diff options
Diffstat (limited to 'old')
66 files changed, 38433 insertions, 0 deletions
diff --git a/old/17001-8.txt b/old/17001-8.txt new file mode 100644 index 0000000..45dcae5 --- /dev/null +++ b/old/17001-8.txt @@ -0,0 +1,5185 @@ +The Project Gutenberg EBook of An Elementary Course in Synthetic +Projective Geometry by Lehmer, Derrick Norman + + + +This eBook is for the use of anyone anywhere at no cost and with almost no +restrictions whatsoever. You may copy it, give it away or re-use it under +the terms of the Project Gutenberg License included with this eBook or +online at http://www.gutenberg.org/license + + + +Title: An Elementary Course in Synthetic Projective Geometry + +Author: Lehmer, Derrick Norman + +Release Date: November 4, 2005 [Ebook #17001] + +Language: English + +Character set encoding: ISO 8859-1 + + +***START OF THE PROJECT GUTENBERG EBOOK AN ELEMENTARY COURSE IN SYNTHETIC PROJECTIVE GEOMETRY*** + + + + + +An Elementary Course in Synthetic Projective Geometry + + +by Lehmer, Derrick Norman + + + + +Edition 1, (November 4, 2005) + + + + + +PREFACE + + +The following course is intended to give, in as simple a way as possible, +the essentials of synthetic projective geometry. While, in the main, the +theory is developed along the well-beaten track laid out by the great +masters of the subject, it is believed that there has been a slight +smoothing of the road in some places. Especially will this be observed in +the chapter on Involution. The author has never felt satisfied with the +usual treatment of that subject by means of circles and anharmonic ratios. +A purely projective notion ought not to be based on metrical foundations. +Metrical developments should be made there, as elsewhere in the theory, by +the introduction of infinitely distant elements. + +The author has departed from the century-old custom of writing in parallel +columns each theorem and its dual. He has not found that it conduces to +sharpness of vision to try to focus his eyes on two things at once. Those +who prefer the usual method of procedure can, of course, develop the two +sets of theorems side by side; the author has not found this the better +plan in actual teaching. + +As regards nomenclature, the author has followed the lead of the earlier +writers in English, and has called the system of lines in a plane which +all pass through a point a _pencil of rays_ instead of a _bundle of rays_, +as later writers seem inclined to do. For a point considered as made up of +all the lines and planes through it he has ventured to use the term _point +system_, as being the natural dualization of the usual term _plane +system_. He has also rejected the term _foci of an involution_, and has +not used the customary terms for classifying involutions--_hyperbolic +involution_, _elliptic involution_ and _parabolic involution_. He has +found that all these terms are very confusing to the student, who +inevitably tries to connect them in some way with the conic sections. + +Enough examples have been provided to give the student a clear grasp of +the theory. Many are of sufficient generality to serve as a basis for +individual investigation on the part of the student. Thus, the third +example at the end of the first chapter will be found to be very fruitful +in interesting results. A correspondence is there indicated between lines +in space and circles through a fixed point in space. If the student will +trace a few of the consequences of that correspondence, and determine what +configurations of circles correspond to intersecting lines, to lines in a +plane, to lines of a plane pencil, to lines cutting three skew lines, +etc., he will have acquired no little practice in picturing to himself +figures in space. + +The writer has not followed the usual practice of inserting historical +notes at the foot of the page, and has tried instead, in the last chapter, +to give a consecutive account of the history of pure geometry, or, at +least, of as much of it as the student will be able to appreciate who has +mastered the course as given in the preceding chapters. One is not apt to +get a very wide view of the history of a subject by reading a hundred +biographical footnotes, arranged in no sort of sequence. The writer, +moreover, feels that the proper time to learn the history of a subject is +after the student has some general ideas of the subject itself. + +The course is not intended to furnish an illustration of how a subject may +be developed, from the smallest possible number of fundamental +assumptions. The author is aware of the importance of work of this sort, +but he does not believe it is possible at the present time to write a book +along such lines which shall be of much use for elementary students. For +the purposes of this course the student should have a thorough grounding +in ordinary elementary geometry so far as to include the study of the +circle and of similar triangles. No solid geometry is needed beyond the +little used in the proof of Desargues' theorem (25), and, except in +certain metrical developments of the general theory, there will be no call +for a knowledge of trigonometry or analytical geometry. Naturally the +student who is equipped with these subjects as well as with the calculus +will be a little more mature, and may be expected to follow the course all +the more easily. The author has had no difficulty, however, in presenting +it to students in the freshman class at the University of California. + +The subject of synthetic projective geometry is, in the opinion of the +writer, destined shortly to force its way down into the secondary schools; +and if this little book helps to accelerate the movement, he will feel +amply repaid for the task of working the materials into a form available +for such schools as well as for the lower classes in the university. + +The material for the course has been drawn from many sources. The author +is chiefly indebted to the classical works of Reye, Cremona, Steiner, +Poncelet, and Von Staudt. Acknowledgments and thanks are also due to +Professor Walter C. Eells, of the U.S. Naval Academy at Annapolis, for his +searching examination and keen criticism of the manuscript; also to +Professor Herbert Ellsworth Slaught, of The University of Chicago, for his +many valuable suggestions, and to Professor B. M. Woods and Dr. H. N. +Wright, of the University of California, who have tried out the methods of +presentation, in their own classes. + + D. N. LEHMER + +BERKELEY, CALIFORNIA + + + + + +CONTENTS + + +Preface +Contents +CHAPTER I - ONE-TO-ONE CORRESPONDENCE + 1. Definition of one-to-one correspondence + 2. Consequences of one-to-one correspondence + 3. Applications in mathematics + 4. One-to-one correspondence and enumeration + 5. Correspondence between a part and the whole + 6. Infinitely distant point + 7. Axial pencil; fundamental forms + 8. Perspective position + 9. Projective relation + 10. Infinity-to-one correspondence + 11. Infinitudes of different orders + 12. Points in a plane + 13. Lines through a point + 14. Planes through a point + 15. Lines in a plane + 16. Plane system and point system + 17. Planes in space + 18. Points of space + 19. Space system + 20. Lines in space + 21. Correspondence between points and numbers + 22. Elements at infinity + PROBLEMS +CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE +CORRESPONDENCE WITH EACH OTHER + 23. Seven fundamental forms + 24. Projective properties + 25. Desargues's theorem + 26. Fundamental theorem concerning two complete quadrangles + 27. Importance of the theorem + 28. Restatement of the theorem + 29. Four harmonic points + 30. Harmonic conjugates + 31. Importance of the notion of four harmonic points + 32. Projective invariance of four harmonic points + 33. Four harmonic lines + 34. Four harmonic planes + 35. Summary of results + 36. Definition of projectivity + 37. Correspondence between harmonic conjugates + 38. Separation of harmonic conjugates + 39. Harmonic conjugate of the point at infinity + 40. Projective theorems and metrical theorems. Linear construction + 41. Parallels and mid-points + 42. Division of segment into equal parts + 43. Numerical relations + 44. Algebraic formula connecting four harmonic points + 45. Further formulae + 46. Anharmonic ratio + PROBLEMS +CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED FUNDAMENTAL FORMS + 47. Superposed fundamental forms. Self-corresponding elements + 48. Special case + 49. Fundamental theorem. Postulate of continuity + 50. Extension of theorem to pencils of rays and planes + 51. Projective point-rows having a self-corresponding point in common + 52. Point-rows in perspective position + 53. Pencils in perspective position + 54. Axial pencils in perspective position + 55. Point-row of the second order + 56. Degeneration of locus + 57. Pencils of rays of the second order + 58. Degenerate case + 59. Cone of the second order + PROBLEMS +CHAPTER IV - POINT-ROWS OF THE SECOND ORDER + 60. Point-row of the second order defined + 61. Tangent line + 62. Determination of the locus + 63. Restatement of the problem + 64. Solution of the fundamental problem + 65. Different constructions for the figure + 66. Lines joining four points of the locus to a fifth + 67. Restatement of the theorem + 68. Further important theorem + 69. Pascal's theorem + 70. Permutation of points in Pascal's theorem + 71. Harmonic points on a point-row of the second order + 72. Determination of the locus + 73. Circles and conics as point-rows of the second order + 74. Conic through five points + 75. Tangent to a conic + 76. Inscribed quadrangle + 77. Inscribed triangle + 78. Degenerate conic + PROBLEMS +CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER + 79. Pencil of rays of the second order defined + 80. Tangents to a circle + 81. Tangents to a conic + 82. Generating point-rows lines of the system + 83. Determination of the pencil + 84. Brianchon's theorem + 85. Permutations of lines in Brianchon's theorem + 86. Construction of the penvil by Brianchon's theorem + 87. Point of contact of a tangent to a conic + 88. Circumscribed quadrilateral + 89. Circumscribed triangle + 90. Use of Brianchon's theorem + 91. Harmonic tangents + 92. Projectivity and perspectivity + 93. Degenerate case + 94. Law of duality + PROBLEMS +CHAPTER VI - POLES AND POLARS + 95. Inscribed and circumscribed quadrilaterals + 96. Definition of the polar line of a point + 97. Further defining properties + 98. Definition of the pole of a line + 99. Fundamental theorem of poles and polars + 100. Conjugate points and lines + 101. Construction of the polar line of a given point + 102. Self-polar triangle + 103. Pole and polar projectively related + 104. Duality + 105. Self-dual theorems + 106. Other correspondences + PROBLEMS +CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS + 107. Diameters. Center + 108. Various theorems + 109. Conjugate diameters + 110. Classification of conics + 111. Asymptotes + 112. Various theorems + 113. Theorems concerning asymptotes + 114. Asymptotes and conjugate diameters + 115. Segments cut off on a chord by hyperbola and its asymptotes + 116. Application of the theorem + 117. Triangle formed by the two asymptotes and a tangent + 118. Equation of hyperbola referred to the asymptotes + 119. Equation of parabola + 120. Equation of central conics referred to conjugate diameters + PROBLEMS +CHAPTER VIII - INVOLUTION + 121. Fundamental theorem + 122. Linear construction + 123. Definition of involution of points on a line + 124. Double-points in an involution + 125. Desargues's theorem concerning conics through four points + 126. Degenerate conics of the system + 127. Conics through four points touching a given line + 128. Double correspondence + 129. Steiner's construction + 130. Application of Steiner's construction to double correspondence + 131. Involution of points on a point-row of the second order. + 132. Involution of rays + 133. Double rays + 134. Conic through a fixed point touching four lines + 135. Double correspondence + 136. Pencils of rays of the second order in involution + 137. Theorem concerning pencils of the second order in involution + 138. Involution of rays determined by a conic + 139. Statement of theorem + 140. Dual of the theorem + PROBLEMS +CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS + 141. Introduction of infinite point; center of involution + 142. Fundamental metrical theorem + 143. Existence of double points + 144. Existence of double rays + 145. Construction of an involution by means of circles + 146. Circular points + 147. Pairs in an involution of rays which are at right angles. Circular + involution + 148. Axes of conics + 149. Points at which the involution determined by a conic is circular + 150. Properties of such a point + 151. Position of such a point + 152. Discovery of the foci of the conic + 153. The circle and the parabola + 154. Focal properties of conics + 155. Case of the parabola + 156. Parabolic reflector + 157. Directrix. Principal axis. Vertex + 158. Another definition of a conic + 159. Eccentricity + 160. Sum or difference of focal distances + PROBLEMS +CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY + 161. Ancient results + 162. Unifying principles + 163. Desargues + 164. Poles and polars + 165. Desargues's theorem concerning conics through four points + 166. Extension of the theory of poles and polars to space + 167. Desargues's method of describing a conic + 168. Reception of Desargues's work + 169. Conservatism in Desargues's time + 170. Desargues's style of writing + 171. Lack of appreciation of Desargues + 172. Pascal and his theorem + 173. Pascal's essay + 174. Pascal's originality + 175. De la Hire and his work + 176. Descartes and his influence + 177. Newton and Maclaurin + 178. Maclaurin's construction + 179. Descriptive geometry and the second revival + 180. Duality, homology, continuity, contingent relations + 181. Poncelet and Cauchy + 182. The work of Poncelet + 183. The debt which analytic geometry owes to synthetic geometry + 184. Steiner and his work + 185. Von Staudt and his work + 186. Recent developments +INDEX + + + + + + +CHAPTER I - ONE-TO-ONE CORRESPONDENCE + + + + +*1. Definition of one-to-one correspondence.* Given any two sets of +individuals, if it is possible to set up such a correspondence between the +two sets that to any individual in one set corresponds one and only one +individual in the other, then the two sets are said to be in _one-to-one +correspondence_ with each other. This notion, simple as it is, is of +fundamental importance in all branches of science. The process of counting +is nothing but a setting up of a one-to-one correspondence between the +objects to be counted and certain words, 'one,' 'two,' 'three,' etc., in +the mind. Many savage peoples have discovered no better method of counting +than by setting up a one-to-one correspondence between the objects to be +counted and their fingers. The scientist who busies himself with naming +and classifying the objects of nature is only setting up a one-to-one +correspondence between the objects and certain words which serve, not as a +means of counting the objects, but of listing them in a convenient way. +Thus he may be able to marshal and array his material in such a way as to +bring to light relations that may exist between the objects themselves. +Indeed, the whole notion of language springs from this idea of one-to-one +correspondence. + + + + +*2. Consequences of one-to-one correspondence.* The most useful and +interesting problem that may arise in connection with any one-to-one +correspondence is to determine just what relations existing between the +individuals of one assemblage may be carried over to another assemblage in +one-to-one correspondence with it. It is a favorite error to assume that +whatever holds for one set must also hold for the other. Magicians are apt +to assign magic properties to many of the words and symbols which they are +in the habit of using, and scientists are constantly confusing objective +things with the subjective formulas for them. After the physicist has set +up correspondences between physical facts and mathematical formulas, the +"interpretation" of these formulas is his most important and difficult +task. + + + + +*3.* In mathematics, effort is constantly being made to set up one-to-one +correspondences between simple notions and more complicated ones, or +between the well-explored fields of research and fields less known. Thus, +by means of the mechanism employed in analytic geometry, algebraic +theorems are made to yield geometric ones, and vice versa. In geometry we +get at the properties of the conic sections by means of the properties of +the straight line, and cubic surfaces are studied by means of the plane. + + + + + [Figure 1] + + FIG. 1 + + + [Figure 2] + + FIG. 2 + + +*4. One-to-one correspondence and enumeration.* If a one-to-one +correspondence has been set up between the objects of one set and the +objects of another set, then the inference may usually be drawn that they +have the same number of elements. If, however, there is an infinite number +of individuals in each of the two sets, the notion of counting is +necessarily ruled out. It may be possible, nevertheless, to set up a +one-to-one correspondence between the elements of two sets even when the +number is infinite. Thus, it is easy to set up such a correspondence +between the points of a line an inch long and the points of a line two +inches long. For let the lines (Fig. 1) be _AB_ and _A'B'_. Join _AA'_ and +_BB'_, and let these joining lines meet in _S_. For every point _C_ on +_AB_ a point _C'_ may be found on _A'B'_ by joining _C_ to _S_ and noting +the point _C'_ where _CS_ meets _A'B'_. Similarly, a point _C_ may be +found on _AB_ for any point _C'_ on _A'B'_. The correspondence is clearly +one-to-one, but it would be absurd to infer from this that there were just +as many points on _AB_ as on _A'B'_. In fact, it would be just as +reasonable to infer that there were twice as many points on _A'B'_ as on +_AB_. For if we bend _A'B'_ into a circle with center at _S_ (Fig. 2), we +see that for every point _C_ on _AB_ there are two points on _A'B'_. Thus +it is seen that the notion of one-to-one correspondence is more extensive +than the notion of counting, and includes the notion of counting only when +applied to finite assemblages. + + + + +*5. Correspondence between a part and the whole of an infinite +assemblage.* In the discussion of the last paragraph the remarkable fact +was brought to light that it is sometimes possible to set the elements of +an assemblage into one-to-one correspondence with a part of those +elements. A moment's reflection will convince one that this is never +possible when there is a finite number of elements in the +assemblage.--Indeed, we may take this property as our definition of an +infinite assemblage, and say that an infinite assemblage is one that may +be put into one-to-one correspondence with part of itself. This has the +advantage of being a positive definition, as opposed to the usual negative +definition of an infinite assemblage as one that cannot be counted. + + + + +*6. Infinitely distant point.* We have illustrated above a simple method +of setting the points of two lines into one-to-one correspondence. The +same illustration will serve also to show how it is possible to set the +points on a line into one-to-one correspondence with the lines through a +point. Thus, for any point _C_ on the line _AB_ there is a line _SC_ +through _S_. We must assume the line _AB_ extended indefinitely in both +directions, however, if we are to have a point on it for every line +through _S_; and even with this extension there is one line through _S_, +according to Euclid's postulate, which does not meet the line _AB_ and +which therefore has no point on _AB_ to correspond to it. In order to +smooth out this discrepancy we are accustomed to assume the existence of +an _infinitely distant_ point on the line _AB_ and to assign this point +as the corresponding point of the exceptional line of _S_. With this +understanding, then, we may say that we have set the lines through a point +and the points on a line into one-to-one correspondence. This +correspondence is of such fundamental importance in the study of +projective geometry that a special name is given to it. Calling the +totality of points on a line a _point-row_, and the totality of lines +through a point a _pencil of rays_, we say that the point-row and the +pencil related as above are in _perspective position_, or that they are +_perspectively related_. + + + + +*7. Axial pencil; fundamental forms.* A similar correspondence may be set +up between the points on a line and the planes through another line which +does not meet the first. Such a system of planes is called an _axial +pencil_, and the three assemblages--the point-row, the pencil of rays, and +the axial pencil--are called _fundamental forms_. The fact that they may +all be set into one-to-one correspondence with each other is expressed by +saying that they are of the same order. It is usual also to speak of them +as of the first order. We shall see presently that there are other +assemblages which cannot be put into this sort of one-to-one +correspondence with the points on a line, and that they will very +reasonably be said to be of a higher order. + + + + +*8. Perspective position.* We have said that a point-row and a pencil of +rays are in perspective position if each ray of the pencil goes through +the point of the point-row which corresponds to it. Two pencils of rays +are also said to be in perspective position if corresponding rays meet on +a straight line which is called the axis of perspectivity. Also, two +point-rows are said to be in perspective position if corresponding points +lie on straight lines through a point which is called the center of +perspectivity. A point-row and an axial pencil are in perspective position +if each plane of the pencil goes through the point on the point-row which +corresponds to it, and an axial pencil and a pencil of rays are in +perspective position if each ray lies in the plane which corresponds to +it; and, finally, two axial pencils are perspectively related if +corresponding planes meet in a plane. + + + + +*9. Projective relation.* It is easy to imagine a more general +correspondence between the points of two point-rows than the one just +described. If we take two perspective pencils, _A_ and _S_, then a +point-row _a_ perspective to _A_ will be in one-to-one correspondence with +a point-row _b_ perspective to _B_, but corresponding points will not, in +general, lie on lines which all pass through a point. Two such point-rows +are said to be _projectively related_, or simply projective to each other. +Similarly, two pencils of rays, or of planes, are projectively related to +each other if they are perspective to two perspective point-rows. This +idea will be generalized later on. It is important to note that between +the elements of two projective fundamental forms there is a one-to-one +correspondence, and also that this correspondence is in general +_continuous_; that is, by taking two elements of one form sufficiently +close to each other, the two corresponding elements in the other form may +be made to approach each other arbitrarily close. In the case of +point-rows this continuity is subject to exception in the neighborhood of +the point "at infinity." + + + + +*10. Infinity-to-one correspondence.* It might be inferred that any +infinite assemblage could be put into one-to-one correspondence with any +other. Such is not the case, however, if the correspondence is to be +continuous, between the points on a line and the points on a plane. +Consider two lines which lie in different planes, and take _m_ points on +one and _n_ points on the other. The number of lines joining the _m_ +points of one to the _n_ points jof the other is clearly _mn_. If we +symbolize the totality of points on a line by [infinity], then a +reasonable symbol for the totality of lines drawn to cut two lines would +be [infinity]2. Clearly, for every point on one line there are [infinity] +lines cutting across the other, so that the correspondence might be called +[infinity]-to-one. Thus the assemblage of lines cutting across two lines +is of higher order than the assemblage of points on a line; and as we have +called the point-row an assemblage of the first order, the system of lines +cutting across two lines ought to be called of the second order. + + + + +*11. Infinitudes of different orders.* Now it is easy to set up a +one-to-one correspondence between the points in a plane and the system of +lines cutting across two lines which lie in different planes. In fact, +each line of the system of lines meets the plane in one point, and each +point in the plane determines one and only one line cutting across the two +given lines--namely, the line of intersection of the two planes determined +by the given point with each of the given lines. The assemblage of points +in the plane is thus of the same order as that of the lines cutting across +two lines which lie in different planes, and ought therefore to be spoken +of as of the second order. We express all these results as follows: + + + + +*12.* If the infinitude of points on a line is taken as the infinitude of +the first order, then the infinitude of lines in a pencil of rays and the +infinitude of planes in an axial pencil are also of the first order, while +the infinitude of lines cutting across two "skew" lines, as well as the +infinitude of points in a plane, are of the second order. + + + + +*13.* If we join each of the points of a plane to a point not in that +plane, we set up a one-to-one correspondence between the points in a plane +and the lines through a point in space. _Thus the infinitude of lines +through a point in space is of the second order._ + + + + +*14.* If to each line through a point in space we make correspond that +plane at right angles to it and passing through the same point, we see +that _the infinitude of planes through a point in space is of the second +order._ + + + + +*15.* If to each plane through a point in space we make correspond the +line in which it intersects a given plane, we see that _the infinitude of +lines in a plane is of the second order._ This may also be seen by setting +up a one-to-one correspondence between the points on a plane and the lines +of that plane. Thus, take a point _S_ not in the plane. Join any point _M_ +of the plane to _S_. Through _S_ draw a plane at right angles to _MS_. +This meets the given plane in a line _m_ which may be taken as +corresponding to the point _M_. Another very important method of setting +up a one-to-one correspondence between lines and points in a plane will be +given later, and many weighty consequences will be derived from it. + + + + +*16. Plane system and point system.* The plane, considered as made up of +the points and lines in it, is called a _plane system_ and is a +fundamental form of the second order. The point, considered as made up of +all the lines and planes passing through it, is called a _point system_ +and is also a fundamental form of the second order. + + + + +*17.* If now we take three lines in space all lying in different planes, +and select _l_ points on the first, _m_ points on the second, and _n_ +points on the third, then the total number of planes passing through one +of the selected points on each line will be _lmn_. It is reasonable, +therefore, to symbolize the totality of planes that are determined by the +[infinity] points on each of the three lines by [infinity]3, and to call +it an infinitude of the _third_ order. But it is easily seen that every +plane in space is included in this totality, so that _the totality of +planes in space is an infinitude of the third order._ + + + + +*18.* Consider now the planes perpendicular to these three lines. Every +set of three planes so drawn will determine a point in space, and, +conversely, through every point in space may be drawn one and only one set +of three planes at right angles to the three given lines. It follows, +therefore, that _the totality of points in space is an infinitude of the +third order._ + + + + +*19. Space system.* Space of three dimensions, considered as made up of +all its planes and points, is then a fundamental form of the _third_ +order, which we shall call a _space system._ + + + + +*20. Lines in space.* If we join the twofold infinity of points in one +plane with the twofold infinity of points in another plane, we get a +totality of lines of space which is of the fourth order of infinity. _The +totality of lines in space gives, then, a fundamental form of the fourth +order._ + + + + +*21. Correspondence between points and numbers.* In the theory of +analytic geometry a one-to-one correspondence is assumed to exist between +points on a line and numbers. In order to justify this assumption a very +extended definition of number must be made use of. A one-to-one +correspondence is then set up between points in the plane and pairs of +numbers, and also between points in space and sets of three numbers. A +single constant will serve to define the position of a point on a line; +two, a point in the plane; three, a point in space; etc. In the same +theory a one-to-one correspondence is set up between loci in the plane and +equations in two variables; between surfaces in space and equations in +three variables; etc. The equation of a line in a plane involves two +constants, either of which may take an infinite number of values. From +this it follows that there is an infinity of lines in the plane which is +of the second order if the infinity of points on a line is assumed to be +of the first. In the same way a circle is determined by three conditions; +a sphere by four; etc. We might then expect to be able to set up a +one-to-one correspondence between circles in a plane and points, or planes +in space, or between spheres and lines in space. Such, indeed, is the +case, and it is often possible to infer theorems concerning spheres from +theorems concerning lines, and vice versa. It is possibilities such as +these that, give to the theory of one-to-one correspondence its great +importance for the mathematician. It must not be forgotten, however, that +we are considering only _continuous_ correspondences. It is perfectly +possible to set, up a one-to-one correspondence between the points of a +line and the points of a plane, or, indeed, between the points of a line +and the points of a space of any finite number of dimensions, if the +correspondence is not restricted to be continuous. + + + + +*22. Elements at infinity.* A final word is necessary in order to explain +a phrase which is in constant use in the study of projective geometry. We +have spoken of the "point at infinity" on a straight line--a fictitious +point only used to bridge over the exceptional case when we are setting up +a one-to-one correspondence between the points of a line and the lines +through a point. We speak of it as "a point" and not as "points," because +in the geometry studied by Euclid we assume only one line through a point +parallel to a given line. In the same sense we speak of all the points at +infinity in a plane as lying on a line, "the line at infinity," because +the straight line is the simplest locus we can imagine which has only one +point in common with any line in the plane. Likewise we speak of the +"plane at infinity," because that seems the most convenient way of +imagining the points at infinity in space. It must not be inferred that +these conceptions have any essential connection with physical facts, or +that other means of picturing to ourselves the infinitely distant +configurations are not possible. In other branches of mathematics, notably +in the theory of functions of a complex variable, quite different +assumptions are made and quite different conceptions of the elements at +infinity are used. As we can know nothing experimentally about such +things, we are at liberty to make any assumptions we please, so long as +they are consistent and serve some useful purpose. + + + + +PROBLEMS + + +1. Since there is a threefold infinity of points in space, there must be a +sixfold infinity of pairs of points in space. Each pair of points +determines a line. Why, then, is there not a sixfold infinity of lines in +space? + +2. If there is a fourfold infinity of lines in space, why is it that there +is not a fourfold infinity of planes through a point, seeing that each +line in space determines a plane through that point? + +3. Show that there is a fourfold infinity of circles in space that pass +through a fixed point. (Set up a one-to-one correspondence between the +axes of the circles and lines in space.) + +4. Find the order of infinity of all the lines of space that cut across a +given line; across two given lines; across three given lines; across four +given lines. + +5. Find the order of infinity of all the spheres in space that pass +through a given point; through two given points; through three given +points; through four given points. + +6. Find the order of infinity of all the circles on a sphere; of all the +circles on a sphere that pass through a fixed point; through two fixed +points; through three fixed points; of all the circles in space; of all +the circles that cut across a given line. + +7. Find the order of infinity of all lines tangent to a sphere; of all +planes tangent to a sphere; of lines and planes tangent to a sphere and +passing through a fixed point. + +8. Set up a one-to-one correspondence between the series of numbers _1_, +_2_, _3_, _4_, ... and the series of even numbers _2_, _4_, _6_, _8_ .... +Are we justified in saying that there are just as many even numbers as +there are numbers altogether? + +9. Is the axiom "The whole is greater than one of its parts" applicable to +infinite assemblages? + +10. Make out a classified list of all the infinitudes of the first, +second, third, and fourth orders mentioned in this chapter. + + + + + +CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE +CORRESPONDENCE WITH EACH OTHER + + + + +*23. Seven fundamental forms.* In the preceding chapter we have called +attention to seven fundamental forms: the point-row, the pencil of rays, +the axial pencil, the plane system, the point system, the space system, +and the system of lines in space. These fundamental forms are the material +which we intend to use in building up a general theory which will be found +to include ordinary geometry as a special case. We shall be concerned, not +with measurement of angles and areas or line segments as in the study of +Euclid, but in combining and comparing these fundamental forms and in +"generating" new forms by means of them. In problems of construction we +shall make no use of measurement, either of angles or of segments, and +except in certain special applications of the general theory we shall not +find it necessary to require more of ourselves than the ability to draw +the line joining two points, or to find the point of intersections of two +lines, or the line of intersection of two planes, or, in general, the +common elements of two fundamental forms. + + + + +*24. Projective properties.