summaryrefslogtreecommitdiff
path: root/27936-h
diff options
context:
space:
mode:
Diffstat (limited to '27936-h')
-rw-r--r--27936-h/27936-h.htm3899
-rw-r--r--27936-h/images/a.pngbin0 -> 5596 bytes
-rw-r--r--27936-h/images/cover.jpgbin0 -> 63940 bytes
3 files changed, 3899 insertions, 0 deletions
diff --git a/27936-h/27936-h.htm b/27936-h/27936-h.htm
new file mode 100644
index 0000000..a9f66b1
--- /dev/null
+++ b/27936-h/27936-h.htm
@@ -0,0 +1,3899 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
+ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
+
+<html xmlns="http://www.w3.org/1999/xhtml" lang="fr" xml:lang="fr">
+<head>
+ <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
+ <title>The Project Gutenberg ebook of Histoire des nombres et de la numération mécanique, by Jacomy-Régnier.</title>
+ <link rel="coverpage" href="images/cover.jpg" />
+<style type="text/css">
+
+h1 { text-align: center; line-height: 2em; margin-top: 2em; }
+h2 { text-align: center; line-height: 1.5em; margin: 4em 0 2em 0; }
+.c { text-indent: 0; text-align: center; line-height: 1.5em; }
+.noindent { text-indent: 0; }
+p { text-align: justify; text-indent: 1.5em; margin: .4em 0; line-height: 1.2em; }
+
+.sc { font-variant: small-caps; }
+.small { font-size: 80%; }
+.large { font-size: 140%; }
+
+hr { width: 30%; margin: 1em 35%; }
+
+.t1 { border-top: 1px solid black; }
+.t8 { border-bottom: 1px solid black; }
+table, td { border-collapse: collapse; margin: .5em auto; }
+td { vertical-align: middle; }
+.pagenum {
+ position: absolute;
+ left: 94%;
+ font-size: smaller; font-style: normal;
+ text-align: right;
+}
+.hidden { display: none; }
+.figc { text-align: center; margin: 2em 0; }
+
+@media screen {
+ body { margin: 0 auto; width: 80%; max-width: 40em; }
+}
+
+@media handheld {
+ body { margin: 0 0; width: 100%; }
+ .chapter { page-break-before: always; }
+ .nobreak { page-break-before: avoid; }
+}
+
+</style>
+</head>
+<body>
+
+
+<pre>
+
+The Project Gutenberg EBook of Histoire des nombres et de la numération
+mécanique, by Jacomy-Régnier
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.org
+
+
+Title: Histoire des nombres et de la numération mécanique
+
+Author: Jacomy-Régnier
+
+Release Date: January 30, 2009 [EBook #27936]
+
+Language: French
+
+Character set encoding: ISO-8859-1
+
+*** START OF THIS PROJECT GUTENBERG EBOOK HISTOIRE DES NOMBRES ***
+
+
+
+
+Produced by Laurent Vogel and the Online Distributed
+Proofreading Team at https://www.pgdp.net (This book was
+produced from scanned images of public domain material
+from the Google Print project.)
+
+
+
+
+
+
+</pre>
+
+<h1>HISTOIRE<br />
+<span class="large">DES NOMBRES</span><br />
+<span class="small">ET</span><br />
+DE LA NUMÉRATION MÉCANIQUE</h1>
+
+<p class="c large"><span class="sc">Par</span> JACOMY-RÉGNIER.</p>
+
+<div class="figc"><img src="images/a.png" alt="" /></div>
+<p class="c large">PARIS</p>
+
+<p class="c">IMPRIMERIE ET LIBRAIRIE CENTRALES DE NAPOLÉON CHAIX ET C<sup>e</sup>.<br />
+<span class="small">RUE BERGÈRE, 20.</span></p>
+
+<p class="c">1855</p>
+
+<div class="chapter"></div>
+
+
+<h2 class="nobreak">I</h2>
+
+
+<p>Nés au sein d'une civilisation héritière de toutes les
+richesses morales, intellectuelles et matérielles dont les
+siècles se sont transmis le dépôt, dépôt incessamment
+accru par le travail de chacun d'eux, nous jouissons de
+tout ce qui nous entoure avec une insouciance qui est
+une véritable ingratitude, ou avec un orgueil qui est
+une injustice flagrante. Qui de nous, en lisant l'histoire
+des Gaulois et des Francs, ne s'est cru doué d'une intelligence
+supérieure à celle de ces vieux aïeux? Qui
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p6" id="p6">6</a></span><span class="hidden">)</span>
+de nous, en lisant les récits des voyageurs qui ont visité
+des peuples restés étrangers à la marche du progrès
+humain à travers les âges, n'a pris en pitié la faiblesse
+d'esprit de ces peuples et ne les a supposés d'une nature
+inférieure à la nôtre?</p>
+
+<hr />
+
+
+<p>Nous estimons, avec raison, que l'homme qui est
+quelque chose par lui-même est infiniment plus digne
+de considération que celui qui a reçu tout faits et son
+nom et sa fortune. Si nous étions conséquents avec
+nous-mêmes, nous tiendrions compte, avant de nous
+placer au-dessus de nos pères et des peuples encore
+barbares, nous tiendrions compte, disons-nous, des
+matériaux, des instruments, des forces que nous avons
+reçus gratuitement, qui ne sont pas notre &oelig;uvre, et qui
+ont manqué à nos pères, comme ils manquent aux peuples
+pour lesquels nous avons de si superbes dédains.</p>
+
+<p>Ces matériaux, ces instruments, ces forces, nous
+paraissent les choses les plus simples du monde; les
+ayant trouvées toutes faites nous ne nous sommes jamais
+demandé si leur découverte n'a pas dû exiger des efforts
+de génie dignes d'être admirés; ayant ainsi toujours
+joui des travaux exécutés par nos devanciers dans le
+cours des siècles, sans chercher à en apprécier la valeur,
+nous semblons croire que tout ce que nous voyons
+a toujours été tel que nous l'avons trouvé en naissant.</p>
+
+<p>Combien nous serions plus justes envers le passé, si,
+faisant un instant, par la pensée, table rase de tout ce
+qui nous entoure, et nous efforçant d'oublier les mille
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p7" id="p7">7</a></span><span class="hidden">)</span>
+notions et connaissances que nous avons puisées au
+sein de notre civilisation, nous nous supposions ramenés
+au point de départ des premières sociétés! Combien
+nous parlerions avec plus de modestie des conquêtes
+que notre intelligence ajoute chaque jour à celles que
+les siècles nous ont léguées, si nous nous rendions bien
+compte de la nature de ces conquêtes, et si surtout nous
+voulions bien nous dire que nous ne les faisons qu'avec
+le secours d'armes qui ne sont pas notre ouvrage!</p>
+
+<hr />
+
+
+<p>Ayant trouvé existants et portés au plus haut degré
+de perfection tous les arts nécessaires, l'art de nous
+nourrir, l'art de nous vêtir, l'art de nous loger, l'art
+de nous défendre, etc., et n'ayant plus d'autre souci
+que celui de multiplier nos jouissances, est-il donc bien
+étonnant que nous ayons eu, nous aussi, quelques heureuses
+inspirations, et que nos luttes, soit contre la
+matière, soit contre l'inconnu, n'aient pas été moins
+fécondes que celles des siècles pour lesquels le travail
+de l'esprit était, comme pour le nôtre, un besoin?</p>
+
+<p>Une seule chose serait étonnante: c'est que, rien ne
+nous manquant, ni la matière, ni les instruments, ni
+la science, nous eussions remué tout cela pendant un
+demi-siècle, sans pouvoir en faire sortir quelques
+créations dignes de recommander notre mémoire à nos
+neveux.</p>
+
+<p>Nous sommes fiers de tout ce qui nous entoure, et
+quand nous avons comparé, non pas précisément notre
+littérature et nos sciences, mais nos arts divers avec
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p8" id="p8">8</a></span><span class="hidden">)</span>
+ceux des âges antérieurs, nous croyons avoir, en effet,
+le droit de placer notre siècle au-dessus de ceux qui
+l'ont précédé. Orgueil illégitime, prétention usurpatrice!
+Les seules choses dont il nous soit permis de nous
+glorifier sont celles que nous avons ajoutées aux richesses
+qui nous viennent du passé.</p>
+
+<p>Ce sont sans doute de merveilleuses manifestations
+de nos forces intellectuelles que les nombreuses applications
+que nous avons faites de la vapeur, de la lumière,
+de l'électricité; mais l'ardeur avec laquelle nous
+nous sommes précipités vers les travaux qui ont pour
+principal objet le bien-être matériel mérite-t-elle bien
+d'être louée sans restriction, et n'est-il pas permis de
+craindre que nous ne payions d'un prix trop élevé nos
+rapides triomphes sur le temps et sur l'espace? Enivrés
+de ces triomphes, n'épuisons-nous pas, pour les multiplier
+et les rendre plus brillants, des forces que réclament
+des besoins d'un autre ordre?</p>
+
+<p>Il faudrait être aveugle pour ne pas voir que, dans
+une société qui ne semble plus avoir d'admiration que
+pour des conquêtes toutes matérielles, le goût des
+études qui fortifient les esprits et élèvent les âmes doit
+nécessairement s'affaiblir.</p>
+
+<p>À d'autres que nous donc de ne voir que par son
+beau côté le gigantesque tournoi des Champs-Élysées;
+les merveilles industrielles et artistiques de notre Exposition
+universelle ne nous feront point oublier que la
+société a d'autres besoins que ceux qui peuvent être
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p9" id="p9">9</a></span><span class="hidden">)</span>
+satisfaits par les créations étalées dans le palais de
+l'Industrie.</p>
+
+<hr />
+
+
+<p>Si l'homme ne vivait que par les sens, si le bien-être
+humain, si le bien-être social ne consistaient que dans
+la possession des objets propres à charmer les yeux,
+à flatter l'odorat, à procurer des jouissances au palais
+et à l'oreille, la vue des galeries de l'Exposition universelle
+nous apprendrait que tous les secrets, que tous les
+raffinements du bien-être sont aujourd'hui trouvés.
+Mais l'homme a une autre vie que celle des sens: il
+vit par l'esprit, il vit par le c&oelig;ur, il vit par l'âme;
+toutes ces vies ont leurs besoins, leurs exigences, et
+nous ne voyons au palais de l'Industrie rien qui puisse
+les satisfaire. Bien loin de là: c'est aux dépens de toutes
+ces vies, c'est aux dépens de ce qui est dû à ces vies
+qu'ont été créées toutes ces merveilles de l'industrie et
+de l'art matérialiste.</p>
+
+<p>Nous tromperions-nous par hasard?... Non, nous ne
+nous trompons point; notre plainte n'est qu'une constatation
+de l'évidence. Interrogeons, en effet, une à une
+toutes les nations qui sont venues là pour se disputer les
+palmes du génie industriel et de l'art sensualiste; demandons-leur
+quelle est aujourd'hui leur ambition, vers
+quelle direction elles cherchent à pousser les esprits,
+quels efforts, quels travaux elles encouragent de préférence,
+de quels progrès elles se montrent le plus
+fières, quels hommes elles placent au premier rang
+dans leur estime?</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p10" id="p10">10</a></span><span class="hidden">)</span>
+De bonne foi, entre toutes les nations représentées
+au palais de l'Industrie, s'en trouve-t-il une seule qui
+oserait nier ses tendances matérialistes? En est-il une
+seule qui oserait nous dire qu'elle aimerait mieux avoir
+les premiers poëtes, les premiers philosophes, les premiers
+moralistes du monde, que de tenir le premier rang
+dans notre palais de l'Industrie? En est-il une seule qui
+oserait prétendre que chez elle, l'homme qui se sert de
+son intelligence pour faire pénétrer dans les c&oelig;urs les
+sentiments nobles et généreux reçoit autant d'encouragements
+que celui qui se dévoue au perfectionnement
+des choses matérielles? Non, aucune de ces nations n'a
+le droit de dire qu'elle fait pour les idées qui sont les
+bases de la civilisation autant que pour les choses qui
+n'en sont que l'ornement; non, disons-nous, aucune de
+ces nations ne paraît comprendre que toutes ces magnifiques
+&oelig;uvres de leurs mains sont le résultat d'inspirations
+puisées à des sources qui ont besoin d'être
+alimentées et que leur insouciance laisse tarir.</p>
+
+<p>Ce sujet nous mènerait trop loin: revenons à un
+ordre d'idées qui se rapproche davantage du sujet que
+nous avons à traiter.</p>
+
+<hr />
+
+
+<p>Les seules choses dont nous ayons le droit d'être
+fiers, disions-nous, avant de protester comme nous
+venons de le faire contre les tendances antispiritualistes
+auxquelles nous nous abandonnons, ce sont
+celles que nous avons ajoutées aux richesses qui nous
+viennent du passé. Nous nous glorifierions au delà de
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p11" id="p11">11</a></span><span class="hidden">)</span>
+nos mérites, si nous prenions pour terme de comparaison
+de nos &oelig;uvres, soit celles des âges pendant lesquels
+l'homme travaillait avec les seules forces de sa
+raison individuelle, soit celles des âges qui, quoique
+déjà riches des trésors de science et d'expérience laissés
+par leurs prédécesseurs, n'ont cependant pas marqué
+leur passage dans le temps par des créations aussi
+heureuses que les nôtres.</p>
+
+<p>Nous trouverons des limites à notre orgueil dans
+notre propre raison, si nous voulons bien remarquer,
+d'abord, que, pour accomplir nos &oelig;uvres, nous avons
+eu à notre disposition toutes les forces d'un passé plus
+long et, par conséquent, plus riche en science et en expérience
+que celui de nos aînés, et ensuite que les relations
+qui se sont établies entre les différents peuples
+de la terre ont presque complétement changé les conditions
+des progrès matériels dans le monde. Autrefois,
+il y a à peine quarante à cinquante ans, chaque frontière
+était un voile qui dérobait à une nation ce qui se faisait
+chez sa voisine, chaque mer, chaque bras de mer était
+un abîme à travers lequel ne passaient que bien rarement
+quelques lambeaux des mystères que l'on gardait
+anxieusement d'un côté comme de l'autre de ces abîmes.
+Alors chaque peuple ne travaillait qu'à l'aide de
+ses propres forces; l'intelligence humaine était encore
+mutilée, agissait encore isolément, voulons-nous dire.</p>
+
+<hr />
+
+
+<p>Cette mutilation, cet isolement ont cessé d'exister.
+Il y a toujours des frontières qui séparent les peuples,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p12" id="p12">12</a></span><span class="hidden">)</span>
+mais il n'y a plus de voiles dressés le long de ces frontières;
+il y a toujours des mers et des bras de mer dont
+les flots se brisent sur des rivages habités par des peuples
+dont les intérêts n'ont pas cessé d'être en lutte;
+mais ces mers et ces bras de mer ne servent plus à
+protéger les secrets du génie industriel des nations.
+Le génie industriel, depuis que les peuples civilisés se
+sont entendus pour reconnaître ses droits, s'est fait cosmopolite
+et parcourt le monde, travaillant au grand
+jour, ses brevets à la main.</p>
+
+<p>Encore une fois donc, si nous voulons comparer
+nos &oelig;uvres avec celles de nos devanciers, commençons
+par comparer les ressources dont ils disposaient
+avec celles qui sont dans nos mains. L'équité la
+plus vulgaire l'exige; notre glorification serait ridicule,
+si elle se fondait sur un principe qui ne comprendrait
+pas la réserve que nous venons d'indiquer.</p>
+
+<hr />
+
+
+<p>Il est incontestable que, depuis l'existence des lois
+qui, presque partout, protégent la propriété industrielle
+des étrangers autant que celle des nationaux, le génie
+humain, appliqué aux choses matérielles, travaille avec
+toutes ses forces réunies en faisceau, pour ainsi dire,
+et il est évident, par conséquent, que ces forces ainsi
+coalisées doivent être plus puissantes, plus fécondes en
+résultats que ne pouvaient l'être les forces isolées des
+individus et des peuples, lorsque chacun, peuples et
+individus, était contraint, pour sauvegarder ses droits
+d'inventeur et de perfectionneur, d'envelopper ses procédés
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p13" id="p13">13</a></span><span class="hidden">)</span>
+et ses moyens de travail dans les ombres du
+mystère.</p>
+
+<p>L'équité nous indique une autre réserve à faire en
+faveur de nos aînés, réserve essentielle, que nous avons
+à peine fait entrevoir un peu plus haut. Avant notre
+âge, les travaux industriels furent assurément bien plus
+encouragés, bien plus honorés, qu'on ne le suppose
+généralement; cependant il est vrai de dire que, pendant
+tous les siècles antérieurs et même pendant les
+premières années de ce siècle, l'industrie n'était pas
+regardée comme la bienfaitrice par excellence de l'humanité
+et comme la manifestation la plus glorieuse du
+génie des peuples. Les hautes sciences, la grande littérature,
+la poésie, les beaux-arts, tenaient alors dans
+l'estime des nations la place que leur avaient accordée
+sans difficulté toutes les civilisations antiques.</p>
+
+<p>Il résultait de cette prééminence obtenue par les
+hautes sciences, par la haute littérature, par la poésie,
+par les beaux-arts, que généralement tout homme qui
+aspirait à se faire une place d'honneur dans la société,
+et qui se sentait animé d'une force intellectuelle capable
+de répondre à ses aspirations, appliquait ses facultés
+aux choses qui devaient le faire arriver à la
+gloire, bien plus qu'à celles qui ne conduisent ordinairement
+qu'à la fortune; aux choses qui ont fait les
+grands siècles bien plus qu'à celles qui ont produit les
+grandes décadences.</p>
+
+<p>Que celui qui douterait que les grandes décadences
+des civilisations soient sorties de l'étouffement des travaux
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p14" id="p14">14</a></span><span class="hidden">)</span>
+spiritualistes par les arts industriels encouragés
+d'une manière exclusive, veuille bien se souvenir que
+la vieille Asie tomba des splendides sommets d'où elle
+dominait le monde antique, aussitôt que les arts industriels
+furent devenus sa principale passion; que la vieille
+Grèce ne commença à fléchir sous le poids de son grand
+nom et ne le laissa tomber sous les pieds des conquérants
+qu'après qu'elle eut transporté aux industries
+asiatiques les encouragements qu'elle réservait auparavant
+pour ses sages, ses savants, ses poëtes et ses
+guerriers; que le colosse romain ne commença à vaciller
+sur ses bases qu'après que les Asiatiques et les
+Grecs furent parvenus à rendre les descendants des
+Cincinnatus et des Scipion amoureux de leurs arts et
+rivaux de leur habileté.</p>
+
+<p>Les forces intellectuelles de notre société étant attirées
+vers les arts industriels ainsi qu'elles le sont, ces
+arts ont une marche magnifique; cette marche est plus
+rapide, plus vigoureuse qu'on ne la vit jamais; mais
+encore une fois, jamais on ne vit un siècle faire, pour
+favoriser leurs progrès, des sacrifices pareils à ceux
+que nous faisons. Ces sacrifices sont tels, que le passé
+ne présentant rien de pareil, nous ne savons véritablement
+si nous devons admirer nos succès industriels ou
+les trouver tout simplement naturels.</p>
+
+<p>Autre réserve: Est-ce que nous ne regardons pas
+un peu trop comme entièrement nôtres des quantités
+de choses qui ne nous appartiennent pas entièrement?
+Est-ce qu'il n'est pas, tant dans l'ordre scientifique
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p15" id="p15">15</a></span><span class="hidden">)</span>
+que dans l'ordre matériel, certains principes vus ou
+entrevus par le passé et que nous avons seulement développés
+et appliqués; certaines créations matérielles
+indiquées ou ébauchées par le passé et que nous n'avons
+eu qu'à réaliser plus hardiment, qu'à perfectionner?</p>
+
+<p>Invoquons un dernier fait contre nos prétentions orgueilleuses.
+N'est-il pas vrai que, sans nous inquiéter
+de savoir d'où sont sorties toutes les créations nouvelles
+qui nous entourent, nous en sommes aussi fiers que si
+elles appartenaient à nous seuls? N'est-il pas vrai que
+nous nous admirons dans toutes ces créations, absolument
+comme si elles étaient l'&oelig;uvre exclusive de notre
+génie?</p>
+
+<p>Oui, tout cela est vrai, et ce qui ne l'est pas moins,
+c'est que ces créations ne nous appartiennent pas toutes;
+c'est que tous les peuples civilisés en revendiquent leur
+part, et n'admettent nullement que nous ayons le droit
+de dire: «Le siècle, c'est nous.»</p>
+
+<p>Étrange inconséquence! en même temps que nous
+voudrions ainsi usurper au profit de notre pays des
+gloires qui ne lui appartiennent pas, nous faisons des
+efforts déplorables pour obscurcir presque toutes celles
+qui lui appartiennent.</p>
+
+<p>Nous nous qualifions parfois du titre d'Athéniens
+de la civilisation moderne. Comme les citoyens
+d'Athènes, en effet, nous avons une répulsion innée
+pour les gloires vivantes et ne tolérons que les gloires
+posthumes; comme eux, nous ne voulons pas des
+gloires qui portent un nom; nous n'admettons que les
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p16" id="p16">16</a></span><span class="hidden">)</span>
+gloires anonymes, que les gloires qui portent le nom
+collectif du pays, comme si nous espérions, les auteurs
+des grandes et belles choses qui l'honorent étant inconnus,
+être soupçonnés nous-mêmes de les avoir faites;
+mais notre ressemblance avec les Athéniens s'arrête là.</p>
+
+<p>Les Athéniens, quand ils envoyaient en exil les
+hommes qui avaient élevé trop haut leurs noms au milieu
+d'eux, ne faisaient que proclamer la supériorité de
+ces hommes. L'ostracisme était un hommage rendu au
+mérite, au génie, et non une négation du mérite et du
+génie: l'ostracisme était de l'envie; mais c'était une
+envie qui s'avouait et non de l'envie hypocrite et lâche.
