summaryrefslogtreecommitdiff
path: root/818.txt
blob: d46ba3af380ab165a8afffa1c11615fe9e9b1d38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
The Project Gutenberg EBook of The Aeroplane Speaks, by H. Barber

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org


Title: The Aeroplane Speaks

Author: H. Barber

Posting Date: July 21, 2008 [EBook #818]
Release Date: February, 1997

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK THE AEROPLANE SPEAKS ***




Produced by Charles Keller





THE AEROPLANE SPEAKS

By H. Barber

(Captain, Royal Flying Corps)



DEDICATED TO THE SUBALTERN FLYING OFFICER




MOTIVE

The reasons impelling me to write this book, the maiden effort of
my pen, are, firstly, a strong desire to help the ordinary man to
understand the Aeroplane and the joys and troubles of its Pilot; and,
secondly, to produce something of PRACTICAL assistance to the Pilot
and his invaluable assistant the Rigger. Having had some eight years'
experience in designing, building, and flying aeroplanes, I have hopes
that the practical knowledge I have gained may offset the disadvantage
of a hand more used to managing the "joy-stick" than the dreadful
haltings, the many side-slips, the irregular speed, and, in short, the
altogether disconcerting ways of a pen.

The matter contained in the Prologue appeared in the Field of May 6th,
13th, 20th, and 27th, 1916, and is now reprinted by the kind permission
of the editor, Sir Theodore Cook.

I have much pleasure in also acknowledging the kindness of Mr. C. G.
Grey, editor of the Aeroplane, to whom I am indebted for the valuable
illustrations reproduced at the end of this book.



CONTENTS

  PROLOGUE

  PART
  I.   THE ELEMENTARY PRINCIPLES AIR THEIR GRIEVANCES
  II.  THE PRINCIPLES, HAVING SETTLED THEIR DIFFERENCES, FINISH THE JOB
  III. THE GREAT TEST
  IV.  CROSS COUNTRY



  CHAPTER
  I.   FLIGHT
  II.  STABILITY AND CONTROL
  III. RIGGING
  IV.  PROPELLERS
  V.   MAINTENANCE


  TYPES OF AEROPLANES

  GLOSSARY





THE AEROPLANE SPEAKS




PROLOGUE




PART I. THE ELEMENTARY PRINCIPLES AIR THEIR GRIEVANCES

The Lecture Hall at the Royal Flying Corps School for Officers was
deserted. The pupils had dispersed, and the Officer Instructor, more
fagged than any pupil, was out on the aerodrome watching the test of a
new machine.

Deserted, did I say? But not so. The lecture that day had been upon
the Elementary Principles of Flight, and they lingered yet. Upon the
Blackboard was the illustration you see in the frontispiece.

"I am the side view of a Surface," it said, mimicking the tones of the
lecturer. "Flight is secured by driving me through the air at an angle
inclined to the direction of motion."

"Quite right," said the Angle. "That's me, and I'm the famous Angle of
Incidence."

"And," continued the Surface, "my action is to deflect the air
downwards, and also, by fleeing from the air behind, to create a
semi-vacuum or rarefied area over most of the top of my surface."

"This is where I come in," a thick, gruff voice was heard, and went
on: "I'm the Reaction. You can't have action without me. I'm a very
considerable force, and my direction is at right-angles to you," and
he looked heavily at the Surface. "Like this," said he, picking up the
chalk with his Lift, and drifting to the Blackboard.

"I act in the direction of the arrow R, that is, more or less, for the
direction varies somewhat with the Angle of Incidence and the curvature
of the Surface; and, strange but true, I'm stronger on the top of the
Surface than at the bottom of it. The Wind Tunnel has proved that by
exhaustive research--and don't forget how quickly I can grow! As the
speed through the air increases my strength increases more rapidly than
you might think--approximately, as the Square of the Speed; so you
see that if the Speed of the Surface through the air is, for instance,
doubled, then I am a good deal more than doubled. That's because I am
the result of not only the mass of air displaced, but also the result
of the Speed with which the Surface engages the Air. I am a product of
those two factors, and at the speeds at which Aeroplanes fly to-day,
and at the altitudes and consequent density of air they at present
experience, I increase at about the Square of the Speed.

"Oh, I'm a most complex and interesting personality, I assure you--in
fact, a dual personality, a sort of aeronautical Dr. Jekyll and Mr.
Hyde. There's Lift, my vertical part or COMPONENT, as those who prefer
long words would say; he always acts vertically upwards, and hates
Gravity like poison. He's the useful and admirable part of me. Then
there's Drift, my horizontal component, sometimes, though rather
erroneously, called Head Resistance; he's a villain of the deepest dye,
and must be overcome before flight can be secured."

"And I," said the Propeller, "I screw through the air and produce the
Thrust. I thrust the Aeroplane through the air and overcome the Drift;
and the Lift increases with the Speed and when it equals the Gravity of
Weight, then--there you are--Flight! And nothing mysterious about it at
all."

"I hope you'll excuse me interrupting," said a very beautiful young
lady, "my name is Efficiency, and, while no doubt, all you have said is
quite true, and that, as my young man the Designer says, `You can make a
tea-tray fly if you slap on Power enough,' I can assure you that I'm not
to be won quite so easily."

"Well," eagerly replied the Lift and the Thrust, "let's be friends. Do
tell us what we can do to help you to overcome Gravity and Drift with
the least possible Power. That obviously seems the game to play, for
more Power means heavier engines, and that in a way plays into the hands
of our enemy, Gravity, besides necessitating a larger Surface or Angle
to lift the Weight, and that increases the Drift."

"Very well," from Efficiency, "I'll do my best, though I'm so shy, and
I've just had such a bad time at the Factory, and I'm terribly afraid
you'll find it awfully dry."

"Buck up, old dear!" This from several new-comers, who had just
appeared. "We'll help you," and one of them, so lean and long that he
took up the whole height of the lecture room, introduced himself.

"I'm the High Aspect Ratio," he said, "and what we have got to do to
help this young lady is to improve the proportion of Lift to Drift.
The more Lift we can get for a certain area of Surface, the greater
the Weight the latter can carry; and the less the Drift, then the less
Thrust and Power required to overcome it. Now it is a fact that, if the
Surface is shaped to have the greatest possible span, i.e., distance
from wing-tip to wing-tip, it then engages more air and produces both a
maximum Reaction and a better proportion of Lift to Drift.

"That being so, we can then well afford to lose a little Reaction
by reducing the Angle of Incidence to a degree giving a still better
proportion of Lift to Drift than would otherwise be the case; for you
must understand that the Lift-Drift Ratio depends very much upon the
size of the Angle of Incidence, which should be as small as possible
within certain limits. So what I say is, make the surface of Infinite
Span with no width or chord, as they call it. That's all I require, I
assure you, to make me quite perfect and of infinite service to Miss
Efficiency."

"That's not practical politics," said the Surface. "The way you talk one
would think you were drawing L400 a year at Westminster, and working up
a reputation as an Aeronautical Expert. I must have some depth and chord
to take my Spars and Ribs, and again, I must have a certain chord to
make it possible for my Camber (that's curvature) to be just right for
the Angle of Incidence. If that's not right the air won't get a nice
uniform compression and downward acceleration from my underside, and the
rarefied `suction' area over the top of me will not be as even and clean
in effect as it might be. That would spoil the Lift-Drift Ratio more
than you can help it. Just thrust that chalk along, will you? and the
Blackboard will show you what I mean."

"Well," said the Aspect Ratio, "have it your own way, though I'm sorry
to see a pretty young lady like Efficiency compromised so early in the
game."

"Look here," exclaimed a number of Struts, "we have got a brilliant idea
for improving the Aspect Ratio," and with that they hopped up on to the
Spars. "Now," excitedly, "place another Surface on top of us. Now do you
see? There is double the Surface, and that being so, the proportion of
Weight to Surface area is halved. That's less burden of work for the
Surface, and so the Spars need not be so strong and so deep, which
results in not so thick a Surface. That means the Chord can be
proportionately decreased without adversely affecting the Camber.
With the Chord decreased, the Span becomes relatively greater, and so
produces a splendid Aspect Ratio, and an excellent proportion of Lift to
Drift."

"I don't deny that they have rather got me there," said the Drift, "but
all the same, don't forget my increase due to the drift of the Struts
and their bracing wires."

"Yes, I dare say," replied the Surface, "but remember that my Spars are
less deep than before, and consequently I am not so thick now, and
shall for that reason also be able to go through the air with a less
proportion of Drift to Lift."

"Remember me also, please," croaked the Angle of Incidence. "Since the
Surface has now less weight to carry for its area, I may be set at
a still lesser and finer Angle. That means less Drift again. We are
certainly getting on splendidly! Show us how it looks now, Blackboard."
And the Blackboard obligingly showed them as follows:

"Well, what do you think of that?" they all cried to the Drift.

"You think you are very clever," sneered the Drift. "But you are not
helping Efficiency as much as you think. The suction effect on the top
of the lower Surface will give a downward motion to the air above it and
the result will be that the bottom of the top Surface will not secure
as good a Reaction from the air as would otherwise be the case, and that
means loss of Lift; and you can't help matters by increasing the gap
between the surfaces because that means longer Struts and Wires, and
that in itself would help me, not to speak of increasing the Weight. You
see it's not quite so easy as you thought."

At this moment a hiccough was heard, and a rather fast and
rakish-looking chap, named Stagger, spoke up. "How d'ye do, miss," he
said politely to Efficiency, with a side glance out of his wicked old
eye. "I'm a bit of a knut, and without the slightest trouble I can
easily minimize the disadvantage that old reprobate Drift has been
frightening you with. I just stagger the top Surface a bit forward, and
no longer is that suction effect dead under it. At the same time I'm
sure the top Surface will kindly extend its Span for such distance as
its Spars will support it without the aid of Struts. Such extension will
be quite useful, as there will be no Surface at all underneath it to
interfere with the Reaction above." And the Stagger leaned forward and
picked up the Chalk, and this is the picture he drew:

Said the Blackboard, "That's not half bad! It really begins to look
something like the real thing, eh?"

"The real thing, is it?" grumbled Drift. "Just consider that contraption
in the light of any one Principle, and I warrant you will not find
one of them applied to perfection. The whole thing is nothing but a
Compromise." And he glared fixedly at poor Efficiency.

"Oh, dear! Oh, dear!" she cried. "I'm always getting into trouble. What
WILL the Designer say?"

"Never mind, my dear," said the Lift-Drift Ratio, consolingly. "You are
improving rapidly, and quite useful enough now to think of doing a job
of work."

"Well, that's good news," and Efficiency wiped her eyes with her Fabric
and became almost cheerful. "Suppose we think about finishing it now?
There will have to be an Engine and Propeller, won't there? And a body
to fix them in, and tanks for oil and petrol, and a tail, and," archly,
"one of those dashing young Pilots, what?"

"Well, we are getting within sight of those interesting Factors," said
the Lift-Drift Ratio, "but first of all we had better decide upon the
Area of the Surfaces, their Angle of Incidence and Camber. If we are
to ascend as quickly as possible the Aeroplane must be SLOW in order to
secure the best possible Lift-Drift Ratio, for the drift of the struts
wires, body, etc., increases approximately as the square of the speed,
but it carries with it no lift as it does in the case of the Surface.
The less speed then, the less such drift, and the better the Aeroplane's
proportion of lift to drift; and, being slow, we shall require a LARGE
SURFACE in order to secure a large lift relative to the weight to be
carried. We shall also require a LARGE ANGLE OF INCIDENCE relative to
the horizontal, in order to secure a proper inclination of the Surface
to the direction of motion, for you must remember that, while we shall
fly upon an even keel and with the propeller thrust horizontal (which is
its most efficient attitude), our flight path, which is our direction of
motion, will be sloping upwards, and it will therefore be necessary to
fix the Surface to the Aeroplane at a very considerable angle relative
to the horizontal Propeller Thrust in order to secure a proper angle
to the upwards direction of motion. Apart from that, we shall require a
larger Angle of Incidence than in the case of a machine designed purely
for speed, and that means a correspondingly LARGE CAMBER.

"On the other hand, if we are thinking merely of Speed, then a SMALL
SURFACE, just enough to lift the weight off the ground, will be best,
also a SMALL ANGLE to cut the Drift down and that, of course, means a
relatively SMALL CAMBER.

"So you see the essentials for CLIMB or quick ascent and for SPEED are
diametrically opposed. Now which is it to be?"

"Nothing but perfection for me," said Efficiency. "What I want is
Maximum Climb and Maximum Speed for the Power the Engine produces."

And each Principle fully agreed with her beautiful sentiments, but work
together they would not.

The Aspect Ratio wanted infinite Span, and hang the Chord.

The Angle of Incidence would have two Angles and two Cambers in one,
which was manifestly absurd; the Surface insisted upon no thickness
whatever, and would not hear of such things as Spars and Ribs; and the
Thrust objected to anything at all likely to produce Drift, and very
nearly wiped the whole thing off the Blackboard.

There was, indeed, the makings of a very pretty quarrel when the Letter
arrived. It was about a mile long, and began to talk at once.

"I'm from the Inventor," he said, and hope rose in the heart of each
heated Principle. "It's really absurdly simple. All the Pilot has to do
is to touch a button, and at his will, VARY the area of the Surface, the
Angle of Incidence, and the Camber! And there you are--Maximum Climb or
Maximum Speed as required! How does that suit you?"

"That suits us very well," said the Surface, "but, excuse me asking, how
is it done without apparatus increasing the Drift and the Weight out
of all reason? You won't mind showing us your Calculations, Working
Drawings, Stress Diagrams, etc., will you?"

Said the Letter with dignity, "I come from an Inventor so brilliantly
clever as to be far above the unimportant matters you mention. He is no
common working man, sir! He leaves such things to Mechanics. The point
is, you press a button and----"

"Look here," said a Strut, rather pointedly, "where do you think you are
going, anyway?"

"Well," from the Letter, "as a matter of fact, I'm not addressed yet,
but, of course, there's no doubt I shall reach the very highest quarters
and absolutely revolutionize Flight when I get there."

Said the Chalk, "I'll address you, if that's all you want; now drift
along quickly!" And off went the Letter to The Technical Editor, "Daily
Mauler," London.

And a League was formed, and there were Directors with Fees, and several
out-of-service Tin Hats, and the Man-who-takes-the-credit, and a fine
fat Guinea-pig, and all the rest of them. And the Inventor paid his
Tailor and had a Hair-Cut, and is now a recognized Press Expert--but he
is still waiting for those Mechanics!

"I'm afraid," said the Slide-rule, who had been busy making those
lightning-like automatic calculations for which he is so famous, "it's
quite impossible to fully satisfy all of you, and it is perfectly plain
to me that we shall have to effect a Compromise and sacrifice some of
the Lift for Speed."

Thud! What was that?

Efficiency had fainted dead away! The last blow had been too much for
her. And the Principles gathered mournfully round, but with the aid of
the Propeller Slip[1] and a friendly lift from the Surface she was at
length revived and regained a more normal aspect.

Said the Stagger with a raffish air, "My dear young lady, I assure
you that from the experiences of a varied career, I have learned that
perfection is impossible, and I am sure the Designer will be quite
satisfied if you become the Most Efficient Compromise."

"Well, that sounds so common sense," sighed Efficiency, "I suppose it
must be true, and if the Designer is satisfied, that's all I really care
about. Now do let's get on with the job."

So the Chalk drew a nice long slim body to hold the Engine and the
tanks, etc., with room for the Pilot's and Passenger's seats, and placed
it exactly in the middle of the Biplane. And he was careful to make its
position such that the Centre of Gravity was a little in advance of the
Centre of Lift, so that when the Engine was not running and there was
consequently no Thrust, the Aeroplane should be "nose-heavy" just to the
right degree, and so take up a natural glide to Earth--and this was to
help the Pilot and relieve him of work and worry, should he find himself
in a fog or a cloud. And so that this tendency to glide downwards should
not be in evidence when the Engine was running and descent not desired,
the Thrust was placed a little below the Centre of Drift or Resistance.
In this way it would in a measure pull the nose of the Aeroplane up and
counterbalance the "nose-heavy" tendency.

And the Engine was so mounted that when the Propeller-Thrust was
horizontal, which is its most efficient position, the Angle of Incidence
and the Area of the surfaces were just sufficient to give a Lift a
little in excess of the Weight. And the Camber was such that, as far as
it was concerned, the Lift-Drift Ratio should be the best possible for
that Angle of Incidence. And a beautifully simple under-carriage was
added, the outstanding features of which were simplicity, strength,
light-weight, and minimum drift. And, last of all, there was the
Elevator, of which you will hear more by-and-by. And this is what it
looked like then:

And Efficiency, smiling, thought that it was not such a bad compromise
after all and that the Designer might well be satisfied.

"Now," said she, "there's just one or two points I'm a bit hazy about.
It appears that when the Propeller shaft is horizontal and so working
in its most efficient attitude, I shall have a Lift from the Surfaces
slightly in excess of the Weight. That means I shall ascend slightly,
at the same time making nearly maximum speed for the power and thrust.
Can't I do better than that?"

"Yes, indeed," spoke up the Propeller, "though it means that I must
assume a most undignified attitude, for helicopters[2] I never
approved of. In order to ascend more quickly the Pilot will deflect the
Elevator, which, by the way, you see hinged to the Tail. By that
means he will force the whole Aeroplane to assume a greater Angle of
Incidence. And with greater Angle, the Lift will increase, though I'm
sorry to say the Drift will increase also. Owing to the greater Drift,
the Speed through the air will lessen, and I'm afraid that won't be
helpful to the Lift; but I shall now be pointing upwards, and besides
overcoming the Drift in a forward direction I shall be doing my best
to haul the Aeroplane skywards. At a certain angle known as the Best
Climbing Angle, we shall have our Maximum Margin of Lift, and I'm hoping
that may be as much as almost a thousand feet altitude a minute."

"Then, if the Pilot is green, my chance will come," said the Maximum
Angle of Incidence. "For if the Angle is increased over the Best
Climbing Angle, the Drift will rush up; and the Speed, and with it the
Lift, will, when my Angle is reached, drop to a point when the latter
will be no more than the Weight. The Margin of Lift will have entirely
disappeared, and there we shall be, staggering along at my tremendous
angle, and only just maintaining horizontal flight."

"And then with luck I'll get my chance," said the Drift. "If he is a bit
worse than green, he'll perhaps still further increase the Angle. Then
the Drift, largely increasing, the Speed, and consequently the Lift,
will become still less, i.e., less than the Weight, and then--what price
pancakes,[3] eh?"

"Thank you," from Efficiency, "that was all most informing. And now will
you tell me, please, how the greatest Speed may be secured?"

"Certainly, now it's my turn," piped the Minimum Angle of Incidence. "By
means of the Elevator, the Pilot places the Aeroplane at my small Angle,
at which the Lift only just equals the Weight, and, also, at which we
shall make greater speed with no more Drift than before. Then we get our
greatest Speed, just maintaining horizontal flight."

"Yes; though I'm out of the horizontal and thrusting downwards,"
grumbled the Propeller, "and that's not efficient, though I suppose it's
the best we can do until that Inventor fellow finds his Mechanics."

"Thank you so much," said Efficiency. "I think I have now at any rate
an idea of the Elementary Principles of Flight, and I don't know that I
care to delve much deeper, for sums always give me a headache; but isn't
there something about Stability and Control? Don't you think I ought to
have a glimmering of them too?"

"Well, I should smile," said a spruce Spar, who had come all the way
from America. "And that, as the Lecturer says, `will be the subject of
our next lecture,' so be here again to-morrow, and you will be glad to
hear that it will be distinctly more lively than the subject we have
covered to-day."




PART II. THE PRINCIPLES, HAVING SETTLED THEIR DIFFERENCES, FINISH THE
JOB

Another day had passed, and the Flight Folk had again gathered together
and were awaiting the arrival of Efficiency who, as usual, was rather
late in making an appearance.

The crowd was larger than ever, and among the newcomers some of the most
important were the three Stabilities, named Directional, Longitudinal,
and Lateral, with their assistants, the Rudder, Elevator, and Ailerons.
There was Centrifugal Force, too, who would not sit still and created a
most unfavourable impression, and Keel-Surface, the Dihedral Angle, and
several other lesser fry.

"Well," said Centrifugal Force, "I wish this Efficiency I've heard so
much about would get a move on. Sitting still doesn't agree with me
at all. Motion I believe in. There's nothing like motion--the more the
better."

"We are entirely opposed to that," objected the three Stabilities, all
in a breath. "Unless it's in a perfectly straight line or a perfect
circle. Nothing but perfectly straight lines or, upon occasion, perfect
circles satisfy us, and we are strongly suspicious of your tendencies."

"Well, we shall see what we shall see," said the Force darkly. "But who
in the name of blue sky is this?"

And in tripped Efficiency, in a beautifully "doped" dress of the latest
fashionable shade of khaki-coloured fabric, a perfectly stream-lined
bonnet, and a bewitching little Morane parasol,[4] smiling as
usual, and airily exclaiming, "I'm so sorry I'm late, but you see the
Designer's such a funny man. He objects to skin friction,[5] and
insisted upon me changing my fabric for one of a smoother surface, and
that delayed me. Dear me, there are a lot more of us to-day, aren't
there? I think I had better meet one at a time." And turning to
Directional Stability, she politely asked him what he preferred to do.

"My purpose in life, miss," said he, "is to keep the Aeroplane on its
course, and to achieve that there must be, in effect, more Keel-Surface
behind the Vertical Turning Axis than there is in front of it."

Efficiency looking a little puzzled, he added: "Just like a weathercock,
and by Keel-Surface I mean everything you can see when you view the
Aeroplane from the side of it--the sides of the body, struts, wires,
etc."

"Oh, now I begin to see light," said she: "but just exactly how does it
work?"

"I'll answer that," said Momentum. "When perhaps by a gust of air the
Aeroplane is blown out of its course and points in another direction, it
doesn't immediately fly off on that new course. I'm so strong I pull it
off the new course to a certain extent, and towards the direction of the
old course. And so it travels, as long as my strength lasts, in a more
or less sideways position."

"Then," said the Keel-Surface, "I get a pressure of air all on one side,
and as there is, in effect, most of me towards the tail, the latter
gets pressed sideways, and the Aeroplane thus tends to assume its first
position and course."

"I see," said Efficiency, and, daintily holding the Chalk, she
approached the Blackboard. "Is this what you mean?"

"Yes, that's right enough," said the Keel-Surface, "and you might
remember, too, that I always make the Aeroplane nose into the gusts
rather than away from them."

"If that was not the case," broke in Lateral Stability, and affecting
the fashionable Flying Corps stammer, "it would be a h-h-h-o-r-rible
affair! If there were too much Keel-Surface in front, then that gust
would blow the Aeroplane round the other way a very considerable
distance. And the right-hand Surface being on the outside of the turn
would have more speed, and consequently more Lift, than the Surface
on the other side. That means a greater proportion of the Lift on that
side, and before you could say Warp to the Ailerons over the Aeroplane
would go--probable result a bad side-slip"

"And what can the Pilot do to save such a situation as that?" said
Efficiency.

"Well," replied Lateral Stability, "he will try to turn the Aeroplane
sideways and back to an even keel by means of warping the Ailerons or
little wings which are hinged on to the Wing-tips, and about which you
will hear more later on; but if the side-slip is very bad he may not be
able to right the Aeroplane by means of the Ailerons, and then the only
thing for him to do is to use the Rudder and to turn the nose of the
Aeroplane down and head-on to the direction of motion. The Aeroplane
will then be meeting the air in the direction it is designed to do
so, and the Surfaces and also the controls (the Rudder, Ailerons, and
Elevator) will be working efficiently; but its attitude relative to
the earth will probably be more or less upside-down, for the action
of turning the Aeroplane's nose down results, as you will see by the
illustration B, in the right wing, which is on the outside of the
circle. travelling through the air with greater speed than the left-hand
wing. More Speed means more Lift, so that results in overturning the
Aeroplane still more; but now it is, at any rate, meeting the air as it
is designed to meet it, and everything is working properly. It is then
only necessary to warp the Elevator, as shown in illustration C, in
order to bring the Aeroplane into a proper attitude relative to the
earth."

"Ah!" said the Rudder, looking wise, "it's in a case like that when I
become the Elevator and the Elevator becomes me."

"That's absurd nonsense," said the Blackboard, "due to looseness of
thought and expression."

"Well," replied the Rudder, "when 'the Aeroplane is in position A and I
am used, then I depress or ELEVATE the nose of the machine; and, if the
Elevator is used, then it turns the Aeroplane to right or left, which is
normally my function. Surely our roles have changed one with the other,
and I'm then the Elevator and the Elevator is me!"

Said Lateral Stability to the Rudder, "That's altogether the wrong way
of looking at it, though I admit"--and this rather sarcastically--"that
the way you put it sounds rather fine when you are talking of your
experiences in the air to those 'interested in aviation' but knowing
little about it; but it won't go down here! You are a Controlling
Surface designed to turn the Aeroplane about its vertical axis, and the
Elevator is a Controlling Surface designed to turn the Aeroplane about
its lateral axis. Those are your respective jobs, and you can't possibly
change them about. Such talk only leads to confusion, and I hope we
shall hear no more of it."