* Our chief interest in this chapter will be +the discovery of relations between the elements of one form which hold +between the corresponding elements of any other form in one-to-one +correspondence with it. We have already called attention to the danger of +assuming that whatever relations hold between the elements of one +assemblage must also hold between the corresponding elements of any +assemblage in one-to-one correspondence with it. This false assumption is +the basis of the so-called "proof by analogy" so much in vogue among +speculative theorists. When it appears that certain relations existing +between the points of a given point-row do not necessitate the same +relations between the corresponding elements of another in one-to-one +correspondence with it, we should view with suspicion any application of +the "proof by analogy" in realms of thought where accurate judgments are +not so easily made. For example, if in a given point-row _u_ three points, +_A_, _B_, and _C_, are taken such that _B_ is the middle point of the +segment _AC_, it does not follow that the three points _A'_, _B'_, _C'_ in +a point-row perspective to _u_ will be so related. Relations between the +elements of any form which do go over unaltered to the corresponding +elements of a form projectively related to it are called _projective +relations._ Relations involving measurement of lines or of angles are not +projective. + + + + +*25. Desargues's theorem.* We consider first the following beautiful +theorem, due to Desargues and called by his name. + +_If two triangles, __A__, __B__, __C__ and __A'__, __B'__, __C'__, are so +situated that the lines __AA'__, __BB'__, and __CC'__ all meet in a point, +then the pairs of sides __AB__ and __A'B'__, __BC__ and __B'C'__, __CA__ +and __C'A'__ all meet on a straight line, and conversely._ + + [Figure 3] + + FIG. 3 + + +Let the lines _AA'_, _BB'_, and _CC'_ meet in the point _M_ (Fig. 3). +Conceive of the figure as in space, so that _M_ is the vertex of a +trihedral angle of which the given triangles are plane sections. The lines +_AB_ and _A'B'_ are in the same plane and must meet when produced, their +point of intersection being clearly a point in the plane of each triangle +and therefore in the line of intersection of these two planes. Call this +point _P_. By similar reasoning the point _Q_ of intersection of the lines +_BC_ and _B'C'_ must lie on this same line as well as the point _R_ of +intersection of _CA_ and _C'A'_. Therefore the points _P_, _Q_, and _R_ +all lie on the same line _m_. If now we consider the figure a plane +figure, the points _P_, _Q_, and _R_ still all lie on a straight line, +which proves the theorem. The converse is established in the same manner. + + + + +*26. Fundamental theorem concerning two complete quadrangles.* This +theorem throws into our hands the following fundamental theorem concerning +two complete quadrangles, a _complete quadrangle_ being defined as the +figure obtained by joining any four given points by straight lines in the +six possible ways. + +_Given two complete quadrangles, __K__, __L__, __M__, __N__ and __K'__, +__L'__, __M'__, __N'__, so related that __KL__, __K'L'__, __MN__, __M'N'__ +all meet in a point __A__; __LM__, __L'M'__, __NK__, __N'K'__ all meet in +a __ point __Q__; and __LN__, __L'N'__ meet in a point __B__ on the line +__AC__; then the lines __KM__ and __K'M'__ also meet in a point __D__ on +the line __AC__._ + + [Figure 4] + + FIG. 4 + + +For, by the converse of the last theorem, _KK'_, _LL'_, and _NN'_ all meet +in a point _S_ (Fig. 4). Also _LL'_, _MM'_, and _NN'_ meet in a point, and +therefore in the same point _S_. Thus _KK'_, _LL'_, and _MM'_ meet in a +point, and so, by Desargues's theorem itself, _A_, _B_, and _D_ are on a +straight line. + + + + +*27. Importance of the theorem.* The importance of this theorem lies in +the fact that, _A_, _B_, and _C_ being given, an indefinite number of +quadrangles _K'_, _L'_, _M'_, _N'_ my be found such that _K'L'_ and _M'N'_ +meet in _A_, _K'N'_ and _L'M'_ in _C_, with _L'N'_ passing through _B_. +Indeed, the lines _AK'_ and _AM'_ may be drawn arbitrarily through _A_, +and any line through _B_ may be used to determine _L'_ and _N'_. By +joining these two points to _C_ the points _K'_ and _M'_ are determined. +Then the line joining _K'_ and _M'_, found in this way, must pass through +the point _D_ already determined by the quadrangle _K_, _L_, _M_, _N_. +_The three points __A__, __B__, __C__, given in order, serve thus to +determine a fourth point __D__._ + + + + +*28.* In a complete quadrangle the line joining any two points is called +the _opposite side_ to the line joining the other two points. The result +of the preceding paragraph may then be stated as follows: + +Given three points, _A_, _B_, _C_, in a straight line, if a pair of +opposite sides of a complete quadrangle pass through _A_, and another pair +through _C_, and one of the remaining two sides goes through _B_, then the +other of the remaining two sides will go through a fixed point which does +not depend on the quadrangle employed. + + + + +*29. Four harmonic points.* Four points, _A_, _B_, _C_, _D_, related as +in the preceding theorem are called _four harmonic points_. The point _D_ +is called the _fourth harmonic of __B__ with respect to __A__ and __C_. +Since _B_ and _D_ play exactly the same rôle in the above construction, +_B__ is also the fourth harmonic of __D__ with respect to __A__ and __C_. +_B_ and _D_ are called _harmonic conjugates with respect to __A__ and +__C_. We proceed to show that _A_ and _C_ are also harmonic conjugates +with respect to _B_ and _D_--that is, that it is possible to find a +quadrangle of which two opposite sides shall pass through _B_, two through +_D_, and of the remaining pair, one through _A_ and the other through _C_. + + [Figure 5] + + FIG. 5 + + +Let _O_ be the intersection of _KM_ and _LN_ (Fig. 5). Join _O_ to _A_ and +_C_. The joining lines cut out on the sides of the quadrangle four points, +_P_, _Q_, _R_, _S_. Consider the quadrangle _P_, _K_, _Q_, _O_. One pair +of opposite sides passes through _A_, one through _C_, and one remaining +side through _D_; therefore the other remaining side must pass through +_B_. Similarly, _RS_ passes through _B_ and _PS_ and _QR_ pass through +_D_. The quadrangle _P_, _Q_, _R_, _S_ therefore has two opposite sides +through _B_, two through _D_, and the remaining pair through _A_ and _C_. +_A_ and _C_ are thus harmonic conjugates with respect to _B_ and _D_. We +may sum up the discussion, therefore, as follows: + + + + +*30.* If _A_ and _C_ are harmonic conjugates with respect to _B_ and _D_, +then _B_ and _D_ are harmonic conjugates with respect to _A_ and _C_. + + + + +*31. Importance of the notion.* The importance of the notion of four +harmonic points lies in the fact that it is a relation which is carried +over from four points in a point-row _u_ to the four points that +correspond to them in any point-row _u'_ perspective to _u_. + +To prove this statement we construct a quadrangle _K_, _L_, _M_, _N_ such +that _KL_ and _MN_ pass through _A_, _KN_ and _LM_ through _C_, _LN_ +through _B_, and _KM_ through _D_. Take now any point _S_ not in the plane +of the quadrangle and construct the planes determined by _S_ and all the +seven lines of the figure. Cut across this set of planes by another plane +not passing through _S_. This plane cuts out on the set of seven planes +another quadrangle which determines four new harmonic points, _A'_, _B'_, +_C'_, _D'_, on the lines joining _S_ to _A_, _B_, _C_, _D_. But _S_ may be +taken as any point, since the original quadrangle may be taken in any +plane through _A_, _B_, _C_, _D_; and, further, the points _A'_, _B'_, +_C'_, _D'_ are the intersection of _SA_, _SB_, _SC_, _SD_ by any line. We +have, then, the remarkable theorem: + + + + +*32.* _If any point is joined to four harmonic points, and the four lines +thus obtained are cut by any fifth, the four points of intersection are +again harmonic._ + + + + +*33. Four harmonic lines.* We are now able to extend the notion of +harmonic elements to pencils of rays, and indeed to axial pencils. For if +we define _four harmonic rays_ as four rays which pass through a point and +which pass one through each of four harmonic points, we have the theorem + +_Four harmonic lines are cut by any transversal in four harmonic points._ + + + + +*34. Four harmonic planes.* We also define _four harmonic planes_ as four +planes through a line which pass one through each of four harmonic points, +and we may show that + +_Four harmonic planes are cut by any plane not passing through their +common line in four harmonic lines, and also by any line in four harmonic +points._ + +For let the planes {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, {~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~}, which all pass through the line _g_, pass +also through the four harmonic points _A_, _B_, _C_, _D_, so that {~GREEK SMALL LETTER ALPHA~} passes +through _A_, etc. Then it is clear that any plane {~GREEK SMALL LETTER PI~} through _A_, _B_, _C_, +_D_ will cut out four harmonic lines from the four planes, for they are +lines through the intersection _P_ of _g_ with the plane {~GREEK SMALL LETTER PI~}, and they pass +through the given harmonic points _A_, _B_, _C_, _D_. Any other plane {~GREEK SMALL LETTER SIGMA~} +cuts _g_ in a point _S_ and cuts {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, {~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~} in four lines that meet {~GREEK SMALL LETTER PI~} in +four points _A'_, _B'_, _C'_, _D'_ lying on _PA_, _PB_, _PC_, and _PD_ +respectively, and are thus four harmonic hues. Further, any ray cuts {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, +{~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~} in four harmonic points, since any plane through the ray gives four +harmonic lines of intersection. + + + + +*35.* These results may be put together as follows: + +_Given any two assemblages of points, rays, or planes, perspectively +related to each other, four harmonic elements of one must correspond to +four elements of the other which are likewise harmonic._ + +If, now, two forms are perspectively related to a third, any four harmonic +elements of one must correspond to four harmonic elements in the other. We +take this as our definition of projective correspondence, and say: + + + + +*36. Definition of projectivity.* _Two fundamental forms are protectively +related to each other when a one-to-one correspondence exists between the +elements of the two and when four harmonic elements of one correspond to +four harmonic elements of the other._ + + [Figure 6] + + FIG. 6 + + + + +*37. Correspondence between harmonic conjugates.* Given four harmonic +points, _A_, _B_, _C_, _D_; if we fix _A_ and _C_, then _B_ and _D_ vary +together in a way that should be thoroughly understood. To get a clear +conception of their relative motion we may fix the points _L_ and _M_ of +the quadrangle _K_, _L_, _M_, _N_ (Fig. 6). Then, as _B_ describes the +point-row _AC_, the point _N_ describes the point-row _AM_ perspective to +it. Projecting _N_ again from _C_, we get a point-row _K_ on _AL_ +perspective to the point-row _N_ and thus projective to the point-row _B_. +Project the point-row _K_ from _M_ and we get a point-row _D_ on _AC_ +again, which is projective to the point-row _B_. For every point _B_ we +have thus one and only one point _D_, and conversely. In other words, we +have set up a one-to-one correspondence between the points of a single +point-row, which is also a projective correspondence because four harmonic +points _B_ correspond to four harmonic points _D_. We may note also that +the correspondence is here characterized by a feature which does not +always appear in projective correspondences: namely, the same process that +carries one from _B_ to _D_ will carry one back from _D_ to _B_ again. +This special property will receive further study in the chapter on +Involution. + + + + +*38.* It is seen that as _B_ approaches _A_, _D_ also approaches _A_. As +_B_ moves from _A_ toward _C_, _D_ moves from _A_ in the opposite +direction, passing through the point at infinity on the line _AC_, and +returns on the other side to meet _B_ at _C_ again. In other words, as _B_ +traverses _AC_, _D_ traverses the rest of the line from _A_ to _C_ through +infinity. In all positions of _B_, except at _A_ or _C_, _B_ and _D_ are +separated from each other by _A_ and _C_. + + + + +*39. Harmonic conjugate of the point at infinity.* It is natural to +inquire what position of _B_ corresponds to the infinitely distant +position of _D_. We have proved (§ 27) that the particular quadrangle _K_, +_L_, _M_, _N_ employed is of no consequence. We shall therefore avail +ourselves of one that lends itself most readily to the solution of the +problem. We choose the point _L_ so that the triangle _ALC_ is isosceles +(Fig. 7). Since _D_ is supposed to be at infinity, the line _KM_ is +parallel to _AC_. Therefore the triangles _KAC_ and _MAC_ are equal, and +the triangle _ANC_ is also isosceles. The triangles _CNL_ and _ANL_ are +therefore equal, and the line _LB_ bisects the angle _ALC_. _B_ is +therefore the middle point of _AC_, and we have the theorem + +_The harmonic conjugate of the middle point of __AC__ is at infinity._ + + [Figure 7] + + FIG. 7 + + + + +*40. Projective theorems and metrical theorems. Linear construction.* This +theorem is the connecting link between the general protective theorems +which we have been considering so far and the metrical theorems of +ordinary geometry. Up to this point we have said nothing about +measurements, either of line segments or of angles. Desargues's theorem +and the theory of harmonic elements which depends on it have nothing to do +with magnitudes at all. Not until the notion of an infinitely distant +point is brought in is any mention made of distances or directions. We +have been able to make all of our constructions up to this point by means +of the straightedge, or ungraduated ruler. A construction made with such +an instrument we shall call a _linear_ construction. It requires merely +that we be able to draw the line joining two points or find the point of +intersection of two lines. + + + + +*41. Parallels and mid-points.* It might be thought that drawing a line +through a given point parallel to a given line was only a special case of +drawing a line joining two points. Indeed, it consists only in drawing a +line through the given point and through the "infinitely distant point" on +the given line. It must be remembered, however, that the expression +"infinitely distant point" must not be taken literally. When we say that +two parallel lines meet "at infinity," we really mean that they do not +meet at all, and the only reason for using the expression is to avoid +tedious statement of exceptions and restrictions to our theorems. We ought +therefore to consider the drawing of a line parallel to a given line as a +different accomplishment from the drawing of the line joining two given +points. It is a remarkable consequence of the last theorem that a parallel +to a given line and the mid-point of a given segment are equivalent data. +For the construction is reversible, and if we are given the middle point +of a given segment, we can construct _linearly_ a line parallel to that +segment. Thus, given that _B_ is the middle point of _AC_, we may draw any +two lines through _A_, and any line through _B_ cutting them in points _N_ +and _L_. Join _N_ and _L_ to _C_ and get the points _K_ and _M_ on the two +lines through _A_. Then _KM_ is parallel to _AC_. _The bisection of a +given segment and the drawing of a line parallel to the segment are +equivalent data when linear construction is used._ + + + + +*42.* It is not difficult to give a linear construction for the problem +to divide a given segment into _n_ equal parts, given only a parallel to +the segment. This is simple enough when _n_ is a power of _2_. For any +other number, such as _29_, divide any segment on the line parallel to +_AC_ into _32_ equal parts, by a repetition of the process just described. +Take _29_ of these, and join the first to _A_ and the last to _C_. Let +these joining lines meet in _S_. Join _S_ to all the other points. Other +problems, of a similar sort, are given at the end of the chapter. + + + + +*43. Numerical relations.* Since three points, given in order, are +sufficient to determine a fourth, as explained above, it ought to be +possible to reproduce the process numerically in view of the one-to-one +correspondence which exists between points on a line and numbers; a +correspondence which, to be sure, we have not established here, but which +is discussed in any treatise on the theory of point sets. We proceed to +discover what relation between four numbers corresponds to the harmonic +relation between four points. + + [Figure 8] + + FIG. 8 + + + + +*44.* Let _A_, _B_, _C_, _D_ be four harmonic points (Fig. 8), and let +_SA_, _SB_, _SC_, _SD_ be four harmonic lines. Assume a line drawn through +_B_ parallel to _SD_, meeting _SA_ in _A'_ and _SC_ in _C'_. Then _A'_, +_B'_, _C'_, and the infinitely distant point on _A'C'_ are four harmonic +points, and therefore _B_ is the middle point of the segment _A'C'_. Then, +since the triangle _DAS_ is similar to the triangle _BAA'_, we may write +the proportion + + _AB : AD = BA' : SD._ + +Also, from the similar triangles _DSC_ and _BCC'_, we have + + _CD : CB = SD : B'C._ + +From these two proportions we have, remembering that _BA' = BC'_, + + [formula] + +the minus sign being given to the ratio on account of the fact that _A_ +and _C_ are always separated from _B_ and _D_, so that one or three of the +segments _AB_, _CD_, _AD_, _CB_ must be negative. + + + + +*45.* Writing the last equation in the form + + _CB : AB = -CD : AD,_ + +and using the fundamental relation connecting three points on a line, + + _PR + RQ = PQ,_ + +which holds for all positions of the three points if account be taken of +the sign of the segments, the last proportion may be written + + _(CB - BA) : AB = -(CA - DA) : AD,_ + +or + + _(AB - AC) : AB = (AC - AD) : AD;_ + +so that _AB_, _AC_, and _AD_ are three quantities in hamonic progression, +since the difference between the first and second is to the first as the +difference between the second and third is to the third. Also, from this +last proportion comes the familiar relation + + [formula] + +which is convenient for the computation of the distance _AD_ when _AB_ and +_AC_ are given numerically. + + + + +*46. Anharmonic ratio.* The corresponding relations between the +trigonometric functions of the angles determined by four harmonic lines +are not difficult to obtain, but as we shall not need them in building up +the theory of projective geometry, we will not discuss them here. Students +who have a slight acquaintance with trigonometry may read in a later +chapter (§ 161) a development of the theory of a more general relation, +called the _anharmonic ratio_, or _cross ratio_, which connects any four +points on a line. + + + + +PROBLEMS + + +*1*. Draw through a given point a line which shall pass through the +inaccessible point of intersection of two given lines. The following +construction may be made to depend upon Desargues's theorem: Through the +given point _P_ draw any two rays cutting the two lines in the points +_AB'_ and _A'B_, _A_, _B_, lying on one of the given lines and _A'_, _B'_, +on the other. Join _AA'_ and _BB'_, and find their point of intersection +_S_. Through _S_ draw any other ray, cutting the given lines in _CC'_. +Join _BC'_ and _B'C_, and obtain their point of intersection _Q_. _PQ_ is +the desired line. Justify this construction. + +*2.* To draw through a given point _P_ a line which shall meet two given +lines in points _A_ and _B_, equally distant from _P_. Justify the +following construction: Join _P_ to the point _S_ of intersection of the +two given lines. Construct the fourth harmonic of _PS_ with respect to the +two given lines. Draw through _P_ a line parallel to this line. This is +the required line. + +*3.* Given a parallelogram in the same plane with a given segment _AC_, +to construct linearly the middle point of _AC_. + +*4.* Given four harmonic lines, of which one pair are at right angles to +each other, show that the other pair make equal angles with them. This is +a theorem of which frequent use will be made. + +*5.* Given the middle point of a line segment, to draw a line parallel to +the segment and passing through a given point. + +*6.* A line is drawn cutting the sides of a triangle _ABC_ in the points +_A'_, _B'_, _C'_ the point _A'_ lying on the side _BC_, etc. The harmonic +conjugate of _A'_ with respect to _B_ and _C_ is then constructed and +called _A"_. Similarly, _B"_ and _C"_ are constructed. Show that _A"B"C"_ +lie on a straight line. Find other sets of three points on a line in the +figure. Find also sets of three lines through a point. + + + + + +CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED FUNDAMENTAL FORMS + + + + + [Figure 9] + + FIG. 9 + + +*47. Superposed fundamental forms. Self-corresponding elements.* We have +seen (§ 37) that two projective point-rows may be superposed upon the same +straight line. This happens, for example, when two pencils which are +projective to each other are cut across by a straight line. It is also +possible for two projective pencils to have the same center. This happens, +for example, when two projective point-rows are projected to the same +point. Similarly, two projective axial pencils may have the same axis. We +examine now the possibility of two forms related in this way, having an +element or elements that correspond to themselves. We have seen, indeed, +that if _B_ and _D_ are harmonic conjugates with respect to _A_ and _C_, +then the point-row described by _B_ is projective to the point-row +described by _D_, and that _A_ and _C_ are self-corresponding points. +Consider more generally the case of two pencils perspective to each other +with axis of perspectivity _u'_ (Fig. 9). Cut across them by a line _u_. +We get thus two projective point-rows superposed on the same line _u_, and +a moment's reflection serves to show that the point _N_ of intersection +_u_ and _u'_ corresponds to itself in the two point-rows. Also, the point +_M_, where _u_ intersects the line joining the centers of the two pencils, +is seen to correspond to itself. It is thus possible for two projective +point-rows, superposed upon the same line, to have two self-corresponding +points. Clearly _M_ and _N_ may fall together if the line joining the +centers of the pencils happens to pass through the point of intersection +of the lines _u_ and _u'_. + + [Figure 10] + + FIG. 10 + + + + +*48.* We may also give an illustration of a case where two superposed +projective point-rows have no self-corresponding points at all. Thus we +may take two lines revolving about a fixed point _S_ and always making the +same angle a with each other (Fig. 10). They will cut out on any line _u_ +in the plane two point-rows which are easily seen to be projective. For, +given any four rays _SP_ which are harmonic, the four corresponding rays +_SP'_ must also be harmonic, since they make the same angles with each +other. Four harmonic points _P_ correspond, therefore, to four harmonic +points _P'_. It is clear, however, that no point _P_ can coincide with its +corresponding point _P'_, for in that case the lines _PS_ and _P'S_ would +coincide, which is impossible if the angle between them is to be constant. + + + + +*49. Fundamental theorem. Postulate of continuity.* We have thus shown +that two projective point-rows, superposed one on the other, may have two +points, one point, or no point at all corresponding to themselves. We +proceed to show that + +_If two projective point-rows, superposed upon the same straight line, +have more than two self-corresponding points, they must have an infinite +number, and every point corresponds to itself; that is, the two point-rows +are not essentially distinct._ + +If three points, _A_, _B_, and _C_, are self-corresponding, then the +harmonic conjugate _D_ of _B_ with respect to _A_ and _C_ must also +correspond to itself. For four harmonic points must always correspond to +four harmonic points. In the same way the harmonic conjugate of _D_ with +respect to _B_ and _C_ must correspond to itself. Combining new points +with old in this way, we may obtain as many self-corresponding points as +we wish. We show further that every point on the line is the limiting +point of a finite or infinite sequence of self-corresponding points. Thus, +let a point _P_ lie between _A_ and _B_. Construct now _D_, the fourth +harmonic of _C_ with respect to _A_ and _B_. _D_ may coincide with _P_, in +which case the sequence is closed; otherwise _P_ lies in the stretch _AD_ +or in the stretch _DB_. If it lies in the stretch _DB_, construct the +fourth harmonic of _C_ with respect to _D_ and _B_. This point _D'_ may +coincide with _P_, in which case, as before, the sequence is closed. If +_P_ lies in the stretch _DD'_, we construct the fourth harmonic of _C_ +with respect to _DD'_, etc. In each step the region in which _P_ lies is +diminished, and the process may be continued until two self-corresponding +points are obtained on either side of _P_, and at distances from it +arbitrarily small. + +We now assume, explicitly, the fundamental postulate that the +correspondence is _continuous_, that is, that _the distance between two +points in one point-row may be made arbitrarily small by sufficiently +diminishing the distance between the corresponding points in the other._ +Suppose now that _P_ is not a self-corresponding point, but corresponds to +a point _P'_ at a fixed distance _d_ from _P_. As noted above, we can find +self-corresponding points arbitrarily close to _P_, and it appears, then, +that we can take a point _D_ as close to _P_ as we wish, and yet the +distance between the corresponding points _D'_ and _P'_ approaches _d_ as +a limit, and not zero, which contradicts the postulate of continuity. + + + + +*50.* It follows also that two projective pencils which have the same +center may have no more than two self-corresponding rays, unless the +pencils are identical. For if we cut across them by a line, we obtain two +projective point-rows superposed on the same straight line, which may have +no more than two self-corresponding points. The same considerations apply +to two projective axial pencils which have the same axis. + + + + +*51. Projective point-rows having a self-corresponding point in common.* +Consider now two projective point-rows lying on different lines in the +same plane. Their common point may or may not be a self-corresponding +point. If the two point-rows are perspectively related, then their common +point is evidently a self-corresponding point. The converse is also true, +and we have the very important theorem: + + + + +*52.* _If in two protective point-rows, the point of intersection +corresponds to itself, then the point-rows are in perspective position._ + + [Figure 11] + + FIG. 11 + + +Let the two point-rows be _u_ and _u'_ (Fig. 11). Let _A_ and _A'_, _B_ +and _B'_, be corresponding points, and let also the point _M_ of +intersection of _u_ and _u'_ correspond to itself. Let _AA'_ and _BB'_ +meet in the point _S_. Take _S_ as the center of two pencils, one +perspective to _u_ and the other perspective to _u'_. In these two pencils +_SA_ coincides with its corresponding ray _SA'_, _SB_ with its +corresponding ray _SB'_, and _SM_ with its corresponding ray _SM'_. The +two pencils are thus identical, by the preceding theorem, and any ray _SD_ +must coincide with its corresponding ray _SD'_. Corresponding points of +_u_ and _u'_, therefore, all lie on lines through the point _S_. + + + + +*53.* An entirely similar discussion shows that + +_If in two projective pencils the line joining their centers is a +self-corresponding ray, then the two pencils are perspectively related._ + + + + +*54.* A similar theorem may be stated for two axial pencils of which the +axes intersect. Very frequent use will be made of these fundamental +theorems. + + + + +*55. Point-row of the second order.* The question naturally arises, What +is the locus of points of intersection of corresponding rays of two +projective pencils which are not in perspective position? This locus, +which will be discussed in detail in subsequent chapters, is easily seen +to have at most two points in common with any line in the plane, and on +account of this fundamental property will be called a _point-row of the +second order_. For any line _u_ in the plane of the two pencils will be +cut by them in two projective point-rows which have at most two +self-corresponding points. Such a self-corresponding point is clearly a +point of intersection of corresponding rays of the two pencils. + + + + +*56.* This locus degenerates in the case of two perspective pencils to a +pair of straight lines, one of which is the axis of perspectivity and the +other the common ray, any point of which may be considered as the point of +intersection of corresponding rays of the two pencils. + + + + +*57. Pencils of rays of the second order.* Similar investigations may be +made concerning the system of lines joining corresponding points of two +projective point-rows. If we project the point-rows to any point in the +plane, we obtain two projective pencils having the same center. At most +two pairs of self-corresponding rays may present themselves. Such a ray is +clearly a line joining two corresponding points in the two point-rows. The +result may be stated as follows: _The system of rays joining corresponding +points in two protective point-rows has at most two rays in common with +any pencil in the plane._ For that reason the system of rays is called _a +pencil of rays of the second order._ + + + + +*58.* In the case of two perspective point-rows this system of rays +degenerates into two pencils of rays of the first order, one of which has +its center at the center of perspectivity of the two point-rows, and the +other at the intersection of the two point-rows, any ray through which may +be considered as joining two corresponding points of the two point-rows. + + + + +*59. Cone of the second order.* The corresponding theorems in space may +easily be obtained by joining the points and lines considered in the plane +theorems to a point _S_ in space. Two projective pencils give rise to two +projective axial pencils with axes intersecting. Corresponding planes meet +in lines which all pass through _S_ and through the points on a point-row +of the second order generated by the two pencils of rays. They are thus +generating lines of a _cone of the second order_, or _quadric cone_, so +called because every plane in space not passing through _S_ cuts it in a +point-row of the second order, and every line also cuts it in at most two +points. If, again, we project two point-rows to a point _S_ in space, we +obtain two pencils of rays with a common center but lying in different +planes. Corresponding lines of these pencils determine planes which are +the projections to _S_ of the lines which join the corresponding points of +the two point-rows. At most two such planes may pass through any ray +through _S_. It is called _a pencil of planes of the second order_. + + + + +PROBLEMS + + +*1. * A man _A_ moves along a straight road _u_, and another man _B_ moves +along the same road and walks so as always to keep sight of _A_ in a small +mirror _M_ at the side of the road. How many times will they come +together, _A_ moving always in the same direction along the road? + +2. How many times would the two men in the first problem see each other in +two mirrors _M_ and _N_ as they walk along the road as before? (The planes +of the two mirrors are not necessarily parallel to _u_.) + +3. As A moves along _u_, trace the path of B so that the two men may +always see each other in the two mirrors. + +4. Two boys walk along two paths _u_ and _u'_ each holding a string which +they keep stretched tightly between them. They both move at constant but +different rates of speed, letting out the string or drawing it in as they +walk. How many times will the line of the string pass over any given point +in the plane of the paths? + +5. Trace the lines of the string when the two boys move at the same rate +of speed in the two paths but do not start at the same time from the point +where the two paths intersect. + +6. A ship is sailing on a straight course and keeps a gun trained on a +point on the shore. Show that a line at right angles to the direction of +the gun at its muzzle will pass through any point in the plane twice or +not at all. (Consider the point-row at infinity cut out by a line through +the point on the shore at right angles to the direction of the gun.) + +7. Two lines _u_ and _u'_ revolve about two points _U_ and _U'_ +respectively in the same plane. They go in the same direction and at the +same rate of speed, but one has an angle a the start of the other. Show +that they generate a point-row of the second order. + +8. Discuss the question given in the last problem when the two lines +revolve in opposite directions. Can you recognize the locus? + + + + + +CHAPTER IV - POINT-ROWS OF THE SECOND ORDER + + + + +*60. Point-row of the second order defined.* We have seen that two +fundamental forms in one-to-one correspondence may sometimes generate a +form of higher order. Thus, two point-rows (§ 55) generate a system of +rays of the second order, and two pencils of rays (§ 57), a system of +points of the second order. As a system of points is more familiar to most +students of geometry than a system of lines, we study first the point-row +of the second order. + + + + +*61. Tangent line.* We have shown in the last chapter (§ 55) that the +locus of intersection of corresponding rays of two projective pencils is a +point-row of the second order; that is, it has at most two points in +common with any line in the plane. It is clear, first of all, that the +centers of the pencils are points of the locus; for to the line _SS'_, +considered as a ray of _S_, must correspond some ray of _S'_ which meets +it in _S'_. _S'_, and by the same argument _S_, is then a point where +corresponding rays meet. Any ray through _S_ will meet it in one point +besides _S_, namely, the point _P_ where it meets its corresponding ray. +Now, by choosing the ray through _S_ sufficiently close to the ray _SS'_, +the point _P_ may be made to approach arbitrarily close to _S'_, and the +ray _S'P_ may be made to differ in position from the tangent line at _S'_ +by as little as we please. We have, then, the important theorem + +_The ray at __S'__ which corresponds to the common ray __SS'__ is tangent +to the locus at __S'__._ + +In the same manner the tangent at _S_ may be constructed. + + + + +*62. Determination of the locus.* We now show that _it is possible to +assign arbitrarily the position of three points, __A__, __B__, and __C__, +on the locus (besides the points __S__ and __S'__); but, these three +points being chosen, the locus is completely determined._ + + + + +*63.* This statement is equivalent to the following: + +_Given three pairs of corresponding rays in two projective pencils, it is +possible to find a ray of one which corresponds to any ray of the other._ + + + + +*64.