+L'envie hypocrite et lâche, c'est la nôtre, la nôtre qui
+procède par l'étouffement dans l'ombre, contre quiconque
+s'annonce comme devant dépasser notre mesure;
+la nôtre qui a trouvé le secret de rendre le silence plus
+puissant que la négation, plus cruel que la proscription.</p>
+
+<hr />
+
+
+<p>Autant nous paraissons portés à empêcher les choses
+véritablement grandes ou belles de se produire au milieu
+de nous, autant nous nous montrons favorables
+aux créations d'un ordre secondaire et dont la durée
+doit être passagère. La différence de ces deux accueils
+explique nos merveilleux succès dans les productions
+futiles et nous apprend pourquoi nous sommes comparativement
+moins heureux sous le rapport des grandes
+initiatives.</p>
+
+<p>Que nous fait la gloire revêtue du manteau qui brave
+l'usure du temps, quand nous avons pour nous la gloire
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p17" id="p17">17</a></span><span class="hidden">)</span>
+qui dédaignerait de porter le soir la robe dont elle était
+toute fière le matin? Va donc demander ton pain à
+l'exil, Philippe de Girard; deviens donc fou de misère,
+Sauvage; subissez donc le sort que vous vous faites
+sciemment, chercheurs des grandes pensées et des
+grandes choses! Est-ce que vous n'avez pas vu, est-ce
+que vous ne voyez pas quelle destinée peut faire aux
+hommes de génie une société qui dore si splendidement
+l'existence de ses amuseurs de toutes les sortes?</p>
+
+<p>Ils le voient, ils le savent, et cependant la vue des
+souffrances qui les attendent n'a rien qui les effraie, les
+sublimes fous à qui le génie a dit: «Suis-moi contre
+ces difficultés qui ont stérilement fatigué les siècles;
+suis-moi dans le combat que je vais livrer contre l'inconnu.»</p>
+
+<p>En vain la raison leur dit: «Avant d'obéir aux appels
+du génie, commencez par vous assurer le pain de
+chaque jour;» ils n'entendent que la voix qui leur dit:
+«Je vous conduirai vers la gloire, suivez-moi.»</p>
+
+<p>Perfidie et mensonge! Non, ô génie, tu ne conduis
+pas à la gloire celui qui te suit sans avoir les mains
+chargées d'or. Sous ton inspiration j'écrirai un bon
+livre; est-ce toi qui me l'imprimeras et qui paieras les
+annonces qui m'en procureront le débit? J'inventerai
+une merveilleuse machine, grâce à toi, souffle sacré;
+mais que ferai-je des plans de ma machine? Est-ce
+toi qui me la construiras et en mettras la valeur en
+évidence?</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p18" id="p18">18</a></span><span class="hidden">)</span>
+Qu'ils sont nombreux les pauvres fous qui, s'abandonnant
+aux entraînements mystérieux qui les portent
+vers les créations grandes et belles, ne comprennent
+pas qu'en négligeant d'assurer avant tout leur existence
+matérielle, ils se condamnent presque infailliblement
+à travailler d'une manière stérile et pour eux-mêmes
+et pour la société!</p>
+
+<p>La fortune ne donne pas le génie, sans doute; mais
+elle permet à celui qui en est doué de le mettre en évidence
+et de forcer l'insouciance comme l'envie à rendre
+hommage à ses &oelig;uvres.</p>
+
+<p>Est-ce là ce que se dit, il y environ trente-quatre ans,
+un ancien employé supérieur de l'administration des armées
+sous l'Empire, M. Thomas, de Colmar, en voyant
+le froid accueil que trouvait auprès des dispensateurs
+de la gloire la grande découverte qu'il venait de faire?
+Nous l'ignorons; mais nous voyons du moins qu'il a
+agi comme s'il s'était tenu ce langage.</p>
+
+
+<div class="chapter"></div>
+
+<h2 class="nobreak">II</h2>
+
+
+<p>C'était vers 1821. Ayant toujours vécu au milieu
+des chiffres, nul ne savait mieux que lui combien les
+chiffres fatiguent les forces de l'intelligence. La grande
+ère de la mécanique s'ouvrait; dans chaque industrie,
+on commençait à demander à des bras de fer ou de
+bois d'exécuter les travaux qui avaient été faits jusque-là
+par les mains intelligentes de l'homme.&mdash;Pourquoi,
+se demanda M. Thomas, de Colmar, n'essaierais-je pas
+de construire une machine qui exécute toutes les opérations
+de l'arithmétique, comme d'autres ont imaginé
+des engins qui scient et rabotent, qui filent et tissent,
+etc.? Et aussitôt, voilà l'imagination du hardi
+Alsacien en travail. L'&oelig;uvre n'était pas aussi facile à
+faire qu'il l'avait pensé. Il s'adressa pour avoir des conseils
+à un très-savant académicien.</p>
+
+<hr />
+
+
+<p>&mdash;Mon cher ami, lui dit celui-ci, cherchez la quadrature
+du cercle ou le mouvement perpétuel, si vous
+avez du temps à perdre; mais ne dites à personne que
+vous voulez construire une machine qui puisse exécuter
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p20" id="p20">20</a></span><span class="hidden">)</span>
+tous les calculs de l'arithmétique, si vous ne voulez pas
+que l'on rie de vous.</p>
+
+<p>&mdash;Pourquoi rirait-on de moi? demanda M. Thomas.</p>
+
+<p>&mdash;Pourquoi l'on rirait de vous, mon ami? L'on rirait
+de vous, parce que la recherche d'une machine comme
+celle dont vous me parlez... que dis-je? bien moins ambitieuse
+que celle que vous voulez inventer, a fatigué
+un nombre infini de génies dans tous les temps et chez
+tous les peuples, et n'a jamais abouti qu'à des échecs
+éclatants. Et vous voudriez que l'on ne trouvât pas
+excessivement présomptueuse votre tentative contre
+des difficultés qu'ont vainement essayé de vaincre,
+dans les temps anciens, Thalès, Pythagore, Archimède;
+plus tard, les grands mathématiciens arabes; et, dans
+les derniers âges, Pascal, Perrault, Leibnitz, d'Alembert
+et un nombre considérable d'autres puissants esprits?
+Croyez-moi donc: appliquez votre intelligence
+à des travaux moins chimériques que celui qui a commencé
+à tourmenter votre imagination.</p>
+
+<p>&mdash;Eh quoi, répondit M. Thomas au savant académicien,
+après avoir mis en relief, comme vous venez de
+le faire, l'honneur que me vaudrait ma machine, vous
+voudriez que j'eusse une autre ambition que celle de le
+mériter?</p>
+
+<p>Le ton résolu sur lequel fut faite cette réponse rendait
+toute observation inutile. L'académicien se contenta
+d'adresser un sourire d'affectueuse pitié à M. Thomas,
+qui trois mois après avait exécuté son arithmomètre,
+s'était assuré, par la prise d'un brevet d'invention, la
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p21" id="p21">21</a></span><span class="hidden">)</span>
+propriété de sa découverte, et presque en même temps
+présentait à la Société d'encouragement sa machine
+véritablement merveilleuse.</p>
+
+<hr />
+
+
+<p>Elle fut renvoyée à l'examen d'une commission composée
+de Franc&oelig;ur et Bréguet. Le rapport fut fait au
+nom du comité des arts mécaniques par Franc&oelig;ur, qui,
+après avoir fait mention des machines à calculer antérieurement
+construites, s'exprimait ainsi: «Le défaut
+de toutes ces inventions est de ne se prêter qu'à des
+calculs très-simples; dès qu'il s'agit de multiplier, il
+faut convertir l'opération en une suite d'additions:
+ainsi pour obtenir 7 fois 648, on est obligé d'ajouter
+d'abord 648 à lui-même, puis la somme à 648,
+celle-ci encore à 648, etc., jusqu'à ce que 648 ait été
+pris 7 fois. À quelle longueur ne faut-il pas se soumettre
+lorsque le multiplicateur a deux ou trois chiffres!
+Toutes ces machines sont donc aujourd'hui
+tombées dans l'oubli, et on ne les regarde que comme
+des conceptions plus ou moins ingénieuses.</p>
+
+<p>»Celle de M. Thomas ne ressemble nullement aux
+autres, elle donne de suite les résultats du calcul,
+sans tâtonnement, et n'est faite à l'imitation d'aucune
+des premières. Il est certain que M. Thomas
+n'avait pas connaissance de celles-ci lorsqu'il imagina
+la sienne, et qu'il n'a pu s'aider des travaux de
+ses prédécesseurs. Il a même employé et abandonné
+plusieurs mécanismes qui ne remplissaient pas assez
+bien leur objet, avant de s'arrêter à celui qu'on voit
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p22" id="p22">22</a></span><span class="hidden">)</span>
+dans la machine pour laquelle il sollicite le suffrage
+de la Société d'encouragement.</p>
+
+<p>»La machine de M. Thomas sert à faire non-seulement
+toutes les additions et soustractions, mais
+encore les multiplications et divisions des nombres
+entiers ou affectés de fractions décimales. Lorsque,
+par exemple, on veut multiplier 648 par 7, on place
+les indicateurs du multiplicande sur les chiffres 6, 4
+et 8, et celui du multiplicateur sur 7, on tire un cordon
+et on lit le produit 4,536 sur la tablette de l'instrument.</p>
+
+<p>»La division n'étant que l'inverse de la multiplication,
+on conçoit qu'elle s'exécute avec la même
+aisance et par le même moyen.</p>
+
+<p>»La plus grande difficulté qu'on rencontre dans
+l'invention de ces instruments, difficulté contre laquelle
+le génie même de Pascal a échoué et qui jusqu'ici
+a si fort restreint l'usage de ces machines à
+calculer, c'est de faire porter les retenues sur les chiffres
+à gauche. Le mécanisme par lequel M. Thomas
+opère ce passage des retenues est extrêmement ingénieux;
+ce report se fait de lui-même, sans qu'on
+y songe. Pour multiplier 648 par 7, l'opérateur tire
+le cordon, sans s'embarrasser s'il y a ou non des chiffres
+à retenir, sans même savoir ce que c'est, et il
+lit de suite 4,536.</p>
+
+<p>»Il est impossible de combiner mieux les agents de
+l'instrument qui vous est présenté et de surmonter
+plus heureusement les embarras de l'instrument.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p23" id="p23">23</a></span><span class="hidden">)</span>
+»Ainsi, à considérer cette machine sous le rapport
+du mérite d'invention, et sous celui de la difficulté
+vaincue, vous ne balancerez pas à lui accorder votre
+suffrage.</p>
+
+<p>»Il n'y a aucune comparaison à faire entre cette
+invention et les règles à calculer. Comme ces dernières
+sont basées sur le système des logarithmes,
+les additions et soustractions sont impossibles avec
+ces règles; et comme ces deux opérations se mêlent
+à chaque instant aux autres dans les affaires de commerce,
+les tables de logarithmes n'y peuvent servir
+avec avantage. En outre, ces règles à calculer n'ont
+une précision que de trois chiffres, tandis que la
+machine de M. Thomas opère sur un nombre de
+chiffres indéfini, avec une exactitude parfaite.»</p>
+
+<p>Conformément aux conclusions du rapport, la Société
+d'encouragement approuva la machine de M. Thomas,
+en fit graver le mécanisme pour son <i>Bulletin</i>, où fut
+aussi inséré le rapport de M. Franc&oelig;ur; mais ce fut là
+la seule récompense qu'obtint alors l'inventeur de
+l'arithmomètre, pour une découverte qui semblait
+devoir placer immédiatement son nom au nombre de
+ceux que le monde entier connaît.</p>
+
+<hr />
+
+
+<p>La Société d'encouragement, en voyant que l'arithmomètre
+n'avait pas produit dans l'opinion publique
+l'étonnement, la sensation qui d'ordinaire accueille les
+découvertes de la nature de celle de M. Thomas, comprit
+bientôt qu'elle n'avait pas été elle-même assez
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p24" id="p24">24</a></span><span class="hidden">)</span>
+juste, en se contentant de donner sa complète approbation
+à l'arithmomètre. Aussi, lorsque, quelques mois
+après, la belle planche dessinée et gravée par Leblanc
+et reproduisant la machine de M. Thomas dans tous
+ses détails, parut dans le <i>Bulletin</i>, fut-elle accompagnée
+par M. Hoyau d'un commentaire où se trouvent des
+passages qui valent des médailles d'or:</p>
+
+<p>«Si l'on pouvait, disait M. Hoyau, assigner des
+bornes à nos facultés intellectuelles, il semblerait
+que tant de moyens déjà découverts pour calculer
+mécaniquement ont épuisé les recherches de ce
+genre et qu'il ne reste plus rien à faire après les
+savants célèbres de tous les pays qui se sont occupés
+de cet objet.</p>
+
+<p>»Cependant M. le chevalier Thomas, de Colmar,
+est parvenu à vaincre toutes les difficultés et à
+composer une machine au moyen de laquelle on
+peut faire les quatre opérations de l'arithmétique.</p>
+
+<p>»Cette invention nous paraît devoir être rangée au
+nombre de ces découvertes qui font honneur à
+ceux qui les conçoivent et sont glorieuses pour
+l'époque qui les produit.»</p>
+
+<hr />
+
+
+<p>Ces éloges, les félicitations de quelques visiteurs,
+voilà tout ce que valut à M. Thomas, de Colmar, l'invention
+de l'arithmomètre. Il en attendait mieux:
+une semblable découverte valait de la gloire, de la
+célébrité, du moins; car qui dira que le bonheur
+d'avoir aussi complétement triomphé que venait de le
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p25" id="p25">25</a></span><span class="hidden">)</span>
+faire M. Thomas des difficultés qui avaient tenu en
+arrêt le génie de tous les siècles, fût suffisamment
+récompensé par l'approbation de la Société d'encouragement?</p>
+
+<p>La plupart des inventeurs, lorsque le public ne fait
+pas à leurs découvertes l'accueil sur lequel ils avaient
+compté, ne savent ordinairement faire que deux
+choses: d'abord accuser leur siècle d'injustice ou
+d'ignorance; et ensuite se livrer au découragement
+et regretter le temps qu'ils ont perdu à vouloir être
+utiles à leur pays.</p>
+
+<hr />
+
+
+<p>M. Thomas, de Colmar, supporta très-philosophiquement
+la déception qu'il venait d'éprouver. Se souvenant
+sans doute de la lenteur que la machine à
+vapeur avait mise à faire son chemin, il trouva tout
+simple que le public ne se montrât pas plus prompt
+à comprendre la valeur de son arithmomètre qu'il ne
+l'avait été à comprendre celle de la machine qui a si
+profondément modifié toutes les lois du travail matériel.</p>
+
+<p>Et pourquoi, au surplus, le public mériterait-il
+d'être accusé d'injustice, lorsqu'il ne fait pas à toutes
+les inventions l'accueil que quelques-unes méritent
+véritablement? Pourquoi, dès qu'il entend parler
+de découvertes qui étonnent son intelligence, devrait-il
+battre des mains et échanger son argent
+contre la merveilleuse machine, contre l'admirable
+recette, contre le prodige de la chimie ou de la mécanique
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p26" id="p26">26</a></span><span class="hidden">)</span>
+qu'on lui annonce, au nom des sociétés
+savantes? Est-ce que ces sociétés sont infaillibles et
+n'ont jamais préconisé que des inventions dignes
+de l'être? Est-ce que, sur la parole de ces sociétés,
+le public n'a pas souvent fait des expériences ruineuses,
+des achats qui lui ont laissé des regrets?</p>
+
+<p>Le public est défiant; mais est-il injuste? non, il ne
+l'est pas. Les déceptions que de nombreuses nouveautés
+lui ont fait éprouver légitiment surabondamment
+sa défiance. Il lui en a trop coûté d'avoir tant
+de fois cru sans voir; ne nous étonnons pas qu'il
+veuille quelquefois voir avant de croire.</p>
+
+<hr />
+
+
+<p>C'est en se faisant ces réflexions à lui-même que
+M. Thomas arriva à se dire: «Pour populariser une
+machine comme la mienne, il faut de l'argent, beaucoup
+d'argent; je dois donc commencer par devenir
+riche, si je veux que mon arithmomètre devienne
+un instrument usuel dans le monde savant et financier,
+dans le monde commerçant et industriel.»</p>
+
+<p>C'est à partir de ce moment que M. Thomas, de
+Colmar, qui, jusque-là, n'avait eu qu'une grande
+passion véritable, l'étude des sciences exactes, et
+qu'un délassement de prédilection, la mécanique,
+replia son intelligence vers les combinaisons financières,
+dont il ne s'était déjà occupé que pour se
+distraire, pour ainsi dire, mais qui lui avaient pourtant
+valu de beaux succès, puisque, dès ce moment
+(1822), il avait déjà été nommé président honoraire
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p27" id="p27">27</a></span><span class="hidden">)</span>
+de la Société d'assurance contre l'incendie <i>le Phénix</i>,
+qu'il avait fondée en 1819.</p>
+
+<p>Nous ne suivrons pas ici M. Thomas, de Colmar,
+dans les travaux financiers qui lui ont si bien réussi.
+Qu'il nous suffise de dire que la haute fortune à
+laquelle il a élevé la Compagnie du <i>Soleil</i>, l'une de
+ses fondations les plus connues, suppose de sa part
+une force de volonté incroyable, aux yeux de quiconque
+connaît les phases qu'a traversées cette Compagnie,
+aujourd'hui l'une des plus puissantes et des
+plus justement accréditées de la France.</p>
+
+<hr />
+
+
+<p>M. Thomas paraissait tellement absorbé par les
+soins administratifs que réclamait sa grande Société
+d'abord, et par ceux qu'il lui fallut, plus tard, donner
+à la Compagnie <i>l'Aigle</i>, qu'il avait fondée pour l'un
+de ses fils, que personne, assurément, ne soupçonnait
+qu'il songeât encore à son arithmomètre.</p>
+
+<p>Et pourtant l'arithmomètre était la passion bien-aimée
+de sa pensée, le rêve favori de ses veilles. Cette
+passion, ce rêve, le suivaient partout, au milieu des
+affaires, comme au milieu des fêtes; et jamais, pendant
+trente ans, pas une journée, pour ainsi dire,
+ne se passa sans qu'il visitât, de corps ou d'esprit, le
+recoin mystérieux où la chère machine était cachée
+aux regards les plus amis. Aujourd'hui il fallait ajouter
+ceci, demain retrancher cela, et le surlendemain
+défaire tout ce qui avait été fait la veille et l'avant-veille,
+pour chercher une simplification plus grande.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p28" id="p28">28</a></span><span class="hidden">)</span>
+Pour obtenir cette simplification, l'inventeur de
+l'arithmomètre a dépensé plus de 300,000 francs.&mdash;«C'est,
+de toutes les jouissances, celle qui m'a coûté
+le moins, dit-il, si je compare ses douceurs à celles de
+tous les autres plaisirs que je me suis donnés.»</p>
+
+<p>Trente années de travail, plus de 300,000 francs
+dépensés pour retrancher cinq à six petites pièces
+d'une machine qu'un enfant de quatre ans porterait
+dans ses mains comme un jouet! Est-ce que l'arithmomètre
+de 1822 ne remplissait pas les mêmes fonctions
+que l'arithmomètre de 1855?</p>
+
+<p>Les deux arithmomètres remplissent les mêmes
+fonctions; mais le premier avait des complications
+que le second n'a pas; le premier est l'&oelig;uvre d'un
+mécanicien extraordinairement ingénieux; le second
+est l'&oelig;uvre d'un homme de génie.</p>
+
+<p>Avec de l'imagination et de la persévérance, il est
+facile d'exécuter, à l'aide de machines compliquées,
+quelques effets qui semblent ne pouvoir être produits
+que par l'intelligence réfléchie; mais il n'appartient
+qu'au génie de produire, par des moyens simples, des
+effets d'une complication et d'une variété infinies.</p>
+
+<hr />
+
+
+<p>Tel est l'arithmomètre de 1855.</p>
+
+<p>Notre Exposition universelle a beau être riche en
+&oelig;uvres empreintes du sceau du génie; nous n'en
+voyons pas une seule, nous défions qu'on nous en
+indique une seule qui porte ce sceau d'une manière
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p29" id="p29">29</a></span><span class="hidden">)</span>
+plus éclatante, d'une manière aussi éclatante que
+l'arithmomètre.</p>
+
+<p>Ce n'est plus ici de la matière qui produit des
+effets matériels; c'est de la matière qui pense, pour
+ainsi dire, qui réfléchit, qui combine, qui calcule,
+qui fait toutes les opérations les plus difficiles, les plus
+compliquées de l'arithmétique, avec une infaillibilité,
+avec une rapidité, avec une science qui défient tous
+les calculateurs, tous les académiciens du monde
+entier.</p>
+
+<p>Mais, avant d'aller plus loin, voyons si l'invention
+de M. Thomas, de Colmar, n'est pas, sous le rapport
+de la difficulté vaincue, l'une des &oelig;uvres les plus
+étonnantes que nous connaissions.</p>
+
+<hr />
+
+
+<p>Le matérialisme ne veut pas de la difficulté vaincue;
+il ne tient compte que de la valeur utilitaire des
+inventions. Nous procédons tout autrement, nous. En
+présence d'une découverte quelconque, nous nous
+sentons plutôt porté à chercher quels efforts d'intelligence
+elle a dû coûter, qu'à nous demander quels
+services elle peut rendre. Pourquoi agissons-nous
+ainsi? Nous agissons ainsi, parce que c'est la difficulté
+vaincue qui glorifie l'esprit humain; parce que
+c'est la difficulté vaincue qui nous apprend ce que
+vaut et ce que peut l'intelligence humaine, et quelle
+est, par conséquent, notre grandeur et notre noblesse
+dans la création. Matérialistes qui refusez de tenir
+compte des difficultés vaincues, apprenez-moi donc,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p30" id="p30">30</a></span><span class="hidden">)</span>
+je vous prie, quelle est l'utilité matérielle de la découverte
+de Galilée: «la terre tourne;» l'utilité matérielle
+de la loi de la pesanteur, trouvée par Newton;
+l'utilité matérielle de la méthode de Leverrier pour
+aller au-devant d'un astre caché dans les profondeurs
+du ciel. Difficultés vaincues que tout cela, et rien de
+plus: rien de plus, excepté plus d'honneur pour l'esprit
+humain.</p>
+
+<p>Nous verrons plus loin que l'invention de M. Thomas
+est autre chose qu'une difficulté vaincue. En
+attendant, ne la considérons que sous ce dernier point
+de vue; et, pour cela, remontons à l'origine historique
+de l'arithmétique.</p>
+
+<hr />
+
+
+<p>L'origine de l'arithmétique, base de toutes les
+autres sciences, comme tout le monde en convient,
+se perd dans la nuit des temps, ainsi que celle de
+tous les arts nécessaires. Attribuer l'invention de ses
+principales règles aux Indiens, comme le font quelques
+écrivains, ou aux Chaldéens, comme d'autres le
+font, parce que ce peuple en avait besoin pour ses
+études astronomiques, ou aux Égyptiens, qui ne
+pouvaient s'en passer pour leurs travaux géométriques,
+ou bien aux Phéniciens, parce que leur
+commerce les exigeait, c'est ne rien dire de sérieux.</p>
+
+<p>Le besoin et l'intérêt, ces deux grands mobiles de
+l'industrie humaine, durent, dès l'origine des sociétés,
+donner naissance à l'arithmétique, qui ne s'est assurément
+pas formée d'un premier jet, mais pièce à
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p31" id="p31">31</a></span><span class="hidden">)</span>
+pièce, règle à règle, etc. Les historiens, qui nous ont
+raconté si longuement l'histoire de la géométrie, de
+l'astronomie et de plusieurs autres parties de la
+science, ne nous ont presque rien dit de l'arithmétique
+des anciens. Leur silence, sous ce rapport, est
+si grand que l'on est obligé de recourir à des déductions
+à demi hypothétiques pour affirmer que Platon
+et Euclide connaissaient les quatre règles et savaient
+extraire les racines carrées et cubiques. Procédaient-ils,
+dans leurs calculs, comme nous, ou bien prenaient-ils
+des voies plus longues? Rien de précis
+n'existe sur ce sujet.</p>
+
+<p>Il est tout naturel que les doigts aient été les premiers
+auxiliaires de la mémoire dans l'enfance de
+l'art de calculer. La raison ne nous le dirait pas, que
+nous en trouverions encore la preuve dans l'habitude
+qu'ont eue tous les peuples, moins les anciens Chinois
+et une peuplade obscure dont parle Aristote, de distribuer
+leurs nombres en périodes composées chacune
+de dix unités. En principe, le calcul décimal est donc
+aussi vieux que le monde, et notre honneur se borne à
+l'avoir appliqué à tout ce que nous appelons poids,
+étendue, etc.</p>
+
+<p>De même que l'homme se servit d'abord de ses
+doigts pour retenir, assembler et combiner les nombres,
+de même aussi il trouva en lui-même ses premières
+unités de mesures. C'est ainsi que chez tous
+les peuples nous trouvons, sous divers noms, le pas,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p32" id="p32">32</a></span><span class="hidden">)</span>
+la coudée, le pied, le pouce, le doigt, la main, l'empan,
+la brasse, etc.</p>
+
+<hr />
+
+
+<p>Les premiers signes de la numération ont partout
+précédé ceux de l'écriture. Les Latins, comme les
+Grecs, nous ont appris d'une manière formelle quels
+furent ces premiers signes de la numération, quels
+furent ces aînés de nos chiffres. Ces signes furent
+de petits cailloux. Chez les Grecs, comme chez les
+Latins, comme chez nous, faire une opération de
+nombres s'appelle calculer, c'est-à-dire compter des
+cailloux. Les Latins disaient: «<i lang="la">Calculos ponere</i>, <i lang="la">calculos
+subducere</i>, etc.» Les Grecs disaient: «<i>Pséphizein</i>,»
+compter avec des cailloux. (<i>Pséphos</i>, qui veut
+dire petite pierre, caillou, signifiait aussi, par extension,
+suffrage.) Les suffrages se donnaient en Grèce
+avec des cailloux ou des petits coquillages, comme on
+le sait par l'histoire de l'ostracisme et par la racine
+de ce dernier mot lui-même.</p>
+
+<p>Comme, chez les Grecs, on avait réuni des petits
+coquillages d'un poids égal pour servir dans les
+assemblées où le peuple avait voix délibérative, on
+pesait quelquefois ces signes de suffrages, au lieu de
+les compter. Chez les Romains, on avait songé un
+instant à faire fabriquer par les potiers de terre de
+petites billes en terre cuite pour servir à l'expression
+des suffrages. À l'exemple des Grecs, on pesait ces
+billes au lieu de les compter; mais ce système ayant
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p33" id="p33">33</a></span><span class="hidden">)</span>
+donné lieu à quelques abus, on renonça au pesage
+pour reprendre l'addition.</p>
+
+<hr />
+
+
+<p>Tout le monde connaît les tailles des boulangers;
+ces petits morceaux de bois furent les premiers livres
+de commerce de nos premiers parents, leurs premiers
+livres généalogiques et historiques peut-être. Nous
+voyons ces petits bâtons arithmétiques chez les Assyriens,
+chez les Égyptiens, chez les Scythes, chez les
+Thraces, dans l'Inde, dans la Chine; on les a retrouvés,
+au moment de la découverte de l'Amérique,
+chez les Péruviens comme chez les Mexicains; dans
+les découvertes plus récentes, on les a rencontrés encore
+chez plusieurs peuples sauvages.</p>
+
+<p>N'allons pas si loin dans le temps et abstenons-nous
+de traverser les mers pour retrouver ces tailles numériques.