"Thanks," said Efficiency to Lateral Stability. "And now, please, will
you explain your duties?"

"My duty is to keep the Aeroplane horizontal from Wing-tip to Wing-tip.
First of all, I sometimes arrange with the Rigger to wash-out, that is
decrease, the Angle of Incidence on one side of the Aeroplane, and to
effect the reverse condition, if it is not too much trouble, on the
other side."

"But," objected Efficiency, "the Lift varies with the Angle of
Incidence, and surely such a condition will result in one side of the
Aeroplane lifting more than the other side?'

"That's all right," said the Propeller, "it's meant to off-set the
tendency of the Aeroplane to turn over sideways in the opposite
direction to which I revolve."

"That's quite clear, though rather unexpected; but how do you counteract
the effect of the gusts when they try to overturn the Aeroplane
sideways?" said she, turning to Lateral Stability again.

"Well," he replied, rather miserably, "I'm not nearly so perfect as the
Longitudinal and Directional Stabilities. The Dihedral Angle--that is,
the upward inclination of the Surfaces towards their wing-tips--does
what it can for me, but, in my opinion, it's a more or less futile
effort. The Blackboard will show you the argument." And he at once
showed them two Surfaces, each set at a Dihedral Angle like this:

"Please imagine," said the Blackboard, "that the top V is the front
view of a Surface flying towards you. Now if a gust blows it into the
position of the lower V you see that the horizontal equivalent of the
Surface on one side becomes larger, and on the other side it becomes
smaller. That results in more Lift on the lower side and less on the
higher side, and if the V is large enough it should produce such a
difference in the Lift of one side to the other as to quickly turn the
Aeroplane back to its former and normal position."

"Yes," said the Dihedral Angle, "that's what would happen if they would
only make me large enough; but they won't do it because it would too
greatly decrease the horizontal equivalent, and therefore the Lift, and
incidentally it would, as Aeroplanes are built to-day, produce an excess
of Keel Surface above the turning axis, and that in itself would spoil
the Lateral Stability. The Keel Surface should be equally divided above
and below the longitudinal turning axis (upon which the Aeroplane rolls
sideways), or the side upon which there is an excess will get blown over
by the gusts. It strikes me that my future isn't very promising, and
about my only chance is when the Junior Draughtsman makes a mistake, as
he did the other day. And just think of it, they call him a Designer now
that he's got a job at the Factory! What did he do? Why, he calculated
the weights wrong and got the Centre of Gravity too high, and they
didn't discover it until the machine was built. Then all they could do
was to give me a larger Angle. That dropped the bottom of the V lower
down, and as that's the centre of the machine, where all the Weight is,
of course that put the Centre of Gravity in its right place. But now
there is too much Keel Surface above, and the whole thing's a Bad
Compromise, not at all like Our Efficiency."

And Efficiency, blushing very prettily at the compliment, then asked,
"And how does the Centre of Gravity affect matters?"

"That's easy," said Grandfather Gravity. "I'm so heavy that if I am too
low down I act like a pendulum and cause the Aeroplane to roll about
sideways, and if I am too high I'm like a stick balanced on your finger,
and then if I'm disturbed, over I go and the Aeroplane with me; and, in
addition to that, there are the tricks I play with the Aeroplane when
it's banked up,[6] i.e., tilted sideways for a turn, and Centrifugal
Force sets me going the way I'm not wanted to go. No; I get on best with
Lateral Stability when my Centre is right on the centre of Drift, or,
at any rate, not much below it." And with that he settled back into the
Lecturer's Chair and went sound asleep again, for he was so very, very
old, in fact the father of all the Principles.

And the Blackboard had been busy, and now showed them a picture of
the Aeroplane as far as they knew it, and you will see that there is
a slight Dihedral Angle, and also, fixed to the tail, a vertical Keel
Surface or fin, as is very often the case in order to ensure the greater
effect of such surface being behind the vertical turning axis.

But Efficiency, growing rather critical with her newly gained knowledge,
cried out: "But where's the horizontal Tail Surface? It doesn't look
right like that!"

"This is when I have the pleasure of meeting you, my dear," said
Longitudinal Stability. "Here's the Tail Surface," he said, "and in
order to help me it must be set IN EFFECT at a much less Angle of
Incidence than the Main Surface. To explain we must trouble the
Blackboard again," and this was his effort:

"I have tried to make that as clear as possible," he said. "It may
appear a bit complicated at first, but if you will take the trouble to
look at it for a minute you will find it quite simple. A is the normal
and proper direction of motion of the Aeroplane, but, owing to a gust of
air, it takes up the new nose-down position. Owing to Momentum, however,
it does not fly straight along in that direction, but moves more or less
in the direction B, which is the resultant of the two forces, Momentum
and Thrust. And so you will note that the Angle of Incidence, which
is the inclination of the Surfaces to the Direction of Motion, has
decreased, and of course the Lift decreases with it. You will also
see, and this is the point, that the Tail Surface has lost a higher
proportion of its Angle, and consequently its Lift, than has the Main
Surface. Then, such being the case, the Tail must fall and the Aeroplane
assume its normal position again, though probably at a slightly lower
altitude."

"I'm afraid I'm very stupid," said Efficiency, "but please tell me why
you lay stress upon the words 'IN EFFECT.'"

"Ah! I was wondering if you would spot that," he replied. "And there is
a very good reason for it. You see, in some Aeroplanes the Tail Surface
may be actually set at the same Angle on the machine as the Main
Surface, but owing to the air being deflected downwards by the front
Main Surface it meets the Tail Surface at a lesser angle, and indeed in
some cases at no angle at all. The Tail is then for its surface getting
less Lift than the Main Surface, although set at the same angle on
the machine. It may then be said to have IN EFFECT a less Angle of
Incidence. I'll just show you on the Blackboard."

"And now," said Efficiency, "I have only to meet the Ailerons and the
Rudder, haven't I?"

"Here we are," replied the Ailerons, or little wings. "Please hinge us
on to the back of the Main Surfaces, one of us at each Wing-tip, and
join us up to the Pilot's joystick by means of the control cables. When
the Pilot wishes to tilt the Aeroplane sideways, he will move the stick
and depress us upon one side, thus giving us a larger Angle of Incidence
and so creating more Lift on that side of the Aeroplane; and, by means
of a cable connecting us with the Ailerons on the other side of the
Aeroplane, we shall, as we are depressed, pull them up and give them a
reverse or negative Angle of Incidence, and that side will then get
a reverse Lift or downward thrust, and so we are able to tilt the
Aeroplane sideways.

"And we work best when the Angle of Incidence of the Surface in front
of us is very small, for which reason it is sometimes decreased or
washed-out towards the Wing-tips. The reason of that is that by the
time the air reaches us it has been deflected downwards--the greater the
Angle of Incidence the more it is driven downwards--and in order for
us to secure a Reaction from it, we have to take such a large Angle of
Incidence that we produce a poor proportion of Lift to Drift; but the
smaller the Angle of the Surface in front of us the less the air is
deflected downwards, and consequently the less Angle is required of us,
and the better our proportion of Lift to Drift, which, of course, makes
us much more effective Controls."

"Yes," said the Lateral and Directional Stabilities in one voice,
"that's so, and the wash-out helps us also, for then the Surfaces
towards their Wing-tips have less Drift or 'Head-Resistance,' and
consequently the gusts will affect them and us less; but such decreased
Angle of Incidence means decreased Lift as well as Drift, and the
Designer does not always care to pay the price."

"Well," said the Ailerons, "if it's not done it will mean more work for
the Rudder, and that won't please the Pilot."

"Whatever do you mean?" asked Efficiency. "What can the Rudder have to
do with you?"

"It's like this," they replied: "when we are deflected downwards we gain
a larger Angle of Incidence and also enter an area of compressed air,
and so produce more Drift than those of us on the other side of the
Aeroplane, which are deflected upwards into an area of rarefied air due
to the SUCTION effect (though that term is not academically correct) on
the top of the Surface. If there is more Drift, i.e., Resistance, on
one side of the Aeroplane than on the other side, then of course it will
turn off its course, and if that difference in Drift is serious, as it
will very likely be if there is no wash-out, then it will mean a good
deal of work for the Rudder in keeping the Aeroplane on its course,
besides creating extra Drift in doing so."

"I think, then," said Efficiency, "I should prefer to have that
wash-out,[7] and my friend the Designer is so clever at producing
strength of construction for light weight, I'm pretty sure he won't
mind paying the price in Lift. And now let me see if I can sketch the
completed Aeroplane."

"Well, I hope that's all as it should be," she concluded, "for to-morrow
the Great Test in the air is due."




PART III. THE GREAT TEST

It is five o'clock of a fine calm morning, when the Aeroplane is wheeled
out of its shed on to the greensward of the Military Aerodrome. There
is every promise of a good flying day, and, although the sun has not
yet risen, it is light enough to discern the motionless layer of fleecy
clouds some five thousand feet high, and far, far above that a few filmy
mottled streaks of vapour. Just the kind of morning beloved of pilots.

A brand new, rakish, up-to-date machine it is, of highly polished,
beautifully finished wood, fabric as tight as a drum, polished metal,
and every part so perfectly "streamlined" to minimize Drift, which is
the resistance of the air to the passage of the machine, that to the
veriest tyro the remark of the Pilot is obviously justified.

"Clean looking 'bus, looks almost alive and impatient to be off. Ought
to have a turn for speed with those lines."

"Yes," replies the Flight-Commander, "it's the latest of its type and
looks a beauty. Give it a good test. A special report is required on
this machine."

The A.M.'s[8] have now placed the Aeroplane in position facing the
gentle air that is just beginning to make itself evident; the engine
Fitter, having made sure of a sufficiency of oil and petrol in the
tanks, is standing by the Propeller; the Rigger, satisfied with a job
well done, is critically "vetting" the machine by eye, four A.M.'s are
at their posts, ready to hold the Aeroplane from jumping the blocks
which have been placed in front of the wheels; and the Flight-Sergeant
is awaiting the Pilot's orders.

As the Pilot approaches the Aeroplane the Rigger springs to attention
and reports, "All correct, sir," but the Fitter does not this morning
report the condition of the Engine, for well he knows that this Pilot
always personally looks after the preliminary engine test. The latter,
in leathern kit, warm flying boots and goggled, climbs into his seat,
and now, even more than before, has the Aeroplane an almost living
appearance, as if straining to be off and away. First he moves the
Controls to see that everything is clear, for sometimes when the
Aeroplane is on the ground the control lever or "joy-stick" is lashed
fast to prevent the wind from blowing the controlling surfaces about and
possibly damaging them.

The air of this early dawn is distinctly chilly, and the A.M.'s are
beginning to stamp their cold feet upon the dewy grass, but very careful
and circumspect is the Pilot, as he mutters to himself, "Don't worry and
flurry, or you'll die in a hurry."

At last he fumbles for his safety belt, but with a start remembers the
Pilot Air Speed Indicator, and, adjusting it to zero, smiles as he hears
the Pilot-head's gruff voice, "Well, I should think so, twenty miles an
hour I was registering. That's likely to cause a green pilot to stall
the Aeroplane. Pancake, they call it." And the Pilot, who is an old hand
and has learned a lot of things in the air that mere earth-dwellers know
nothing about, distinctly heard the Pilot Tube, whose mouth is open to
the air to receive its pressure, stammer. "Oh Lor! I've got an earwig
already--hope to goodness the Rigger blows me out when I come down--and
this morning air simply fills me with moisture; I'll never keep the
Liquid steady in the Gauge. I'm not sure of my rubber connections
either."

"Oh, shut up!" cry all the Wires in unison, "haven't we got our troubles
too? We're in the most horrible state of tension. It's simply murdering
our Factor of Safety, and how we can possibly stand it when we get the
Lift only the Designer knows."

"That's all right," squeak all the little Wire loops, "we're that
accommodating, we're sure to elongate a bit and so relieve your
tension." For the whole Aeroplane is braced together with innumerable
wires, many of which are at their ends bent over in the form of loops
in order to connect with the metal fittings on the spars and
elsewhere--cheap and easy way of making connection.

"Elongate, you little devils, would you?" fairly shout the Angles of
Incidence, Dihedral and Stagger, amid a chorus of groans from all parts
of the Aeroplane. "What's going to happen to us then? How are we going
to keep our adjustments upon which good flying depends?"

"Butt us and screw us,"[9] wail the Wires. "Butt us and screw us, and
death to the Loops. That's what we sang to the Designer, but he only
looked sad and scowled at the Directors."

"And who on earth are they?" asked the Loops, trembling for their
troublesome little lives.

"Oh earth indeed," sniffed Efficiency, who had not spoken before, having
been rendered rather shy by being badly compromised in the Drawing
Office. "I'd like to get some of them up between Heaven and Earth,
I would. I'd give 'em something to think of besides their Debits and
Credits--but all the same the Designer will get his way in the end. I'm
his Best Girl, you know, and if we could only get rid of the Directors,
the little Tin god, and the Man-who-takes-the-credit, we should be quite
happy." Then she abruptly subsides, feeling that perhaps the less said
the better until she has made a reputation in the Air. The matter of
that Compromise still rankled, and indeed it does seem hardly fit that
a bold bad Tin god should flirt with Efficiency. You see there was
a little Tin god, and he said "Boom, Boom BOOM! Nonsense! It MUST be
done," and things like that in a very loud voice, and the Designer
tore his hair and was furious, but the Directors, who were thinking of
nothing but Orders and Dividends, had the whip-hand of HIM, and so there
you are, and so poor beautiful Miss Efficiency was compromised.

All this time the Pilot is carefully buckling his belt and making
himself perfectly easy and comfortable, as all good pilots do. As
he straightens himself up from a careful inspection of the Deviation
Curve[10] of the Compass and takes command of the Controls, the
Throttle and the Ignition, the voices grow fainter and fainter until
there is nothing but a trembling of the Lift and Drift wires to indicate
to his understanding eye their state of tension in expectancy of the
Great Test.

"Petrol on?" shouts the Fitter to the Pilot.

"Petrol on," replies the Pilot.

"Ignition off?"

"Ignition off."

Round goes the Propeller, the Engine sucking in the Petrol Vapour with
satisfied gulps. And then--

"Contact?" from the Fitter.

"Contact," says the Pilot.

Now one swing of the Propeller by the Fitter, and the Engine is awake
and working. Slowly at first though, and in a weak voice demanding, "Not
too much Throttle, please. I'm very cold and mustn't run fast until my
Oil has thinned and is circulating freely. Three minutes slowly, as you
love me, Pilot."

Faster and faster turn the Engine and Propeller, and the Aeroplane,
trembling in all its parts, strains to jump the blocks and be off.
Carefully the Pilot listens to what the Engine Revolution Indicator
says. At last, "Steady at 1,500 revs. and I'll pick up the rest in the
Air." Then does he throttle down the Engine, carefully putting the lever
back to the last notch to make sure that in such position the Throttle
is still sufficiently open for the Engine to continue working, as
otherwise it might lead to him "losing" his Engine in the air when
throttling down the power for descent. Then, giving the official signal,
he sees the blocks removed from the wheels, and the Flight-Sergeant
saluting he knows that all is clear to ascend. One more signal, and all
the A.M.'s run clear of the Aeroplane.

Then gently, gently mind you, with none of the "crashing on" bad
Pilots think so fine, he opens the Throttle and, the Propeller Thrust
overcoming its enemy the Drift, the Aeroplane moves forward.

"Ah!" says the Wind-screen, "that's Discipline, that is. Through
my little window I see most things, and don't I just know that poor
discipline always results in poor work in the air, and don't you forget
it."

"Discipline is it?" complains the Under-carriage, as its wheels roll
swiftly over the rather rough ground. "I'm bump getting it; and bump,
bump, all I want, bang, bump, rattle, too!" But, as the Lift increases
with the Speed, the complaints of the Under-carriage are stilled, and
then, the friendly Lift becoming greater than the Weight, the Aeroplane
swiftly and easily takes to the air.

Below is left the Earth with all its bumps and troubles. Up into the
clean clear Air moves with incredible speed and steadiness this triumph
of the Designer, the result of how much mental effort, imagination,
trials and errors, failures and successes, and many a life lost in high
endeavour.

Now is the mighty voice of the Engine heard as he turns the Propeller
nine hundred times a minute. Now does the Thrust fight the Drift for all
it's worth, and the Air Speed Indicator gasps with delight, "One hundred
miles an hour!"

And now does the burden of work fall upon the Lift and Drift Wires,
and they scream to the Turnbuckles whose business it is to hold them in
tension, "This is the limit! the Limit! THE LIMIT! Release us, if only
a quarter turn." But the Turnbuckles are locked too fast to turn their
eyes or utter a word. Only the Locking Wires thus: "Ha! ha! the Rigger
knew his job. He knew the trick, and there's no release here." For
an expert rigger will always use the locking wire in such a way as to
oppose the slightest tendency of the turnbuckle to unscrew. The other
kind of rigger will often use the wire in such a way as to allow the
turnbuckle, to the "eyes" of which the wires are attached, to unscrew a
quarter of a turn or more, with the result that the correct adjustment
of the wires may be lost; and upon their fine adjustment much depends.

And the Struts and the Spars groan in compression and pray to keep
straight, for once "out of truth" there is, in addition to possible
collapse, the certainty that in bending they will throw many wires out
of adjustment.

And the Fabric's quite mixed in its mind, and ejaculates, "Now, who
would have thought I got more Lift from the top of the Surface than its
bottom?" And then truculently to the Distance Pieces, which run from
rib to rib, "Just keep the Ribs from rolling, will you? or you'll see me
strip. I'm an Irishman, I am, and if my coat comes off---- Yes, Irish, I
said. I used to come from Egypt, but I've got naturalized since the War
began."

Then the Air Speed Indicator catches the eye of the Pilot. "Good
enough," he says as he gently deflects the Elevator and points the nose
of the Aeroplane upwards in search of the elusive Best Climbing Angle.

"Ha! ha!" shouts the Drift, growing stronger with the increased Angle
of Incidence. "Ha! ha!" he laughs to the Thrust. "Now I've got you. Now
who's Master?"

And the Propeller shrieks hysterically, "Oh! look at me. I'm a
helicopter. That's not fair. Where's Efficiency?" And she can only sadly
reply, "Yes, indeed, but you see we're a Compromise."

And the Drift has hopes of reaching the Maximum Angle of Incidence
and vanquishing the Thrust and the Lift. And he grows very bold as he
strangles the Thrust; but the situation is saved by the Propeller,
who is now bravely helicopting skywards, somewhat to the chagrin of
Efficiency.

"Much ado about nothing," quotes the Aeroplane learnedly. "Compromise
or not, I'm climbing a thousand feet a minute. Ask the Altimeter. He'll
confirm it."

And so indeed it was. The vacuum box of the Altimeter was steadily
expanding under the decreased pressure of the rarefied air, and by means
of its little levers and its wonderful chain no larger than a hair it
was moving the needle round the gauge and indicating the ascent at the
rate of a thousand feet a minute.

And lo! the Aeroplane has almost reached the clouds! But what's this?
A sudden gust, and down sinks one wing and up goes the other. "Oh, my
Horizontal Equivalent!" despairingly call the Planes: "it's eloping with
the Lift, and what in the name of Gravity will happen? Surely there was
enough scandal in the Factory without this, too!" For the lift varies
with the horizontal equivalent of the planes, so that if the aeroplane
tilts sideways beyond a certain angle, the lift becomes less than the
weight of the machine, which must then fall. A fall in such a position
is known as a "side-slip."

But the ever-watchful Pilot instantly depresses one aileron, elevating
the other, with just a touch of the rudder to keep on the course, and
the Planes welcome back their precious Lift as the Aeroplane flicks back
to its normal position.

"Bit bumpy here under these clouds," is all the Pilot says as he heads
for a gap between them, and the next minute the Aeroplane shoots up into
a new world of space.

"My eye!" ejaculates the Wind-screen, "talk about a view!" And indeed
mere words will always fail to express the wonder of it. Six thousand
feet up now, and look! The sun is rising quicker than ever mortal on
earth witnessed its ascent. Far below is Mother Earth, wrapt in mists
and deep blue shadows, and far above are those light, filmy, ethereal
clouds now faintly tinged with pink And all about great mountains of
cloud, lazily floating in space. The sun rises and they take on all
colours, blending one with the other, from dazzling white to crimson
and deep violet-blue. Lakes and rivers here and there in the enormous
expanse of country below refract the level rays of the sun and, like so
many immense diamonds, send dazzling shafts of light far upwards. The
tops of the hills now laugh to the light of the sun, but the valleys are
still mysterious dark blue caverns, clowned with white filmy lace-like
streaks of vapour. And withal the increasing sense with altitude of
vast, clean, silent solitudes of space.

Lives there the man who can adequately describe this Wonder? "Never,"
says the Pilot, who has seen it many times, but to whom it is ever new
and more wonderful.

Up, up, up, and still up, unfalteringly speeds the Pilot and his mount.
Sweet the drone of the Engine and steady the Thrust as the Propeller
exultingly battles with the Drift.

And look! What is that bright silver streak all along the horizon? It
puzzled the Pilot when first he saw it, but now he knows it for the Sea,
full fifty miles away!

And on his right is the brightness of the Morn and the smiling Earth
unveiling itself to the ardent rays of the Sun; and on his left, so
high is he, there is yet black Night, hiding innumerable Cities, Towns,
Villages and all those places where soon teeming multitudes of men shall
awake, and by their unceasing toil and the spirit within them produce
marvels of which the Aeroplane is but the harbinger.

And the Pilot's soul is refreshed, and his vision, now exalted, sees
the Earth a very garden, even as it appears at that height, with discord
banished and a happy time come, when the Designer shall have at last
captured Efficiency, and the Man-who-takes-the-credit is he who has
earned it, and when kisses are the only things that go by favour.

Now the Pilot anxiously scans the Barograph, which is an instrument much
the same as the Altimeter; but in this case the expansion of the vacuum
box causes a pen to trace a line upon a roll of paper. This paper is
made by clockwork to pass over the point of the pen, and so a curved
line is made which accurately registers the speed of the ascent in feet
per minute. No longer is the ascent at the rate of a thousand feet a
minute, and the Propeller complains to the Engine, "I'm losing my Revs.
and the Thrust. Buck up with the Power, for the Lift is decreasing,
though the Weight remains much the same."

Quoth the Engine: "I strangle for Air. A certain proportion, and that
of right density, I must have to one part of Petrol, in order to give me
full power and compression, and here at an altitude of ten thousand feet
the Air is only two-thirds as dense as at sea-level. Oh, where is he who
will invent a contrivance to keep me supplied with Air of right density
and quality? It should not be impossible within certain limits."

"We fully agree," said the dying Power and Thrust. "Only maintain Us and
you shall be surprised at the result. For our enemy Drift decreases in
respect of distance with the increase of altitude and rarity of air,
and there is no limit to the speed through space if only our strength
remains. And with oxygen for Pilot and Passengers and a steeper
pitch[11] for the Propeller we may then circle the Earth in a day!"

Ah, Reader, smile not unbelievingly, as you smiled but a few years past.
There may be greater wonders yet. Consider that as the speed increases,
so does the momentum or stored-up force in the mass of the aeroplane
become terrific. And, bearing that in mind, remember that with
altitude gravity decreases. There may yet be literally other worlds to
conquer.[12]

Now at fifteen thousand feet the conditions are chilly and rare, and the
Pilot, with thoughts of breakfast far below, exclaims, "High enough!
I had better get on with the Test." And then, as he depresses the
Elevator, the Aeroplane with relief assumes its normal horizontal
position. Then, almost closing the Throttle, the Thrust dies away. Now,
the nose of the Aeroplane should sink of its own volition, and the craft
glide downward at flying speed, which is in this case a hundred miles
an hour. That is what should happen if the Designer has carefully
calculated the weight of every part and arranged for the centre of
gravity to be just the right distance in front of the centre of lift.
Thus is the Aeroplane "nose-heavy" as a glider, and just so to a degree
ensuring a speed of glide equal to its flying speed. And the Air Speed
Indicator is steady at one hundred miles an hour, and "That's all
right!" exclaims the Pilot. "And very useful, too, in a fog or a cloud,"
he reflects, for then he can safely leave the angle of the glide to
itself, and give all his attention, and he will need it all, to keeping
the Aeroplane horizontal from wing-tip to wing-tip, and to keeping
it straight on its course. The latter he will manage with the rudder,
controlled by his feet, and the Compass will tell him whether a straight
course is kept. The former he will control by the Ailerons, or
little wings hinged to the tips of the planes, and the bubble in the
Inclinometer in front of him must be kept in the middle.

A Pilot, being only human, may be able to do two things at once, but
three is a tall order, so was this Pilot relieved to find the Design not
at fault and his craft a "natural glider." To correct this nose-heavy
tendency when the Engine is running, and descent not required, the
centre of Thrust is arranged to be a little below the centre of Drift or
Resistance, and thus acts as a counter-balance.