* We proceed, then, to the solution of the fundamental + +PROBLEM: _Given three pairs of rays, __aa'__, __bb'__, and __cc'__, of two +protective pencils, __S__ and __S'__, to find the ray __d'__ of __S'__ +which corresponds to any ray __d__ of __S__._ + + [Figure 12] + + FIG. 12 + + +Call _A_ the intersection of _aa'_, _B_ the intersection of _bb'_, and _C_ +the intersection of _cc'_ (Fig. 12). Join _AB_ by the line _u_, and _AC_ +by the line _u'_. Consider _u_ as a point-row perspective to _S_, and _u'_ +as a point-row perspective to _S'_. _u_ and _u'_ are projectively related +to each other, since _S_ and _S'_ are, by hypothesis, so related. But +their point of intersection _A_ is a self-corresponding point, since _a_ +and _a'_ were supposed to be corresponding rays. It follows (§ 52) that +_u_ and _u'_ are in perspective position, and that lines through +corresponding points all pass through a point _M_, the center of +perspectivity, the position of which will be determined by any two such +lines. But the intersection of _a_ with _u_ and the intersection of _c'_ +with _u'_ are corresponding points on _u_ and _u'_, and the line joining +them is clearly _c_ itself. Similarly, _b'_ joins two corresponding points +on _u_ and _u'_, and so the center _M_ of perspectivity of _u_ and _u'_ is +the intersection of _c_ and _b'_. To find _d'_ in _S'_ corresponding to a +given line _d_ of _S_ we note the point _L_ where _d_ meets _u_. Join _L_ +to _M_ and get the point _N_ where this line meets _u'_. _L_ and _N_ are +corresponding points on _u_ and _u'_, and _d'_ must therefore pass through +_N_. The intersection _P_ of _d_ and _d'_ is thus another point on the +locus. In the same manner any number of other points may be obtained. + + + + +*65.* The lines _u_ and _u'_ might have been drawn in any direction +through _A_ (avoiding, of course, the line _a_ for _u_ and the line _a'_ +for _u'_), and the center of perspectivity _M_ would be easily obtainable; +but the above construction furnishes a simple and instructive figure. An +equally simple one is obtained by taking _a'_ for _u_ and _a_ for _u'_. + + + + +*66. Lines joining four points of the locus to a fifth.* Suppose that the +points _S_, _S'_, _B_, _C_, and _D_ are fixed, and that four points, _A_, +_A__1_, _A__2_, and _A__3_, are taken on the locus at the intersection +with it of any four harmonic rays through _B_. These four harmonic rays +give four harmonic points, _L_, _L__1_ etc., on the fixed ray _SD_. These, +in turn, project through the fixed point _M_ into four harmonic points, +_N_, _N__1_ etc., on the fixed line _DS'_. These last four harmonic points +give four harmonic rays _CA_, _CA__1_, _CA__2_, _CA__3_. Therefore the +four points _A_ which project to _B_ in four harmonic rays also project to +_C_ in four harmonic rays. But _C_ may be any point on the locus, and so +we have the very important theorem, + +_Four points which are on the locus, and which project to a fifth point of +the locus in four harmonic rays, project to any point of the locus in four +harmonic rays._ + + + + +*67.* The theorem may also be stated thus: + +_The locus of points from which, four given points are seen along four +harmonic rays is a point-row of the second order through them._ + + + + +*68.* A further theorem of prime importance also follows: + +_Any two points on the locus may be taken as the centers of two projective +pencils which will generate the locus._ + + + + +*69. Pascal's theorem.* The points _A_, _B_, _C_, _D_, _S_, and _S'_ may +thus be considered as chosen arbitrarily on the locus, and the following +remarkable theorem follows at once. + +_Given six points, 1, 2, 3, 4, 5, 6, on the point-row of the second order, +if we call_ + + _L the intersection of 12 with 45,_ + + _M the intersection of 23 with 56,_ + + _N the intersection of 34 with 61,_ + +_then __L__, __M__, and __N__ are on a straight line._ + + [Figure 13] + + FIG. 13 + + + + +*70.* To get the notation to correspond to the figure, we may take (Fig. +13) _A = 1_, _B = 2_, _S' = 3_, _D = 4_, _S = 5_, and _C = 6_. If we make +_A = 1_, _C=2_, _S=3_, _D = 4_, _S'=5_, and. _B = 6_, the points _L_ and +_N_ are interchanged, but the line is left unchanged. It is clear that one +point may be named arbitrarily and the other five named in _5! = 120_ +different ways, but since, as we have seen, two different assignments of +names give the same line, it follows that there cannot be more than 60 +different lines _LMN_ obtained in this way from a given set of six points. +As a matter of fact, the number obtained in this way is in general _60_. +The above theorem, which is of cardinal importance in the theory of the +point-row of the second order, is due to Pascal and was discovered by him +at the age of sixteen. It is, no doubt, the most important contribution to +the theory of these loci since the days of Apollonius. If the six points +be called the vertices of a hexagon inscribed in the curve, then the sides +12 and 45 may be appropriately called a pair of opposite sides. Pascal's +theorem, then, may be stated as follows: + +_The three pairs of opposite sides of a hexagon inscribed in a point-row +of the second order meet in three points on a line._ + + + + +*71. Harmonic points on a point-row of the second order.* Before +proceeding to develop the consequences of this theorem, we note another +result of the utmost importance for the higher developments of pure +geometry, which follows from the fact that if four points on the locus +project to a fifth in four harmonic rays, they will project to any point +of the locus in four harmonic rays. It is natural to speak of four such +points as four harmonic points on the locus, and to use this notion to +define projective correspondence between point-rows of the second order, +or between a point-row of the second order and any fundamental form of the +first order. Thus, in particular, the point-row of the second order, {~GREEK SMALL LETTER SIGMA~}, is +said to be _perspectively related_ to the pencil _S_ when every ray on _S_ +goes through the point on {~GREEK SMALL LETTER SIGMA~} which corresponds to it. + + + + +*72. Determination of the locus.* It is now clear that five points, +arbitrarily chosen in the plane, are sufficient to determine a point-row +of the second order through them. Two of the points may be taken as +centers of two projective pencils, and the three others will determine +three pairs of corresponding rays of the pencils, and therefore all pairs. +If four points of the locus are given, together with the tangent at one of +them, the locus is likewise completely determined. For if the point at +which the tangent is given be taken as the center _S_ of one pencil, and +any other of the points for _S'_, then, besides the two pairs of +corresponding rays determined by the remaining two points, we have one +more pair, consisting of the tangent at _S_ and the ray _SS'_. Similarly, +the curve is determined by three points and the tangents at two of them. + + + + +*73. Circles and conics as point-rows of the second order.* It is not +difficult to see that a circle is a point-row of the second order. Indeed, +take any point _S_ on the circle and draw four harmonic rays through it. +They will cut the circle in four points, which will project to any other +point of the curve in four harmonic rays; for, by the theorem concerning +the angles inscribed in a circle, the angles involved in the second set of +four lines are the same as those in the first set. If, moreover, we +project the figure to any point in space, we shall get a cone, standing on +a circular base, generated by two projective axial pencils which are the +projections of the pencils at _S_ and _S'_. Cut across, now, by any plane, +and we get a conic section which is thus exhibited as the locus of +intersection of two projective pencils. It thus appears that a conic +section is a point-row of the second order. It will later appear that a +point-row of the second order is a conic section. In the future, +therefore, we shall refer to a point-row of the second order as a conic. + + [Figure 14] + + FIG. 14 + + + + +*74. Conic through five points.* Pascal's theorem furnishes an elegant +solution of the problem of drawing a conic through five given points. To +construct a sixth point on the conic, draw through the point numbered 1 an +arbitrary line (Fig. 14), and let the desired point 6 be the second point +of intersection of this line with the conic. The point _L = 12-45_ is +obtainable at once; also the point _N = 34-61_. But _L_ and _N_ determine +Pascal's line, and the intersection of 23 with 56 must be on this line. +Intersect, then, the line _LN_ with 23 and obtain the point _M_. Join _M_ +to 5 and intersect with 61 for the desired point 6. + + [Figure 15] + + FIG. 15 + + + + +*75. Tangent to a conic.* If two points of Pascal's hexagon approach +coincidence, then the line joining them approaches as a limiting position +the tangent line at that point. Pascal's theorem thus affords a ready +method of drawing the tangent line to a conic at a given point. If the +conic is determined by the points 1, 2, 3, 4, 5 (Fig. 15), and it is +desired to draw the tangent at the point 1, we may call that point 1, 6. +The points _L_ and _M_ are obtained as usual, and the intersection of 34 +with _LM_ gives _N_. Join _N_ to the point 1 for the desired tangent at +that point. + + + + +*76. Inscribed quadrangle.* Two pairs of vertices may coalesce, giving an +inscribed quadrangle. Pascal's theorem gives for this case the very +important theorem + +_Two pairs of opposite sides of any quadrangle inscribed in a conic meet +on a straight line, upon which line also intersect the two pairs of +tangents at the opposite vertices._ + + [Figure 16] + + FIG. 16 + + + [Figure 17] + + FIG. 17 + + +For let the vertices be _A_, _B_, _C_, and _D_, and call the vertex _A_ +the point 1, 6; _B_, the point 2; _C_, the point 3, 4; and _D_, the point +5 (Fig. 16). Pascal's theorem then indicates that _L = AB-CD_, _M = +AD-BC_, and _N_, which is the intersection of the tangents at _A_ and _C_, +are all on a straight line _u_. But if we were to call _A_ the point 2, +_B_ the point 6, 1, _C_ the point 5, and _D_ the point 4, 3, then the +intersection _P_ of the tangents at _B_ and _D_ are also on this same line +_u_. Thus _L_, _M_, _N_, and _P_ are four points on a straight line. The +consequences of this theorem are so numerous and important that we shall +devote a separate chapter to them. + + + + +*77. Inscribed triangle.* Finally, three of the vertices of the hexagon +may coalesce, giving a triangle inscribed in a conic. Pascal's theorem +then reads as follows (Fig. 17) for this case: + +_The three tangents at the vertices of a triangle inscribed in a conic +meet the opposite sides in three points on a straight line._ + + [Figure 18] + + FIG. 18 + + + + +*78. Degenerate conic.* If we apply Pascal's theorem to a degenerate +conic made up of a pair of straight lines, we get the following theorem +(Fig. 18): + +_If three points, __A__, __B__, __C__, are chosen on one line, and three +points, __A'__, __B'__, __C'__, are chosen on another, then the three +points __L = AB'-A'B__, __M = BC'-B'C__, __N = CA'-C'A__ are all on a +straight line._ + + + + +PROBLEMS + + +1. In Fig. 12, select different lines _u_ and trace the locus of the +center of perspectivity _M_ of the lines _u_ and _u'_. + +2. Given four points, _A_, _B_, _C_, _D_, in the plane, construct a fifth +point _P_ such that the lines _PA_, _PB_, _PC_, _PD_ shall be four +harmonic lines. + +_Suggestion._ Draw a line _a_ through the point _A_ such that the four +lines _a_, _AB_, _AC_, _AD_ are harmonic. Construct now a conic through +_A_, _B_, _C_, and _D_ having _a_ for a tangent at _A_. + +3. Where are all the points _P_, as determined in the preceding question, +to be found? + +4. Select any five points in the plane and draw the tangent to the conic +through them at each of the five points. + +5. Given four points on the conic, and the tangent at one of them, to +construct the conic. ("To construct the conic" means here to construct as +many other points as may be desired.) + +6. Given three points on the conic, and the tangent at two of them, to +construct the conic. + +7. Given five points, two of which are at infinity in different +directions, to construct the conic. (In this, and in the following +examples, the student is supposed to be able to draw a line parallel to a +given line.) + +8. Given four points on a conic (two of which are at infinity and two in +the finite part of the plane), together with the tangent at one of the +finite points, to construct the conic. + +9. The tangents to a curve at its infinitely distant points are called +its _asymptotes_ if they pass through a finite part of the plane. Given +the asymptotes and a finite point of a conic, to construct the conic. + +10. Given an asymptote and three finite points on the conic, to determine +the conic. + +11. Given four points, one of which is at infinity, and given also that +the line at infinity is a tangent line, to construct the conic. + + + + + +CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER + + + + +*79. Pencil of rays of the second order defined.* If the corresponding +points of two projective point-rows be joined by straight lines, a system +of lines is obtained which is called a pencil of rays of the second order. +This name arises from the fact, easily shown (§ 57), that at most two +lines of the system may pass through any arbitrary point in the plane. For +if through any point there should pass three lines of the system, then +this point might be taken as the center of two projective pencils, one +projecting one point-row and the other projecting the other. Since, now, +these pencils have three rays of one coincident with the corresponding +rays of the other, the two are identical and the two point-rows are in +perspective position, which was not supposed. + + [Figure 19] + + FIG. 19 + + + + +*80. Tangents to a circle.* To get a clear notion of this system of +lines, we may first show that the tangents to a circle form a system of +this kind. For take any two tangents, _u_ and _u'_, to a circle, and let +_A_ and _B_ be the points of contact (Fig. 19). Let now _t_ be any third +tangent with point of contact at _C_ and meeting _u_ and _u'_ in _P_ and +_P'_ respectively. Join _A_, _B_, _P_, _P'_, and _C_ to _O_, the center of +the circle. Tangents from any point to a circle are equal, and therefore +the triangles _POA_ and _POC_ are equal, as also are the triangles _P'OB_ +and _P'OC_. Therefore the angle _POP'_ is constant, being equal to half +the constant angle _AOC + COB_. This being true, if we take any four +harmonic points, _P__1_, _P__2_, _P__3_, _P__4_, on the line _u_, they +will project to _O_ in four harmonic lines, and the tangents to the circle +from these four points will meet _u'_ in four harmonic points, _P'__1_, +_P'__2_, _P'__3_, _P'__4_, because the lines from these points to _O_ +inclose the same angles as the lines from the points _P__1_, _P__2_, +_P__3_, _P__4_ on _u_. The point-row on _u_ is therefore projective to the +point-row on _u'_. Thus the tangents to a circle are seen to join +corresponding points on two projective point-rows, and so, according to +the definition, form a pencil of rays of the second order. + + + + +*81. Tangents to a conic.* If now this figure be projected to a point +outside the plane of the circle, and any section of the resulting cone be +made by a plane, we can easily see that the system of rays tangent to any +conic section is a pencil of rays of the second order. The converse is +also true, as we shall see later, and a pencil of rays of the second order +is also a set of lines tangent to a conic section. + + + + +*82.* The point-rows _u_ and _u'_ are, themselves, lines of the system, +for to the common point of the two point-rows, considered as a point of +_u_, must correspond some point of _u'_, and the line joining these two +corresponding points is clearly _u'_ itself. Similarly for the line _u_. + + + + +*83. Determination of the pencil.* We now show that _it is possible to +assign arbitrarily three lines, __a__, __b__, and __c__, of __ the system +(besides the lines __u__ and __u'__); but if these three lines are chosen, +the system is completely determined._ + +This statement is equivalent to the following: + +_Given three pairs of corresponding points in two projective point-rows, +it is possible to find a point in one which corresponds to any point of +the other._ + +We proceed, then, to the solution of the fundamental + +PROBLEM. _Given three pairs of points, __AA'__, __BB'__, and __CC'__, of +two projective point-rows __u__ and __u'__, to find the point __D'__ of +__u'__ which corresponds to any given point __D__ of __u__._ + + [Figure 20] + + FIG. 20 + + +On the line _a_, joining _A_ and _A'_, take two points, _S_ and _S'_, as +centers of pencils perspective to _u_ and _u'_ respectively (Fig. 20). The +figure will be much simplified if we take _S_ on _BB'_ and _S'_ on _CC'_. +_SA_ and _S'A'_ are corresponding rays of _S_ and _S'_, and the two +pencils are therefore in perspective position. It is not difficult to see +that the axis of perspectivity _m_ is the line joining _B'_ and _C_. Given +any point _D_ on _u_, to find the corresponding point _D'_ on _u'_ we +proceed as follows: Join _D_ to _S_ and note where the joining line meets +_m_. Join this point to _S'_. This last line meets _u'_ in the desired +point _D'_. + +We have now in this figure six lines of the system, _a_, _b_, _c_, _d_, +_u_, and _u'_. Fix now the position of _u_, _u'_, _b_, _c_, and _d_, and +take four lines of the system, _a__1_, _a__2_, _a__3_, _a__4_, which meet +_b_ in four harmonic points. These points project to _D_, giving four +harmonic points on _m_. These again project to _D'_, giving four harmonic +points on _c_. It is thus clear that the rays _a__1_, _a__2_, _a__3_, +_a__4_ cut out two projective point-rows on any two lines of the system. +Thus _u_ and _u'_ are not special rays, and any two rays of the system +will serve as the point-rows to generate the system of lines. + + + + +*84. Brianchon's theorem.* From the figure also appears a fundamental +theorem due to Brianchon: + +_If __1__, __2__, __3__, __4__, __5__, __6__ are any six rays of a pencil +of the second order, then the lines __l = (12, 45)__, __m = (23, 56)__, +__n = (34, 61)__ all pass through a point._ + + [Figure 21] + + FIG. 21 + + + + +*85.* To make the notation fit the figure (Fig. 21), make _a=1_, _b = 2_, +_u' = 3_, _d = 4_, _u = 5_, _c = 6_; or, interchanging two of the lines, +_a = 1_, _c = 2_, _u = 3_, _d = 4_, _u' = 5_, _b = 6_. Thus, by different +namings of the lines, it appears that not more than 60 different +_Brianchon points_ are possible. If we call 12 and 45 opposite vertices of +a circumscribed hexagon, then Brianchon's theorem may be stated as +follows: + +_The three lines joining the three pairs of opposite vertices of a hexagon +circumscribed about a conic meet in a point._ + + + + +*86. Construction of the pencil by Brianchon's theorem.* Brianchon's +theorem furnishes a ready method of determining a sixth line of the pencil +of rays of the second order when five are given. Thus, select a point in +line 1 and suppose that line 6 is to pass through it. Then _l = (12, 45)_, +_n = (34, 61)_, and the line _m = (23, 56)_ must pass through _(l, n)_. +Then _(23, ln)_ meets 5 in a point of the required sixth line. + + [Figure 22] + + FIG. 22 + + + + +*87. Point of contact of a tangent to a conic.* If the line 2 approach as +a limiting position the line 1, then the intersection _(1, 2)_ approaches +as a limiting position the point of contact of 1 with the conic. This +suggests an easy way to construct the point of contact of any tangent with +the conic. Thus (Fig. 22), given the lines 1, 2, 3, 4, 5 to construct the +point of contact of _1=6_. Draw _l = (12,45)_, _m =(23,56)_; then _(34, +lm)_ meets 1 in the required point of contact _T_. + + [Figure 23] + + FIG. 23 + + + + +*88. Circumscribed quadrilateral.* If two pairs of lines in Brianchon's +hexagon coalesce, we have a theorem concerning a quadrilateral +circumscribed about a conic. It is easily found to be (Fig. 23) + +_The four lines joining the two opposite pairs of vertices and the two +opposite points of contact of a quadrilateral circumscribed about a conic +all meet in a point._ The consequences of this theorem will be deduced +later. + + [Figure 24] + + FIG. 24 + + + + +*89. Circumscribed triangle.* The hexagon may further degenerate into a +triangle, giving the theorem (Fig. 24) _The lines joining the vertices to +the points of contact of the opposite sides of a triangle circumscribed +about a conic all meet in a point._ + + + + +*90.* Brianchon's theorem may also be used to solve the following +problems: + +_Given four tangents and the point of contact on any one of them, to +construct other tangents to a conic. Given three tangents and the points +of contact of any two of them, to construct other tangents to a conic._ + + + + +*91. Harmonic tangents.* We have seen that a variable tangent cuts out on +any two fixed tangents projective point-rows. It follows that if four +tangents cut a fifth in four harmonic points, they must cut every tangent +in four harmonic points. It is possible, therefore, to make the following +definition: + +_Four tangents to a conic are said to be harmonic when they meet every +other tangent in four harmonic points._ + + + + +*92. Projectivity and perspectivity.* This definition suggests the +possibility of defining a projective correspondence between the elements +of a pencil of rays of the second order and the elements of any form +heretofore discussed. In particular, the points on a tangent are said to +be _perspectively related_ to the tangents of a conic when each point lies +on the tangent which corresponds to it. These notions are of importance in +the higher developments of the subject. + + [Figure 25] + + FIG. 25 + + + + +*93.* Brianchon's theorem may also be applied to a degenerate conic made +up of two points and the lines through them. Thus(Fig. 25), + +_If __a__, __b__, __c__ are three lines through a point __S__, and __a'__, +__b'__, __c'__ are three lines through another point __S'__, then the +lines __l = (ab', a'b)__, __m = (bc', b'c)__, and __n = (ca', c'a)__ all +meet in a point._ + + + + +*94. Law of duality.* The observant student will not have failed to note +the remarkable similarity between the theorems of this chapter and those +of the preceding. He will have noted that points have replaced lines and +lines have replaced points; that points on a curve have been replaced by +tangents to a curve; that pencils have been replaced by point-rows, and +that a conic considered as made up of a succession of points has been +replaced by a conic considered as generated by a moving tangent line. The +theory upon which this wonderful _law of duality_ is based will be +developed in the next chapter. + + + + +PROBLEMS + + +1. Given four lines in the plane, to construct another which shall meet +them in four harmonic points. + +2. Where are all such lines found? + +3. Given any five lines in the plane, construct on each the point of +contact with the conic tangent to them all. + +4. Given four lines and the point of contact on one, to construct the +conic. ("To construct the conic" means here to draw as many other tangents +as may be desired.) + +5. Given three lines and the point of contact on two of them, to construct +the conic. + +6. Given four lines and the line at infinity, to construct the conic. + +7. Given three lines and the line at infinity, together with the point of +contact at infinity, to construct the conic. + +8. Given three lines, two of which are asymptotes, to construct the conic. + +9. Given five tangents to a conic, to draw a tangent which shall be +parallel to any one of them. + +10. The lines _a_, _b_, _c_ are drawn parallel to each other. The lines +_a'_, _b'_, _c'_ are also drawn parallel to each other. Show why the lines +(_ab'_, _a'b_), (_bc'_, _b'c_), (_ca'_, _c'a_) meet in a point. (In +problems 6 to 10 inclusive, parallel lines are to be drawn.) + + + + + +CHAPTER VI - POLES AND POLARS + + + + +*95. Inscribed and circumscribed quadrilaterals.* The following theorems +have been noted as special cases of Pascal's and Brianchon's theorems: + +_If a quadrilateral be inscribed in a conic, two pairs of opposite sides +and the tangents at opposite vertices intersect in four points, all of +which lie on a straight line._ + +_If a quadrilateral be circumscribed about a conic, the lines joining two +pairs of opposite vertices and the lines joining two opposite points of +contact are four lines which meet in a point._ + + [Figure 26] + + FIG. 26 + + + + +*96. Definition of the polar line of a point.* Consider the quadrilateral +_K_, _L_, _M_, _N_ inscribed in the conic (Fig. 26). It determines the +four harmonic points _A_, _B_, _C_, _D_ which project from _N_ in to the +four harmonic points _M_, _B_, _K_, _O_. Now the tangents at _K_ and _M_ +meet in _P_, a point on the line _AB_. The line _AB_ is thus determined +entirely by the point _O_. For if we draw any line through it, meeting the +conic in _K_ and _M_, and construct the harmonic conjugate _B_ of _O_ with +respect to _K_ and _M_, and also the two tangents at _K_ and _M_ which +meet in the point _P_, then _BP_ is the line in question. It thus appears +that the line _LON_ may be any line whatever through _O_; and since _D_, +_L_, _O_, _N_ are four harmonic points, we may describe the line _AB_ as +the locus of points which are harmonic conjugates of _O_ with respect to +the two points where any line through _O_ meets the curve. + + + + +*97.* Furthermore, since the tangents at _L_ and _N_ meet on this same +line, it appears as the locus of intersections of pairs of tangents drawn +at the extremities of chords through _O_. + + + + +*98.* This important line, which is completely determined by the point +_O_, is called the _polar_ of _O_ with respect to the conic; and the point +_O_ is called the _pole_ of the line with respect to the conic. + + + + +*99.* If a point _B_ is on the polar of _O_, then it is harmonically +conjugate to _O_ with respect to the two intersections _K_ and _M_ of the +line _BC_ with the conic. But for the same reason _O_ is on the polar of +_B_. We have, then, the fundamental theorem + +_If one point lies on the polar of a second, then the second lies on the +polar of the first._ + + + + +*100. Conjugate points and lines.* Such a pair of points are said to be +_conjugate_ with respect to the conic. Similarly, lines are said to be +_conjugate_ to each other with respect to the conic if one, and +consequently each, passes through the pole of the other. + + [Figure 27] + + FIG. 27 + + + + +*101. Construction of the polar line of a given point.* Given a point _P_, +if it is within the conic (that is, if no tangents may be drawn from _P_ +to the conic), we may construct its polar line by drawing through it any +two chords and joining the two points of intersection of the two pairs of +tangents at their extremities. If the point _P_ is outside the conic, we +may draw the two tangents and construct the chord of contact (Fig. 27). + + + + +*102. Self-polar triangle.* In Fig. 26 it is not difficult to see that +_AOC_ is a _self-polar_ triangle, that is, each vertex is the pole of the +opposite side. For _B_, _M_, _O_, _K_ are four harmonic points, and they +project to _C_ in four harmonic rays. The line _CO_, therefore, meets the +line _AMN_ in a point on the polar of _A_, being separated from _A_ +harmonically by the points _M_ and _N_. Similarly, the line _CO_ meets +_KL_ in a point on the polar of _A_, and therefore _CO_ is the polar of +_A_. Similarly, _OA_ is the polar of _C_, and therefore _O_ is the pole of +_AC_. + + + + +*103. Pole and polar projectively related.* Another very important +theorem comes directly from Fig. 26. + +_As a point __A__ moves along a straight line its polar with respect to a +conic revolves about a fixed point and describes a pencil projective to +the point-row described by __A__._ + +For, fix the points _L_ and _N_ and let the point _A_ move along the line +_AQ_; then the point-row _A_ is projective to the pencil _LK_, and since +_K_ moves along the conic, the pencil _LK_ is projective to the pencil +_NK_, which in turn is projective to the point-row _C_, which, finally, is +projective to the pencil _OC_, which is the polar of _A_. + + + + +*104. Duality.* We have, then, in the pole and polar relation a device +for setting up a one-to-one correspondence between the points and lines of +the plane--a correspondence which may be called projective, because to four +harmonic points or lines correspond always four harmonic lines or points. +To every figure made up of points and lines will correspond a figure made +up of lines and points. To a point-row of the second order, which is a +conic considered as a point-locus, corresponds a pencil of rays of the +second order, which is a conic considered as a line-locus. The name +'duality' is used to describe this sort of correspondence. It is important +to note that the dual relation is subject to the same exceptions as the +one-to-one correspondence is, and must not be appealed to in cases where +the one-to-one correspondence breaks down. We have seen that there is in +Euclidean geometry one and only one ray in a pencil which has no point in +a point-row perspective to it for a corresponding point; namely, the line +parallel to the line of the point-row. Any theorem, therefore, that +involves explicitly the point at infinity is not to be translated into a +theorem concerning lines. Further, in the pencil the angle between two +lines has nothing to correspond to it in a point-row perspective to the +pencil. Any theorem, therefore, that mentions angles is not translatable +into another theorem by means of the law of duality. Now we have seen that +the notion of the infinitely distant point on a line involves the notion +of dividing a segment into any number of equal parts--in other words, of +_measuring_. If, therefore, we call any theorem that has to do with the +line at infinity or with the measurement of angles a _metrical_ theorem, +and any other kind a _projective_ theorem, we may put the case as follows: + +_Any projective theorem involves another theorem, dual to it, obtainable +by interchanging everywhere the words 'point' and 'line.'_ + + + + +*105. Self-dual theorems.* The theorems of this chapter will be found, +upon examination, to be _self-dual_; that is, no new theorem results from +applying the process indicated in the preceding paragraph. It is therefore +useless to look for new results from the theorem on the circumscribed +quadrilateral derived from Brianchon's, which is itself clearly the dual +of Pascal's theorem, and in fact was first discovered by dualization of +Pascal's. + + + + +*106.* It should not be inferred from the above discussion that +one-to-one correspondences may not be devised that will control certain of +the so-called metrical relations. A very important one may be easily found +that leaves angles unaltered. The relation called _similarity_ leaves +ratios between corresponding segments unaltered. The above statements +apply only to the particular one-to-one correspondence considered. + + + + +PROBLEMS + + +1. Given a quadrilateral, construct the quadrangle polar to it with +respect to a given conic. + +2. A point moves along a straight line. Show that its polar lines with +respect to two given conics generate a point-row of the second order. + +3. Given five points, draw the polar of a point with respect to the conic +passing through them, without drawing the conic itself. + +4. Given five lines, draw the polar of a point with respect to the conic +tangent to them, without drawing the conic itself. + +5. Dualize problems 3 and 4. + +6. Given four points on the conic, and the tangent at one of them, draw +the polar of a given point without drawing the conic. Dualize. + +7. A point moves on a conic. Show that its polar line with respect to +another conic describes a pencil of rays of the second order. + +_Suggestion._ Replace the given conic by a pair of protective pencils. + +8. Show that the poles of the tangents of one conic with respect to +another lie on a conic. + +9. The polar of a point _A_ with respect to one conic is _a_, and the pole +of _a_ with respect to another conic is _A'_. Show that as _A_ travels +along a line, _A'_ also travels along another line. In general, if _A_ +describes a curve of degree _n_, show that _A'_ describes another curve of +the same degree _n_. (The degree of a curve is the greatest number of +points that it may have in common with any line in the plane.) + + + + + +CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS + + + + +*107. Diameters. Center.* After what has been said in the last chapter +one would naturally expect to get at the metrical properties of the conic +sections by the introduction of the infinite elements in the plane. +Entering into the theory of poles and polars with these elements, we have +the following definitions: + +The polar line of an infinitely distant point is called a _diameter_, and +the pole of the infinitely distant line is called the _center_, of the +conic. + + + + +*108.* From the harmonic properties of poles and polars, + +_The center bisects all chords through it (§ 39)._ + +_Every diameter passes through the center._ + +_All chords through the same point at infinity (that is, each of a set of +parallel chords) are bisected by the diameter which is the polar of that +infinitely distant point._ + + + + +*109. Conjugate diameters.* We have already defined conjugate lines as +lines which pass each through the pole of the other (§ 100). + +_Any diameter bisects all chords parallel to its conjugate._ + +_The tangents at the extremities of any diameter are parallel, and +parallel to the conjugate diameter._ + +_Diameters parallel to the sides of a circumscribed parallelogram are +conjugate._ + +All these theorems are easy exercises for the student. + + + + +*110. Classification of conics.* Conics are classified according to their +relation to the infinitely distant line. If a conic has two points in +common with the line at infinity, it is called a _hyperbola_; if it has no +point in common with the infinitely distant line, it is called an +_ellipse_; if it is tangent to the line at infinity, it is called a +_parabola_. + + + + +*111.* _In a hyperbola the center is outside the curve_ (§ 101), since the +two tangents to the curve at the points where it meets the line at +infinity determine by their intersection the center. As previously noted, +these two tangents are called the _asymptotes_ of the curve. The ellipse +and the parabola have no asymptotes. + + + + +*112.* _The center of the parabola is at infinity, and therefore all its +diameters are parallel,_ for the pole of a tangent line is the point of +contact. + +_The locus of the middle points of a series of parallel chords in a +parabola is a diameter, and the direction of the line of centers is the +same for all series of parallel chords._ + +_The center of an ellipse is within the curve._ + + [Figure 28] + + FIG. 28 + + + + +*113. Theorems concerning asymptotes.* We derived as a consequence of the +theorem of Brianchon (§ 89) the proposition that if a triangle be +circumscribed about a conic, the lines joining the vertices to the points +of contact of the opposite sides all meet in a point. Take, now, for two +of the tangents the asymptotes of a hyperbola, and let any third tangent +cut them in _A_ and _B_ (Fig. 28). If, then, _O_ is the intersection of +the asymptotes,--and therefore the center of the curve,-- then the triangle +_OAB_ is circumscribed about the curve. By the theorem just quoted, the +line through _A_ parallel to _OB_, the line through _B_ parallel to _OA_, +and the line _OP_ through the point of contact of the tangent _AB_ all +meet in a point _C_. But _OACB_ is a parallelogram, and _PA = PB_. +Therefore + +_The asymptotes cut off on each tangent a segment which is bisected by the +point of contact._ + + + + +*114.