+Dans presque toutes nos provinces, quel est le
+livre-mémoire du paysan illettré, de l'artisan illettré?
+C'est le bâton assyrien, égyptien, mexicain, etc.,
+entaillé d'un côté pour le doit et de l'autre pour l'avoir,
+ayant une partie réservée pour les dates et une
+autre pour les signes rappelant les noms propres, etc.</p>
+
+<p>L'emploi du bâton à signes numériques ne vint
+évidemment qu'après celui des cailloux numérateurs;
+car les petits cailloux se trouvaient partout naturellement
+sous la main des premiers hommes, tandis que
+les entailles faites sur un bâton annoncent la possession
+d'un instrument tranchant, qui suppose lui-même
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p34" id="p34">34</a></span><span class="hidden">)</span>
+l'existence d'une civilisation en marche depuis assez
+longtemps.</p>
+
+<p>Les Assyriens et les Égyptiens, après s'être d'abord
+servis des bâtons entaillés comme aide-mémoire,
+essayèrent de s'en faire des machines à calcul. Nous
+ignorons comment ils disposaient les petites baguettes
+arithmétiques dont les anciens historiens nous parlent;
+mais nous savons que la man&oelig;uvre de ces baguettes
+leur permettait de faire leurs calculs avec une rapidité
+qui fit toujours le désespoir des Grecs, qui ne purent
+réussir à surprendre leur secret.</p>
+
+<hr />
+
+
+<p>Rectifions, en passant, la signification du mot <i>sage</i>,
+<i>philosophe</i>, noms par lesquels on désigne les premiers
+savants de la Grèce, les Grecs qui allaient étudier en
+Égypte et en Asie les sciences et les arts qui florissaient
+dans ces contrées. On croit généralement, d'après
+le sens que nous attachons aujourd'hui à ces
+mots, d'après le sens que la Grèce elle-même y
+attacha vers sa période la plus florissante, que les
+sages, que les philosophes grecs, qui allaient se faire
+les disciples des prêtres de Memphis et des mages de
+la Chaldée, avaient surtout pour but d'étudier les
+sciences morales et législatives de l'Égypte et de
+l'Asie. Cette croyance est une grande erreur: ces
+Grecs voyageurs ne négligeaient sans doute pas entièrement
+l'étude des lois et de la philosophie des
+pays qu'ils visitaient; mais ce qu'ils allaient chercher
+surtout, et sur les rives du Nil et sur celles du
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p35" id="p35">35</a></span><span class="hidden">)</span>
+Tigre et de l'Euphrate, et jusque sur celles de l'Indus
+et du Gange, c'étaient les sciences mathématiques et
+physiques.</p>
+
+<p class="c"><i lang="la">Felix qui potuit rerum cognoscere causas!</i></p>
+
+<hr />
+
+
+<p>Les choses et leurs causes, voilà ce qu'ils ambitionnaient
+de connaître. Que l'on scrute, par exemple, les
+livres, la vie de tous ces vieux Grecs que nous appelons
+des philosophes: Phérécyde, Thalès, Pythagore,
+Callisthène, Anaxagore, Anaximandre, Parménide,
+Héraclite, Empédocle, Épicure, Leucippe, Dioclès,
+Démocrite, Alcméon, Chrysippe, Anaximène,
+Cléanthe, Aristote lui-même, etc. (et nous avons
+pris ces noms au hasard, selon qu'ils nous sont venus
+à la mémoire); que, disons-nous, l'on scrute la valeur
+scientifique de ces noms, et l'on verra que tous ces
+hommes ont brillé comme physiciens, comme naturalistes,
+comme astronomes, comme mathématiciens,
+bien plus que comme philosophes, dans le sens que
+nous attachons à ce mot. Platon, le divin Platon lui-même,
+montre dans tous ses écrits qu'il avait au
+moins autant profité des leçons du physicien Héraclite
+que de celles de Socrate. On sait, au surplus, qu'il
+avait donné la géométrie pour base à sa doctrine et
+mis sur la porte de son école, l'Académie, une
+inscription par laquelle il en refusait l'entrée à ceux
+qui ignoraient cette science. Il l'avait en si haute
+estime qu'il pensait que Dieu s'en occupait sans
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p36" id="p36">36</a></span><span class="hidden">)</span>
+cesse, et c'est pour cela qu'il l'appelait l'éternel
+géomètre.</p>
+
+<hr />
+
+
+<p>S'il est donc vrai de dire que les premières périodes
+dites philosophiques de la Grèce furent principalement
+remplies par l'étude des sciences qui exigent
+l'emploi continuel du calcul, il est indubitable que les
+Grecs durent faire des efforts incessants pour perfectionner
+leur arithmétique. Des commentateurs des
+mathématiciens grecs ont prétendu, non sans quelque
+vraisemblance, que le jeu dont on attribue l'invention
+à Palamède, le jeu des échecs, selon les uns, du
+trictrac, selon d'autres, n'était qu'une machine à
+calcul. Thalès, qui avait appris aux Égyptiens à mesurer
+la hauteur des pyramides par la longueur de
+leur ombre, et qui avait inventé plusieurs combinaisons
+de règles en bois, soit pour prendre la distance
+des astres, soit pour faire des opérations géodésiques,
+paraît aussi avoir été l'inventeur d'un casier arithmétique
+dont les combinaisons nous sont inconnues. Le
+perfectionnement de ce casier arithmétique préoccupa
+d'une manière toute particulière l'intelligence de
+Pythagore, dont on connaît la prédilection pour les
+nombres. Nous ignorons quels résultats obtinrent les
+tentatives de ce grand homme. Nous savons seulement
+que l'abaque, ou table de multiplication qui
+porte son nom, est un débris, ou, si l'on veut, une
+réminiscence de son casier. Nous ne mentionnerons
+ici que pour mémoire le fameux crible d'Ératosthène,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p37" id="p37">37</a></span><span class="hidden">)</span>
+bibliothécaire d'Alexandrie, qui permet de trouver
+si commodément les nombres premiers, dont la recherche
+est curieuse en elle-même, indépendamment
+de son utilité dans la théorie des solutions.</p>
+
+<p>Les anciens comme les modernes ont traité avec
+une railleuse pitié l'opinion de Pythagore sur les
+vertus mystérieuses de certains nombres. Des commentateurs
+plus sages pensent que, ce philosophe et
+ses premiers disciples n'ayant rien écrit, on a pris
+dans un sens trop littéral un langage allégorique dont
+le sens était perdu.</p>
+
+<p>Quoi qu'il en soit, les mathématiciens grecs se
+trouvaient humiliés de ne pouvoir retrouver, à l'aide
+de son abaque, le casier arithmétique qu'il avait imaginé,
+et faisaient, pour le reconstruire, des efforts que
+l'histoire nous montre toujours incessants, mais toujours
+stériles aussi.</p>
+
+<hr />
+
+
+<p>C'est en se livrant à ce travail de réinvention que
+Nicomaque arriva à trouver une étonnante propriété
+des nombres qu'il ne cherchait pas: nous voulons
+parler des progressions arithmétiques.</p>
+
+<p>Ce Nicomaque vivait 250 ans avant notre ère. En
+cherchant à combiner des nombres sur des tablettes,
+de manière à pouvoir abréger mécaniquement les opérations
+de l'arithmétique, il trouva le nombre polygone.
+(On appelle ainsi la somme d'une progression
+arithmétique qui commence par 1, et dont les unités
+peuvent être rangées en figures géométriques.) Il ne
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p38" id="p38">38</a></span><span class="hidden">)</span>
+connut pas les avantages de sa découverte, qui fut
+prise pour une remarque stérile.</p>
+
+<hr />
+
+
+<p>Un siècle après, Archimède vint. Les nombres
+furent sa première étude; ses tentatives pour simplifier
+l'arithmétique, pour en faire un art mécanique,
+furent les travaux qui lui révélèrent la nature de son
+génie. C'est en cherchant à construire une machine
+devant atteindre le même but que celles dont Pythagore
+et Nicomaque avaient eu l'idée, qu'il se sentit
+entraîné vers l'étude des sciences mécaniques, qu'il
+devait enrichir de découvertes si magnifiques.</p>
+
+<p>Les tablettes sur lesquelles Nicomaque avait déposé
+le principe dont il n'avait pas su apprécier la valeur
+féconde, furent pour Archimède un trait de lumière.
+Le calcul polygonal lui révéla l'art de la progression
+des nombres, et cette découverte le consola de n'avoir
+pas réussi dans sa recherche d'une machine arithmétique.</p>
+
+<p>L'enthousiasme avec lequel il parla à ses amis de la
+magnifique loi qu'il venait de trouver ne fit sur eux
+qu'une faible impression; ils lui dirent qu'ils ne
+croyaient pas à l'existence d'une méthode arithmétique
+qui permît d'exprimer en nombres une quantité
+composée d'une infinité de parties. L'un d'eux crut
+même le mettre dans un grand embarras en lui demandant
+s'il évaluerait le nombre des grains de sable
+qui sont au bord de la mer. Archimède lui répondit
+que non-seulement il exprimerait le nombre des grains
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p39" id="p39">39</a></span><span class="hidden">)</span>
+de sable qui sont au bord de la mer, mais encore celui
+des grains dont on pourrait remplir tout l'espace compris
+entre la terre et les étoiles fixes; et il prouva ce
+qu'il avançait, en faisant voir que le cinquantième
+terme d'une progression décuple croissante satisfaisait
+à son engagement.</p>
+
+<p>Il fit plus: afin de ne laisser sur ce sujet aucune
+ressource à l'imagination la plus féconde, il imagina
+un corpuscule dix mille fois plus petit qu'un grain de
+sable; il l'appela grain de pavot, et en forma sa première
+mesure. Le grain de pavot pris cinq fois fit un
+grain d'orge, ou sa seconde mesure, et avec ces
+mesures, le grand homme établit une suite de nombres
+qui se perdent dans l'infini.</p>
+
+<hr />
+
+
+<p>On connaît la petite historiette racontée par Alsephadi,
+auteur arabe, d'un roi indien qui, voulant
+récompenser magnifiquement Sessa, qui avait inventé,
+pour le distraire, le jeu que d'autres attribuent à
+Palamède, le jeu des échecs, l'invita à demander tout
+ce qu'il pourrait désirer. Sessa demanda seulement
+autant de grains de blé qu'il y a de cases dans l'échiquier,
+en doublant à chaque case, c'est-à-dire 64 fois.</p>
+
+<p>Le roi se scandalisa d'une demande qui semblait si
+peu digne de sa munificence. Sessa insista, et le roi
+ordonna qu'on le satisfît. On n'était pas arrivé au
+quart du nombre des cases, qu'on fut effrayé de la
+quantité de blé qu'on avait déjà; un peu plus loin, on
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p40" id="p40">40</a></span><span class="hidden">)</span>
+trouva que le blé du monde entier n'aurait pas suffi
+pour répondre à l'exigence de Sessa.</p>
+
+<p>Cette singulière demande a suffi pour rendre
+immortel le nom de Sessa, et l'on trouvera sans doute
+que c'est là de l'immortalité obtenue à bon marché, si
+l'on sait que ce même Sessa avait longtemps enseigné
+les mathématiques à Alexandrie, où l'ouvrage d'Archimède,
+<i lang="la">De numero arenæ</i>, était certes bien connu.</p>
+
+<hr />
+
+
+<p>Le génie des anciens, qui fut si heureux dans
+presque toutes les autres sciences, comme nous le
+voyons par la grandeur de leurs monuments, qui
+supposent une connaissance profonde de la plupart de
+celles que nous possédons nous-mêmes, ce génie ne se
+révéla que d'une manière extrêmement modeste pour
+ce qui regarde l'arithmétique.</p>
+
+<hr />
+
+
+<p>Nous ne savons pas assez comprendre combien
+l'invention de l'alphabet est au-dessus de toutes les
+découvertes que l'homme a pu faire. Cette invention
+est fort ancienne chez la plupart des peuples; et ce
+qu'il y a de plus remarquable, c'est qu'elle se fit de
+prime-abord avec de tels caractères de simplicité, de
+perfection, que tous les siècles se la sont successivement
+transmise sans y rien ajouter, sans en rien
+retrancher.</p>
+
+<p>Mais si les civilisations historiques possédaient, pour
+la langue proprement dite, des alphabets aussi parfaits
+que les nôtres, elles étaient loin d'avoir, pour
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p41" id="p41">41</a></span><span class="hidden">)</span>
+exprimer les nombres, des caractères aussi simples
+que ceux que nous possédons. Les Orientaux, les
+Assyriens, les Hébreux, les Grecs, n'avaient pour
+signes de numération que les lettres de leur alphabet;
+les neuf premières marquaient les unités, les neuf
+suivantes les dizaines, et les autres, enfin, les centaines.
+Les signes exclusivement numériques étaient
+à peu près nuls; un point ou petit trait à la suite des
+lettres leur donnait seul leur valeur numérique. Dès
+que le nombre s'élevait dans des proportions un peu
+considérables, il fallait employer une quantité de
+lettres dont la lecture elle-même exigeait un calcul.</p>
+
+<p>On dit que les Romains imitèrent les Grecs et se
+servirent aussi de leur alphabet pour exprimer les
+nombres. Telle n'est pas notre opinion. Les signes
+numériques romains I, V, X, L, C, D, M ne ressemblent
+aux caractères alphabétiques que par hasard;
+ils ne viennent pas de l'alphabet, ils sont nés des
+petites lignes que l'homme primitif dut tracer sur la
+pierre, sur le bois, quand il commença à soulager sa
+mémoire par des signes matériels.</p>
+
+<p>Dans le principe, les Romains n'eurent que trois
+chiffres: I, pour exprimer les unités; X, pour exprimer
+les dizaines; [, qui devint plus tard C, pour
+exprimer les centaines. V, ou cinq, n'exprima ce
+nombre que comme étant une moitié de dix, X, et fut
+employé assez tard. De même, plus tard, on se servit
+de L pour exprimer cinquante ou moitié de cent,
+[ ou C. Avant de se servir de M pour exprimer mille,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p42" id="p42">42</a></span><span class="hidden">)</span>
+on employait le signe (I) ou ( I ); pour exprimer cinq
+cents, on prit la moitié du signe (I), mille, c'est-à-dire
+CI, qui devint bientôt D.</p>
+
+<p>Les caractères romains, qui étaient encore plus
+compliqués que les caractères grecs, rendaient les
+opérations de l'arithmétique très-difficiles, ainsi que
+l'on peut s'en rendre compte en essayant la plus
+simple opération avec ces caractères. Aussi les
+Romains ne se distinguèrent-ils nullement comme
+mathématiciens. Lorsque l'administration des finances
+de l'État eut pris de larges développements, ainsi que
+le commerce, on fut obligé de recourir à des calculateurs
+grecs, qui devinrent, pour ainsi dire, les maîtres
+de la fortune publique et des fortunes privées, Rome
+manquant d'hommes capables pour contrôler leurs
+chiffres.</p>
+
+<p>Les abus que quelques-uns d'entre eux commirent
+furent cause que l'on força ces étrangers à enseigner
+leur science aux citoyens romains. Le trésor se chargea
+du traitement de ces professeurs, qui furent installés
+dans un vaste édifice dont l'unique ameublement
+se composait de longues tables, couvertes de
+sable, et munies de petites baguettes pour écrire les
+chiffres, et de rouleaux pour niveler le sable, à mesure
+que les opérations numériques se renouvelaient. Cet
+emploi économique du sable, pour enseigner l'arithmétique,
+avait fait donner aux professeurs grecs le
+nom d'<i lang="la">arenarii</i>, nom qui fut en si grand honneur
+pendant toute la durée de l'empire. C'est parmi ces
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p43" id="p43">43</a></span><span class="hidden">)</span>
+<i lang="la">arénaires</i> qu'étaient ordinairement choisis les hauts
+fonctionnaires du département des finances.</p>
+
+<hr />
+
+
+<p>Mais ce n'est pas à Rome que la vraie science s'était
+réfugiée en abandonnant la Grèce. C'est dans quelques
+villes de l'Asie centrale et de l'Égypte qu'elle s'était
+choisi des asiles. Alexandrie fut le plus célèbre. C'est
+là que Diophante, en cherchant à simplifier, à rendre
+mécaniques les opérations arithmétiques, trouva la
+méthode qui l'a fait regarder par plusieurs comme le
+vrai inventeur de l'algèbre. Cette méthode, c'est celle
+de l'analyse indéterminée, dont nous avons fait des
+applications si curieuses et si utiles, soit dans l'arithmétique
+pure, soit dans l'algèbre et dans la géométrie
+transcendante. On sait que cette arithmétique universelle
+de Diophante fut commentée par la célèbre Hypathia,
+et fut la source où l'Arabe Mohammed-ben-Musa
+puisa son algèbre.</p>
+
+<p>Les mathématiques étaient dans l'état le plus florissant,
+depuis l'Égypte jusqu'aux Indes, lorsque Mahomet
+et ses successeurs commencèrent à exercer dans tout
+l'Orient les immenses dévastations qui ont voué leurs
+noms à l'éternelle exécration des siècles.</p>
+
+<hr />
+
+
+<p>On suppose généralement que les fanatiques compagnons
+des califes n'étaient qu'un misérable assemblage
+de tribus barbares, complétement étrangères
+aux sciences et aux arts civilisateurs. C'est là une erreur
+contre laquelle la saine critique a depuis longtemps
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p44" id="p44">44</a></span><span class="hidden">)</span>
+protesté. Les sciences mathématiques, entre autres,
+étaient aussi familières aux Arabes qu'aux Égyptiens
+et aux habitants de l'Asie occidentale. L'incendie de
+la grande bibliothèque d'Alexandrie, eût-il véritablement
+été ordonné par Omar, au lieu d'être un simple
+accident de guerre, puisque cet événement eut lieu au
+moment où la ville fut emportée d'assaut, il faudrait
+voir dans cet ordre, non la volonté d'anéantir les monuments
+des sciences proprement dites, mais celle de
+faire disparaître les livres des philosophes, des théologiens,
+les livres, en un mot, qui pouvaient contenir
+des principes contraires à ceux de l'absurde Coran.</p>
+
+<p>Lorsque les diverses nations que les premiers califes
+avaient réunies sous un étendard commun se furent
+fatiguées à ravager l'Asie et l'Afrique, et ne virent plus
+devant elles de but matériel digne de leur activité
+immédiate, elles se ressouvinrent des sciences et des
+arts, dont elles n'avaient oublié ni les principes ni la
+langue pendant les longs travaux de la guerre.</p>
+
+<p>Il est à peine besoin de rappeler que c'est à ces
+compagnons des califes, qui ne méritent le nom d'Arabes
+que parce que l'Arabie fournit le noyau de l'agglomération
+guerrière qui se fit en quelques années
+une si large place dans le monde, il est à peine besoin
+de rappeler, disons-nous, que c'est aux Arabes que
+nous devons la connaissance et peut-être la conservation
+des ouvrages d'Aristote, d'Euclide, de Ptolémée,
+de Galien, d'Apollonius, de l'ouvrage d'Archimède,
+<i lang="la">De humido insidentibus</i>, etc., etc.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p45" id="p45">45</a></span><span class="hidden">)</span>
+L'astronomie fut d'abord la science que les Arabes
+s'efforcèrent de faire refleurir; le besoin d'avoir des
+mesures exactes du temps dirigea ensuite leurs études
+vers la mécanique. Pour se faire une idée des succès
+qu'ils avaient obtenus dans cette dernière science, il
+suffit de dire un mot de la fameuse clepsydre que le
+savant calife Haroun, petit-fils du non moins savant
+calife Almanzor, envoya en présent à notre roi Charlemagne
+en 799. Cette clepsydre ou horloge d'eau était
+d'un mécanisme véritablement merveilleux, s'il faut
+s'en rapporter à la description qu'en ont donnée plusieurs
+auteurs.</p>
+
+<p>Sur le cadran de cette horloge étaient pratiquées
+douze portes, qui marquaient la division des heures;
+chacune d'elles s'ouvrait à l'heure qu'elle indiquait
+pour donner passage à de petites boules tombant sur
+un timbre d'airain frappant les heures. Elles demeuraient
+ouvertes jusqu'à la douzième heure, et alors
+douze petits cavaliers sortaient ensemble, faisaient le
+tour du cadran, refermaient les portes, etc., etc.</p>
+
+<p>Les Arabes ne se servirent longtemps que de caractères
+grecs pour exprimer les nombres, et ils comprenaient,
+comme l'avaient compris tous les anciens
+mathématiciens, qu'un bon alphabet manquait encore
+à la science des nombres. On suppose qu'ils n'inventèrent
+les chiffres que vers la fin du <small>VIII</small><sup>e</sup> siècle.</p>
+
+<p>Après avoir réduit la langue des nombres à dix signes,
+ils essayèrent, à l'aide de diverses combinaisons,
+de faire mécaniquement les principales opérations de
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p46" id="p46">46</a></span><span class="hidden">)</span>
+l'arithmétique; mais ils paraissent avoir échoué dans
+ces tentatives. On suppose cependant que le célèbre
+Alfraganus, qui écrivit des éléments d'astronomie
+autrefois classiques, même dans l'Occident, et est auteur
+des <i>Traités sur les horloges solaires et sur l'astrolabe</i>,
+conservés en manuscrits dans quelques bibliothèques,
+avait réussi à composer une machine à calcul.