But what is this stream of bad language from the Exhaust Pipe,
accompanied by gouts of smoke and vapour? The Engine, now revolving at
no more than one-tenth its normal speed, has upset the proportion of
petrol to air, and combustion is taking place intermittently or in the
Exhaust Pipe, where it has no business to be.

"Crash, Bang, Rattle----!----!----!" and worse than that, yells the
Exhaust, and the Aeroplane, who is a gentleman and not a box kite,[13]
remonstrates with the severity of a Senior Officer. "See the Medical
Officer, you young Hun. Go and see a doctor. Vocal diarrhoea, that's
your complaint, and a very nasty one too. Bad form, bad for discipline,
and a nuisance in the Mess. What's your Regiment? Special Reserve, you
say? Humph! Sounds like Secondhand Bicycle Trade to me!"

Now the Pilot decides to change the straight gliding descent to a spiral
one, and, obedient to the Rudder, the Aeroplane turns to the left. But
the Momentum (two tons at 100 miles per hour is no small affair) heavily
resents this change of direction, and tries its level best to prevent
it and to pull the machine sideways and outwards from its spiral
course--that is, to make it "side-skid" outwards. But the Pilot deflects
the Ailerons and "banks" up the planes to the correct angle, and, the
Aeroplane skidding sideways and outwards, the lowest surfaces of
the planes press up against the air until the pressure equals the
centrifugal force of the Momentum, and the Aeroplane spirals steadily
downwards.

Down, down, down, and the air grows denser, and the Pilot gulps largely,
filling his lungs with the heavier air to counteract the increasing
pressure from without. Down through a gap in the clouds, and the
Aerodrome springs into view, appearing no larger than a saucer, and the
Pilot, having by now got the "feel" of the Controls, proceeds to put
the Aeroplane through its paces. First at its Maximum Angle, staggering
along tail-down and just maintaining horizontal flight; then a dive at
far over flying speed, finishing with a perfect loop; then sharp turns
with attendant vertical "banks" and then a wonderful switchback
flight, speeding down at a hundred and fifty miles an hour with short,
exhilarating ascents at the rate of two thousand feet a minute!

All the parts are now working well together. Such wires as were before
in undue tension have secured relief by slightly elongating their loops,
and each one is now doing its bit, and all are sharing the burden of
work together.

The Struts and the Spars, which felt so awkward at first, have bedded
themselves in their sockets, and are taking the compression stresses
uncomplainingly.

The Control Cables of twisted wire, a bit tight before, have slightly
lengthened by perhaps the eighth of an inch, and, the Controls instantly
responding to the delicate touch of the Pilot, the Aeroplane, at the
will of its Master, darts this way and that way, dives, loops, spirals,
and at last, in one long, magnificent glide, lands gently in front of
its shed.

"Well, what result?" calls the Flight-Commander to the Pilot.

"A hundred miles an hour and a thousand feet a minute," he briefly
replies.

"And a very good result too," says the Aeroplane, complacently, as he is
carefully wheeled into his shed.


That is the way Aeroplanes speak to those who love them and understand
them. Lots of Pilots know all about it, and can spin you wonderful
yarns, much better than this one, if you catch them in a confidential
mood--on leave, for instance, and after a good dinner.




PART IV. 'CROSS COUNTRY

The Aeroplane had been designed and built, and tested in the air, and
now stood on the Aerodrome ready for its first 'cross-country flight.

It had run the gauntlet of pseudo-designers, crank inventors, press
"experts," and politicians; of manufacturers keen on cheap work and
large profits; of poor pilots who had funked it, and good pilots who had
expected too much of it. Thousands of pounds had been wasted on it,
many had gone bankrupt over it, and others it had provided with safe fat
jobs.

Somehow, and despite every conceivable obstacle, it had managed to
muddle through, and now it was ready for its work. It was not perfect,
for there were fifty different ways in which it might be improved, some
of them shamefully obvious. But it was fairly sound mechanically, had a
little inherent stability, was easily controlled, could climb a thousand
feet a minute, and its speed was a hundred miles an hour. In short,
quite a creditable machine, though of course the right man had not got
the credit.

It is rough, unsettled weather with a thirty mile an hour wind on the
ground, and that means fifty more or less aloft. Lots of clouds at
different altitudes to bother the Pilot, and the air none to clear for
the observation of landmarks.

As the Pilot and Observer approach the Aeroplane the former is clearly
not in the best of tempers. "It's rotten luck," he is saying, "a blank
shame that I should have to take this blessed 'bus and join X Reserve
Squadron, stationed a hundred and fifty miles from anywhere; and just
as I have licked my Flight into shape. Now some slack blighter will, I
suppose, command it and get the credit of all my work!"

"Shut up, you grouser," said the Observer. "Do you think you're the only
one with troubles? Haven't I been through it too? Oh! I know all about
it! You're from the Special Reserve and your C.O. doesn't like your
style of beauty, and you won't lick his boots, and you were a bit of a
technical knut in civil life, but now you've jolly well got to know less
than those senior to you. Well! It's a jolly good experience for most of
us. Perhaps conceit won't be at quite such a premium after this war. And
what's the use of grousing? That never helped anyone. So buck up, old
chap. Your day will come yet. Here's our machine, and I must say it
looks a beauty!"

And, as the Pilot approaches the Aeroplane, his face brightens and he
soon forgets his troubles as he critically inspects the craft which is
to transport him and the Observer over the hills and far away. Turning
to the Flight-Sergeant he inquires, "Tank full of petrol and oil?"

"Yes, sir," he replies, "and everything else all correct. Propeller,
engine, and body covers on board, sir; tool kit checked over and in the
locker; engine and Aeroplane logbooks written up, signed, and under your
seat; engine revs. up to mark, and all the control cables in perfect
condition and tension."

"Very good," said the Pilot; and then turning to the Observer, "Before
we start you had better have a look at the course I have mapped out.

"A is where we stand and we have to reach B, a hundred and fifty miles
due North. I judge that, at the altitude we shall fly, there will be
an East wind, for although it is not quite East on the ground it is
probably about twenty degrees different aloft, the wind usually moving
round clockways to about that extent. I think that it is blowing at the
rate of about fifty miles an hour, and I therefore take a line on the
map to C, fifty miles due West of A. The Aeroplane's speed is a hundred
miles an hour, and so I take a line of one hundred miles from C to D.
Our compass course will then be in the direction A--E, which is always a
line parallel to C--D. That is, to be exact, it will be fourteen degrees
off the C--D course, as, in this part of the globe, there is that much
difference between the North and South lines on the map and the magnetic
North to which the compass needle points. If the compass has an error,
as it may have of a few degrees, that, too, must be taken into account,
and the deviation or error curve on the dashboard will indicate it.

"The Aeroplane will then always be pointing in a direction parallel to
A--E, but, owing to the side wind, it will be actually travelling over
the course A--B, though in a rather sideways attitude to that course.

"The distance we shall travel over the A--B course in one hour is A--D.
That is nearly eighty-seven miles, so we ought to accomplish our journey
of a hundred and fifty miles in about one and three-quarter hours.

"I hope that's quite clear to you. It's a very simple way of calculating
the compass course, and I always do it like that."

"Yes, that's plain enough. You have drafted what engineers call 'a
parallelogram of forces'; but suppose you have miscalculated the
velocity of the wind, or that it should change in velocity or
direction?"

"Well, that of course will more or less alter matters," replies the
Pilot. "But there are any number of good landmarks such as lakes,
rivers, towns, and railway lines. They will help to keep us on the right
course, and the compass will, at any rate, prevent us from going far
astray when between them."

"Well, we'd better be off, old chap. Hop aboard." This from the Observer
as he climbs into the front seat from which he will command a good view
over the lower plane; and the Pilot takes his place in the rear seat,
and, after making himself perfectly comfortable, fixing his safety belt,
and moving the control levers to make sure that they are working freely,
he gives the signal to the Engine Fitter to turn the propeller and so
start the engine.

Round buzzes the Propeller, and the Pilot, giving the official signal,
the Aeroplane is released and rolls swiftly over the ground in the teeth
of the gusty wind.

In less than fifty yards it takes to the air and begins to climb rapidly
upwards, but how different are the conditions to the calm morning of
yesterday! If the air were visible it would be seen to be acting in the
most extraordinary manner; crazily swirling, lifting and dropping, gusts
viciously colliding--a mad phantasmagoria of forces!

Wickedly it seizes and shakes the Aeroplane; then tries to turn it over
sideways; then instantly changes its mind and in a second drops it into
a hole a hundred feet deep, and if it were not for his safety belt the
Pilot might find his seat sinking away from beneath him.

Gusts strike the front of the craft like so many slaps in the face; and
others, with the motion of mountainous waves, sometimes lift it hundreds
of feet in a few seconds, hoping to see it plunge over the summit in a
death-dive--and so it goes on, but the Pilot, perfectly at one with
his mount and instantly alert to its slightest motion, is skilfully and
naturally making perhaps fifty movements a minute of hand and feet;
the former lightly grasping the "joy-stick" which controls the Elevator
hinged to the tail, and also the Ailerons or little wings hinged to the
wing-tips; and the latter moving the Rudder control-bar.

A strain on the Pilot? Not a bit of it, for this is his Work which he
loves and excels in; and given a cool head, alert eye, and a sensitive
touch for the controls, what sport can compare with these ever-changing
battles of the air?

The Aeroplane has all this time been climbing in great wide circles,
and is now some three thousand feet above the Aerodrome which from such
height looks absurdly small. The buildings below now seem quite squat;
the hills appear to have sunk away into the ground, and the whole
country below, cut up into diminutive fields, has the appearance of
having been lately tidied and thoroughly spring-cleaned! A doll's
country it looks, with tiny horses and cows ornamenting the fields
and little model motor-cars and carts stuck on the roads, the latter
stretching away across the country like ribbons accidentally dropped.

At three thousand feet altitude the Pilot is satisfied that he is now
sufficiently high to secure, in the event of engine failure, a
long enough glide to earth to enable him to choose and reach a good
landing-place; and, being furthermore content with the steady running of
the engine, he decides to climb no more but to follow the course he has
mapped out. Consulting the compass, he places the Aeroplane on the A--E
course and, using the Elevator, he gives his craft its minimum angle of
incidence at which it will just maintain horizontal flight and secure
its maximum speed.

Swiftly he speeds away, and few thoughts he has now for the changing
panorama of country, cloud, and colour. Ever present in his mind are the
three great 'cross-country queries. "Am I on my right course? Can I see
a good landing-ground within gliding distance?" And "How is the Engine
running?"

Keenly both he and the Observer compare their maps with the country
below. The roads, khaki-coloured ribbons, are easily seen but are not
of much use, for there are so many of them and they all look alike from
such an altitude.

Now where can that lake be which the map shows so plainly? He feels that
surely he should see it by now, and has an uncomfortable feeling that
he is flying too far West. What pilot is there indeed who has not many
times experienced such unpleasant sensation? Few things in the air
can create greater anxiety. Wisely, however, he sticks to his compass
course, and the next minute he is rewarded by the sight of the lake,
though indeed he now sees that the direction of his travel will not take
him over it, as should be the case if he were flying over the shortest
route to his destination. He must have slightly miscalculated the
velocity or direction of the side-wind.

"About ten degrees off," he mutters, and, using the Rudder, corrects his
course accordingly.

Now he feels happier and that he is well on his way. The gusts, too,
have ceased to trouble him as, at this altitude, they are not nearly so
bad as they were near the ground the broken surface of which does much
to produce them; and sometimes for miles he makes but a movement or two
of the controls.

The clouds just above race by with dizzy and uniform speed; the country
below slowly unrolls, and the steady drone of the Engine is almost
hypnotic in effect. "Sleep, sleep, sleep," it insidiously suggests.
"Listen to me and watch the clouds; there's nothing else to do. Dream,
dream, dream of speeding through space for ever, and ever, and ever; and
rest, rest, rest to the sound of my rhythmical hum. Droning on and on,
nothing whatever matters. All things now are merged into speed through
space and a sleepy monotonous d-d-r-r-o-o-n-n-e - - - - -." But the
Pilot pulls himself together with a start and peers far ahead in search
of the next landmark. This time it is a little country town, red-roofed
his map tells him, and roughly of cruciform shape; and, sure enough,
there in the right direction are the broken outlines of a few red roofs
peeping out from between the trees.

Another minute and he can see this little town, a fairy town it appears,
nestling down between the hills with its red roofs and picturesque
shape, a glowing and lovely contrast with the dark green of the
surrounding moors.

So extraordinarily clean and tidy it looks from such a height, and
laid out in such orderly fashion with perfectly defined squares, parks,
avenues, and public buildings, it indeed appears hardly real, but rather
as if it has this very day materialized from some delightful children's
book!

Every city and town you must know has its distinct individuality to the
Pilot's eye. Some are not fairy places at all, but great dark ugly blots
upon the fair countryside, and with tall shafts belching forth murky
columns of smoke to defile clean space. Others, melancholy-looking
masses of grey, slate-roofed houses, are always sad and dispirited;
never welcoming the glad sunshine, but ever calling for leaden skies
and a weeping Heaven. Others again, little coquettes with village green,
white palings everywhere, bright gravel roads, and an irrepressible air
of brightness and gaiety.

Then there are the rivers, silvery streaks peacefully winding far, far
away to the distant horizon; they and the lakes the finest landmarks
the Pilot can have. And the forests. How can I describe them? The trees
cannot be seen separately, but merge altogether into enormous irregular
dark green masses sprawling over the country, and sometimes with great
ungainly arms half encircling some town or village; and the wind passing
over the foliage at times gives the forest an almost living appearance,
as of some great dragon of olden times rousing itself from slumber to
devour the peaceful villages which its arms encircle.

And the Pilot and Observer fly on and on, seeing these things and many
others which baffle my poor skill to describe--things, dear Reader, that
you shall see, and poets sing of, and great artists paint in the days
to come when the Designer has captured Efficiency. Then, and the time
is near, shall you see this beautiful world as you have never seen it
before, the garden it is, the peace it breathes, and the wonder of it.

The Pilot, flying on, is now anxiously looking for the railway line
which midway on his journey should point the course. Ah! There it is
at last, but suddenly (and the map at fault) it plunges into the
earth! Well the writer remembers when that happened to him on a long
'cross-country flight in the early days of aviation. Anxiously he
wondered "Are tunnels always straight?" and with what relief, keeping on
a straight course, he picked up the line again some three miles farther
on!

Now at last the Pilot sees the sea, just a streak on the north-eastern
horizon, and he knows that his flight is two-thirds over. Indeed, he
should have seen it before, but the air is none too clear, and he is not
yet able to discern the river which soon should cross his path. As he
swiftly speeds on the air becomes denser and denser with what he fears
must be the beginning of a sea-fog, perhaps drifting inland along the
course of the river. Now does he feel real anxiety, for it is the DUTY
of a Pilot to fear fog, his deadliest enemy. Fog not only hides the
landmarks by which he keeps his course, but makes the control of the
Aeroplane a matter of the greatest difficulty. He may not realize
it, but, in keeping his machine on an even keel, he is unconsciously
balancing it against the horizon, and with the horizon gone he is
lost indeed. Not only that, but it also prevents him from choosing his
landing-place, and the chances are that, landing in a fog, he will smash
into a tree, hedge, or building, with disastrous results. The best and
boldest pilot 'wares a fog, and so this one, finding the conditions
becoming worse and yet worse, and being forced to descend lower and
lower in order to keep the earth within view, wisely decides to choose a
landing-place while there is yet time to do so.

Throttling down the power of the engine he spirals downwards, keenly
observing the country below. There are plenty of green fields to lure
him, and his great object is to avoid one in which the grass is long,
for that would bring his machine to a stop so suddenly as to turn it
over; or one of rough surface likely to break the under-carriage. Now is
perfect eyesight and a cool head indispensable. He sees and decides upon
a field and, knowing his job, he sticks to that field with no change
of mind to confuse him. It is none too large, and gliding just over the
trees and head on to the wind he skilfully "stalls" his machine; that
is, the speed having decreased sufficiently to avoid such a manoeuvre
resulting in ascent, he, by means of the Elevator, gives the Aeroplane
as large an angle of incidence as possible, and the undersides of the
planes meeting the air at such a large angle act as an air-brake, and
the Aeroplane, skimming over the ground, lessens its speed and finally
stops just at the farther end of the field.

Then, after driving the Aeroplane up to and under the lee of the hedge,
he stops the engine, and quickly lashing the joy-stick fast in order
to prevent the wind from blowing the controlling surfaces about and
possibly damaging them, he hurriedly alights. Now running to the tail he
lifts it up on to his shoulder, for the wind has become rough indeed and
there is danger of the Aeroplane becoming unmanageable. By this action
he decreases the angle at which the planes are inclined to the wind and
so minimizes the latter's effect upon them. Then to the Observer, "Hurry
up, old fellow, and try to find some rope, wire, or anything with which
to picket the machine. The wind is rising and I shan't be able to hold
the 'bus steady for long. Don't forget the wire-cutters. They're in the
tool kit." And the Observer rushes off in frantic haste, before long
triumphantly returning with a long length of wire from a neighbouring
fence. Blocking up the tail with some debris at hand, they soon succeed,
with the aid of the wire, in stoutly picketing the Aeroplane to the
roots of the high hedge in front of it; done with much care, too,
so that the wire shall not fray the fabric or set up dangerous
bending-stresses in the woodwork. Their work is not done yet, for the
Observer remarking, "I don't like the look of this thick weather and
rather fear a heavy rain-storm," the Pilot replies, "Well, it's a
fearful bore, but the first rule of our game is never to take an
unnecessary risk, so out with the engine and body covers."

Working with a will they soon have the engine and the open part of the
body which contains the seats, controls, and instruments snugly housed
with their waterproof covers, and the Aeroplane is ready to weather the
possible storm.

Says the Observer, "I'm remarkably peckish, and methinks I spy the
towers of one of England's stately homes showing themselves just beyond
that wood, less than a quarter of a mile away. What ho! for a raid. What
do you say?"

"All right, you cut along and I'll stop here, for the Aeroplane must not
be left alone. Get back as quickly as possible."

And the Observer trots off, leaving the Pilot filling his pipe and
anxiously scrutinizing the weather conditions. Very thick it is now, but
the day is yet young, and he has hopes of the fog lifting sufficiently
to enable the flight to be resumed. A little impatiently he awaits the
return of his comrade, but with never a doubt of the result, for the
hospitality of the country house is proverbial among pilots! What old
hand among them is there who cannot instance many a forced landing made
pleasant by such hospitality? Never too late or too early to help with
food, petrol, oil, tools, and assistants. Many a grateful thought has
the writer for such kind help given in the days before the war (how long
ago they seem!), when aeroplanes were still more imperfect than they are
now, and involuntary descents often a part of 'cross-country flying.

Ah! those early days! How fresh and inspiring they were! As one started
off on one's first 'cross-country flight, on a machine the first of its
design, and with everything yet to learn, and the wonders of the air yet
to explore; then the joy of accomplishment, the dreams of Efficiency,
the hard work and long hours better than leisure; and what a field of
endeavour--the realms of space to conquer! And the battle still goes on
with ever-increasing success. Who is bold enough to say what its limits
shall be?

So ruminates this Pilot-Designer, as he puffs at his pipe, until his
reverie is abruptly disturbed by the return of the Observer.

"Wake up, you AIRMAN," the latter shouts. "Here's the very thing the
doctor ordered! A basket of first-class grub and something to keep the
fog out, too."

"Well, that's splendid, but don't call me newspaper names or you'll
spoil my appetite!"

Then, with hunger such as only flying can produce, they appreciatively
discuss their lunch, and with many a grateful thought for the
donors--and they talk shop. They can't help it, and even golf is a poor
second to flight talk. Says the Pilot, who must have his grievance,
"Just observe where I managed to stop the machine. Not twenty feet from
this hedge! A little more and we should have been through it and into
Kingdom Come! I stalled as well as one could, but the tail touched
the ground and so I could not give the Aeroplane any larger angle of
incidence. Could I have given it a larger angle, then the planes would
have become a much more effective air-brake, and we should have come to
rest in a much shorter distance. It's all the fault of the tail. There's
hardly a type of Aeroplane in existence in which the tail could not be
raised several feet, and that would make all the difference. High tails
mean a large angle of incidence when the machine touches ground and,
with enough angle, I'll guarantee to safely land the fastest machine in
a five-acre field. You can, I am sure, imagine what a difference that
would make where forced landings are concerned!" Then rapidly sketching
in his notebook, he shows the Observer the following illustration:

"That's very pretty," said the Observer, "but how about Mechanical
Difficulties, and Efficiency in respect of Flight? And, anyway, why
hasn't such an obvious thing been done already?"

"As regards the first part of your question I assure you that there's
nothing in it, and I'll prove it to you as follows----"

"Oh! That's all right, old chap. I'll take your word for it," hurriedly
replies the Observer, whose soul isn't tuned to a technical key.

"As regards the latter part of your inquiry," went on the Pilot, a
little nettled at having such a poor listener, "it's very simple.
Aeroplanes have 'just growed' like Topsy, and they consequently contain
this and many another relic of early day design when Aeroplanes were
more or less thrown together and anything was good enough that could get
off the ground."

"By Jove," interrupts the Observer, "I do believe the fog is lifting.
Hadn't we better get the engine and body covers off, just in case it's
really so?"

"I believe you're right. I am sure those hills over there could not
be seen a few minutes ago, and look--there's sunshine over there. We'd
better hurry up."

Ten minutes' hard work and the covers are off, neatly folded and stowed
aboard; the picketing wires are cast adrift, and the Pilot is once more
in his seat. The Aeroplane has been turned to face the other end of the
field, and, the Observer swinging round the propeller, the engine is
awake again and slowly ticking over. Quickly the Observer climbs into
his seat in front of the Pilot, and, the latter slightly opening the
throttle, the Aeroplane leisurely rolls over the ground towards the
other end of the field, from which the ascent will be made.

Arriving there the Pilot turns the Aeroplane in order to face the wind
and thus secure a quick "get-off." Then he opens the throttle fully and
the mighty voice of the Engine roars out "Now see me clear that hedge!"
and the Aeroplane races forward at its minimum angle of incidence. Tail
up, and with ever-increasing speed, it rushes towards the hedge under
the lee of which it has lately been at rest; and then, just as the
Observer involuntarily pulls back an imaginary "joy-stick," the Pilot
moves the real one and places the machine at its best climbing angle.
Like a living thing it responds, and instantly leaves the ground,
clearing the hedge like a--well, like an Aeroplane with an excellent
margin of lift. Upwards it climbs with even and powerful lift, and the
familiar scenes below again gladden the eyes of the Pilot. Smaller and
more and more squat grow the houses and hills; more and more doll-like
appear the fields which are clearly outlined by the hedges; and soon the
country below is easily identified with the map. Now they can see the
river before them and a bay of the sea which must be crossed or skirted.
The fog still lingers along the course of the river and between the
hills, but is fast rolling away in grey, ghost-like masses. Out to sea
it obscures the horizon, making it difficult to be sure where water ends
and fog begins, and creating a strange, rather weird effect by which
ships at a certain distance appear to be floating in space.

Now the Aeroplane is almost over the river, and the next instant it
suddenly drops into a "hole in the air." With great suddenness it
happens, and for some two hundred feet it drops nose-down and tilted
over sideways; but the Pilot is prepared and has put his craft on an
even keel in less time than it takes to tell you about it; for well he
knows that he must expect such conditions when passing over a shore
or, indeed, any well-defined change in the composition of the earth's
surface. Especially is this so on a hot and sunny day, for then the warm
surface of the earth creates columns of ascending air, the speed of the
ascent depending upon the composition of the surface. Sandy soil, for
instance, such as borders this river produces a quickly ascending column
of air, whereas water and forests have not such a marked effect. Thus,
when our Aeroplane passed over the shore of the river, it suddenly lost
the lift due to the ascending air produced by the warm sandy soil, and
it consequently dropped just as if it had fallen into a hole.

Now the Aeroplane is over the bay and, the sea being calm, the Pilot
looks down, down through the water, and clearly sees the bottom,
hundreds of feet below the surface. Down through the reflection of the
blue sky and clouds, and one might think that is all, but it isn't. Only
those who fly know the beauties of the sea as viewed from above;
its dappled pearly tints; its soft dark blue shadows; the beautiful
contrasts of unusual shades of colour which are always differing and
shifting with the changing sunshine and the ever moving position of the
aerial observer. Ah! for some better pen than mine to describe these
things! One with glowing words and a magic rhythm to express the wonders
of the air and the beauty of the garden beneath--the immensity of the
sea--the sense of space and of one's littleness there--the realization
of the Power moving the multitudes below--the exaltation of spirit
altitude produces--the joy of speed. A new world of sensation!

Now the bay is almost crossed and the Aerodrome at B can be
distinguished.

On the Aerodrome is a little crowd waiting and watching for the arrival
of the Aeroplane, for it is of a new and improved type and its first
'cross-country performance is of keen interest to these men; men who
really know something about flight.

There is the Squadron Commander who has done some real flying in
his time; several well-seasoned Flight-Commanders; a dozen or more
Flight-Lieutenants; a knowledgeable Flight-Sergeant; a number of Air
Mechanics, and, a little on one side and almost unnoticed, the Designer.