* If we draw a line _OQ_ parallel to _AB_, then _OP_ and _OQ_ are +conjugate diameters, since _OQ_ is parallel to the tangent at the point +where _OP_ meets the curve. Then, since _A_, _P_, _B_, and the point at +infinity on _AB_ are four harmonic points, we have the theorem + +_Conjugate diameters of the hyperbola are harmonic conjugates with respect +to the asymptotes._ + + + + +*115.* The chord _A"B"_, parallel to the diameter _OQ_, is bisected at +_P'_ by the conjugate diameter _OP_. If the chord _A"B"_ meet the +asymptotes in _A'_, _B'_, then _A'_, _P'_, _B'_, and the point at infinity +are four harmonic points, and therefore _P'_ is the middle point of +_A'B'_. Therefore _A'A" = B'B"_ and we have the theorem + +_The segments cut off on any chord between the hyperbola and its +asymptotes are equal._ + + + + +*116.* This theorem furnishes a ready means of constructing the hyperbola +by points when a point on the curve and the two asymptotes are given. + + [Figure 29] + + FIG. 29 + + + + +*117.* For the circumscribed quadrilateral, Brianchon's theorem gave (§ +88) _The lines joining opposite vertices and the lines joining opposite +points of contact are four lines meeting in a point._ Take now for two of +the tangents the asymptotes, and let _AB_ and _CD_ be any other two (Fig. +29). If _B_ and _D_ are opposite vertices, and also _A_ and _C_, then _AC_ +and _BD_ are parallel, and parallel to _PQ_, the line joining the points +of contact of _AB_ and _CD_, for these are three of the four lines of the +theorem just quoted. The fourth is the line at infinity which joins the +point of contact of the asymptotes. It is thus seen that the triangles +_ABC_ and _ADC_ are equivalent, and therefore the triangles _AOB_ and +_COD_ are also. The tangent AB may be fixed, and the tangent _CD_ chosen +arbitrarily; therefore + +_The triangle formed by any tangent to the hyperbola and the two +asymptotes is of constant area._ + + + + +*118. Equation of hyperbola referred to the asymptotes.* Draw through the +point of contact _P_ of the tangent _AB_ two lines, one parallel to one +asymptote and the other parallel to the other. One of these lines meets +_OB_ at a distance _y_ from _O_, and the other meets _OA_ at a distance +_x_ from _O_. Then, since _P_ is the middle point of _AB_, _x_ is one half +of _OA_ and _y_ is one half of _OB_. The area of the parallelogram whose +adjacent sides are _x_ and _y_ is one half the area of the triangle _AOB_, +and therefore, by the preceding paragraph, is constant. This area is equal +to _xy · __sin__ {~GREEK SMALL LETTER ALPHA~}_, where {~GREEK SMALL LETTER ALPHA~} is the constant angle between the asymptotes. +It follows that the product _xy_ is constant, and since _x_ and _y_ are +the oblique coördinates of the point _P_, the asymptotes being the axes of +reference, we have + +_The equation of the hyperbola, referred to the asymptotes as axes, is +__xy =__ constant._ + +This identifies the curve with the hyperbola as defined and discussed in +works on analytic geometry. + + + + + [Figure 30] + + FIG. 30 + + +*119. Equation of parabola.* We have defined the parabola as a conic which +is tangent to the line at infinity (§ 110). Draw now two tangents to the +curve (Fig. 30), meeting in _A_, the points of contact being _B_ and _C_. +These two tangents, together with the line at infinity, form a triangle +circumscribed about the conic. Draw through _B_ a parallel to _AC_, and +through _C_ a parallel to _AB_. If these meet in _D_, then _AD_ is a +diameter. Let _AD_ meet the curve in _P_, and the chord _BC_ in _Q_. _P_ +is then the middle point of _AQ_. Also, _Q_ is the middle point of the +chord _BC_, and therefore the diameter _AD_ bisects all chords parallel to +_BC_. In particular, _AD_ passes through _P_, the point of contact of the +tangent drawn parallel to _BC_. + +Draw now another tangent, meeting _AB_ in _B'_ and _AC_ in _C'_. Then +these three, with the line at infinity, make a circumscribed +quadrilateral. But, by Brianchon's theorem applied to a quadrilateral (§ +88), it appears that a parallel to _AC_ through _B'_, a parallel to _AB_ +through _C'_, and the line _BC_ meet in a point _D'_. Also, from the +similar triangles _BB'D'_ and _BAC_ we have, for all positions of the +tangent line _B'C_, + + _B'D' : BB' = AC : AB,_ + +or, since _B'D' = AC'_, + + _AC': BB' = AC:AB =_ constant. + +If another tangent meet _AB_ in _B"_ and _AC_ in _C"_, we have + + _ AC' : BB' = AC" : BB", _ + +and by subtraction we get + + _C'C" : B'B" =_ constant; + +whence + +_The segments cut off on any two tangents to a parabola by a variable +tangent are proportional._ + +If now we take the tangent _B'C'_ as axis of ordinates, and the diameter +through the point of contact _O_ as axis of abscissas, calling the +coordinates of _B(x, y)_ and of _C(x', y')_, then, from the similar +triangles _BMD'_ and we have + + _y : y' = BD' : D'C = BB' : AB'._ + +Also + + _y : y' = B'D' : C'C = AC' : C'C._ + +If now a line is drawn through _A_ parallel to a diameter, meeting the +axis of ordinates in _K_, we have + + _AK : OQ' = AC' : CC' = y : y',_ + +and + + _OM : AK = BB' : AB' = y : y',_ + +and, by multiplication, + + _OM : OQ' = y__2__ : y'__2__,_ + +or + + _x : x' = y__2__ : y'__2__;_ + +whence + +_The abscissas of two points on a parabola are to each other as the +squares of the corresponding coördinates, a diameter and the tangent to +the curve at the extremity of the diameter being the axes of reference._ + +The last equation may be written + + _y__2__ = 2px,_ + +where _2p_ stands for _y'__2__ : x'_. + +The parabola is thus identified with the curve of the same name studied in +treatises on analytic geometry. + + + + +*120. Equation of central conics referred to conjugate diameters.* +Consider now a _central conic_, that is, one which is not a parabola and +the center of which is therefore at a finite distance. Draw any four +tangents to it, two of which are parallel (Fig. 31). Let the parallel +tangents meet one of the other tangents in _A_ and _B_ and the other in +_C_ and _D_, and let _P_ and _Q_ be the points of contact of the parallel +tangents _R_ and _S_ of the others. Then _AC_, _BD_, _PQ_, and _RS_ all +meet in a point _W_ (§ 88). From the figure, + + _PW : WQ = AP : QC = PD : BQ,_ + +or + + _AP · BQ = PD · QC._ + +If now _DC_ is a fixed tangent and _AB_ a variable one, we have from this +equation + + _AP · BQ = __constant._ + +This constant will be positive or negative according as _PA_ and _BQ_ are +measured in the same or in opposite directions. Accordingly we write + + _AP · BQ = ± b__2__._ + + [Figure 31] + + FIG. 31 + + +Since _AD_ and _BC_ are parallel tangents, _PQ_ is a diameter and the +conjugate diameter is parallel to _AD_. The middle point of _PQ_ is the +center of the conic. We take now for the axis of abscissas the diameter +_PQ_, and the conjugate diameter for the axis of ordinates. Join _A_ to +_Q_ and _B_ to _P_ and draw a line through _S_ parallel to the axis of +ordinates. These three lines all meet in a point _N_, because _AP_, _BQ_, +and _AB_ form a triangle circumscribed to the conic. Let _NS_ meet _PQ_ in +_M_. Then, from the properties of the circumscribed triangle (§ 89), _M_, +_N_, _S_, and the point at infinity on _NS_ are four harmonic points, and +therefore _N_ is the middle point of _MS_. If the coördinates of _S_ are +_(x, y)_, so that _OM_ is _x_ and _MS_ is _y_, then _MN = y/2_. Now from +the similar triangles _PMN_ and _PQB_ we have + + _BQ : PQ = NM : PM,_ + +and from the similar triangles _PQA_ and _MQN_, + + _AP : PQ = MN : MQ,_ + +whence, multiplying, we have + + _±b__2__/4 a__2__ = y__2__/4 (a + x)(a - x),_ + +where + + [formula] + +or, simplifying, + + [formula] + +which is the equation of an ellipse when _b__2_ has a positive sign, and +of a hyperbola when _b__2_ has a negative sign. We have thus identified +point-rows of the second order with the curves given by equations of the +second degree. + + + + +PROBLEMS + + +1. Draw a chord of a given conic which shall be bisected by a given point +_P_. + +2. Show that all chords of a given conic that are bisected by a given +chord are tangent to a parabola. + +3. Construct a parabola, given two tangents with their points of contact. + +4. Construct a parabola, given three points and the direction of the +diameters. + +5. A line _u'_ is drawn through the pole _U_ of a line _u_ and at right +angles to _u_. The line _u_ revolves about a point _P_. Show that the line +_u'_ is tangent to a parabola. (The lines _u_ and _u'_ are called normal +conjugates.) + +6. Given a circle and its center _O_, to draw a line through a given point +_P_ parallel to a given line _q_. Prove the following construction: Let +_p_ be the polar of _P_, _Q_ the pole of _q_, and _A_ the intersection of +_p_ with _OQ_. The polar of _A_ is the desired line. + + + + + +CHAPTER VIII - INVOLUTION + + + + + [Figure 32] + + FIG. 32 + + +*121. Fundamental theorem.* The important theorem concerning two complete +quadrangles (§ 26), upon which the theory of four harmonic points was +based, can easily be extended to the case where the four lines _KL_, +_K'L'_, _MN_, _M'N'_ do not all meet in the same point _A_, and the more +general theorem that results may also be made the basis of a theory no +less important, which has to do with six points on a line. The theorem is +as follows: + +_Given two complete quadrangles, __K__, __L__, __M__, __N__ and __K'__, +__L'__, __M'__, __N'__, so related that __KL__ and __K'L'__ meet in __A__, +__MN__ and __M'N'__ in __A'__, __KN__ and __K'N'__ in __B__, __LM__ and +__L'M'__ in __B'__, __LN__ and __L'N'__ in __C__, and __KM__ and __K'M'__ +in __C'__, then, if __A__, __A'__, __B__, __B'__, and __C__ are in a +straight line, the point __C'__ also lies on that straight line._ + +The theorem follows from Desargues's theorem (Fig. 32). It is seen that +_KK'_, _LL'_, _MM'_, _NN'_ all meet in a point, and thus, from the same +theorem, applied to the triangles _KLM_ and _K'L'M'_, the point _C'_ is on +the same line with _A_ and _B'_. As in the simpler case, it is seen that +there is an indefinite number of quadrangles which may be drawn, two sides +of which go through _A_ and _A'_, two through _B_ and _B'_, and one +through _C_. The sixth side must then go through _C'_. Therefore, + + + + +*122.* _Two pairs of points, __A__, __A'__ and __B__, __B'__, being +given, then the point __C'__ corresponding to any given point __C__ is +uniquely determined._ + +The construction of this sixth point is easily accomplished. Draw through +_A_ and _A'_ any two lines, and cut across them by any line through _C_ in +the points _L_ and _N_. Join _N_ to _B_ and _L_ to _B'_, thus determining +the points _K_ and _M_ on the two lines through _A_ and _A'_, The line +_KM_ determines the desired point _C'_. Manifestly, starting from _C'_, we +come in this way always to the same point _C_. The particular quadrangle +employed is of no consequence. Moreover, since one pair of opposite sides +in a complete quadrangle is not distinguishable in any way from any other, +the same set of six points will be obtained by starting from the pairs +_AA'_ and _CC'_, or from the pairs _BB'_ and _CC'_. + + + + +*123. Definition of involution of points on a line.* + +_Three pairs of points on a line are said to be in involution if through +each pair may be drawn a pair of opposite sides of a complete quadrangle. +If two pairs are fixed and one of the third pair describes the line, then +the other also describes the line, and the points of the line are said to +be paired in the involution determined by the two fixed pairs._ + + [Figure 33] + + FIG. 33 + + + + +*124. Double-points in an involution.* The points _C_ and _C'_ describe +projective point-rows, as may be seen by fixing the points _L_ and _M_. +The self-corresponding points, of which there are two or none, are called +the _double-points_ in the involution. It is not difficult to see that the +double-points in the involution are harmonic conjugates with respect to +corresponding points in the involution. For, fixing as before the points +_L_ and _M_, let the intersection of the lines _CL_ and _C'M_ be _P_ (Fig. +33). The locus of _P_ is a conic which goes through the double-points, +because the point-rows _C_ and _C'_ are projective, and therefore so are +the pencils _LC_ and _MC'_ which generate the locus of _P_. Also, when _C_ +and _C'_ fall together, the point _P_ coincides with them. Further, the +tangents at _L_ and _M_ to this conic described by _P_ are the lines _LB_ +and _MB_. For in the pencil at _L_ the ray _LM_ common to the two pencils +which generate the conic is the ray _LB'_ and corresponds to the ray _MB_ +of _M_, which is therefore the tangent line to the conic at _M_. Similarly +for the tangent _LB_ at _L_. _LM_ is therefore the polar of _B_ with +respect to this conic, and _B_ and _B'_ are therefore harmonic conjugates +with respect to the double-points. The same discussion applies to any +other pair of corresponding points in the involution. + + [Figure 34] + + FIG. 34 + + + + +*125. Desargues's theorem concerning conics through four points.* Let +_DD'_ be any pair of points in the involution determined as above, and +consider the conic passing through the five points _K_, _L_, _M_, _N_, +_D_. We shall use Pascal's theorem to show that this conic also passes +through _D'_. The point _D'_ is determined as follows: Fix _L_ and _M_ as +before (Fig. 34) and join _D_ to _L_, giving on _MN_ the point _N'_. Join +_N'_ to _B_, giving on _LK_ the point _K'_. Then _MK'_ determines the +point _D'_ on the line _AA'_, given by the complete quadrangle _K'_, _L_, +_M_, _N'_. Consider the following six points, numbering them in order: _D += 1_, _D' = 2_, _M = 3_, _N = 4_, _K = 5_, and _L = 6_. We have the +following intersections: _B = (12-45)_, _K' = (23-56)_, _N' = (34-61)_; +and since by construction _B_, _N_, and _K'_ are on a straight line, it +follows from the converse of Pascal's theorem, which is easily +established, that the six points are on a conic. We have, then, the +beautiful theorem due to Desargues: + +_The system of conics through four points meets any line in the plane in +pairs of points in involution._ + + + + +*126.* It appears also that the six points in involution determined by +the quadrangle through the four fixed points belong also to the same +involution with the points cut out by the system of conics, as indeed we +might infer from the fact that the three pairs of opposite sides of the +quadrangle may be considered as degenerate conics of the system. + + + + +*127. Conics through four points touching a given line.* It is further +evident that the involution determined on a line by the system of conics +will have a double-point where a conic of the system is tangent to the +line. We may therefore infer the theorem + +_Through four fixed points in the plane two conics or none may be drawn +tangent to any given line._ + + [Figure 35] + + FIG. 35 + + + + +*128. Double correspondence.* We have seen that corresponding points in +an involution form two projective point-rows superposed on the same +straight line. Two projective point-rows superposed on the same straight +line are, however, not necessarily in involution, as a simple example will +show. Take two lines, _a_ and _a'_, which both revolve about a fixed point +_S_ and which always make the same angle with each other (Fig. 35). These +lines cut out on any line in the plane which does not pass through _S_ two +projective point-rows, which are not, however, in involution unless the +angle between the lines is a right angles. For a point _P_ may correspond +to a point _P'_, which in turn will correspond to some other point than +_P_. The peculiarity of point-rows in involution is that any point will +correspond to the same point, in whichever point-row it is considered as +belonging. In this case, if a point _P_ corresponds to a point _P'_, then +the point _P'_ corresponds back again to the point _P_. The points _P_ and +_P'_ are then said to _correspond doubly_. This notion is worthy of +further study. + + [Figure 36] + + FIG. 36 + + + + +*129. Steiner's construction.* It will be observed that the solution of +the fundamental problem given in § 83, _Given three pairs of points of two +protective point-rows, to construct other pairs_, cannot be carried out if +the two point-rows lie on the same straight line. Of course the method may +be easily altered to cover that case also, but it is worth while to give +another solution of the problem, due to Steiner, which will also give +further information regarding the theory of involution, and which may, +indeed, be used as a foundation for that theory. Let the two point-rows +_A_, _B_, _C_, _D_, ... and _A'_, _B'_, _C'_, _D'_, ... be superposed on +the line _u_. Project them both to a point _S_ and pass any conic _{~GREEK SMALL LETTER KAPPA~}_ +through _S_. We thus obtain two projective pencils, _a_, _b_, _c_, _d_, +... and _a'_, _b'_, _c'_, _d'_, ... at _S_, which meet the conic in the +points _{~GREEK SMALL LETTER ALPHA~}_, _{~GREEK SMALL LETTER BETA~}_, _{~GREEK SMALL LETTER GAMMA~}_, _{~GREEK SMALL LETTER DELTA~}_, ... and _{~GREEK SMALL LETTER ALPHA~}'_, _{~GREEK SMALL LETTER BETA~}'_, _{~GREEK SMALL LETTER GAMMA~}'_, _{~GREEK SMALL LETTER DELTA~}'_, ... (Fig. 36). +Take now _{~GREEK SMALL LETTER GAMMA~}_ as the center of a pencil projecting the points _{~GREEK SMALL LETTER ALPHA~}'_, _{~GREEK SMALL LETTER BETA~}'_, +_{~GREEK SMALL LETTER DELTA~}'_, ..., and take _{~GREEK SMALL LETTER GAMMA~}'_ as the center of a pencil projecting the points +_{~GREEK SMALL LETTER ALPHA~}_, _{~GREEK SMALL LETTER BETA~}_, _{~GREEK SMALL LETTER DELTA~}_, .... These two pencils are projective to each other, and +since they have a self-correspondin ray in common, they are in perspective +position and corresponding rays meet on the line joining _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER ALPHA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER ALPHA~})_ to +_({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER BETA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER BETA~})_. The correspondence between points in the two point-rows on +_u_ is now easily traced. + + + + +*130. Application of Steiner's construction to double correspondence.* +Steiner's construction throws into our hands an important theorem +concerning double correspondence: _If two projective point-rows, +superposed on the same line, have one pair of points which correspond to +each other doubly, then all pairs correspond to each other doubly, and the +line is paired in involution._ To make this appear, let us call the point +_A_ on _u_ by two names, _A_ and _P'_, according as it is thought of as +belonging to the one or to the other of the two point-rows. If this point +is one of a pair which correspond to each other doubly, then the points +_A'_ and _P_ must coincide (Fig. 37). Take now any point _C_, which we +will also call _R'_. We must show that the corresponding point _C'_ must +also coincide with the point _B_. Join all the points to _S_, as before, +and it appears that the points {~GREEK SMALL LETTER ALPHA~} and _{~GREEK SMALL LETTER PI~}'_ coincide, as also do the points +_{~GREEK SMALL LETTER ALPHA~}'{~GREEK SMALL LETTER PI~}_ and _{~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER RHO~}'_. By the above construction the line _{~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER RHO~}_ must meet _{~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER RHO~}'_ +on the line joining _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER ALPHA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER ALPHA~})_ with _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER PI~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER PI~})_. But these four points +form a quadrangle inscribed in the conic, and we know by § 95 that the +tangents at the opposite vertices _{~GREEK SMALL LETTER GAMMA~}_ and _{~GREEK SMALL LETTER GAMMA~}'_ meet on the line _v_. The +line _{~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER RHO~}_ is thus a tangent to the conic, and _C'_ and _R_ are the same +point. That two projective point-rows superposed on the same line are also +in involution when one pair, and therefore all pairs, correspond doubly +may be shown by taking _S_ at one vertex of a complete quadrangle which +has two pairs of opposite sides going through two pairs of points. The +details we leave to the student. + + [Figure 37] + + FIG. 37 + + + [Figure 38] + + FIG. 38 + + + + +*131. Involution of points on a point-row of the second order.* It is +important to note also, in Steiner's construction, that we have obtained +two point-rows of the second order superposed on the same conic, and have +paired the points of one with the points of the other in such a way that +the correspondence is double. We may then extend the notion of involution +to point-rows of the second order and say that _the points of a conic are +paired in involution when they are corresponding __ points of two +projective point-rows superposed on the conic, and when they correspond to +each other doubly._ With this definition we may prove the theorem: _The +lines joining corresponding points of a point-row of the second order in +involution all pass through a fixed point __U__, and the line joining any +two points __A__, __B__ meets the line joining the two corresponding +points __A'__, __B'__ in the points of a line __u__, which is the polar of +__U__ with respect to the conic._ For take _A_ and _A'_ as the centers of +two pencils, the first perspective to the point-row _A'_, _B'_, _C'_ and +the second perspective to the point-row _A_, _B_, _C_. Then, since the +common ray of the two pencils corresponds to itself, they are in +perspective position, and their axis of perspectivity _u_ (Fig. 38) is the +line which joins the point _(AB', A'B)_ to the point _(AC', A'C)_. It is +then immediately clear, from the theory of poles and polars, that _BB'_ +and _CC'_ pass through the pole _U_ of the line _u_. + + + + +*132. Involution of rays.* The whole theory thus far developed may be +dualized, and a theory of lines in involution may be built up, starting +with the complete quadrilateral. Thus, + +_The three pairs of rays which may be drawn from a point through the three +pairs of opposite vertices of a complete quadrilateral are said to be in +involution. If the pairs __aa'__ and __bb'__ are fixed, and the line __c__ +describes a pencil, the corresponding line __c'__ also describes a pencil, +and the rays of the pencil are said to be paired in the involution +determined by __aa'__ and __bb'__._ + + + + +*133. Double rays.* The self-corresponding rays, of which there are two +or none, are called _double rays_ of the involution. Corresponding rays of +the involution are harmonic conjugates with respect to the double rays. To +the theorem of Desargues (§ 125) which has to do with the system of conics +through four points we have the dual: + +_The tangents from a fixed point to a system of conics tangent to four +fixed lines form a pencil of rays in involution._ + + + + +*134.* If a conic of the system should go through the fixed point, it is +clear that the two tangents would coincide and indicate a double ray of +the involution. The theorem, therefore, follows: + +_Two conics or none may be drawn through a fixed point to be tangent to +four fixed lines._ + + + + +*135. Double correspondence.* It further appears that two projective +pencils of rays which have the same center are in involution if two pairs +of rays correspond to each other doubly. From this it is clear that we +might have deemed six rays in involution as six rays which pass through a +point and also through six points in involution. While this would have +been entirely in accord with the treatment which was given the +corresponding problem in the theory of harmonic points and lines, it is +more satisfactory, from an aesthetic point of view, to build the theory of +lines in involution on its own base. The student can show, by methods +entirely analogous to those used in the second chapter, that involution is +a projective property; that is, six rays in involution are cut by any +transversal in six points in involution. + + + + +*136. Pencils of rays of the second order in involution.* We may also +extend the notion of involution to pencils of rays of the second order. +Thus, _the tangents to a conic are in involution when they are +corresponding rays of two protective pencils of the second order +superposed upon the same conic, and when they correspond to each other +doubly._ We have then the theorem: + + + + +*137.* _The intersections of corresponding rays of a pencil of the second +order in involution are all on a straight line __u__, and the intersection +of any two tangents __ab__, when joined to the intersection of the +corresponding tangents __a'b'__, gives a line which passes through a fixed +point __U__, the pole of the line __u__ with respect to the conic._ + + + + +*138. Involution of rays determined by a conic.* We have seen in the +theory of poles and polars (§ 103) that if a point _P_ moves along a line +_m_, then the polar of _P_ revolves about a point. This pencil cuts out on +_m_ another point-row _P'_, projective also to _P_. Since the polar of _P_ +passes through _P'_, the polar of _P'_ also passes through _P_, so that +the correspondence between _P_ and _P'_ is double. The two point-rows are +therefore in involution, and the double points, if any exist, are the +points where the line _m_ meets the conic. A similar involution of rays +may be found at any point in the plane, corresponding rays passing each +through the pole of the other. We have called such points and rays +_conjugate_ with respect to the conic (§ 100). We may then state the +following important theorem: + + + + +*139.* _A conic determines on every line in its plane an involution of +points, corresponding points in the involution __ being conjugate with +respect to the conic. The double points, if any exist, are the points +where the line meets the conic._ + + + + +*140.* The dual theorem reads: _A conic determines at every point in the +plane an involution of rays, corresponding rays being conjugate with +respect to the conic. The double rays, if any exist, are the tangents from +the point to the conic._ + + + + +PROBLEMS + + +1. Two lines are drawn through a point on a conic so as always to make +right angles with each other. Show that the lines joining the points where +they meet the conic again all pass through a fixed point. + +2. Two lines are drawn through a fixed point on a conic so as always to +make equal angles with the tangent at that point. Show that the lines +joining the two points where the lines meet the conic again all pass +through a fixed point. + +3. Four lines divide the plane into a certain number of regions. +Determine for each region whether two conics or none may be drawn to pass +through points of it and also to be tangent to the four lines. + +4. If a variable quadrangle move in such a way as always to remain +inscribed in a fixed conic, while three of its sides turn each around one +of three fixed collinear points, then the fourth will also turn around a +fourth fixed point collinear with the other three. + +5. State and prove the dual of problem 4. + +6. Extend problem 4 as follows: If a variable polygon of an even number +of sides move in such a way as always to remain inscribed in a fixed +conic, while all its sides but one pass through as many fixed collinear +points, then the last side will also pass through a fixed point collinear +with the others. + +7. If a triangle _QRS_ be inscribed in a conic, and if a transversal _s_ +meet two of its sides in _A_ and _A'_, the third side and the tangent at +the opposite vertex in _B_ and _B'_, and the conic itself in _C_ and _C'_, +then _AA'_, _BB'_, _CC'_ are three pairs of points in an involution. + +8. Use the last exercise to solve the problem: Given five points, _Q_, +_R_, _S_, _C_, _C'_, on a conic, to draw the tangent at any one of them. + +9. State and prove the dual of problem 7 and use it to prove the dual of +problem 8. + +10. If a transversal cut two tangents to a conic in _B_ and _B'_, their +chord of contact in _A_, and the conic itself in _P_ and _P'_, then the +point _A_ is a double point of the involution determined by _BB'_ and +_PP'_. + +11. State and prove the dual of problem 10. + +12. If a variable conic pass through two given points, _P_ and _P'_, and +if it be tangent to two given lines, the chord of contact of these two +tangents will always pass through a fixed point on _PP'_. + +13. Use the last theorem to solve the problem: Given four points, _P_, +_P'_, _Q_, _S_, on a conic, and the tangent at one of them, _Q_, to draw +the tangent at any one of the other points, _S_. + +14. Apply the theorem of problem 9 to the case of a hyperbola where the +two tangents are the asymptotes. Show in this way that if a hyperbola and +its asymptotes be cut by a transversal, the segments intercepted by the +curve and by the asymptotes respectively have the same middle point. + +15. In a triangle circumscribed about a conic, any side is divided +harmonically by its point of contact and the point where it meets the +chord joining the points of contact of the other two sides. + + + + + +CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS + + + + + [Figure 39] + + FIG. 39 + + +*141. Introduction of infinite point; center of involution.* We connect +the projective theory of involution with the metrical, as usual, by the +introduction of the elements at infinity. In an involution of points on a +line the point which corresponds to the infinitely distant point is called +the _center_ of the involution. Since corresponding points in the +involution have been shown to be harmonic conjugates with respect to the +double points, the center is midway between the double points when they +exist. To construct the center (Fig. 39) we draw as usual through _A_ and +_A'_ any two rays and cut them by a line parallel to _AA'_ in the points +_K_ and _M_. Join these points to _B_ and _B'_, thus determining on _AK_ +and _AN_ the points _L_ and _N_. _LN_ meets _AA'_ in the center _O_ of the +involution. + + + + +*142. Fundamental metrical theorem.* From the figure we see that the +triangles _OLB'_ and _PLM_ are similar, _P_ being the intersection of KM +and LN. Also the triangles _KPN_ and _BON_ are similar. We thus have + + _OB : PK = ON : PN_ + +and + + _OB' : PM = OL : PL;_ + +whence + + _OB · OB' : PK · PM = ON · OL : PN · PL._ + +In the same way, from the similar triangles _OAL_ and _PKL_, and also +_OA'N_ and _PMN_, we obtain + + _OA · OA' : PK · PM = ON · OL : PN · PL,_ + +and this, with the preceding, gives at once the fundamental theorem, which +is sometimes taken also as the definition of involution: + + _OA · OA' = OB · OB' = __constant__,_ + +or, in words, + +_The product of the distances from the center to two corresponding points +in an involution of points is constant._ + + + + +*143. Existence of double points.* Clearly, according as the constant is +positive or negative the involution will or will not have double points. +The constant is the square root of the distance from the center to the +double points. If _A_ and _A'_ lie both on the same side of the center, +the product _OA · OA'_ is positive; and if they lie on opposite sides, it +is negative. Take the case where they both lie on the same side of the +center, and take also the pair of corresponding points _BB'_. Then, since +_OA · OA' = OB · OB'_, it cannot happen that _B_ and _B'_ are separated +from each other by _A_ and _A'_. This is evident enough if the points are +on opposite sides of the center. If the pairs are on the same side of the +center, and _B_ lies between _A_ and _A'_, so that _OB_ is greater, say, +than _OA_, but less than _OA'_, then, by the equation _OA · OA' = OB · +OB'_, we must have _OB'_ also less than _OA'_ and greater than _OA_. A +similar discussion may be made for the case where _A_ and _A'_ lie on +opposite sides of _O_. The results may be stated as follows, without any +reference to the center: + +_Given two pairs of points in an involution of points, if the points of +one pair are separated from each other by the points of the other pair, +then the involution has no double points. If the points of one pair are +not separated from each other by the points of the other pair, then the +involution has two double points._ + + + + +*144.* An entirely similar criterion decides whether an involution of +rays has or has not double rays, or whether an involution of planes has or +has not double planes. + + [Figure 40] + + FIG. 40 + + + + +*145. Construction of an involution by means of circles.* The equation +just derived, _OA · OA' = OB · OB'_, indicates another simple way in which +points of an involution of points may be constructed. Through _A_ and _A'_ +draw any circle, and draw also any circle through _B_ and _B'_ to cut the +first in the two points _G_ and _G'_ (Fig. 40). Then any circle through +_G_ and _G'_ will meet the line in pairs of points in the involution +determined by _AA'_ and _BB'_. For if such a circle meets the line in the +points _CC'_, then, by the theorem in the geometry of the circle which +says that _if any chord is __ drawn through a fixed point within a circle, +the product of its segments is constant in whatever direction the chord is +drawn, and if a secant line be drawn from a fixed point without a circle, +the product of the secant and its external segment is constant in whatever +direction the secant line is drawn_, we have _OC · OC' = OG · OG' =_ +constant. So that for all such points _OA · OA' = OB · OB' = OC · OC'_. +Further, the line _GG'_ meets _AA'_ in the center of the involution. To +find the double points, if they exist, we draw a tangent from _O_ to any +of the circles through _GG'_. Let _T_ be the point of contact. Then lay +off on the line _OA_ a line _OF_ equal to _OT_. Then, since by the above +theorem of elementary geometry _OA · OA' = OT__2__ = OF__2_, we have one +double point _F_. The other is at an equal distance on the other side of +_O_. This simple and effective method of constructing an involution of +points is often taken as the basis for the theory of involution. In +projective geometry, however, the circle, which is not a figure that +remains unaltered by projection, and is essentially a metrical notion, +ought not to be used to build up the purely projective part of the theory. + + + + +*146.* It ought to be mentioned that the theory of analytic geometry +indicates that the circle is a special conic section that happens to pass +through two particular imaginary points on the line at infinity, called +the _circular points_ and usually denoted by _I_ and _J_. The above method +of obtaining a point-row in involution is, then, nothing but a special +case of the general theorem of the last chapter (§ 125), which asserted +that a system of conics through four points will cut any line in the plane +in a point-row in involution. + + [Figure 41] + + FIG. 41 + + + + +*147. Pairs in an involution of rays which are at right angles. Circular +involution.