
\end{align}
\noindent where
\begin{align*}
\chi_1 (x,\, y) &= c\delta x\tbinom{y}{2}, \\
\phi_1 (x,\, y) &= \gamma gx\tbinom{y}{2} + \beta\gamma\tbinom{x}{2}y, \\
\Theta_1 (x,\, y) &= \epsilon xy + \tbinom{y}{2}\left[\gamma jx + e\delta x +
a\delta\gamma + (\alpha\gamma + k\delta)\tbinom{x}{2}\right] \\
& \qquad \qquad + \tbinom{y}{3} [c\delta j + eg\gamma]x
+ \tbinom{x}{2}[\alpha\gamma y + \delta ky + a\delta\gamma y^2]
+ \beta\gamma k\tbinom{x}{3}y^2, \\
\Theta_2 (x, y) &= exy + cjx\tbinom{y}{2} + ac\tbinom{x}{2}y, \\
\Theta_3 (x, y) &= jxy + egx\tbinom{y}{2} + ag\tbinom{x}{2}y.
\end{align*}
Let a general power of any operator be
\begin{equation}
[v,\, z,\, y,\, x]^s = [sv,\, sz + U_s,\, sy + V_s,\, sx + W_s p^{m-4}]. %% 29
\end{equation}
Multiplying both sides by $[v,\, z,\, y,\, x]$ and reducing by (2), (10), (11),
(26), (27) and (28), we find
\begin{align*}
U_{s+1} &\equiv U_s + (cy + \gamma x)sv + c \delta\tbinom{sv}{2}x \pmod{p}, \\
V_{s+1} &\equiv V_s + (gz + \delta x)sv + \gamma g\tbinom{sv}{2}x
+ \beta\gamma\tbinom{x}{2}sv + \beta (sz + U_s)x \pmod{p}, \\
W_{s+1} &\equiv W_s + \Theta_1 (x, sv) + \left\{ey + jz + a \gamma xy +
ac\tbinom{y}{2} + ag\tbinom{z}{2} \right\}sv \\
& \qquad \qquad + \left\{\alpha x + \beta k\tbinom{x}{2}
+ ay + a\delta sx + \alpha gsvz\right\}sz + ksxy \\
& \qquad \qquad + \tbinom{sv}{2}\{cjy + egz\} + U_s \left\{\alpha x
+ \beta k\tbinom{x}{2} + ay + a(\delta x + gz)sv\right\} \\
& \qquad \qquad + a\beta\tbinom{sz + Us}{2}x + kV_s x \pmod{p}.
\end{align*}
From (29)
\begin{equation*}
U_1 \equiv 0, \qquad V_1 \equiv 0, \qquad W_1 \equiv 0 \pmod{p}.
\end{equation*}
A continued use of the above congruences give
\begin{align*}
U_s &\equiv (cy + \gamma x)\tbinom{s}{2}v + \frac{1}{2} c\delta xv
\{\frac{1}{3} (2s - 1)v - 1\}\tbinom{s}{2} \pmod{p}, \\
V_s &\equiv \{[gz + \delta x + \beta\gamma\tbinom{x}{2}v + \beta xz\}
\tbinom{s}{2} \\ & \qquad + \frac{1}{2} \gamma gxv\{\frac13 (2s - 1)v -1\}
\tbinom{s}{2} + \beta\gamma\tbinom{s}{3}x^2 v \pmod{p}, \displaybreak \\
%%
W_s &\equiv \tbinom{s}{2}
\Bigl\{
\epsilon xv + egv + (\alpha\gamma + \delta kv + \beta kz)\tbinom{s}{2}
+ \beta\gamma\ k\tbinom{x}{3}v + ac\tbinom{y}{2}v \\
& \qquad + jvz + ag\tbinom{z}{2}v + \alpha xz + kxy + a\gamma xyv + ayz
\Bigr\}
+ \tbinom{s}{3}
\Bigl\{
\alpha cxyv \\ & \qquad + \alpha\gamma x^2 v + 2\beta\gamma k\tbinom{x}{2} xv
+ gkxzv + \delta kx^2 v
+ \beta kx^2 z + acvy^2 \\ & \qquad + a\gamma xvy
\Bigr\}
+ \beta k \gamma\tbinom{s}{4}x^3 v + \tbinom{s}{2}\frac{2s-1}{3}
\Bigl\{
a\delta\gamma\tbinom{x}{2}v^2 + a\delta xzv \\
& \qquad + agvz^2
\Bigr\}
+ \frac{1}{2}v\tbinom{s}{2}
\Bigl\{
\frac13(2s-1)v - 1
\Bigr\}
\Bigl\{
\gamma jx + e\delta x + a\delta\gamma x \\
& \qquad + \alpha c \delta\tbinom{x}{2} + \gamma gk \tbinom{x}{2} + cjy + egz
\Bigr\}
+ \frac{1}{6}\tbinom{s}{2}
\Bigl\{
\tbinom{s}{2}v^2 - (2s-1)v \\ & \qquad + 2
\Bigr\}
\bigl\{
c\delta jx + eg\gamma x
\bigr\}v
+ \frac{1}{2}\tbinom{s}{3}
\Bigl\{
\frac{1}{2}(s-1)v-1
\Bigr\}
\bigl\{
\alpha c \delta \\ & \qquad + \gamma gk
\bigr\} x^2 v
+ \frac12 a\beta x \tbinom{s}{2}
\Bigl\{
\frac{1}{3}(2s-1)z - 1
\Bigr\} z \\
& \qquad + \frac{1}{2} a\delta\gamma x^2 v\tbinom{s}{3} \frac{1}{2}(3s-1) \pmod{p}
\end{align*}
Placing $v = 1,\, z = y = s = p$ in (29)\footnote{For $p = 3$ and
$c\delta \equiv \gamma g \equiv \beta \gamma
\equiv 0 \pmod{p}$ there are terms of the form $(A + Bx + Cx^2 + Dx^3)
p^{m-4}$ in the exponent of $P$. For $m > 5$ these do not vitiate our
conclusion. For $p = 3$ and $c\delta$, $\gamma g$, or $\beta\gamma$ prime
to $p$, $[S_1\, P^x]^p$ is not contained in $\{P\}$ and the groups defined
belong to Class II.}
\begin{gather*}
[S_1\, P^x]^p = S{}_1^p P^{xp} = P^{(\lambda + x)p} \qquad (p > 3).
\intertext{If $x$ be so chosen that}
x + \lambda \equiv 0 \pmod{p^{m-4}}.
\intertext{$S = S_1\, P^x$ is an operator of order $p$ and is taken in place
of $S_1$.}
S^p = 1.
\end{gather*}
The substitution of $S$ for $S_1$ leaves congruence (17) invariant.
\medskip
5. \textit{Transformation of the groups.} All groups of this class are given by
\begin{equation}
G: \begin{cases}
Q^{-1} P\, Q = P^{1 + kp^{m-4}}, \\
R^{-1} P\, R = Q^\beta\, P^{1 + \alpha p^{m-4}}, \\
R^{-1} Q\, R = Q\, P^{ap^{m-4}}, \\
S^{-1} P\, S = R^\gamma\, Q^\delta P^{1 + \epsilon p^{m-4}}, \\
S^{-1} Q\, S = R^c\, Q\, P^{ep^{m-4}}, \\
S^{-1} R\, S = R\, Q^g\, P^{jp^{m-4}}, \\
\end{cases} %% 30
\end{equation}
\noindent with
\begin{equation*}
P^{p^{m-3}} = 1, \quad Q^p = R^p = S^p = 1,
\end{equation*}
\noindent$(k,\, \beta,\, \alpha,\, a,\, \gamma,\, \delta,\, \epsilon,\, c,\,
e,\, g,\, j = 0,\, 1,\, 2,\, \cdots,\, p - 1)$.
These constants are however subject to conditions (17), (21), (22), (23),
(24) and (25). Not all these groups are distinct. Suppose that $G$ and
$G'$ of the above set are simply isomorphic and that the correspondence is
given by
\begin{equation*}
C = \left[ \begin{matrix}S, & R, & Q, & P \\
S'_1, & R'_1, & Q'_1, & P'_1 \\ \end{matrix} \right].
\end{equation*}
Inspection of (29) gives
\begin{align*}
S'_1 &= S'^{v'''} R'^{z'''} Q'^{y'''} P'^{x'''p^{m-4}}, \\
R'_1 &= S'^{v''} R'^{z''} Q'^{y''} P'^{x''p^{m-4}}, \\
Q'_1 &= S'^{v'} R'^{z'} Q'^{y'} P'^{x'p^{m-4}}, \\
P'_1 &= S'^v R'^z Q'^y P'^x,
\end{align*}
\noindent in which $x$ and one out of each of the sets $v'$, $z'$, $y'$, $x'$; $v''$,
$z''$, $y''$, $x''$; $v'''$, $z'''$, $y'''$, $x'''$ are prime to $p$.