"I hope they are all right," said someone, "and that they haven't had
difficulties with the fog. It rolled up very quickly, you know."

"Never fear," remarked a Flight-Commander. "I know the Pilot well and
he's a good 'un; far too good to carry on into a fog."

"They say the machine is really something out of the ordinary," said
another, "and that, for once, the Designer has been allowed full play;
that he hasn't been forced to unduly standardize ribs, spars, struts,
etc., and has more or less had his own way. I wonder who he is. It seems
strange we hear so little of him."

"Ah! my boy. You do a bit more flying and you'll discover that things
are not always as they appear from a distance!"

"There she is, sir!" cries the Flight-Sergeant. "Just a speck over the
silvery corner of that cloud."

A tiny speck it looks, some six miles distant and three thousand feet
high; but, racing along, it rapidly appears larger and soon its outlines
can be traced and the sunlight be seen playing upon the whirling
propeller.

Now the distant drone of the engine can be heard, but not for long, for
suddenly it ceases and, the nose of the Aeroplane sinking, the craft
commences gliding downwards.

"Surely too far away," says a subaltern. "It will be a wonderful machine
if, from that distance and height, it can glide into the Aerodrome."
And more than one express the opinion that it cannot be done; but
the Designer smiles to himself, yet with a little anxiety, for his
reputation is at stake, and Efficiency, the main reward he desires, is
perhaps, or perhaps not, at last within his grasp!

Swiftly the machine glides downwards towards them, and it can now be
seen how surprisingly little it is affected by the rough weather and
gusts; so much so that a little chorus of approval is heard.

"Jolly good gliding angle," says someone; and another, "Beautifully
quick controls, what?" and from yet another, "By Jove! The Pilot must be
sure of the machine. Look, he's stopped the engine entirely."

Then the Aeroplane with noiseless engine glides over the boundary of the
Aerodrome, and, with just a soft soughing sound from the air it cleaves,
lands gently not fifty yards from the onlookers.

"Glad to see you," says the Squadron Commander to the Pilot. "How do you
like the machine?" And the Pilot replies:

"I never want a better one, sir. It almost flies itself!"

And the Designer turns his face homewards and towards his beloved
drawing-office; well satisfied, but still dreaming dreams of the future
and... looking far ahead whom should he see but Efficiency at last
coming towards him! And to him she is all things. In her hair is the
morning sunshine; her eyes hold the blue of the sky, and on her cheeks
is the pearly tint of the clouds as seen from above. The passion of
speed, the lure of space, the sense of power, and the wonder of the
future... all these things she holds for him.

"Ah!" he cries. "You'll never leave me now, when at last there is no one
between us?"

And Efficiency, smiling and blushing, but practical as ever, says:

"And you will never throw those Compromises in my face?"

"My dear, I love you for them! Haven't they been my life ever since I
began striving for you ten long years ago?"

And so they walked off very happily, arm-in-arm together; and if this
hasn't bored you and you'd like some more of the same sort of thing, I'd
just love to tell you some day of the wonderful things they accomplish
together, and of what they dream the future holds in store.

And that's the end of the Prologue.




CHAPTER I. FLIGHT

Air has weight (about 13 cubic feet = 1 lb.), inertia, and momentum.
It therefore obeys Newton's laws[14] and resists movement. It is that
resistance or reaction which makes flight possible.

Flight is secured by driving through the air a surface[15] inclined
upwards and towards the direction of motion.

S = Side view of surface.

M = Direction of motion.

CHORD.--The Chord is, for practical purposes, taken to be a straight
line from the leading edge of the surface to its trailing edge.

N = A line through the surface starting from its trailing edge. The
position of this line, which I call the Neutral Lift Line, is found by
means of wind-tunnel research, and it varies with differences in
the camber (curvature) of surfaces. In order to secure flight, the
inclination of the surface must be such that the neutral lift line makes
an angle with and ABOVE the line of motion. If it is coincident with M,
there is no lift. If it makes an angle with M and BELOW it, then there
is a pressure tending to force the surface down.

I = Angle of Incidence. This angle is generally defined as the angle the
chord makes with the direction of motion, but that is a bad definition,
as it leads to misconception. The angle of incidence is best described
as the angle the neutral lift line makes with the direction of motion
relative to the air. You will, however, find that in nearly all rigging
specifications the angle of incidence is taken to mean the angle the
chord makes with a line parallel to the propeller thrust. This is
necessary from the point of view of the practical mechanic who has to
rig the aeroplane, for he could not find the neutral lift line, whereas
he can easily find the chord. Again, he would certainly be in doubt as
to "the direction of motion relative to the air," whereas he can easily
find a line parallel to the propeller thrust. It is a pity, however,
that these practical considerations have resulted in a bad definition
of the angle of incidence becoming prevalent, a consequence of which has
been the widespread fallacy that flight may be secured with a negative
inclination of the surface. Flight may conceivably be secured with a
negative angle of chord, but never with a negative inclination of the
surface. All this is only applicable to cambered surfaces. In the case
of flat surfaces the neutral lift line coincides with the chord and the
definition I have criticised adversely is then applicable. Flat lifting
surfaces are, however, never used.

The surface acts upon the air in the following manner:


As the bottom of the surface meets the air, it compresses it and
accelerates it DOWNWARDS. As a result of this definite action there is,
of course, an equal and opposite reaction UPWARDS.

The top surface, in moving forward, tends to leave the air behind
it, thus creating a semi-vacuum or rarefied area over the top of the
surface. Consequently the pressure of air on the top of the surface
is decreased, thus assisting the reaction below to lift the surface
UPWARDS.

The reaction increases approximately as the square of the velocity. It
is the result of (1) the mass of air engaged, and (2) the velocity and
consequent force with which the surface engages the air. If the reaction
was produced by only one of those factors it would increase in direct
proportion to the velocity, but, since it is the product of both
factors, it increases as V(2S).

Approximately three-fifths of the reaction is due to the decrease of
density (and consequent decrease of downward pressure) on the top of the
surface; and only some two-fifths is due to the upward reaction secured
by the action of the bottom surface upon the air. A practical point in
respect of this is that, in the event of the fabric covering the surface
getting into bad condition, it is more likely to strip off the top than
off the bottom.

The direction of the reaction is approximately at right-angles to the
chord of the surface, as illustrated above; and it is, in considering
flight, convenient to divide it into two component parts or values,
thus:

1. The vertical component of the reaction, i.e., Lift, which is opposed
to Gravity, i.e., the weight of the aeroplane.

2. The horizontal component, i.e., Drift (sometimes called Resistance),
to which is opposed the thrust of the propeller.

The direction of the reaction is, of course, the resultant of the forces
Lift and Drift.

The Lift is the useful part of the reaction, for it lifts the weight of
the aeroplane.

The Drift is the villain of the piece, and must be overcome by the
Thrust in order to secure the necessary velocity to produce the
requisite Lift for flight.

DRIFT.--The drift of the whole aeroplane (we have considered only the
lifting surface heretofore) may be conveniently divided into three
parts, as follows:

Active Drift, which is the drift produced by the lifting surfaces.

Passive Drift, which is the drift produced by all the rest of the
aeroplane--the struts, wires, fuselage, under-carriage, etc., all of
which is known as "detrimental surface."

Skin Friction, which is the drift produced by the friction of the air
with roughnesses of surface. The latter is practically negligible
having regard to the smooth surface of the modern aeroplane, and its
comparatively slow velocity compared with, for instance, the velocity of
a propeller blade.

LIFT-DRIFT RATIO.--The proportion of lift to drift is known as the
lift-drift ratio, and is of paramount importance, for it expresses the
efficiency of the aeroplane (as distinct from engine and propeller). A
knowledge of the factors governing the lift-drift ratio is, as will be
seen later, an absolute necessity to anyone responsible for the rigging
of an aeroplane, and the maintenance of it in an efficient and safe
condition.

Those factors are as follows:

1. Velocity.--The greater the velocity the greater the proportion of
drift to lift, and consequently the less the efficiency. Considering
the lifting surfaces alone, both the lift and the (active) drift, being
component parts of the reaction, increase as the square of the velocity,
and the efficiency remains the same at all speeds. But, considering the
whole aeroplane, we must remember the passive drift. It also increases
as the square of the velocity (with no attendant lift), and, adding
itself to the active drift, results in increasing the proportion of
total drift (active + passive) to lift.

But for the increase in passive drift the efficiency of the aeroplane
would not fall with increasing velocity, and it would be possible, by
doubling the thrust, to approximately double the speed or lift--a happy
state of affairs which can never be, but which we may, in a measure,
approach by doing everything possible to diminish the passive drift.

Every effort is then made to decrease it by "stream-lining," i.e., by
giving all "detrimental" parts of the aeroplane a form by which they
will pass through the air with the least possible drift. Even the wires
bracing the aeroplane together are, in many cases, stream-lined, and
with a markedly good effect upon the lift-drift ratio. In the case of a
certain well-known type of aeroplane the replacing of the ordinary wires
by stream-lined wires added over five miles an hour to the flight speed.

Head-resistance is a term often applied to passive drift, but it is apt
to convey a wrong impression, as the drift is not nearly so much the
result of the head or forward part of struts, wires, etc., as it is of
the rarefied area behind.

Above is illustrated the flow of air round two objects moving in the
direction of the arrow M.

In the case of A, you will note that the rarefied area DD is of very
considerable extent; whereas in the case of B, the air flows round it
in such a way as to meet very closely to the rear of the object, thus
DECREASING DD.

The greater the rarefied area DD. then, the less the density, and,
consequently, the less the pressure of air upon the rear of the object.
The less such pressure, then, the better is head-resistance D able to
get its work in, and the more thrust will be required to overcome it.

The "fineness" of the stream-line shape, i.e., the proportion of length
to width, is determined by the velocity--the greater the velocity, the
greater the fineness. The best degree of fineness for any given velocity
is found by means of wind-tunnel research.

The practical application of all this is, from a rigging point of view,
the importance of adjusting all stream-line parts to be dead-on in the
line of flight, but more of that later on.

2. Angle of Incidence.--The most efficient angle of incidence varies
with the thrust at the disposal of the designer, the weight to be
carried, and the climb-velocity ratio desired.

The best angles of incidence for these varying factors are found by
means of wind-tunnel research and practical trial and error. Generally
speaking, the greater the velocity the smaller should be the angle of
incidence, in order to preserve a clean, stream-line shape of rarefied
area and freedom from eddies. Should the angle be too great for the
velocity, then the rarefied area becomes of irregular shape with
attendant turbulent eddies. Such eddies possess no lift value, and since
it has taken power to produce them, they represent drift and adversely
affect the lift-drift ratio.

From a rigging point of view, one must presume that every standard
aeroplane has its lifting surface set at the most efficient angle, and
the practical application of all this is in taking the greatest possible
care to rig the surface at the correct angle and to maintain it at such
angle. Any deviation will adversely affect the lift-drift ratio, i.e.,
the efficiency.

3. Camber.--(Refer to the second illustration in this chapter.) The
lifting surfaces are cambered, i.e., curved, in order to decrease the
horizontal component of the reaction, i.e., the drift.

The bottom camber: If the bottom of the surface was flat, every particle
of air meeting it would do so with a shock, and such shock would produce
a very considerable horizontal reaction or drift. By curving it such
shock is diminished, and the curve should be such as to produce a
uniform (not necessarily constant) acceleration and compression of the
air from the leading edge to the trailing edge. Any unevenness in the
acceleration and compression of the air produces drift.

The top camber: If this was flat it would produce a rarefied area of
irregular shape. I have already explained the bad effect this has
upon the lift-drift ratio. The top surface is then curved to produce a
rarefied area the shape of which shall be as stream-line and free from
attendant eddies as possible.

The camber varies with the angle of incidence, the velocity, and the
thickness of the surface. Generally speaking, the greater the velocity,
the less the camber and angle of incidence. With infinite velocity the
surface would be set at no angle of incidence (the neutral lift line
coincident with the direction of motion relative to the air), and would
be, top and bottom, of pure streamline form--i.e., of infinite fineness.
This is, of course, carrying theory to absurdity as the surface would
then cease to exist.

The best cambers for varying velocities, angles of incidence, and
thicknesses of surface, are found by means of wind-tunnel research.
The practical application of all this is in taking the greatest care to
prevent the surface from becoming distorted and thus spoiling the camber
and consequently the lift-drift ratio.

4. Aspect Ratio.--This is the proportion of span to chord. Thus, if the
span is, for instance, 50 feet and the chord 5 feet, the surface would
be said to have an aspect ratio of 10 to 1.

For A GIVEN VELOCITY and A GIVEN AREA of surface, the greater the
aspect ratio, the greater the reaction. It is obvious, I think, that the
greater the span, the greater the mass of air engaged, and, as already
explained, the reaction is partly the result of the mass of air engaged.

Not only that, but, PROVIDED the chord is not decreased to an extent
making it impossible to secure the best camber owing to the thickness
of the surface, the greater the aspect ratio, the better the lift-drift
ratio. The reason of this is rather obscure. It is sometimes advanced
that it is owing to the "spill" of air from under the wing-tips. With
a high aspect ratio the chord is less than would otherwise be the case.
Less chord results in smaller wing-tips and consequently less "spill."
This, however, appears to be a rather inadequate reason for the high
aspect ratio producing the high lift-drift ratio. Other reasons are also
advanced, but they are of such a contentious nature I do not think it
well to go into them here. They are of interest to designers, but this
is written for the practical pilot and rigger.

5. Stagger.--This is the advancement of the top surface relative to the
bottom surface, and is not, of course, applicable to a single surface,
i.e., a monoplane. In the case of a biplane having no stagger, there
will be "interference" and consequent loss of Efficiency unless the
gap between the top and bottom surfaces is equal to not less than 1 1/2
times the chord. If less than that, the air engaged by the bottom of the
top surface will have a tendency to be drawn into the rarefied area over
the top of the bottom surface, with the result that the surfaces will
not secure as good a reaction as would otherwise be the case.

It is not practicable to have a gap of much more than a distance equal
to the chord, owing to the drift produced by the great length of struts
and wires such a large gap would necessitate. By staggering the top
surface forward, however, it is removed from the action of the lower
surface and engages undisturbed air, with the result that the efficiency
can in this way be increased by about 5 per cent. Theoretically the top
plane should be staggered forward for a distance equal to about 30 per
cent. of the chord, the exact distance depending upon the velocity
and angle of incidence; but this is not always possible to arrange
in designing an aeroplane, owing to difficulties of balance, desired
position, and view of pilot, observer, etc.

6. Horizontal Equivalent.--The vertical component of the reaction, i.e.,
lift, varies as the horizontal equivalent (H.E.) of the surface, but
the drift remains the same. Then it follows that if H.E. grows less, the
ratio of lift to drift must do the same.

A, B, and C are front views of three surfaces.

A has its full H.E., and therefore, from the point of view from which
we are at the moment considering efficiency, it has its best lift-drift
ratio.

B and C both possess the same surface as A, but one is inclined upwards
from its centre and the other is straight but tilted. For these reasons
their H.E.'s are, as illustrated, less than in the case of A. That means
less vertical lift, and, the drift remaining the same (for there is
the same amount of surface as in A to produce it), the lift-drift ratio
falls.

THE MARGIN OF POWER is the power available above that necessary to
maintain horizontal flight.

THE MARGIN OF LIFT is the height an aeroplane can gain in a given time
and starting from a given altitude. As an example, thus: 1,000 feet the
first minute, and starting from an altitude of 500 feet above sea-level.

The margin of lift decreases with altitude, owing to the decrease in
the density of the air, which adversely affects the engine. Provided
the engine maintained its impulse with altitude, then, if we ignore the
problem of the propeller, which I will go into later on, the margin of
lift would not disappear. Moreover, greater velocity for a given power
would be secured at a greater altitude, owing to the decreased density
of air to be overcome. After reading that, you may like to light your
pipe and indulge in dreams of the wonderful possibilities which may
become realities if some brilliant genius shows us some day how to
secure a constant power with increasing altitude. I am afraid, however,
that will always remain impossible; but it is probable that some very
interesting steps may be taken in that direction.

THE MINIMUM ANGLE OF INCIDENCE is the smallest angle at which, for
a given power, surface (including detrimental surface), and weight,
horizontal flight can be maintained.

THE MAXIMUM ANGLE OF INCIDENCE is the greatest angle at which, for
a given power, surface (including detrimental surface), and weight,
horizontal flight can be maintained.

THE OPTIMUM ANGLE OF INCIDENCE is the angle at which the lift-drift
ratio is highest. In modern aeroplanes it is that angle of incidence
possessed by the surface when the axis of the propeller is horizontal.

THE BEST CLIMBING ANGLE is approximately half-way between the maximum
and the optimum angles.

All present-day aeroplanes are a compromise between Climb and horizontal
Velocity. We will compare the essentials for two aeroplanes, one
designed for maximum climb, and the other for maximum velocity.


ESSENTIALS FOR MAXIMUM CLIMB:

1. Low velocity, in order to secure the best lift-drift ratio.

2. Having a low velocity, a large surface will be necessary in order to
engage the necessary mass of air to secure the requisite lift.

3. Since (1) such a climbing machine will move along an upward sloping
path, and (2) will climb with its propeller thrust horizontal, then a
large angle relative to the direction of the thrust will be necessary in
order to secure the requisite angle relative to the direction of motion.

The propeller thrust should be always horizontal, because the most
efficient flying-machine (having regard to climb OR velocity) has, so
far, been found to be an arrangement of an inclined surface driven by
a HORIZONTAL thrust--the surface lifting the weight, and the thrust
overcoming the drift. This is, in practice, a far more efficient
arrangement than the helicopter, i.e., the air-screw revolving about
a vertical axis and producing a thrust opposed to gravity. If, when
climbing, the propeller thrust is at such an angle as to tend to haul
the aeroplane upwards, then it is, in a measure, acting as a helicopter,
and that means inefficiency. The reason of a helicopter being
inefficient in practice is due to the fact that, owing to mechanical
difficulties, it is impossible to construct within a reasonable weight
an air-screw of the requisite dimensions. That being so, it would be
necessary, in order to absorb the power of the engine, to revolve the
comparatively small-surfaced air screw at an immensely greater velocity
than that of the aeroplane's surface. As already explained, the
lift-drift ratio falls with velocity on account of the increase in
passive drift. This applies to a blade of a propeller or air-screw,
which is nothing but a revolving surface set at angle of incidence, and
which it is impossible to construct without a good deal of detrimental
surface near the central boss.

4. The velocity being low, then it follows that for that reason also the
angle of incidence should be comparatively large.

5. Camber.--Since such an aeroplane would be of low velocity, and
therefore possess a large angle of incidence, a large camber would be
necessary.

Let us now consider the essentials for an aeroplane of maximum velocity
for its power, and possessing merely enough lift to get off the ground,
but no margin of lift.

1. Comparatively HIGH VELOCITY.

2. A comparatively SMALL SURFACE, because, being of greater velocity
than the maximum climber, a greater mass of air will be engaged for
a given surface and time, and therefore a smaller surface will be
sufficient to secure the requisit lift.

3. A small angle relative to the propeller thrust, since the latter
coincides with the direction of motion.

4. A comparatively small angle of incidence by reason of the high
velocity.

5. A comparatively small camber follows as a result of the small angle
of incidence.


SUMMARY.

   Essentials for Maximum            Essentials for Maximum
           Climb.                            Velocity

   1. Low velocity.                  High velocity.
   2. Large surface.                 Small surface.
   3. Large angle relative to        Small angle relative to
      propeller thrust.                 propeller thrust.
   4. Large angle relative to        Small angle relative to direction
      direction of motion.              of motion.
   5. Large camber.                  Small camber.


It is mechanically impossible to construct an aeroplane of reasonable
weight of which it would be possible to very the above opposing
essentials. Therefore, all aeroplanes are designed as a compromise
between Climb and Velocity.

As a rule aeroplanes are designed to have at low altitude a slight
margin of lift when the propeller thrust is horizontal.


ANGLES OF INCIDENCE (INDICATED APPROXIMATELY) OF AN AEROPLANE DESIGNED
AS A COMPROMISE BETWEEN VELOCITY AND CLIMB, AND POSSESSING A SLIGHT
MARGIN OF LIFT AT A LOW ALTITUDE AND WHEN THE THRUST IS HORIZONTAL

MINIMUM ANGLE.

This gives the greatest velocity during horizontal flight at a low
altitude. Greater velocity would be secured if the surface, angle, and
camber were smaller and designed to just maintain horizontal flight
with a horizontal thrust. Also, in such case, the propeller would not
be thrusting downwards, but along a horizontal line which is obviously
a more efficient arrangement if we regard the aeroplane merely from one
point of view, i.e., either with reference to velocity OR climb.

OPTIMUM ANGLE (Thrust horizontal)

The velocity is less than at the smaller minimum angle, and, as
aeroplanes are designed to-day, the area and angle of incidence of the
surface is such as to secure a slight ascent at a low altitude. The
camber of the surface is designed for this angle of incidence and
velocity. The lift-drift ratio is best at this angle.

BEST CLIMBING ANGLE

The velocity is now still less by reason of the increased angle
producing increase of drift. Less velocity at A GIVEN ANGLE produces
less lift, but the increased angle more or less offsets the loss of
lift due to the decreased velocity, and in addition, the thrust is now
hauling the aeroplane upwards.

MAXIMUM ANGLE

The greater angle has now produced so much drift as to lessen the
velocity to a point where the combined lifts from the surface and from
the thrust are only just able to maintain horizontal flight. Any greater
angle will result in a still lower lift-drift ratio. The lift will then
become less than the weight and the aeroplane will consequently fall.
Such a fall is known as "stalling" or "pancaking."

NOTE.--The golden rule for beginners: Never exceed the Best Climbing
Angle. Always maintain the flying speed of the aeroplane.


By this means, when the altitude is reached where the margin of
lift disappears (on account of loss of engine power), and which is,
consequently, the altitude where it is just possible to maintain
horizontal flight, the aeroplane is flying with its thrust horizontal
and with maximum efficiency (as distinct from engine and propeller
efficiency).

The margin of lift at low altitude, and when the thrust is horizontal,
should then be such that the higher altitude at which the margin of lift
is lost is that altitude at which most of the aeroplane's horizontal
flight work is done. That ensures maximum velocity when most required.

Unfortunately, where aeroplanes designed for fighting are concerned, the
altitude where most of the work is done is that at which both maximum
velocity and maximum margin of lift for power are required.

Perhaps some day a brilliant inventor will design an aeroplane of
reasonable weight and drift of which it will be possible for the pilot
to vary at will the above-mentioned opposing essentials. Then we shall
get maximum velocity, or maximum margin of lift, for power as required.
Until then the design of the aeroplane must remain a compromise between
Velocity and Climb.




CHAPTER II. STABILITY AND CONTROL

STABILITY is a condition whereby an object disturbed has a natural
tendency to return to its first and normal position. Example: a weight
suspended by a cord.

INSTABILITY is a condition whereby an object disturbed has a natural
tendency to move as far as possible away from its first position, with
no tendency to return. Example: a stick balanced vertically upon your
finger.

NEUTRAL INSTABILITY is a condition whereby an object disturbed has no
tendency to move farther than displaced by the force of the disturbance,
and no tendency to return to its first position.

In order that an aeroplane may be reasonably controllable, it is
necessary for it to possess some degree of stability longitudinally,
laterally, and directionally.

LONGITUDINAL STABILITY in an aeroplane is its stability about an axis
transverse to the direction of normal horizontal flight, and without
which it would pitch and toss.

LATERAL STABILITY is its stability about its longitudinal axis, and
without which it would roll sideways.

DIRECTIONAL STABILITY is its stability about its vertical axis, and
without which it would have no tendency to keep its course.

For such directional stability to exist there must be, in effect,[16]
more "keel-surface" behind the vertical axis than there is in front of
it. By keel-surface I mean every-thing to be seen when looking at an
aeroplane from the side of it--the sides of the body, undercarriage,
struts, wires, etc. The same thing applies to a weathercock. You know
what would happen if there was insufficient keel-surface behind the
vertical axis upon which it is pivoted. It would turn off its proper
course, which is opposite to the direction of the wind. It is very much
the same in the case of an aeroplane.

The above illustration represents an aeroplane (directionally stable)
flying along the course B. A gust striking it as indicated acts upon the
greater proportion of keel-surface behind the turning axis and throws it
into the new course. It does not, however, travel along the new course,
owing to its momentum in the direction B. It travels, as long as such
momentum lasts, in a direction which is the resultant of the two forces
Thrust and Momentum. But the centre line of the aeroplane is pointing in
the direction of the new course. Therefore its attitude, relative to
the direction of motion, is more or less sideways, and it consequently
receives an air pressure in the direction C. Such pressure, acting upon
the keel-surface, presses the tail back towards its first position in
which the aeroplane is upon its course B.

What I have described is continually going on during flight, but in
a well-designed aeroplane such stabilizing movements are, most of the
time, so slight as to be imperceptible to the pilot.