* In an involution of rays there is no one ray which may be +distinguished from all the others as the point at infinity is +distinguished from all other points on a line. There is one pair of rays, +however, which does differ from all the others in that for this particular +pair the angle is a right angle. This is most easily shown by using the +construction that employs circles, as indicated above. The centers of all +the circles through _G_ and _G'_ lie on the perpendicular bisector of the +line _GG'_. Let this line meet the line _AA'_ in the point _C_ (Fig. 41), +and draw the circle with center _C_ which goes through _G_ and _G'_. This +circle cuts out two points _M_ and _M'_ in the involution. The rays _GM_ +and _GM'_ are clearly at right angles, being inscribed in a semicircle. +If, therefore, the involution of points is projected to _G_, we have found +two corresponding rays which are at right angles to each other. Given now +any involution of rays with center _G_, we may cut across it by a straight +line and proceed to find the two points _M_ and _M'_. Clearly there will +be only one such pair unless the perpendicular bisector of _GG'_ coincides +with the line _AA'_. In this case every ray is at right angles to its +corresponding ray, and the involution is called _circular_. + + + + +*148. Axes of conics.* At the close of the last chapter (§ 140) we gave +the theorem: _A conic determines at every point in its plane an involution +of rays, corresponding rays __ being conjugate with respect to the conic. +The double rays, if any exist, are the tangents from the point to the +conic._ In particular, taking the point as the center of the conic, we +find that conjugate diameters form a system of rays in involution, of +which the asymptotes, if there are any, are the double rays. Also, +conjugate diameters are harmonic conjugates with respect to the +asymptotes. By the theorem of the last paragraph, there are two conjugate +diameters which are at right angles to each other. These are called axes. +In the case of the parabola, where the center is at infinity, and on the +curve, there are, properly speaking, no conjugate diameters. While the +line at infinity might be considered as conjugate to all the other +diameters, it is not possible to assign to it any particular direction, +and so it cannot be used for the purpose of defining an axis of a +parabola. There is one diameter, however, which is at right angles to its +conjugate system of chords, and this one is called the _axis_ of the +parabola. The circle also furnishes an exception in that every diameter is +an axis. The involution in this case is circular, every ray being at right +angles to its conjugate ray at the center. + + + + +*149. Points at which the involution determined by a conic is circular.* +It is an important problem to discover whether for any conic other than +the circle it is possible to find any point in the plane where the +involution determined as above by the conic is circular. We shall proceed +to the curious problem of proving the existence of such points and of +determining their number and situation. We shall then develop the +important properties of such points. + + + + +*150.* It is clear, in the first place, that such a point cannot be on +the outside of the conic, else the involution would have double rays and +such rays would have to be at right angles to themselves. In the second +place, if two such points exist, the line joining them must be a diameter +and, indeed, an axis. For if _F_ and _F'_ were two such points, then, +since the conjugate ray at _F_ to the line _FF'_ must be at right angles +to it, and also since the conjugate ray at _F'_ to the line _FF'_ must be +at right angles to it, the pole of _FF'_ must be at infinity in a +direction at right angles to _FF'_. The line _FF'_ is then a diameter, and +since it is at right angles to its conjugate diameter, it must be an axis. +From this it follows also that the points we are seeking must all lie on +one of the two axes, else we should have a diameter which does not go +through the intersection of all axes--the center of the conic. At least one +axis, therefore, must be free from any such points. + + [Figure 42] + + FIG. 42 + + + + +*151.* Let now _P_ be a point on one of the axes (Fig. 42), and draw any +ray through it, such as _q_. As _q_ revolves about _P_, its pole _Q_ moves +along a line at right angles to the axis on which _P_ lies, describing a +point-row _p_ projective to the pencil of rays _q_. The point at infinity +in a direction at right angles to _q_ also describes a point-row +projective to _q_. The line joining corresponding points of these two +point-rows is always a conjugate line to _q_ and at right angles to _q_, +or, as we may call it, a _conjugate normal_ to _q_. These conjugate +normals to _q_, joining as they do corresponding points in two projective +point-rows, form a pencil of rays of the second order. But since the point +at infinity on the point-row _Q_ corresponds to the point at infinity in a +direction at right angles to _q_, these point-rows are in perspective +position and the normal conjugates of all the lines through _P_ meet in a +point. This point lies on the same axis with _P_, as is seen by taking _q_ +at right angles to the axis on which _P_ lies. The center of this pencil +may be called _P'_, and thus we have paired the point _P_ with the point +_P'_. By moving the point _P_ along the axis, and by keeping the ray _q_ +parallel to a fixed direction, we may see that the point-row _P_ and the +point-row _P'_ are projective. Also the correspondence is double, and by +starting from the point _P'_ we arrive at the point _P_. Therefore the +point-rows _P_ and _P'_ are in involution, and if only the involution has +double points, we shall have found in them the points we are seeking. For +it is clear that the rays through _P_ and the corresponding rays through +_P'_ are conjugate normals; and if _P_ and _P'_ coincide, we shall have a +point where all rays are at right angles to their conjugates. We shall now +show that the involution thus obtained on one of the two axes must have +double points. + + [Figure 43] + + FIG. 43 + + + + +*152. Discovery of the foci of the conic.* We know that on one axis no +such points as we are seeking can lie (§ 150). The involution of points +_PP'_ on this axis can therefore have no double points. Nevertheless, let +_PP'_ and _RR'_ be two pairs of corresponding points on this axis (Fig. +43). Then we know that _P_ and _P'_ are separated from each other by _R_ +and _R'_ (§ 143). Draw a circle on _PP'_ as a diameter, and one on _RR'_ +as a diameter. These must intersect in two points, _F_ and _F'_, and since +the center of the conic is the center of the involution _PP'_, _RR'_, as +is easily seen, it follows that _F_ and _F'_ are on the other axis of the +conic. Moreover, _FR_ and _FR'_ are conjugate normal rays, since _RFR'_ is +inscribed in a semicircle, and the two rays go one through _R_ and the +other through _R'_. The involution of points _PP'_, _RR'_ therefore +projects to the two points _F_ and _F'_ in two pencils of rays in +involution which have for corresponding rays conjugate normals to the +conic. We may, then, say: + +_There are two and only two points of the plane where the involution +determined by the conic is circular. These two points lie on one of the +axes, at equal distances from the center, on the inside of the conic. +These points are called the foci of the conic._ + + + + +*153. The circle and the parabola.* The above discussion applies only to +the central conics, apart from the circle. In the circle the two foci fall +together at the center. In the case of the parabola, that part of the +investigation which proves the existence of two foci on one of the axes +will not hold, as we have but one axis. It is seen, however, that as _P_ +moves to infinity, carrying the line _q_ with it, _q_ becomes the line at +infinity, which for the parabola is a tangent line. Its pole _Q_ is thus +at infinity and also the point _P'_, so that _P_ and _P'_ fall together at +infinity, and therefore one focus of the parabola is at infinity. There +must therefore be another, so that + +_A parabola has one and only one focus in the finite part of the plane._ + + [Figure 44] + + FIG. 44 + + + + +*154. Focal properties of conics.* We proceed to develop some theorems +which will exhibit the importance of these points in the theory of the +conic section. Draw a tangent to the conic, and also the normal at the +point of contact _P_. These two lines are clearly conjugate normals. The +two points _T_ and _N_, therefore, where they meet the axis which contains +the foci, are corresponding points in the involution considered above, and +are therefore harmonic conjugates with respect to the foci (Fig. 44); and +if we join them to the point _P_, we shall obtain four harmonic lines. But +two of them are at right angles to each other, and so the others make +equal angles with them (Problem 4, Chapter II). Therefore + +_The lines joining a point on the conic to the foci make equal angles with +the tangent._ + +It follows that rays from a source of light at one focus are reflected by +an ellipse to the other. + + + + +*155.* In the case of the parabola, where one of the foci must be +considered to be at infinity in the direction of the diameter, we have + + [Figure 45] + + FIG. 45 + + +_A diameter makes the same angle with the tangent at its extremity as that +tangent does with the line from its point of contact to the focus (Fig. +45)._ + + + + +*156.* This last theorem is the basis for the construction of the +parabolic reflector. A ray of light from the focus is reflected from such +a reflector in a direction parallel to the axis of the reflector. + + + + +*157. Directrix. Principal axis. Vertex.* The polar of the focus with +respect to the conic is called the _directrix_. The axis which contains +the foci is called the _principal axis_, and the intersection of the axis +with the curve is called the _vertex_ of the curve. The directrix is at +right angles to the principal axis. In a parabola the vertex is equally +distant from the focus and the directrix, these three points and the point +at infinity on the axis being four harmonic points. In the ellipse the +vertex is nearer to the focus than it is to the directrix, for the same +reason, and in the hyperbola it is farther from the focus than it is from +the directrix. + + [Figure 46] + + FIG. 46 + + + + +*158. Another definition of a conic.* Let _P_ be any point on the +directrix through which a line is drawn meeting the conic in the points +_A_ and _B_ (Fig. 46). Let the tangents at _A_ and _B_ meet in _T_, and +call the focus _F_. Then _TF_ and _PF_ are conjugate lines, and as they +pass through a focus they must be at right angles to each other. Let _TF_ +meet _AB_ in _C_. Then _P_, _A_, _C_, _B_ are four harmonic points. +Project these four points parallel to _TF_ upon the directrix, and we then +get the four harmonic points _P_, _M_, _Q_, _N_. Since, now, _TFP_ is a +right angle, the angles _MFQ_ and _NFQ_ are equal, as well as the angles +_AFC_ and _BFC_. Therefore the triangles _MAF_ and _NFB_ are similar, and +_FA : FM = FB : BN_. Dropping perpendiculars _AA_ and _BB'_ upon the +directrix, this becomes _FA : AA' = FB : BB'_. We have thus the property +often taken as the definition of a conic: + +_The ratio of the distances from a point on the conic to the focus and the +directrix is constant._ + + [Figure 47] + + FIG. 47 + + + + +*159. Eccentricity.* By taking the point at the vertex of the conic, we +note that this ratio is less than unity for the ellipse, greater than +unity for the hyperbola, and equal to unity for the parabola. This ratio +is called the _eccentricity_. + + [Figure 48] + + FIG. 48 + + + + +*160. Sum or difference of focal distances.* The ellipse and the hyperbola +have two foci and two directrices. The eccentricity, of course, is the +same for one focus as for the other, since the curve is symmetrical with +respect to both. If the distances from a point on a conic to the two foci +are _r_ and _r'_, and the distances from the same point to the +corresponding directrices are _d_ and _d'_ (Fig. 47), we have _r : d = r' +: d'_; _(r ± r') : (d ± d')_. In the ellipse _(d + d')_ is constant, being +the distance between the directrices. In the hyperbola this distance is +_(d - d')_. It follows (Fig. 48) that + +_In the ellipse the sum of the focal distances of any point on the curve +is constant, and in the hyperbola the difference between the focal +distances is constant._ + + + + +PROBLEMS + + +1. Construct the axis of a parabola, given four tangents. + +2. Given two conjugate lines at right angles to each other, and let them +meet the axis which has no foci on it in the points _A_ and _B_. The +circle on _AB_ as diameter will pass through the foci of the conic. + +3. Given the axes of a conic in position, and also a tangent with its +point of contact, to construct the foci and determine the length of the +axes. + +4. Given the tangent at the vertex of a parabola, and two other tangents, +to find the focus. + +5. The locus of the center of a circle touching two given circles is a +conic with the centers of the given circles for its foci. + +6. Given the axis of a parabola and a tangent, with its point of contact, +to find the focus. + +7. The locus of the center of a circle which touches a given line and a +given circle consists of two parabolas. + +8. Let _F_ and _F'_ be the foci of an ellipse, and _P_ any point on it. +Produce _PF_ to _G_, making _PG_ equal to _PF'_. Find the locus of _G_. + +9. If the points _G_ of a circle be folded over upon a point _F_, the +creases will all be tangent to a conic. If _F_ is within the circle, the +conic will be an ellipse; if _F_ is without the circle, the conic will be +a hyperbola. + +10. If the points _G_ in the last example be taken on a straight line, the +locus is a parabola. + +11. Find the foci and the length of the principal axis of the conics in +problems 9 and 10. + +12. In problem 10 a correspondence is set up between straight lines and +parabolas. As there is a fourfold infinity of parabolas in the plane, and +only a twofold infinity of straight lines, there must be some restriction +on the parabolas obtained by this method. Find and explain this +restriction. + +13. State and explain the similar problem for problem 9. + +14. The last four problems are a study of the consequences of the +following transformation: A point _O_ is fixed in the plane. Then to any +point _P_ is made to correspond the line _p_ at right angles to _OP_ and +bisecting it. In this correspondence, what happens to _p_ when _P_ moves +along a straight line? What corresponds to the theorem that two lines have +only one point in common? What to the theorem that the angle sum of a +triangle is two right angles? Etc. + + + + + +CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY + + + + +*161. Ancient results.* The theory of synthetic projective geometry as we +have built it up in this course is less than a century old. This is not to +say that many of the theorems and principles involved were not discovered +much earlier, but isolated theorems do not make a theory, any more than a +pile of bricks makes a building. The materials for our building have been +contributed by many different workmen from the days of Euclid down to the +present time. Thus, the notion of four harmonic points was familiar to the +ancients, who considered it from the metrical point of view as the +division of a line internally and externally in the same ratio(1) the +involution of six points cut out by any transversal which intersects the +sides of a complete quadrilateral as studied by Pappus(2); but these +notions were not made the foundation for any general theory. Taken by +themselves, they are of small consequence; it is their relation to other +theorems and sets of theorems that gives them their importance. The +ancients were doubtless familiar with the theorem, _Two lines determine a +point, and two points determine a line_, but they had no glimpse of the +wonderful law of duality, of which this theorem is a simple example. The +principle of projection, by which many properties of the conic sections +may be inferred from corresponding properties of the circle which forms +the base of the cone from which they are cut--a principle so natural to +modern mathematicians--seems not to have occurred to the Greeks. The +ellipse, the hyperbola, and the parabola were to them entirely different +curves, to be treated separately with methods appropriate to each. Thus +the focus of the ellipse was discovered some five hundred years before the +focus of the parabola! It was not till 1522 that Verner(3) of Nürnberg +undertook to demonstrate the properties of the conic sections by means of +the circle. + + + + +*162. Unifying principles.* In the early years of the seventeenth +century--that wonderful epoch in the history of the world which produced a +Galileo, a Kepler, a Tycho Brahe, a Descartes, a Desargues, a Pascal, a +Cavalieri, a Wallis, a Fermat, a Huygens, a Bacon, a Napier, and a goodly +array of lesser lights, to say nothing of a Rembrandt or of a +Shakespeare--there began to appear certain unifying principles connecting +the great mass of material dug out by the ancients. Thus, in 1604 the +great astronomer Kepler(4) introduced the notion that parallel lines +should be considered as meeting at an infinite distance, and that a +parabola is at once the limiting case of an ellipse and of a hyperbola. He +also attributes to the parabola a "blind focus" (_caecus focus_) at +infinity on the axis. + + + + +*163. Desargues.* In 1639 Desargues,(5) an architect of Lyons, published +a little treatise on the conic sections, in which appears the theorem upon +which we have founded the theory of four harmonic points (§ 25). +Desargues, however, does not make use of it for that purpose. Four +harmonic points are for him a special case of six points in involution +when two of the three pairs coincide giving double points. His development +of the theory of involution is also different from the purely geometric +one which we have adopted, and is based on the theorem (§ 142) that the +product of the distances of two conjugate points from the center is +constant. He also proves the projective character of an involution of +points by showing that when six lines pass through a point and through six +points in involution, then any transversal must meet them in six points +which are also in involution. + + + + +*164. Poles and polars.* In this little treatise is also contained the +theory of poles and polars. The polar line is called a _traversal_.(6) The +harmonic properties of poles and polars are given, but Desargues seems not +to have arrived at the metrical properties which result when the infinite +elements of the plane are introduced. Thus he says, "When the _traversal_ +is at an infinite distance, all is unimaginable." + + + + +*165. Desargues's theorem concerning conics through four points.* We find +in this little book the beautiful theorem concerning a quadrilateral +inscribed in a conic section, which is given by his name in § 138. The +theorem is not given in terms of a system of conics through four points, +for Desargues had no conception of any such system. He states the theorem, +in effect, as follows: _Given a simple quadrilateral inscribed in a conic +section, every transversal meets the conic and the four sides of the +quadrilateral in six points which are in involution._ + + + + +*166. Extension of the theory of poles and polars to space.* As an +illustration of his remarkable powers of generalization, we may note that +Desargues extended the notion of poles and polars to space of three +dimensions for the sphere and for certain other surfaces of the second +degree. This is a matter which has not been touched on in this book, but +the notion is not difficult to grasp. If we draw through any point _P_ in +space a line to cut a sphere in two points, _A_ and _S_, and then +construct the fourth harmonic of _P_ with respect to _A_ and _B_, the +locus of this fourth harmonic, for various lines through _P_, is a plane +called the _polar plane_ of _P_ with respect to the sphere. With this +definition and theorem one can easily find dual relations between points +and planes in space analogous to those between points and lines in a +plane. Desargues closes his discussion of this matter with the remark, +"Similar properties may be found for those other solids which are related +to the sphere in the same way that the conic section is to the circle." It +should not be inferred from this remark, however, that he was acquainted +with all the different varieties of surfaces of the second order. The +ancients were well acquainted with the surfaces obtained by revolving an +ellipse or a parabola about an axis. Even the hyperboloid of two sheets, +obtained by revolving the hyperbola about its major axis, was known to +them, but probably not the hyperboloid of one sheet, which results from +revolving a hyperbola about the other axis. All the other solids of the +second degree were probably unknown until their discovery by Euler.(7) + + + + +*167.* Desargues had no conception of the conic section of the locus of +intersection of corresponding rays of two projective pencils of rays. He +seems to have tried to describe the curve by means of a pair of compasses, +moving one leg back and forth along a straight line instead of holding it +fixed as in drawing a circle. He does not attempt to define the law of the +movement necessary to obtain a conic by this means. + + + + +*168. Reception of Desargues's work.* Strange to say, Desargues's +immortal work was heaped with the most violent abuse and held up to +ridicule and scorn! "Incredible errors! Enormous mistakes and falsities! +Really it is impossible for anyone who is familiar with the science +concerning which he wishes to retail his thoughts, to keep from laughing!" +Such were the comments of reviewers and critics. Nor were his detractors +altogether ignorant and uninstructed men. In spite of the devotion of his +pupils and in spite of the admiration and friendship of men like +Descartes, Fermat, Mersenne, and Roberval, his book disappeared so +completely that two centuries after the date of its publication, when the +French geometer Chasles wrote his history of geometry, there was no means +of estimating the value of the work done by Desargues. Six years later, +however, in 1845, Chasles found a manuscript copy of the +"Bruillon-project," made by Desargues's pupil, De la Hire. + + + + +*169. Conservatism in Desargues's time.* It is not necessary to suppose +that this effacement of Desargues's work for two centuries was due to the +savage attacks of his critics. All this was in accordance with the fashion +of the time, and no man escaped bitter denunciation who attempted to +improve on the methods of the ancients. Those were days when men refused +to believe that a heavy body falls at the same rate as a lighter one, even +when Galileo made them see it with their own eyes at the foot of the tower +of Pisa. Could they not turn to the exact page and line of Aristotle which +declared that the heavier body must fall the faster! "I have read +Aristotle's writings from end to end, many times," wrote a Jesuit +provincial to the mathematician and astronomer, Christoph Scheiner, at +Ingolstadt, whose telescope seemed to reveal certain mysterious spots on +the sun, "and I can assure you I have nowhere found anything similar to +what you describe. Go, my son, and tranquilize yourself; be assured that +what you take for spots on the sun are the faults of your glasses, or of +your eyes." The dead hand of Aristotle barred the advance in every +department of research. Physicians would have nothing to do with Harvey's +discoveries about the circulation of the blood. "Nature is accused of +tolerating a vacuum!" exclaimed a priest when Pascal began his experiments +on the Puy-de-Dome to show that the column of mercury in a glass tube +varied in height with the pressure of the atmosphere. + + + + +*170. Desargues's style of writing.* Nevertheless, authority counted for +less at this time in Paris than it did in Italy, and the tragedy enacted +in Rome when Galileo was forced to deny his inmost convictions at the +bidding of a brutal Inquisition could not have been staged in France. +Moreover, in the little company of scientists of which Desargues was a +member the utmost liberty of thought and expression was maintained. One +very good reason for the disappearance of the work of Desargues is to be +found in his style of writing. He failed to heed the very good advice +given him in a letter from his warm admirer Descartes.(8) "You may have +two designs, both very good and very laudable, but which do not require +the same method of procedure: The one is to write for the learned, and +show them some new properties of the conic sections which they do not +already know; and the other is to write for the curious unlearned, and to +do it so that this matter which until now has been understood by only a +very few, and which is nevertheless very useful for perspective, for +painting, architecture, etc., shall become common and easy to all who wish +to study them in your book. If you have the first idea, then it seems to +me that it is necessary to avoid using new terms; for the learned are +already accustomed to using those of Apollonius, and will not readily +change them for others, though better, and thus yours will serve only to +render your demonstrations more difficult, and to turn away your readers +from your book. If you have the second plan in mind, it is certain that +your terms, which are French, and conceived with spirit and grace, will be +better received by persons not preoccupied with those of the ancients.... +But, if you have that intention, you should make of it a great volume; +explain it all so fully and so distinctly that those gentlemen who cannot +study without yawning; who cannot distress their imaginations enough to +grasp a proposition in geometry, nor turn the leaves of a book to look at +the letters in a figure, shall find nothing in your discourse more +difficult to understand than the description of an enchanted palace in a +fairy story." The point of these remarks is apparent when we note that +Desargues introduced some seventy new terms in his little book, of which +only one, _involution_, has survived. Curiously enough, this is the one +term singled out for the sharpest criticism and ridicule by his reviewer, +De Beaugrand.(9) That Descartes knew the character of Desargues's audience +better than he did is also evidenced by the fact that De Beaugrand +exhausted his patience in reading the first ten pages of the book. + + + + +*171. Lack of appreciation of Desargues.* Desargues's methods, entirely +different from the analytic methods just then being developed by Descartes +and Fermat, seem to have been little understood. "Between you and me," +wrote Descartes(10) to Mersenne, "I can hardly form an idea of what he may +have written concerning conics." Desargues seems to have boasted that he +owed nothing to any man, and that all his results had come from his own +mind. His favorite pupil, De la Hire, did not realize the extraordinary +simplicity and generality of his work. It is a remarkable fact that the +only one of all his associates to understand and appreciate the methods of +Desargues should be a lad of sixteen years! + + + + +*172. Pascal and his theorem.* One does not have to believe all the +marvelous stories of Pascal's admiring sisters to credit him with +wonderful precocity. We have the fact that in 1640, when he was sixteen +years old, he published a little placard, or poster, entitled "Essay pour +les conique,"(11) in which his great theorem appears for the first time. +His manner of putting it may be a little puzzling to one who has only seen +it in the form given in this book, and it may be worth while for the +student to compare the two methods of stating it. It is given as follows: +_"If in the plane of __M__, __S__, __Q__ we draw through __M__ the two +lines __MK__ and __MV__, and through the point __S__ the two lines __SK__ +and __SV__, and let __K__ be the intersection of __MK__ and __SK__; __V__ +the intersection of __MV__ and __SV__; __A__ the intersection of __MA__ +and __SA__ (__A__ is the intersection of __SV__ and __MK__), and __{~GREEK SMALL LETTER MU~}__ the +intersection of __MV__ and __SK__; and if through two of the four points +__A__, __K__, __{~GREEK SMALL LETTER MU~}__, __V__, which are not in the same straight line with +__M__ and __S__, such as __K__ and __V__, we pass the circumference of a +circle cutting the lines __MV__, __MP__, __SV__, __SK__ in the points +__O__, __P__, __Q__, __N__; I say that the lines __MS__, __NO__, __PQ__ +are of the same order."_ (By "lines of the same order" Pascal means lines +which meet in the same point or are parallel.) By projecting the figure +thus described upon another plane he is able to state his theorem for the +case where the circle is replaced by any conic section. + + + + +*173.* It must be understood that the "Essay" was only a résumé of a more +extended treatise on conics which, owing partly to Pascal's extreme youth, +partly to the difficulty of publishing scientific works in those days, and +also to his later morbid interest in religious matters, was never +published. Leibniz(12) examined a copy of the complete work, and has +reported that the great theorem on the mystic hexagram was made the basis +of the whole theory, and that Pascal had deduced some four hundred +corollaries from it. This would indicate that here was a man able to take +the unconnected materials of projective geometry and shape them into some +such symmetrical edifice as we have to-day. Unfortunately for science, +Pascal's early death prevented the further development of the subject at +his hands. + + + + +*174.* In the "Essay" Pascal gives full credit to Desargues, saying of +one of the other propositions, "We prove this property also, the original +discoverer of which is M. Desargues, of Lyons, one of the greatest minds +of this age ... and I wish to acknowledge that I owe to him the little +which I have discovered." This acknowledgment led Descartes to believe +that Pascal's theorem should also be credited to Desargues. But in the +scientific club which the young Pascal attended in company with his +father, who was also a scientist of some reputation, the theorem went by +the name of 'la Pascalia,' and Descartes's remarks do not seem to have +been taken seriously, which indeed is not to be wondered at, seeing that +he was in the habit of giving scant credit to the work of other scientific +investigators than himself. + + + + +*175. De la Hire and his work.* De la Hire added little to the +development of the subject, but he did put into print much of what +Desargues had already worked out, not fully realizing, perhaps, how much +was his own and how much he owed to his teacher. Writing in 1679, he +says,(13) "I have just read for the first time M. Desargues's little +treatise, and have made a copy of it in order to have a more perfect +knowledge of it." It was this copy that saved the work of his master from +oblivion. De la Hire should be credited, among other things, with the +invention of a method by which figures in the plane may be transformed +into others of the same order. His method is extremely interesting, and +will serve as an exercise for the student in synthetic projective +geometry. It is as follows: _Draw two parallel lines, __a__ and __b__, and +select a point __P__ in their plane. Through any point __M__ of the plane +draw a line meeting __a__ in __A__ and __b__ in __B__. Draw a line through +__B__ parallel to __AP__, and let it meet __MP__ in the point __M'__. It +may be shown that the point __M'__ thus obtained does not depend at all on +the particular ray __MAB__ used in determining it, so that we have set up +a one-to-one correspondence between the points __M__ and __M'__ in the +plane._ The student may show that as _M_ describes a point-row, _M'_ +describes a point-row projective to it. As _M_ describes a conic, _M'_ +describes another conic. This sort of correspondence is called a +_collineation_. It will be found that the points on the line _b_ transform +into themselves, as does also the single point _P_. Points on the line _a_ +transform into points on the line at infinity. The student should remove +the metrical features of the construction and take, instead of two +parallel lines _a_ and _b_, any two lines which may meet in a finite part +of the plane. The collineation is a special one in that the general one +has an invariant triangle instead of an invariant point and line. + + + + +*176. Descartes and his influence.* The history of synthetic projective +geometry has little to do with the work of the great philosopher +Descartes, except in an indirect way. The method of algebraic analysis +invented by him, and the differential and integral calculus which +developed from it, attracted all the interest of the mathematical world +for nearly two centuries after Desargues, and synthetic geometry received +scant attention during the rest of the seventeenth century and for the +greater part of the eighteenth century. It is difficult for moderns to +conceive of the richness and variety of the problems which confronted the +first workers in the calculus. To come into the possession of a method +which would solve almost automatically problems which had baffled the +keenest minds of antiquity; to be able to derive in a few moments results +which an Archimedes had toiled long and patiently to reach or a Galileo +had determined experimentally; such was the happy experience of +mathematicians for a century and a half after Descartes, and it is not to +be wondered at that along with this enthusiastic pursuit of new theorems +in analysis should come a species of contempt for the methods of the +ancients, so that in his preface to his "Méchanique Analytique," published +in 1788, Lagrange boasts, "One will find no figures in this work." But at +the close of the eighteenth century the field opened up to research by the +invention of the calculus began to appear so thoroughly explored that new +methods and new objects of investigation began to attract attention. +Lagrange himself, in his later years, turned in weariness from analysis +and mechanics, and applied himself to chemistry, physics, and +philosophical speculations. "This state of mind," says Darboux,(14) "we +find almost always at certain moments in the lives of the greatest +scholars." At any rate, after lying fallow for almost two centuries, the +field of pure geometry was attacked with almost religious enthusiasm. + + + + +*177. Newton and Maclaurin.* But in hastening on to the epoch of Poncelet +and Steiner we should not omit to mention the work of Newton and +Maclaurin. Although their results were obtained by analysis for the most +part, nevertheless they have given us theorems which fall naturally into +the domain of synthetic projective geometry. Thus Newton's "organic +method"(15) of generating conic sections is closely related to the method +which we have made use of in Chapter III. It is as follows: _If two +angles, __AOS__ and __AO'S__, of given magnitudes turn about their +respective vertices, __O__ and __O'__, in such a way that the point of +intersection, __S__, of one pair of arms always lies on a straight line, +the point of intersection, __A__, of the other pair of arms will describe +a conic._ The proof of this is left to the student. + + + + +*178.* Another method of generating a conic is due to Maclaurin.