Since $S$, $R$, $Q$, and $P$ satisfy equations (30), $S'_1$, $R'_1$, $Q'_1$
and $P'_1$ also satisfy them. Substituting these operators and reducing in
terms of $S'$, $R'$, $Q'$, and $P'$ we get the six equations
\begin{equation}
[V'_\kappa,\, Z'_\kappa,\, Y'_\kappa,\, X'_\kappa] = [V_\kappa,\, Z_\kappa,\,
Y_\kappa,\, X_\kappa] \qquad (\kappa = 1,\, 2,\, 3,\, 4,\, 5,\, 6), %% 31
\end{equation}
\noindent which give the following twenty-four congruences
\begin{equation}
\begin{cases}
V'_\kappa \equiv V_\kappa \pmod{p}, \\
Z'_\kappa \equiv Z_\kappa \pmod{p}, \\
Y'_\kappa \equiv Y_\kappa \pmod{p}, \\
X'_\kappa \equiv X_\kappa \pmod{p^{m-3}},
\end{cases} %% 32
\end{equation}
\noindent where
\begin{align*}
V'_1 &= v, \quad V_1 = v, \\
Z'_1 &= Z + c'(yv' - y'v) + \gamma'xv' + c\delta x\tbinom{v'}{2}, \quad Z_1 = z, \\
Y'_1 &= y + g'(zv' - z'v) + \delta'xv' + \gamma'g'x\tbinom{v}{2} + \beta'xz', \quad Y_1 = y, \\
%%
X'_1 &= x + \Bigl\{\epsilon'xv' + (\gamma'j'x + e'\delta'x + a'\delta'\gamma'x)
\tbinom{v'}{2} + c'\delta'j'\tbinom{v'}{3} + (\alpha'\gamma'v' + \delta'k'v' \\
&\quad+ a'\delta'\gamma'v^2 + \beta'k'z')\tbinom{x}{2} + j'(zv' - z'v) +
e'g'[z\tbinom{v'}{2} - z'\tbinom{v}{2}] \\
&\quad+ a'g'[\tbinom{z}{2}v' + \tbinom{z'}{2}v - zz'v] + e'(yv' - y'v) +
c'j'[y\tbinom{v'}{2} - y'\tbinom{v}{2}] \\
&\quad+ a'c'[\tbinom{y}{2}v' + v\tbinom{-y'}{2} - yy'v] + a'(yz' - y'z)
- a'\beta'xz'^2 + \alpha'xz' \\
&\quad+ \alpha'\beta'x\tbinom{z'}{2} + a'\gamma'x(y - y')v' + k'xy'\Bigr\}p^{m-4}, \\
%%
X_1 &= x + kxp^{m-4}, \\
V'_2 &= v, \quad V_2 = v + \beta v', \\
Z'_2 &= z + c'(yv'' - y''v) + \gamma'xv'' + e'\delta'\tbinom{v''}{2},
\quad Z_2 = z + \beta z' + c'\beta y'v, \\
Y'_2 &= y + g'(zv'' - z''v) + \delta'xv'' + \gamma'g'x\tbinom{v''}{2} +
\beta'\gamma'\tbinom{x}{2}v'' + \beta'xz'', \\
%%
Y_2 &= y + \beta y' + g'\beta z'v, \\
X'_2 &= x + \Bigl\{\Theta'_1(x, v'') + j'(zv'' - z''v) + e'g'[z\tbinom{v''}{2} -
z''\tbinom{v}{2}] + a'g'[\tbinom{x}{2}v'' \\
&\quad+ \tbinom{-z''}{2}v - zz''v] + e'(yv'' - y''v) + c'j'[y\tbinom{v''}{2}
- y''\tbinom{v}{2}] + a'c'[\tbinom{y}{2}v'' \\
&\quad+ \tbinom{-y''}{2}v - yy''v''] + a'g'(zv'' - z''v)z'' + a'(yz'' - y''z)
+ a'\delta'v''z'' \\
&\quad+ a'\gamma'(y - y'')v''x + \alpha'xz'' + a'\beta'x\tbinom{z''}{2}
+ \beta'k'\tbinom{x}{2}z'' + k'xy''\Bigr\}p^{m-4}, \\
%%
X_2 &= x + \Bigl\{\alpha x + \beta x' + a'\tbinom{\beta}{2}y'z' + e'\beta vy' +
(c'j'\beta + e'g'\beta z')\tbinom{v}{2} \\
&+ a'c'\tbinom{\beta y'}{2}v + j'\beta vz' + a'g'\tbinom{\beta z'}{2}
+ a'\beta(g'z'v + y')z\Bigr\}p^{m-4}, \\
V'_3 &= v', \quad V_3 = v', \\
Z'_3 &= z' + c'(y'v'' - y''v'), \quad Z_3 = z', \\
Y'_3 &= y' + g'(z'v'' - z''v'), \quad Y_3 = y', \\
%%
X'_3 &= \Bigl\{x' + j'(z'v'' - z''v') + e'g'[\tbinom{v''}{2}z' -
\tbinom{v'}{2}z''] + a'g'[\tbinom{z'}{2}v'' + \tbinom{-z''}{2}v' \\
&\quad- z'z''v'] + e'(y'v'' - y''v') + c'j'[y'\tbinom{v''}{2} - y''\tbinom{v'}{2}]
+ a'c'[\tbinom{y'}{2}v'' + \tbinom{-y''}{2}v' \\
&\quad- y''y'v''] + a'(y'z'' - y''z')\Bigr\}p^{m-4}, \\
X_4 &= (x' + a'x)p^{m-4}, \\
%%
V'_4 &= v, \quad V_4 = v + \gamma v'' + \delta v', \\
Z'_4 &= z + c'(yv''' - y'''v) + \gamma'xv''' + c'\delta'x\tbinom{v'''}{2}, \\
Z_4 &= z + \gamma z'' + \delta z' + c'[\tbinom{\gamma}{2}v''y''
+ \tbinom{\delta}{2}v'y'] + c'(\gamma y'' + \delta y')v + c'\gamma\delta y''v, \\
Y'_4 &= y + g'(zv''' - z'''v) + \delta' xv''' + \gamma' g'x\tbinom{v'''}{2}
+ \beta'\gamma'\tbinom{x}{2}v''' + \beta'xz''', \\
%%
Y_4 &= y + \gamma y'' + \delta y' + g'[\tbinom{\gamma}{2}v''z''
+ \tbinom{\delta}{2}v'z'] + g'(\gamma z'' + \delta z')v + g'\delta\gamma v'z'', \\
X'_4 &= x + \Bigl\{\Theta'_1 (x, v''') + j'(zv''' - z'''v) +
e'g'[\tbinom{v'''}{2}z - \tbinom{v}{2}z'''] + a'g'\left[\tbinom{z}{2}v''' \right. \\
&\quad \left. + \tbinom{-z'''}{2}v - zz'''v\right] + e'(yv''' - y'''v)
+ c'j'[y\tbinom{v'''}{2} - y'''\tbinom{v}{2}] \\
&\quad+ a'c'[\tbinom{y}{2}v''' + \tbinom{-y'''}{2}v - yy'''v''']
+ a'g'(v'''z - vz''')z''' \\
&\quad+ a'(yz''' - y'''z) + a'\delta' xz'''v''' + a'\gamma' x(y - y''')v''' + \alpha' xz''' \\
&\quad+ a'\beta' x\tbinom{z'''}{2} + \beta' k'z'''\tbinom{x}{2} + k'xy''' \Bigr\} p^{m-4}. \displaybreak \\
%%
X_4 &= x + \Bigl\{\epsilon x + \delta x' + \gamma x'' + \tbinom{\gamma}{2}
[a'c'\tbinom{y''}{2}v'' + a'y''z'' + e'v''y'' + j'v''z'' \\
&\quad+ a'g'\tbinom{z''}{2}v'' + (c'j'v''y'' + e'g'v''z'')(v + \delta v')
+ a'(z + \delta z')v''z'' \\
&\quad+ \frac{2\gamma - 1}{3}a'g'v''z''^2 + \frac{1}{2}[\frac{1}{3}(2\gamma - 1)v''
- 1](c'j'y'' + e'g'z'')v''] \\
&\quad+ \tbinom{\gamma}{3}a'c'v''y'' + \tbinom{\delta}{2}[a'c'\tbinom{y'}{2}v'
+ a'y'z' + e'v'y' + j'v'z' \\
&\quad+ a'g'\tbinom{z'}{2}v' + j'c'vv'y' + e'g'vv'z' + a'g'v'zz' + a'c'\gamma y'y''v' \\
&\quad+ \frac{2\delta - 1}{3}a'g'v'z'^2 + \frac{1}{2}\{\frac{1}{3}(2\delta - 1)v'
- 1\}(c'j'y' + e'g'z')] \\
&\quad+ \tbinom{\delta}{3}a'c'v'y'^2 + (v + \delta v')[j'\gamma z''
+ \tbinom{\gamma z''}{2}a'g' + e'\gamma y'' + \tbinom{\gamma y''}{2}a'c' \\
&\quad+ a'g'(z + \delta z')] + \tbinom{v + \delta v'}{2}[e'g'\gamma z''
+ c'j'\gamma y''] + \delta[(e'g'z' \\
&\quad+ c'j'y')\tbinom{v}{2} + e'vy' + j'z' + a'zy + a'g'vzz' + a'\gamma z'y''
+ a'c'\gamma vy'y''] \\
&\quad+ a'g'\tbinom{\delta z'}{2}v + a'c'\tbinom{\delta y'}{2} v
+ a'\gamma zy''\Bigr\}p^{m-4}, \\
%%
V'_5 &= v', \quad V_5 = v' + cv'', \\
Z'_5 &= z' + c'(y'v''' - y'''v'), \quad Z_5 = z' + cz'' + c'cy''v, \\
Y'_5 &= y' + g'(z'v''' - z'''v'), \quad Y_5 = y' + cy'' + g'cv'z'', \\
X'_5 &= \Bigl\{x' + j'(z'v''' - z'''v') + e'g'[\tbinom{v'''}{2}z'
- \tbinom{v'}{2}z'''] + a'g'[\tbinom{z'}{2}v''' \\
&\quad+ \tbinom{-z'''}{2}v' - z'z'''v'] + c'(y'v''' - y'''v')
+ c'j'[y'\tbinom{\delta'''}{2} - y'''\tbinom{v'}{2}] \\
&\quad+ a'c'[\tbinom{y'}{2}v''' + \tbinom{-y'''}{2}v' - y'y'''v''']
+ a'(y'z''' - y'''z')\Bigr\}p^{m-4}, \\
%%
X_5 &= \Bigl\{x' + ex + cx'' + a'\tbinom{c}{2}y''z'' + j'cv'z''
+ (e'g'cz'' + c'cj'y'')\tbinom{v'}{2} + e'cy''v \\
&\quad+ a'cy''z' + a'g'z'v' + a'g'\tbinom{cz''}{2} + a'c'\tbinom{cy''}{2}\Bigr\}p^{m-4}, \\
V'_6 &= v'', \quad V_6 = v'' + gv', \\
Z'_6 &= z'' + c'(y''v''' - y'''v''), \quad Z_6 = z'' + gz', \\
Y'_6 &= y'' + g'(z''v''' - z'''v''), \quad Y_6 = y'' + gy', \\
%%
X'_6 &= \Bigl\{x'' + j'(z''v''' - z'''v'') + e'g'[\tbinom{v'''}{2}z''
- \tbinom{v''}{2}z'''] + a'g'\left[\tbinom{z''}{2}v''' \right. \\
&\quad+ \left. \tbinom{-z'''}{2}v'' - z''z'''v''\right] + e'(y''v''' - y'''v'')
+ c'j'[y''\tbinom{v'''}{2} - y'''\tbinom{v''}{2}] \\
&\quad+ a'c'[\tbinom{y''}{2}v''' + \tbinom{-y'''}{2}v'' - y''y'''v''']
+ a'(y''z''' - y'''z'')\Bigr\}p^{m-4}, \\
X_6 &= \{x'' + jx + gx' + a'gy''z'\}p^{m-4}.