If an aeroplane was not stabilized in this way, it would not only be
continually trying to leave its course, but it would also possess a
dangerous tendency to "nose away" from the direction of the side gusts.
In such case the gust shown in the above illustration would turn the
aeroplane round the opposite way a very considerable distance; and the
right wing, being on the outside of the turn, would travel with greater
velocity than the left wing. Increased velocity means increased lift;
and so, the right wing lifting, the aeroplane would turn over sideways
very quickly.

LONGITUDINAL STABILITY.--Flat surfaces are longitudinally stable owing
to the fact that with decreasing angles of incidence the centre line of
pressure (C.P.) moves forward.

The C.P. is a line taken across the surface, transverse to the direction
of motion, and about which all the air forces may be said to balance, or
through which they may be said to act.


Imagine A to be a flat surface, attitude vertical, travelling through
the air in the direction of motion M. Its C.P. is then obviously along
the exact centre line of the surface as illustrated.

In B, C, and D the surfaces are shown with angles of incidence
decreasing to nothing, and you will note that the C.P. moves forward
with the decreasing angle.

Now, should some gust or eddy tend to make the surface decrease the
angle, i.e., dive, then the C.P. moves forward and pushes the front of
the surface up. Should the surface tend to assume too large an angle,
then the reverse happens--the C.P. moves back and pushes the rear of the
surface up.

Flat surfaces are, then, theoretically stable longitudinally. They are
not, however, used, on account of their poor lift-drift ratio.

As already explained, cambered surfaces are used, and these are
longitudinally unstable at those angles of incidence producing a
reasonable lift-drift ratio, i.e., at angles below: about 12 degrees.

A is a cambered surface, attitude approximately vertical, moving through
the air in the direction M. Obviously the C. P. coincides with the
transverse centre line of the surface.

With decreasing angles, down to angles of about 30 degrees, the C.P.
moves forward as in the case of flat surfaces (see B), but angles above
30 degrees do not interest us, since they produce a very low ratio of
lift to drift.

Below angles of about 30 degrees (see C) the dipping front part of the
surface assumes a negative angle of incidence resulting in the DOWNWARD
air pressure D, and the more the angle of incidence is decreased, the
greater such negative angle and its resultant pressure D. Since the
C.P. is the resultant of all the air forces, its position is naturally
affected by D, which causes it to move backwards. Now, should some gust
or eddy tend to make the surface decrease its angle of incidence, i.e.,
dive, then the C.P. moves backwards, and, pushing up the rear of the
surface, causes it to dive the more. Should the surface tend to assume
too large an angle, then the reverse happens; the pressure D decreases,
with the result that C.P. moves forward and pushes up the front of the
surface, thus increasing the angle still further, the final result being
a "tail-slide."

It is therefore necessary to find a means of stabilizing the naturally
unstable cambered surface. This is usually secured by means of a
stabilizing surface fixed some distance in the rear of the main surface,
and it is a necessary condition that the neutral lift lines of the two
surfaces, when projected to meet each other, make a dihedral angle. In
other words, the rear stabilizing surface must have a lesser angle of
incidence than the main surface--certainly not more than one-third of
that of the main surface. This is known as the longitudinal dihedral.

I may add that the tail-plane is sometimes mounted upon the aeroplane at
the same angle as the main surface, but, in such cases, it attacks air
which has received a downward deflection from the main surface, thus:

The angle at which the tail surface attacks the air (the angle of
incidence) is therefore less than the angle of incidence of the main
surface.

I will now, by means of the following illustration, try to explain how
the longitudinal dihedral secures stability:

First, imagine the aeroplane travelling in the direction of motion,
which coincides with the direction of thrust T. The weight is, of
course, balanced about a C.P., the resultant of the C.P. of the main
surface and the C.P. of the stabilizing surface. For the sake of
illustration, the stabilizing surface has been given an angle of
incidence, and therefore has a lift and C.P. In practice the stabilizer
is often set at no angle of incidence. In such case the proposition
remains the same, but it is, perhaps, a little easier to illustrate it
as above.

Now, we will suppose that a gust or eddy throws the machine into the
lower position. It no longer travels in the direction of T, since the
momentum in the old direction pulls it off that course. M is now the
resultant of the Thrust and the Momentum, and you will note that this
results in a decrease in the angle our old friend the neutral lift line
makes with M, i.e., a decrease in the angle of incidence and therefore a
decrease in lift.

We will suppose that this decrease is 2 degrees. Such decrease applies
to both main surface and stabilizer, since both are fixed rigidly to the
aeroplane.

The main surface, which had 12 degrees angle, has now only 10 degrees,
i.e., a loss of ONE-SIXTH.

The stabilizer, which had 4 degrees angle, has now only 2 degrees, i.e.,
a loss of ONE-HALF.

The latter has therefore lost a greater PROPORTION of its angle of
incidence, and consequently its lift, than has the main surface. It must
then fall relative to the main surface. The tail falling, the aeroplane
then assumes its first position, though at a slightly less altitude.

Should a gust throw the nose of the aeroplane up, then the reverse
happens. Both main surface and stabilizer increase their angles of
incidence in the same amount, but the angle, and therefore the lift, of
the stabilizer increases in greater proportion than does the lift of the
main surface, with the result that it lifts the tail. The aeroplane then
assumes its first position, though at a slightly greater altitude.

Do not fall into the widespread error that the angle of incidence varies
as the angle of the aeroplane to the horizontal. It varies with such
angle, but not as anything approaching it. Remember that the stabilizing
effect of the longitudinal dihedral lasts only as long as there is
momentum in the direction of the first course.

These stabilizing movements are taking place all the time, even though
imperceptible to the pilot.

Aeroplanes have, in the past, been built with a stabilizing surface in
front of the main surface instead of at the rear of it. In such
design the main surface (which is then the tail surface as well as the
principal lifting surface) must be set at a less angle than the forward
stabilizing surface, in order to secure a longitudinal dihedral. The
defect of such design lies in the fact that the main surface must have
a certain angle to lift the weight--say 5 degrees. Then, in order to
secure a sufficiency of longitudinal stability, it is necessary to
set the forward stabilizer at about 15 degrees. Such a large angle of
incidence results in a very poor lift-drift ratio (and consequently
great loss of efficiency), except at very low velocities compared with
the speed of modern aeroplanes. At the time such aeroplanes were built
velocities were comparatively low, and this defect was; for that reason,
not sufficiently appreciated. In the end it killed the "canard" or
"tail-first" design.

Aeroplanes of the Dunne and similar types possess no stabilizing surface
distinct from the main surface, but they have a longitudinal dihedral
which renders them stable.

The main surface towards the wing-tips is given a decreasing angle
of incidence and corresponding camber. The wing-tips then act as
longitudinal stabilizers.

This design of aeroplane, while very interesting, has not proved very
practicable, owing to the following disadvantages: (1) The plan design
is not, from a mechanical point of view, so sound as that of the
ordinary aeroplane surface, which is, in plan, a parallelogram. It is,
then, necessary to make the strength of construction greater than would
otherwise be the case. That means extra weight. (2) The plan of the
surface area is such that the aspect ratio is not so high as if the
surface was arranged with its leading edges at right angles to the
direction of motion. The lower the aspect ratio, then, the less the
lift. This design, then, produces less lift for weight of surface than
would the same surface if arranged as a parallelogram. (3) In order to
secure the longitudinal dihedral, the angle of incidence has to be very
much decreased towards the wing-tips. Then, in order that the lift-drift
ratio may be preserved, there must be a corresponding decrease in the
camber. That calls for surface ribs of varying cambers, and results in
an expensive and lengthy job for the builder. (4) In order to secure
directional stability, the surface is, in the centre, arranged to dip
down in the form of a V, pointing towards the direction of motion.
Should the aeroplane turn off its course, then its momentum in the
direction of its first course causes it to move in a direction the
resultant of the thrust and the momentum. It then moves in a more or
less sideways attitude, which results in an air pressure upon one
side of the V, and which tends to turn the aeroplane back to its first
course. This arrangement of the surface results in a bad drift. Vertical
surfaces at the wing-tips may also be set at an angle producing the same
stabilizing effect, but they also increase the drift.

The gyroscopic action of a rotary engine will affect the longitudinal
stability when an aeroplane is turned to right or left. In the case of
a Gnome engine, such gyroscopic action will tend to depress the nose of
the aeroplane when it is turned to the left, and to elevate it when
it is turned to the right. In modern aeroplanes this tendency is not
sufficiently important to bother about. In the old days of crudely
designed and under-powered aeroplanes this gyroscopic action was very
marked, and led the majority of pilots to dislike turning an aeroplane
to the right, since, in doing so, there was some danger of "stalling."


LATERAL STABILITY is far more difficult for the designer to secure
than is longitudinal or directional stability. Some degree of lateral
stability may be secured by means of the "lateral dihedral," i.e., the
upward inclination of the surface towards its wing-tips thus:

Imagine the top V, illustrated opposite, to be the front view of a
surface flying towards you. The horizontal equivalent (H.E.) of the left
wing is the same as that of the right wing. Therefore, the lift of one
wing is equal to the lift of the other, and the weight, being situated
always in the centre, is balanced.

If some movement of the air causes the surface to tilt sideways, as in
the lower illustration, then you will note that the H.E. of the left
wing increases, and the H.E. of the right wing decreases. The left wing
then, having the greatest lift, rises; and the surface assumes its first
and normal position.

Unfortunately however, the righting effect is not proportional to the
difference between the right and left H.E.'s.



In the case of A, the resultant direction of the reaction of both wings
is opposed to the direction of gravity or weight. The two forces R R
and gravity are then evenly balanced, and the surface is in a state of
equilibrium.

In the case of B, you will note that the R R is not directly opposed
to gravity. This results in the appearance of M, and so the resultant
direction of motion of the aeroplane is no longer directly forward, but
is along a line the resultant of the thrust and M. In other words,
it is, while flying forward, at the same time moving sideways in the
direction M.

In moving sideways, the keel-surface receives, of course, a pressure
from the air equal and opposite to M. Since such surface is greatest in
effect towards the tail, then the latter must be pushed sideways. That
causes the aeroplane to turn; and, the highest wing being on the
outside of the turn, it has a greater velocity than the lower wing. That
produces greater lift, and tends to tilt the aeroplane over still more.
Such tilting tendency is, however, opposed by the difference in the
H.E.'s of the two wings.

It then follows that, for the lateral dihedral angle to be effective,
such angle must be large enough to produce, when the aeroplane tilts,
a difference in the H.E.'s of the two wings, which difference must be
sufficient to not only oppose the tilting tendency due to the aeroplane
turning, but sufficient to also force the aeroplane back to its original
position of equilibrium.

It is now, I hope, clear to the reader that the lateral dihedral is
not quite so effective as would appear at first sight. Some designers,
indeed, prefer not to use it, since its effect is not very great, and
since it must be paid for in loss of H.E. and consequently loss of lift,
thus decreasing the lift-drift ratio, i.e., the efficiency. Also, it is
sometimes advanced that the lateral dihedral increases the "spill" of
air from the wing-tips and that this adversely affects the lift-drift
ratio.

The disposition of the keel-surface affects the lateral stability. It
should be, in effect, equally divided by the longitudinal turning axis
of the aeroplane. If there is an excess of keel-surface above or below
such axis, then a side gust striking it will tend to turn the aeroplane
over sideways.

The position of the centre of gravity affects lateral stability. If
too low, it produces a pendulum effect and causes the aeroplane to roll
sideways.

If too high, it acts as a stick balanced vertically would act. If
disturbed, it tends to travel to a position as far as possible from its
original position. It would then tend, when moved, to turn the aeroplane
over sideways and into an upside-down position.

From the point of view of lateral stability, the best position for the
centre of gravity is one a little below the centre of drift.

Propeller torque affects lateral stability. An aeroplane tends to turn
over sideways in the opposite direction to which the propeller revolves.

This tendency is offset by increasing the angle of incidence (and
consequently the lift) of the side tending to fall; and it is always
advisable, if practical considerations allow it, to also decrease the
angle upon the other side. In that way it is not necessary to depart so
far from the normal angle of incidence at which the lift-drift ratio is
highest.

Wash-in is the term applied to the increased angle.

Wash-out is the term applied to the decreased angle.

Both lateral and directional stability may be improved by washing out
the angle of incidence on both sides of the surface, thus:

The decreased angle decreases the drift and therefore the effect of
gusts upon the wing-tips which is just where they have the most effect
upon the aeroplane, owing to the distance from the turning axis.

The wash-out also renders the ailerons (lateral controlling services)
more effective, as, in order to operate them, it is not then necessary
to give them such a large angle of incidence as would otherwise be
required.



The less the angle of incidence of the ailerons, the better their
lift-drift ratio, i.e., their efficiency. You will note that, while the
aileron attached to the surface with washed-out angle is operated to the
same extent as the aileron illustrated above it, its angle of incidence
is considerably less. Its efficiency is therefore greater.

The advantages of the wash-in must, of course be paid for in some loss
of lift, as the lift decreases with the decreased angle.

In order to secure all the above described advantages, a combination is
sometimes effected, thus:

BANKING.--An aeroplane turned off its course to right or left does not
at once proceed along its new course. Its momentum in the direction of
its first course causes it to travel along a line the resultant of such
momentum and the thrust. In other words, it more or less skids sideways
and away from the centre of the turn. Its lifting surfaces do not then
meet the air in their correct attitude, and the lift may fall to such
an extent as to become less than the weight, in which case the aeroplane
must fall. This bad effect is minimized by "banking," i.e., tilting the
aeroplane sideways. The bottom of the lifting surface is in that way
opposed to the air through which it is moving in the direction of the
momentum and receives an opposite air pressure. The rarefied area over
the top of the surface is rendered still more rare, and this, of course,
assists the air pressure in opposing the momentum.

The velocity of the "skid," or sideways movement, is then only such
as is necessary to secure an air pressure equal and opposite to the
centrifugal force of the turn.

The sharper the turn, the greater the effect of the centrifugal force,
and therefore the steeper should be the "bank." Experentia docet.

The position of the centre of gravity affects banking. A low C.G. will
tend to swing outward from the centre of the turn, and will cause the
aeroplane to bank--perhaps too much, in which case the pilot must remedy
matters by operating the ailerons.

A high C.G. also tends to swing outward from the centre of the turn. It
will tend to make the aeroplane bank the wrong way, and such effect must
be remedied by means of the ailerons.

The pleasantest machine from a banking point of view is one in which
the C.G. is a little below the centre of drift. It tends to bank the
aeroplane the right way for the turn, and the pilot can, if necessary,
perfect the bank by means of the ailerons.

The disposition of the keel-surface affects banking. It should be,
in effect, evenly divided by the longitudinal axis. An excess of
keel-surface above the longitudinal axis will, when banking, receive an
air pressure causing the aeroplane to bank, perhaps too much. An excess
of keel-surface below the axis has the reverse effect.


SIDE-SLIPPING.--This usually occurs as a result of over-banking. It is
always the result of the aeroplane tilting sideways and thus decreasing
the horizontal equivalent, and therefore the lift, of the surface. An
excessive "bank," or sideways tilt, results in the H.E., and therefore
the lift, becoming less than the weight, when, of course, the aeroplane
must fall, i.e., side-slip.


When making a very sharp turn it is necessary to bank very steeply
indeed. If, at the same time, the longitudinal axis of the aeroplane
remains approximately horizontal, then there must be a fall, and the
direction of motion will be the resultant of the thrust and the fall as
illustrated above in sketch A. The lifting surfaces and the controlling
surfaces are not then meeting the air in the correct attitude, with the
result that, in addition to falling, the aeroplane will probably become
quite unmanageable.

The Pilot, however, prevents such a state of affairs from happening by
"nosing-down," i.e., by operating the rudder to turn the nose of the
aeroplane downward and towards the direction of motion as illustrated
in sketch B. This results in the higher wing, which is on the outside
of the turn, travelling with greater velocity, and therefore securing a
greater reaction than the lower wing, thus tending to tilt the aeroplane
over still more. The aeroplane is now almost upside-down, but its
attitude relative to the direction of motion is correct and the
controlling surfaces are all of them working efficiently. The recovery
of a normal attitude relative to the Earth is then made as illustrated
in sketch C.

The Pilot must then learn to know just the angle of bank at which the
margin of lift is lost, and, if a sharp turn necessitates banking beyond
that angle, he must "nose-down."

In this matter of banking and nosing-down, and, indeed, regarding
stability and control generally, the golden rule for all but very
experienced pilots should be: Keep the aeroplane in such an attitude
that the air pressure is always directly in the pilot's face. The
aeroplane is then always engaging the air as designed to do so, and
both lifting and controlling surfaces are acting efficiently. The only
exception to this rule is a vertical dive, and I think that is obviously
not an attitude for any but very experienced pilots to hanker after.

SPINNING.--This is the worst of all predicaments the pilot can find
himself in. Fortunately it rarely happens.

It is due to the combination of (1) a very steep spiral descent of small
radius, and (2) insufficiency of keel-surface behind the vertical axis,
or the jamming of the rudder end or elevator into a position by which
the aeroplane is forced into an increasingly steep and small spiral.

Owing to the small radius of such a spiral, the mass of the aeroplane
may gain a rotary momentum greater, in effect, than the air pressure of
the keel-surface or controlling surfaces opposed to it; and, when once
such a condition occurs, it is difficult to see what can be done by the
pilot to remedy it. The sensible pilot will not go beyond reasonable
limits of steepness and radius when executing spiral descents.

GLIDING DESCENT WITHOUT PROPELLER THRUST.--All aeroplanes are, or should
be, designed to assume their gliding angle when the power and thrust is
cut off. This relieves the pilot of work, worry, and danger should he
find himself in a fog or cloud. The Pilot, although he may not realize
it, maintains the correct attitude of the aeroplane by observing its
position relative to the horizon. Flying into a fog or cloud the horizon
is lost to view, and he must then rely upon his instruments--(1) the
compass for direction; (2) an inclinometer (arched spirit-level) mounted
transversely to the longitudinal axis, for lateral stability; and (3) an
inclinometer mounted parallel to the longitudinal axis, or the airspeed
indicator, which will indicate a nose-down position by increase in air
speed, and a tail-down position by decrease in air speed.

The pilot is then under the necessity of watching three instruments
and manipulating his three controls to keep the instruments indicating
longitudinal, lateral, and directional stability. That is a feat beyond
the capacity of the ordinary man. If, however, by the simple movement
of throttling down the power and thrust, he can be relieved of looking
after the longitudinal stability, he then has only two instruments to
watch. That is no small job in itself, but it is, at any rate, fairly
practicable.

Aeroplanes are, then, designed, or should be, so that the centre of
gravity is slightly forward of centre of lift. The aeroplane is then, as
a glider, nose-heavy--and the distance the C.G. is placed in advance
of the C.L. should be such as to ensure a gliding angle producing a
velocity the same as the normal flying speed (for which the strength of
construction has been designed).

In order that this nose-heavy tendency should not exist when the thrust
is working and descent not required, the centre of thrust is placed a
little below the centre of drift or resistance, and thus tends to pull
up the nose of the aeroplane.

The distance the centre of thrust is placed below the centre of drift
should be such as to produce a force equal and opposite to that due to
the C.G. being forward of the C.L.

LOOPING AND UPSIDE DOWN FLYING.--If a loop is desired, it is best to
throttle the engine down at point A. The C.G. being forward of the C.P.,
then causes the aeroplane to nose-down, and assists the pilot in making
a reasonably small loop along the course C and in securing a quick
recovery. If the engine is not throttled down, then the aeroplane may
be expected to follow the course D, which results in a longer nose dive
than in the case of the course C.

A steady, gentle movement of the elevator is necessary. A jerky movement
may change the direction of motion so suddenly as to produce dangerous
air stresses upon the surfaces, in which case there is a possibility of
collapse.

If an upside-down flight is desired, the engine may, or may not, be
throttled down at point A. If not throttled down, then the elevator must
be operated to secure a course approximately in the direction B. If it
is throttled down, then the course must be one of a steeper angle than
B, or there will be danger of stalling.


Diagram p. 88.--This is not set at quite the correct angle. Path B
should slope slightly downwards from Position A.




CHAPTER III. RIGGING

In order to rig an aeroplane intelligently, and to maintain it in an
efficient and safe condition, it is necessary to possess a knowledge
of the stresses it is called upon to endure, and the strains likely to
appear.


STRESS is the load or burden a body is called upon to bear. It is
usually expressed by the result found by dividing the load by the number
of superficial square inches contained in the cross-sectional area of
the body.

Thus, if, for instance, the object illustrated above contains 4 square
inches of cross-sectional area, and the total load it is called upon to
endure is 10 tons, the stress would be expressed as 2 1/2 tons.


STRAIN is the deformation produced by stress.


THE FACTOR OF SAFETY is usually expressed by the result found by
dividing the stress at which it is known the body will collapse, by
the maximum stress it will be called upon to endure. For instance, if a
control wire be called upon to endure a maximum stress of 2 cwts., and
the known stress at which it will collapse is 10 cwts., the factor of
safety is then 5.

[cwts. = centerweights = 100 pound units as in cent & century.
Interestingly enough, this word only exists today in abbreviation form,
probably of centreweights, but the dictionary entries, even from a
hundred years ago do not list this as a word, but do list c. or C. as
the previous popular abbreviation as in Roman Numerals] The word listed
is "hundredweight. Michael S. Hart, 1997]


COMPRESSION.--The simple stress of compression tends to produce a
crushing strain. Example: the interplane and fuselage struts.


TENSION.--The simple stress of tension tends to produce the strain of
elongation. Example: all the wires.


BENDING.--The compound stress of bending is a combination of compression
and tension.

The above sketch illustrates a straight piece of wood of which the top,
centre, and bottom lines are of equal length. We will now imagine it
bent to form a circle, thus:

The centre line is still the same length as before being bent; but the
top line, being farther from the centre of the circle, is now longer
than the centre line. That can be due only to the strain of elongation
produced by the stress of tension. The wood between the centre line and
the top line is then in tension; and the farther from the centre, the
greater the strain, and consequently the greater the tension.

The bottom line, being nearest to the centre of the circle, is now
shorter than the centre line. That can be due only to the strain of
crushing produced by the stress of compression. The wood between the
centre and bottom lines is then in compression; and the nearer the
centre of the circle, the greater the strain, and consequently the
greater the compression.

It then follows that there is neither tension nor compression, i.e., no
stress, at the centre line, and that the wood immediately surrounding it
is under considerably less stress than the wood farther away. This being
so, the wood in the centre may be hollowed out without unduly weakening
struts and spars. In this way 25 to 33 per cent. is saved in the weight
of wood in an aeroplane.

The strength of wood is in its fibres, which should, as far as possible,
run without break from one end of a strut or spar to the other end. A
point to remember is that the outside fibres, being farthest removed
from the centre line, are doing by far the greatest work.


SHEAR STRESS IS such that, when material collapses under it, one part
slides over the other. Example: all the locking pins.

Some of the bolts are also in shear or "sideways" stress, owing to lugs
under their heads and from which wires are taken. Such a wire, exerting
a sideways pull upon a bolt, tries to break it in such a way as to make
one piece of the bolt slide over the other piece.

TORSION.--This is a twisting stress compounded of compression, tension,
and shear stresses. Example: the propeller shaft.


NATURE OF WOOD UNDER STRESS.--Wood, for its weight, takes the stress
of compression far better than any other stress. For instance: a
walking-stick of less than 1 lb. in weight will, if kept perfectly
straight, probably stand up to a compression stress of a ton or more
before crushing; whereas, if the same stick is put under a bending
stress, it will probably collapse to a stress of not more than about
50 lb. That is a very great difference, and, since weight is of the
greatest importance, the design of an aeroplane is always such as to,
as far as possible, keep the various wooden parts of its construction in
direct compression. Weight being of such vital importance, and designers
all trying to outdo each other in saving weight, it follows that the
factor of safety is rather low in an aeroplane. The parts in direct
compression will, however, take the stresses safely provided the
following conditions are carefully observed.


CONDITIONS TO BE OBSERVED:


1. All the spars and struts must be perfectly straight.

The above sketch illustrates a section through an interplane strut. If
the strut is to be kept straight, i.e., prevented from bending, then
the stress of compression must be equally disposed about the centre of
strength. If it is not straight, then there will be more compression
on one side of the centre of strength than on the other side. That is
a step towards getting compression on one side and tension on the other
side, in which case it may be forced to take a bending stress for which
it is not designed. Even if it does not collapse it will, in effect,
become shorter, and thus throw out of adjustment the gap and all the
wires attached to the top and bottom of the strut, with the result that
the flight efficiency of the aeroplane will be spoiled.

The only exception to the above condition is what is known as the
Arch. For instance, in the case of the Maurice Farman, the spars of the
centre-section plane, which have to take the weight of the nacelle, are
arched upwards. If this was not done, it is possible that rough
landings might result in the weight causing the spars to become slightly
distorted downwards. That would produce a dangerous bending stress,
but, as long as the wood is arched, or, at any rate, kept from bending
downwards, it will remain in direct compression and no danger can
result.


2. Struts and spars must be symmetrical. By that I mean that the
cross-sectional dimensions must be correct, as otherwise there will be
bulging places on the outside, with the result that the stress will not
be evenly disposed about the centre of strength, and a bending stress
may be produced.