+L'emploi d'une machine de ce genre, en effet, paraît
+seule pouvoir expliquer la rapidité avec laquelle il
+faisait les calculs les plus longs et les plus compliqués.
+C'est cette rapidité à faire les calculs qui l'avait fait
+surnommer <i>le calculateur</i>.</p>
+
+<p>Quoi qu'il en soit, ce furent les récits merveilleux
+que l'on faisait de la science des Arabes dans l'art de
+combiner les nombres qui nous valurent l'inestimable
+importation des chiffres.</p>
+
+<hr />
+
+
+<p>Gerbert, avant d'être moine, archevêque de Reims,
+chancelier de France et pape sous le nom de Silvestre II,
+avait gardé, sur les montagnes d'Auvergne, les
+troupeaux de son père. Le jeune pâtre, qui dépassa le
+génie de son siècle, au point que la masse de ses contemporains
+lui donna le nom de nécromancien, ne
+songeait qu'à se livrer aux distractions de son âge,
+lorsque lui vinrent tour à tour l'idée de son horloge à
+poids et l'idée de son orgue hydraulique, inventions
+qui seules auraient suffi pour immortaliser son nom.</p>
+
+<p>Pendant que ses compagnons se contentaient de
+souffler dans leurs chalumeaux, formés de l'écorce des
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p47" id="p47">47</a></span><span class="hidden">)</span>
+jeunes rameaux, il avait, lui, trouvé le moyen de se
+servir de l'eau d'une fontaine pour produire le vent
+qui devait faire rendre des sons variés aux siens.</p>
+
+<p>Le soleil était son horloge, lorsqu'il brillait sur l'horizon;
+mais quand le jour était sombre, il arrivait
+parfois au jeune pâtre de se tromper sur l'heure où il
+devait conduire son troupeau à l'abreuvoir et sur celle
+où il devait le ramener à l'étable.</p>
+
+<p>Les réprimandes paternelles que lui attiraient ces
+erreurs mirent en travail l'imagination de l'enfant des
+montagnes, et quelques jours après il avait fabriqué
+avec son petit couteau une ingénieuse combinaison de
+cordelettes, d'axes et de poids qui lui mesurait le
+temps avec une exactitude satisfaisante, et devenait le
+point de départ de la savante horloge qu'il devait construire
+plus tard à Magdebourg.</p>
+
+<p>Géraud de Saint-Céré, prieur des bénédictins d'Aurillac,
+entendit parler des merveilleux jouets, fut curieux
+de les connaître, et pressentit en les voyant, la
+haute destinée à laquelle était réservé leur jeune auteur.</p>
+
+<p>Accueilli dans la célèbre abbaye fondée par saint
+Géraud, Gerbert fit de si rapides progrès dans toutes
+les sciences, que, quelques années après, ses supérieurs,
+jugeant qu'ils ne pourraient plus rien lui apprendre,
+lui permirent d'aller suivre en Espagne les leçons de
+quelques professeurs dont la célébrité était alors universelle.</p>
+
+<p>Recommandé à Borel, comte de Barcelone, il
+étudia dans cette ville les mathématiques pendant
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p48" id="p48">48</a></span><span class="hidden">)</span>
+quinze ou dix-huit mois. Là, comme à Aurillac, le
+disciple était bientôt devenu plus savant que ses maîtres,
+et pourtant sa soif de tout connaître était aussi
+ardente que jamais.</p>
+
+<p>On ne parlait en Espagne qu'avec une admiration
+profonde de la science des docteurs musulmans, qui
+donnaient des leçons publiques à Cordoue et à Séville.
+Malheureusement, le séjour de ces villes était alors
+interdit aux étrangers. Le jeune bénédictin français ne
+tint aucun compte des dangers dont on le menaçait. Il
+quitta momentanément son habit de religieux, couvrit
+sa tête d'un turban, et suivit tour à tour les cours des
+universités de Séville et de Cordoue avec tant d'ardeur
+qu'au bout d'une année, en 968, il revint à Barcelone,
+l'esprit rempli de toute la science des docteurs
+arabes.</p>
+
+<p>On nous pardonnera ces détails si l'on songe que
+c'est de ce dangereux voyage que Gerbert rapporta les
+chiffres.</p>
+
+<p>On ne commente pas de semblables conquêtes.</p>
+
+<hr />
+
+
+<p>Gerbert, non content d'avoir fait à l'Europe un
+aussi magnifique présent, se livra aux plus incessantes
+recherches pour rendre ce présent plus précieux encore.
+Il avait donné les chiffres et révélé l'art de les
+combiner, une plume à la main, le travail de l'esprit
+aidant; il eut l'ambition d'épargner à l'esprit le soin
+de faire ces combinaisons, et voulut confier à une machine
+le soin de les faire. Il savait que les Arabes
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p49" id="p49">49</a></span><span class="hidden">)</span>
+avaient échoué dans toutes les tentatives qu'ils avaient
+faites pour créer une machine à calcul; mais les insuccès
+de ses maîtres stimulaient son ardeur, bien loin de
+le rendre timide dans ses efforts.</p>
+
+<p>Le désir impatient d'arriver à la découverte de l'introuvable
+machine le porta, pendant son séjour à
+Rome, à devenir apprenti tourneur. Il lui semblait
+que tout lui deviendrait possible, lorsqu'il pourrait façonner
+de ses propres mains ses cylindres, ses poulies,
+ses roues à dents, etc., etc.</p>
+
+<p>Espérances vaines! Son habileté dans l'art du tourneur
+ne lui servit que pour la construction de ses
+sphères, de son horloge, et pour le percement des tubes
+dont il avait besoin pour ses observations astronomiques
+et pour ses orgues hydrauliques.</p>
+
+<p>Nous ignorons comment étaient combinées les diverses
+machines à calcul que Gerbert essaya de
+construire. Cependant il est très-supposable que sa
+<i>rhytmomachie</i> et son <i lang="la">abacus</i> étaient des éléments qui
+devaient intervenir dans les machines dont il avait à
+c&oelig;ur d'enrichir le domaine de la science. Son livre
+sur la multiplication, adressé à son ami Constantin,
+moine de Fleury, et son livre sur la division paraissent
+de même n'être que des combinaisons imaginées
+pour être exécutées mécaniquement.</p>
+
+<hr />
+
+
+<p>Le premier essai de machine à calculer que nous
+trouvons après celui de Gerbert est ce qu'on a appelé
+<i>la tête parlante</i> d'Albert surnommé le Grand.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p50" id="p50">50</a></span><span class="hidden">)</span>
+On avait trouvé dans quelques manuscrits que ce
+laborieux dominicain avait fait une tête d'airain qui
+répondait sans hésiter à toutes les questions qu'on
+pouvait lui adresser, et les critiques ont dit avec
+raison que c'était là un conte absurde, attendu qu'une
+tête artificielle ne peut pas avoir de raisonnement
+suivi. S'ils avaient eu un peu plus d'érudition, ces critiques
+auraient su que le fait de la tête d'airain est
+vrai; seulement, au lieu de répondre à toutes les
+questions, elle se bornait à répondre à des questions
+sur les nombres; seulement encore, au lieu de prononcer
+ses réponses, elle les présentait écrites entre ses
+lèvres entr'ouvertes, à l'aide de rubans mus par un
+mécanisme intérieur. En d'autres termes, la tête d'airain,
+construite par Albert le Grand, était tout simplement
+une machine à calculer, exécutant quelques
+additions et quelques multiplications composées d'un
+petit nombre de chiffres.</p>
+
+<p>Roger Bacon, contemporain d'Albert le Grand,
+construisit, lui aussi, une tête d'airain qui répondait à
+certaines questions. Elle a été ridiculisée comme celle
+du religieux allemand. C'est avec aussi peu de fondement;
+car cette tête de Roger Bacon n'était qu'une
+machine à calculer, faite en rivalité de celle d'Albert
+le Grand.</p>
+
+<p>Il est presque inutile de dire qu'en enfermant dans
+une tête le mécanisme à l'aide duquel se déroulaient
+les rubans numérateurs, on avait pour unique but de
+faire paraître plus extraordinaires les réponses arithmétiques
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p51" id="p51">51</a></span><span class="hidden">)</span>
+qui venaient apparaître entre les lèvres de la
+tête d'airain, dont le mécanisme était mû par quelque
+pédale cachée sans doute.</p>
+
+<p>Si nous mentionnons ces essais de machines à calculer,
+c'est qu'il importe de montrer que, dans tous les
+âges, le désir de faire mécaniquement les opérations
+de l'arithmétique a été l'une des ambitions des savants
+les plus éminents.</p>
+
+<hr />
+
+
+<p>Ayant hâte d'arriver à nos temps modernes, nous
+ne raconterons pas les tentatives que firent, pour découvrir
+une machine calculatrice, des savants d'un
+ordre élevé, à Pise, à Milan, à Lisbonne, à Constantinople,
+à Ollmütz, à Erfurt, à Halle, à Bergame, à
+Tubingen, à Zurich, à Stralsund, à Odensée, à Leyde,
+à Aberdeen, etc., etc.</p>
+
+<p>Insuccès partout et toujours, et espérance d'arriver
+à la découverte sans cesse vivante: voilà le résumé
+de l'histoire dont nous esquissons les principaux traits.</p>
+
+<p>Vers l'an 1460, un célèbre mathématicien allemand,
+Jean Muller, plus connu sous le nom de Régiomontan,
+avait découvert l'art de substituer aux fractions
+ordinaires la division des nombres par 10<sup>e</sup>, 100<sup>e</sup>,
+1000<sup>e</sup> et donné à sa méthode le nom d'arithmétique
+décimale.</p>
+
+<p>Cette heureuse simplification ne fit pas disparaître
+l'ancienne manière d'opérer avec les parties de l'unité;
+mais elle resta dans la mémoire des savants, et quelques-uns
+en comprirent les avantages.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p52" id="p52">52</a></span><span class="hidden">)</span>
+De ce nombre fut le baron Néper, seigneur écossais.
+Comprenant tout le parti que l'on pouvait tirer du calcul
+décimal, ce savant entreprit d'en faire la base
+d'une machine à l'aide de laquelle il espérait pouvoir
+exécuter sans effort d'esprit toutes les opérations de
+l'arithmétique. Le mécanisme de cette machine est
+inconnu. On sait seulement que l'appareil avait la
+forme d'une caisse carrée; que cette caisse contenait
+dix rangées de petits cylindres, et que, sur chacun de
+ces cylindres était enroulé un ruban sur lequel étaient
+tracés les neuf chiffres significatifs et le zéro.</p>
+
+<p>Le fonctionnement de cette machine ne répondit
+pas aux espérances de l'inventeur; mais celui-ci ne fut
+nullement découragé par cet échec. Il chercha des
+combinaisons mécaniques nouvelles, et arriva à la découverte
+de la méthode qu'il nomma <i>rabdologie</i> (du
+grec <i>rabdos</i>, baguette, planchette). Elle consiste à
+faire des calculs avec de petites baguettes en forme de
+pyramides rectangulaires, dont chaque face contient
+une partie de l'abaque ou table ordinaire de la multiplication.
+Cette table est divisée en neuf petites lames,
+dont chacune a neuf cellules. La première de ces cellules
+contient l'un des caractères simples, depuis 1
+jusqu'à 9. Les autres cellules renferment les produits
+des multiplications du chiffre qu'elles portent en tête
+par chacun des nombres simples; en combinant ensemble
+ces baguettes, on fait les principales règles de
+l'arithmétique.</p>
+
+<p>Cette combinaison n'est pas difficile à faire. Ce qu'il
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p53" id="p53">53</a></span><span class="hidden">)</span>
+y a d'embarrassant, c'est la recherche de la baguette
+dont on a besoin pour l'opération que l'on veut faire.</p>
+
+<p>C'est cet inconvénient qui fit regarder la <i>rabdologie</i>
+de Néper comme une chose purement ingénieuse.</p>
+
+<hr />
+
+
+<p>Le savant écossais avait fait exécuter tous les plans
+de ses machines à calculer par un très-habile constructeur
+d'instruments de mathématiques, Juste
+Byrge, qui était en même temps un très-savant géomètre,
+et qui fut l'inventeur du compas de proportion.</p>
+
+<p>Ce Juste Byrge était un homme simple, et d'une si
+grande modestie, qu'il ne jugeait pas que ses productions
+fussent dignes de voir le jour. Ce fut bien timidement
+qu'il avoua au baron écossais qu'il attachait
+un certain prix à une découverte qu'il avait faite depuis
+quelque temps. Quelle était cette découverte?
+C'était celle des logarithmes.</p>
+
+<p>On ne dit pas si Néper félicita Byrge de son
+bonheur; mais on sait du moins qu'il sut apprécier la
+valeur d'une semblable invention, puisque, quelque
+temps après, il en fit sa propriété, et publia sous son
+propre nom le livre intitulé: <i lang="la">Mirifici logarithmorum
+canonis descriptio</i>.</p>
+
+<p>La priorité de Juste Byrge comme inventeur des
+logarithmes étant un fait depuis longtemps constaté
+par les témoignages les plus puissants et les plus irrécusables,
+il est vraiment étrange que tant d'écrivains
+modernes continuent d'attribuer au grand seigneur
+écossais la découverte de l'humble constructeur d'instruments
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p54" id="p54">54</a></span><span class="hidden">)</span>
+de mathématiques allemand. Pour notre
+part, nous n'avons pas cru, puisque nous avions à
+parler de Néper, pouvoir nous dispenser de rappeler
+les circonstances, malheureusement trop peu connues,
+qui lui ont valu sa gloire imméritée.</p>
+
+<p>Un honneur que nous ne refuserons pas à Néper,
+c'est celui d'avoir eu l'idée du point de départ, assez
+éloigné, il est vrai, de la célèbre machine à calculer
+de Pascal. Voici comment:</p>
+
+<hr />
+
+
+<p>Nous avons dit que le système rabdologique du baron
+écossais avait été abandonné, à cause de la difficulté
+de trouver promptement la baguette qui est nécessaire
+pour l'opération que l'on veut faire. Un homme
+de mérite, Petit, intendant des fortifications, qui avait
+étudié avec beaucoup d'attention la méthode de Néper,
+vit avec peine que l'on abandonnât cette invention
+et chercha à la ramener à une pratique plus facile.</p>
+
+<p>Quelques années auparavant, un savant jésuite
+allemand, Gaspard Schott, avait eu l'idée de coller
+les bâtons de Néper sur plusieurs cylindres oblongs,
+et mobiles autour de leur axe. Le principe qui avait
+présidé à la construction de la machine de Schott
+n'était peut-être pas mauvais; mais les cylindres,
+qui fonctionnaient bien isolément, donnaient des résultats
+inexacts lorsqu'ils devaient marcher ensemble;
+l'inventeur désespéra de pouvoir perfectionner
+sa machine et l'abandonna.</p>
+
+<p>Petit se contenta d'un seul cylindre et le fit semblable
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p55" id="p55">55</a></span><span class="hidden">)</span>
+à celui des orgues de Barbarie. Ayant ensuite
+tracé sur des lames de carton les tables de Pythagore,
+il ajouta ces lames sur le tambour, de manière
+qu'elles pussent glisser parallèlement à son axe, au
+moyen d'un bouton que chacune d'elles portait;
+mais cette machine, enfermée dans une petite boîte,
+exigeait un véritable apprentissage pour la man&oelig;uvre
+des boutons et présentait d'autres inconvénients
+qui empêchèrent qu'elle ne fût accueillie.</p>
+
+<p>Cependant Pascal fut curieux de la voir. Il trouva
+que les éléments en étaient utilisables et promit à
+Petit de chercher s'il serait possible de perfectionner
+les organes de cet appareil.</p>
+
+<p>Petit était déjà l'ami de Descartes, il devint bientôt
+celui de Pascal. On sait qu'à la suite de la découverte
+de Torricelli, ce fut Petit qui fit les premières
+expériences sur le vide. Ce que l'on sait moins,
+c'est que ce fut sur la prière de Petit que Pascal
+étudia la question de la pesanteur de l'air et fit faire
+par son beau-frère Perrier les fameuses expériences
+du Puy-de-Dôme. Il est bien entendu que si l'idée
+d'expériences à faire, pour démontrer la pesanteur
+de l'air, appartient à l'intendant des fortifications
+de France, au géographe du roi, la méthode d'après
+laquelle ces expériences furent faites fut créée par le
+génie seul de Pascal.</p>
+
+<p>N'ayant pu corriger les vices organiques de la
+rabdologie de Petit, Pascal entreprit de construire
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p56" id="p56">56</a></span><span class="hidden">)</span>
+une machine arithmétique d'après un système qui
+lui serait propre.</p>
+
+<p>La machine à calculer de Pascal, que compliquent
+tant de rouages, tant de poids, qui a besoin d'un si
+grand nombre d'organes pour produire des résultats
+si limités, a été décrite dans trop de livres pour que
+nous jugions utile d'en donner une description nouvelle.
+Nous nous contenterons de dire que cette machine
+fut, entre toutes les créations du grand
+homme, celle qui fatigua le plus son génie, qui lui
+fit prodiguer les veilles les plus longues, qui lui fit
+faire, voulons-nous dire, une plus rapide dépense
+de vie.</p>
+
+<hr />
+
+
+<p>La machine de Pascal fut regardée comme une
+conception merveilleuse; mais elle était trop incomplète
+et trop compliquée pour pouvoir prendre rang
+parmi les instruments de mathématiques usuels.</p>
+
+<p>L'un des plus ingénieux mécaniciens de l'époque,
+Grillet, horloger de Louis XIV, eut l'ambition de la
+simplifier. Il travailla dans ce but, pendant de longues
+années, aidé par les conseils de plusieurs membres
+de l'Académie des Sciences, et parvint enfin,
+après avoir supprimé le tambour et les poids de
+Pascal, à disposer sur les roues les lames porte-chiffres,
+de telle sorte qu'en tournant ces roues d'un côté
+il opérait l'addition, et qu'en les tournant du côté
+opposé il faisait la soustraction.</p>
+
+<p>Cette machine aurait eu une véritable valeur si
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p57" id="p57">57</a></span><span class="hidden">)</span>
+elle avait pu servir pour des additions et des soustractions
+composées de chiffres indéfinis; mais elle
+ne pouvait opérer qu'avec un nombre de chiffres
+très-limité, et dès lors elle n'était plus qu'un simple
+objet de curiosité.</p>
+
+<p>L'auteur lui-même la jugea telle, puisqu'il n'en
+construisit qu'une seule, qu'il montrait fonctionnant
+au public, et à prix d'argent.</p>
+
+<p>Le mécanisme de cette machine est inconnu.