\end{align*}
The necessary and sufficient condition for the simple isomorphism of the
two groups $G$ and $G'$ is \textit{that congruences (32) shall be consistent and
admit of solution} subject to conditions derived below.
\medskip
6. \textit{Conditions of transformation.} Since $Q$ is not contained in $\{P\}$,
$R$ is not contained in $\{Q, P\}$, and $S$ is not contained in $\{R, Q,
P\}$, then $Q'_1$ is not contained in $\{P'_1\}$, $R'_1$ is not contained
in $\{Q'_1, P'_1\}$, and $S'_1$ is not contained in $\{R'_1, Q'_1, P'_1\}$.
Let
\begin{equation*}
{Q'}_1^{s'} = {P'}_1^{sp^{m-4}}.
\end{equation*}
This equation becomes in terms of $S'$, $R'$, $Q'$ and $P'$
\begin{gather*}
[s'v',\, s'z' + c'\tbinom{s'}{2}v'y',\, s'y' + g'\tbinom{s'}{2}v'z',\, Dp^{m-4}]
= [0,\, 0,\, 0,\, sxp^{m-4}],
\intertext{and}
s'v' \equiv s'z' \equiv s'y' \equiv 0 \pmod{p}.
\end{gather*}
At least one of the three quantities $v'$, $z'$ or $y'$ is prime to $p$,
since otherwise $s'$ may be taken $= 1$.
Let
\begin{equation*}
{R'}_1^{s''} = {Q'}_1^{s'} {P'}_1^{sp^{m-4}},
\end{equation*}
\noindent or in terms of $S'$, $R'$, $Q'$ and $P'$
\begin{multline*}
[s''v'',\, s''z'' + c'\tbinom{s''}{2}v''y'',\, s''y'' + g'\tbinom{s''}{2}v''
z'',\, Ep^{m-4}] \\ = [s'v',\, s'z' + c'\tbinom{s'}{2}v'y',\, s'y' +
g'\tbinom{s'}{2}v'z',\, E_1 p^{m-4}],
\end{multline*}
\noindent and
\begin{align*}
s''v'' &\equiv s'v' \pmod{p}, \\
s''z'' + c'\tbinom{s''}{2}v''y'' &\equiv s'z' + c'\tbinom{s'}{2}v'y' \pmod{p}, \\
s''y'' + g'\tbinom{s''}{2}v''z'' &\equiv s'y' + g'\tbinom{s'}{2}v'z' \pmod{p}.
\end{align*}
Since $c'g' \equiv 0 \pmod{p}$, suppose $g' \equiv 0 \pmod{p}$. Elimination
of $s'$ between the last two give by means of the congruence $Z'_3 \equiv
Z_3 \pmod{p}$,
\begin{equation*}
s''\{2(y'z'' - y''z') + c'y'y''(v' - v'')\} \equiv 0 \pmod{p},
\end{equation*}
\noindent between the first two
\begin{equation*}
s''\{2(v'z'' - v''z') + c'v'v''(y' - y'')\} \equiv 0 \pmod{p},
\end{equation*}
\noindent and between the first and last
\begin{equation*}
s''(y'v'' - y''v') \equiv 0 \pmod{p}.
\end{equation*}
At least one of the three above coefficients of $s''$ is prime to $p$,
since otherwise $s''$ may be taken $= 1$.
Let
\begin{equation*}
{S'}_1^{s'''} = {R'}_1^{s''} {Q'}_1^{s'} {P'}_1^{sp^{m-4}}
\end{equation*}
\noindent or, in terms of $S'$, $R'$, $Q'$, and $P'$
\begin{multline*}
[s'''v''', s'''z''' + c'\tbinom{s'''}{2}v'''y''', s'''y''' +
g'\tbinom{s'''}{2}v'''z''', E_2 p^{m-4}] \\ = [s''v'' + s'v', s''z'' + s'z' +
c'\{\tbinom{s''}{2}v''y'' + \tbinom{s'}{2}v'y' + s's''y''v'\}, \\ s''y'' +
s'y' + g'\{\tbinom{s''}{2}v''z'' + \tbinom{s'}{2}v'z' + s's''v'z''\}, E_3 p^{m-4}]
\end{multline*}
\noindent and
\begin{align*}
s'''v''' & \equiv s''v'' + s'v' \pmod{p}, \\
s'''z''' & + c'\tbinom{s'''}{2}v'''y''' \\
& \qquad \equiv s''z'' + s'z' + c'\{\tbinom{s''}{2}v''y'' + \tbinom{s'}{2}v'y'
+ s's''y''v'\} \pmod{p}, \\
s'''y''' & + g'\tbinom{s'''}{2}v'''z''' \\
& \qquad \equiv s''y'' + s'y' + g'\{\tbinom{s''}{2}v''z'' + \tbinom{s'}{2}v'z'
+ s's''z''v'\} \pmod{p}.
\end{align*}
If $g' \equiv 0$ and $c' \not\equiv 0 \pmod{p}$ the congruence $Z'_3
\equiv Z_3 \pmod{p}$ gives
\begin{equation*}
(y'v'' - y''v') \equiv 0 \pmod{p}.
\end{equation*}
Elimination in this case of $s''$ between the first and last congruences
gives
\begin{equation*}
s'''(y''v''' - y'''v'') \equiv 0 \pmod{p}.
\end{equation*}
Elimination of $s''$ between the first and second, and between the second
and third, followed by elimination of $s'$ between the two results, gives
\begin{equation*}
s'''\left(z''^2 - c'y''z''v' + \frac{c'^2}{4}y''v''\right)
(y'v''' - y'''v') \equiv 0 \pmod{p}.
\end{equation*}
Either $(y''v''' - y'''v'')$, or $(y'v''' - y'''v')$ is prime to $p$,
since otherwise $s'''$ may be taken $= 1$.
A similar set of conditions holds for $c' \equiv 0$ and $g' \not\equiv 0
\pmod{p}$.
When $c' \equiv g' \equiv 0 \pmod{p}$ elimination of $s'$ and $s''$ between
the three congruences gives
\begin{equation*}
s'''\Delta \equiv s''' \left|\begin{matrix}
v' & v'' & v''' \\
y' & y'' & y''' \\
z' & z'' & z''' \\ \end{matrix}\right|
\equiv 0 \pmod{p}
\end{equation*}
\noindent and $\Delta$ is prime to $p$, since otherwise $s'''$
may be taken $= 1$.
\newpage
7. \textit{Reduction to types.} In the discussion of congruences (32), the
group $G'$ is taken from the simplest case and we associate with it all
simply isomorphic groups $G$.