3. Struts, spars, etc., must be undamaged. Remember that, from what I
have already explained about bending stresses, the outside fibres of
the wood are doing by far the most work. If these get bruised or scored,
then the strut or spar suffers in strength much more than one might
think at first sight; and, if it ever gets a tendency to bend, it is
likely to collapse at that point.


4. The wood must have a good, clear grain with no cross-grain, knots,
or shakes. Such blemishes produce weak places and, if a tendency to bend
appears, then it may collapse at such a point.

5. The struts, spars, etc., must be properly bedded into their sockets
or fittings. To begin with, they must be of good pushing or gentle
tapping fit. They must never be driven in with a heavy hammer. Then
again, a strut must bed well down all over its cross-sectional area
as illustrated above; otherwise the stress of compression will not be
evenly disposed about the centre of strength, and that may produce a
bending stress. The bottom of the strut or spar should be covered
with some sort of paint, bedded into the socket or fitting, and then
withdrawn to see if the paint has stuck all over the bed.


6. The atmosphere is sometimes much damper than at other times, and this
causes wood to expand and contract appreciably. This would not matter
but for the fact that it does not expand and contract uniformly, but
becomes unsymmetrical, i.e., distorted. I have already explained
the danger of that in condition 2. This should be minimized by WELL
VARNISHING THE WOOD to keep the moisture out of it.


FUNCTION OF INTERPLANE STRUTS.--These struts have to keep the lifting
surfaces or "planes" apart, but this is only part of their work. They
must keep the planes apart, so that the latter are in their correct
attitude. That is only so when the spars of the bottom plane are
parallel with those of the top plane. Also, the chord of the top plane
must be parallel with the chord of the bottom plane. If that is not so,
then one plane will not have the same angle of incidence as the other
one. At first sight one might think that all that is necessary is to cut
all the struts to be the same length, but that is not the case.

Sometimes, as illustrated above, the rear spar is not so thick as the
main spar, and it is then necessary to make up for that difference by
making the rear struts correspondingly longer. If that is not done, then
the top and bottom chords will not be parallel, and the top and bottom
planes will have different angles of incidence. Also, the sockets or
fittings, or even the spars upon which they are placed, sometimes
vary in thickness owing to faulty manufacture. This must be offset by
altering the length of the struts. The best way to proceed is to measure
the distance between the top and bottom spars by the side of each strut,
and if that distance, or "gap" as it is called, is not as stated in the
aeroplane's specifications, then make it correct by changing the length
of the strut. This applies to both front and rear interplane struts.
When measuring the gap, always be careful to measure from the centre
of the spar, as it may be set at an angle, and the rear of it may be
considerably lower than its front.


BORING HOLES IN WOOD.--It should be a strict rule that no spar be used
which has an unnecessary hole in it. Before boring a hole, its position
should be confirmed by whoever is in charge of the workshop. A bolt-hole
should be of a size to enable the bolt to be pushed in, or, at any rate,
not more than gently tapped in. Bolts should not be hammered in, as that
may split the spar. On the other hand, a bolt should not be slack in its
hole, as, in such a case, it may work sideways and split the spar, not
to speak of throwing out of adjustment the wires leading from the lug or
socket under the bolt-head.


WASHERS.--Under the bolt-head, and also under the nut, a washer must be
placed--a very large washer compared with the size which would be used
in all-metal construction. This is to disperse the stress over a large
area; otherwise the washer may be pulled into the wood and weaken it,
besides possibly throwing out of adjustment the wires attached to the
bolt or the fitting it is holding to the spar.


LOCKING.--Now as regards locking the bolts. If split pins are used,
be sure to see that they are used in such a way that the nut cannot
possibly unscrew at all. The split pin should be passed through the bolt
as near as possible to the nut. It should not be passed through both nut
and bolt.

If it is locked by burring over the edge of the bolt, do not use a heavy
hammer and try to spread the whole head of the bolt. That might damage
the woodwork inside the fabric-covered surface. Use a small, light
hammer, and gently tap round the edge of the bolt until it is burred
over.


TURNBUCKLES.--A turnbuckle is composed of a central barrel into each end
of which is screwed an eye-bolt. Wires are taken from the eyes of the
eye-bolt, and so, by turning the barrel, they can be adjusted to their
proper tension. Eye-bolts must be a good fit in the barrel; that is to
say, not slack and not very tight. Theoretically it is not necessary
to screw the eye-bolt into the barrel for a distance greater than the
diameter of the bolt, but, in practice, it is better to screw it in
for a considerably greater distance than that if a reasonable degree of
safety is to be secured.

Now about turning the barrel to secure the right adjustment. The barrel
looks solid, but, as a matter of fact, it is hollow and much more frail
than it appears. For that reason it should not be turned by seizing it
with pliers, as that may distort it and spoil the bore within it. The
best method is to pass a piece of wire through the hole in its centre,
and to use that as a lever. When the correct adjustment has been
secured, the turnbuckle must be locked to prevent it from unscrewing. It
is quite possible to lock it in such a way as to allow it to unscrew a
quarter or a half turn, and that would throw the wires out of the very
fine adjustment necessary. The proper way is to use the locking wire so
that its direction is such as to oppose the tendency of the barrel to
unscrew, thus:


WIRES.--The following points should be carefully observed where wire is
concerned:

1. Quality.--It must not be too hard or too soft. An easy practical way
of learning to know the approximate quality of wire is as follows:

Take three pieces, all of the same gauge, and each about a foot in
length. One piece should be too soft, another too hard, and the third
piece of the right quality. Fix them in a vice, about an inch apart and
in a vertical position, and with the light from a window shining upon
them. Burnish them if necessary, and you will see a band of light
reflected from each wire.

Now bend the wires over as far as possible and away from the light.
Where the soft wire is concerned, it will squash out at the bend, and
this will be indicated by the band of light, which will broaden at that
point. In the case of the wire which is too hard, the band of light will
broaden very little at the turn, but, if you look carefully, you will
see some little roughnesses of surface. In the case of the wire of the
right quality, the band of light may broaden a very little at the turn,
but there will be no roughnesses of surface.

By making this experiment two or three times one can soon learn to know
really bad wire from good, and also learn to know the strength of hand
necessary to bend the right quality.

2. It must not be damaged. That is to say, it must be unkinked,
rustless, and unscored.

3. Now as regards keeping wire in good condition. Where outside wires
are concerned, they should be kept WELL GREASED OR OILED, especially
where bent over at the ends. Internal bracing wires cannot be reached
for the purpose of regreasing them, as they are inside fabric-covered
surfaces. They should be prevented from rusting by being painted with
an anti-rust mixture. Great care should be taken to see that the wire
is perfectly clean and dry before being painted. A greasy finger-mark is
sufficient to stop the paint from sticking to the wire. In such a case
there will be a little space between the paint and the wire. Air may
enter there and cause the wire to rust.

4. Tension of Wires.--The tension to which the wires are adjusted is
of the greatest importance. All the wires should be of the same tension
when the aeroplane is supported in such a way as to throw no stress upon
them. If some wires are in greater tension than others, the aeroplane
will quickly become distorted and lose its efficiency.

In order to secure the same tension of all wires, the aeroplane, when
being rigged, should be supported by packing underneath the lower
surfaces as well as by packing underneath the fuselage or nacelle. In
this way the anti-lift wires are relieved of the weight, and there is no
stress upon any of the wires.

As a general rule the wires of an aeroplane are tensioned too much. The
tension should be sufficient to keep the framework rigid. Anything
more than that lowers the factor of safety, throws various parts of the
framework into undue compression, pulls the fittings into the wood, and
will, in the end, distort the whole framework of the aeroplane.

Only experience will teach the rigger what tension to employ. Much may
be done by learning the construction of the various types of aeroplanes,
the work the various parts do, and in cultivating a touch for tensioning
wires by constantly handling them.

5. Wires with no Opposition Wires.--In some few cases wires will be
found which have no opposition wires pulling in the opposite direction.
For instance, an auxiliary lift wire may run from the bottom of a strut
to a spar in the top plane at a point between struts. In such a case
great care should be taken not to tighten the wire beyond barely taking
up the slack.

Such a wire must be a little slack, or, as illustrated above, it will
distort the framework. That, in the example given, will spoil the camber
(curvature) of the surface, and result in changing both the lift and
the drift at that part of the surface. Such a condition will cause the
aeroplane to lose its directional stability and also to fly one wing
down.

I cannot impress this matter of tension upon the reader too strongly.
It is of the utmost importance. When this, and also accuracy in securing
the various adjustments, has been learned, one is on the way to becoming
a good rigger.

6. Wire Loops.--Wire is often bent over at its end in the form of a
loop, in order to connect with a turnbuckle or fitting. These loops,
even when made as perfectly as possible, have a tendency to elongate,
thus spoiling the adjustment of the wires Great care should be taken
to minimize this as far as possible. The rules to be observed are as
follows:

(a) The size of the loop should be as small as possible within reason.
By that I mean it should not be so small as to create the possibility of
the wire breaking.


(b) The shape of the loop should be symmetrical.


(c) It should have well-defined shoulders in order to prevent the
ferrule from slipping up. At the same time, a shoulder should not have
an angular place.


(d) When the loop is finished it should be undamaged, and it should not
be, as is often the case, badly scored.


7. Stranded Wire Cable.--No splice should be served with twine until it
has been inspected by whoever is in charge of the workshop. The serving
may cover bad work.

Should a strand become broken, then the cable should be replaced at once
by another one.

Control cables have a way of wearing out and fraying wherever they pass
round pulleys. Every time an aeroplane comes down from flight the rigger
should carefully examine the cables, especially where they pass round
pulleys. If he finds a strand broken, he should replace the cable.

The ailerons' balance cable on the top of the top plane is often
forgotten, since it is necessary to fetch a high pair of steps in
order to examine it. Don't slack this, or some gusty day the pilot may
unexpectedly find himself minus the aileron control.

CONTROLLING SURFACES.--The greatest care should be exercised in rigging
the aileron, rudder, and elevator properly, for the pilot entirely
depends upon them in managing the aeroplane.

The ailerons and elevator should be rigged so that, when the aeroplane
is in flight, they are in a fair true line with the surface in front and
to which they are hinged.

If the surface to which they are hinged is not a lifting surface, then
they should be rigged to be in a fair true line with it as illustrated
above.

If the controlling surface is, as illustrated, hinged to the back of a
lifting surface, then it should be rigged a little below the position it
would occupy if in a fair true line with the surface in front. This is
because, in such a case, it is set at an angle of incidence. This angle
will, during flight, cause it to lift a little above the position in
which it has been rigged. It is able to lift owing to a certain amount
of slack in the control wire holding it--and one cannot adjust the
control wire to have no slack, because that would cause it to bind
against the pulleys and make the operation of it too hard for the pilot.
It is therefore necessary to rig it a little below the position it would
occupy if it was rigged in a fair true line with the surface in front.
Remember that this only applies when it is hinged to a lifting surface.
The greater the angle of incidence (and therefore the lift) of the
surface in front, then the more the controlling surface will have to be
rigged down.

As a general rule it is safe to rig it down so that its trailing

edge is 1/2 to 3/4 inch below the position it would occupy if in a fair
line with the surface in front; or about 1/2 inch down for every 18
inches of chord of the controlling surface.

When making these adjustments the pilot's control levers should be in
their neutral positions. It is not sufficient to lash them. They should
be rigidly blocked into position with wood packing.

The surfaces must not be distorted in any way. If they are held true by
bracing wires, then such wires must be carefully adjusted. If they are
distorted and there are no bracing wires with which to true them, then
some of the internal framework will probably have to be replaced.

The controlling surfaces should never be adjusted with a view to
altering the stability of the aeroplane. Nothing can be accomplished in
that way. The only result will be to spoil the control of the aeroplane.


FABRIC-COVERED SURFACES.--First of all make sure that there is no
distortion of spars or ribs, and that they are perfectly sound. Then
adjust the internal bracing wires so that the ribs are parallel to the
direction of flight. The ribs usually cause the fabric to make a ridge
where they occur, and, if such ridge is not parallel to the direction of
flight, it will produce excessive drift. As a rule the ribs are at right
angles to both main and rear spars.

The tension of the internal bracing wires should be just sufficient to
give rigidity to the framework. They should not be tensioned above that
unless the wires are, at their ends, bent to form loops. In that case a
little extra tension may be given to offset the probable elongation of
the loops.

The turnbuckles must now be generously greased, and served round with
adhesive tape. The wires must be rendered perfectly dry and clean,
and then painted with an anti-rust mixture. The woodwork must be well
varnished.

If it is necessary to bore holes in the spars for the purpose of
receiving, for instance, socket bolts, then their places should be
marked before being bored and their positions confirmed by whoever is in
charge of the workshop. All is now ready for the sail-maker to cover the
surface with fabric.


ADJUSTMENT OF CONTROL CABLES.--The adjustment of the control cables is
quite an art, and upon it will depend to a large degree the quick and
easy control of the aeroplane by the pilot.

The method is as follows:

After having rigged the controlling surfaces, and as far as possible
secured the correct adjustment of the control cables, then remove the
packing which has kept the control levers rigid. Then, sitting in the
pilot's seat, move the control levers SMARTLY. Tension the control
cables so that when the levers are smartly moved there is no perceptible
snatch or lag. Be careful not to tension the cables more than necessary
to take out the snatch. If tensioned too much they will (1) bind round
the pulleys and result in hard work for the pilot; (2) throw dangerous
stresses upon the controlling surfaces, which are of rather flimsy
construction; and (3) cause the cables to fray round the pulleys quicker
than would otherwise be the case.

Now, after having tensioned the cables sufficiently to take out the
snatch, place the levers in their neutral positions, and move them to
and fro about 1/8 inch either side of such positions. If the adjustment
is correct, it should be possible to see the controlling surfaces move.
If they do not move, then the control cables are too slack.


FLYING POSITION.--Before rigging an aeroplane or making any adjustments
it is necessary to place it in what is known as its "flying position." I
may add that it would be better termed its "rigging position."

In the case of an aeroplane fitted with a stationary engine this is
secured by packing up the machine so that the engine foundations are
perfectly horizontal both longitudinally and laterally. This position
is found by placing a straight-edge and a spirit-level across the engine
foundations (both longitudinally and laterally), and great care should
be taken to see that the bubble is exactly in the centre of the level.
The slightest error will assume magnitude towards the extremities of the
aeroplane. Great care should be taken to block up the aeroplane rigidly.
In case it gets accidentally disturbed while the work is going on, it
is well to constantly verify the flying position by running the
straight-edge and spirit-level over the engine foundations. The
straight-edge should be carefully tested before being used, as, being
generally made of wood, it will not remain true long. Place it lightly
in a vice, and in such a position that a spirit-level on top shows
the bubble exactly in the centre. Now slowly move the level along the
straight-edge, and the bubble should remain exactly in the centre. If
it does not do so, then the straight-edge is not true and must be
corrected. THIS SHOULD NEVER BE OMITTED.

In the case of aeroplanes fitted with engines of the rotary type, the
"flying position" is some special attitude laid down in the aeroplane's
specifications, and great care should be taken to secure accuracy.


ANGLE OF INCIDENCE.--One method of finding the angle of incidence is as
follows:

First place the aeroplane in its flying position. The corner of the
straight-edge must be placed underneath and against the CENTRE of the
rear spar, and held in a horizontal position parallel to the ribs. This
is secured by using a spirit-level. The set measurement will then be
from the top of the straight-edge to the centre of the bottom surface
of the main spar, or it may be from the top of the straight-edge to the
lowest part of the leading edge. Care should be taken to measure from
the centre of the spar and to see that the bubble is exactly in the
centre of the level. Remember that all this will be useless if the
aeroplane has not been placed accurately in its flying position.

This method of finding the angle of incidence must be used under every
part of the lower surface where struts occur. It should not be used
between the struts, because, in such places, the spars may have taken a
slight permanent set up or down; not, perhaps, sufficiently bad to make
any material difference to the flying of the machine, but quite bad
enough to throw out the angle of incidence, which cannot be corrected at
such a place.

If the angle is wrong, it should then be corrected as follows:

If it is too great, then the rear spar must be warped up until it is
right, and this is done by slackening ALL the wires going to the top of
the strut, and then tightening ALL the wires going to the bottom of the
strut.

If the angle is too small, then slacken ALL the wires going to the
bottom of the strut, and tighten ALL the wires going to the top of the
strut, until the correct adjustment is secured.

Never attempt to adjust the angle by warping the main spar.

The set measurement, which is of course stated in the aeroplane's
specifications, should be accurate to 1/16 inch.


LATERAL DIHEDRAL ANGLE.--One method of securing this is as follows,
and this method will, at the same time, secure the correct angle of
incidence:

The strings, drawn very tight, must be taken over both the main and rear
spars of the top surface. They must run between points on the spars just
inside the outer struts. The set measurement (which should be accurate
to 1/16 inch or less) is then from the strings down to four points on
the main and rear spars of the centre-section surface. These points
should be just inside the four centre-section struts; that is to say,
as far as possible away from the centre of the centre-section. Do
not attempt to take the set measurement near the centre of the
centre-section.

The strings should be as tight as possible, and, if it can be arranged,
the best way to accomplish that is as shown in the above illustration,
i.e., by weighting the strings down to the spars by means of weights
and tying each end of the strings to a strut. This will give a tight and
motionless string.

However carefully the above adjustment is made, there is sure to be some
slight error. This is of no great importance, provided it is divided
equally between the left- and right-hand wings. In order to make sure of
this, certain check measurements should be taken as follows:

Each bay must be diagonally measured, and such measurements must be the
same to within 1/16 inch on each side of the aeroplane. As a rule such
diagonal measurements are taken from the bottom socket of one strut to
the top socket of another strut, but this is bad practice, because of
possible inaccuracies due to faulty manufacture.

The points between which the diagonal measurements are taken should be
at fixed distances from the butts of the spars, such distances being the
same on each side of the aeroplane, thus:


It would be better to use the centre line of the aeroplane rather than
the butts of the spars. It is not practicable to do so, however, as the
centre line probably runs through the petrol tanks, etc.


THE DIHEDRAL BOARD.--Another method of securing the dihedral angle, and
also the angle of incidence, is by means of the dihedral board. It is
a light handy thing to use, but leads to many errors, and should not be
used unless necessary. The reasons are as follows:

The dihedral board is probably not true. If it must be used, then it
should be very carefully tested for truth before-hand. Another reason
against its use is that it has to be placed on the spars in a position
between the struts, and that is just where the spars may have a little
permanent set up or down, or some inaccuracy of surface which will, of
course, throw out the accuracy of the adjustment. The method of using it
is as follows:

The board is cut to the same angle as that specified for the upward
inclination of the surface towards its wing-tips. It is placed on the
spar as indicated above, and it is provided with two short legs to raise
it above the flanges of the ribs (which cross over the spars), as they
may vary in depth. A spirit-level is then placed on the board, and the
wires must be adjusted to give the surface such an inclination as to
result in the bubble being in the centre of the level. This operation
must be performed in respect of each bay both front and rear. The bays
must then be diagonally measured as already explained.


YET ANOTHER METHOD of finding the dihedral angle, and at the same time
the angle of incidence, is as follows:

A horizontal line is taken from underneath the butt of each spar, and
the set measurement is either the angle it makes with the spar, or
a fixed measurement from the line to the spar taken at a specified
distance from the butt. This operation must be performed in respect of
both main and rear spars, and all the bays must be measured diagonally
afterwards.



Whichever method is used, be sure that after the job is done the spars
are perfectly straight.


STAGGER.--The stagger is the distance the top surface is in advance of
the bottom surface when the aeroplane is in flying position. The set
measurement is obtained as follows:

Plumb-lines must be dropped over the leading edge of the top surface
wherever struts occur, and also near the fuselage. The set measurement
is taken from the front of the lower leading edge to the plumb-lines. It
makes a difference whether the measurement is taken along a horizontal
line (which can be found by using a straight-edge and a spirit-level)
or along a projection of the chord. The line along which the measurement
should be taken is laid down in the aeroplane's specifications.

If a mistake is made and the measurement taken along the wrong line, it
may result in a difference of perhaps 1/4 will, in flight, be nose-heavy
or tail-heavy.

After the adjustments of the angles of incidence, dihedral, and stagger
have been secured, it is as well to confirm all of them, as, in making
the last adjustment, the first one may have been spoiled.


OVER-ALL ADJUSTMENTS.--The following over-all check measurements should
now be taken.

The straight lines AC and BC should be equal to within 1/8 inch. The
point C is the centre of the propeller, or, in the case of a "pusher"
aeroplane, the centre of the nacelle. The points A and B are marked on
the main spar, and must in each case be the same distance from the butt
of the spar. The rigger should not attempt to make A and B merely the
sockets of the outer struts, as they may not have been placed quite
accurately by the manufacturer. The lines AC and BC must be taken
from both top and bottom spars--two measurements on each side of the
aeroplane.

The two measurements FD and FE should be equal to within 1/8 inch. F is
the centre of the fuselage or rudder-post. D and E are points marked on
both top and bottom rear spars, and each must be the same fixed
distance from the butt of the spar. Two measurements on each side of the
aeroplane.

If these over-all measurements are not correct, then it is probably due
to some of the drift or anti-drift wires being too tight or too slack.
It may possibly be due to the fuselage being out of truth, but of course
the rigger should have made quite sure that the fuselage was true before
rigging the rest of the machine. Again, it may be due to the internal
bracing wires within the lifting surfaces not being accurately adjusted,
but of course this should have been seen to before covering the surfaces
with fabric.


FUSELAGE.--The method of truing the fuselage is laid down in the
aeroplane's specifications. After it has been adjusted according to the
specified directions, it should then be arranged on trestles in such
a way as to make about three-quarters of it towards the tail stick out
unsupported. In this way it will assume a condition as near as
possible to flying conditions, and when it is in this position the set
measurements should be confirmed. If this is not done it may be out of
truth, but perhaps appear all right when supported by trestles at both
ends, as, in such case, its weight may keep it true as long as it is
resting upon the trestles.


THE TAIL-PLANE (EMPENNAGE).--The exact angle of incidence of the
tail-plane is laid down in the aeroplane's specifications. It is
necessary to make sure that the spars are horizontal when the aeroplane
is in flying position and the tail unsupported as explained above under
the heading of Fuselage. If the spars are tapered, then make sure that
their centre lines are horizontal.


UNDERCARRIAGE.--The undercarriage must be very carefully aligned as laid
down in the specifications.

1. The aeroplane must be placed in its flying position and sufficiently
high to ensure the wheels being off the ground when rigged. When in this
position the axle must be horizontal and the bracing wires adjusted to
secure the various set measurements stated in the specifications.

2. Make sure that the struts bed well down into their sockets.

3. Make sure that the shock absorbers are of equal tension. In the case
of rubber shock absorbers, both the number of turns and the lengths must
be equal.


HOW TO DIAGNOSE FAULTS IN FLIGHT, STABILITY, AND CONTROL.


DIRECTIONAL STABILITY will be badly affected if there is more drift
(i.e., resistance) on one side of the aeroplane than there is on the
other side. The aeroplane will tend to turn towards the side having the
most drift. This may be caused as follows:

1. The angle of incidence of the main surface or the tail surface may
be wrong. The greater the angle of incidence, the greater the drift. The
less the angle, the less the drift.

2. If the alignment of the fuselage, fin in front of the rudder, the
struts or stream-line wires, or, in the case of the Maurice Farman, the
front outriggers, are not absolutely correct--that is to say, if they
are turned a little to the left or to the right instead of being in line
with the direction of flight--then they will act as a rudder and cause
the aeroplane to turn off its course.

3. If any part of the surface is distorted, it will cause the aeroplane
to turn off its course. The surface is cambered, i.e., curved, to pass
through the air with the least possible drift. If, owing perhaps to the
leading edge, spars, or trailing edge becoming bent, the curvature is
spoiled, that will result in changing the amount of drift on one side of
the aeroplane, which will then have a tendency to turn off its course.


LATERAL INSTABILITY (FLYING ONE WING DOWN).--The only possible reason
for such a condition is a difference in the lifts of right and left
wings. That may be caused as follows:

1. The angle of incidence may be wrong. If it is too great, it will
produce more lift than on the other side of the aeroplane; and if too
small, it will produce less lift than on the other side--the result
being that, in either case, the aeroplane will try to fly one wing down.

2. Distorted Surfaces.--If some part of the surface is distorted, then
its camber is spoiled, and the lift will not be the same on both sides
of the aeroplane, and that, of course, will cause it to fly one wing
down.


LONGITUDINAL INSTABILITY may be due to the following reasons:

1. The stagger may be wrong. The top surface may have drifted back a
little owing to some of the wires, probably the incidence wires, having
elongated their loops or having pulled the fittings into the wood. If
the top surface is not staggered forward to the correct degree, then
consequently the whole of its lift is too far back, and it will then
have a tendency to lift up the tail of the machine too much. The
aeroplane would then be said to be "nose-heavy."

A 1/4-inch area in the stagger will make a very considerable difference
to the longitudinal stability.

2. If the angle of incidence of the main surface is not right, it will
have a bad effect, especially in the case of an aeroplane with a lifting
tail-plane.