(16) The +construction, which we also leave for the student to justify, is as +follows: _If a triangle __C'PQ__ move in such a way that its sides, +__PQ__, __QC'__, and __C'P__, turn __ around three fixed points, __R__, +__A__, __B__, respectively, while two of its vertices, __P__, __Q__, slide +along two fixed lines, __CB'__ and __CA'__, respectively, then the +remaining vertex will describe a conic._ + + + + +*179. Descriptive geometry and the second revival.* The second revival of +pure geometry was again to take place at a time of great intellectual +activity. The period at the close of the eighteenth and the beginning of +the nineteenth century is adorned with a glorious list of mighty names, +among which are Gauss, Lagrange, Legendre, Laplace, Monge, Carnot, +Poncelet, Cauchy, Fourier, Steiner, Von Staudt, Möbius, Abel, and many +others. The renaissance may be said to date from the invention by +Monge(17) of the theory of _descriptive geometry_. Descriptive geometry is +concerned with the representation of figures in space of three dimensions +by means of space of two dimensions. The method commonly used consists in +projecting the space figure on two planes (a vertical and a horizontal +plane being most convenient), the projections being made most simply for +metrical purposes from infinity in directions perpendicular to the two +planes of projection. These two planes are then made to coincide by +revolving the horizontal into the vertical about their common line. Such +is the method of descriptive geometry which in the hands of Monge acquired +wonderful generality and elegance. Problems concerning fortifications were +worked so quickly by this method that the commandant at the military +school at Mézières, where Monge was a draftsman and pupil, viewed the +results with distrust. Monge afterward became professor of mathematics at +Mézières and gathered around him a group of students destined to have a +share in the advancement of pure geometry. Among these were Hachette, +Brianchon, Dupin, Chasles, Poncelet, and many others. + + + + +*180. Duality, homology, continuity, contingent relations.* Analytic +geometry had left little to do in the way of discovery of new material, +and the mathematical world was ready for the construction of the edifice. +The activities of the group of men that followed Monge were directed +toward this end, and we now begin to hear of the great unifying notions of +duality, homology, continuity, contingent relations, and the like. The +devotees of pure geometry were beginning to feel the need of a basis for +their science which should be at once as general and as rigorous as that +of the analysts. Their dream was the building up of a system of geometry +which should be independent of analysis. Monge, and after him Poncelet, +spent much thought on the so-called "principle of continuity," afterwards +discussed by Chasles under the name of the "principle of contingent +relations." To get a clear idea of this principle, consider a theorem in +geometry in the proof of which certain auxiliary elements are employed. +These elements do not appear in the statement of the theorem, and the +theorem might possibly be proved without them. In drawing the figure for +the proof of the theorem, however, some of these elements may not appear, +or, as the analyst would say, they become imaginary. "No matter," says the +principle of contingent relations, "the theorem is true, and the proof is +valid whether the elements used in the proof are real or imaginary." + + + + +*181. Poncelet and Cauchy.* The efforts of Poncelet to compel the +acceptance of this principle independent of analysis resulted in a bitter +and perhaps fruitless controversy between him and the great analyst +Cauchy. In his review of Poncelet's great work on the projective +properties of figures(18) Cauchy says, "In his preliminary discourse the +author insists once more on the necessity of admitting into geometry what +he calls the 'principle of continuity.' We have already discussed that +principle ... and we have found that that principle is, properly speaking, +only a strong induction, which cannot be indiscriminately applied to all +sorts of questions in geometry, nor even in analysis. The reasons which we +have given as the basis of our opinion are not affected by the +considerations which the author has developed in his Traité des Propriétés +Projectives des Figures." Although this principle is constantly made use +of at the present day in all sorts of investigations, careful +geometricians are in agreement with Cauchy in this matter, and use it only +as a convenient working tool for purposes of exploration. The one-to-one +correspondence between geometric forms and algebraic analysis is subject +to many and important exceptions. The field of analysis is much more +general than the field of geometry, and while there may be a clear notion +in analysis to, correspond to every notion in geometry, the opposite is +not true. Thus, in analysis we can deal with four coördinates as well as +with three, but the existence of a space of four dimensions to correspond +to it does not therefore follow. When the geometer speaks of the two real +or imaginary intersections of a straight line with a conic, he is really +speaking the language of algebra. _Apart from the algebra involved_, it is +the height of absurdity to try to distinguish between the two points in +which a line _fails to meet a conic!_ + + + + +*182. The work of Poncelet.* But Poncelet's right to the title "The +Father of Modern Geometry" does not stand or fall with the principle of +contingent relations. In spite of the fact that he considered this +principle the most important of all his discoveries, his reputation rests +on more solid foundations. He was the first to study figures _in +homology_, which is, in effect, the collineation described in § 175, where +corresponding points lie on straight lines through a fixed point. He was +the first to give, by means of the theory of poles and polars, a +transformation by which an element is transformed into another of a +different sort. Point-to-point transformations will sometimes generalize a +theorem, but the transformation discovered by Poncelet may throw a theorem +into one of an entirely different aspect. The principle of duality, first +stated in definite form by Gergonne,(19) the editor of the mathematical +journal in which Poncelet published his researches, was based by Poncelet +on his theory of poles and polars. He also put into definite form the +notions of the infinitely distant elements in space as all lying on a +plane at infinity. + + + + +*183. The debt which analytic geometry owes to synthetic geometry.* The +reaction of pure geometry on analytic geometry is clearly seen in the +development of the notion of the _class_ of a curve, which is the number +of tangents that may be drawn from a point in a plane to a given curve +lying in that plane. If a point moves along a conic, it is easy to +show--and the student is recommended to furnish the proof--that the polar +line with respect to a conic remains tangent to another conic. This may be +expressed by the statement that the conic is of the second order and also +of the second class. It might be thought that if a point moved along a +cubic curve, its polar line with respect to a conic would remain tangent +to another cubic curve. This is not the case, however, and the +investigations of Poncelet and others to determine the class of a given +curve were afterward completed by Plücker. The notion of geometrical +transformation led also to the very important developments in the theory +of invariants, which, geometrically, are the elements and configurations +which are not affected by the transformation. The anharmonic ratio of four +points is such an invariant, since it remains unaltered under all +projective transformations. + + + + +*184. Steiner and his work.* In the work of Poncelet and his +contemporaries, Chasles, Brianchon, Hachette, Dupin, Gergonne, and others, +the anharmonic ratio enjoyed a fundamental rôle. It is made also the basis +of the great work of Steiner,(20) who was the first to treat of the conic, +not as the projection of a circle, but as the locus of intersection of +corresponding rays of two projective pencils. Steiner not only related to +each other, in one-to-one correspondence, point-rows and pencils and all +the other fundamental forms, but he set into correspondence even curves +and surfaces of higher degrees. This new and fertile conception gave him +an easy and direct route into the most abstract and difficult regions of +pure geometry. Much of his work was given without any indication of the +methods by which he had arrived at it, and many of his results have only +recently been verified. + + + + +*185. Von Staudt and his work.* To complete the theory of geometry as we +have it to-day it only remained to free it from its dependence on the +semimetrical basis of the anharmonic ratio. This work was accomplished by +Von Staudt,(21) who applied himself to the restatement of the theory of +geometry in a form independent of analytic and metrical notions. The +method which has been used in Chapter II to develop the notion of four +harmonic points by means of the complete quadrilateral is due to Von +Staudt. His work is characterized by a most remarkable generality, in that +he is able to discuss real and imaginary forms with equal ease. Thus he +assumes a one-to-one correspondence between the points and lines of a +plane, and defines a conic as the locus of points which lie on their +corresponding lines, and a pencil of rays of the second order as the +system of lines which pass through their corresponding points. The +point-row and pencil of the second order may be real or imaginary, but his +theorems still apply. An illustration of a correspondence of this sort, +where the conic is imaginary, is given in § 15 of the first chapter. In +defining conjugate imaginary points on a line, Von Staudt made use of an +involution of points having no double points. His methods, while elegant +and powerful, are hardly adapted to an elementary course, but Reye(22) and +others have done much toward simplifying his presentation. + + + + +*186. Recent developments.* It would be only confusing to the student to +attempt to trace here the later developments of the science of protective +geometry. It is concerned for the most part with curves and surfaces of a +higher degree than the second. Purely synthetic methods have been used +with marked success in the study of the straight line in space. The +struggle between analysis and pure geometry has long since come to an end. +Each has its distinct advantages, and the mathematician who cultivates one +at the expense of the other will never attain the results that he would +attain if both methods were equally ready to his hand. Pure geometry has +to its credit some of the finest discoveries in mathematics, and need not +apologize for having been born. The day of its usefulness has not passed +with the invention of abridged notation and of short methods in analysis. +While we may be certain that any geometrical problem may always be stated +in analytic form, it does not follow that that statement will be simple or +easily interpreted. For many mathematicians the geometric intuitions are +weak, and for such the method will have little attraction. On the other +hand, there will always be those for whom the subject will have a peculiar +glamor--who will follow with delight the curious and unexpected relations +between the forms of space. There is a corresponding pleasure, doubtless, +for the analyst in tracing the marvelous connections between the various +fields in which he wanders, and it is as absurd to shut one's eyes to the +beauties in one as it is to ignore those in the other. "Let us cultivate +geometry, then," says Darboux,(23) "without wishing in all points to equal +it to its rival. Besides, if we were tempted to neglect it, it would not +be long in finding in the applications of mathematics, as once it has +already done, the means of renewing its life and of developing itself +anew. It is like the Giant Antaeus, who renewed, his strength by touching +the earth." + + + + + +INDEX + + + (The numbers refer to the paragraphs) + +Abel (1802-1829), 179 + +Analogy, 24 + +Analytic geometry, 21, 118, 119, 120, 146, 176, 180 + +Anharmonic ratio, 46, 161, 184, 185 + +Apollonius (second half of third century B.C.), 70 + +Archimedes (287-212 B.C.), 176 + +Aristotle (384-322 B.C.), 169 + +Asymptotes, 111, 113, 114, 115, 116, 117, 118, 148 + +Axes of a conic, 148 + +Axial pencil, 7, 8, 23, 50, 54 + +Axis of perspectivity, 8, 47 + +Bacon (1561-1626), 162 + +Bisection, 41, 109 + +Brianchon (1785-1864), 84, 85, 86, 88, 89, 90, 95, 105, 113, 174, 184 + +Calculus, 176 + +Carnot (1796-1832), 179 + +Cauchy (1789-1857), 179, 181 + +Cavalieri (1598-1647), 162 + +Center of a conic, 107, 112, 148 + +Center of involution, 141, 142 + +Center of perspectivity, 8 + +Central conic, 120 + +Chasles (1793-1880), 168, 179, 180, 184 + +Circle, 21, 73, 80, 145, 146, 147 + +Circular involution, 147, 149, 150, 151 + +Circular points, 146 + +Class of a curve, 183 + +Classification of conics, 110 + +Collineation, 175 + +Concentric pencils, 50 + +Cone of the second order, 59 + +Conic, 73, 81 + +Conjugate diameters, 114, 148 + +Conjugate normal, 151 + +Conjugate points and lines, 100, 109, 138, 139, 140 + +Constants in an equation, 21 + +Contingent relations, 180, 181 + +Continuity, 180, 181 + +Continuous correspondence, 9, 10, 21, 49 + +Corresponding elements, 64 + +Counting, 1, 4 + +Cross ratio, 46 + +Darboux, 176, 186 + +De Beaugrand, 170 + +Degenerate pencil of rays of the second order, 58, 93 + +Degenerate point-row of the second order, 56, 78 + +De la Hire (1640-1718), 168, 171, 175 + +Desargues (1593-1662), 25, 26, 40, 121, 125, 162, 163, 164, 165, 166, 167, +168, 169, 170, 171, 174, 175 + +Descartes (1596-1650), 162, 170, 171, 174, 176 + +Descriptive geometry, 179 + +Diameter, 107 + +Directrix, 157, 158, 159, 160 + +Double correspondence, 128, 130 + +Double points of an involution, 124 + +Double rays of an involution, 133, 134 + +Duality, 94, 104, 161, 180, 182 + +Dupin (1784-1873), 174, 184 + +Eccentricity of conic, 159 + +Ellipse, 110, 111, 162 + +Equation of conic, 118, 119, 120 + +Euclid (ca. 300 B.C.), 6, 22, 104 + +Euler (1707-1783), 166 + +Fermat (1601-1665), 162, 171 + +Foci of a conic, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162 + +Fourier (1768-1830), 179 + +Fourth harmonic, 29 + +Fundamental form, 7, 16, 23, 36, 47, 60, 184 + +Galileo (1564-1642), 162, 169, 170, 176 + +Gauss (1777-1855), 179 + +Gergonne (1771-1859), 182, 184 + +Greek geometry, 161 + +Hachette (1769-1834), 179, 184 + +Harmonic conjugates, 29, 30, 39 + +Harmonic elements, 86, 49, 91, 163, 185 + +Harmonic lines, 33, 34, 35, 66, 67 + +Harmonic planes, 34, 35 + +Harmonic points, 29, 31, 32, 33, 34, 35, 36, 43, 71, 161 + +Harmonic tangents to a conic, 91, 92 + +Harvey (1578-1657), 169 + +Homology, 180, 182 + +Huygens (1629-1695), 162 + +Hyperbola, 110, 111, 113, 114, 115, 116, 117, 118, 162 + +Imaginary elements, 146, 180, 181, 182, 185 + +Infinitely distant elements, 6, 9, 22, 39, 40, 41, 104, 107, 110 + +Infinity, 4, 5, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 41 + +Involution, 37, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, +134, 135, 136, 137, 138, 139, 140, 161, 163, 170 + +Kepler (1571-1630), 162 + +Lagrange (1736-1813), 176, 179 + +Laplace (1749-1827), 179 + +Legendre (1752-1833), 179 + +Leibniz (1646-1716), 173 + +Linear construction, 40, 41, 42 + +Maclaurin (1698-1746), 177, 178 + +Measurements, 23, 40, 41, 104 + +Mersenne (1588-1648), 168, 171 + +Metrical theorems, 40, 104, 106, 107, 141 + +Middle point, 39, 41 + +Möbius (1790-1868), 179 + +Monge (1746-1818), 179, 180 + +Napier (1550-1617), 162 + +Newton (1642-1727), 177 + +Numbers, 4, 21, 43 + +Numerical computations, 43, 44, 46 + +One-to-one correspondence, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 24, 36, 87, 43, +60, 104, 106, 184 + +Opposite sides of a hexagon, 70 + +Opposite sides of a quadrilateral, 28, 29 + +Order of a form, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 + +Pappus (fourth century A.D.), 161 + +Parabola, 110, 111, 112, 119, 162 + +Parallel lines, 39, 41, 162 + +Pascal (1623-1662), 69, 70, 74, 75, 76, 77, 78, 95, 105, 125, 162, 169, +171, 172, 173 + +Pencil of planes of the second order, 59 + +Pencil of rays, 6, 7, 8, 23; of the second order, 57, 60, 79, 81 + +Perspective position, 6, 8, 35, 37, 51, 53, 71 + +Plane system, 16, 23 + +Planes on space, 17 + +Point of contact, 87, 88, 89, 90 + +Point system, 16, 23 + +Point-row, 6, 7, 8, 9, 23; of the second order, 55, 60, 61, 66, 67, 72 + +Points in space, 18 + +Pole and polar, 98, 99, 100, 101, 138, 164, 166 + +Poncelet (1788-1867), 177, 179, 180, 181, 182, 183, 184 + +Principal axis of a conic, 157 + +Projection, 161 + +Protective axial pencils, 59 + +Projective correspondence, 9, 35, 36, 37, 47, 71, 92, 104 + +Projective pencils, 53, 64, 68 + +Projective point-rows, 51, 79 + +Projective properties, 24 + +Projective theorems, 40, 104 + +Quadrangle, 26, 27, 28, 29 + +Quadric cone, 59 + +Quadrilateral, 88, 95, 96 + +Roberval (1602-1675), 168 + +Ruler construction, 40 + +Scheiner, 169 + +Self-corresponding elements, 47, 48, 49, 50, 51 + +Self-dual, 105 + +Self-polar triangle, 102 + +Separation of elements in involution, 148 + +Separation of harmonic conjugates, 38 + +Sequence of points, 49 + +Sign of segment, 44, 45 + +Similarity, 106 + +Skew lines, 12 + +Space system, 19, 23 + +Sphere, 21 + +Steiner (1796-1863), 129, 130, 131, 177, 179, 184 + +Steiner's construction, 129, 130, 131 + +Superposed point-rows, 47, 48, 49 + +Surfaces of the second degree, 166 + +System of lines in space, 20, 23 + +Systems of conics, 125 + +Tangent line, 61, 80, 81, 87, 88, 89, 90, 91, 92 + +Tycho Brahe (1546-1601), 162 + +Verner, 161 + +Vertex of conic, 157, 159 + +Von Staudt (1798-1867), 179, 185 + +Wallis (1616-1703), 162 + + + + + + +FOOTNOTES + + + 1 The more general notion of _anharmonic ratio_, which includes the + harmonic ratio as a special case, was also known to the ancients. + While we have not found it necessary to make use of the anharmonic + ratio in building up our theory, it is so frequently met with in + treatises on geometry that some account of it should be given. + + Consider any four points, _A_, _B_, _C_, _D_, on a line, and join + them to any point _S_ not on that line. Then the triangles _ASB_, + _GSD_, _ASD_, _CSB_, having all the same altitude, are to each other + as their bases. Also, since the area of any triangle is one half the + product of any two of its sides by the sine of the angle included + between them, we have + + [formula] + + Now the fraction on the right would be unchanged if instead of the + points _A_, _B_, _C_, _D_ we should take any other four points _A'_, + _B'_, _C'_, _D'_ lying on any other line cutting across _SA_, _SB_, + _SC_, _SD_. In other words, _the fraction on the left is unaltered + in value if the points __A__, __B__, __C__, __D__ are replaced by + any other four points perspective to them._ Again, the fraction on + the left is unchanged if some other point were taken instead of _S_. + In other words, _the fraction on the right is unaltered if we + replace the four lines __SA__, __SB__, __SC__, __SD__ by any other + four lines perspective to them._ The fraction on the left is called + the _anharmonic ratio_ of the four points _A_, _B_, _C_, _D_; the + fraction on the right is called the _anharmonic ratio_ of the four + lines _SA_, _SB_, _SC_, _SD_. The anharmonic ratio of four points is + sometimes written (_ABCD_), so that + + [formula] + + If we take the points in different order, the value of the + anharmonic ratio will not necessarily remain the same. The + twenty-four different ways of writing them will, however, give not + more than six different values for the anharmonic ratio, for by + writing out the fractions which define them we can find that _(ABCD) + = (BADC) = (CDAB) = (DCBA)_. If we write _(ABCD) = a_, it is not + difficult to show that the six values are + + [formula] + + The proof of this we leave to the student. + + If _A_, _B_, _C_, _D_ are four harmonic points (see Fig. 6, p. *22), + and a quadrilateral _KLMN_ is constructed such that _KL_ and _MN_ + pass through _A_, _KN_ and _LM_ through _C_, _LN_ through _B_, and + _KM_ through _D_, then, projecting _A_, _B_, _C_, _D_ from _L_ upon + _KM_, we have _(ABCD) = (KOMD)_, where _O_ is the intersection of + _KM_ with _LN_. But, projecting again the points _K_, _O_, _M_, _D_ + from _N_ back upon the line _AB_, we have _(KOMD) = (CBAD)_. From + this we have + + _(ABCD) = (CBAD),_ + + or + + [formula] + + whence _a = 0_ or _a = 2_. But it is easy to see that _a = 0_ + implies that two of the four points coincide. For four harmonic + points, therefore, the six values of the anharmonic ratio reduce to + three, namely, 2, [formula], and -1. Incidentally we see that if an + interchange of any two points in an anharmonic ratio does not change + its value, then the four points are harmonic. + + [Figure 49] + + FIG. 49 + + + Many theorems of projective geometry are succinctly stated in terms + of anharmonic ratios. Thus, the _anharmonic ratio of any four + elements of a form is equal to the anharmonic ratio of the + corresponding four elements in any form projectively related to it. + The anharmonic ratio of the lines joining any four fixed points on a + conic to a variable fifthpoint on the conic is constant. The locus + of points from which four points in a plane are seen along four rays + of constant anharmonic ratio is a conic through the four points._ We + leave these theorems for the student, who may also justify the + following solution of the problem: _Given three points and a certain + anharmonic ratio, to find a fourth point which shall have with the + given three the given anharmonic ratio._ Let _A_, _B_, _D_ be the + three given points (Fig. 49). On any convenient line through _A_ + take two points _B'_ and _D'_ such that _AB'/AD'_ is equal to the + given anharmonic ratio. Join _BB'_ and _DD'_ and let the two lines + meet in _S_. Draw through _S_ a parallel to _AB'_. This line will + meet _AB_ in the required point _C_. + + 2 Pappus, Mathematicae Collectiones, vii, 129. + + 3 J. Verneri, Libellus super vigintiduobus elementis conicis, etc. + 1522. + + 4 Kepler, Ad Vitellionem paralipomena quibus astronomiae pars optica + traditur. 1604. + + 5 Desargues, Bruillon-project d'une atteinte aux événements des + rencontres d'un cône avec un plan. 1639. Edited and analyzed by + Poudra, 1864. + + 6 The term 'pole' was first introduced, in the sense in which we have + used it, in 1810, by a French mathematician named Servois (Gergonne, + _Annales des Mathéématiques_, I, 337), and the corresponding term + 'polar' by the editor, Gergonne, of this same journal three years + later. + + 7 Euler, Introductio in analysin infinitorum, Appendix, cap. V. 1748. + + 8 OEuvres de Desargues, t. II, 132. + + 9 OEuvres de Desargues, t. II, 370. + + 10 OEuvres de Descartes, t. II, 499. + + 11 OEuvres de Pascal, par Brunsehvig et Boutroux, t. I, 252. + + 12 Chasles, Histoire de la Géométrie, 70. + + 13 OEuvres de Desargues, t. I, 231. + + 14 See Ball, History of Mathematics, French edition, t. II, 233. + + 15 Newton, Principia, lib. i, lemma XXI. + + 16 Maclaurin, Philosophical Transactions of the Royal Society of + London, 1735. + + 17 Monge, Géométrie Descriptive. 1800. + + 18 Poncelet, Traité des Propriétés Projectives des Figures. 1822. (See + p. 357, Vol. II, of the edition of 1866.) + + 19 Gergonne, _Annales de Mathématiques, XVI, 209. 1826._ + + 20 Steiner, Systematische Ehtwickelung der Abhängigkeit geometrischer + Gestalten von einander. 1832. + + 21 Von Staudt, Geometrie der Lage. 1847. + + 22 Reye, Geometrie der Lage. Translated by Holgate, 1897. + + 23 Ball, loc. cit. p. 261. + + + + +***END OF THE PROJECT GUTENBERG EBOOK AN ELEMENTARY COURSE IN SYNTHETIC PROJECTIVE GEOMETRY*** + + + + +CREDITS + + +November 2005 + + Project Gutenberg Edition + Joshua Hutchinson, Cornell University, Online Distributed + Proofreading Team + +June 2006 + + Added PGHeader/PGFooter. + Joshua Hutchinson + + +A WORD FROM PROJECT GUTENBERG + + +This file should be named 17001-0.txt or 17001-0.zip. + +This and all associated files of various formats will be found in: + + + http://www.gutenberg.org/dirs/1/7/0/0/17001/ + + +Updated editions will replace the previous one -- the old editions will be +renamed. + +Creating the works from public domain print editions means that no one +owns a United States copyright in these works, so the Foundation (and +you!) can copy and distribute it in the United States without permission +and without paying copyright royalties. Special rules, set forth in the +General Terms of Use part of this license, apply to copying and +distributing Project Gutenberg{~TRADE MARK SIGN~} electronic works to protect the Project +Gutenberg{~TRADE MARK SIGN~} concept and trademark. Project Gutenberg is a registered +trademark, and may not be used if you charge for the eBooks, unless you +receive specific permission. If you do not charge anything for copies of +this eBook, complying with the rules is very easy. You may use this eBook +for nearly any purpose such as creation of derivative works, reports, +performances and research. They may be modified and printed and given away +-- you may do practically _anything_ with public domain eBooks. +Redistribution is subject to the trademark license, especially commercial +redistribution. + + +THE FULL PROJECT GUTENBERG LICENSE + + +_Please read this before you distribute or use this work._ + +To protect the Project Gutenberg{~TRADE MARK SIGN~} mission of promoting the free +distribution of electronic works, by using or distributing this work (or +any other work associated in any way with the phrase "Project Gutenberg"), +you agree to comply with all the terms of the Full Project Gutenberg{~TRADE MARK SIGN~} +License (available with this file or online at +http://www.gutenberg.org/license). + + +Section 1. + + +General Terms of Use & Redistributing Project Gutenberg{~TRADE MARK SIGN~} electronic works + + +1.A. + + +By reading or using any part of this Project Gutenberg{~TRADE MARK SIGN~} electronic work, +you indicate that you have read, understand, agree to and accept all the +terms of this license and intellectual property (trademark/copyright) +agreement. If you do not agree to abide by all the terms of this +agreement, you must cease using and return or destroy all copies of +Project Gutenberg{~TRADE MARK SIGN~} electronic works in your possession. If you paid a fee +for obtaining a copy of or access to a Project Gutenberg{~TRADE MARK SIGN~} electronic work +and you do not agree to be bound by the terms of this agreement, you may +obtain a refund from the person or entity to whom you paid the fee as set +forth in paragraph 1.E.8. + + +1.B. + + +"Project Gutenberg" is a registered trademark. It may only be used on or +associated in any way with an electronic work by people who agree to be +bound by the terms of this agreement. There are a few things that you can +do with most Project Gutenberg{~TRADE MARK SIGN~} electronic works even without complying +with the full terms of this agreement. See paragraph 1.C below. There are +a lot of things you can do with Project Gutenberg{~TRADE MARK SIGN~} electronic works if you +follow the terms of this agreement and help preserve free future access to +Project Gutenberg{~TRADE MARK SIGN~} electronic works. See paragraph 1.E below. + + +1.C. + + +The Project Gutenberg Literary Archive Foundation ("the Foundation" or +PGLAF), owns a compilation copyright in the collection of Project +Gutenberg{~TRADE MARK SIGN~} electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an individual +work is in the public domain in the United States and you are located in +the United States, we do not claim a right to prevent you from copying, +distributing, performing, displaying or creating derivative works based on +the work as long as all references to Project Gutenberg are removed. Of +course, we hope that you will support the Project Gutenberg{~TRADE MARK SIGN~} mission of +promoting free access to electronic works by freely sharing Project +Gutenberg{~TRADE MARK SIGN~} works in compliance with the terms of this agreement for +keeping the Project Gutenberg{~TRADE MARK SIGN~} name associated with the work. You can +easily comply with the terms of this agreement by keeping this work in the +same format with its attached full Project Gutenberg{~TRADE MARK SIGN~} License when you +share it without charge with others. + + +1.D. + + +The copyright laws of the place where you are located also govern what you +can do with this work. Copyright laws in most countries are in a constant +state of change. If you are outside the United States, check the laws of +your country in addition to the terms of this agreement before +downloading, copying, displaying, performing, distributing or creating +derivative works based on this work or any other Project Gutenberg{~TRADE MARK SIGN~} work. +The Foundation makes no representations concerning the copyright status of +any work in any country outside the United States. + + +1.E. + + +Unless you have removed all references to Project Gutenberg: + + +1.E.1. + + +The following sentence, with active links to, or other immediate access +to, the full Project Gutenberg{~TRADE MARK SIGN~} License must appear prominently whenever +any copy of a Project Gutenberg{~TRADE MARK SIGN~} work (any work on which the phrase +"Project Gutenberg" appears, or with which the phrase "Project Gutenberg" +is associated) is accessed, displayed, performed, viewed, copied or +distributed: + + + This eBook is for the use of anyone anywhere at no cost and with + almost no restrictions whatsoever. You may copy it, give it away + or re-use it under the terms of the Project Gutenberg License + included with this eBook or online at http://www.gutenberg.org + + +1.E.2. + + +If an individual Project Gutenberg{~TRADE MARK SIGN~} electronic work is derived from the +public domain (does not contain a notice indicating that it is posted with +permission of the copyright holder), the work can be copied and +distributed to anyone in the United States without paying any fees or +charges. If you are redistributing or providing access to a work with the +phrase "Project Gutenberg" associated with or appearing on the work, you +must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 +or obtain permission for the use of the work and the Project Gutenberg{~TRADE MARK SIGN~} +trademark as set forth in paragraphs 1.E.8 or 1.E.9. + + +1.E.3. + + +If an individual Project Gutenberg{~TRADE MARK SIGN~} electronic work is posted with the +permission of the copyright holder, your use and distribution must comply +with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed +by the copyright holder. Additional terms will be linked to the Project +Gutenberg{~TRADE MARK SIGN~} License for all works posted with the permission of the +copyright holder found at the beginning of this work. + + +1.E.4. + + +Do not unlink or detach or remove the full Project Gutenberg{~TRADE MARK SIGN~} License +terms from this work, or any files containing a part of this work or any +other work associated with Project Gutenberg{~TRADE MARK SIGN~}. + + +1.E.5. + + +Do not copy, display, perform, distribute or redistribute this electronic +work, or any part of this electronic work, without prominently displaying +the sentence set forth in paragraph 1.E.1 with active links or immediate +access to the full terms of the Project Gutenberg{~TRADE MARK SIGN~} License. + + +1.E.6. + + +You may convert to and distribute this work in any binary, compressed, +marked up, nonproprietary or proprietary form, including any word +processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenberg{~TRADE MARK SIGN~} work in a format other than +"Plain Vanilla ASCII" or other format used in the official version posted +on the official Project Gutenberg{~TRADE MARK SIGN~} web site (http://www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original "Plain Vanilla ASCII" or other form. +Any alternate format must include the full Project Gutenberg{~TRADE MARK SIGN~} License as +specified in paragraph 1.E.1. + + +1.E.7. + + +Do not charge a fee for access to, viewing, displaying, performing, +copying or distributing any Project Gutenberg{~TRADE MARK SIGN~} works unless you comply +with paragraph 1.E.8 or 1.E.9. + + +1.E.8. + + +You may charge a reasonable fee for copies of or providing access to or +distributing Project Gutenberg{~TRADE MARK SIGN~} electronic works provided that + + - You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenberg{~TRADE MARK SIGN~} works calculated using the method you + already use to calculate your applicable taxes. The fee is owed to + the owner of the Project Gutenberg{~TRADE MARK SIGN~} trademark, but he has agreed to + donate royalties under this paragraph to the Project Gutenberg + Literary Archive Foundation. Royalty payments must be paid within 60 + days following each date on which you prepare (or are legally + required to prepare) your periodic tax returns. Royalty payments + should be clearly marked as such and sent to the Project Gutenberg + Literary Archive Foundation at the address specified in Section 4, + "Information about donations to the Project Gutenberg Literary + Archive Foundation." + + - You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenberg{~TRADE MARK SIGN~} License. + You must require such a user to return or destroy all copies of the + works possessed in a physical medium and discontinue all use of and + all access to other copies of Project Gutenberg{~TRADE MARK SIGN~} works. + + - You provide, in accordance with paragraph 1.F.3, a full refund of + any money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days of + receipt of the work. + + - You comply with all other terms of this agreement for free + distribution of Project Gutenberg{~TRADE MARK SIGN~} works. + + +1.E.9. + + +If you wish to charge a fee or distribute a Project Gutenberg{~TRADE MARK SIGN~} electronic +work or group of works on different terms than are set forth in this +agreement, you must obtain permission in writing from both the Project +Gutenberg Literary Archive Foundation and Michael Hart, the owner of the +Project Gutenberg{~TRADE MARK SIGN~} trademark. Contact the Foundation as set forth in +Section 3 below. + + +1.F. + + +1.F.1. + + +Project Gutenberg volunteers and employees expend considerable effort to +identify, do copyright research on, transcribe and proofread public domain +works in creating the Project Gutenberg{~TRADE MARK SIGN~} collection. Despite these +efforts, Project Gutenberg{~TRADE MARK SIGN~} electronic works, and the medium on which they +may be stored, may contain "Defects," such as, but not limited to, +incomplete, inaccurate or corrupt data, transcription errors, a copyright +or other intellectual property infringement, a defective or damaged disk +or other medium, a computer virus, or computer codes that damage or cannot +be read by your equipment. + + +1.F.2. + + +LIMITED WARRANTY, DISCLAIMER OF DAMAGES -- Except for the "Right of +Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg +Literary Archive Foundation, the owner of the Project Gutenberg{~TRADE MARK SIGN~} +trademark, and any other party distributing a Project Gutenberg{~TRADE MARK SIGN~} +electronic work under this agreement, disclaim all liability to you for +damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE +NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH +OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE +FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT +WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, +PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY +OF SUCH DAMAGE. + + +1.F.3. + + +LIMITED RIGHT OF REPLACEMENT OR REFUND -- If you discover a defect in this +electronic work within 90 days of receiving it, you can receive a refund +of the money (if any) you paid for it by sending a written explanation to +the person you received the work from. If you received the work on a +physical medium, you must return the medium with your written explanation. +The person or entity that provided you with the defective work may elect +to provide a replacement copy in lieu of a refund. If you received the +work electronically, the person or entity providing it to you may choose +to give you a second opportunity to receive the work electronically in +lieu of a refund. If the second copy is also defective, you may demand a +refund in writing without further opportunities to fix the problem. + + +1.F.4. + + +Except for the limited right of replacement or refund set forth in +paragraph 1.F.3, this work is provided to you 'AS-IS,' WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + + +1.F.5. + + +Some states do not allow disclaimers of certain implied warranties or the +exclusion or limitation of certain types of damages. If any disclaimer or +limitation set forth in this agreement violates the law of the state +applicable to this agreement, the agreement shall be interpreted to make +the maximum disclaimer or limitation permitted by the applicable state +law. The invalidity or unenforceability of any provision of this agreement +shall not void the remaining provisions. + + +1.F.6. + + +INDEMNITY -- You agree to indemnify and hold the Foundation, the trademark +owner, any agent or employee of the Foundation, anyone providing copies of +Project Gutenberg{~TRADE MARK SIGN~} electronic works in accordance with this agreement, and +any volunteers associated with the production, promotion and distribution +of Project Gutenberg{~TRADE MARK SIGN~} electronic works, harmless from all liability, costs +and expenses, including legal fees, that arise directly or indirectly from +any of the following which you do or cause to occur: (a) distribution of +this or any Project Gutenberg{~TRADE MARK SIGN~} work, (b) alteration, modification, or +additions or deletions to any Project Gutenberg{~TRADE MARK SIGN~} work, and (c) any Defect +you cause. + + +Section 2. + + + Information about the Mission of Project Gutenberg{~TRADE MARK SIGN~} + + +Project Gutenberg{~TRADE MARK SIGN~} is synonymous with the free distribution of electronic +works in formats readable by the widest variety of computers including +obsolete, old, middle-aged and new computers. It exists because of the +efforts of hundreds of volunteers and donations from people in all walks +of life. + +Volunteers and financial support to provide volunteers with the assistance +they need, is critical to reaching Project Gutenberg{~TRADE MARK SIGN~}'s goals and ensuring +that the Project Gutenberg{~TRADE MARK SIGN~} collection will remain freely available for +generations to come. In 2001, the Project Gutenberg Literary Archive +Foundation was created to provide a secure and permanent future for +Project Gutenberg{~TRADE MARK SIGN~} and future generations. To learn more about the Project +Gutenberg Literary Archive Foundation and how your efforts and donations +can help, see Sections 3 and 4 and the Foundation web page at +http://www.pglaf.org. + + +Section 3. + + + Information about the Project Gutenberg Literary Archive Foundation + + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the state of +Mississippi and granted tax exempt status by the Internal Revenue Service. +The Foundation's EIN or federal tax identification number is 64-6221541. +Its 501(c)(3) letter is posted at +http://www.gutenberg.org/fundraising/pglaf. Contributions to the Project +Gutenberg Literary Archive Foundation are tax deductible to the full +extent permitted by U.S. federal laws and your state's laws. + +The Foundation's principal office is located at 4557 Melan Dr. +S. Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at 809 North +1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact information +can be found at the Foundation's web site and official page at +http://www.pglaf.org + +For additional contact information: + + + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. + + + Information about Donations to the Project Gutenberg Literary Archive + Foundation + + +Project Gutenberg{~TRADE MARK SIGN~} depends upon and cannot survive without wide spread +public support and donations to carry out its mission of increasing the +number of public domain and licensed works that can be freely distributed +in machine readable form accessible by the widest array of equipment +including outdated equipment. Many small donations ($1 to $5,000) are +particularly important to maintaining tax exempt status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United States. +Compliance requirements are not uniform and it takes a considerable +effort, much paperwork and many fees to meet and keep up with these +requirements. We do not solicit donations in locations where we have not +received written confirmation of compliance. To SEND DONATIONS or +determine the status of compliance for any particular state visit +http://www.gutenberg.org/fundraising/donate + +While we cannot and do not solicit contributions from states where we have +not met the solicitation requirements, we know of no prohibition against +accepting unsolicited donations from donors in such states who approach us +with offers to donate. + +International donations are gratefully accepted, but we cannot make any +statements concerning tax treatment of donations received from outside the +United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation methods +and addresses. Donations are accepted in a number of other ways including +checks, online payments and credit card donations. To donate, please +visit: http://www.gutenberg.org/fundraising/donate + + +Section 5. + + + General Information About Project Gutenberg{~TRADE MARK SIGN~} electronic works. + + +Professor Michael S. Hart is the originator of the Project Gutenberg{~TRADE MARK SIGN~} +concept of a library of electronic works that could be freely shared with +anyone. For thirty years, he produced and distributed Project Gutenberg{~TRADE MARK SIGN~} +eBooks with only a loose network of volunteer support. + +Project Gutenberg{~TRADE MARK SIGN~} eBooks are often created from several printed editions, +all of which are confirmed as Public Domain in the U.S. unless a copyright +notice is included. Thus, we do not necessarily keep eBooks in compliance +with any particular paper edition. + +Each eBook is in a subdirectory of the same number as the eBook's eBook +number, often in several formats including plain vanilla ASCII, compressed +(zipped), HTML and others. + +Corrected _editions_ of our eBooks replace the old file and take over the +old filename and etext number. The replaced older file is renamed. +_Versions_ based on separate sources are treated as new eBooks receiving +new filenames and etext numbers. + +Most people start at our Web site which has the main PG search facility: + + + http://www.gutenberg.org + + +This Web site includes information about Project Gutenberg{~TRADE MARK SIGN~}, including how +to make donations to the Project Gutenberg Literary Archive Foundation, +how to help produce our new eBooks, and how to subscribe to our email +newsletter to hear about new eBooks. + + + + + + +***FINIS*** +
\ No newline at end of file diff --git a/old/17001-8.zip b/old/17001-8.zip Binary files differnew file mode 100644 index 0000000..2dcd542 --- /dev/null +++ b/old/17001-8.zip diff --git a/old/17001-pdf.pdf b/old/17001-pdf.pdf new file mode 100644 index 0000000..4f052b7 --- /dev/null +++ b/old/17001-pdf.pdf @@ -0,0 +1,21931 @@ +%PDF-1.4 +3 0 obj << +/Length 1499 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 -46.771 -529.134 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(The)-508(Project)-507(Gutenberg)-508(EBook)-508(of)-508(An)-507(Elementary)-508(Course)-508(in)]TJ 0 -13.549 Td[(Synthetic)-250(Projective)-250(Geometry)-250(by)-250(Lehmer,)-250(Derrick)-250(Norman)]TJ 0 -29.913 Td[(This)-546(eBook)-546(is)-546(for)-546(the)-546(use)-546(of)-546(anyone)-546(anywhere)-547(at)-546(no)-546(cost)]TJ 0 -13.549 Td[(and)-470(with)-470(almost)-470(no)-470(restrictions)-470(whatsoever.)-910(You)-470(may)-470(copy)]TJ 0 -13.549 Td[(it,)-565(give)-503(it)-502(away)-502(or)-502(re-use)-502(it)-503(under)-502(the)-502(terms)-502(of)-502(the)-503(Project)]TJ 0 -13.549 Td[(Gutenberg)-633(License)-632(included)-633(with)-632(this)-633(eBook)-632(or)-633(online)-633(at)]TJ 0 -13.55 Td[(http://www.gutenberg.org/license)]TJ 0 -29.913 Td[(Title:)-500(An)-500(Elementary)-500(Course)-500(in)-500(Synthetic)-500(Projective)]TJ 0 -13.549 Td[(Geometry)]TJ 0 -27.098 Td[(Author:)-500(Lehmer,)-500(Derrick)-500(Norman)]TJ 0 -27.098 Td[(Release)-500(Date:)-500(November)-500(4,)-500(2005)-500([Ebook)-500(17001])]TJ 0 -27.099 Td[(Language:)-500(English)]TJ 0 -40.647 Td[(***START)-500(OF)-500(THE)-500(PROJECT)-500(GUTENBERG)-500(EBOOK)]TJ 0 -13.55 Td[(AN)-500(ELEMENTARY)-500(COURSE)-500(IN)-500(SYNTHETIC)]TJ 0 -13.549 Td[(PROJECTIVE)-500(GEOMETRY***)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2 0 obj << +/Type /Page +/Contents 3 0 R +/Resources 1 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +/Annots [ 7 0 R 8 0 R ] +>> endobj +7 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.547 431.687 262.463 441.407] +/Subtype /Link +/A << /S /GoTo /D (pglicense) >> +>> endobj +8 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [46.771 418.138 193.422 427.858] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/license) >> +>> endobj +4 0 obj << +/D [2 0 R /XYZ 46.771 529.134 null] +>> endobj +1 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +13 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +12 0 obj << +/Type /Page +/Contents 13 0 R +/Resources 11 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +>> endobj +11 0 obj << +/ProcSet [ /PDF ] +>> endobj +16 0 obj << +/Length 440 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 18.959 Tf 46.771 516.375 Td[(An)-253(Elementary)-253(Course)-254(in)-253(Synthetic)]TJ 0 -24.647 Td[(Projective)-250(Geometry)]TJ 0 -43.519 Td[(by)-250(Lehmer,)-250(Derrick)-250(Norman)]TJ/F16 15.781 Tf 0 -51.933 Td[(Edition)-250(1,)-250(\050November)-250(4,)-250(2005\051)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +15 0 obj << +/Type /Page +/Contents 16 0 R +/Resources 14 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +>> endobj +14 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +19 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +18 0 obj << +/Type /Page +/Contents 19 0 R +/Resources 17 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +>> endobj +17 0 obj << +/ProcSet [ /PDF ] +>> endobj +20 0 obj +<< /S /GoTo /D (index1) >> +endobj +23 0 obj +(Preface) +endobj +26 0 obj << +/Length 4046 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 7.97 Tf 337.795 512.811 Td[([iii])]TJ/F16 18.959 Tf -291.024 -68.984 Td[(Preface)]TJ/F16 10.909 Tf 0 -37.089 Td[(The)-298(following)-298(course)-298(is)-298(intended)-298(to)-298(give,)-310(in)-298(as)-298(simple)-299(a)-298(way)-298(as)]TJ 0 -13.549 Td[(possible,)-281(the)-274(essentials)-275(of)-275(synthetic)-274(projective)-275(geometry.)-324(While,)]TJ 0 -13.549 Td[(in)-281(the)-280(main,)-288(the)-281(theory)-280(is)-281(developed)-280(along)-281(the)-280(well-beaten)-281(track)]TJ 0 -13.549 Td[(laid)-366(out)-366(by)-366(the)-366(great)-366(masters)-366(of)-366(the)-366(subject,)-395(it)-366(is)-367(believed)-366(that)]TJ 0 -13.549 Td[(there)-377(has)-377(been)-376(a)-377(slight)-377(smoothing)-377(of)-376(the)-377(road)-377(in)-377(some)-377(places.)]TJ 0 -13.55 Td[(Especially)-405(will)-405(this)-405(be)-404(observed)-405(in)-405(the)-405(chapter)-405(on)-405(Involution.)]TJ 0 -13.549 Td[(The)-367(author)-368(has)-367(never)-367(felt)-368(satisfied)-367(with)-368(the)-367(usual)-367(treatment)-368(of)]TJ 0 -13.549 Td[(that)-248(subject)-248(by)-247(means)-248(of)-248(circles)-248(and)-248(anharmonic)-248(ratios.)-249(A)-248(purely)]TJ 0 -13.549 Td[(projective)-263(notion)-263(ought)-263(not)-262(to)-263(be)-263(based)-263(on)-263(metrical)-263(foundations.)]TJ 0 -13.549 Td[(Metrical)-213(developments)-213(should)-213(be)-213(made)-213(there,)-221(as)-213(elsewhere)-213(in)-213(the)]TJ 0 -13.549 Td[(theory,)-250(by)-250(the)-250(introduction)-250(of)-250(infinitely)-250(distant)-250(elements.)]TJ 11.956 -14.483 Td[(The)-531(author)-530(has)-531(departed)-530(from)-531(the)-530(century-old)-531(custom)-531(of)]TJ -11.956 -13.549 Td[(writing)-218(in)-219(parallel)-218(columns)-218(each)-219(theorem)-218(and)-218(its)-219(dual.)-239(He)-218(has)-219(not)]TJ 0 -13.549 Td[(found)-306(that)-306(it)-306(conduces)-306(to)-305(sharpness)-306(of)-306(vision)-306(to)-306(try)-306(to)-306(focus)-306(his)]TJ 0 -13.55 Td[(eyes)-289(on)-289(two)-289(things)-289(at)-289(once.)-367(Those)-289(who)-289(prefer)-289(the)-289(usual)-289(method)]TJ 0 -13.549 Td[(of)-362(procedure)-362(can,)-390(of)-362(course,)-390(develop)-362(the)-362(two)-362(sets)-362(of)-362(theorems)]TJ 0 -13.549 Td[(side)-204(by)-205(side;)-219(the)-205(author)-204(has)-204(not)-205(found)-204(this)-204(the)-205(better)-204(plan)-204(in)-205(actual)]TJ 0 -13.549 Td[(teaching.)]TJ 11.956 -14.483 Td[(As)-277(regards)-276(nomenclature,)-283(the)-277(author)-276(has)-277(followed)-277(the)-276(lead)-277(of)]TJ -11.956 -13.549 Td[(the)-290(earlier)-290(writers)-290(in)-290(English,)-300(and)-290(has)-290(called)-290(the)-290(system)-291(of)-290(lines)]TJ 0 -13.549 Td[(in)-257(a)-257(plane)-256(which)-257(all)-257(pass)-257(through)-257(a)-257(point)-256(a)]TJ/F20 10.909 Tf 187.386 0 Td[(pencil)-257(of)-257(rays)]TJ/F16 10.909 Tf 62.339 0 Td[(instead)]TJ -249.725 -13.549 Td[(of)-329(a)]TJ/F20 10.909 Tf 21.103 0 Td[(bundle)-329(of)-328(rays)]TJ/F16 10.909 Tf 64.139 0 Td[(,)-348(as)-329(later)-329(writers)-329(seem)-328(inclined)-329(to)-329(do.)-486(For)-329(a)]TJ -85.242 -13.549 Td[(point)-210(considered)-419(as)-210(made)-210(up)-210(of)-210(all)-210(the)-209(lines)-210(and)-210(planes)-210(through)-210(it)]TJ/F16 7.97 Tf 291.024 0 Td[([iv])]TJ/F16 10.909 Tf -291.024 -13.55 Td[(he)-229(has)-230(ventured)-229(to)-230(use)-229(the)-229(term)]TJ/F20 10.909 Tf 136.882 0 Td[(point)-229(system)]TJ/F16 10.909 Tf 54.015 0 Td[(,)-233(as)-230(being)-229(the)-230(natural)]TJ -190.897 -13.549 Td[(dualization)-281(of)-280(the)-281(usual)-281(term)]TJ/F20 10.909 Tf 129.235 0 Td[(plane)-281(system)]TJ/F16 10.909 Tf 56.386 0 Td[(.)-342(He)-281(has)-281(also)-280(rejected)]TJ -185.621 -13.549 Td[(the)-344(term)]TJ/F20 10.909 Tf 40.837 0 Td[(foci)-344(of)-344(an)-345(involution)]TJ/F16 10.909 Tf 91.271 0 Td[(,)-368(and)-344(has)-344(not)-344(used)-344(the)-345(customary)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +25 0 obj << +/Type /Page +/Contents 26 0 R +/Resources 24 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +>> endobj +21 0 obj << +/D [25 0 R /XYZ 46.771 529.134 null] +>> endobj +27 0 obj << +/D [25 0 R /XYZ 46.771 518.175 null] +>> endobj +30 0 obj << +/D [25 0 R /XYZ 121.036 106.79 null] +>> endobj +24 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +33 0 obj << +/Length 5117 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(vi)-2171(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(terms)-227(for)-228(classifying)-227(involutions)]TJ/F21 10.909 Tf 140.773 0 Td[(\024)]TJ/F20 10.909 Tf 10.909 0 Td[(hyperbolic)-227(involution)]TJ/F16 10.909 Tf 93.386 0 Td[(,)]TJ/F20 10.909 Tf 5.257 0 Td[(elliptic)]TJ -250.325 -13.549 Td[(involution)]TJ/F16 10.909 Tf 47.364 0 Td[(and)]TJ/F20 10.909 Tf 18.869 0 Td[(parabolic)-286(involution)]TJ/F16 10.909 Tf 89.789 0 Td[(.)-357(He)-286(has)-285(found)-286(that)-286(all)-285(these)]TJ -156.022 -13.549 Td[(terms)-318(are)-319(very)-318(confusing)-318(to)-318(the)-319(student,)-335(who)-318(inevitably)-318(tries)-319(to)]TJ 0 -13.549 Td[(connect)-250(them)-250(in)-250(some)-250(way)-250(with)-250(the)-250(conic)-250(sections.)]TJ 11.956 -15.186 Td[(Enough)-373(examples)-372(have)-373(been)-373(provided)-373(to)-372(give)-373(the)-373(student)-373(a)]TJ -11.956 -13.549 Td[(clear)-463(grasp)-463(of)-463(the)-463(theory.)-889(Many)-463(are)-463(of)-463(sufficient)-463(generality)]TJ 0 -13.55 Td[(to)-415(serve)-414(as)-415(a)-414(basis)-415(for)-415(individual)-414(investigation)-415(on)-414(the)-415(part)-415(of)]TJ 0 -13.549 Td[(the)-462(student.)-886(Th)-1(us,)-515(the)-462(third)-462(example)-462(at)-462(the)-462(end)-462(of)-462(the)-463(first)]TJ 0 -13.549 Td[(chapter)-376(will)-375(be)-376(found)-375(to)-376(be)-375(very)-376(fruitful)-375(in)-376(interesting)-376(results.)]TJ 0 -13.549 Td[(A)-303(correspo)-1(ndence)-303(is)-304(there)-303(indicated)-304(between)-303(lines)-304(in)-303(space)-304(and)]TJ 0 -13.549 Td[(circles)-284(through)-285(a)-284(fixed)-284(point)-284(in)-285(space.)-352(If)-285(the)-284(student)-284(will)-284(trace)-285(a)]TJ 0 -13.55 Td[(few)-295(of)-295(the)-295(consequences)-295(of)-295(that)-295(correspondence,)-307(and)-295(determine)]TJ 0 -13.549 Td[(what)-362(configurations)-362(of)-362(circles)-362(correspond)-362(to)-362(inte)-1(rsecting)-362(lines,)]TJ 0 -13.549 Td[(to)-392(lines)-393(in)-392(a)-392(plane,)-428(to)-392(lines)-392(of)-393(a)-392(plane)-392(pencil,)-428(to)-392(lines)-393(cutting)]TJ 0 -13.549 Td[(three)-294(skew)-294(lines,)-305(etc.,)-306(he)-294(will)-294(have)-294(acquired)-294(no)-294(little)-294(practice)-295(in)]TJ 0 -13.549 Td[(picturing)-250(to)-250(himself)-250(figures)-250(in)-250(space.)]TJ 11.956 -15.186 Td[(The)-410(writer)-410(has)-410(not)-409(followed)-410(the)-410(usual)-410(practice)-410(of)-410(inserting)]TJ -11.956 -13.549 Td[(historical)-304(notes)-304(at)-303(the)-304(foot)-304(of)-304(the)-304(page,)-317(and)-304(has)-304(tried)-303(instead,)-318(in)]TJ 0 -13.549 Td[(the)-315(last)-315(chapter,)-331(to)-315(give)-314(a)-315(consecutive)-315(account)-315(of)-315(the)-315(history)-315(of)]TJ 0 -13.55 Td[(pure)-323(geometry,)-342(or,)-341(at)-323(least,)-342(of)-323(as)-323(much)-323(of)-323(it)-323(as)-323(the)-323(student)-324(will)]TJ 0 -13.549 Td[(be)-354(able)-355(to)-354(appreciate)-354(who)-355(has)-354(mastered)-354(the)-355(course)-354(as)-354(given)-355(in)]TJ 0 -13.549 Td[(the)-324(preceding)-324(chapters.)-472(One)-324(is)-324(not)-324(apt)-324(to)-324(get)-324(a)-324(very)-324(wide)-324(view)]TJ 0 -13.549 Td[(of)-369(the)-370(history)-369(of)-369(a)-370(subject)-369(by)-369(reading)-370(a)-369(hundred)-739(biographical)]TJ/F16 7.97 Tf -72.755 0 Td[([v])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(footnotes,)-220(arranged)-213(in)-212(no)-213(sort)-213(of)-212(sequence.)-238(The)-212(writer,)-221(moreover,)]TJ 0 -13.55 Td[(feels)-257(that)-257(the)-257(proper)-257(time)-257(to)-257(learn)-257(the)-257(history)-257(of)-257(a)-257(subject)-257(is)-257(after)]TJ 0 -13.549 Td[(the)-250(student)-250(has)-250(some)-250(general)-250(ideas)-250(of)-250(the)-250(subject)-250(itself.)]TJ 11.956 -15.186 Td[(The)-290(course)-289(is)-290(not)-290(intended)-289(to)-290(furnish)-290(an)-290(illustration)-289(of)-290(how)-290(a)]TJ -11.956 -13.549 Td[(subject)-251(may)-250(be)-251(developed,)-251(from)-250(the)-251(smallest)-250(possible)-251(number)-251(of)]TJ 0 -13.549 Td[(fundamental)-224(assumptio)-1(ns.)-241(The)-224(author)-225(is)-224(aware)-225(of)-224(the)-225(importance)]TJ 0 -13.549 Td[(of)-410(work)-409(of)-410(this)-409(sort,)-450(but)-409(he)-410(does)-410(not)-409(believe)-410(it)-409(is)-410(possible)-410(at)]TJ 0 -13.549 Td[(the)-278(present)-278(time)-279(to)-278(write)-278(a)-278(book)-279(along)-278(such)-278(lines)-278(which)-278(shall)-279(be)]TJ 0 -13.549 Td[(of)-355(much)-354(use)-355(for)-355(elementary)-354(students.)-564(For)-355(the)-354(purposes)-355(of)-355(this)]TJ 0 -13.55 Td[(course)-235(the)-235(student)-236(should)-235(have)-235(a)-235(thorough)-235(grounding)-235(in)-236(ordinary)]TJ 0 -13.549 Td[(elementary)-299(geometry)-298(so)-299(far)-299(as)-298(to)-299(include)-299(the)-299(study)-298(of)-299(the)-299(circle)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +32 0 obj << +/Type /Page +/Contents 33 0 R +/Resources 31 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 9 0 R +>> endobj +36 0 obj << +/D [32 0 R /XYZ 315.61 216.82 null] +>> endobj +31 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +39 0 obj << +/Length 3708 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(Preface)-21671(vii)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(and)-236(of)-235(similar)-236(triangles.)-245(No)-236(solid)-236(geometry)-235(is)-236(needed)-236(beyond)-236(the)]TJ 0 -13.549 Td[(little)-221(used)-220(in)-221(the)-221(proof)-220(of)-221(Desargues')-220(theorem)-221(\05025\051,)-226(and,)-227(except)-221(in)]TJ 0 -13.549 Td[(certain)-207(metrical)-207(developments)-206(of)-207(the)-207(general)-207(theory,)-215(there)-207(will)-207(be)]TJ 0 -13.549 Td[(no)-276(call)-275(for)-276(a)-275(knowledge)-276(of)-275(trigonometry)-276(or)-275(analytical)-276(geometry.)]TJ 0 -13.55 Td[(Naturally)-217(the)-217(student)-218(who)-217(is)-217(equipped)-217(with)-217(these)-217(subjects)-217(as)-218(well)]TJ 0 -13.549 Td[(as)-384(with)-385(the)-384(calculus)-384(will)-384(be)-385(a)-384(little)-384(more)-384(mature,)-418(and)-384(may)-385(be)]TJ 0 -13.549 Td[(expected)-373(to)-374(follow)-373(the)-373(course)-374(all)-373(the)-373(more)-373(easily.)-620(The)-374(author)]TJ 0 -13.549 Td[(has)-248(had)-248(no)-247(difficulty,)-249(however,)-248(in)-248(presenting)-247(it)-248(to)-248(students)-248(in)-248(the)]TJ 0 -13.549 Td[(freshman)-250(class)-250(at)-250(the)-250(University)-250(of)-250(California.)]TJ 11.956 -13.55 Td[(The)-227(subject)-227(of)-227(synthetic)-227(projective)-227(geometry)-227(is,)-232(in)-227(the)-227(opinion)]TJ -11.956 -13.549 Td[(of)-404(the)-403(writer,)-442(destined)-404(shortly)-403(to)-404(force)-403(its)-404(way)-403(down)-404(into)-404(the)]TJ 0 -13.549 Td[(secondary)-293(schools;)-314(and)-293(if)-293(this)-293(little)-293(book)-293(helps)-293(to)-293(accelerate)-293(the)]TJ 0 -13.549 Td[(movement,)-263(he)-261(will)-260(feel)-260(amply)-261(repaid)-260(for)-261(the)-260(task)-261(of)-260(working)-261(the)]TJ 0 -13.549 Td[(materials)-228(into)-227(a)-227(form)-228(available)-227(for)-228(such)-227(schools)-228(as)-227(well)-228(as)-227(for)-228(the)]TJ 0 -13.55 Td[(lower)-250(classes)-250(in)-250(the)-250(university.)]TJ/F16 7.97 Tf 291.024 0 Td[([vi])]TJ/F16 10.909 Tf -279.068 -13.549 Td[(The)-166(material)-167(for)-166(the)-166(course)-167(has)-166(been)-167(drawn)-166(from)-166(many)-167(sources.)]TJ -11.956 -13.549 Td[(The)-376(author)-375(is)-376(chiefly)-376(indebted)-375(to)-376(the)-376(classical)-375(works)-376(of)-376(Reye,)]TJ 0 -13.549 Td[(Cremona,)-259(Steiner,)-258(Poncelet,)-259(and)-257(Von)-257(Staudt.)-271(Acknowledgments)]TJ 0 -13.549 Td[(and)-260(thanks)-259(are)-260(also)-259(due)-260(to)-260(Professor)-259(Walter)-260(C.)-259(Eells,)-262(of)-260(the)-260(U.S.)]TJ 0 -13.55 Td[(Naval)-466(Academy)-465(at)-466(Annapolis,)-519(for)-466(his)-465(searching)-466(examination)]TJ 0 -13.549 Td[(and)-318(keen)-318(criticism)-318(of)-318(the)-318(manuscript;)-352(also)-318(to)-318(Professor)-318(Herbert)]TJ 0 -13.549 Td[(Ellsworth)-324(Slaught,)-341(o)-1(f)-323(The)-324(University)-323(of)-324(Chicago,)-342(for)-323(his)-324(many)]TJ 0 -13.549 Td[(valuable)-275(suggestions,)-282(and)-275(to)-276(Professor)-275(B.)-276(M.)-275(Woods)-275(and)-276(Dr.)-326(H.)]TJ 0 -13.549 Td[(N.)-348(Wright,)-374(of)-348(the)-348(University)-349(of)-348(California,)-373(who)-349(have)-348(tried)-349(out)]TJ 0 -13.55 Td[(the)-250(methods)-250(of)-250(presentation,)-250(in)-250(their)-250(own)-250(classes.)]TJ 207.834 -13.549 Td[(D.)-309(N.)-309(LEHMER)]TJ -195.878 -13.549 Td[(B)]TJ/F16 7.97 Tf 7.276 0 Td[(ERKELEY)]TJ/F16 10.909 Tf 36.304 0 Td[(,)-250(C)]TJ/F16 7.97 Tf 12.731 0 Td[(ALIFORNIA)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +38 0 obj << +/Type /Page +/Contents 39 0 R +/Resources 37 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +40 0 obj << +/D [38 0 R /XYZ 46.771 326.108 null] +>> endobj +37 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +44 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +43 0 obj << +/Type /Page +/Contents 44 0 R +/Resources 42 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +42 0 obj << +/ProcSet [ /PDF ] +>> endobj +45 0 obj +<< /S /GoTo /D (index2) >> +endobj +48 0 obj +(Contents) +endobj +51 0 obj << +/Length 10136 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 18.959 Tf 46.771 479.321 Td[(Contents)]TJ/F16 10.909 Tf 0 -32.635 Td[(Preface)-252(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 446.686 cm +0 g 0 G +1 0 0 1 -321.947 -446.686 cm +BT +/F16 10.909 Tf 321.947 446.686 Td[(v)]TJ +ET +1 0 0 1 327.401 446.686 cm +0 g 0 G +1 0 0 1 -327.401 -446.686 cm +BT +/F16 10.909 Tf 46.771 433.092 Td[(Contents)-444(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 318.914 433.092 cm +0 g 0 G +1 0 0 1 -318.914 -433.092 cm +BT +/F16 10.909 Tf 318.914 433.092 Td[(ix)]TJ +ET +1 0 0 1 327.401 433.092 cm +0 g 0 G +1 0 0 1 -327.401 -433.092 cm +BT +/F16 10.909 Tf 46.771 419.498 Td[(CHAPTER)-250(I)-250(-)-250(ONE-TO-ONE)-250(CORRESPONDENCE)-446(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 419.498 cm +0 g 0 G +1 0 0 1 -321.947 -419.498 cm +BT +/F16 10.909 Tf 321.947 419.498 Td[(1)]TJ +ET +1 0 0 1 327.401 419.498 cm +0 g 0 G +1 0 0 1 -327.401 -419.498 cm +BT +/F16 10.909 Tf 63.135 405.904 Td[(1.)-250(Definition)-250(of)-250(one-to-one)-250(correspondence)-949(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 405.904 cm +0 g 0 G +1 0 0 1 -321.947 -405.904 cm +BT +/F16 10.909 Tf 321.947 405.904 Td[(1)]TJ +ET +1 0 0 1 327.401 405.904 cm +0 g 0 G +1 0 0 1 -327.401 -405.904 cm +BT +/F16 10.909 Tf 63.135 392.31 Td[(2.)-250(Consequences)-250(of)-250(one-to-one)-250(correspondence)-839(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 392.31 cm +0 g 0 G +1 0 0 1 -321.947 -392.31 cm +BT +/F16 10.909 Tf 321.947 392.31 Td[(1)]TJ +ET +1 0 0 1 327.401 392.31 cm +0 g 0 G +1 0 0 1 -327.401 -392.31 cm +BT +/F16 10.909 Tf 63.135 378.716 Td[(3.)-250(Applications)-250(in)-250(mathematics)-556(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 378.716 cm +0 g 0 G +1 0 0 1 -321.947 -378.716 cm +BT +/F16 10.909 Tf 321.947 378.716 Td[(2)]TJ +ET +1 0 0 1 327.401 378.716 cm +0 g 0 G +1 0 0 1 -327.401 -378.716 cm +BT +/F16 10.909 Tf 63.135 365.122 Td[(4.)-250(One-to-one)-250(correspondence)-250(and)-250(enumeration)-728(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 365.122 cm +0 g 0 G +1 0 0 1 -321.947 -365.122 cm +BT +/F16 10.909 Tf 321.947 365.122 Td[(2)]TJ +ET +1 0 0 1 327.401 365.122 cm +0 g 0 G +1 0 0 1 -327.401 -365.122 cm +BT +/F16 10.909 Tf 63.135 351.528 Td[(5.)-250(Correspondence)-250(between)-250(a)-250(part)-250(and)-250(the)-250(whole)-311(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 351.528 cm +0 g 0 G +1 0 0 1 -321.947 -351.528 cm +BT +/F16 10.909 Tf 321.947 351.528 Td[(4)]TJ +ET +1 0 0 1 327.401 351.528 cm +0 g 0 G +1 0 0 1 -327.401 -351.528 cm +BT +/F16 10.909 Tf 63.135 337.934 Td[(6.)-250(Infinitely)-250(distant)-250(point)-805(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 337.934 cm +0 g 0 G +1 0 0 1 -321.947 -337.934 cm +BT +/F16 10.909 Tf 321.947 337.934 Td[(5)]TJ +ET +1 0 0 1 327.401 337.934 cm +0 g 0 G +1 0 0 1 -327.401 -337.934 cm +BT +/F16 10.909 Tf 63.135 324.339 Td[(7.)-250(Axial)-250(pencil;)-250(fundamental)-250(forms)-474(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 324.339 cm +0 g 0 G +1 0 0 1 -321.947 -324.339 cm +BT +/F16 10.909 Tf 321.947 324.339 Td[(5)]TJ +ET +1 0 0 1 327.401 324.339 cm +0 g 0 G +1 0 0 1 -327.401 -324.339 cm +BT +/F16 10.909 Tf 63.135 310.745 Td[(8.)-250(Perspective)-250(position)-917(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 310.745 cm +0 g 0 G +1 0 0 1 -321.947 -310.745 cm +BT +/F16 10.909 Tf 321.947 310.745 Td[(6)]TJ +ET +1 0 0 1 327.401 310.745 cm +0 g 0 G +1 0 0 1 -327.401 -310.745 cm +BT +/F16 10.909 Tf 63.135 297.151 Td[(9.)-250(Projective)-250(relation)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 297.151 cm +0 g 0 G +1 0 0 1 -321.947 -297.151 cm +BT +/F16 10.909 Tf 321.947 297.151 Td[(6)]TJ +ET +1 0 0 1 327.401 297.151 cm +0 g 0 G +1 0 0 1 -327.401 -297.151 cm +BT +/F16 10.909 Tf 63.135 283.557 Td[(10.)-250(Infinity-to-one)-250(correspondence)-587(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 283.557 cm +0 g 0 G +1 0 0 1 -321.947 -283.557 cm +BT +/F16 10.909 Tf 321.947 283.557 Td[(7)]TJ +ET +1 0 0 1 327.401 283.557 cm +0 g 0 G +1 0 0 1 -327.401 -283.557 cm +BT +/F16 10.909 Tf 63.135 269.963 Td[(11.)-250(Infinitudes)-250(of)-250(different)-250(orders)-392(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 269.963 cm +0 g 0 G +1 0 0 1 -321.947 -269.963 cm +BT +/F16 10.909 Tf 321.947 269.963 Td[(7)]TJ +ET +1 0 0 1 327.401 269.963 cm +0 g 0 G +1 0 0 1 -327.401 -269.963 cm +BT +/F16 10.909 Tf 63.135 256.369 Td[(12.)-250(Points)-250(in)-250(a)-250(plane)-361(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 256.369 cm +0 g 0 G +1 0 0 1 -321.947 -256.369 cm +BT +/F16 10.909 Tf 321.947 256.369 Td[(8)]TJ +ET +1 0 0 1 327.401 256.369 cm +0 g 0 G +1 0 0 1 -327.401 -256.369 cm +BT +/F16 10.909 Tf 63.135 242.775 Td[(13.)-250(Lines)-250(through)-250(a)-250(point)-667(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 242.775 cm +0 g 0 G +1 0 0 1 -321.947 -242.775 cm +BT +/F16 10.909 Tf 321.947 242.775 Td[(8)]TJ +ET +1 0 0 1 327.401 242.775 cm +0 g 0 G +1 0 0 1 -327.401 -242.775 cm +BT +/F16 10.909 Tf 63.135 229.181 Td[(14.)-250(Planes)-250(through)-250(a)-250(point)-278(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 229.181 cm +0 g 0 G +1 0 0 1 -321.947 -229.181 cm +BT +/F16 10.909 Tf 321.947 229.181 Td[(8)]TJ +ET +1 0 0 1 327.401 229.181 cm +0 g 0 G +1 0 0 1 -327.401 -229.181 cm +BT +/F16 10.909 Tf 63.135 215.587 Td[(15.)-250(Lines)-250(in)-250(a)-250(plane)-640(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 215.587 cm +0 g 0 G +1 0 0 1 -321.947 -215.587 cm +BT +/F16 10.909 Tf 321.947 215.587 Td[(8)]TJ +ET +1 0 0 1 327.401 215.587 cm +0 g 0 G +1 0 0 1 -327.401 -215.587 cm +BT +/F16 10.909 Tf 63.135 201.993 Td[(16.)-250(Plane)-250(system)-250(and)-250(point)-250(system)-722(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 201.993 cm +0 g 0 G +1 0 0 1 -321.947 -201.993 cm +BT +/F16 10.909 Tf 321.947 201.993 Td[(9)]TJ +ET +1 0 0 1 327.401 201.993 cm +0 g 0 G +1 0 0 1 -327.401 -201.993 cm +BT +/F16 10.909 Tf 63.135 188.399 Td[(17.)-250(Planes)-250(in)-250(space)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 188.399 cm +0 g 0 G +1 0 0 1 -321.947 -188.399 cm +BT +/F16 10.909 Tf 321.947 188.399 Td[(9)]TJ +ET +1 0 0 1 327.401 188.399 cm +0 g 0 G +1 0 0 1 -327.401 -188.399 cm +BT +/F16 10.909 Tf 63.135 174.805 Td[(18.)-250(Points)-250(of)-250(space)-945(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 321.947 174.805 cm +0 g 0 G +1 0 0 1 -321.947 -174.805 cm +BT +/F16 10.909 Tf 321.947 174.805 Td[(9)]TJ +ET +1 0 0 1 327.401 174.805 cm +0 g 0 G +1 0 0 1 -327.401 -174.805 cm +BT +/F16 10.909 Tf 63.135 161.211 Td[(19.)-250(Space)-250(system)-834(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 161.211 cm +0 g 0 G +1 0 0 1 -316.492 -161.211 cm +BT +/F16 10.909 Tf 316.492 161.211 Td[(10)]TJ +ET +1 0 0 1 327.401 161.211 cm +0 g 0 G +1 0 0 1 -327.401 -161.211 cm +BT +/F16 10.909 Tf 63.135 147.617 Td[(20.)-250(Lines)-250(in)-250(space)-529(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 147.617 cm +0 g 0 G +1 0 0 1 -316.492 -147.617 cm +BT +/F16 10.909 Tf 316.492 147.617 Td[(10)]TJ +ET +1 0 0 1 327.401 147.617 cm +0 g 0 G +1 0 0 1 -327.401 -147.617 cm +BT +/F16 10.909 Tf 63.135 134.023 Td[(21.)-250(Correspondence)-250(between)-250(points)-250(and)-250(numbers)-837(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 134.023 cm +0 g 0 G +1 0 0 1 -316.492 -134.023 cm +BT +/F16 10.909 Tf 316.492 134.023 Td[(10)]TJ +ET +1 0 0 1 327.401 134.023 cm +0 g 0 G +1 0 0 1 -327.401 -134.023 cm +BT +/F16 10.909 Tf 63.135 120.429 Td[(22.)-250(Elements)-250(at)-250(infinity)-611(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 120.429 cm +0 g 0 G +1 0 0 1 -316.492 -120.429 cm +BT +/F16 10.909 Tf 316.492 120.429 Td[(11)]TJ +ET +1 0 0 1 327.401 120.429 cm +0 g 0 G +1 0 0 1 -327.401 -120.429 cm +BT +/F16 10.909 Tf 63.135 106.835 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 106.835 cm +0 g 0 G +1 0 0 1 -316.492 -106.835 cm +BT +/F16 10.909 Tf 316.492 106.835 Td[(12)]TJ +ET +1 0 0 1 327.401 106.835 cm +0 g 0 G +1 0 0 1 -327.401 -106.835 cm +BT +/F16 10.909 Tf 46.771 93.241 Td[(CHAPTER)-702(II)-702(-)-703(RELATIONS)-702(BETWEEN)-702(FUNDA-)]TJ 15.273 -13.549 Td[(MENTAL)-208(FORMS)-208(IN)-208(ONE-TO-ONE)-208(CORRESPON-)]TJ 0 -13.55 Td[(DENCE)-250(WITH)-250(EACH)-250(OTHER)-352(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 66.142 cm +0 g 0 G +1 0 0 1 -316.492 -66.142 cm +BT +/F16 10.909 Tf 316.492 66.142 Td[(14)]TJ +ET +1 0 0 1 327.401 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +50 0 obj << +/Type /Page +/Contents 51 0 R +/Resources 49 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +46 0 obj << +/D [50 0 R /XYZ 46.771 529.134 null] +>> endobj +49 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +54 0 obj << +/Length 11292 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(x)-2449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 109.907 518.175 Td[(23.)-250(Seven)-250(fundamental)-250(forms)-474(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 518.175 cm +0 g 0 G +1 0 0 1 -363.264 -518.175 cm +BT +/F16 10.909 Tf 363.264 518.175 Td[(14)]TJ +ET +1 0 0 1 374.173 518.175 cm +0 g 0 G +1 0 0 1 -374.173 -518.175 cm +BT +/F16 10.909 Tf 109.907 504.457 Td[(24.)-250(Projective)-250(properties)-946(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 504.457 cm +0 g 0 G +1 0 0 1 -363.264 -504.457 cm +BT +/F16 10.909 Tf 363.264 504.457 Td[(14)]TJ +ET +1 0 0 1 374.173 504.457 cm +0 g 0 G +1 0 0 1 -374.173 -504.457 cm +BT +/F16 10.909 Tf 109.907 490.738 Td[(25.)-250(Desargues's)-250(theorem)-989(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 490.738 cm +0 g 0 G +1 0 0 1 -363.264 -490.738 cm +BT +/F16 10.909 Tf 363.264 490.738 Td[(15)]TJ +ET +1 0 0 1 374.173 490.738 cm +0 g 0 G +1 0 0 1 -374.173 -490.738 cm +BT +/F16 10.909 Tf 109.907 477.02 Td[(26.)-707(Fundamental)-402(theorem)-403(concerning)-402(two)-403(complete)]TJ 25.091 -13.55 Td[(quadrangles)-618(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 463.47 cm +0 g 0 G +1 0 0 1 -363.264 -463.47 cm +BT +/F16 10.909 Tf 363.264 463.47 Td[(16)]TJ +ET +1 0 0 1 374.173 463.47 cm +0 g 0 G +1 0 0 1 -374.173 -463.47 cm +BT +/F16 10.909 Tf 109.907 449.752 Td[(27.)-250(Importance)-250(of)-250(the)-250(theorem)-864(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 449.752 cm +0 g 0 G +1 0 0 1 -363.264 -449.752 cm +BT +/F16 10.909 Tf 363.264 449.752 Td[(18)]TJ +ET +1 0 0 1 374.173 449.752 cm +0 g 0 G +1 0 0 1 -374.173 -449.752 cm +BT +/F16 10.909 Tf 109.907 436.033 Td[(28.)