\begin{center}
\large I. \normalsize
\smallskip
\begin{tabular}{|r|c|c|c|c|c|c||r|c|c|c|c|c|}
\multicolumn{7}{c}{A.}&\multicolumn{6}{c}{B.} \\ \hline
&$a_2$&$\beta_2$&$c_2$&$g_2$&$\gamma_2$&$\delta_2$& &$k_2$&$\alpha_2$&$\epsilon_2$&$e_2$&$j_2$ \\ \hline
\textbf{ 1}& 1 & 1 & 1 & 1 & 1 & 1 &\textbf{ 1}& 1 & 1 & 1 & 1 & 1 \\ \hline
\textbf{ 2}& 0 & 1 & 1 & 1 & 1 & 1 &\textbf{ 2}& 0 & 1 & 1 & 1 & 1 \\ \hline
\textbf{ 3}& 0 & 0 & 1 & 1 & 1 & 1 &\textbf{ 3}& 1 & 0 & 1 & 1 & 1 \\ \hline
\textbf{ 4}& 0 & 0 & 1 & 1 & 1 & 0 &\textbf{ 4}& 1 & 1 & 0 & 1 & 1 \\ \hline
\textbf{ 5}& 0 & 0 & 1 & 0 & 1 & 1 &\textbf{ 5}& 1 & 1 & 1 & 0 & 1 \\ \hline
\textbf{ 6}& 0 & 0 & 1 & 0 & 1 & 0 &\textbf{ 6}& 1 & 1 & 1 & 1 & 0 \\ \hline
\textbf{ 7}& 0 & 1 & 0 & 1 & 1 & 1 &\textbf{ 7}& 0 & 0 & 1 & 1 & 1 \\ \hline
\textbf{ 8}& 0 & 1 & 0 & 1 & 0 & 1 &\textbf{ 8}& 0 & 1 & 0 & 1 & 1 \\ \hline
\textbf{ 9}& 0 & 1 & 1 & 0 & 1 & 1 &\textbf{ 9}& 0 & 1 & 1 & 0 & 1 \\ \hline
\textbf{10}& 0 & 1 & 1 & 0 & 1 & 0 &\textbf{10}& 0 & 1 & 1 & 1 & 0 \\ \hline
\textbf{11}& 1 & 0 & 1 & 1 & 1 & 1 &\textbf{11}& 1 & 0 & 0 & 1 & 1 \\ \hline
\textbf{12}& 1 & 0 & 1 & 0 & 1 & 1 &\textbf{12}& 1 & 0 & 1 & 0 & 1 \\ \hline
\textbf{13}& 1 & 0 & 1 & 1 & 0 & 1 &\textbf{13}& 1 & 0 & 1 & 1 & 0 \\ \hline
\textbf{14}& 1 & 0 & 1 & 1 & 1 & 0 &\textbf{14}& 1 & 1 & 0 & 0 & 1 \\ \hline
\textbf{15}& 1 & 0 & 1 & 0 & 0 & 1 &\textbf{15}& 1 & 1 & 0 & 1 & 0 \\ \hline
\textbf{16}& 1 & 0 & 1 & 0 & 1 & 0 &\textbf{16}& 1 & 1 & 1 & 0 & 0 \\ \hline
\textbf{17}& 1 & 0 & 1 & 1 & 0 & 0 &\textbf{17}& 0 & 0 & 0 & 1 & 1 \\ \hline
\textbf{18}& 1 & 0 & 1 & 0 & 0 & 0 &\textbf{18}& 0 & 0 & 1 & 0 & 1 \\ \hline
\textbf{19}& 1 & 1 & 0 & 1 & 1 & 1 &\textbf{19}& 0 & 0 & 1 & 1 & 0 \\ \hline
\textbf{20}& 1 & 1 & 0 & 1 & 0 & 1 &\textbf{20}& 0 & 1 & 0 & 0 & 1 \\ \hline
\textbf{21}& 1 & 1 & 0 & 1 & 1 & 0 &\textbf{21}& 0 & 1 & 0 & 1 & 0 \\ \hline
\textbf{22}& 1 & 1 & 0 & 1 & 0 & 0 &\textbf{22}& 0 & 1 & 1 & 0 & 0 \\ \hline
\textbf{23}& 1 & 1 & 1 & 0 & 1 & 1 &\textbf{23}& 1 & 0 & 0 & 0 & 1 \\ \hline
\textbf{24}& 1 & 1 & 1 & 1 & 0 & 1 &\textbf{24}& 1 & 0 & 0 & 1 & 0 \\ \hline
\textbf{25}& 1 & 1 & 1 & 1 & 1 & 0 &\textbf{25}& 1 & 0 & 1 & 0 & 0 \\ \hline
\textbf{26}& 1 & 1 & 1 & 0 & 0 & 1 &\textbf{26}& 1 & 1 & 0 & 0 & 0 \\ \hline
\textbf{27}& 1 & 1 & 1 & 0 & 1 & 0 &\textbf{27}& 0 & 0 & 0 & 0 & 1 \\ \hline
\textbf{28}& 1 & 1 & 1 & 1 & 0 & 0 &\textbf{28}& 0 & 0 & 0 & 1 & 0 \\ \hline
\textbf{29}& 1 & 1 & 1 & 0 & 0 & 0 &\textbf{29}& 0 & 0 & 1 & 0 & 0 \\ \hline
& & & & & & &\textbf{30}& 0 & 1 & 0 & 0 & 0 \\ \hline
& & & & & & &\textbf{31}& 1 & 0 & 0 & 0 & 0 \\ \hline
& & & & & & &\textbf{32}& 0 & 0 & 0 & 0 & 0 \\ \hline
\end{tabular}
\newpage
\large II. \normalsize
\smallskip
A.
B.\
\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|c|} \hline
&1 &2 &3 &4&5 &6 &7 &8 &9 &10 \\ \hline
\textbf{1} &$\times$&$\times$&$\times$& &$19_6$& &$19_6$& &$19_6$& \\ \hline
\textbf{2} &$\times$&$2_1$ &$3_1$ & & &$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{3} &$1_2$ &$2_1$ &$3_1$ & &$19_6$& & &$19_6$&$19_6$& \\ \hline
\textbf{4} &$1_2$ &$\times$&$\times$& &$19_6$& &$19_6$& &$19_6$& \\ \hline
\textbf{5} &$2_1$ &$2_1$ & &*& &$19_6$&$19_6$& &$19_6$& \\ \hline
\textbf{6} &$2_1$ &$2_1$ &$3_1$ & &$19_6$& &$19_6$& &$19_6$& \\ \hline
\textbf{7} &$1_2$ &$2_1$ &$3_1$ & & &$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{8} &$1_2$ &$2_4$ &$3_4$ & & &$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{9} &$2_1$ &$2_1$ & &*&$19_6$&$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{10}&$2_4$ &$2_4$ &$3_4$ & & &$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{11}&$1_2$ &$2_4$ &$3_4$ & &$19_6$& & &$19_6$&$19_6$& \\ \hline
\textbf{12}&$2_4$ &$2_4$ & &*& &$19_6$& &$19_6$&$19_6$& \\ \hline
\textbf{13}&$2_1$ &$2_1$ &$3_1$ & &$19_6$& & &$19_6$&$19_6$& \\ \hline
\textbf{14}&$2_1$ &$2_4$ & &*& &$19_6$&$19_6$& &$19_6$& \\ \hline
\textbf{15}&$2_1$ &$2_4$ &$3_4$ & &$19_6$& &$19_6$& &$19_6$& \\ \hline
\textbf{16}&$2_1$ &$2_1$ & &*& &$19_6$&$19_6$& &$19_6$& \\ \hline
\textbf{17}&$1_2$ &$2_4$ &$3_4$ & & &$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{18}&$2_4$ &$2_4$ & &*&$19_6$&$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{19}&$2_4$ &$2_4$ &$3_4$ & & &$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{20}&$2_1$ &$2_4$ & &*&$19_6$&$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{21}&$2_4$ &* &* & & &$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{22}&$2_4$ &$2_4$ & &*&$19_6$&$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{23}&$2_4$ &* & &*& &$19_6$& &$19_6$&$19_6$& \\ \hline
\textbf{24}&$2_1$ &$2_4$ &$3_4$ & & &$19_6$& & &$19_6$&$19_6$ \\ \hline
\textbf{25}&$2_4$ &$2_4$ & &*& &$19_6$& &$19_6$&$19_6$& \\ \hline
\textbf{26}&$2_1$ &$2_4$ & &*& &$19_6$&$19_6$& &$19_6$& \\ \hline
\textbf{27}&$2_4$ &* & &*&$19_6$&$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{28}&$2_4$ &* &* & & &$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{29}&* &* & &*&$19_6$&$19_6$& &$19_6$& &$19_6$ \\ \hline
\textbf{30}&$2_4$ &* & &*&$19_6$&$19_6$&$19_6$& & &$19_6$ \\ \hline
\textbf{31}&$2_4$ &* & &*& &$19_6$& &$19_6$&$19_6$& \\ \hline
\textbf{32}&* &* & &*&$19_6$&$19_6$& &$19_6$& &$19_6$ \\ \hline
\end{tabular}
\newpage
\large II. \normalsize (continued)
\smallskip
A.