If the angle is too great, it will produce an excess of lift, and that
may lift up the nose of the aeroplane and result in a tendency to fly
"tail-down." If the angle is too small, it will produce a decreased
lift, and the aeroplane may have a tendency to fly "nose-down."

3. The fuselage may have become warped upward or downward, thus giving
the tail-plane an incorrect angle of incidence. If it has too much
angle, it will lift too much, and the aeroplane will be "nose-heavy." If
it has too little angle, then it will not lift enough, and the aeroplane
will be "tail-heavy."

4. (The least likely reason.) The tail-plane may be mounted upon
the fuselage at a wrong angle of incidence, in which case it must
be corrected. If nose-heavy, it should be given a smaller angle of
incidence. If tail-heavy, it should be given a larger angle; but
care should be taken not to give it too great an angle, because the
longitudinal stability entirely depends upon the tail-plane being set at
a much smaller angle of incidence than is the main surface, and if
that difference is decreased too much, the aeroplane will become
uncontrollable longitudinally. Sometimes the tail-plane is mounted on
the aeroplane at the same angle as the main surface, but it actually
engages the air at a lesser angle, owing to the air being deflected
downwards by the main surface. There is then, in effect, a longitudinal
dihedral as explained and illustrated in Chapter I.


CLIMBS BADLY.--Such a condition is, apart from engine or propeller
trouble, probably due to (1) distorted surfaces, or (2) too small an
angle of incidence.


FLIGHT SPEED POOR.--Such a condition is, apart from engine or propeller
trouble, probably due to (1) distorted surfaces, (2) too great an
angle of incidence, or (3) dirt or mud, and consequently excessive
skin-friction.


INEFFICIENT CONTROL is probably due to (1) wrong setting of control
surfaces, (2) distortion of control surfaces, or (3) control cables
being badly tensioned.


WILL NOT TAXI STRAIGHT.--If the aeroplane is uncontrollable on the
ground, it is probably due to (1) alignment of undercarriage being
wrong, or (2) unequal tension of shock absorbers.




CHAPTER IV. THE PROPELLER, OR "AIR-SCREW"

The sole object of the propeller is to translate the power of the engine
into thrust.

The propeller screws through the air, and its blades, being set at an
angle inclined to the direction of motion, secure a reaction, as in the
case of the aeroplane's lifting surface.

This reaction may be conveniently divided into two component parts or
values, namely, Thrust and Drift.

The Thrust is opposed to the Drift of the aeroplane, and must be equal
and opposite to it at flying speed. If it falls off in power, then the
flying speed must decrease to a velocity, at which the aeroplane drift
equals the decreased thrust.

The Drift of the propeller may be conveniently divided into the
following component values:


Active Drift, produced by the useful thrusting part of the propeller.


Passive Drift, produced by all the rest of the propeller, i.e., by its
detrimental surface.


Skin Friction, produced by the friction of the air with roughnesses of
surface.


Eddies attending the movement of the air caused by the action of the
propeller.


Cavitation (very marked at excessive speed of revolution). A tendency of
the propeller to produce a cavity or semi-vacuum in which it revolves,
the thrust decreasing with increase of speed and cavitation.


THRUST-DRIFT RATIO.--The proportion of thrust to drift is of paramount
importance, for it expresses the efficiency of the propeller. It is
affected by the following factors: Speed of Revolution.--The greater the
speed, the greater the proportion of drift to thrust. This is due to
the increase with speed of the passive drift, which carries with it no
increase in thrust. For this reason propellers are often geared down to
revolve at a lower speed than that of the engine.


Angle of Incidence.--The same reasons as in the case of the aeroplane
surface.

Surface Area.--Ditto.

Aspect Ratio.--Ditto.

Camber.--Ditto.

In addition to the above factors there are, when it comes to actually
designing a propeller, mechanical difficulties to consider. For
instance, the blades must be of a certain strength and consequent
thickness. That, in itself, limits the aspect ratio, for it will
necessitate a chord long enough in proportion to the thickness to make
a good camber possible. Again, the diameter of the propeller must be
limited, having regard to the fact that greater diameters than those
used to-day would not only result in excessive weight of construction,
but would also necessitate a very high undercarriage to keep the
propeller off the ground, and such undercarriage would not only produce
excessive drift, but would also tend to make the aeroplane stand on
its nose when alighting. The latter difficulty cannot be overcome by
mounting the propeller higher, as the centre of its thrust must be
approximately coincident with the centre of aeroplane drift.


MAINTENANCE OF EFFICIENCY.


The following conditions must be observed:


1. PITCH ANGLE.--The angle, at any given point on the propeller, at
which the blade is set is known as the pitch angle, and it must be
correct to half a degree if reasonable efficiency is to be maintained.

This angle secures the "pitch," which is the distance the propeller
advances during one revolution, supposing the air to be solid. The air,
as a matter of fact, gives back to the thrust of the blades just as the
pebbles slip back as one ascends a shingle beach. Such "give-back" is
known as Slip. If a propeller has a pitch of, say, 10 feet, but actually
advances, say, only 8 feet owing to slip, then it will be said to
possess 20 per cent. slip.

Thus, the pitch must equal the flying speed of the aeroplane plus
the slip of the propeller. For example, let us find the pitch of a
propeller, given the following conditions:

          Flying speed.............. 70 miles per hour.
          Propeller revolutions..... 1,200 per minute.
          Slip...................... 15 per cent.

First find the distance in feet the aeroplane will travel forward in one
minute. That is--

   369,600 feet (70 miles)
   ------------------------ = 6,160 feet per minute.
      60     " (minutes)


Now divide the feet per minute by the propeller revolutions per minute,
add 15 per cent. for the slip, and the result will be the propeller
pitch:

     6,160
     ----- + 15 per cent. = 5 feet 1 3/5 inches.
     1,200


In order to secure a constant pitch from root to tip of blade, the pitch
angle decreases towards the tip. This is necessary, since the end of the
blade travels faster than its root, and yet must advance forward at the
same speed as the rest of the propeller. For example, two men ascending
a hill. One prefers to walk fast and the other slowly, but they wish to
arrive at the top of the hill simultaneously. Then the fast walker
must travel a farther distance than the slow one, and his angle of path
(pitch angle) must be smaller than the angle of path taken by the slow
walker. Their pitch angles are different, but their pitch (in this case
altitude reached in a given time) is the same.

In order to test the pitch angle, the propeller must be mounted upon
a shaft at right angles to a beam the face of which must be perfectly
level, thus:

First select a point on the blade at some distance (say about 2 feet)
from the centre of the propeller. At that point find, by means of a
protractor, the angle a projection of the chord makes with the face of
the beam. That angle is the pitch angle of the blade at that point.

Now lay out the angle on paper, thus:

The line above and parallel to the circumference line must be placed
in a position making the distance between the two lines equal to the
specified pitch, which is, or should be, marked upon the boss of the
propeller.

Now find the circumference of the propeller where the pitch angle is
being tested. For example, if that place is 2 feet radius from the
centre, then the circumference will be 2 feet X 2 = 4 feet diameter,
which, if multiplied by 3.1416 = 15.56 feet circumference.

Now mark off the circumference distance, which is represented above by
A-B, and reduce it in scale for convenience.

The distance a vertical line makes between B and the chord dine is
the pitch at the point where the angle is being tested, and it should
coincide with the specified pitch. You will note, from the above
illustration, that the actual pitch line should meet the junction of the
chord line and top line.

The propeller should be tested at several points, about a foot apart, on
each blade; and the diagram, provided the propeller is not faulty, will
then look like this:

At each point tested the actual pitch coincides with the specified
pitch: a satisfactory condition.

A faulty propeller will produce a diagram something like this:


At every point tested the pitch angle is wrong, for nowhere does the
actual pitch coincide with the specified pitch. Angles A, C, and D, are
too large, and B is too small. The angle should be correct to half a
degree if reasonable efficiency is to be maintained.

A fault in the pitch angle may be due to (1) faulty manufacture,
(2) distortion, or (3) the shaft hole through the boss being out of
position.


2. STRAIGHTNESS.--To test for straightness the propeller must be mounted
upon a shaft. Now bring the tip of one blade round to graze some fixed
object. Mark the point it grazes. Now bring the other tip round, and it
should come within 1/8 inch of the mark. If it does not do so, it is due
to (1) faulty manufacture, (2) distortion, or (3) to the hole through
the boss being out of position.


3. LENGTH.--The blades should be of equal length to inch.


4. BALANCE.--The usual method of testing a propeller for balance is as
follows: Mount it upon a shaft, which must be on ball-bearings. Place
the propeller in a horizontal position, and it should remain in that
position. If a weight of a trifle over an ounce placed in a bolt-hole on
one side of the boss fails to disturb the balance, then the propeller is
usually regarded as unfit for use.

The above method is rather futile, as it does not test for the balance
of centrifugal force, which comes into play as soon as the propeller
revolves. It can be tested as follows:


The propeller must be in a horizontal position, and then weighed at
fixed points, such as A, B, C, D, E, and F, and the weights noted. The
points A, B, and C must, of course, be at the same fixed distances from
the centre of the propeller as the points D, E, and F. Now reverse the
propeller and weigh at each point again. Note the results. The first
series of weights should correspond to the second series, thus:

      Weight A should equal weight F.
         "  B   "     "     "  E.
         "  C   "     "     "  D.


There is no standard practice as to the degree of error permissible, but
if there are any appreciable differences the propeller is unfit for use.


5. SURFACE AREA.--The surface area of the blades should be equal. Test
with callipers thus:

The points between which the distances are taken must, of course, be at
the same distance from the centre in the case of each blade.

There is no standard practice as to the degree of error permissible.
If, however, there is an error of over 1/8 inch, the propeller is really
unfit for use.


6. CAMBER.--The camber (curvature) of the blades should be (1) equal,
(2) decrease evenly towards the tips of the blades, and (3) the greatest
depth of the curve should, at any point of the blade, be approximately
at the same percentage of the chord from the leading edge as at other
points.

It is difficult to test the top camber without a set of templates, but
a fairly accurate idea of the concave camber can be secured by slowly
passing a straight-edge along the blade, thus:

The camber can now be easily seen, and as the straight-edge is passed
along the blade, the observer should look for any irregularities of the
curvature, which should gradually and evenly decrease towards the tip of
the blade.


7. THE JOINTS.--The usual method for testing the glued joints is by
revolving the propeller at greater speed than it will be called upon to
make during flight, and then carefully examining the joints to see if
they have opened. It is not likely, however, that the reader will have
the opportunity of making this test. He should, however, examine all the
joints very carefully, trying by hand to see if they are quite sound.
Suspect a propeller of which the joints appear to hold any thickness of
glue. Sometimes the joints in the boss open a little, but this is not
dangerous unless they extend to the blades, as the bolts will hold the
laminations together.


8. CONDITION OF SURFACE.--The surface should be very smooth, especially
towards the tips of the blades. Some propeller tips have a speed of
over 30,000 feet a minute, and any roughness will produce a bad drift or
resistance and lower the efficiency.


9. MOUNTING.--Great care should be taken to see that the propeller
is mounted quite straight on its shaft. Test in the same way as for
straightness. If it is not straight, it is possibly due to some of the
propeller bolts being too slack or to others having been pulled up too
tightly.


FLUTTER.--Propeller "flutter," or vibration, may be due to faulty pitch
angle, balance, camber, or surface area. It causes a condition sometimes
mistaken for engine trouble, and one which may easily lead to the
collapse of the propeller.


CARE OF PROPELLERS.--The care of propellers is of the greatest
importance, as they become distorted very easily.


1. Do not store them in a very damp or a very dry place.


2. Do not store them where the sun will shine upon them.


3. Never leave them long in a horizontal position or leaning up against
a wall.


4. They should be hung on horizontal pegs, and the position of the
propellers should be vertical.


If the points I have impressed upon you in these notes are not attended
to, you may be sure of the following results:


1. Lack of efficiency, resulting in less aeroplane speed and climb than
would otherwise be the case.


2. Propeller "flutter" and possible collapse.


3. A bad stress upon the propeller shaft and its bearings.


TRACTOR.--A propeller mounted in front of the main surface.


PUSHER.--A propeller mounted behind the main surface.


FOUR-BLADED PROPELLERS.--Four-bladed propellers are suitable only when
the pitch is comparatively large.

For a given pitch, and having regard to "interference," they are not so
efficient as two-bladed propellers.

The smaller the pitch, the less the "gap," i.e., the distance, measured
in the direction of the thrust, between the spiral courses of the
blades.

If the gap is too small, then the following blade will engage air
which the preceding blade has put into motion, with the result that the
following blade will not secure as good a reaction as would otherwise be
the case. It is very much the same as in the case of the aeroplane gap.

For a given pitch, the gap of a four-bladed propeller is only half
that of a two-bladed one. Therefore the four-bladed propeller is only
suitable for large pitch, as such pitch produces spirals with a large
gap, thus offsetting the decrease in gap caused by the numerous blades.

The greater the speed of rotation, the less the pitch for a given
aeroplane speed. Then, in order to secure a large pitch and consequently
a good gap, the four-bladed propeller is usually geared to rotate at a
lower speed than would be the case if directly attached to the engine
crank-shaft.




CHAPTER V. MAINTENANCE

CLEANLINESS.--The fabric must be kept clean and free from oil, as that
will rot it. To take out dirt or oily patches, try acetone. If that will
not remedy matters, then try petrol, but use it sparingly, as otherwise
it will take off an unnecessary amount of dope. If that will not remove
the dirt, then hot water and soap will do so, but, in that case, be
sure to use soap having no alkali in it, as otherwise it may injure the
fabric. Use the water sparingly, or it may get inside the planes and
rust the internal bracing wires, or cause some of the wooden framework
to swell.

The wheels of the undercarriage have a way of throwing up mud on to
the lower surface. This should, if possible, be taken off while wet. It
should never be scraped off when dry, as that may injure the fabric. If
dry, then it should be moistened before being removed.

Measures should be taken to prevent dirt from collecting upon any
part of the aeroplane, as, otherwise, excessive skin-friction will be
produced with resultant loss of flight speed. The wires, being greasy,
collect dirt very easily.


CONTROL CABLES.--After every flight the rigger should pass his hand over
the control cables and carefully examine them near pulleys. Removal of
grease may be necessary to make a close inspection possible. If only one
strand is broken the wire should be replaced. Do not forget the aileron
balance wire on the top surface.

Once a day try the tension of the control cables by smartly moving the
control levers about as explained elsewhere.


WIRES.--All the wires should be kept well greased or oiled, and in the
correct tension. When examining the wires, it is necessary to place the
aeroplane on level ground, as otherwise it may be twisted, thus throwing
some wires into undue tension and slackening others. The best way, if
there is time, is to pack the machine up into its "flying position."

If you see a slack wire, do not jump to the conclusion that it must
be tensioned. Perhaps its opposition wire is too tight, in which case
slacken it, and possibly you will find that will tighten the slack wire.

Carefully examine all wires and their connections near the propeller,
and be sure that they are snaked round with safety wire, so that the
latter may keep them out of the way of the propeller if they come
adrift.

The wires inside the fuselage should be cleaned and regreased about once
a fortnight.


STRUTS AND SOCKETS.--These should be carefully examined to see if any
splitting has occurred.


DISTORTION.--Carefully examine all surfaces, including the controlling
surfaces, to see whether any distortion has occurred. If distortion can
be corrected by the adjustment of wires, well and good; but if not, then
some of the internal framework probably requires replacement.


ADJUSTMENTS.--Verify the angles of incidence; dihedral, and stagger, and
the rigging position of the controlling-surfaces, as often as possible.


UNDERCARRIAGE.--Constantly examine the alignment and fittings of the
undercarriage, and the condition of tyres and shock absorbers. The
latter, when made of rubber, wear quickest underneath. Inspect axles and
skids to see if there are any signs of them becoming bent. The wheels
should be taken off occasionally and greased.


LOCKING ARRANGEMENTS.--Constantly inspect the locking arrangements of
turnbuckles, bolts, etc. Pay particular attention to the control cable
connections, and to all moving parts in respect of the controls.


LUBRICATION.--Keep all moving parts, such as pulleys, control levers,
and hinges of controlling surfaces, well greased.


SPECIAL INSPECTION.--Apart from constantly examining the aeroplane with
reference to the above points I have made, I think that, in the case of
an aeroplane in constant use it is an excellent thing to make a special
inspection of every part, say once a week. This will take from two to
three hours, according to the type of aeroplane. In order to carry it
out methodically, the rigger should have a list of every part down to
the smallest split-pin. He can then check the parts as he examines them,
and nothing will be passed over. This, I know from experience, greatly
increases the confidence of the pilot, and tends to produce good work in
the air.


WINDY WEATHER.--The aeroplane, when on the ground, should face the
wind; and it is advisable to lash the control lever fast, so that the
controlling surfaces may not be blown about and possibly damaged.


"VETTING" BY EYE.--This should be practiced at every opportunity, and,
if persevered in, it is possible to become quite expert in diagnosing by
eye faults in flight efficiency, stability and control.

The aeroplane should be standing upon level ground, or, better than
that, packed up into its "flying position."

Now stand in front of it and line up the leading edge with the main
spar, rear spar, and trailing edge. Their shadows can usually be seen
through the fabric. Allowance must, of course, be made for wash-in and
wash-out; otherwise, the parts I have specified should be parallel with
each other.

Now line up the centre part of the main-plane with the tail-plane. The
latter should be horizontal.

Next, sight each interplane front strut with its rear strut. They should
be parallel.

Then, standing on one side of the aeroplane, sight all the front struts.
The one nearest to you should cover all the others. This applies to the
rear struts also.

Look for distortion of leading edges, main and rear spars, trailing
edges, tail-plane and controlling surfaces.

This sort of thing, if practiced constantly, will not only develop an
expert eye for diagnosis of faults, but will also greatly assist in
impressing upon the memory the characteristics and possible troubles of
the various types of aeroplanes.


MISHANDLING OF THE GROUND.--This is the cause of a lot of unnecessary
damage. The golden rule to observe is: PRODUCE NO BENDING STRESSES.

Nearly all the wood in an aeroplane is designed to take merely the
stress of direct compression, and it cannot be bent safely. Therefore,
in packing an aeroplane up from the ground, or in pulling or pushing it
about, be careful to stress it in such a way as to produce, as far
as possible, only direct compression stresses. For instance, if it is
necessary to support the lifting surface, then the packing should be
arranged to come directly under the struts so that they may take the
stress in the form of compression for which they are designed. Such
supports should be covered with soft packing in order to prevent the
fabric from becoming damaged.

When pulling an aeroplane along, if possible, pull from the top of the
undercarriage struts. If necessary to pull from elsewhere, then do so by
grasping the interplane struts as low down as possible.

Never lay fabric-covered parts upon a concrete floor. Any slight
movement will cause the fabric to scrape over the floor with resultant
damage.

Struts, spars, etc., should never be left about the floor, as in such
position they are likely to become scored. I have already explained the
importance of protecting the outside fibres of the wood. Remember
also that wood becomes distorted easily. This particularly applies to
interplane struts. If there are no proper racks to stand them in, then
the best plan is to lean them up against the wall in as near a vertical
position as possible.


TIME.--Learn to know the time necessary to complete any of the various
rigging jobs. This is really important. Ignorance of this will lead
to bitter disappointments in civil life; and, where Service flying
is concerned, it will, to say the least of it, earn unpopularity with
senior officers, and fail to develop respect and good work where men are
concerned.


THE AEROPLANE SHED.--This should be kept as clean and orderly as
possible. A clean, smart shed produces briskness, energy, and pride of
work. A dirty, disorderly shed nearly always produces slackness and poor
quality of work, lost tools and mislaid material.




GLOSSARY

Aeronautics--The science of aerial navigation.

Aerofoil--A rigid structure, of large superficial area relative to its
thickness, designed to obtain, when driven through the air at an
angle inclined to the direction of motion, a reaction from the air
approximately at right angles to its surface. Always cambered when
intended to secure a reaction in one direction only. As the term
"aerofoil" is hardly ever used in practical aeronautics, I have,
throughout this book, used the term SURFACE, which, while academically
incorrect, since it does not indicate thickness, is a term usually
used to describe the cambered lifting surfaces, i.e., the "planes" or
"wings," and the stabilizers and the controlling aerofoils.

Aerodrome--The name usually applied to a ground used for the practice
of aviation. It really means "flying machine," but is never used in that
sense nowadays.

Aeroplane--A power-driven aerofoil with stabilizing and controlling
surfaces.

Acceleration--The rate of change of velocity.

Angle of Incidence--The angle at which the "neutral lift line" of a
surface attacks the air.

Angle of Incidence, Rigger's--The angle the chord of a surface makes
with a line parallel to the axis of the propeller.

Angle of Incidence, Maximum--The greatest angle of incidence at which,
for a given power, surface (including detrimental surface), and weight,
horizontal flight can be maintained.

Angle of Incidence, Minimum--The smallest angle of incidence at which,
for a given power, surface (including detrimental surface), and weight,
horizontal flight can be maintained.

Angle of Incidence, Best Climbing--That angle of incidence at which an
aeroplane ascends quickest. An angle approximately halfway between the
maximum and optimum angles.

Angle of Incidence, Optimum--The angle of incidence at which the
lift-drift ratio is the highest.


Angle, Gliding--The angle between the horizontal and the path along
which an aeroplane at normal flying speed, but not under engine power,
descends in still air.

Angle, Dihedral--The angle between two planes.

Angle, Lateral Dihedral--The lifting surface of an aeroplane is said to
be at a lateral dihedral angle when it is inclined upward towards its
wing-tips.

Angle, Longitudinal Dihedral--The main surface and tail surface are said
to be at a longitudinal dihedral angle when the projections of their
neutral lift lines meet and produce an angle above them.

Angle, Rigger's Longitudinal Dihedral--Ditto, but substituting "chords"
for "neutral life lines."

Angle, Pitch--The angle at any given point of a propeller, at which
the blade is inclined to the direction of motion when the propeller is
revolving but the aeroplane stationary.

Altimeter--An instrument used for measuring height.

Air-Speed Indicator--An instrument used for measuring air pressures or
velocities. It consequently indicates whether the surface is securing
the requisite reaction for flight. Usually calibrated in miles per hour,
in which case it indicates the correct number of miles per hour at only
one altitude. This is owing to the density of the air decreasing with
increase of altitude and necessitating a greater speed through space
to secure the same air pressure as would be secured by less speed at a
lower altitude. It would be more correct to calibrate it in units of air
pressure.

Air Pocket--A local movement or condition of the air causing an
aeroplane to drop or lose its correct attitude.

Aspect-Ratio--The proportion of span to chord of a surface.

Air-Screw (Propeller)--A surface so shaped that its rotation about an
axis produces a force (thrust) in the direction of its axis.

Aileron--A controlling surface, usually situated at the wing-tip, the
operation of which turns an aeroplane about its longitudinal axis;
causes an aeroplane to tilt sideways.


Aviation--The art of driving an aeroplane.

Aviator--The driver of an aeroplane.

Barograph--A recording barometer, the charts of which can be calibrated
for showing air density or height.

Barometer--An instrument used for indicating the density of air.

Bank, to--To turn an aeroplane about its longitudinal axis (to tilt
sideways) when turning to left or right.

Biplane--An aeroplane of which the main lifting surface consists of a
surface or pair of wings mounted above another surface or pair of wings.

Bay--The space enclosed by two struts and whatever they are fixed to.

Boom--A term usually applied to the long spars joining the tail of a
"pusher" aeroplane to its main lifting surface.

Bracing--A system of struts and tie wires to transfer a force from one
point to another.

Canard--Literally "duck." The name which was given to a type of
aeroplane of which the longitudinal stabilizing surface (empennage)
was mounted in front of the main lifting surface. Sometimes termed
"tail-first" aeroplanes, but such term is erroneous, as in such a design
the main lifting surface acts as, and is, the empennage.

Cabre--To fly or glide at an excessive angle of incidence; tail down.

Camber--Curvature.

Chord--Usually taken to be a straight line between the trailing and
leading edges of a surface.

Cell--The whole of the lower surface, that part of the upper surface
directly over it, together with the struts and wires holding them
together.

Centre (Line) of Pressure--A line running from wing-tip to wing-tip, and
through which all the air forces acting upon the surface may be said to
act, or about which they may be said to balance.

Centre (Line) of Pressure, Resultant--A line transverse to the
longitudinal axis, and the position of which is the resultant of the
centres of pressure of two or more surfaces.

Centre of Gravity--The centre of weight.

Cabane--A combination of two pylons, situated over the fuselage, and
from which anti-lift wires are suspended.

Cloche--Literally "bell." Is applied to the bell-shaped construction
which forms the lower part of the pilot's control lever in a Bleriot
monoplane, and to which the control cables are attached.

Centrifugal Force--Every body which moves in a curved path is urged
outwards from the centre of the curve by a force termed "centrifugal."

Control Lever--A lever by means of which the controlling surfaces
are operated. It usually operates the ailerons and elevator. The
"joy-stick".

Cavitation, Propeller--The tendency to produce a cavity in the air.