+Grillet, dans ses <i>Curiosités mathématiques</i>, a bien décrit
+l'extérieur de sa machine; mais il n'a rien dit de
+sa construction intérieure. Le <i>Journal des Savants</i> de
+l'année 1678 suppose que tout le secret de la machine
+de Grillet consistait dans une ingénieuse disposition,
+sur de petits cylindres, des lames de la table
+de Pythagore.</p>
+
+<hr />
+
+
+<p>L'abbé Conti, célèbre mathématicien, a dit de
+Leibnitz: «Il voulut surpasser tous les mathématiciens.
+Il n'est presque point d'objet dans la vie
+civile pour lequel il n'eût inventé quelque machine,
+mais aucune ne réussit.»</p>
+
+<p>L'admiration qu'avait excitée, en Europe, la machine
+de Pascal, regardée comme un effort de génie
+qui ne pouvait que très-difficilement être égalé, excita
+l'envie de Leibnitz. Ce savant était alors à l'apogée de
+sa gloire. L'empereur d'Allemagne, le czar de Russie,
+l'électeur de Brandebourg, tous les princes d'Allemagne
+lui avaient prodigué les dignités et les pensions;
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p58" id="p58">58</a></span><span class="hidden">)</span>
+toutes les Académies de l'Europe se faisaient
+gloire de le compter au nombre de leurs membres
+associés, et cependant il ne se trouvait pas heureux;
+au milieu de toutes ces glorifications, la machine de
+Pascal lui donnait des insomnies; il résolut de
+créer une machine rivale de celle du savant français.</p>
+
+<hr />
+
+
+<p>Philosophie, physique, chimie, mathématiques,
+correspondances savantes, relations avec les souverains,
+il mit tout de côté pour recueillir ses forces,
+pour mettre tout son temps et tout son génie au service
+de son ambition nouvelle. Pendant près de
+quatre ans il ne vécut guère que pour cette ambition,
+c'est-à-dire que pour la machine à calculer qu'il voulait
+opposer à celle de Pascal.</p>
+
+<p>Dès qu'il eut imaginé la première combinaison de
+cette machine, il en envoya, pour prendre date, les
+plans à la Société royale de Londres. D'après ces
+plans, la machine devait exécuter les quatre règles de
+l'arithmétique. Quelque temps après, il présenta cette
+même machine à l'Académie des Sciences de Paris.
+Il avait dépensé pour la construire environ 100,000
+francs, somme qui indique bien quel prix il attachait
+à une &oelig;uvre de ce genre, quand on sait que l'avarice
+est le plus grand vice que l'histoire ait eu à lui reprocher.</p>
+
+<p>Sa machine fut trouvée très-imparfaite dans son
+exécution, d'un jeu peu sûr et n'allant pas au delà
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p59" id="p59">59</a></span><span class="hidden">)</span>
+d'une addition et d'une soustraction composées de
+quatre chiffres.</p>
+
+<p>Pour comble de malheur, comme Grillet s'était
+défait de sa machine, sans que l'on sût comment, on
+supposa que Leibnitz en était devenu l'acquéreur
+indirect, et l'avait copiée d'une manière presque
+servile.</p>
+
+<p>Cette accusation, très-timidement énoncée d'abord,
+fut formulée très-explicitement, lorsque Keill l'accusa
+à la face de l'Europe de se dire à tort l'inventeur du
+calcul différentiel et se fit fort de prouver qu'il avait
+dérobé cette invention à Newton.</p>
+
+<p>On sait que, Leibnitz ayant dénoncé cette accusation
+à la Société royale de Londres et l'ayant prise
+pour juge, la Société royale décerna l'honneur de la
+découverte du calcul différentiel à Newton.</p>
+
+<p>Ce procès de priorité, malgré le jugement de la
+Société royale, est toujours pendant devant l'histoire;
+mais un fait est très-certain: c'est que la machine à
+calculer de Leibnitz ne valait pas même celle de l'horloger
+Grillet.</p>
+
+<p>L'<i lang="la">instrumentum mathematicum universale</i> de Riler
+n'est pas, à proprement parler, une machine. C'est
+tout simplement une modification de la règle à calculer
+d'Edmond Günther. Günther avait transporté les logarithmes
+sur une échelle linéaire, au moyen de laquelle
+on pouvait, par une ouverture de compas, obtenir le
+résultat d'une multiplication ou d'une division. La règle
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p60" id="p60">60</a></span><span class="hidden">)</span>
+de Riler ne diffère de celle de Günther que par sa
+forme, qui est semi-circulaire.</p>
+
+<p>En 1673, Samuel Moreland publia à Londres un
+petit livre intitulé: <i>Description et usage de deux instruments
+d'arithmétique</i>. Ces deux machines n'ont probablement
+jamais été construites et ne méritent pas de
+l'être.</p>
+
+<p>L'auteur de la colonnade du Louvre et de l'Observatoire,
+qui était plus qu'un maçon, n'en déplaise à Boileau,
+Perrault, qui était aussi habile mécanicien que
+grand architecte, composa avec de petites règles, portant
+chacune des séries de chiffres placées l'une à la
+suite de l'autre, une machine à calculer fort ingénieuse,
+mais qui ne pouvait être qu'un simple objet de curiosité.
+Le dessin et la description s'en trouvent dans le
+premier volume des <i>Machines approuvées par l'Académie
+des Sciences</i>.</p>
+
+<p>Le marquis Giovanni Poleni, le célèbre professeur
+d'astronomie et de mathématiques de Padoue, le restaurateur,
+pour ne pas dire le créateur de l'architecture
+hydraulique, Poleni, qui, grâce à sa connaissance de
+tous les secrets de la mécanique, eut la gloire de consolider
+la basilique de Saint-Pierre de Rome, sans rien
+changer à sa valeur artistique, et après que tous les
+architectes consultés par Benoît XIV eurent déclaré
+que le chef-d'&oelig;uvre du génie de Michel-Ange ne pouvait
+être consolidé qu'à la condition d'être réédifié sur
+des fondements nouveaux; Poleni, que les rois faisaient
+consulter pour tous leurs grands travaux; Poleni, le
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p61" id="p61">61</a></span><span class="hidden">)</span>
+correspondant aimé de Newton, de Leibnitz, de Bernouilli,
+de Wolf, de Mairan, de Cassini, de Manfredi,
+de S'Gravesande, de Muschenbroëck, etc., qui lui
+donnaient généralement le nom de maître, Poleni entreprit,
+lui aussi, de construire une machine à
+calculer.</p>
+
+<p>Wolf, à qui il avait fait part de son projet, lui écrivit
+de Halle: «Je fais des v&oelig;ux d'autant plus ardents
+pour votre succès, que votre échec détournerait
+éternellement tous les savants de rentrer dans une
+voie que vous n'auriez pu parcourir jusqu'au bout.»</p>
+
+<p>Poleni suivit jusqu'au bout la voie dans laquelle il
+était entré, c'est-à-dire exécuta sa machine; mais les
+plans et la description qu'il nous en a laissés, dans ses
+<i lang="la">Miscellanea</i>, nous montrent qu'il ne fut pas plus heureux
+que ses devanciers.</p>
+
+<p>Les craintes de Wolf ne se réalisèrent pas; l'insuccès
+de Poleni ne découragea personne, ainsi qu'on le
+verra par la suite de cette liste des chercheurs de l'introuvable
+machine.</p>
+
+<p>Leupold, le grand ingénieur des mines du roi de
+Pologne, l'auteur de la précieuse collection intitulée
+<i lang="la">Theatrum machinarum</i>, l'inventeur heureux de tant
+d'instruments de mathématiques, ayant échoué dans
+ses premières tentatives pour créer une machine à calculer
+qui n'empruntât rien aux machines antérieures,
+finit par recourir au tambour de Petit. Il le rendit plus
+commode en le faisant décagonal, de cylindrique qu'il
+était, puisqu'il supprima par là les rainures pour le
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p62" id="p62">62</a></span><span class="hidden">)</span>
+glissement des baguettes; mais ce travail n'ajouta rien
+à sa gloire, et la machine à calculer restait toujours à
+trouver.</p>
+
+<p>Sera-ce Clairaut, grand géomètre dès l'âge de
+douze ans, et membre de l'Académie des Sciences à
+dix-huit, qui fera la merveilleuse découverte?</p>
+
+<p>Non. Il mettra dans cette recherche toute sa science,
+toute son ardeur, tout son génie; mais tous ses efforts
+seront impuissants et il brisera toutes les poulies, tous
+les rouages, tous les ressorts de sa machine, en disant:
+«Délivrons-nous de la présence de ces témoins,
+qui me rappelleraient sans cesse que j'ai travaillé
+pendant dix-huit mois à faire des arithméticiens de
+ces morceaux de bois et de cuivre.»</p>
+
+<p>Il nous est cependant resté l'une des combinaisons
+qui s'étaient présentées à l'esprit de Clairaut, pendant
+qu'il travaillait à sa machine à calculer. Nous voulons
+parler de sa planchette trigonométrique, figurée et décrite
+dans le 5<sup>e</sup> volume des <i>Machines de l'Académie
+des Sciences</i>, et destinée à remplacer les tables des logarithmes
+et à résoudre les triangles sans calcul.</p>
+
+<p>Michaël Poetius a décrit un instrument composé de
+cercles concentriques mobiles, qui semble n'être
+qu'une modification de la rabdologie de Néper et ne
+peut pas rendre plus de services que la table de Pythagore.
+Aussi l'appelle-t-on <i lang="la">Mensula pythagorica</i>.</p>
+
+<p>La nouvelle disposition de la table de Pythagore
+par de Méan est décrite dans les <i>Machines de l'Académie
+des Sciences</i> et facilite plusieurs calculs; mais ce
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p63" id="p63">63</a></span><span class="hidden">)</span>
+n'est pas là, à proprement parler, une machine. Nous
+dirons la même chose de l'échelle à coulisse de
+Ch. Leadbetter, dont Jones s'attribua ou se laissa attribuer
+plus tard l'invention.</p>
+
+<p>La machine de Lépine, le célèbre horloger français,
+attira un instant l'attention des savants; mais on reconnut
+bientôt que Lépine n'avait fait que simplifier
+dans sa construction la machine de Pascal et lui avait
+laissé tous les inconvénients qui la rendent impropre
+à toute espèce de service. Cette machine est décrite
+dans le 4<sup>e</sup> volume des <i>Machines de l'Académie</i>.</p>
+
+<p>Hillerin de Boistissandeau fut moins imitateur que
+Lépine. Il modifia profondément les organes de la machine
+de Pascal, en retrancha quelques-uns, en ajouta
+d'autres, se montra fort ingénieux dans ses combinaisons;
+mais, au résumé, il resta, comme tous ses devanciers,
+à une distance énorme en deçà du but qu'il
+s'était proposé d'atteindre.</p>
+
+<p>Et pourtant ce ne fut pas le courage qui lui fit défaut,
+ainsi que nous en avons la preuve dans le 5<sup>e</sup> volume
+des <i>Machines de l'Académie des Sciences</i>, puisque,
+sa première machine n'ayant pas réussi, il en construisit
+une seconde, d'après un système nouveau.</p>
+
+<p>Vers le même temps, de Salamanque, de Palerme,
+de Mantoue, de Berlin, de Leipsick, etc., on annonçait
+la découverte de machines à calculer, qui tombèrent
+immédiatement dans l'oubli.</p>
+
+<p>Celle qui fut présentée en 1735 à la Société royale
+de Londres, par Gorsten, occupa l'attention de l'Europe
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p64" id="p64">64</a></span><span class="hidden">)</span>
+un peu plus longtemps. Elle n'opérait que l'addition
+et la soustraction, fonction remplie par plusieurs
+machines antérieures, mais d'une manière plus compliquée.
+Elle était composée d'une suite de crics dont
+chacun était mû par une étoile ou pignon, et poussait
+l'étoile suivante d'un dixième. Le dessin et la description
+de cette machine se trouvent dans le 9<sup>e</sup> volume
+des <i lang="en">Philosophical Transactions</i>.</p>
+
+<p>La machine arithmétique que Pereire présenta à
+l'Académie des Sciences de Paris, en 1750, et dont le
+<i>Journal des Savants</i> nous a conservé la description, se
+composait de petites roues de buis ou cylindres très-courts
+enfilés par un même axe. Les chiffres étaient
+écrits sur le pourtour de chacune de ces roues, qui
+étaient enfermées dans une boîte. Sur le dessus de cette
+boîte étaient pratiquées autant de rainures qu'il y avait
+de roues. Chaque rainure avait en longueur le tiers
+de la roue qui lui correspondait. Une aiguille passée
+dans la rainure servait pour faire tourner la roue, etc.</p>
+
+<p>Avec cette machine on pouvait faire un certain
+nombre d'opérations, mais moins rapidement qu'avec
+la plume.</p>
+
+<p>Les deux machines qu'inventa lord Mahon, comte de
+Stanhope, ont eu une assez grande réputation en Angleterre.
+L'une servait pour faire l'addition et la soustraction,
+l'autre pour la multiplication et la division.</p>
+
+<p>Le comte de Stanhope, qui conquit au profit de l'Angleterre
+l'île Minorque et dut son titre de lord Mahon
+à la prise de Port-Mahon; lord Stanhope, le généralissime
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p65" id="p65">65</a></span><span class="hidden">)</span>
+des années anglaises en Espagne, qui n'avait remporté
+que des victoires, jusqu'au jour où il se trouva en
+face du duc de Vendôme, qui le vainquit et le fit prisonnier
+avec 5,000 Anglais; lord Stanhope, dis-je, n'était
+pas seulement un grand capitaine, il était encore un
+savant d'un ordre élevé.</p>
+
+<p>Ayant d'abord eu la passion des langues, il avait
+appris en trois années toutes celles qui se parlent en
+Europe. L'ambition de devenir un nouvel Archimède
+s'étant ensuite emparée de lui, il s'était mis à étudier
+l'ancienne balistique et la mécanique avec une ardeur
+incroyable. Cette étude n'aurait été qu'un plaisir pour
+lui, si elle avait exigé moins de calculs; mais les incessantes
+colonnes de chiffres qu'elle consomme fatiguaient,
+épuisaient sa patience. Il chercha donc à
+savoir si, parmi les nombreuses machines arithmétiques
+qui avaient été imaginées, il ne s'en trouverait pas une
+qui fût propre à lui épargner le fatigant travail du calcul
+numérique.</p>
+
+<p>Aucune de ces machines ne l'ayant satisfait, il entreprit
+d'en construire une lui-même. Il essaya un nombre
+de combinaisons infini, garda pendant plusieurs années
+à son service des mécaniciens qui travaillaient uniquement
+à l'exécution de ses plans, sans cesse changés ou
+modifiés, et ne s'arrêta, en fin de compte, qu'aux deux
+machines compliquées, incomplètes, inutilisables, que
+nous avons mentionnées.</p>
+
+<p>Vers le même temps, Matthieu Hann, pasteur de
+Kornswestheim, près de Ludwigsbourg (Wurtemberg),
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p66" id="p66">66</a></span><span class="hidden">)</span>
+après de longues années de travail et de grandes dépenses,
+montra une machine arithmétique avec laquelle
+il exécutait des opérations fort difficiles. Cette machine
+commença par exciter un étonnement général; mais
+bientôt on reconnut que les calculs exécutés avec cet
+instrument étaient très-limités, très-inexacts; l'invention
+de Hann fut abandonnée. On n'en connaît pas la
+structure intérieure, le <i>Mercure</i> de Wieland n'en ayant
+décrit que la forme extérieure.</p>
+
+<p>La machine que construisit, bientôt après, le capitaine
+du génie Müller était plus exacte que celle de Hann,
+mais était aussi incomplète. L'auteur donne la description
+de la forme extérieure de sa machine et les indications
+sur la manière de s'en servir, dans sa brochure
+intitulée: <i>Description d'une nouvelle machine</i>.</p>
+
+<p>La machine arithmétique dite de Diderot étant
+longuement décrite dans la grande Encyclopédie, nous
+n'en dirons rien. Nous nous contenterons de rappeler
+que presque tous les savants de l'Encyclopédie sont
+aujourd'hui réputés avoir contribué de toute leur
+science, de tout leur génie, à la création de cette lourde
+machine, dont la mémoire de Diderot a seule longtemps
+supporté la responsabilité.</p>
+
+<p>L'instrument inventé par Prahl et connu sous le
+nom d'<i lang="la">Arithmetica portabilis</i>, n'est qu'une sorte de
+reproduction de la <i lang="la">Mensula pythagorica</i> de Michaël
+Poetius. Il n'en diffère qu'en ceci: les cercles mobiles
+sont beaucoup plus grands et portent des chiffres qui
+vont de 1 à 100, de sorte qu'au moyen de cette machine
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p67" id="p67">67</a></span><span class="hidden">)</span>
+on peut additionner et soustraire jusqu'au nombre 100.</p>
+
+<p>La machine à calculer dont Gruson donne la description
+dans une brochure qu'il publia en 1790, à
+Hagdebourg, n'est également qu'une imitation de la
+<i lang="la">Mensula pythagorica</i> et consiste dans un disque de
+carton, avec index au milieu.</p>
+
+<p>En 1797, Jordans publia à Stuttgart une brochure
+portant pour titre: <i>Description de plusieurs machines
+à calcul, inventées par Jordans</i>. Cette brochure ne
+fait guère que reproduire, sous des formes modifiées,
+le <i lang="la">promptuarium</i> de Néper.</p>
+
+<p>En 1795, Leblond avait transporté sur un cadran
+les divisions logarithmiques de Günther; mais cette
+modification ne constitue pas une machine proprement
+dite.</p>
+
+<p>Il faut en dire autant de l'arithmographe que Gottey
+construisit en 1810, qui n'est également qu'une
+forme nouvelle, la forme circulaire, donnée à l'instrument
+de Günther.</p>
+
+<p>Il faut en dire autant des règles logarithmiques de
+Mountain et de celles de Makay; autant des règles de
+Scheflelt et de la double règle de Lambert; autant de
+la règle à coulisse de Lenoir, qui n'est que la reproduction
+de celle, non pas de Jones, qui n'était lui-même
+qu'un reproducteur, mais de Ch. Leadbetter.</p>
+
+<p>La Société royale des Sciences, de Varsovie, fut appelée,
+en 1814, à examiner une véritable machine
+arithmétique, c'est-à-dire propre à exécuter les quatre
+règles. L'auteur de cette invention, Abraham Stern,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p68" id="p68">68</a></span><span class="hidden">)</span>
+s'était montré très-ingénieux dans la conception et la
+construction de sa machine; cependant, malgré ses
+savantes combinaisons, il n'avait pu réussir à lui
+donner les qualités exigées des créations de cette
+espèce. Sa machine était très-compliquée, très-difficile
+à man&oelig;uvrer et exigeait une attention plus fatigante
+que celle des calculs faits à la plume. Elle fut abandonnée.</p>
+
+<p>La fameuse machine de Babbage n'est pas, à proprement
+parler, une machine arithmétique, puisqu'elle
+n'exécute pas les quatre règles de l'arithmétique.
+Cet appareil, infiniment compliqué et excessivement
+volumineux, n'est destiné qu'à donner les
+différents termes d'une série qui procède par différences.
+Babbage l'a construite ou plutôt a commencé
+à la construire en 1821, sur l'invitation du gouvernement
+anglais. Celui-ci voulait qu'elle pût calculer
+les tables mathématiques et astronomiques.</p>
+
+<p>L'ingénieur anglais, après avoir travaillé à cette
+machine pendant plus de douze ans, et y avoir dépensé
+17,000 livres sterling (425,000 francs), dues,
+en partie, à la munificence du roi Georges III, n'était
+arrivé en 1833 qu'à l'exécuter pour trois colonnes.</p>
+
+<p>Depuis ce temps, Babbage a paru ne plus s'en occuper.
+Est-ce parce que les mouvements excessivement
+lents de cette machine ne permettaient pas d'en attendre
+ultérieurement des résultats utiles? Est-ce parce que
+le demi-million qu'il faudrait encore dépenser pour
+l'exécuter sur une grande échelle effraie le gouvernement
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p69" id="p69">69</a></span><span class="hidden">)</span>
+anglais? L'inventeur, enfin, se trouve-t-il
+arrêté dans l'exécution de son &oelig;uvre par des difficultés
+dont ne peuvent triompher ni sa science ni son génie?</p>
+
+<p>Sans chercher une réponse à ces questions, contentons-nous
+de dire que depuis 1833 la machine de
+Babbage est restée à l'état de promesse, et que rien
+n'en annonce la réalisation ultérieure.</p>
+
+<p>Quelque temps après que Babbage eut fait connaître
+que sa machine avait reçu un commencement
+d'exécution, un Suédois, M. Schentz, annonça qu'il
+avait, de son côté, inventé une machine pour la formation
+des séries. Cette machine n'a pas été exécutée,
+et l'auteur n'en a pas fait connaître le mécanisme.</p>
+
+<p>Après que le brevet d'invention que M. Thomas
+de Colmar avait pris en 1822 fut expiré et eut été
+publié, les annonces d'inventions de nouvelles machines
+à calculer se multiplièrent d'une manière inouïe
+jusque-là. Il y eut telle année où il fut pris jusqu'à
+quatre brevets d'invention pour machines de cet ordre.</p>
+
+<p>Tous ces brevets montrent que les inventeurs qui
+vont réchauffer leurs inspirations dans le recueil des
+inventions tombées dans le domaine public, et qui,
+quelquefois même, n'attendent pas si longtemps pour
+se procurer le secours du génie d'autrui, ne s'étaient
+pas fait faute de faire à l'arithmomètre des emprunts
+plus ou moins habilement déguisés.</p>
+
+<p>Parmi ces inventions de seconde main, les unes sont
+à peu près restées à l'état de projet; les autres n'ont
+profité qu'aux mécaniciens par qui les inventeurs les
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p70" id="p70">70</a></span><span class="hidden">)</span>
+ont fait construire, et sont allées aux mains du ferrailleur.</p>
+
+<p>Cependant, depuis l'invention de l'arithmomètre,
+trois autres machines à calculer, recommandables
+par d'autres qualités que celles de l'imitation, ont été
+exécutées.</p>
+
+<p>La première, c'est l'additionneur de M. le docteur
+Roth. Cette machine est fondée sur le même principe
+que celle de Pascal; mais ses roues ne marchent pas
+de la même manière. Dans la machine de Pascal, les
+roues se commandent, comme on dit en mécanique,
+elles marchent ensemble. Dans la machine de M. Roth,
+elles sont indépendantes; l'une ne marche qu'après
+que celle qui la précède a accompli son mouvement.