B.\
\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|c|} \hline
&11 &12 &13 &14 &15 &16 &17 &18 &19 \\ \hline
\textbf{1} &$\times$ &$19_1$&$\times$ &$11_1$ &$19_1$&$19_1$&$13_1$ &$19_1$&$\times$ \\ \hline
\textbf{2} &$25_2$ & &$\times$ &$25_2$ & & &$13_2$ & &$\times$ \\ \hline
\textbf{3} &$11_1$ &$19_2$&$13_1$ &$24_2$ &$21_2$&$19_2$&$13_1$ &$21_2$& \\ \hline
\textbf{4} &$24_2$ &$19_2$&$13_1$ &$24_2$ &$19_1$&$19_2$&$13_1$ &$19_1$&$19_2$ \\ \hline
\textbf{5} & & & & & & & & &$19_1$ \\ \hline
\textbf{6} &$\times$ &$19_2$&$\times$ &$11_6$ &$21_2$&$19_2$&$13_6$ &$21_2$&$\times$ \\ \hline
\textbf{7} &$25_2$ & &$13_2$ &$25_2$ & & &$13_2$ & & \\ \hline
\textbf{8} &$25_2$ & &$13_2$ &$25_2$ & & &$13_2$ & &$19_2$ \\ \hline
\textbf{9} & &$19_6$& & &$21_6$&$19_6$& &$21_6$&$19_2$ \\ \hline
\textbf{10}&$25_{10}$& &$\times$ &$25_{10}$& & &$13_{10}$& &$19_6$ \\ \hline
\textbf{11}&$24_2$ &$19_2$&$13_1$ &* &$21_2$&$19_2$&$13_1$ &$21_2$& \\ \hline
\textbf{12}& & & & & & & & & \\ \hline
\textbf{13}&$11_6$ &* &$13_6$ &$11_6$ &* &$19_2$&$13_6$ &* & \\ \hline
\textbf{14}& & & & & & & & &$19_2$ \\ \hline
\textbf{15}&$11_6$ &$19_2$&$13_6$ &$11_6$ &$21_2$&$19_2$&$13_6$ &$21_2$&$19_6$ \\ \hline
\textbf{16}& & & & & & & & &$19_6$ \\ \hline
\textbf{17}&$25_2$ & &$13_2$ &$25_2$ & & &$13_2$ & & \\ \hline
\textbf{18}& &$19_6$& & &$21_6$&$19_6$& &$21_6$& \\ \hline
\textbf{19}&$25_{10}$& &$13_{10}$&$25_{10}$& & &$13_{10}$& & \\ \hline
\textbf{20}& &$19_6$& & &$21_6$&$19_6$& &$21_6$&$19_2$ \\ \hline
\textbf{21}&$25_{10}$& &$13_{10}$&$25_{10}$& & &$13_{10}$& &$19_6$ \\ \hline
\textbf{22}& &$19_6$& & &$21_6$&$19_6$& &$21_6$&$19_6$ \\ \hline
\textbf{23}& & & & & & & & & \\ \hline
\textbf{24}& &$11_6$&$19_2$ &$13_6$ &$11_6$&* &* &$13_6$&* \\ \hline
\textbf{25}& & & & & & & & & \\ \hline
\textbf{26}& & & & & & & & &$19_6$ \\ \hline
\textbf{27}& &$19_6$& & &$21_6$&$19_6$& &$21_6$& \\ \hline
\textbf{28}&$25_{10}$& &$13_{10}$&$25_10$ & & &$13_{10}$& & \\ \hline
\textbf{29}& &$19_6$& & &$21_6$&$19_6$& &$21_6$& \\ \hline
\textbf{30}& &$19_6$& & &$21_6$&$19_6$& &$21_6$&$19_6$ \\ \hline
\textbf{31}& & & & & & & & & \\ \hline
\textbf{32}& &$19_6$& & &$21_6$&$19_6$& &$21_6$& \\ \hline
\end{tabular}
\newpage
\large II. \normalsize (concluded)
\smallskip
A.
B.\
\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|c|} \hline
&20 &21 &22 &23 &24 &25 &26 &27 &28 &29 \\ \hline
\textbf{1} &$19_1$&$19_1$ &$19_1$&$19_1$&$11_1$ &$11_1$ &$19_1$ &$19_1$&$11_1$&$19_1$ \\ \hline
\textbf{2} &$19_2$&$\times$&$21_2$& &$\times$ &$\times$ & & &$25_2$& \\ \hline
\textbf{3} & & & &$19_2$&$25_2$ &$24_2$ &$21_2$ &$19_2$&$25_2$&$21_2$ \\ \hline
\textbf{4} &$19_2$&$19_1$ &$19_1$&$19_2$&$11_1$ &$11_1$ &$19_1$ &$19_2$&$11_1$&$19_1$ \\ \hline
\textbf{5} &$19_2$&$19_1$ &$19_1$&$19_6$&$11_6$ &$3_1$ &$21_6$ &$19_6$&$3_1$ &$21_6$ \\ \hline
\textbf{6} &$19_6$&$\times$&$21_6$&$19_1$&$3_1$ &$11_6$ &$19_1$ &$19_2$&$3_1$ &$19_1$ \\ \hline
\textbf{7} & & & & &$25_2$ &$25_2$ & & &* & \\ \hline
\textbf{8} &$19_2$&$21_2$ &$21_2$& &$24_2$ &$25_2$ & & &$25_2$& \\ \hline
\textbf{9} &$19_2$&$21_2$ &$21_2$& &$11_6$ &$3_1$ & & &$3_1$ & \\ \hline
\textbf{10}&$19_6$&$21_6$ &$21_6$& &$3_4$ &$\times$ & & &$3_4$ & \\ \hline
\textbf{11}& & & &$19_2$&$25_2$ &$24_2$ &$21_2$ &$19_2$&$25_2$&$21_2$ \\ \hline
\textbf{12}& & & &$19_6$&$25_{10}$ &$3_4$ &$21_6$ &$19_6$&$3_4$ &$21_6$ \\ \hline
\textbf{13}& & & &$19_2$&$3_1$ &$11_6$ &$21_2$ &$19_2$&$3_1$ &$21_2$ \\ \hline
\textbf{14}&* &$19_1$ &$19_1$&$19_6$&$11_6$ &$3_1$ &$21_6$ &$19_6$&$3_1$ &$21_6$ \\ \hline
\textbf{15}&$19_6$&$21_6$ &$21_6$&$19_2$&$3_1$ &$11_6$ &$19_1$ &* &$3_1$ &$19_1$ \\ \hline
\textbf{16}&$19_6$&$21_6$ &$21_6$&$19_6$&$3_1$ &$3_1$ &$21_6$ &$19_6$&* &$21_6$ \\ \hline
\textbf{17}& & & & &$25_2$ &$25_2$ & & &* & \\ \hline
\textbf{18}& & & & &$25_{10}$ &$3_4$ & & &$3_4$ & \\ \hline
\textbf{19}& & & & &$3_4$ &$25_{10}$& & &$3_4$ & \\ \hline
\textbf{20}&$19_2$&$21_2$ &$21_2$& &$11_6$ &$3_1$ & & &$3_1$ & \\ \hline
\textbf{21}&$19_6$&$21_6$ &$21_6$& &$3_4$ &$25_{10}$& & &$3_4$ & \\ \hline
\textbf{22}&$19_6$&$21_6$ &$21_6$& &$3_4$ &$3_4$ & & &* & \\ \hline
\textbf{23}& & & &$19_6$&$25_{10}$ &$3_4$ &$21_6$ &$19_6$&$3_4$ &$21_6$ \\ \hline
\textbf{24}& & & &$19_2$&$3_1$ &$11_6$ &$21_2$ &$19_2$&$3_1$ &$21_2$ \\ \hline
\textbf{25}& &$21_6$ &$21_6$&$19_6$&$3_4$ &$3_4$ &$21_6$ &$19_6$&* &$21_6$ \\ \hline
\textbf{26}&$19_6$&$21_6$ &$21_6$&$19_6$&$3_1$ &$3_1$ &$21_6$ &$19_6$&* &$21_6$ \\ \hline
\textbf{27}& & & & &$25_{10}$ &$3_4$ & & &$3_4$ & \\ \hline
\textbf{28}& & & & &$3_4$ &$25_{10}$& & &$3_4$ & \\ \hline
\textbf{29}& & & & &* &* & & &* & \\ \hline
\textbf{30}&$19_6$&$21_6$ &$21_6$& &$3_4$ &$3_4$ & & &* & \\ \hline
\textbf{31}& & & &$19_6$&$3_4$ &$3_4$ &$21_6$ &$19_6$&* &$21_6$ \\ \hline
\textbf{32}& & & & &* &* & & &* & \\ \hline
\end{tabular}
\end{center}
For convenience the groups are divided into cases.
The double Table I gives all cases consistent with congruences (17), (21),
(23) and (25). The results of the discussion are given in Table II. The
cases in Table II left blank are inconsistent with congruences (22) and
(24), and therefore have no groups corresponding to them.
Let $\kappa = \kappa_1 p^{k_2}$ where $dv[\kappa_1,\, p] = 1\; (\kappa = a,\,
\beta,\, c,\, g,\, \gamma,\, d,\, k,\, \alpha,\, \epsilon,\, e,\, j)$.
In explanation of Table II the groups in cases marked
$\boxed{r_s}$ are simply isomorphic with groups in $A_r B_s$.
The group $G'$ is taken from the cases marked
$\boxed{\times}$. The types are also selected from these cases.
The cases marked $\boxed{*}$ divide into two or more parts. Let
\begin{align*}
a\epsilon - \alpha e + jk &= I_1, & a\epsilon - jk &= I_2, \\
a\delta(a - e) + 2I_1 &= I_3, & \alpha g - \beta j &= I_4, \\
\alpha\delta - \beta\epsilon &= I_5, & \epsilon g - \delta j &= I_6, \\
c\epsilon - e\gamma &= I_7, & \alpha e - jk &= I_8, \\
\delta e + \gamma j &= I_9, & \alpha\gamma + \delta k &= I_{10}.