Distance Piece--A long, thin piece of wood (sometimes tape) passing
through and attached to all the ribs in order to prevent them from
rolling over sideways.

Displacement--Change of position.

Drift (of an aeroplane as distinct from the propeller)--The horizontal
component of the reaction produced by the action of driving through the
air a surface inclined upwards and towards its direction of motion PLUS
the horizontal component of the reaction produced by the "detrimental"
surface PLUS resistance due to "skin-friction." Sometimes termed
"head-resistance."

Drift, Active--Drift produced by the lifting surface.

Drift, Passive--Drift produced by the detrimental surface.

Drift (of a propeller)--Analogous to the drift of an aeroplane. It is
convenient to include "cavitation" within this term.

Drift, to--To be carried by a current of air; to make leeway.

Dive, to--To descend so steeply as to produce a speed greater than the
normal flying speed.

Dope, to--To paint a fabric with a special fluid for the purpose of
tightening and protecting it.

Density--Mass of unit volume, for instance, pounds per cubic foot.

Efficiency--Output            Input

Efficiency (of an aeroplane as distinct from engine and propeller)--

       Lift and Velocity
    Thrust (= aeroplane drift)

Efficiency, Engine--Brake horse-power

       Indicated horse-power

Efficiency, Propeller--

                              Thrust horse-power
                       Horse-power received from engine
                               (= propeller drift)

NOTE.--The above terms can, of course, be expressed in foot-pounds. It
is then only necessary to divide the upper term by the lower one to find
the measure of efficiency.

Elevator--A controlling surface, usually hinged to the rear of the
tail-plane, the operation of which turns an aeroplane about an axis
which is transverse to the direction of normal horizontal flight.

Empennage--See "Tail-plane."

Energy--Stored work. For instance, a given weight of coal or petroleum
stores a given quantity of energy which may be expressed in foot-pounds.

Extension--That part of the upper surface extending beyond the span of
the lower surface.

Edge, Leading--The front edge of a surface relative to its normal
direction of motion.

Edge, Trailing--The rear edge of a surface relative to its normal
direction of motion.

Factor of Safety--Usually taken to mean the result found by dividing the
stress at which a body will collapse by the maximum stress it will be
called upon to bear.

Fineness (of stream-line)--The proportion of length to maximum width.

Flying Position--A special position in which an aeroplane must be placed
when rigging it or making adjustments. It varies with different types of
aeroplanes. Would be more correctly described as "rigging position."

Fuselage--That part of an aeroplane containing the pilot, and to which
is fixed the tail-plane.

Fin--Additional keel-surface, usually mounted at the rear of an
aeroplane.

Flange (of a rib)--That horizontal part of a rib which prevents it from
bending sideways.

Flight--The sustenance of a body heavier than air by means of its action
upon the air.

Foot-pound--A measure of work representing the weight of 1 lb. raised 1
foot.

Fairing--Usually made of thin sheet aluminum, wood, or a light
construction of wood and fabric; and bent round detrimental surface in
order to give it a "fair" or "stream-like" shape.

Gravity--Is the force of the Earth's attraction upon a body. It
decreases with increase of distance from the Earth. See "Weight."

Gravity, Specific--Density of substance                   Density of water.
Thus, if the density of water is 10 lb. per unit volume, the same unit
volume of petrol, if weighing 7 lb., would be said to have a specific
gravity of 7/10, i.e., 0.7.

Gap (of an aeroplane)--The distance between the upper and lower surfaces
of a biplane. In a triplane or multiplane, the distance between a
surface and the one first above it.

Gap, Propeller--The distance, measured in the direction of the thrust,
between the spiral courses of the blades.

Girder--A structure designed to resist bending, and to combine lightness
and strength.

Gyroscope--A heavy circular wheel revolving at high speed, the effect of
which is a tendency to maintain its plane of rotation against disturbing
forces.

Hangar--An aeroplane shed.

Head-Resistance--Drift. The resistance of the air to the passage of a
body.

Helicopter--An air-screw revolving about a vertical axis, the direction
of its thrust being opposed to gravity.

Horizontal Equivalent--The plan view of a body whatever its attitude may
be.

Impulse--A force causing a body to gain or lose momentum.

Inclinometer--A curved form of spirit-level used for indicating the
attitude of a body relative to the horizontal.

Instability--An inherent tendency of a body, which, if the body is
disturbed, causes it to move into a position as far as possible away
from its first position.

Instability, Neutral--An inherent tendency of a body to remain in the
position given it by the force of a disturbance, with no tendency to
move farther or to return to its first position.

Inertia--The inherent resistance to displacement of a body as distinct
from resistance the result of an external force.

Joy-Stick--See "Control Lever."

Keel-Surface--Everything to be seen when viewing an aeroplane from the
side of it.

King-Post--A bracing strut; in an aeroplane, usually passing through a
surface and attached to the main spar, and from the end or ends of which
wires are taken to spar, surface, or other part of the construction in
order to prevent distortion. When used in connection with a controlling
surface, it usually performs the additional function of a lever, control
cables connecting its ends with the pilot's control lever.

Lift--The vertical component of the reaction produced by the action
of driving through the air a surface inclined upwards and towards its
direction of motion.

Lift, Margin of--The height an aeroplane can gain in a given time and
starting from a given altitude.

Lift-Drift Ratio--The proportion of lift to drift.

Loading--The weight carried by an aerofoil. Usually expressed in pounds
per square foot of superficial area.

Longeron--The term usually applied to any long spar running length-ways
of a fuselage.

Mass--The mass of a body is a measure of the quantity of material in it.

Momentum--The product of the mass and velocity of a body is known as
"momentum."

Monoplane--An aeroplane of which the main lifting surface consists of
one surface or one pair of wings.

Multiplane--An aeroplane of which the main lifting surface consists of
numerous surfaces or pairs of wings mounted one above the other.

Montant--Fuselage strut.

Nacelle--That part of an aeroplane containing the engine and pilot and
passenger, and to which the tail plane is not fixed.

Neutral Lift Line--A line taken through a surface in a forward direction
relative to its direction of motion, and starting from its trailing
edge. If the attitude of the surface is such as to make the said line
coincident with the direction of motion, it results in no lift, the
reaction then consisting solely of drift. The position of the neutral
lift line, i.e., the angle it makes with the chord, varies with
differences of camber, and it is found by means of wind-tunnel research.

Newton's Laws of Motion--1. If a body be at rest, it will remain at
rest; or, if in motion, it will move uniformly in a straight line until
acted upon by some force.

2. The rate of change of the quantity of motion (momentum) is
proportional to the force which causes it, and takes place in the
direction of the straight line in which the force acts. If a body be
acted upon by several forces, it will obey each as though the others did
not exist, and this whether the body be at rest or in motion.

3. To every action there is opposed an equal and opposite reaction.

Ornithopter (or Orthopter)--A flapping wing design of aircraft intended
to imitate the flight of a bird.

Outrigger--This term is usually applied to the framework connecting the
main surface with an elevator placed in advance of it. Sometimes applied
to the "tail-boom" framework connecting the tail-plane with the main
lifting surface.

Pancake, to--To "stall "

Plane--This term is often applied to a lifting surface. Such application
is not quite correct, since "plane" indicates a flat surface, and the
lifting surfaces are always cambered.

Propeller--See "Air-Screw."

Propeller, Tractor--An air-screw mounted in front of the main lifting
surface.

Propeller, Pusher--An air-screw mounted behind the main lifting surface.

Pusher--An aeroplane of which the propeller is mounted behind the main
lifting surface.

Pylon--Any V-shaped construction from the point of which wires are
taken.

Power--Rate of working.

Power, Horse--One horse-power represents a force sufficient to raise
33,000 lbs. 1 foot in a minute.

Power, Indicated Horse--The I.H.P. of an engine is a measure of the rate
at which work is done by the pressure upon the piston or pistons, as
distinct from the rate at which the engine does work. The latter is
usually termed "brake horse-power," since it may be measured by an
absorption brake.

Power, Margin of--The available quantity of power above that necessary
to maintain horizontal flight at the optimum angle.

Pitot Tube--A form of air-speed indicator consisting of a tube with open
end facing the wind, which, combined with a static pressure or suction
tube, is used in conjunction with a gauge for measuring air pressures or
velocities. (No. 1 in diagram.)

Pitch, Propeller--The distance a propeller advances during one
revolution supposing the air to be solid.

Pitch, to--To plunge nose-down.

Reaction--A force, equal and opposite to the force of the action
producing it.

Rudder--A controlling surface, usually hinged to the tail, the operation
of which turns an aeroplane about an axis which is vertical in normal
horizontal flight; causes an aeroplane to turn to left or right of the
pilot.

Roll, to--To turn about the longitudinal axis.

Rib, Ordinary--A light curved wooden part mounted in a fore and aft
direction within a surface. The ordinary ribs give the surface its
camber, carry the fabric, and transfer the lift from the fabric to the
spars.

Rib, Compression--Acts as an ordinary rib, besides bearing the stress of
compression produced by the tension of the internal bracing wires.

Rib, False--A subsidiary rib, usually used to improve the camber of the
front part of the surface.

Right and Left Hand--Always used relative to the position of the pilot.
When observing an aeroplane from the front of it, the right hand side of
it is then on the left hand of the observer.

Remou--A local movement or condition of the air which may cause
displacement of an aeroplane.

Rudder-Bar--A control lever moved by the pilot's feet, and operating the
rudder.

Surface--See "Aerofoil."

Surface, Detrimental--All exterior parts of an aeroplane including
the propeller, but excluding the (aeroplane) lifting and (propeller)
thrusting surfaces.

Surface, Controlling--A surface the operation of which turns an
aeroplane about one of its axes.

Skin-Friction--The friction of the air with roughness of surface. A form
of drift.

Span---The distance from wing-tip to wing-tip.

Stagger--The distance the upper surface is forward of the lower surface
when the axis of the propeller is horizontal.

Stability--The inherent tendency of a body, when disturbed, to return to
its normal position.

Stability, Directional--The stability about an axis which is vertical
during normal horizontal flight, and without which an aeroplane has no
natural tendency to remain upon its course.

Stability, Longitudinal--The stability of an aeroplane about an axis
transverse to the direction of normal horizontal flight, and without
which it has no tendency to oppose pitching and tossing.

Stability, Lateral--The stability of an aeroplane about its longitudinal
axis, and without which it has no tendency to oppose sideways rolling.

Stabilizer--A surface, such as fin or tail-plane, designed to give an
aeroplane inherent stability.

Stall, to--To give or allow an aeroplane an angle of incidence greater
than the "maximum" angle, the result being a fall in the lift-drift
ratio, the lift consequently becoming less than the weight of the
aeroplane, which must then fall, i.e., "stall" or "pancake."

Stress--Burden or load.

Strain--Deformation produced by stress.

Side-Slip, to--To fall as a result of an excessive "bank" or "roll."

Skid, to--To be carried sideways by centrifugal force when turning to
left or right.

Skid, Undercarriage--A spar, mounted in a fore and aft direction, and to
which the wheels of the undercarriage are sometimes attached. Should
a wheel give way the skid is then supposed to act like the runner of a
sleigh and to support the aeroplane.

Skid, Tail--A piece of wood or other material, orientable, and fitted
with shock absorbers, situated under the tail of an aeroplane in order
to support it upon the ground and to absorb the shock of alighting.


Section--Any separate part of the top surface, that part of the bottom
surface immediately underneath it, with their struts and wires.

Spar--Any long piece of wood or other material.

Spar, Main--A spar within a surface and to which all the ribs are
attached, such spar being the one situated nearest to the centre of
pressure. It transfers more than half the lift from the ribs to the
bracing.

Spar, Rear--A spar within a surface, and to which all the ribs are
attached, such spar being situated at the rear of the centre of pressure
and at a greater distance from it than is the main spar. It transfers
less than half of the lift from the ribs to the bracing.

Strut--Any wooden member intended to take merely the stress of direct
compression.

Strut, Interplane--A strut holding the top and bottom surfaces apart.

Strut, Fuselage--A strut holding the fuselage longerons apart. It should
be stated whether top, bottom, or side. If side, then it should be
stated whether right or left hand. Montant.

Strut, Extension--A strut supporting an "extension" when not in flight.
It may also prevent the extension from collapsing upwards during flight.

Strut, Undercarriage--

Strut, Dope--A strut within a surface, so placed as to prevent the
tension of the doped fabric from distorting the framework.

Serving--To bind round with wire, cord, or similar material. Usually
used in connection with wood joints and wire cable splices.

Slip, Propeller--The pitch less the distance the propeller advances
during one revolution.

Stream-Line--A form or shape of detrimental surface designed to produce
minimum drift.

Toss, to--To plunge tail-down.

Torque, Propeller--The tendency of a propeller to turn an aeroplane
about its longitudinal axis in a direction opposite to that in which the
propeller revolves.

Tail-Slide--A fall whereby the tail of an aeroplane leads.

Tractor--An aeroplane of which the propeller is mounted in front of the
main lifting surface.

Triplane--An aeroplane of which the main lifting surface consists of
three surfaces or pairs of wings mounted one above the other.

Tail-Plane--A horizontal stabilizing surface mounted at some distance
behind the main lifting surface. Empennage.

Turnbuckle--A form of wire-tightener, consisting of a barrel into each
end of which is screwed an eyebolt. Wires are attached to the eyebolts
and the required degree of tension is secured by means of rotating the
barrel.

Thrust, Propeller--See "Air-Screw."

Undercarriage--That part of an aeroplane beneath the fuselage or
nacelle, and intended to support the aeroplane when at rest, and to
absorb the shock of alighting.

Velocity--Rate of displacement; speed.

Volplane--A gliding descent.

Weight--Is a measure of the force of the Earth's attraction (gravity)
upon a body. The standard unit of weight in this country is 1 lb., and
is the force of the Earth's attraction on a piece of platinum called
the standard pound, deposited with the Board of Trade in London. At the
centre of the Earth a body will be attracted with equal force in
every direction. It will therefore have no weight, though its mass
is unchanged. Gravity, of which weight is a measure, decreases with
increase of altitude.

Web (of a rib)--That vertical part of a rib which prevents it from
bending upwards.

Warp, to--To distort a surface in order to vary its angle of incidence.
To vary the angle of incidence of a controlling surface.

Wash--The disturbance of air produced by the flight of an aeroplane.

Wash-in--An increasing angle of incidence of a surface towards its
wing-tip.

Wash-out--A decreasing angle of incidence of a surface towards its
wing-tip.

Wing-tip--The right- or left-hand extremity of a surface.

Wire--A wire is, in Aeronautics, always known by the name of its
function.

Wire, Lift or Flying--A wire opposed to the direction of lift, and used
to prevent a surface from collapsing upward during flight.

Wire, Anti-lift or Landing--A wire opposed to the direction of gravity,
and used to sustain a surface when it is at rest.

Wire, Drift--A wire opposed to the direction of drift, and used to
prevent a surface from collapsing backwards during flight.

Wire, Anti-drift--A wire opposed to the tension of a drift wire, and
used to prevent such tension from distorting the framework.

Wire, Incidence--A wire running from the top of an interplane strut
to the bottom of the interplane strut in front of or behind it.
It maintains the "stagger" and assists in maintaining the angle of
incidence. Sometimes termed "stagger wire."

Wire, Bracing--Any wire holding together the framework of any part of
an aeroplane. It is not, however, usually applied to the wires described
above unless the function performed includes a function additional to
those described above. Thus, a lift wire, while strictly speaking a
bracing wire, is not usually described as one unless it performs the
additional function of bracing some well-defined part such as the
undercarriage. It will then be said to be an "undercarriage bracing lift
wire." It might, perhaps, be acting as a drift wire also, in which
case it will then be de-scribed as an "undercarriage bracing lift-drift
wire." It should always be stated whether a bracing wire is (1) top, (2)
bottom, (3) cross, or (4) side. If a "side bracing wire," then it should
be stated whether right- or left-hand.

Wire, Internal Bracing--A bracing wire (usually drift or anti-drift)
within a surface.

Wire, Top Bracing--A bracing wire, approximately horizontal and situated
between the top longerons of fuselate, between top tail booms, or at the
top of similar construction.

Wire, Bottom Bracing--Ditto, substituting "bottom" for "top."

Wire, Side Bracing--A bracing wire crossing diagonally a side bay of
fuselage, tail boom bay, undercarriage side bay or centre-section side
bay. This term is not usually used with reference to incidence wires,
although they cross diagonally the side bays of the cell. It should be
stated whether right- or left-hand.

Wire, Cross Bracing--A bracing wire, the position of which is diagonal
from right to left when viewing it from the front of an aeroplane.

Wire, Control Bracing--A wire preventing distortion of a controlling
surface.

Wire, Control--A wire connecting a controlling surface with the pilot's
control lever, wheel, or rudder-bar.

Wire, Aileron Gap--A wire connecting top and bottom ailerons.

Wire, Aileron Balance--A wire connecting the right- and left-hand top
ailerons. Sometimes termed the "aileron compensating wire."

Wire, Snaking--A wire, usually of soft metal, wound spirally or tied
round another wire, and attached at each end to the framework. Used to
prevent the wire round which it is "snaked" from becoming, in the event
of its displacement, entangled with the propeller.

Wire, Locking--A wire used to prevent a turnbuckle barrel or other
fitting from losing its adjustment.

Wing--Strictly speaking, a wing is one of the surfaces of an
ornithopter. The term is, however, often applied to the lifting surface
of an aeroplane when such surface is divided into two parts, one being
the left-hand "wing," and the other the right-hand "wing."

Wind-Tunnel--A large tube used for experimenting with surfaces and
models, and through which a current of air is made to flow by artificial
means.

Work--Force X displacement.

Wind-Screen--A small transparent screen mounted in front of the pilot to
protect his face from the air pressure.





FOOTNOTES:


[1] Propeller Slip: As the propeller screws through the air, the
latter to a certain extent gives back to the thrust of the propellor
blades, just as the shingle on the beach slips back as you ascend it.
Such "give-back" is known as "slip," and anyone behind the propellor
will feel the slip as a strong draught of air.

[2] Helicopter. An air-screw revolving upon a vertical axis. If driven
with sufficient power, it will lift vertically, but having regard to the
mechanical difficulties of such construction, it is a most inefficient
way of securing lift compared with the arrangement of an inclined
surface driven by a propeller revolving about a horizontal axis.

[3] Pancakes: Pilot's slang for stalling an aeroplane and dropping
like a pancake.

[4] Morane parasol: A type of Morane monoplane in which the lifting
surfaces are raised above the pilot in order to afford him a good view
of the earth.

[5] Skin friction is that part of the drift due to the friction of the
air with roughnesses upon the surface of the aeroplane.

[6] Banking: When an aeroplane is turned to the left or the right
the centrifugal force of its momentum causes it to skid sideways and
outwards away from the centre of the turn. To minimize such action the
pilot banks, i.e., tilts, the aeroplane sideways in order to oppose the
underside of the planes to the air. The aeroplane will not then skid
outwards beyond the slight skid necessary to secure a sufficient
pressure of air to balance the centrifugal force.

[7] An explanation of the way in which the wash-out is combined with a
wash-in to offset propellor torque will be found on p. 82.

[8] A.M.'s: Air Mechanics.

[9] Butt means to thicken at the end. Screw means to machine a
thread on the butt-end of the wire, and in this way the wire can make
connection with the desired place by being screwed into a metal fitting,
thus eliminating the disadvantage of the unsatisfactory loop.

[10] Deviation curve: A curved line indicating any errors in the
compass.

[11] A propeller screws through the air, and the distance it advances
during one revolution, supposing the air to be solid, is known as the
pitch. The pitch, which depends upon the angle of the propeller blades,
must be equal to the speed of the aeroplane, plus the slip, and if, on
account of the rarity of the air the speed of the aeroplane increases,
then the angle and pitch should be correspondingly increased. Propellers
with a pitch capable of being varied by the pilot are the dream of
propeller designers. For explanation of "slip" see Chapter IV. on
propellers.

[12] Getting out of my depth? Invading the realms of fancy? Well,
perhaps so, but at any rate it is possible that extraordinary speed
through space may be secured if means are found to maintain the impulse
of the engine and the thrust-drift efficiency of the propeller at great
altitude.

[13] Box-kite. The first crude form of biplane.

[14] See Newton's laws in the Glossary at the end of the book.

[15] See "Aerofoil" in the Glossary.

[16] "In effect" because, although there may be actually the greatest
proportion of keel-surface In front of the vertical axis, such surface
may be much nearer to the axis than is the keel-surface towards the
tail. The latter may then be actually less than the surface in front,
but, being farther from the axis, it has a greater leverage, and
consequently is greater in effect than the surface in front.





End of the Project Gutenberg EBook of The Aeroplane Speaks, by H. Barber

*** END OF THIS PROJECT GUTENBERG EBOOK THE AEROPLANE SPEAKS ***

***** This file should be named 818.txt or 818.zip *****
This and all associated files of various formats will be found in:
        http://www.gutenberg.org/8/1/818/

Produced by Charles Keller

Updated editions will replace the previous one--the old editions
will be renamed.

Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties.  Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark.  Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission.  If you
do not charge anything for copies of this eBook, complying with the
rules is very easy.  You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research.  They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks.  Redistribution is
subject to the trademark license, especially commercial
redistribution.



*** START: FULL LICENSE ***

THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
http://gutenberg.org/license).


Section 1.  General Terms of Use and Redistributing Project Gutenberg-tm
electronic works

1.A.  By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement.  If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project
Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B.  "Project Gutenberg" is a registered trademark.  It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement.  There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement.  See
paragraph 1.C below.  There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works.  See paragraph 1.E below.

1.C.  The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works.  Nearly all the individual works in the
collection are in the public domain in the United States.  If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed.  Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work.  You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.

1.D.  The copyright laws of the place where you are located also govern
what you can do with this work.  Copyright laws in most countries are in
a constant state of change.  If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work.  The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.

1.E.  Unless you have removed all references to Project Gutenberg:

1.E.1.  The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

1.E.2.  If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees
or charges.  If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the
Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.

1.E.3.  If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder.  Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.

1.E.4.  Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.

1.E.5.  Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.

1.E.6.  You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form.  However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form.  Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.

1.E.7.  Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8.  You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that

- You pay a royalty fee of 20% of the gross profits you derive from
     the use of Project Gutenberg-tm works calculated using the method
     you already use to calculate your applicable taxes.  The fee is
     owed to the owner of the Project Gutenberg-tm trademark, but he
     has agreed to donate royalties under this paragraph to the
     Project Gutenberg Literary Archive Foundation.  Royalty payments
     must be paid within 60 days following each date on which you
     prepare (or are legally required to prepare) your periodic tax
     returns.  Royalty payments should be clearly marked as such and
     sent to the Project Gutenberg Literary Archive Foundation at the
     address specified in Section 4, "Information about donations to
     the Project Gutenberg Literary Archive Foundation."

- You provide a full refund of any money paid by a user who notifies
     you in writing (or by e-mail) within 30 days of receipt that s/he
     does not agree to the terms of the full Project Gutenberg-tm
     License.  You must require such a user to return or
     destroy all copies of the works possessed in a physical medium
     and discontinue all use of and all access to other copies of
     Project Gutenberg-tm works.

- You provide, in accordance with paragraph 1.F.3, a full refund of any
     money paid for a work or a replacement copy, if a defect in the
     electronic work is discovered and reported to you within 90 days
     of receipt of the work.

- You comply with all other terms of this agreement for free
     distribution of Project Gutenberg-tm works.

1.E.9.  If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark.  Contact the
Foundation as set forth in Section 3 below.

1.F.

1.F.1.  Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection.  Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.

1.F.2.  LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees.  YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH F3.  YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3.  LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from.  If you
received the work on a physical medium, you must return the medium with
your written explanation.  The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund.  If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to
receive the work electronically in lieu of a refund.  If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.

1.F.4.  Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.

1.F.5.  Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law.  The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.

1.F.6.  INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.


Section  2.  Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers.  It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need, is critical to reaching Project Gutenberg-tm's
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come.  In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at http://www.pglaf.org.


Section 3.  Information about the Project Gutenberg Literary Archive
Foundation

The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service.  The Foundation's EIN or federal tax identification
number is 64-6221541.  Its 501(c)(3) letter is posted at
http://pglaf.org/fundraising.  Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent
permitted by U.S. federal laws and your state's laws.

The Foundation's principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations.  Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
business@pglaf.org.  Email contact links and up to date contact
information can be found at the Foundation's web site and official
page at http://pglaf.org

For additional contact information:
     Dr. Gregory B. Newby
     Chief Executive and Director
     gbnewby@pglaf.org


Section 4.  Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment.  Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States.  Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements.  We do not solicit donations in locations
where we have not received written confirmation of compliance.  To
SEND DONATIONS or determine the status of compliance for any
particular state visit http://pglaf.org

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States.  U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation
methods and addresses.  Donations are accepted in a number of other
ways including checks, online payments and credit card donations.
To donate, please visit: http://pglaf.org/donate


Section 5.  General Information About Project Gutenberg-tm electronic
works.

Professor Michael S. Hart is the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone.  For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.


Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included.  Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.


Most people start at our Web site which has the main PG search facility:

     http://www.gutenberg.org

This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.