+Le mécanisme de Pascal est fondé sur la transmission
+simultanée; celui de M. Roth, sur la transmission successive.
+Le premier exige d'autant plus de force pour
+être man&oelig;uvré, que les roues sont plus nombreuses;
+le second n'exige jamais que la même force, quel que
+soit le nombre des roues.</p>
+
+<p>En somme, la machine de M. Roth est une bonne
+machine pratique; malheureusement, elle ne peut servir
+que pour faire les additions.</p>
+
+<p>À l'Exposition de l'industrie de 1849, une nouvelle
+machine à calculer: l'arithmaurel, fut présenté par
+MM. Maurel et Jayet. Cette machine, ainsi que l'a
+reconnu l'Académie des sciences, en la jugeant digne
+du prix de mécanique de la fondation Monthyon, exécute
+très-bien les quatre principales opérations de
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p71" id="p71">71</a></span><span class="hidden">)</span>
+l'arithmétique; mais, comme l'a dit M. Mathieu, il
+est à craindre que les combinaisons mécaniques très-ingénieuses,
+mais très-délicates, sur lesquelles elle
+repose, n'entraînent dans des frais de construction
+trop élevés pour que l'arithmaurel devienne jamais
+bien usuel.</p>
+
+<p>Cependant cette machine, quoique la délicatesse de
+ses organes et le prix énorme qu'elle coûterait, si elle
+devait opérer avec un nombre de chiffres un peu considérable,
+semblent la condamner à n'être guère
+qu'un simple objet de curiosité, n'en fait pas moins
+beaucoup d'honneur à l'imagination et à l'habileté
+mécanique de MM. Maurel et Jayet.</p>
+
+<p>C'est une véritable gloire que l'arithmaurel aurait
+procurée à ses constructeurs, s'il pouvait se faire que
+l'année 1822 ne fût pas antérieure à l'année 1849,
+c'est-à-dire que l'arithmomètre n'eût pas précédé
+l'arithmaurel de plus de vingt-cinq ans.</p>
+
+<p>Nous voulons dire par ce qui précède que MM. Maurel
+et Jayet ont certainement mis dans la construction
+de leur machine des combinaisons très-ingénieuses et
+dont personne ne songe à leur contester la priorité;
+mais ils ont donné pour principal organe à cette machine
+de 1849 le même organe principal que M. Thomas
+de Colmar avait donné à son arithmomètre de 1822.</p>
+
+<p>En d'autres termes, la machine de MM. Maurel et
+Jayet a été construite sur le principe de celle de
+M. Thomas de Colmar.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p72" id="p72">72</a></span><span class="hidden">)</span>
+Le Jury central de l'Exposition de 1849 s'est
+exprimé ainsi par l'organe de son rapporteur:</p>
+
+<p>«MM. Maurel et Jayet ont présenté, sous le nom
+d'arithmaurel, une machine à calculer, dans laquelle
+on retrouve le principal organe de l'arithmomètre
+de M. Thomas, à savoir: des cylindres cannelés et
+des arbres parallèles sur lesquels glissent des pignons
+destinés à représenter des nombres.»</p>
+
+<p>Le Comité des arts mécaniques de la Société d'encouragement
+pour l'industrie nationale disait, dans sa
+séance du 12 mars 1851, dans un rapport à la suite
+duquel une médaille d'or fut décernée à M. Thomas
+de Colmar:</p>
+
+<p>«Ces organes de la machine de MM. Maurel et
+Jayet sont réellement les organes des machines de
+M. Thomas, leurs organes caractéristiques.»</p>
+
+<p>Dans la séance de l'Académie des Sciences du
+11 décembre 1854, une commission composée de
+MM. Cauchy, Piobert et Mathieu, à l'examen de
+laquelle avait été renvoyée la machine perfectionnée,
+ou plutôt la nouvelle machine de M. Thomas de Colmar,
+reconnaissait également dans des termes explicites
+que le principal organe de l'arithmaurel existait
+dès 1822 dans la machine primitive de M. Thomas.</p>
+
+<p>Nous disons dans la Machine primitive, parce que
+M. Thomas, ayant reconnu les inconvénients des cannelures,
+les a remplacées, dans sa nouvelle machine,
+par un système de denture infiniment plus simple et
+plus doux à mouvoir.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p73" id="p73">73</a></span><span class="hidden">)</span>
+Voici les termes dont se servit M. Mathieu, rapporteur
+de la commission académique dont nous venons
+de parler, pour rappeler les titres de priorité de
+M. Thomas:</p>
+
+<p>«M. Thomas, en employant des cylindres cannelés,
+était parvenu dès 1822 à construire une machine
+simple avec laquelle on pouvait exécuter, sans
+tâtonnement, les opérations ordinaires de l'arithmétique.</p>
+
+<p>»L'idée du cylindre cannelé se retrouve dans une
+machine nommée arithmaurel, construite <i>postérieurement</i>
+par MM. Maurel et Jayet, et pour laquelle
+ils ont obtenu le prix de mécanique de la fondation
+Monthyon.»</p>
+
+<p>Il n'est pas absolument impossible que l'idée des
+cylindres cannelés et des arbres parallèles sur lesquels
+glissent les pignons destinés à représenter les nombres,
+se soit présentée en 1849 à l'esprit de MM. Maurel
+et Jayet, comme elle s'était présentée à celui de
+M. Thomas de Colmar plus de vingt-cinq ans auparavant;
+mais nos règles de justice, dans les matières de ce
+genre, n'admettent pas des rencontres semblables, et
+attribuent tout l'honneur que peut valoir une idée
+scientifique ou industrielle à celui qui l'a authentiquement
+émise le premier.</p>
+
+<p>La troisième machine à calculer remarquable qui
+a paru depuis la publication des plans de celle de
+M. Thomas de Colmar, est celle qu'un savant constructeur
+russe, M. Staffel, présenta à l'Exposition
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p74" id="p74">74</a></span><span class="hidden">)</span>
+universelle de Londres. Cette machine exécute d'une
+manière fort satisfaisante les principales opérations
+de l'arithmétique; mais l'extrême délicatesse de son
+mécanisme et son prix excessif, si elle devait servir
+pour des calculs à chiffres nombreux, ne permettent
+pas de la regarder comme un instrument susceptible
+d'entrer dans le commerce.</p>
+
+<p>Quant au principe de cette machine, il est effectivement
+le même que celui de la machine de M. Thomas
+de Colmar, quoiqu'il soit appliqué d'une manière
+différente, c'est-à-dire quoique les cylindres soient
+verticaux, au lieu d'être horizontaux.</p>
+
+<p>La machine de M. Staffel se trouve donc vis-à-vis
+de celle de M. Thomas de Colmar frappée, comme
+l'arithmaurel, du cachet de la postériorité, pour nous
+servir d'un mot qui réserve tous les droits de l'inventeur
+de l'arithmomètre, sans préciser d'autre fait que
+le malheur qu'ont eu MM. Staffel, Maurel et Jayet
+d'avoir été devancés dans la découverte du principe
+qui nous a valu la solution du problème qu'avait stérilement
+cherché le génie des siècles.</p>
+
+<p>Il n'a été présenté à notre Exposition universelle
+que deux machines à calculer: l'arithmaurel et l'arithmomètre
+perfectionné, ou plutôt le nouvel arithmomètre.</p>
+
+<p>Les deux machines à calcul de l'Autriche: l'une,
+exposée par M. Rettembacher, d'Isch, et l'autre, par
+M. Stach, de Trieste, appartiennent à la catégorie des
+règles à coulisses.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p75" id="p75">75</a></span><span class="hidden">)</span>
+Une revue scientifique de Paris avait annoncé qu'une
+véritable machine à calculer devait être exposée par
+un Suédois; mais nous croyons savoir que la commission
+suédoise n'a pas même entendu parler d'une
+machine de ce genre.</p>
+
+<p>Il a été certainement construit bien plus de machines
+arithmétiques que nous n'en avons mentionné.
+Chez combien de savants, en effet, n'a pas dû naître
+l'ambition de résoudre un problème qui avait véritablement
+été posé devant le génie de l'homme dès
+l'origine de la société! Dès l'origine de la société,
+disons-nous, puisque, chez les peuples qui ne sont pas
+encore nés à la civilisation, nous trouvons un commencement
+de lutte contre ce problème, c'est-à-dire,
+l'emploi, pour calculer plus facilement, de cordes à
+n&oelig;uds, de tablettes percées de petits trous, dans
+lesquels on fait man&oelig;uvrer des chevillettes; d'espèces
+de damiers calculateurs; de chapelets de coquillages
+ou de graines de fruits, d'abaques plus ou moins élémentaires,
+etc.</p>
+
+<p>De toutes les tentatives infructueuses qui ont été
+faites pour arriver à la découverte d'une véritable
+machine arithmétique, nous n'avons pu connaître que
+celles qui étaient regardées comme heureuses par leurs
+auteurs, car il n'est pas naturel que l'homme publie
+des insuccès qui constatent sa faiblesse; et cependant
+combien est longue la liste des chercheurs connus de
+la rebelle machine!</p>
+
+<p>Quelle était donc, au fond, la grande difficulté qu'il
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p76" id="p76">76</a></span><span class="hidden">)</span>
+s'agissait de vaincre?&mdash;Franc&oelig;ur va répondre à
+cette question:</p>
+
+<p>Dans la séance de 20 février 1822, ce savant s'exprimait
+ainsi devant la Société d'encouragement, dans
+son rapport sur la machine de M. Thomas:</p>
+
+<p>«Le défaut de toutes les machines arithmétiques
+est de ne se prêter qu'a des calculs très-simples.
+Dès qu'il s'agit de multiplier, il faut convertir l'opération
+en une suite d'additions; ainsi, pour obtenir
+7 fois 648, on est obligé d'ajouter d'abord 648 à
+lui-même, puis la somme à 648, celle-ci encore à
+648, etc., jusqu'à ce que 648 ait été pris 7 fois. À
+quelles longueurs ne faut-il pas se soumettre lorsque
+le multiplicateur a deux ou trois chiffres! Celle de
+M. Thomas donne de suite les résultats du calcul.</p>
+
+<p>»La plus grande difficulté à vaincre donc, difficulté
+contre laquelle le génie même de Pascal a
+échoué, c'était de faire porter les retenues sur le
+chiffre à gauche. Dans la multiplication de 8 par 7,
+on ne pose pas le produit 56, mais seulement le
+chiffre 6, parce qu'on reporte les cinq dizaines sur
+le produit prochain. Le mécanisme par lequel
+M. Thomas opère ce passage est extrêmement ingénieux;
+ce report se fait de lui-même, sans qu'on y
+songe. Pour multiplier 648 par 7, par exemple,
+l'opérateur tire le cordon sans s'embarrasser s'il y a
+ou non des chiffres à retenir, sans même savoir ce
+que c'est, et il lit de suite le produit 4,536.»</p>
+
+<p>La gloire de M. Thomas de Colmar consiste donc
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p77" id="p77">77</a></span><span class="hidden">)</span>
+essentiellement dans la découverte du principe ou, si
+l'on veut, du procédé mécanique qui a permis de
+triompher de la difficulté qui avait arrêté jusqu'à lui
+tous les chercheurs d'une véritable machine à calculer.</p>
+
+<p>Le principe, le procédé mécanique à l'aide duquel
+se résout la grande difficulté qu'il s'agissait de vaincre
+ayant été trouvé par M. Thomas, est modifiable comme
+toutes les choses matérielles. Il est, par conséquent,
+facile de construire des machines arithmétiques dont
+les organes diffèrent par la forme, par le mode de
+fonctionnement, de la machine de M. Thomas. Ce qui
+ne serait pas facile, ce serait de pouvoir raisonnablement
+prétendre que le principe fondamental de l'arithmomètre
+n'a pas été le point de départ des machines
+arithmétiques construites dans ces dernières années.</p>
+
+<p>Une pareille prétention, si elle était émise, paraîtrait
+probablement tout aussi singulière que celle du
+photographe qui, ne se servant ni des plaques, ni des
+substances, ni des objectifs employés par Daguerre et
+Niepce, dénierait à ces deux noms une part dans le
+mérite de ses &oelig;uvres.</p>
+
+<hr />
+
+
+<p>Le triomphe obtenu par M. Thomas de Colmar
+sur les difficultés que la science avait en dernier lieu
+déclarées invincibles, ne serait pas apprécié comme il
+mérite de l'être, si on oubliait que ses devanciers, dans
+la recherche de la machine à calculer, n'avaient pas
+craint de multiplier les organes de leurs machines, et
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p78" id="p78">78</a></span><span class="hidden">)</span>
+qu'il s'était interdit, lui, l'emploi de tout mécanisme
+compliqué.</p>
+
+<p>Avec un peu d'imagination et de patience, on peut,
+pour ainsi dire, tout faire en mécanique, quand on ne
+se limite pas dans l'emploi des roues, des pignons,
+des échappements, etc.; mais il faut autre chose que
+de l'imagination et de la patience pour produire des
+effets d'une complication et d'une variété infinies avec
+des moyens simplifiés jusqu'à l'unité.</p>
+
+<p>C'est cette simplicité absolue qui caractérise éminemment
+l'arithmomètre et empêche qu'on ne le confonde
+avec les conceptions qui ne viennent pas en
+droite ligne du génie.</p>
+
+<p>Dans son mémoire officiel sur l'arithmomètre, un
+savant ingénieur en chef des ponts et chaussées,
+M. Lemoyne, a dit:</p>
+
+<p>«Les premières locomotives ont excité une surprise
+qu'on a exprimée en les appelant des chevaux
+de fer, des <i>machines vivantes</i>. La machine à calcul
+doit exciter une surprise d'une autre sorte, mais non
+moins grande, car c'est un appareil qu'on pourrait
+appeler <i>machine intelligente</i>... Néper appréciait bien
+l'invention qui a immortalisé son nom, lorsqu'il intitulait
+son ouvrage: <i lang="la">Mirifici logarithmorum canonis
+descriptio</i>. L'invention de M. Thomas de Colmar
+mérite tout autant le titre de <i>mirifique</i>, ou merveilleuse,
+en français de notre époque. Il a fallu autant
+d'efforts de génie et de persévérance pour concevoir
+et perfectionner dans ses nombreux détails le mécanisme
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p79" id="p79">79</a></span><span class="hidden">)</span>
+de l'arithmomètre, que de génie pour concevoir
+les propriétés des deux progressions par différences
+et par puissances qui forment les logarithmes
+et de persévérance pour calculer la première table
+de logarithmes publiée par Néper... On apprécie
+d'autant plus le mérite de M. Thomas, que l'on voit
+combien d'esprits éminents ont tenté sans succès
+de résoudre avant lui le problème qu'il a glorieusement
+résolu.»</p>
+
+<p>Ayant, par l'exposé des faits qui précèdent, donné
+une idée suffisante de l'étendue des difficultés qu'il a
+fallu vaincre pour arriver à la découverte de l'arithmomètre,
+nous allons, non pas énumérer, mais chercher
+à concevoir quels services ce merveilleux instrument
+est appelé à rendre.</p>
+
+<p>Pour atteindre ce dernier but, il nous suffira certainement
+de citer quelques-uns des résultats mentionnés
+dans le rapport fait le 12 mars 1851 à la Société
+d'encouragement de l'industrie.</p>
+
+<p>Soit, par exemple, à multiplier le nombre 2,749
+par 3,957. En moins de 18 secondes, l'arithmomètre
+donne le produit 10,877,793. 17 secondes suffisent
+pour trouver 1,111,111,088,888,889, produit de
+99,999,999 par 11,111,111.</p>
+
+<p>Qu'il s'agisse de soustraire 69,839,989 de
+75,639,468: un tour de manivelle qui ne dure pas
+une demi-seconde fait apparaître dans les lucarnes le
+nombre 5,799,479, excès du premier nombre sur le
+second.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p80" id="p80">80</a></span><span class="hidden">)</span>
+Voici une énorme division:</p>
+
+<p>Dividende: 9,182,736,456,483,022; diviseur:
+69,889,989. En 75 secondes, l'arithmomètre donne
+pour quotient 131,482,501, et pour reste 32,950,533.</p>
+
+<p>La réduction d'une fraction ordinaire en fraction
+décimale se fait instantanément, et on obtient autant
+de chiffres décimaux qu'on en désire.</p>
+
+<p>La somme ou la différence d'une suite de produits
+simples, telle que A × B ± C × D ± E × F ± etc., s'obtient
+aussi très-rapidement avec l'arithmomètre.</p>
+
+<p>Même facilité et même rapidité pour l'extraction
+des racines carrées et des racines cubiques, pour l'obtention
+du quatrième terme d'une proportion; pour
+le calcul, d'après la propriété du carré de l'hypothénuse,
+du troisième côté d'un triangle rectangle dont
+deux côtés sont donnés; pour la résolution générale
+des triangles, avec le concours des tables des lignes
+trigonométriques naturelles.</p>
+
+<p>Avec l'arithmomètre, on peut également calculer
+de la même manière les formules, telles que</p>
+
+<p class="c">sin <i>a</i> cos <i>b</i> ± sin <i>b</i> cos <i>a</i> et cos <i>a</i> cos <i>b</i> ± sin <i>a</i> sin <i>b</i></p>
+
+<table summary="formule">
+<tr>
+ <td rowspan="2">et celles &nbsp;</td>
+ <td class="t8 c">sin <i>a</i> + <i>f</i> cos <i>a</i></td>
+ <td rowspan="2">&nbsp; Q et &nbsp;</td>
+ <td class="t8 c">tang. <i>a</i> + <i>f</i></td>
+ <td rowspan="2">&nbsp; Q,</td>
+</tr>
+<tr>
+ <td class="t1 c">cos <i>b</i> ± <i>f</i> sin <i>b</i></td>
+ <td class="t1 c">1 ± <i>f</i> tang. <i>a</i></td>
+</tr>
+</table>
+
+<p class="noindent">et autres expressions de forme analogue, qui se présentent
+dans les applications mécaniques.</p>
+
+<p>Mais c'est surtout dans l'obtention de la plupart
+des tables numériques et de tous les barèmes que l'on
+trouve dans le commerce de la librairie que l'arithmomètre
+de M. Thomas eût pu rendre de précieux services.
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p81" id="p81">81</a></span><span class="hidden">)</span>
+Par exemple, la table de multiplication dressée
+par ordre du ministre de la marine et des colonies,
+imprimée par Didot jeune, en l'an VIII, aurait été
+dictée avec cette machine infiniment plus vite qu'on
+eût pu l'écrire, puisque chaque tour de manivelle en
+eût fourni un des nombres. Il en serait de même de
+tous les tarifs que l'on aurait à calculer ou à vérifier.</p>
+
+<p>La table des carrés des nombres 1, 2, 3, 4, 5, etc.,
+eût pu aussi être dictée avec une vitesse extrême,
+puisqu'en <i>moins de trois minutes</i> M. Benoît, l'un des
+savants fondateurs de l'École centrale des arts et des
+manufactures, a fait écrire dans les lucarnes de la
+machine les <i>cinquante carrés</i> 240281001, 240312004,
+240343009, 240374016, etc., à 241803500, des
+nombres 15501, 15502, 15503, 15504, etc., à 15550.</p>
+
+<p>La table des cubes aurait pu être dictée avec la
+même facilité.</p>
+
+<p>L'arithmomètre n'est pas seulement applicable à
+certaines interpolations numériques, il l'est encore à
+la solution de beaucoup de problèmes par des tâtonnements
+ou essais successifs qui conduisent assez rapidement
+à un résultat aussi approché qu'on le désire.
+L'extraction des racines 4<sup>e</sup>, 5<sup>e</sup>, 6<sup>e</sup>, etc., d'un nombre
+donné est dans ce cas.</p>
+
+<p>M. Benoît l'a appliqué au calcul de la formule
+d'Arago et Dulong,</p>
+
+<p class="c"><i>p</i> = 1,033 (0,2847 + 0,007155 <i>t</i>)<sup>5</sup>,</p>
+
+<p class="noindent">donnant la pression <i>p</i> de vapeur sur une surface de
+1 centimètre carré, en fonction de sa température <i>t</i>.
+</p>
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p82" id="p82">82</a></span><span class="hidden">)</span>
+Pour <i>t</i> = 128°,8, il l'a conduit, en <i>cinq minutes</i>,
+à <i>p</i> = 2 kil. 6382267345, et pour <i>t</i> = 265°,89 à
+<i>p</i> = 51 kil. 690472436. Au lieu de ces valeurs <i>exactes</i>,
+on lit respectivement dans les tables ordinaires, les
+nombres 2 kil. 582 et 51 kil. 650 qui en diffèrent
+sensiblement.</p>
+
+<p>«L'arithmomètre coûte 300 fr., a dit, dans <i>les
+Annales des ponts et chaussées</i>, le savant ingénieur
+en chef dont nous avons déjà parlé, M. Lemoyne;
+c'est trente fois plus que ne coûte une table des logarithmes.
+Cette proportion considérable est cependant
+dépassée de beaucoup, si on évalue l'utilité pratique
+des deux choses. J'ai à ma disposition des tables de
+logarithmes et un arithmomètre. C'est tout au plus si
+trois ou quatre fois par an je me sers des tables,
+tandis que c'est trois ou quatre fois par semaine que
+j'emploie l'arithmomètre. Le rapport d'utilité serait,
+d'après cette expérience personnelle, d'environ 1
+à 50.»</p>
+
+<p>Le même savant, refusant de mettre en doute l'avenir
+réservé à la grande découverte de M. Thomas de
+Colmar, s'exprime à ce sujet dans les termes que
+voici:</p>
+
+<p>«Il y a des milliers d'ignorants pour qui la machine
+à calcul vaut mieux que les logarithmes destinés
+aux savants. On ne peut donc pas douter, même en
+réduisant beaucoup, que la popularité de l'arithmomètre,
+s'il était connu, serait dix fois celle des tables.