\end{align*}
The parts into which these groups divide, and the cases with which they are
simply isomorphic, are given in Table III.
\begin{center}
\large III. \normalsize
\smallskip
\begin{tabular}{|l|l|c|l|c|} \hline
$A_{1,2}B^*$ &$dv[I_1,p]=p$ &$2_1$ &$dv[I_1,p]=1$ &$2_4$ \\ \hline
$A_{3}B^*$ &$dv[I_2,p]=p$ &$3_1$ &$dv[I_2,p]=1$ &$3_4$ \\ \hline
$A_{4}B^*$ &$dv[I_3,p]=p$ &$3_1$ &$dv[I_3,p]=1$ &$3_4$ \\ \hline
$A_{12}B_{13}$ &$dv[I_4,p]=p$ &$19_1$ &$dv[I_4,p]=1$ &$19_2$ \\ \hline
$A_{14}B_{11}$ &$dv[I_5,p]=p$ &$11_1$ &$dv[I_5,p]=1$ &$24_2$ \\ \hline
$A_{15,18}B^*$ &$dv[I_4,p]=p$ &$19_1$ &$dv[I_4,p]=1$ &$21_2$ \\ \hline
$A_{16}B_{24}$ &$dv[I_6,I_5,p]=p$ &$19_1$ &$dv[I_6,I_5,p]=1$ &$19_2$ \\ \hline
$A_{20}B_{14}$ &$dv[I_7,p]=p$ &$19_1$ &$dv[I_7,p]=1$ &$19_2$ \\ \hline
$A_{24,25}B^*$ &$dv[I_8,p]=p$ &$3_1$ &$dv[I_8,p]=1$ &$3_4$ \\ \hline
$A_{27}B_{15}$ &$dv[I_6,p]=p$ &$19_1$ &$dv[I_6,p]=1$ &$19_2$ \\ \hline
$A_{29}B_{7,17}$ &$dv[I_{10},p]=p$ &$24_2$ &$dv[I_{10},p]=1$ &$25_2$ \\ \hline
$A_{29}B_{16,26}$ &$dv[I_9,p]=p$ &$11_6$ &$dv[I_9,p]=1$ &$3_1$ \\ \hline
$A_{29}B_{22,25,30,31}$&$dv[I_9,p]=p$ &$25_{10}$&$dv[I_9,p]=1$ &$3_4$ \\ \hline
$A_{29}B_{29,32}$ &$dv[I_8,I_9,p]=p$ &$11_6$ &$[I_8,p]=p,[I_9,p]=1$&$3_1$ \\ \hline
$A_{29}B_{29,32}$ &$[I_8,p]=1,[I_9,p]=p$&$25_{10}$&$[I_8,p]=1,[I_9,p]=1$&$3_4$ \\ \hline
\end{tabular}
\end{center}
\newpage
8. \textit{Types.} The types for this class are given by equations (30) where the
constants have the values given in Table IV.
\begin{center}
\large IV. \normalsize
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline
& $a$ &$\beta$&$c$&$g$&$\gamma$&$\delta$&$k$&$\alpha$&$\epsilon$&$e$&$j$ \\ \hline
$1_1$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$2_1$ & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$3_1$ &$\kappa$& 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$11_1$ & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$*13_1$& 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$19_1$ & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline
$1_2$ & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline
$*13_2$& 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline
$19_2$ & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline
$*21_2$& 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline
$24_2$ & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline
$25_2$ & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline
$2_4$ & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline
$3_4$ &$\kappa$& 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline
$11_6$ & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline
$*13_6$& 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline
\end{tabular}
\footnotesize \noindent $\kappa = 1$, and a non-residue (mod $p$).
\noindent $*$For $p=3$ these groups are isomorphic in Class II.
\end{center}
A detailed analysis of congruences (32) for several cases is given below
as a general illustration of the methods used.
\medskip
\begin{equation*} A_3 B_1. \end{equation*}
The special forms of the congruences for this case are
\begin{gather*}
\beta'xz' \equiv 0 \pmod{p}, \tag{II} \\
a'(yz' - y'z) \equiv kx \pmod{p}, \tag{III} \\
\beta v' \equiv 0, \qquad \beta z' \equiv 0, \qquad \beta y' \equiv
\beta'xz'' \pmod{p}, \tag*{(IV),(V),(VI)} \\
a'(yz'' - y''z) + a'\beta'x\tbinom{z''}{2} \equiv
%%
\alpha x + \beta x' + a'\beta y'z \pmod{p}, \tag{VII} \\
a'(y'z'' - y''z') \equiv ax \pmod{p}, \tag{X} \\
\gamma v'' + \delta v' \equiv 0 \pmod{p}, \tag{XI} \\
\gamma z'' + \delta z' \equiv 0 \pmod{p}, \tag{XII} \\
%%
\gamma y'' + \delta y' \equiv \beta'xz'' \pmod{p}, \tag{XIII} \\
\begin{split}
a'(yz''' - y'''z) + a'\beta'x\tbinom{z'''}{2} \equiv \epsilon x &+
\gamma x'' + \delta x + a'\delta y'z \\ &+ a'\gamma y''z
+ a'\tbinom{\gamma}{2}y''z'' \pmod{p},
\end{split} \tag{XIV} \\
cv'' \equiv 0, \qquad cz'' \equiv 0, \qquad cy'' \equiv 0 \pmod{p},
\tag*{(XV),(XVI),(XVII)} \\
%%
a'(y'z''' - y'''z') \equiv ex \pmod{p}, \tag{XVIII} \\
gv' \equiv 0, \qquad gz' \equiv 0, \qquad gy' \equiv 0 \pmod{p},
\tag*{(XIX),(XX),(XXI)} \\
a'(y''z''' - y'''z'') \equiv jx \pmod{p}, \tag{XXII}
\end{gather*}
From (II) $z' \equiv 0 \pmod{p}$.
The conditions of isomorphism give
\begin{equation*}
\Delta \equiv \left| \begin{matrix}
v' & v'' & v''' \\
y' & y'' & y''' \\
z' & z'' & z''' \\ \end{matrix}\right| \not\equiv 0 \pmod{p}.
\end{equation*}
Multiply (IV), (V), (VI) by $\gamma$ and reduce by (XII), $\beta\gamma v'
\equiv 0$, $\beta\gamma z' \equiv 0$, $\beta\gamma y' \equiv 0 \pmod{p}$. Since
$\Delta \not\equiv 0 \pmod{p}$, one at least of the quantities, $v'$, $z'$
or $y'$ is $\not\equiv 0 \pmod{p}$ and $\beta\gamma \equiv 0 \pmod{p}$.
From (XV), (XVI) and (XVII) $c \equiv 0 \pmod{p}$, and from (XIX), (XX) and
(XXI) $g \equiv 0 \pmod{p}$.
From (IV), (V), (VI) and (X) if $a \equiv 0$, then $\beta \equiv 0$
and if $a \not\equiv 0$, then $\beta \not\equiv 0 \pmod{p}$.
At least one of the three quantities $\beta$, $\gamma$ or $\delta$ is
$\not\equiv 0 \pmod{p}$ and one, at least, of $a$, $e$ or $j$ is $\not
\equiv 0 \pmod{p}$.
\smallskip
$A_3$: Since $z''' \equiv 0 \pmod{p}$, (XVIII) gives $e \equiv 0$.
Elimination between (III), (X), (XIV) and (XXII) gives $a\epsilon - kj
\equiv 0 \pmod{p}$. Elimination between (VI) and (X) gives
$a'\beta'{z''}^2 \equiv a\beta \pmod{p}$ and $a\beta$ is a quadratic
residue or non-residue according as $a'\beta'$ is or is not, and there are
two types for this case.
\smallskip
$A_4$: Since $y'$ and $z''$ are $\not\equiv 0 \pmod{p}$, $e \not\equiv 0
\pmod{p}$. Elimination between (VI), (X), (XIII) and (XVIII) gives $a\delta
- \beta e \equiv 0 \pmod{p}$.
This is a special form of (24).
Elimination between (III), (VII), (X), (XIII), (XIV), (XVIII) and (XXII)
gives
\begin{equation*}
2jk + a\delta(a - e) + 2(a\epsilon - \alpha e) \equiv 0 \pmod{p}.
\end{equation*}
\smallskip
$A_{24}$: Since from (XI), (XII) and (XIII) $y''$ and $z''' \not\equiv 0
\pmod{p}$, and $z'' \equiv v'' \equiv 0 \pmod{p}$, (xxii) gives $j \not
\equiv 0 \pmod{p}$.
Elimination between (III), (X), (XVIII) and (XXII) gives
\begin{equation*}
\alpha e - jk \equiv 0 \pmod{p}.
\end{equation*}
\smallskip
$A_{25}$: (XI), (XII) and (XIII) give $v' \equiv z' \equiv 0$ and $y', z'''
\not\equiv 0 \pmod{p}$ and this with (XVIII) gives $e \not\equiv 0$.
Elimination between (III), (VII), (XVIII) and (XXII) gives
\begin{equation*}
\alpha e - jk \equiv 0 \pmod{p}.
\end{equation*}
\smallskip
$A_{28}$: Since $a \equiv 0$ then $e$ or $j \not\equiv 0 \pmod{p}$.
Elimination between (III), (VII), (XVIII) and (XXII) gives
\begin{equation*}
\alpha e - jk \equiv 0 \pmod{p}.
\end{equation*}
Multiply (XIII) by $a'z'''$ and reduce
\begin{equation*}
\delta e + \gamma j \equiv a'\beta'{z'''}^2 \not\equiv 0 \pmod{p}.
\end{equation*}
\medskip
\begin{equation*} A_{11} B_1. \end{equation*}
The special forms of the congruences for this case are
\begin{gather*}
\beta'xz' \equiv 0 \pmod{p}, \tag{II} \\
kx \equiv 0 \pmod{p}, \tag{III} \\
\beta v' \equiv \beta z' \equiv 0, \quad \beta y' \equiv \beta'xz'',
\tag*{(IV),(V),(VI)} \\
\alpha x + \beta x' \equiv 0 \pmod{p}, \tag{VII} \\
%%
ax \equiv 0 \pmod{p}, \tag{X} \\
\gamma v'' + \delta v \equiv 0 \pmod{p}, \tag{XI} \\
\gamma z'' + \delta z \equiv 0 \pmod{p}, \tag{XII} \\
\gamma y'' + \delta y \equiv \beta'xz''' \pmod{p}, \tag{XIII} \\
%%
\epsilon x + \gamma x'' + \delta x' \equiv 0 \pmod{p}, \tag{XIV} \\
cv'' \equiv cz'' \equiv cy'' \equiv 0 \pmod{p}, \tag*{(XV),(XVI),(XVII)} \\
ex \equiv 0 \pmod{p}, \tag{XVIII} \\
gv' \equiv gz' \equiv gy' \equiv 0 \pmod{p}, \tag*{(XIX),(XX),(XXI)} \\
jx \equiv 0 \pmod{p}, \tag{XXII}
\end{gather*}
(II) gives $z' = 0$, (III) gives $k \equiv 0$, (X) gives $a \equiv 0$,
(XV), (XVI), (XVII) give $c \equiv 0 (\Delta \not\equiv 0)$, (XVIII) gives
$e \equiv 0$, (XIX), (XX), (XXI) give $g \equiv 0$, (XXII) gives $j \equiv
0$. One of the two quantities $z''$ or $z''' \not\equiv 0 \pmod{p}$,
and by (VI) and (XIII) one of the three quantities $\beta$, $\gamma$ or
$\delta$ is $\not\equiv 0$.