+Or, il y a bien actuellement en France 100,000 exemplaires
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p83" id="p83">83</a></span><span class="hidden">)</span>
+des tables de logarithmes. Il pourrait donc y
+avoir à ce compte un million d'arithmomètres. Ce
+nombre, si colossal qu'il soit, n'a rien d'extraordinaire,
+lorsque l'on examine l'étonnante propagation
+des montres et horloges; c'est à peu près 10 millions
+qui sont actuellement en service en France, et si l'on
+remonte à quatre siècles, une horloge était un appareil
+cher et rare, qu'on ne ne voyait que dans les
+palais des souverains.</p>
+
+<p>»Quittons ces nombres, réels pour l'avenir, mais
+fantastiques pour le présent; disons que si l'arithmomètre
+pouvait parvenir seulement à se répandre à
+10,000 exemplaires, on pourrait le construire pour
+moins de 100 fr. au lieu de 300 qu'il coûte actuellement.
+Réciproquement, dès qu'on pourrait le livrer
+au prix de 100 fr., on aurait bientôt des commandes
+pour en exécuter au moins 10,000.</p>
+
+<p>»De la rareté actuelle de l'arithmomètre, nous ne
+concluons rien de défavorable à sa propagation future.
+On trouvera peut-être que ma comparaison de l'arithmomètre
+aux horloges manque d'exactitude, parce
+que le besoin d'une machine à montrer l'heure est d'un
+autre ordre que celui d'une machine à calculer. Je
+crois que celui qui aurait parlé d'horloges avant leur
+grande vulgarisation, se serait fait dire que l'on s'en
+passait fort bien, que c'était un petit besoin; enfin
+que, comme cette mécanique devait coûter cher, elle
+ne se répandrait pas. Nos perfectionnements de sociabilité
+ne tendent-ils pas, d'ailleurs, sans pour cela
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p84" id="p84">84</a></span><span class="hidden">)</span>
+nuire à l'idéal et au poétique de l'existence, à introduire
+de plus en plus le calcul précis dans les habitudes
+de tous. Peut-être qu'avant un siècle chacun
+tiendra des livres de comptabilité.»</p>
+
+<p>Les exemples et les témoignages que nous venons
+de citer nous dispensent évidemment d'énumérer les
+services que l'arithmomètre est appelé à rendre au
+monde commercial, industriel et financier, aux grandes
+administrations, etc. Qui peut plus peut moins; si
+l'arithmomètre exécute avec une infaillibilité absolue
+les calculs les plus compliqués de la science, à plus
+forte raison exécute-t-il toutes les opérations arithmétiques
+usitées dans le commerce, la banque, etc.</p>
+
+<p>L'arithmomètre considéré comme difficulté vaincue
+n'humilie point la science, car M. Thomas de Colmar
+est un savant d'un ordre élevé et s'est servi de la
+science pour résoudre le grand problème qui jusqu'ici
+avait résisté aux recherches de la science;
+mais l'arithmomètre est l'&oelig;uvre d'un homme qui n'appartient
+pas à la science constituée en corps, à la
+science officielle, et, par cette raison, la science officielle
+n'est pas directement intéressée à user de tout
+son crédit et de tous ses moyens pour mettre en relief
+la valeur scientifique de la découverte de M. Thomas
+de Colmar.</p>
+
+<p>L'arithmomètre, considéré au point de vue de l'utilité
+pratique, se trouve en présence de deux inerties,
+de deux résistances à vaincre.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p85" id="p85">85</a></span><span class="hidden">)</span>
+Ces deux inerties, ces deux résistances sont: l'incrédulité
+d'abord, la routine ensuite.</p>
+
+<p>Les nombreuses machines qui peuplent nos ateliers
+et nos manufactures sont, à la vérité, animées; elles
+ont des bras, des mains, des doigts, à l'aide desquels
+elles exécutent des travaux plus ou moins compliqués;
+mais ces travaux ne sont que le résultat de l'intelligence
+directe; ils sont suivis, prévus; ils ont eu
+le même point de départ, ils suivent constamment la
+même voie, ils arrivent toujours au même but.</p>
+
+<p>Les machines existantes, voulons-nous dire, ne
+font qu'exécuter le travail qui leur a été tracé; elles
+ont des membres qui obéissent docilement aux ordres
+précis que l'homme leur a donnés; mais elles ne font
+que cela, elles ne raisonnent pas, elles n'ont pas de
+cerveau qui leur soit propre, en un mot.</p>
+
+<p>L'arithmomètre, lui, semble avoir reçu plus que
+des membres, plus que des organes dociles à une
+inspiration extérieure; l'arithmomètre est, si nous
+pouvons nous exprimer ainsi, comme doué d'une véritable
+intelligence, car ses opérations sont de l'ordre
+de celles qu'on appelle réfléchies.</p>
+
+<p>On nous pardonnera l'exagération des termes dont
+nous nous servons, si l'on veut bien remarquer qu'il
+s'agit ici d'une machine d'un ordre tout nouveau,
+c'est-à-dire d'une machine qui, au lieu de reproduire
+tout simplement les opérations de l'intelligence de
+l'homme, épargne à cette intelligence le soin de faire
+ces opérations; d'une machine qui, au lieu de répéter
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p86" id="p86">86</a></span><span class="hidden">)</span>
+des réponses qui lui ont été dictées; dicte, au
+contraire, elle-même, instantanément, à l'homme qui
+l'interroge, les réponses qu'il doit se faire.</p>
+
+<p>La découverte d'une simple machine, d'une machine
+intelligente, comme M. Lemoyne qualifie l'arithmomètre,
+est un événement d'une nature trop exceptionnelle,
+pour que le public puisse ajouter foi de
+prime abord à la réalité des merveilleux résultats produits
+par le petit coffret de M. Thomas de Colmar.</p>
+
+<p>Cette incrédulité sera cependant plutôt vaincue que
+la routine, parce que celle-ci sera nécessairement fortifiée
+dans son inertie et son indifférence par les intérêts
+que l'emploi de l'arithmomètre devra froisser.</p>
+
+<p>Toutes les améliorations, en effet, tous les progrès
+ne se réalisent malheureusement qu'à ce prix: blesser
+quelques hommes dans leurs intérêts. L'arithmomètre
+causera sans doute énormément moins de préjudice
+aux personnes qui, dans le commerce, dans la banque,
+dans les administrations publiques, ont pour occupation
+spéciale le travail des chiffres, que n'en causèrent
+l'invention de l'imprimerie aux écrivains copistes,
+l'invention du métier à bas aux tricoteuses, l'invention
+des mull-jenny aux fileuses, etc.; cependant il est
+évident que la rapidité et l'infaillibilité avec lesquelles
+l'arithmomètre permet à chacun de faire les calculs
+les plus longs et les plus difficiles, amoindriront sensiblement
+l'importance des calculateurs de profession.</p>
+
+<p>Nous avons dit, vers le commencement de ce travail,
+que M. Thomas de Colmar avait compris
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p87" id="p87">87</a></span><span class="hidden">)</span>
+dès 1822, aussitôt qu'il eut inventé l'arithmomètre,
+que sa découverte était de la nature de celles qui ne
+laissent guère espérer à leurs auteurs qu'une gloire
+posthume, si ces auteurs ne disposent pas de moyens
+qui leur permettent de mettre ces découvertes en
+relief et de les populariser.</p>
+
+<p>De longues années de travail ont mis ces moyens
+dans les mains de M. Thomas de Colmar, en même
+temps qu'elles lui ont permis de donner à son arithmomètre
+primitif des perfectionnements tels qu'il
+semble aujourd'hui impossible soit d'en rien retrancher,
+soit d'y ajouter quelque chose.</p>
+
+<p>L'exemplaire qu'il a mis à l'Exposition universelle
+de l'industrie, permettant de calculer avec 32 chiffres
+à la fois pour additionner, soustraire, multiplier,
+diviser, etc., et pouvant opérer avec une vitesse telle
+que plusieurs écrivains se partageant les chiffres ne
+pourraient le suivre, donne une sorte de vertige à la
+raison quand on le voit fonctionner.</p>
+
+<p>Pour la gloire attachée aux machines de toutes les
+sortes, des noms plus ou moins nombreux se présentent
+et en revendiquent des parts plus ou moins considérables.
+L'un a inventé le principe, un autre en a
+fait la première application, un troisième a introduit
+tel ou tel perfectionnement, etc. Il en est ainsi pour
+la machine à vapeur, ainsi pour les machines de filature
+et de tissage, ainsi pour la locomotive et le bateau
+à vapeur, ainsi pour les presses d'imprimerie,
+ainsi pour tous les outils de travail: machines pour
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p88" id="p88">88</a></span><span class="hidden">)</span>
+percer, pour aléser, pour raboter les métaux, etc.;
+ainsi pour les machines agricoles, ainsi pour la télégraphie
+privée, ainsi pour l'électro-chimie, l'électro-plastie,
+etc.</p>
+
+<p>M. Thomas de Colmar n'a à partager avec personne
+la gloire d'avoir conçu et exécuté l'arithmomètre.</p>
+
+<p>Parmi les créations dont le génie de l'homme s'enorgueillit
+le plus, n'en est-il pas quelques-unes, n'en
+est-il pas plusieurs dont le principe a été trouvé sans
+être cherché, et dont, par conséquent, le hasard a été
+l'auteur bien plus que le génie de l'homme?</p>
+
+<p>Les anciens savaient que la vapeur est une force.
+Est-ce qu'ils s'avisèrent jamais de rechercher quel
+homme avait le premier remarqué que l'eau, à l'état
+d'ébullition, chasse violemment l'obstacle qui ferme
+le vase dans lequel elle est contenue ou fait éclater ce
+vase lui-même? Non, sans doute, parce que cette découverte
+de la puissance de la vapeur dut être faite
+presque aussitôt que l'homme se servit d'un vase pour
+faire bouillir un liquide.</p>
+
+<p>Ces mêmes anciens regardèrent-ils comme une conception
+venant du génie l'éolipyle de Héron? Non,
+parce que le hasard, c'est-à-dire la vue d'un vase
+rempli d'eau bouillante s'échappant en partie par une
+fente existant sur le côté de ce vase et le faisant tourner
+sur la chaîne qui le tenait suspendu, avait suggéré
+à Héron l'idée de son éolipyle. Des observations analogues
+et tout aussi incontestablement justes pourraient
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p89" id="p89">89</a></span><span class="hidden">)</span>
+être faites sur l'électricité. Il est hors de doute,
+en effet, que ni l'électricité par pression, ni l'électricité
+par frottement, ni l'électricité par la chaleur, ni l'électricité
+par contact n'ont été cherchées; car on ne
+cherche évidemment pas une chose dont on n'a pas
+l'idée. Il suffit, d'ailleurs, de savoir comment se produisent
+ces diverses électricités, pour être forcé de
+reconnaître que les phénomènes électriques ont dû se
+présenter à l'attention de l'homme, pour ainsi dire,
+dès l'origine de la société.</p>
+
+<p>Le mérite des modernes, en ce qui concerne ces
+phénomènes, c'est de les avoir pris au sérieux et
+d'avoir cherché à les étendre et à en faire des applications
+utiles, au lieu de les ranger, comme avaient
+fait les anciens, au nombre des faits curieux, à la
+vérité, mais n'ayant ni portée scientifique, ni valeur
+utilisable.</p>
+
+<p>En parlant comme nous allons le faire, nous irons
+peut-être nous choquer contre des opinions contraires
+à notre manière de reconnaître les signes par lesquels
+se manifestent les &oelig;uvres du génie; mais ce n'est pas
+notre faute si de trop grandes complaisances ont tellement
+perverti notre langue, qu'elle semble avoir
+besoin d'un nouveau tenue pour exprimer ce qu'on
+entendait autrefois par le mot génie.</p>
+
+<p>Le génie est tout autre chose que la raison réfléchie,
+que l'imagination, que l'esprit d'observation, que le
+talent, que la science acquise. Le génie se sert, selon
+les circonstances, de ces facultés et de ces forces;
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p90" id="p90">90</a></span><span class="hidden">)</span>
+mais il s'en sert comme d'autant d'instruments auxiliaires,
+et rien de plus, tant il est vrai de dire qu'il les
+domine et leur est supérieur par sa nature.</p>
+
+<p>À quels signes donc distinguer les &oelig;uvres qui appartiennent
+au génie de celles qui ne lui appartiennent
+pas?</p>
+
+<p>La réponse la plus juste que l'on puisse, selon nous,
+faire à cette question, c'est de dire:</p>
+
+<p>Le génie ne revendique comme siennes que les
+&oelig;uvres que lui seul peut faire; ne sont, par conséquent,
+pas des &oelig;uvres de génie celles qui peuvent
+être faites par la raison, par l'imagination et par la
+science, agissant isolément ou se prêtant un mutuel
+appui.</p>
+
+<p>Sans doute la raison, l'imagination et la science
+arrivent quelquefois à faire des &oelig;uvres telles que l'on
+est tenté de se demander s'il faut les leur attribuer ou
+en faire honneur au génie; mais ces &oelig;uvres mixtes, si
+nous pouvons appeler ainsi celles sur lesquelles le génie
+a laissé tomber quelques-uns de ses rayons, forment
+précisément la ligne de séparation qui nous facilite
+la comparaison des travaux de la raison, de
+l'imagination et de la science avec les créations du
+génie.</p>
+
+<p>Comme la puissance mystérieuse d'où naissent les
+éclairs et la foudre, le génie a ses moments de calme
+et de repos; mais, de même que le merveilleux fluide
+n'abandonne jamais l'atmosphère, de même aussi le
+génie ne cesse jamais, soit sous une forme, soit sous
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p91" id="p91">91</a></span><span class="hidden">)</span>
+l'autre, de manifester sa présence chez celui à qui le
+ciel l'a donné.</p>
+
+<p>Nous cherchons la différence qui existe entre les inspirations
+de l'homme de génie et celles des intelligences
+ordinaires. Eh bien, nous venons d'indiquer
+implicitement cette différence, en disant que le génie
+n'abandonne pas plus celui qui l'a reçu que l'électricité
+n'abandonne l'atmosphère. Les inspirations, parfois
+heureuses, des intelligences ordinaires, sont passagères,
+fugitives, épuisent leur source en naissant;
+celles de l'homme de génie, au contraire, se succèdent
+et se multiplient au gré de celui qui les dirige,
+parce que le réservoir d'où elles sortent est inépuisable.</p>
+
+<p>La durée, la succession, la variété dans la force
+des inspirations, voilà, disons-nous, ce qui distingue
+le génie de ce qu'on appelle les éclairs de génie.</p>
+
+<p>C'est parce que le génie possède seul une force de
+cette nature qu'il peut seul produire des &oelig;uvres qui
+soient à la fois dignes d'exciter l'admiration et propres
+à la conserver.</p>
+
+<p>Mais les hommes doués de génie ne possèdent pas à
+un égal degré cette rare faculté. Il y a des génies d'un
+ordre plus ou moins élevé, des génies qui sont plus
+ou moins puissants. Comment les classer?</p>
+
+<p>Comment les classer! Voyez leurs &oelig;uvres; cherchez
+à savoir combien d'hommes se sont efforcés d'en
+faire de semblables, sans pouvoir y réussir; étudiez
+la valeur intellectuelle de ces chercheurs ou de ces
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p92" id="p92">92</a></span><span class="hidden">)</span>
+imitateurs malheureux, et vous aurez la mesure du
+génie de l'homme à qui vous voulez assigner le rang
+qui lui est dû.</p>
+
+<p>Voulez-vous, par exemple, avoir la mesure du génie
+d'Homère? Mettez en présence de l'<i>Iliade</i>, l'<i>Énéide</i>
+de Virgile, la <i>Pharsale</i> de Lucain, la <i>Jérusalem délivrée</i>
+du Tasse, le <i>Paradis perdu</i> de Milton, la <i>Lusiade</i>
+de Camoëns, la <i>Messiade</i> de Klopstock, la <i>Henriade</i>
+de Voltaire, et tous les découragements dont se sont
+sentis frappés devant le chef-d'&oelig;uvre du chantre d'Ilion
+des milliers de poëtes dont le poëme épique fut
+toujours la suprême ambition; faites cette comparaison,
+disons-nous, et vous saurez ce que vaut le génie
+d'Homère.</p>
+
+<p>Si nous voulons de même savoir de quelle sorte de
+génie il a fallu être doué, et quelle somme de génie il
+a fallu dépenser pour créer l'arithmomètre, nous n'avons
+qu'à faire une comparaison analogue à celle qui
+précède, c'est-à-dire, passer la revue de tous les
+grands hommes qui ont vainement tenté de résoudre
+le problème dont la solution a été si magnifiquement
+trouvée par M. Thomas de Colmar.</p>
+
+<p>Lorsque, dans cette revue de chercheurs malheureux,
+viennent se présenter des noms tels que ceux de
+Thalès, de Pythagore, d'Archimède, de Gerbert, d'Albert
+le Grand, de Roger Bacon, de Blaise Pascal, de
+Poleni, de Leupold, de Leibnitz, de Clairaut, etc.,
+on n'ose plus dire, de peur de paraître flatteur, quelle
+place mérite l'auteur de l'arithmomètre parmi les intelligences
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p93" id="p93">93</a></span><span class="hidden">)</span>
+d'un ordre supérieur, surtout quand on
+songe que les récompenses qu'il a reçues dans son
+pays semblent le classer parmi les inventeurs d'un ordre
+ordinaire.</p>
+
+<p>Voici, en effet, quelles ont été jusqu'à présent les
+récompenses qu'a values à M. Thomas de Colmar la
+merveilleuse création sur laquelle nous n'avons plus
+rien à dire.</p>
+
+<p>En 1822, la Société d'encouragement pour l'industrie
+nationale approuva sa machine à calculer, et accompagna
+son approbation des compliments les plus
+expressifs.</p>
+
+<p>À l'Exposition de l'industrie nationale de 1849, l'arithmomètre
+valut à son auteur une médaille d'argent.</p>
+
+<p>En 1851, l'arithmomètre fut récompensé d'une médaille
+d'or par la Société d'encouragement pour l'industrie
+nationale.</p>
+
+<p>En 1851 encore, à l'Exposition universelle de Londres,
+le jury français fit décerner une médaille de prix
+à M. Thomas de Colmar.</p>
+
+<p>En avril 1852, le président de la république, aujourd'hui
+empereur des Français, lui fit présent d'une
+magnifique tabatière en or, ornée de son chiffre.</p>
+
+<p>En 1854, l'Académie des Sciences a donné sa haute
+approbation à l'arithmomètre, et l'a admis pour le concours
+de mécanique de 1855.</p>
+
+<p>En 1854 encore, le directeur de l'Observatoire a
+officiellement adressé des félicitations à M. Thomas
+de Colmar.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p94" id="p94">94</a></span><span class="hidden">)</span>
+Voilà tout ce qu'a valu, en France, l'arithmomètre
+à son auteur.</p>
+
+<hr />
+
+
+<p>La croix d'honneur dont est décoré M. Thomas ne
+lui vient point, en effet, de son arithmomètre, qui
+n'avait pas encore été inventé lorsqu'elle lui fut décernée,
+mais de ses services comme employé supérieur
+de l'administration des armées sous l'empire.</p>
+
+<p>Des récompenses telles que celles dont nous avons
+fait l'énumération sont très-honorables par elles-mêmes,
+sans doute; mais, qu'on nous permette cette
+expression, elles ont été préjudiciables à M. Thomas
+de Colmar.</p>
+
+<p>Qu'est-ce, au fond, qu'une récompense donnée à
+un inventeur par l'Académie des sciences, par la Société
+d'encouragement, par un jury d'exposition, par
+le chef de l'État? Est-ce que le public ne regarde pas
+les récompenses venues de ces sources comme étant la
+mesure approximative de l'importance des découvertes
+auxquelles ces récompenses s'appliquent?</p>
+
+<p>Il est donc vrai de dire qu'aux yeux du public l'arithmomètre
+ne peut aujourd'hui valoir que ce que
+valent les récompenses accordées à l'inventeur de cette
+machine.</p>
+
+<p>Or, que valent ces récompenses, ou plutôt quelle
+idée donnent-elles de l'invention de M. Thomas?</p>
+
+<p>L'idée naturelle, logique, qu'elles en donnent, c'est
+que l'arithmomètre a tout simplement une valeur analogue
+à celle des inventions et des &oelig;uvres dont les
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p95" id="p95">95</a></span><span class="hidden">)</span>
+auteurs sont récompensés comme l'a été M. Thomas
+de Colmar.</p>
+
+<p>Il suffit de savoir combien sont nombreux les travaux
+dont les auteurs ont été récompensés comme l'a
+été M. Thomas de Colmar, pour pouvoir comprendre
+que nous avons eu raison de dire que les récompenses
+reçues par l'inventeur de l'arithmomètre lui sont véritablement
+préjudiciables.</p>
+
+<p>Insister sur ce point serait inutile. Il est de toute
+évidence, en effet, que des récompenses d'un ordre
+commun, lorsqu'elles sont décernées à des travaux
+d'un ordre élevé, déprécient ces travaux, les font
+descendre à un niveau qui n'est pas le leur, leur assignent
+dans l'opinion publique un rang inférieur à celui
+qui leur est dû.</p>
+
+<p>Ici se présente une question délicate: Pourquoi l'arithmomètre,
+passant devant quatre jurys officiels:
+Exposition de l'industrie de 1849, Société d'encouragement
+pour l'industrie nationale en 1851, Exposition
+universelle de Londres, Académie des sciences en
+1854, n'a-t-il obtenu la plus haute récompense dont
+disposaient ces jurys qu'à la Société d'encouragement?</p>
+
+<p>Ne pouvant répondre catégoriquement à cette
+question, sans aborder un ordre de faits qu'il nous
+convient de laisser à l'écart, nous nous contenterons
+de dire que M. Thomas ne doit, en grande partie, attribuer
+qu'à lui-même les erreurs de jugement qui
+l'ont privé, jusqu'ici, de jouir de la gloire à laquelle
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p96" id="p96">96</a></span><span class="hidden">)</span>
+lui donne de si légitimes droits la création de son
+admirable machine.</p>
+
+<p>Après avoir travaillé près de trente ans à perfectionner
+l'intelligence, si nous pouvons parler ainsi, de
+cette fille de son génie, M. Thomas crut tout naïvement
+qu'il suffisait que l'arithmomètre fonctionnât
+quelques minutes devant une commission, devant le
+rapporteur d'une commission, pour que la valeur
+scientifique de cet instrument pût être appréciée par
+cette commission, par ce rapporteur.</p>
+
+<p>M. Thomas de Colmar, en présentant son arithmomètre
+à l'Exposition de l'industrie de 1849, oublia
+que, pour être compris et apprécié, cet instrument avait
+besoin d'être expliqué; il oublia surtout de faire entendre
+à la commission d'examen, ou plutôt au rapporteur
+de cette commission, que l'arithmomètre est
+encore plus un principe qu'il n'est une machine,
+c'est-à-dire que la découverte du principe de l'instrument
+représente seule la grande difficulté vaincue, et
+que la machine elle-même ne représente que le côté
+secondaire de l'arithmomètre.</p>
+
+<p>À l'Exposition universelle de Londres, les membres
+du jury français qui demandèrent au jury international
+une récompense pour l'auteur de l'arithmomètre
+étaient les mêmes qui lui avaient fait décerner une médaille
+d'argent à l'Exposition française de 1849. Ils ne
+pouvaient naturellement pas solliciter pour M. Thomas
+de Colmar une récompense plus élevée que
+celle qu'ils lui avaient accordée eux-mêmes. M. Thomas
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p97" id="p97">97</a></span><span class="hidden">)</span>
+ne reçut donc du jury international qu'une médaille
+de prix.</p>
+
+<p>Présenté en 1854 à l'Académie des sciences, l'arithmomètre
+fut renvoyé à l'examen d'une commission
+qui choisit pour rapporteur l'auteur du rapport de
+l'Exposition de l'industrie de 1849, auteur également
+du rapport à la suite duquel l'arithmaurel avait obtenu
+le prix de mécanique de la fondation Montyon.</p>