\smallskip
$A_{11}$: (XIV) gives $\epsilon \equiv 0 \pmod{p}$. Multiplying (IV), (V),
(VI) by $\gamma$ gives, by (XII), $\beta\gamma v' \equiv \beta\gamma z'
\equiv \beta\gamma y' \equiv 0 \pmod{p}$, and $\beta\gamma \equiv 0
\pmod{p}$.
\smallskip
$A_{14}$: Elimination between (VII) and (XIV) gives $\alpha\delta -
\beta\epsilon \equiv 0 \pmod{p}$.
\smallskip
$A_{24}$: (VII) gives $\alpha \equiv 0 \pmod{p}$, (XIV) $\epsilon \equiv 0$
or $\not\equiv 0 \pmod{p}$.
\smallskip
$A_{25}$: (VII) gives $\alpha \equiv 0 \pmod{p}$, (XIV) $\epsilon \equiv$
or $\not\equiv 0 \pmod{p}$.
\smallskip
$A_{28}$: (VII) gives $\alpha \equiv 0 \pmod{p}$, (XIV) $\epsilon \equiv$
or $\not\equiv 0 \pmod{p}$.
\newpage
\begin{equation*} A_{19} B_1. \end{equation*}
The special forms of the congruences for this case are
\begin{gather*}
c'(yv' - y'v) \equiv 0 \pmod{p}, \tag{I} \\
kx \equiv 0 \pmod{p}, \tag{III} \\
\beta v \equiv 0, \quad \beta z \equiv c'(yv'' - y''v), \quad \beta y'
\equiv 0 \pmod{p}, \tag*{(IV),(V),(VI)} \\
%%
\alpha x + \beta x' \equiv 0 \pmod{p}, \tag{VII} \\
c'(y'v'' - y''v') \equiv 0 \pmod{p}, \tag{VIII} \\
ax \equiv 0 \pmod{p}, \tag{X} \\
\gamma v'' + \delta v' \equiv 0 \pmod{p}, \tag{XI} \\
%%
\gamma z'' + \delta z' + c'\gamma\delta y''v + c'\tbinom{\delta}{2}v'y' +
c'\tbinom{\gamma}{2}v''y'' \equiv c'(yv''' - y'''v) \pmod {p}, \tag{XII} \\
\gamma y'' + \delta y' \equiv 0 \pmod{p}, \tag{XIII} \\
\epsilon x + \gamma x'' + \delta x' \equiv 0 \pmod{p}, \tag{XIV} \\
%%
cv'' \equiv 0, \quad cz'' \equiv c'(y'v''' - y'''v'), \quad cy'' \equiv 0
\pmod{p}, \tag*{(XV),(XVI),(XVII)} \\
ex + cx'' \equiv 0 \pmod{p}, \tag{XVIII} \\
gv' \equiv 0, \quad gz' \equiv c'(y''v''' - y'''v''), \quad gy' \equiv 0
\pmod{p}, \tag*{(XIX),(XX),(XXI)} \\
jx + gx' \equiv 0 \pmod{p}. \tag{XXII} \\
\end{gather*}
(III) gives $k\equiv 0$, (X) gives $a \equiv 0$.
Since $dv[(y'v''' - y'''v'), (y''v''' - y'''v''), p] = 1$ then $dv[c, g, p]
= 1$.
If $c \not\equiv 0$, $v'' \equiv y'' \equiv 0 \pmod{p}$ and therefore $g
\equiv 0 \pmod{p}$ and if $g \not\equiv 0$, then $c \equiv 0 \pmod{p}$.
\smallskip
$A_{12}$: (XVIII) gives $e \equiv 0 \pmod{p}$. Elimination between (VII)
and (XXII) gives $\alpha g - \beta j \equiv 0 \pmod{p}$, (XIV) gives
$\epsilon \equiv 0 \pmod{p}$.
\smallskip
$A_{15}$: (XVIII) gives $e \equiv 0 \pmod{p}$. Elimination between (VII)
and (XXII) gives $\alpha g - \beta j \equiv 0 \pmod{p}$, (XIV) gives
$\epsilon \equiv 0$ or $\not\equiv 0 \pmod{p}$.
\smallskip
$A_{16}$: (XVIII) gives $e \equiv 0$. Elimination between (XIV) and (XXII)
gives $\epsilon g - \delta j \equiv 0 \pmod{p}$, between (VII) and (XIV)
gives $\alpha\delta - \beta\epsilon \equiv 0$.
\smallskip
$A_{18}$: (XVIII) gives $e \equiv 0 \pmod{p}$. Elimination between (VII)
and (XXII) gives $\alpha g - \beta j \equiv 0 \pmod{p}$, (XIV) gives
$\epsilon \equiv 0$ or $\not\equiv 0 \pmod{p}$.
\smallskip
$A_{19}$: (VII) gives $\alpha \equiv 0 \pmod{p}$, (XIV) gives $\epsilon
\equiv 0$, (XXII) gives $j \equiv 0 \pmod{p}$, (XVIII) gives $e \equiv 0$
or $\not\equiv 0 \pmod{p}$.
\smallskip
$A_{20}$: (VII) gives $\alpha \equiv 0$, (XXII) gives $j \equiv 0$.
Elimination between (XIV) and (XVIII) gives $\epsilon c - e\gamma \equiv 0
\pmod{p}$.
\smallskip
$A_{21}$: (VII) gives $\alpha\equiv 0$, (XIV) gives $\epsilon \equiv 0$
or $\not\equiv 0 \pmod{p}$, (XVIII) gives $e \equiv 0,$ or
$\not\equiv 0$, and (XXII) gives $j \equiv 0 \pmod{p}$.
\smallskip
$A_{22}$: (VII) gives $\alpha \equiv 0$, (XIV) gives $\epsilon \equiv 0$
or $\not\equiv 0$, (XVIII) gives $epsilon \equiv 0$ or $\not\equiv 0$,
(XXII) gives $j \equiv 0 \pmod{p}$.
\smallskip
$A_{23}$: (VII) gives $\alpha \equiv 0$, (XIV) gives $\epsilon \equiv 0$,
(XVIII) gives $\epsilon \equiv 0$, (XXII) gives $j \equiv 0$ or
$\not\equiv 0 \pmod{p}$.
\smallskip
$A_{26}$: (VII) $\alpha \equiv 0$, (XIV) $\epsilon \equiv 0$ or
$\not\equiv 0$, (XVIII) $\epsilon \equiv 0$, (XXII) $j \equiv 0$ or
$\not\equiv 0 \pmod{p}$.
\smallskip
$A_{27}$: (VII) $\alpha \equiv 0$, (XIV) $\epsilon \equiv 0$ or
$\not\equiv 0$, (XVIII) $\epsilon \equiv 0$, (XXII) $j \equiv 0$ or
$\not\equiv 0 \pmod{p}$. Elimination between (XIV) and (XXII) gives
$\epsilon g - \delta j \equiv 0 \pmod{p}$.
\smallskip
$A_{29}$: (VII) $\alpha \equiv 0$, (XIV) $\epsilon \equiv 0$ or
$\not\equiv 0$, (XVIII) $\epsilon \equiv 0$, (XXII) $j \equiv 0$ or
$\not\equiv 0 \pmod{p}$.
\newpage
\small
\pagenumbering{gobble}
\begin{verbatim}
End of the Project Gutenberg EBook of Groups of Order p^m Which Contain
Cyclic Subgroups of Order p^(m-3), by Lewis Irving Neikirk
*** END OF THE PROJECT GUTENBERG EBOOK GROUPS OF ORDER P^M ***
This file should be named 9930-t.tex or 9930-t.zip
Produced by Cornell University, Joshua Hutchinson, Lee Chew-Hung,
John Hagerson, and the Online Distributed Proofreading Team.
Project Gutenberg eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the US
unless a copyright notice is included. Thus, we usually do not
keep eBooks in compliance with any particular paper edition.
We are now trying to release all our eBooks one year in advance
of the official release dates, leaving time for better editing.
Please be encouraged to tell us about any error or corrections,
even years after the official publication date.
Please note neither this listing nor its contents are final til
midnight of the last day of the month of any such announcement.
The official release date of all Project Gutenberg eBooks is at
Midnight, Central Time, of the last day of the stated month. A
preliminary version may often be posted for suggestion, comment
and editing by those who wish to do so.
Most people start at our Web sites at:
https://gutenberg.org or
http://promo.net/pg
These Web sites include award-winning information about Project
Gutenberg, including how to donate, how to help produce our new
eBooks, and how to subscribe to our email newsletter (free!).
Those of you who want to download any eBook before announcement
can get to them as follows, and just download by date. This is
also a good way to get them instantly upon announcement, as the
indexes our cataloguers produce obviously take a while after an
announcement goes out in the Project Gutenberg Newsletter.
http://www.ibiblio.org/gutenberg/etext03 or
ftp://ftp.ibiblio.org/pub/docs/books/gutenberg/etext03
Or /etext02, 01, 00, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91 or 90
Just search by the first five letters of the filename you want,
as it appears in our Newsletters.