+
+<p>L'auteur de tous ces rapports se trouvait vis-à-vis
+de lui-même et vis-à-vis de l'Académie dans une position
+qui n'était pas exempte d'embarras. Sur son
+rapport, l'Académie avait, quelque temps auparavant,
+accordé le prix de mécanique à une machine dont l'organe
+principal était le même que celui de l'arithmomètre,
+inventé, publié depuis de longues années.</p>
+
+<p>S'il ne s'était agi que de son propre jugement, l'honorable
+M. Mathieu aurait certainement proclamé les
+droits de priorité de M. Thomas d'une manière plus
+claire et plus expressive; mais il s'agissait aussi d'un
+jugement de l'Académie, et le savant rapporteur ne
+crut pas pouvoir, en parlant de l'arithmomètre, aller
+au delà des expressions qui suivent:</p>
+
+<p>«L'idée du cylindre cannelé se retrouve dans cette
+machine nommée arithmaurel, construite POSTÉRIEUREMENT
+par MM. Maurel et Jayet, et pour
+laquelle ils ont obtenu le prix de mécanique de la
+fondation Montyon.»</p>
+
+<p><i>Postérieurement!</i> Si ce mot, dont M. Mathieu et ses
+savants collègues ont bien connu la portée, n'était pas
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p98" id="p98">98</a></span><span class="hidden">)</span>
+aux yeux de M. Thomas un hommage assez explicitement
+rendu à ses droits de priorité, M. Thomas serait,
+en vérité, trop exigeant.</p>
+
+<p>La priorité du principe, l'antériorité dans l'invention
+de l'organe principal, voilà la gloire de M. Thomas
+de Colmar; il serait puéril de sa part de vouloir
+disputer aux mécaniciens et aux industriels à qui il
+conviendra de construire des machines arithmétiques
+d'après son principe, leurs succès dans les modifications
+qu'ils pourront faire aux organes fondamentaux
+de l'arithmomètre. Ainsi que l'a dit lui-même M. Thomas,
+le principe des retenues et l'organe fondamental
+étant trouvés, la machine à calculer peut être construite
+de vingt, de cent manières par le premier mécanicien
+venu.</p>
+
+<p>Le premier mécanicien venu pourra tout aussi facilement
+faire écrire par l'arithmomètre tous les chiffres,
+tous les calculs qu'il faut aujourd'hui copier sur la tablette
+de l'instrument.</p>
+
+<p>L'arithmomètre, à peu près inconnu en France, et
+n'y ayant valu à son auteur que des récompenses d'un
+ordre ordinaire, a déjà obtenu au dehors des succès
+qui ne surprennent nullement ceux qui connaissent
+l'admirable instrument, mais qui étonneront grandement,
+nous en sommes sûrs, les lecteurs de cet écrit.</p>
+
+<p>Au mois de décembre 1851, S. A. le bey de Tunis
+envoya à M. Thomas de Colmar son Nichan en diamants
+de deuxième classe, qui correspond au grade
+de commandeur.</p>
+
+<p><span class="hidden">(Page
+</span><span class="pagenum"><a name="p99" id="p99">99</a></span><span class="hidden">)</span>
+En mai 1852, S. M. le roi des Deux-Siciles le nomma
+chevalier de son ordre de François I<sup>er</sup>.</p>
+
+<p>En août 1852, S. M. le roi des Pays-Bas lui envoya
+le brevet de chevalier de la Couronne de Chêne.</p>
+
+<p>En décembre 1852, S. A. R. le duc de Nassau lui
+fit remettre une bague en diamants avec le chiffre du
+prince.</p>
+
+<p>En mai 1853, S. S. le pape Pie IX l'éleva au grade
+de commandeur de son ordre de Saint-Grégoire le
+Grand.</p>
+
+<p>En décembre 1853, il fut anobli à perpétuité de
+mâle en mâle, par lettres-patentes de S. A. I. le grand-duc
+de Toscane.</p>
+
+<p>En juillet 1854, S. M. le roi de Sardaigne le nomma
+chevalier de son ordre royal des SS. Maurice et
+Lazare.</p>
+
+<p>Cette liste et les dates de ces distinctions disent
+quel empressement l'étranger a mis à donner au
+créateur de l'arithmomètre de glorieuses compensations
+de l'oubli de ses concitoyens; mais il ne faut pas croire
+que l'arithmomètre n'ait été apprécié que dans les pays
+dont les souverains ont honoré M. Thomas des distinctions
+que nous venons d'indiquer. Les chaleureuses félicitations
+qui lui arrivaient de toutes les parties de
+l'Allemagne et du Nord, avant les graves événements
+qui sont venus en 1854 troubler le repos de l'Europe,
+nous autorisent à supposer, à dire que M. Thomas de
+Colmar ferait aujourd'hui partie de presque toutes les
+chevaleries de l'Europe, si la marche de ces événements
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p100" id="p100">100</a></span><span class="hidden">)</span>
+n'était pas venue détourner l'attention des
+souverains des choses qui appartiennent aux arts de la
+paix.</p>
+
+<p>M. Thomas de Colmar sait à quoi l'obligent les hautes
+récompenses que nous avons énumérées ci-dessus,
+et celles qui l'attendent, aussitôt que la pacification de
+l'Europe sera accomplie.</p>
+
+<p>Les ateliers où se construisent ses arithmomètres
+n'ont guère travaillé jusqu'à ce jour que pour les grandes
+académies d'Europe et les grandes maisons de banque
+de Paris ou de quelques autres capitales. Ils travailleront
+désormais pour les facultés, pour les colléges,
+pour les séminaires, pour les écoles, pour les commerçants,
+pour les industriels, pour les ingénieurs de tous
+les ordres, pour quiconque, en un mot, veut enseigner
+la science des nombres sans fatigue, ou faire pour ses
+propres besoins, et pour ainsi dire en s'amusant,
+tous les calculs qui se font avec tension d'esprit et
+perte énorme de temps. Assez riche pour payer sa
+gloire, M. Thomas de Colmar, qui a déjà dépensé des
+sommes si considérables pour perfectionner son arithmomètre,
+a résolu d'en sacrifier de plus considérables
+encore pour le propager, pour le populariser, pour le
+mettre, en un mot, à la portée des bourses les plus modestes.</p>
+
+<hr />
+
+
+<p>Ne voulant pas préjuger l'avenir réservé à l'arithmomètre,
+nous terminons ici ce travail; mais, n'ayant
+encore rien dit des motifs qui nous ont porté à l'entreprendre,
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p101" id="p101">101</a></span><span class="hidden">)</span>
+le lecteur trouvera bon sans doute que nous
+réparions en quelques mots notre omission.</p>
+
+<p>Nous nous sommes assurément proposé de mettre en
+relief la grande découverte de M. Thomas de Colmar,
+et de bien constater les droits exclusifs de notre pays
+à une gloire que tous les peuples et tous les siècles ont
+vainement ambitionnée; mais nous n'aurions atteint
+notre but que par ses points secondaires, si cet écrit
+devait avoir pour unique résultat de démontrer qu'en
+s'immortalisant par une création de l'ordre le plus
+élevé, M. Thomas de Colmar a ajouté à la couronne
+de nos gloires l'un de ses rayons les plus brillants.</p>
+
+<p>La grande démonstration que nous désirerions avoir
+faite, c'est celle de la nécessité de l'institution d'un
+grand jury, ayant pour mission unique, incessante, de
+rechercher dans les lettres, dans les sciences, dans les
+arts et dans l'industrie, les conceptions, les inspirations,
+les &oelig;uvres marquées du sceau du génie, propres à
+donner à notre pays gloire ou profit.</p>
+
+<p>Ce n'est pas ici que nous pouvons dire comment
+devrait être organisé ce grand jury pour pouvoir fonctionner
+utilement; mais nous affirmons avec assurance
+que, s'il eût existé tel que nous le concevons, il y a
+trente ans seulement, Philippe de Girard ne serait pas
+allé manger le pain de l'exil, Sauvage ne serait pas
+devenu fou de misère, M. Thomas de Colmar ne serait
+pas resté inconnu depuis 1822.</p>
+
+<p>Le jury dont nous parlons est une chose nouvelle!
+Mais n'est-ce donc pas une chose nouvelle aussi que
+<span class="hidden">(Page
+</span><span class="pagenum"><a name="p102" id="p102">102</a></span><span class="hidden">)</span>
+de voir la célébrité, la gloire, s'acheter à prix d'argent,
+se tarifer comme la plus vile des marchandises?</p>
+
+<p>Un jury tel que celui que nous avons en vue était
+inutile dans le temps où la Renommée avait un temple
+et parcourait les airs la trompette sacrée à la main. Il
+est devenu une nécessité depuis que la noble déesse,
+métamorphosée en marchande vulgaire, s'est assise à
+un comptoir d'annonceur et y vend la célébrité et la
+gloire à tant la ligne.</p>
+
+
+<p class="c" style="margin-top: 2em"><small>FIN.</small></p>
+
+
+
+
+
+
+
+
+<pre>
+
+
+
+
+
+End of the Project Gutenberg EBook of Histoire des nombres et de la
+numération mécanique, by Jacomy-Régnier
+
+*** END OF THIS PROJECT GUTENBERG EBOOK HISTOIRE DES NOMBRES ***
+
+***** This file should be named 27936-h.htm or 27936-h.zip *****
+This and all associated files of various formats will be found in:
+ https://www.gutenberg.org/2/7/9/3/27936/
+
+Produced by Laurent Vogel and the Online Distributed
+Proofreading Team at https://www.pgdp.net (This book was
+produced from scanned images of public domain material
+from the Google Print project.)
+
+
+Updated editions will replace the previous one--the old editions
+will be renamed.
+
+Creating the works from public domain print editions means that no
+one owns a United States copyright in these works, so the Foundation
+(and you!) can copy and distribute it in the United States without
+permission and without paying copyright royalties. Special rules,
+set forth in the General Terms of Use part of this license, apply to
+copying and distributing Project Gutenberg-tm electronic works to
+protect the PROJECT GUTENBERG-tm concept and trademark. Project
+Gutenberg is a registered trademark, and may not be used if you
+charge for the eBooks, unless you receive specific permission. If you
+do not charge anything for copies of this eBook, complying with the
+rules is very easy. You may use this eBook for nearly any purpose
+such as creation of derivative works, reports, performances and
+research. They may be modified and printed and given away--you may do
+practically ANYTHING with public domain eBooks. Redistribution is
+subject to the trademark license, especially commercial
+redistribution.
+
+
+
+*** START: FULL LICENSE ***
+
+THE FULL PROJECT GUTENBERG LICENSE
+PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
+
+To protect the Project Gutenberg-tm mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase "Project
+Gutenberg"), you agree to comply with all the terms of the Full Project
+Gutenberg-tm License (available with this file or online at
+https://gutenberg.org/license).
+
+
+Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
+electronic works
+
+1.A. By reading or using any part of this Project Gutenberg-tm
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or destroy
+all copies of Project Gutenberg-tm electronic works in your possession.
+If you paid a fee for obtaining a copy of or access to a Project
+Gutenberg-tm electronic work and you do not agree to be bound by the
+terms of this agreement, you may obtain a refund from the person or
+entity to whom you paid the fee as set forth in paragraph 1.E.8.
+
+1.B. "Project Gutenberg" is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenberg-tm electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenberg-tm electronic works if you follow the terms of this agreement
+and help preserve free future access to Project Gutenberg-tm electronic
+works. See paragraph 1.E below.
+
+1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
+or PGLAF), owns a compilation copyright in the collection of Project
+Gutenberg-tm electronic works. Nearly all the individual works in the
+collection are in the public domain in the United States. If an
+individual work is in the public domain in the United States and you are
+located in the United States, we do not claim a right to prevent you from
+copying, distributing, performing, displaying or creating derivative
+works based on the work as long as all references to Project Gutenberg
+are removed. Of course, we hope that you will support the Project
+Gutenberg-tm mission of promoting free access to electronic works by
+freely sharing Project Gutenberg-tm works in compliance with the terms of
+this agreement for keeping the Project Gutenberg-tm name associated with
+the work. You can easily comply with the terms of this agreement by
+keeping this work in the same format with its attached full Project
+Gutenberg-tm License when you share it without charge with others.
+
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are in
+a constant state of change. If you are outside the United States, check
+the laws of your country in addition to the terms of this agreement
+before downloading, copying, displaying, performing, distributing or
+creating derivative works based on this work or any other Project
+Gutenberg-tm work. The Foundation makes no representations concerning
+the copyright status of any work in any country outside the United
+States.
+
+1.E. Unless you have removed all references to Project Gutenberg:
+
+1.E.1. The following sentence, with active links to, or other immediate
+access to, the full Project Gutenberg-tm License must appear prominently
+whenever any copy of a Project Gutenberg-tm work (any work on which the
+phrase "Project Gutenberg" appears, or with which the phrase "Project
+Gutenberg" is associated) is accessed, displayed, performed, viewed,
+copied or distributed:
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.org
+
+1.E.2. If an individual Project Gutenberg-tm electronic work is derived
+from the public domain (does not contain a notice indicating that it is
+posted with permission of the copyright holder), the work can be copied
+and distributed to anyone in the United States without paying any fees
+or charges. If you are redistributing or providing access to a work
+with the phrase "Project Gutenberg" associated with or appearing on the
+work, you must comply either with the requirements of paragraphs 1.E.1
+through 1.E.7 or obtain permission for the use of the work and the
+Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
+1.E.9.
+
+1.E.3. If an individual Project Gutenberg-tm electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
+terms imposed by the copyright holder. Additional terms will be linked
+to the Project Gutenberg-tm License for all works posted with the
+permission of the copyright holder found at the beginning of this work.
+
+1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenberg-tm.
+
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenberg-tm License.
+
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including any
+word processing or hypertext form. However, if you provide access to or
+distribute copies of a Project Gutenberg-tm work in a format other than
+"Plain Vanilla ASCII" or other format used in the official version
+posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
+you must, at no additional cost, fee or expense to the user, provide a
+copy, a means of exporting a copy, or a means of obtaining a copy upon
+request, of the work in its original "Plain Vanilla ASCII" or other
+form. Any alternate format must include the full Project Gutenberg-tm
+License as specified in paragraph 1.E.1.
+
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenberg-tm works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenberg-tm electronic works provided
+that
+
+- You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenberg-tm works calculated using the method
+ you already use to calculate your applicable taxes. The fee is
+ owed to the owner of the Project Gutenberg-tm trademark, but he
+ has agreed to donate royalties under this paragraph to the
+ Project Gutenberg Literary Archive Foundation. Royalty payments
+ must be paid within 60 days following each date on which you
+ prepare (or are legally required to prepare) your periodic tax
+ returns. Royalty payments should be clearly marked as such and
+ sent to the Project Gutenberg Literary Archive Foundation at the
+ address specified in Section 4, "Information about donations to
+ the Project Gutenberg Literary Archive Foundation."
+
+- You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenberg-tm
+ License. You must require such a user to return or
+ destroy all copies of the works possessed in a physical medium
+ and discontinue all use of and all access to other copies of
+ Project Gutenberg-tm works.
+
+- You provide, in accordance with paragraph 1.F.3, a full refund of any
+ money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days
+ of receipt of the work.
+
+- You comply with all other terms of this agreement for free
+ distribution of Project Gutenberg-tm works.
+
+1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
+electronic work or group of works on different terms than are set
+forth in this agreement, you must obtain permission in writing from
+both the Project Gutenberg Literary Archive Foundation and Michael
+Hart, the owner of the Project Gutenberg-tm trademark. Contact the
+Foundation as set forth in Section 3 below.
+
+1.F.
+
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+public domain works in creating the Project Gutenberg-tm
+collection. Despite these efforts, Project Gutenberg-tm electronic
+works, and the medium on which they may be stored, may contain
+"Defects," such as, but not limited to, incomplete, inaccurate or
+corrupt data, transcription errors, a copyright or other intellectual
+property infringement, a defective or damaged disk or other medium, a
+computer virus, or computer codes that damage or cannot be read by
+your equipment.
+
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
+of Replacement or Refund" described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenberg-tm trademark, and any other party distributing a Project
+Gutenberg-tm electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium with
+your written explanation. The person or entity that provided you with
+the defective work may elect to provide a replacement copy in lieu of a
+refund. If you received the work electronically, the person or entity
+providing it to you may choose to give you a second opportunity to
+receive the work electronically in lieu of a refund. If the second copy
+is also defective, you may demand a refund in writing without further
+opportunities to fix the problem.
+
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
+WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
+
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of damages.
+If any disclaimer or limitation set forth in this agreement violates the
+law of the state applicable to this agreement, the agreement shall be
+interpreted to make the maximum disclaimer or limitation permitted by
+the applicable state law. The invalidity or unenforceability of any
+provision of this agreement shall not void the remaining provisions.
+
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenberg-tm electronic works in accordance
+with this agreement, and any volunteers associated with the production,
+promotion and distribution of Project Gutenberg-tm electronic works,
+harmless from all liability, costs and expenses, including legal fees,
+that arise directly or indirectly from any of the following which you do
+or cause to occur: (a) distribution of this or any Project Gutenberg-tm
+work, (b) alteration, modification, or additions or deletions to any
+Project Gutenberg-tm work, and (c) any Defect you cause.
+
+
+Section 2. Information about the Mission of Project Gutenberg-tm
+
+Project Gutenberg-tm is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of computers
+including obsolete, old, middle-aged and new computers. It exists
+because of the efforts of hundreds of volunteers and donations from
+people in all walks of life.
+
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg-tm's
+goals and ensuring that the Project Gutenberg-tm collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenberg-tm and future generations.
+To learn more about the Project Gutenberg Literary Archive Foundation
+and how your efforts and donations can help, see Sections 3 and 4
+and the Foundation web page at https://www.pglaf.org.
+
+
+Section 3. Information about the Project Gutenberg Literary Archive
+Foundation
+
+The Project Gutenberg Literary Archive Foundation is a non profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation's EIN or federal tax identification
+number is 64-6221541. Its 501(c)(3) letter is posted at
+https://pglaf.org/fundraising. Contributions to the Project Gutenberg
+Literary Archive Foundation are tax deductible to the full extent
+permitted by U.S. federal laws and your state's laws.
+
+The Foundation's principal office is located at 4557 Melan Dr. S.
+Fairbanks, AK, 99712., but its volunteers and employees are scattered
+throughout numerous locations. Its business office is located at
+809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
+business@pglaf.org. Email contact links and up to date contact
+information can be found at the Foundation's web site and official
+page at https://pglaf.org
+
+For additional contact information:
+ Dr. Gregory B. Newby
+ Chief Executive and Director
+ gbnewby@pglaf.org
+
+
+Section 4. Information about Donations to the Project Gutenberg
+Literary Archive Foundation
+
+Project Gutenberg-tm depends upon and cannot survive without wide
+spread public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To
+SEND DONATIONS or determine the status of compliance for any
+particular state visit https://pglaf.org
+
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+
+Please check the Project Gutenberg Web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including including checks, online payments and credit card
+donations. To donate, please visit: https://pglaf.org/donate
+
+
+Section 5. General Information About Project Gutenberg-tm electronic
+works.
+
+Professor Michael S. Hart was the originator of the Project Gutenberg-tm
+concept of a library of electronic works that could be freely shared
+with anyone. For thirty years, he produced and distributed Project
+Gutenberg-tm eBooks with only a loose network of volunteer support.
+
+
+Project Gutenberg-tm eBooks are often created from several printed
+editions, all of which are confirmed as Public Domain in the U.S.
+unless a copyright notice is included. Thus, we do not necessarily
+keep eBooks in compliance with any particular paper edition.
+
+
+Most people start at our Web site which has the main PG search facility:
+
+ https://www.gutenberg.org
+
+This Web site includes information about Project Gutenberg-tm,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+
+
+</pre>
+
+</body>
+</html>
diff --git a/27936-h/images/a.png b/27936-h/images/a.png
new file mode 100644
index 0000000..a459bd3
--- /dev/null
+++ b/27936-h/images/a.png
Binary files differ
diff --git a/27936-h/images/cover.jpg b/27936-h/images/cover.jpg
new file mode 100644
index 0000000..d857751
--- /dev/null
+++ b/27936-h/images/cover.jpg
Binary files differ