Information about Project Gutenberg (one page)
We produce about two million dollars for each hour we work. The
time it takes us, a rather conservative estimate, is fifty hours
to get any eBook selected, entered, proofread, edited, copyright
searched and analyzed, the copyright letters written, etc. Our
projected audience is one hundred million readers. If the value
per text is nominally estimated at one dollar then we produce $2
million dollars per hour in 2002 as we release over 100 new text
files per month: 1240 more eBooks in 2001 for a total of 4000+
We are already on our way to trying for 2000 more eBooks in 2002
If they reach just 1-2% of the world's population then the total
will reach over half a trillion eBooks given away by year's end.
The Goal of Project Gutenberg is to Give Away 1 Trillion eBooks!
This is ten thousand titles each to one hundred million readers,
which is only about 4% of the present number of computer users.
Here is the briefest record of our progress (* means estimated):
eBooks Year Month
1 1971 July
10 1991 January
100 1994 January
1000 1997 August
1500 1998 October
2000 1999 December
2500 2000 December
3000 2001 November
4000 2001 October/November
6000 2002 December*
9000 2003 November*
10000 2004 January*
The Project Gutenberg Literary Archive Foundation has been created
to secure a future for Project Gutenberg into the next millennium.
We need your donations more than ever!
As of February, 2002, contributions are being solicited from people
and organizations in: Alabama, Alaska, Arkansas, Connecticut,
Delaware, District of Columbia, Florida, Georgia, Hawaii, Illinois,
Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Massachusetts,
Michigan, Mississippi, Missouri, Montana, Nebraska, Nevada, New
Hampshire, New Jersey, New Mexico, New York, North Carolina, Ohio,
Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South
Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West
Virginia, Wisconsin, and Wyoming.
We have filed in all 50 states now, but these are the only ones
that have responded.
As the requirements for other states are met, additions to this list
will be made and fund raising will begin in the additional states.
Please feel free to ask to check the status of your state.
In answer to various questions we have received on this:
We are constantly working on finishing the paperwork to legally
request donations in all 50 states. If your state is not listed and
you would like to know if we have added it since the list you have,
just ask.
While we cannot solicit donations from people in states where we are
not yet registered, we know of no prohibition against accepting
donations from donors in these states who approach us with an offer to
donate.
International donations are accepted, but we don't know ANYTHING about
how to make them tax-deductible, or even if they CAN be made
deductible, and don't have the staff to handle it even if there are
ways.
Donations by check or money order may be sent to:
Project Gutenberg Literary Archive Foundation
PMB 113
1739 University Ave.
Oxford, MS 38655-4109
Contact us if you want to arrange for a wire transfer or payment
method other than by check or money order.
The Project Gutenberg Literary Archive Foundation has been approved by
the US Internal Revenue Service as a 501(c)(3) organization with EIN
[Employee Identification Number] 64-622154. Donations are
tax-deductible to the maximum extent permitted by law. As fund-raising
requirements for other states are met, additions to this list will be
made and fund-raising will begin in the additional states.
We need your donations more than ever!
You can get up to date donation information online at:
https://www.gutenberg.org/donation.html
***
If you can't reach Project Gutenberg,
you can always email directly to:
Michael S. Hart <hart@pobox.com>
Prof. Hart will answer or forward your message.
We would prefer to send you information by email.
**The Legal Small Print**
(Three Pages)
***START**THE SMALL PRINT!**FOR PUBLIC DOMAIN EBOOKS**START***
Why is this "Small Print!" statement here? You know: lawyers.
They tell us you might sue us if there is something wrong with
your copy of this eBook, even if you got it for free from
someone other than us, and even if what's wrong is not our
fault. So, among other things, this "Small Print!" statement
disclaims most of our liability to you. It also tells you how
you may distribute copies of this eBook if you want to.
*BEFORE!* YOU USE OR READ THIS EBOOK
By using or reading any part of this PROJECT GUTENBERG-tm
eBook, you indicate that you understand, agree to and accept
this "Small Print!" statement. If you do not, you can receive
a refund of the money (if any) you paid for this eBook by
sending a request within 30 days of receiving it to the person
you got it from. If you received this eBook on a physical
medium (such as a disk), you must return it with your request.
ABOUT PROJECT GUTENBERG-TM EBOOKS
This PROJECT GUTENBERG-tm eBook, like most PROJECT GUTENBERG-tm eBooks,
is a "public domain" work distributed by Professor Michael S. Hart
through the Project Gutenberg Association (the "Project").
Among other things, this means that no one owns a United States copyright
on or for this work, so the Project (and you!) can copy and
distribute it in the United States without permission and
without paying copyright royalties. Special rules, set forth
below, apply if you wish to copy and distribute this eBook
under the "PROJECT GUTENBERG" trademark.
Please do not use the "PROJECT GUTENBERG" trademark to market
any commercial products without permission.
To create these eBooks, the Project expends considerable
efforts to identify, transcribe and proofread public domain
works. Despite these efforts, the Project's eBooks and any
medium they may be on may contain "Defects". Among other
things, Defects may take the form of incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged
disk or other eBook medium, a computer virus, or computer
codes that damage or cannot be read by your equipment.
LIMITED WARRANTY; DISCLAIMER OF DAMAGES
But for the "Right of Replacement or Refund" described below,
[1] Michael Hart and the Foundation (and any other party you may
receive this eBook from as a PROJECT GUTENBERG-tm eBook) disclaims
all liability to you for damages, costs and expenses, including
legal fees, and [2] YOU HAVE NO REMEDIES FOR NEGLIGENCE OR
UNDER STRICT LIABILITY, OR FOR BREACH OF WARRANTY OR CONTRACT,
INCLUDING BUT NOT LIMITED TO INDIRECT, CONSEQUENTIAL, PUNITIVE
OR INCIDENTAL DAMAGES, EVEN IF YOU GIVE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.
If you discover a Defect in this eBook within 90 days of
receiving it, you can receive a refund of the money (if any)
you paid for it by sending an explanatory note within that
time to the person you received it from. If you received it
on a physical medium, you must return it with your note, and
such person may choose to alternatively give you a replacement
copy. If you received it electronically, such person may
choose to alternatively give you a second opportunity to
receive it electronically.
THIS EBOOK IS OTHERWISE PROVIDED TO YOU "AS-IS". NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, ARE MADE TO YOU AS
TO THE EBOOK OR ANY MEDIUM IT MAY BE ON, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
Some states do not allow disclaimers of implied warranties or
the exclusion or limitation of consequential damages, so the
above disclaimers and exclusions may not apply to you, and you
may have other legal rights.
INDEMNITY
You will indemnify and hold Michael Hart, the Foundation,
and its trustees and agents, and any volunteers associated
with the production and distribution of Project Gutenberg-tm
texts harmless, from all liability, cost and expense, including
legal fees, that arise directly or indirectly from any of the
following that you do or cause: [1] distribution of this eBook,
[2] alteration, modification, or addition to the eBook,
or [3] any Defect.
DISTRIBUTION UNDER "PROJECT GUTENBERG-tm"
You may distribute copies of this eBook electronically, or by
disk, book or any other medium if you either delete this
"Small Print!" and all other references to Project Gutenberg,
or:
[1] Only give exact copies of it. Among other things, this
requires that you do not remove, alter or modify the
eBook or this "small print!" statement. You may however,
if you wish, distribute this eBook in machine readable
binary, compressed, mark-up, or proprietary form,
including any form resulting from conversion by word
processing or hypertext software, but only so long as
*EITHER*:
[*] The eBook, when displayed, is clearly readable, and
does *not* contain characters other than those
intended by the author of the work, although tilde
(~), asterisk (*) and underline (_) characters may
be used to convey punctuation intended by the
author, and additional characters may be used to
indicate hypertext links; OR
[*] The eBook may be readily converted by the reader at
no expense into plain ASCII, EBCDIC or equivalent
form by the program that displays the eBook (as is
the case, for instance, with most word processors);
OR
[*] You provide, or agree to also provide on request at
no additional cost, fee or expense, a copy of the
eBook in its original plain ASCII form (or in EBCDIC
or other equivalent proprietary form).
[2] Honor the eBook refund and replacement provisions of this
"Small Print!" statement.
[3] Pay a trademark license fee to the Foundation of 20% of the
gross profits you derive calculated using the method you
already use to calculate your applicable taxes. If you
don't derive profits, no royalty is due. Royalties are
payable to "Project Gutenberg Literary Archive Foundation"
the 60 days following each date you prepare (or were
legally required to prepare) your annual (or equivalent
periodic) tax return. Please contact us beforehand to
let us know your plans and to work out the details.
WHAT IF YOU *WANT* TO SEND MONEY EVEN IF YOU DON'T HAVE TO?
Project Gutenberg is dedicated to increasing the number of
public domain and licensed works that can be freely distributed
in machine readable form.
The Project gratefully accepts contributions of money, time,
public domain materials, or royalty free copyright licenses.
Money should be paid to the:
"Project Gutenberg Literary Archive Foundation."
If you are interested in contributing scanning equipment or
software or other items, please contact Michael Hart at:
hart@pobox.com
[Portions of this eBook's header and trailer may be reprinted only
when distributed free of all fees. Copyright (C) 2001, 2002 by
Michael S. Hart. Project Gutenberg is a TradeMark and may not be
used in any sales of Project Gutenberg eBooks or other materials be
they hardware or software or any other related product without
express permission.]
*END THE SMALL PRINT! FOR PUBLIC DOMAIN EBOOKS*Ver.02/11/02*END*
\end{verbatim}
\normalsize
\end{document}
|