-250(Restatement)-250(of)-250(the)-250(theorem)-474(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 436.033 cm +0 g 0 G +1 0 0 1 -363.264 -436.033 cm +BT +/F16 10.909 Tf 363.264 436.033 Td[(18)]TJ +ET +1 0 0 1 374.173 436.033 cm +0 g 0 G +1 0 0 1 -374.173 -436.033 cm +BT +/F16 10.909 Tf 109.907 422.315 Td[(29.)-250(Four)-250(harmonic)-250(points)-639(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 422.315 cm +0 g 0 G +1 0 0 1 -363.264 -422.315 cm +BT +/F16 10.909 Tf 363.264 422.315 Td[(18)]TJ +ET +1 0 0 1 374.173 422.315 cm +0 g 0 G +1 0 0 1 -374.173 -422.315 cm +BT +/F16 10.909 Tf 109.907 408.596 Td[(30.)-250(Harmonic)-250(conjugates)-724(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 408.596 cm +0 g 0 G +1 0 0 1 -363.264 -408.596 cm +BT +/F16 10.909 Tf 363.264 408.596 Td[(20)]TJ +ET +1 0 0 1 374.173 408.596 cm +0 g 0 G +1 0 0 1 -374.173 -408.596 cm +BT +/F16 10.909 Tf 109.907 394.878 Td[(31.)-250(Importance)-250(of)-250(the)-250(notion)-250(of)-250(four)-250(harmonic)-250(points)-864(.)]TJ +ET +1 0 0 1 363.264 394.878 cm +0 g 0 G +1 0 0 1 -363.264 -394.878 cm +BT +/F16 10.909 Tf 363.264 394.878 Td[(20)]TJ +ET +1 0 0 1 374.173 394.878 cm +0 g 0 G +1 0 0 1 -374.173 -394.878 cm +BT +/F16 10.909 Tf 109.907 381.159 Td[(32.)-250(Projective)-250(invariance)-250(of)-250(four)-250(harmonic)-250(points)-809(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 381.159 cm +0 g 0 G +1 0 0 1 -363.264 -381.159 cm +BT +/F16 10.909 Tf 363.264 381.159 Td[(20)]TJ +ET +1 0 0 1 374.173 381.159 cm +0 g 0 G +1 0 0 1 -374.173 -381.159 cm +BT +/F16 10.909 Tf 109.907 367.441 Td[(33.)-250(Four)-250(harmonic)-250(lines)-445(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 367.441 cm +0 g 0 G +1 0 0 1 -363.264 -367.441 cm +BT +/F16 10.909 Tf 363.264 367.441 Td[(21)]TJ +ET +1 0 0 1 374.173 367.441 cm +0 g 0 G +1 0 0 1 -374.173 -367.441 cm +BT +/F16 10.909 Tf 109.907 353.722 Td[(34.)-250(Four)-250(harmonic)-250(planes)-529(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 353.722 cm +0 g 0 G +1 0 0 1 -363.264 -353.722 cm +BT +/F16 10.909 Tf 363.264 353.722 Td[(21)]TJ +ET +1 0 0 1 374.173 353.722 cm +0 g 0 G +1 0 0 1 -374.173 -353.722 cm +BT +/F16 10.909 Tf 109.907 340.004 Td[(35.)-250(Summary)-250(of)-250(results)-667(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 340.004 cm +0 g 0 G +1 0 0 1 -363.264 -340.004 cm +BT +/F16 10.909 Tf 363.264 340.004 Td[(21)]TJ +ET +1 0 0 1 374.173 340.004 cm +0 g 0 G +1 0 0 1 -374.173 -340.004 cm +BT +/F16 10.909 Tf 109.907 326.285 Td[(36.)-250(Definition)-250(of)-250(projectivity)-695(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 326.285 cm +0 g 0 G +1 0 0 1 -363.264 -326.285 cm +BT +/F16 10.909 Tf 363.264 326.285 Td[(22)]TJ +ET +1 0 0 1 374.173 326.285 cm +0 g 0 G +1 0 0 1 -374.173 -326.285 cm +BT +/F16 10.909 Tf 109.907 312.567 Td[(37.)-250(Correspondence)-250(between)-250(harmonic)-250(conjugates)-366(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 312.567 cm +0 g 0 G +1 0 0 1 -363.264 -312.567 cm +BT +/F16 10.909 Tf 363.264 312.567 Td[(22)]TJ +ET +1 0 0 1 374.173 312.567 cm +0 g 0 G +1 0 0 1 -374.173 -312.567 cm +BT +/F16 10.909 Tf 109.907 298.848 Td[(38.)-250(Separation)-250(of)-250(harmonic)-250(conjugates)-586(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 298.848 cm +0 g 0 G +1 0 0 1 -363.264 -298.848 cm +BT +/F16 10.909 Tf 363.264 298.848 Td[(23)]TJ +ET +1 0 0 1 374.173 298.848 cm +0 g 0 G +1 0 0 1 -374.173 -298.848 cm +BT +/F16 10.909 Tf 109.907 285.13 Td[(39.)-250(Harmonic)-250(conjugate)-250(of)-250(the)-250(point)-250(at)-250(infinity)-335(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 285.13 cm +0 g 0 G +1 0 0 1 -363.264 -285.13 cm +BT +/F16 10.909 Tf 363.264 285.13 Td[(23)]TJ +ET +1 0 0 1 374.173 285.13 cm +0 g 0 G +1 0 0 1 -374.173 -285.13 cm +BT +/F16 10.909 Tf 109.907 271.411 Td[(40.)-247(Projective)-241(theorems)-240(and)-241(metrical)-241(theorems.)-247(Linear)]TJ 25.091 -13.549 Td[(construction)-506(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 257.862 cm +0 g 0 G +1 0 0 1 -363.264 -257.862 cm +BT +/F16 10.909 Tf 363.264 257.862 Td[(24)]TJ +ET +1 0 0 1 374.173 257.862 cm +0 g 0 G +1 0 0 1 -374.173 -257.862 cm +BT +/F16 10.909 Tf 109.907 244.144 Td[(41.)-250(Parallels)-250(and)-250(mid-points)-278(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 244.144 cm +0 g 0 G +1 0 0 1 -363.264 -244.144 cm +BT +/F16 10.909 Tf 363.264 244.144 Td[(25)]TJ +ET +1 0 0 1 374.173 244.144 cm +0 g 0 G +1 0 0 1 -374.173 -244.144 cm +BT +/F16 10.909 Tf 109.907 230.425 Td[(42.)-250(Division)-250(of)-250(segment)-250(into)-250(equal)-250(parts)-723(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 230.425 cm +0 g 0 G +1 0 0 1 -363.264 -230.425 cm +BT +/F16 10.909 Tf 363.264 230.425 Td[(26)]TJ +ET +1 0 0 1 374.173 230.425 cm +0 g 0 G +1 0 0 1 -374.173 -230.425 cm +BT +/F16 10.909 Tf 109.907 216.707 Td[(43.)-250(Numerical)-250(relations)-585(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 216.707 cm +0 g 0 G +1 0 0 1 -363.264 -216.707 cm +BT +/F16 10.909 Tf 363.264 216.707 Td[(26)]TJ +ET +1 0 0 1 374.173 216.707 cm +0 g 0 G +1 0 0 1 -374.173 -216.707 cm +BT +/F16 10.909 Tf 109.907 202.988 Td[(44.)-250(Algebraic)-250(formula)-250(connecting)-250(four)-250(harmonic)-250(points)]TJ +ET +1 0 0 1 363.264 202.988 cm +0 g 0 G +1 0 0 1 -363.264 -202.988 cm +BT +/F16 10.909 Tf 363.264 202.988 Td[(26)]TJ +ET +1 0 0 1 374.173 202.988 cm +0 g 0 G +1 0 0 1 -374.173 -202.988 cm +BT +/F16 10.909 Tf 109.907 189.27 Td[(45.)-250(Further)-250(formulae)-946(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 189.27 cm +0 g 0 G +1 0 0 1 -363.264 -189.27 cm +BT +/F16 10.909 Tf 363.264 189.27 Td[(28)]TJ +ET +1 0 0 1 374.173 189.27 cm +0 g 0 G +1 0 0 1 -374.173 -189.27 cm +BT +/F16 10.909 Tf 109.907 175.551 Td[(46.)-250(Anharmonic)-250(ratio)-668(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 175.551 cm +0 g 0 G +1 0 0 1 -363.264 -175.551 cm +BT +/F16 10.909 Tf 363.264 175.551 Td[(28)]TJ +ET +1 0 0 1 374.173 175.551 cm +0 g 0 G +1 0 0 1 -374.173 -175.551 cm +BT +/F16 10.909 Tf 109.907 161.833 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 161.833 cm +0 g 0 G +1 0 0 1 -363.264 -161.833 cm +BT +/F16 10.909 Tf 363.264 161.833 Td[(29)]TJ +ET +1 0 0 1 374.173 161.833 cm +0 g 0 G +1 0 0 1 -374.173 -161.833 cm +BT +/F16 10.909 Tf 93.543 148.114 Td[(CHAPTER)-446(III)-446(-)-446(COMBINATION)-446(OF)-446(TW)-1(O)-446(PROJEC-)]TJ 15.273 -13.549 Td[(TIVELY)-250(RELATED)-250(FUNDAMENTAL)-250(FORMS)-685(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 134.565 cm +0 g 0 G +1 0 0 1 -363.264 -134.565 cm +BT +/F16 10.909 Tf 363.264 134.565 Td[(31)]TJ +ET +1 0 0 1 374.173 134.565 cm +0 g 0 G +1 0 0 1 -374.173 -134.565 cm +BT +/F16 10.909 Tf 109.907 120.847 Td[(47.)-2212(Superposed)-904(fundamental)-904(forms.)-2213(Self-)]TJ 25.091 -13.55 Td[(corresponding)-250(elements)-424(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 107.297 cm +0 g 0 G +1 0 0 1 -363.264 -107.297 cm +BT +/F16 10.909 Tf 363.264 107.297 Td[(31)]TJ +ET +1 0 0 1 374.173 107.297 cm +0 g 0 G +1 0 0 1 -374.173 -107.297 cm +BT +/F16 10.909 Tf 109.907 93.579 Td[(48.)-250(Special)-250(case)-585(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 93.579 cm +0 g 0 G +1 0 0 1 -363.264 -93.579 cm +BT +/F16 10.909 Tf 363.264 93.579 Td[(32)]TJ +ET +1 0 0 1 374.173 93.579 cm +0 g 0 G +1 0 0 1 -374.173 -93.579 cm +BT +/F16 10.909 Tf 109.907 79.86 Td[(49.)-250(Fundamental)-250(theorem.)-250(Postulate)-250(of)-250(continuity)-695(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 79.86 cm +0 g 0 G +1 0 0 1 -363.264 -79.86 cm +BT +/F16 10.909 Tf 363.264 79.86 Td[(33)]TJ +ET +1 0 0 1 374.173 79.86 cm +0 g 0 G +1 0 0 1 -374.173 -79.86 cm +BT +/F16 10.909 Tf 109.907 66.142 Td[(50.)-250(Extension)-250(of)-250(theorem)-250(to)-250(pencils)-250(of)-250(rays)-250(and)-250(planes)-281(.)]TJ +ET +1 0 0 1 363.264 66.142 cm +0 g 0 G +1 0 0 1 -363.264 -66.142 cm +BT +/F16 10.909 Tf 363.264 66.142 Td[(34)]TJ +ET +1 0 0 1 374.173 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +53 0 obj << +/Type /Page +/Contents 54 0 R +/Resources 52 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +52 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +57 0 obj << +/Length 11922 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(Contents)-21391(xi)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 63.135 518.175 Td[(51.)-302(Projectiv)-1(e)-267(point-rows)-268(having)-267(a)-268(self-corresponding)]TJ 25.091 -13.549 Td[(point)-250(in)-250(common)-866(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 504.626 cm +0 g 0 G +1 0 0 1 -316.492 -504.626 cm +BT +/F16 10.909 Tf 316.492 504.626 Td[(34)]TJ +ET +1 0 0 1 327.401 504.626 cm +0 g 0 G +1 0 0 1 -327.401 -504.626 cm +BT +/F16 10.909 Tf 63.135 490.918 Td[(52.)-250(Point-rows)-250(in)-250(perspective)-250(position)-806(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 490.918 cm +0 g 0 G +1 0 0 1 -316.492 -490.918 cm +BT +/F16 10.909 Tf 316.492 490.918 Td[(35)]TJ +ET +1 0 0 1 327.401 490.918 cm +0 g 0 G +1 0 0 1 -327.401 -490.918 cm +BT +/F16 10.909 Tf 63.135 477.211 Td[(53.)-250(Pencils)-250(in)-250(perspective)-250(position)-806(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 477.211 cm +0 g 0 G +1 0 0 1 -316.492 -477.211 cm +BT +/F16 10.909 Tf 316.492 477.211 Td[(35)]TJ +ET +1 0 0 1 327.401 477.211 cm +0 g 0 G +1 0 0 1 -327.401 -477.211 cm +BT +/F16 10.909 Tf 63.135 463.503 Td[(54.)-250(Axial)-250(pencils)-250(in)-250(perspective)-250(position)-640(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 463.503 cm +0 g 0 G +1 0 0 1 -316.492 -463.503 cm +BT +/F16 10.909 Tf 316.492 463.503 Td[(35)]TJ +ET +1 0 0 1 327.401 463.503 cm +0 g 0 G +1 0 0 1 -327.401 -463.503 cm +BT +/F16 10.909 Tf 63.135 449.796 Td[(55.)-250(Point-row)-250(of)-250(the)-250(second)-250(order)-308(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 449.796 cm +0 g 0 G +1 0 0 1 -316.492 -449.796 cm +BT +/F16 10.909 Tf 316.492 449.796 Td[(36)]TJ +ET +1 0 0 1 327.401 449.796 cm +0 g 0 G +1 0 0 1 -327.401 -449.796 cm +BT +/F16 10.909 Tf 63.135 436.088 Td[(56.)-250(Degeneration)-250(of)-250(locus)-419(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 436.088 cm +0 g 0 G +1 0 0 1 -316.492 -436.088 cm +BT +/F16 10.909 Tf 316.492 436.088 Td[(36)]TJ +ET +1 0 0 1 327.401 436.088 cm +0 g 0 G +1 0 0 1 -327.401 -436.088 cm +BT +/F16 10.909 Tf 63.135 422.38 Td[(57.)-250(Pencils)-250(of)-250(rays)-250(of)-250(the)-250(second)-250(order)-670(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 422.38 cm +0 g 0 G +1 0 0 1 -316.492 -422.38 cm +BT +/F16 10.909 Tf 316.492 422.38 Td[(36)]TJ +ET +1 0 0 1 327.401 422.38 cm +0 g 0 G +1 0 0 1 -327.401 -422.38 cm +BT +/F16 10.909 Tf 63.135 408.673 Td[(58.)-250(Degenerate)-250(case)-476(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 408.673 cm +0 g 0 G +1 0 0 1 -316.492 -408.673 cm +BT +/F16 10.909 Tf 316.492 408.673 Td[(37)]TJ +ET +1 0 0 1 327.401 408.673 cm +0 g 0 G +1 0 0 1 -327.401 -408.673 cm +BT +/F16 10.909 Tf 63.135 394.965 Td[(59.)-250(Cone)-250(of)-250(the)-250(second)-250(order)-697(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 394.965 cm +0 g 0 G +1 0 0 1 -316.492 -394.965 cm +BT +/F16 10.909 Tf 316.492 394.965 Td[(37)]TJ +ET +1 0 0 1 327.401 394.965 cm +0 g 0 G +1 0 0 1 -327.401 -394.965 cm +BT +/F16 10.909 Tf 63.135 381.258 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 381.258 cm +0 g 0 G +1 0 0 1 -316.492 -381.258 cm +BT +/F16 10.909 Tf 316.492 381.258 Td[(38)]TJ +ET +1 0 0 1 327.401 381.258 cm +0 g 0 G +1 0 0 1 -327.401 -381.258 cm +BT +/F16 10.909 Tf 46.771 367.55 Td[(CHAPTER)-208(IV)-207(-)-208(POINT-ROWS)-208(OF)-207(THE)-208(SECOND)-208(ORDER)]TJ +ET +1 0 0 1 316.492 367.55 cm +0 g 0 G +1 0 0 1 -316.492 -367.55 cm +BT +/F16 10.909 Tf 316.492 367.55 Td[(42)]TJ +ET +1 0 0 1 327.401 367.55 cm +0 g 0 G +1 0 0 1 -327.401 -367.55 cm +BT +/F16 10.909 Tf 63.135 353.843 Td[(60.)-250(Point-row)-250(of)-250(the)-250(second)-250(order)-250(defined)-809(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 353.843 cm +0 g 0 G +1 0 0 1 -316.492 -353.843 cm +BT +/F16 10.909 Tf 316.492 353.843 Td[(42)]TJ +ET +1 0 0 1 327.401 353.843 cm +0 g 0 G +1 0 0 1 -327.401 -353.843 cm +BT +/F16 10.909 Tf 63.135 340.135 Td[(61.)-250(Tangent)-250(line)-473(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 340.135 cm +0 g 0 G +1 0 0 1 -316.492 -340.135 cm +BT +/F16 10.909 Tf 316.492 340.135 Td[(42)]TJ +ET +1 0 0 1 327.401 340.135 cm +0 g 0 G +1 0 0 1 -327.401 -340.135 cm +BT +/F16 10.909 Tf 63.135 326.428 Td[(62.)-250(Determination)-250(of)-250(the)-250(locus)-807(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 326.428 cm +0 g 0 G +1 0 0 1 -316.492 -326.428 cm +BT +/F16 10.909 Tf 316.492 326.428 Td[(43)]TJ +ET +1 0 0 1 327.401 326.428 cm +0 g 0 G +1 0 0 1 -327.401 -326.428 cm +BT +/F16 10.909 Tf 63.135 312.72 Td[(63.)-250(Restatement)-250(of)-250(the)-250(problem)-418(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 312.72 cm +0 g 0 G +1 0 0 1 -316.492 -312.72 cm +BT +/F16 10.909 Tf 316.492 312.72 Td[(43)]TJ +ET +1 0 0 1 327.401 312.72 cm +0 g 0 G +1 0 0 1 -327.401 -312.72 cm +BT +/F16 10.909 Tf 63.135 299.012 Td[(64.)-250(Solution)-250(of)-250(the)-250(fundamental)-250(problem)-473(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 299.012 cm +0 g 0 G +1 0 0 1 -316.492 -299.012 cm +BT +/F16 10.909 Tf 316.492 299.012 Td[(43)]TJ +ET +1 0 0 1 327.401 299.012 cm +0 g 0 G +1 0 0 1 -327.401 -299.012 cm +BT +/F16 10.909 Tf 63.135 285.305 Td[(65.)-250(Different)-250(constructions)-250(for)-250(the)-250(figure)-476(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 285.305 cm +0 g 0 G +1 0 0 1 -316.492 -285.305 cm +BT +/F16 10.909 Tf 316.492 285.305 Td[(44)]TJ +ET +1 0 0 1 327.401 285.305 cm +0 g 0 G +1 0 0 1 -327.401 -285.305 cm +BT +/F16 10.909 Tf 63.135 271.597 Td[(66.)-250(Lines)-250(joining)-250(four)-250(points)-250(of)-250(the)-250(locus)-250(to)-250(a)-250(fifth)-473(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 271.597 cm +0 g 0 G +1 0 0 1 -316.492 -271.597 cm +BT +/F16 10.909 Tf 316.492 271.597 Td[(45)]TJ +ET +1 0 0 1 327.401 271.597 cm +0 g 0 G +1 0 0 1 -327.401 -271.597 cm +BT +/F16 10.909 Tf 63.135 257.89 Td[(67.)-250(Restatement)-250(of)-250(the)-250(theorem)-474(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 257.89 cm +0 g 0 G +1 0 0 1 -316.492 -257.89 cm +BT +/F16 10.909 Tf 316.492 257.89 Td[(45)]TJ +ET +1 0 0 1 327.401 257.89 cm +0 g 0 G +1 0 0 1 -327.401 -257.89 cm +BT +/F16 10.909 Tf 63.135 244.182 Td[(68.)-250(Further)-250(important)-250(theorem)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 244.182 cm +0 g 0 G +1 0 0 1 -316.492 -244.182 cm +BT +/F16 10.909 Tf 316.492 244.182 Td[(45)]TJ +ET +1 0 0 1 327.401 244.182 cm +0 g 0 G +1 0 0 1 -327.401 -244.182 cm +BT +/F16 10.909 Tf 63.135 230.475 Td[(69.)-250(Pascal's)-250(theorem)-349(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 230.475 cm +0 g 0 G +1 0 0 1 -316.492 -230.475 cm +BT +/F16 10.909 Tf 316.492 230.475 Td[(45)]TJ +ET +1 0 0 1 327.401 230.475 cm +0 g 0 G +1 0 0 1 -327.401 -230.475 cm +BT +/F16 10.909 Tf 63.135 216.767 Td[(70.)-250(Permutation)-250(of)-250(points)-250(in)-250(Pascal's)-250(theorem)-904(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 216.767 cm +0 g 0 G +1 0 0 1 -316.492 -216.767 cm +BT +/F16 10.909 Tf 316.492 216.767 Td[(46)]TJ +ET +1 0 0 1 327.401 216.767 cm +0 g 0 G +1 0 0 1 -327.401 -216.767 cm +BT +/F16 10.909 Tf 63.135 203.059 Td[(71.)-250(Harmonic)-250(points)-250(on)-250(a)-250(point-row)-250(of)-250(the)-250(second)-250(order)]TJ +ET +1 0 0 1 316.492 203.059 cm +0 g 0 G +1 0 0 1 -316.492 -203.059 cm +BT +/F16 10.909 Tf 316.492 203.059 Td[(47)]TJ +ET +1 0 0 1 327.401 203.059 cm +0 g 0 G +1 0 0 1 -327.401 -203.059 cm +BT +/F16 10.909 Tf 63.135 189.352 Td[(72.)-250(Determination)-250(of)-250(the)-250(locus)-807(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 189.352 cm +0 g 0 G +1 0 0 1 -316.492 -189.352 cm +BT +/F16 10.909 Tf 316.492 189.352 Td[(48)]TJ +ET +1 0 0 1 327.401 189.352 cm +0 g 0 G +1 0 0 1 -327.401 -189.352 cm +BT +/F16 10.909 Tf 63.135 175.644 Td[(73.)-250(Circles)-250(and)-250(conics)-250(as)-250(point-rows)-250(of)-250(the)-250(second)-250(order)]TJ +ET +1 0 0 1 316.492 175.644 cm +0 g 0 G +1 0 0 1 -316.492 -175.644 cm +BT +/F16 10.909 Tf 316.492 175.644 Td[(48)]TJ +ET +1 0 0 1 327.401 175.644 cm +0 g 0 G +1 0 0 1 -327.401 -175.644 cm +BT +/F16 10.909 Tf 63.135 161.937 Td[(74.)-250(Conic)-250(through)-250(five)-250(points)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 161.937 cm +0 g 0 G +1 0 0 1 -316.492 -161.937 cm +BT +/F16 10.909 Tf 316.492 161.937 Td[(49)]TJ +ET +1 0 0 1 327.401 161.937 cm +0 g 0 G +1 0 0 1 -327.401 -161.937 cm +BT +/F16 10.909 Tf 63.135 148.229 Td[(75.)-250(Tangent)-250(to)-250(a)-250(conic)-335(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 148.229 cm +0 g 0 G +1 0 0 1 -316.492 -148.229 cm +BT +/F16 10.909 Tf 316.492 148.229 Td[(51)]TJ +ET +1 0 0 1 327.401 148.229 cm +0 g 0 G +1 0 0 1 -327.401 -148.229 cm +BT +/F16 10.909 Tf 63.135 134.522 Td[(76.)-250(Inscribed)-250(quadrangle)-836(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 134.522 cm +0 g 0 G +1 0 0 1 -316.492 -134.522 cm +BT +/F16 10.909 Tf 316.492 134.522 Td[(51)]TJ +ET +1 0 0 1 327.401 134.522 cm +0 g 0 G +1 0 0 1 -327.401 -134.522 cm +BT +/F16 10.909 Tf 63.135 120.814 Td[(77.)-250(Inscribed)-250(triangle)-724(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 120.814 cm +0 g 0 G +1 0 0 1 -316.492 -120.814 cm +BT +/F16 10.909 Tf 316.492 120.814 Td[(53)]TJ +ET +1 0 0 1 327.401 120.814 cm +0 g 0 G +1 0 0 1 -327.401 -120.814 cm +BT +/F16 10.909 Tf 63.135 107.106 Td[(78.)-250(Degenerate)-250(conic)-781(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 107.106 cm +0 g 0 G +1 0 0 1 -316.492 -107.106 cm +BT +/F16 10.909 Tf 316.492 107.106 Td[(53)]TJ +ET +1 0 0 1 327.401 107.106 cm +0 g 0 G +1 0 0 1 -327.401 -107.106 cm +BT +/F16 10.909 Tf 63.135 93.399 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 93.399 cm +0 g 0 G +1 0 0 1 -316.492 -93.399 cm +BT +/F16 10.909 Tf 316.492 93.399 Td[(54)]TJ +ET +1 0 0 1 327.401 93.399 cm +0 g 0 G +1 0 0 1 -327.401 -93.399 cm +BT +/F16 10.909 Tf 46.771 79.691 Td[(CHAPTER)-293(V)-292(-)-293(PENCILS)-292(OF)-293(RAYS)-292(OF)-293(THE)-293(SECOND)]TJ 15.273 -13.549 Td[(ORDER)-711(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 66.142 cm +0 g 0 G +1 0 0 1 -316.492 -66.142 cm +BT +/F16 10.909 Tf 316.492 66.142 Td[(56)]TJ +ET +1 0 0 1 327.401 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +56 0 obj << +/Type /Page +/Contents 57 0 R +/Resources 55 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +55 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +60 0 obj << +/Length 12278 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(xii)-1893(An)-250(Ele)-1(mentary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 109.907 518.175 Td[(79.)-250(Pencil)-250(of)-250(rays)-250(of)-250(the)-250(second)-250(order)-250(defined)-810(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 518.175 cm +0 g 0 G +1 0 0 1 -363.264 -518.175 cm +BT +/F16 10.909 Tf 363.264 518.175 Td[(56)]TJ +ET +1 0 0 1 374.173 518.175 cm +0 g 0 G +1 0 0 1 -374.173 -518.175 cm +BT +/F16 10.909 Tf 109.907 504.472 Td[(80.)-250(Tangents)-250(to)-250(a)-250(circle)-641(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 504.472 cm +0 g 0 G +1 0 0 1 -363.264 -504.472 cm +BT +/F16 10.909 Tf 363.264 504.472 Td[(56)]TJ +ET +1 0 0 1 374.173 504.472 cm +0 g 0 G +1 0 0 1 -374.173 -504.472 cm +BT +/F16 10.909 Tf 109.907 490.77 Td[(81.)-250(Tangents)-250(to)-250(a)-250(conic)-696(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 490.77 cm +0 g 0 G +1 0 0 1 -363.264 -490.77 cm +BT +/F16 10.909 Tf 363.264 490.77 Td[(57)]TJ +ET +1 0 0 1 374.173 490.77 cm +0 g 0 G +1 0 0 1 -374.173 -490.77 cm +BT +/F16 10.909 Tf 109.907 477.067 Td[(82.)-250(Generating)-250(point-rows)-250(lines)-250(of)-250(the)-250(system)-752(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 477.067 cm +0 g 0 G +1 0 0 1 -363.264 -477.067 cm +BT +/F16 10.909 Tf 363.264 477.067 Td[(58)]TJ +ET +1 0 0 1 374.173 477.067 cm +0 g 0 G +1 0 0 1 -374.173 -477.067 cm +BT +/F16 10.909 Tf 109.907 463.365 Td[(83.)-250(Determination)-250(of)-250(the)-250(pencil)-474(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 463.365 cm +0 g 0 G +1 0 0 1 -363.264 -463.365 cm +BT +/F16 10.909 Tf 363.264 463.365 Td[(58)]TJ +ET +1 0 0 1 374.173 463.365 cm +0 g 0 G +1 0 0 1 -374.173 -463.365 cm +BT +/F16 10.909 Tf 109.907 449.662 Td[(84.)-250(Brianchon's)-250(theorem)-988(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 449.662 cm +0 g 0 G +1 0 0 1 -363.264 -449.662 cm +BT +/F16 10.909 Tf 363.264 449.662 Td[(59)]TJ +ET +1 0 0 1 374.173 449.662 cm +0 g 0 G +1 0 0 1 -374.173 -449.662 cm +BT +/F16 10.909 Tf 109.907 435.959 Td[(85.)-250(Permutations)-250(of)-250(lines)-250(in)-250(Brianchon's)-250(theorem)-960(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 435.959 cm +0 g 0 G +1 0 0 1 -363.264 -435.959 cm +BT +/F16 10.909 Tf 363.264 435.959 Td[(59)]TJ +ET +1 0 0 1 374.173 435.959 cm +0 g 0 G +1 0 0 1 -374.173 -435.959 cm +BT +/F16 10.909 Tf 109.907 422.257 Td[(86.)-250(Construction)-250(of)-250(the)-250(penvil)-250(by)-250(Brianchon's)-250(theorem)-266(.)]TJ +ET +1 0 0 1 363.264 422.257 cm +0 g 0 G +1 0 0 1 -363.264 -422.257 cm +BT +/F16 10.909 Tf 363.264 422.257 Td[(60)]TJ +ET +1 0 0 1 374.173 422.257 cm +0 g 0 G +1 0 0 1 -374.173 -422.257 cm +BT +/F16 10.909 Tf 109.907 408.554 Td[(87.)-250(Point)-250(of)-250(contact)-250(of)-250(a)-250(tangent)-250(to)-250(a)-250(conic)-558(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 408.554 cm +0 g 0 G +1 0 0 1 -363.264 -408.554 cm +BT +/F16 10.909 Tf 363.264 408.554 Td[(60)]TJ +ET +1 0 0 1 374.173 408.554 cm +0 g 0 G +1 0 0 1 -374.173 -408.554 cm +BT +/F16 10.909 Tf 109.907 394.851 Td[(88.)-250(Circumscribed)-250(quadrilateral)-308(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 394.851 cm +0 g 0 G +1 0 0 1 -363.264 -394.851 cm +BT +/F16 10.909 Tf 363.264 394.851 Td[(60)]TJ +ET +1 0 0 1 374.173 394.851 cm +0 g 0 G +1 0 0 1 -374.173 -394.851 cm +BT +/F16 10.909 Tf 109.907 381.149 Td[(89.)-250(Circumscribed)-250(triangle)-807(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 381.149 cm +0 g 0 G +1 0 0 1 -363.264 -381.149 cm +BT +/F16 10.909 Tf 363.264 381.149 Td[(61)]TJ +ET +1 0 0 1 374.173 381.149 cm +0 g 0 G +1 0 0 1 -374.173 -381.149 cm +BT +/F16 10.909 Tf 109.907 367.446 Td[(90.)-250(Use)-250(of)-250(Brianchon's)-250(theorem)-350(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 367.446 cm +0 g 0 G +1 0 0 1 -363.264 -367.446 cm +BT +/F16 10.909 Tf 363.264 367.446 Td[(61)]TJ +ET +1 0 0 1 374.173 367.446 cm +0 g 0 G +1 0 0 1 -374.173 -367.446 cm +BT +/F16 10.909 Tf 109.907 353.744 Td[(91.)-250(Harmonic)-250(tangents)-918(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 353.744 cm +0 g 0 G +1 0 0 1 -363.264 -353.744 cm +BT +/F16 10.909 Tf 363.264 353.744 Td[(61)]TJ +ET +1 0 0 1 374.173 353.744 cm +0 g 0 G +1 0 0 1 -374.173 -353.744 cm +BT +/F16 10.909 Tf 109.907 340.041 Td[(92.)-250(Projectivity)-250(and)-250(perspectivity)-473(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 340.041 cm +0 g 0 G +1 0 0 1 -363.264 -340.041 cm +BT +/F16 10.909 Tf 363.264 340.041 Td[(62)]TJ +ET +1 0 0 1 374.173 340.041 cm +0 g 0 G +1 0 0 1 -374.173 -340.041 cm +BT +/F16 10.909 Tf 109.907 326.338 Td[(93.)-250(Degenerate)-250(case)-476(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 326.338 cm +0 g 0 G +1 0 0 1 -363.264 -326.338 cm +BT +/F16 10.909 Tf 363.264 326.338 Td[(62)]TJ +ET +1 0 0 1 374.173 326.338 cm +0 g 0 G +1 0 0 1 -374.173 -326.338 cm +BT +/F16 10.909 Tf 109.907 312.636 Td[(94.)-250(Law)-250(of)-250(duality)-362(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 312.636 cm +0 g 0 G +1 0 0 1 -363.264 -312.636 cm +BT +/F16 10.909 Tf 363.264 312.636 Td[(62)]TJ +ET +1 0 0 1 374.173 312.636 cm +0 g 0 G +1 0 0 1 -374.173 -312.636 cm +BT +/F16 10.909 Tf 109.907 298.933 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 298.933 cm +0 g 0 G +1 0 0 1 -363.264 -298.933 cm +BT +/F16 10.909 Tf 363.264 298.933 Td[(62)]TJ +ET +1 0 0 1 374.173 298.933 cm +0 g 0 G +1 0 0 1 -374.173 -298.933 cm +BT +/F16 10.909 Tf 93.543 285.23 Td[(CHAPTER)-250(VI)-250(-)-250(POLES)-250(AND)-250(POLARS)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 285.23 cm +0 g 0 G +1 0 0 1 -363.264 -285.23 cm +BT +/F16 10.909 Tf 363.264 285.23 Td[(69)]TJ +ET +1 0 0 1 374.173 285.23 cm +0 g 0 G +1 0 0 1 -374.173 -285.23 cm +BT +/F16 10.909 Tf 109.907 271.528 Td[(95.)-250(Inscribed)-250(and)-250(circumscribed)-250(quadrilaterals)-477(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 271.528 cm +0 g 0 G +1 0 0 1 -363.264 -271.528 cm +BT +/F16 10.909 Tf 363.264 271.528 Td[(69)]TJ +ET +1 0 0 1 374.173 271.528 cm +0 g 0 G +1 0 0 1 -374.173 -271.528 cm +BT +/F16 10.909 Tf 109.907 257.825 Td[(96.)-250(Definition)-250(of)-250(the)-250(polar)-250(line)-250(of)-250(a)-250(point)-446(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 257.825 cm +0 g 0 G +1 0 0 1 -363.264 -257.825 cm +BT +/F16 10.909 Tf 363.264 257.825 Td[(69)]TJ +ET +1 0 0 1 374.173 257.825 cm +0 g 0 G +1 0 0 1 -374.173 -257.825 cm +BT +/F16 10.909 Tf 109.907 244.123 Td[(97.)-250(Further)-250(defining)-250(properties)-724(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 244.123 cm +0 g 0 G +1 0 0 1 -363.264 -244.123 cm +BT +/F16 10.909 Tf 363.264 244.123 Td[(70)]TJ +ET +1 0 0 1 374.173 244.123 cm +0 g 0 G +1 0 0 1 -374.173 -244.123 cm +BT +/F16 10.909 Tf 109.907 230.42 Td[(98.)-250(Definition)-250(of)-250(the)-250(pole)-250(of)-250(a)-250(line)-835(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 230.42 cm +0 g 0 G +1 0 0 1 -363.264 -230.42 cm +BT +/F16 10.909 Tf 363.264 230.42 Td[(70)]TJ +ET +1 0 0 1 374.173 230.42 cm +0 g 0 G +1 0 0 1 -374.173 -230.42 cm +BT +/F16 10.909 Tf 109.907 216.717 Td[(99.)-250(Fundamental)-250(theorem)-250(of)-250(poles)-250(and)-250(polars)-919(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 216.717 cm +0 g 0 G +1 0 0 1 -363.264 -216.717 cm +BT +/F16 10.909 Tf 363.264 216.717 Td[(70)]TJ +ET +1 0 0 1 374.173 216.717 cm +0 g 0 G +1 0 0 1 -374.173 -216.717 cm +BT +/F16 10.909 Tf 109.907 203.015 Td[(100.)-250(Conjugate)-250(points)-250(and)-250(lines)-361(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 203.015 cm +0 g 0 G +1 0 0 1 -363.264 -203.015 cm +BT +/F16 10.909 Tf 363.264 203.015 Td[(71)]TJ +ET +1 0 0 1 374.173 203.015 cm +0 g 0 G +1 0 0 1 -374.173 -203.015 cm +BT +/F16 10.909 Tf 109.907 189.312 Td[(101.)-250(Construction)-250(of)-250(the)-250(polar)-250(line)-250(of)-250(a)-250(given)-250(point)-918(.)-500(.)]TJ +ET +1 0 0 1 363.264 189.312 cm +0 g 0 G +1 0 0 1 -363.264 -189.312 cm +BT +/F16 10.909 Tf 363.264 189.312 Td[(71)]TJ +ET +1 0 0 1 374.173 189.312 cm +0 g 0 G +1 0 0 1 -374.173 -189.312 cm +BT +/F16 10.909 Tf 109.907 175.609 Td[(102.)-250(Self-polar)-250(triangle)-696(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 175.609 cm +0 g 0 G +1 0 0 1 -363.264 -175.609 cm +BT +/F16 10.909 Tf 363.264 175.609 Td[(72)]TJ +ET +1 0 0 1 374.173 175.609 cm +0 g 0 G +1 0 0 1 -374.173 -175.609 cm +BT +/F16 10.909 Tf 109.907 161.907 Td[(103.)-250(Pole)-250(and)-250(polar)-250(projectively)-250(related)-975(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 161.907 cm +0 g 0 G +1 0 0 1 -363.264 -161.907 cm +BT +/F16 10.909 Tf 363.264 161.907 Td[(72)]TJ +ET +1 0 0 1 374.173 161.907 cm +0 g 0 G +1 0 0 1 -374.173 -161.907 cm +BT +/F16 10.909 Tf 109.907 148.204 Td[(104.)-250(Duality)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 148.204 cm +0 g 0 G +1 0 0 1 -363.264 -148.204 cm +BT +/F16 10.909 Tf 363.264 148.204 Td[(72)]TJ +ET +1 0 0 1 374.173 148.204 cm +0 g 0 G +1 0 0 1 -374.173 -148.204 cm +BT +/F16 10.909 Tf 109.907 134.502 Td[(105.)-250(Self-dual)-250(theorems)-418(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 134.502 cm +0 g 0 G +1 0 0 1 -363.264 -134.502 cm +BT +/F16 10.909 Tf 363.264 134.502 Td[(73)]TJ +ET +1 0 0 1 374.173 134.502 cm +0 g 0 G +1 0 0 1 -374.173 -134.502 cm +BT +/F16 10.909 Tf 109.907 120.799 Td[(106.)-250(Other)-250(correspondences)-309(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 120.799 cm +0 g 0 G +1 0 0 1 -363.264 -120.799 cm +BT +/F16 10.909 Tf 363.264 120.799 Td[(74)]TJ +ET +1 0 0 1 374.173 120.799 cm +0 g 0 G +1 0 0 1 -374.173 -120.799 cm +BT +/F16 10.909 Tf 109.907 107.096 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 107.096 cm +0 g 0 G +1 0 0 1 -363.264 -107.096 cm +BT +/F16 10.909 Tf 363.264 107.096 Td[(74)]TJ +ET +1 0 0 1 374.173 107.096 cm +0 g 0 G +1 0 0 1 -374.173 -107.096 cm +BT +/F16 10.909 Tf 93.543 93.394 Td[(CHAPTER)-446(VII)-445(-)-446(METRICAL)-446(PROPERTIES)-446(OF)-446(THE)]TJ 15.273 -13.55 Td[(CONIC)-250(SECTIONS)-461(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 79.844 cm +0 g 0 G +1 0 0 1 -363.264 -79.844 cm +BT +/F16 10.909 Tf 363.264 79.844 Td[(76)]TJ +ET +1 0 0 1 374.173 79.844 cm +0 g 0 G +1 0 0 1 -374.173 -79.844 cm +BT +/F16 10.909 Tf 109.907 66.142 Td[(107.)-250(Diameters.)-250(Center)-724(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 66.142 cm +0 g 0 G +1 0 0 1 -363.264 -66.142 cm +BT +/F16 10.909 Tf 363.264 66.142 Td[(76)]TJ +ET +1 0 0 1 374.173 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +59 0 obj << +/Type /Page +/Contents 60 0 R +/Resources 58 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 41 0 R +>> endobj +58 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +63 0 obj << +/Length 11001 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(Contents)-20835(xiii)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 63.135 518.175 Td[(108.)-250(Various)-250(theorems)-918(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 518.175 cm +0 g 0 G +1 0 0 1 -316.492 -518.175 cm +BT +/F16 10.909 Tf 316.492 518.175 Td[(76)]TJ +ET +1 0 0 1 327.401 518.175 cm +0 g 0 G +1 0 0 1 -327.401 -518.175 cm +BT +/F16 10.909 Tf 63.135 504.444 Td[(109.)-250(Conjugate)-250(diameters)-501(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 504.444 cm +0 g 0 G +1 0 0 1 -316.492 -504.444 cm +BT +/F16 10.909 Tf 316.492 504.444 Td[(76)]TJ +ET +1 0 0 1 327.401 504.444 cm +0 g 0 G +1 0 0 1 -327.401 -504.444 cm +BT +/F16 10.909 Tf 63.135 490.713 Td[(110.)-250(Classification)-250(of)-250(conics)-862(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 490.713 cm +0 g 0 G +1 0 0 1 -316.492 -490.713 cm +BT +/F16 10.909 Tf 316.492 490.713 Td[(77)]TJ +ET +1 0 0 1 327.401 490.713 cm +0 g 0 G +1 0 0 1 -327.401 -490.713 cm +BT +/F16 10.909 Tf 63.135 476.982 Td[(111.)-250(Asymptotes)-972(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 476.982 cm +0 g 0 G +1 0 0 1 -316.492 -476.982 cm +BT +/F16 10.909 Tf 316.492 476.982 Td[(77)]TJ +ET +1 0 0 1 327.401 476.982 cm +0 g 0 G +1 0 0 1 -327.401 -476.982 cm +BT +/F16 10.909 Tf 63.135 463.251 Td[(112.)-250(Various)-250(theorems)-918(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 463.251 cm +0 g 0 G +1 0 0 1 -316.492 -463.251 cm +BT +/F16 10.909 Tf 316.492 463.251 Td[(77)]TJ +ET +1 0 0 1 327.401 463.251 cm +0 g 0 G +1 0 0 1 -327.401 -463.251 cm +BT +/F16 10.909 Tf 63.135 449.52 Td[(113.)-250(Theorems)-250(concerning)-250(asymptotes)-558(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 449.52 cm +0 g 0 G +1 0 0 1 -316.492 -449.52 cm +BT +/F16 10.909 Tf 316.492 449.52 Td[(78)]TJ +ET +1 0 0 1 327.401 449.52 cm +0 g 0 G +1 0 0 1 -327.401 -449.52 cm +BT +/F16 10.909 Tf 63.135 435.789 Td[(114.)-250(Asymptotes)-250(and)-250(conjugate)-250(diameters)-752(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 435.789 cm +0 g 0 G +1 0 0 1 -316.492 -435.789 cm +BT +/F16 10.909 Tf 316.492 435.789 Td[(79)]TJ +ET +1 0 0 1 327.401 435.789 cm +0 g 0 G +1 0 0 1 -327.401 -435.789 cm +BT +/F16 10.909 Tf 63.135 422.058 Td[(115.)-260(Segments)-253(cut)-253(off)-253(on)-253(a)-254(chord)-253(by)-253(hyperbola)-253(and)-254(its)]TJ 25.091 -13.549 Td[(asymptotes)-950(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 408.509 cm +0 g 0 G +1 0 0 1 -316.492 -408.509 cm +BT +/F16 10.909 Tf 316.492 408.509 Td[(79)]TJ +ET +1 0 0 1 327.401 408.509 cm +0 g 0 G +1 0 0 1 -327.401 -408.509 cm +BT +/F16 10.909 Tf 63.135 394.778 Td[(116.)-250(Application)-250(of)-250(the)-250(theorem)-946(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 394.778 cm +0 g 0 G +1 0 0 1 -316.492 -394.778 cm +BT +/F16 10.909 Tf 316.492 394.778 Td[(79)]TJ +ET +1 0 0 1 327.401 394.778 cm +0 g 0 G +1 0 0 1 -327.401 -394.778 cm +BT +/F16 10.909 Tf 63.135 381.047 Td[(117.)-712(Triangle)-403(formed)-404(by)-404(the)-404(two)-404(asymptotes)-404(and)-404(a)]TJ 25.091 -13.55 Td[(tangent)-256(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 367.497 cm +0 g 0 G +1 0 0 1 -316.492 -367.497 cm +BT +/F16 10.909 Tf 316.492 367.497 Td[(80)]TJ +ET +1 0 0 1 327.401 367.497 cm +0 g 0 G +1 0 0 1 -327.401 -367.497 cm +BT +/F16 10.909 Tf 63.135 353.766 Td[(118.)-250(Equation)-250(of)-250(hyperbola)-250(referred)-250(to)-250(the)-250(asymptotes)-393(.)]TJ +ET +1 0 0 1 316.492 353.766 cm +0 g 0 G +1 0 0 1 -316.492 -353.766 cm +BT +/F16 10.909 Tf 316.492 353.766 Td[(81)]TJ +ET +1 0 0 1 327.401 353.766 cm +0 g 0 G +1 0 0 1 -327.401 -353.766 cm +BT +/F16 10.909 Tf 63.135 340.035 Td[(119.)-250(Equation)-250(of)-250(parabola)-363(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 340.035 cm +0 g 0 G +1 0 0 1 -316.492 -340.035 cm +BT +/F16 10.909 Tf 316.492 340.035 Td[(81)]TJ +ET +1 0 0 1 327.401 340.035 cm +0 g 0 G +1 0 0 1 -327.401 -340.035 cm +BT +/F16 10.909 Tf 63.135 326.304 Td[(120.)-458(Equation)-320(of)-319(central)-319(conics)-320(referred)-319(to)-320(conjugate)]TJ 25.091 -13.549 Td[(diameters)-812(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 312.755 cm +0 g 0 G +1 0 0 1 -316.492 -312.755 cm +BT +/F16 10.909 Tf 316.492 312.755 Td[(83)]TJ +ET +1 0 0 1 327.401 312.755 cm +0 g 0 G +1 0 0 1 -327.401 -312.755 cm +BT +/F16 10.909 Tf 63.135 299.024 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 299.024 cm +0 g 0 G +1 0 0 1 -316.492 -299.024 cm +BT +/F16 10.909 Tf 316.492 299.024 Td[(84)]TJ +ET +1 0 0 1 327.401 299.024 cm +0 g 0 G +1 0 0 1 -327.401 -299.024 cm +BT +/F16 10.909 Tf 46.771 285.293 Td[(CHAPTER)-250(VIII)-250(-)-250(INVOLUTION)-920(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 285.293 cm +0 g 0 G +1 0 0 1 -316.492 -285.293 cm +BT +/F16 10.909 Tf 316.492 285.293 Td[(88)]TJ +ET +1 0 0 1 327.401 285.293 cm +0 g 0 G +1 0 0 1 -327.401 -285.293 cm +BT +/F16 10.909 Tf 63.135 271.562 Td[(121.)-250(Fundamental)-250(theorem)-751(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 271.562 cm +0 g 0 G +1 0 0 1 -316.492 -271.562 cm +BT +/F16 10.909 Tf 316.492 271.562 Td[(88)]TJ +ET +1 0 0 1 327.401 271.562 cm +0 g 0 G +1 0 0 1 -327.401 -271.562 cm +BT +/F16 10.909 Tf 63.135 257.831 Td[(122.)-250(Linear)-250(construction)-946(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 257.831 cm +0 g 0 G +1 0 0 1 -316.492 -257.831 cm +BT +/F16 10.909 Tf 316.492 257.831 Td[(89)]TJ +ET +1 0 0 1 327.401 257.831 cm +0 g 0 G +1 0 0 1 -327.401 -257.831 cm +BT +/F16 10.909 Tf 63.135 244.1 Td[(123.)-250(Definition)-250(of)-250(involution)-250(of)-250(points)-250(on)-250(a)-250(line)-722(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 244.1 cm +0 g 0 G +1 0 0 1 -316.492 -244.1 cm +BT +/F16 10.909 Tf 316.492 244.1 Td[(90)]TJ +ET +1 0 0 1 327.401 244.1 cm +0 g 0 G +1 0 0 1 -327.401 -244.1 cm +BT +/F16 10.909 Tf 63.135 230.369 Td[(124.)-250(Double-points)-250(in)-250(an)-250(involution)-944(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 230.369 cm +0 g 0 G +1 0 0 1 -316.492 -230.369 cm +BT +/F16 10.909 Tf 316.492 230.369 Td[(90)]TJ +ET +1 0 0 1 327.401 230.369 cm +0 g 0 G +1 0 0 1 -327.401 -230.369 cm +BT +/F16 10.909 Tf 63.135 216.638 Td[(125.)-488(Desargues's)-329(theorem)-329(concerning)-329(conics)-330(through)]TJ 25.091 -13.549 Td[(four)-250(points)-339(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 203.089 cm +0 g 0 G +1 0 0 1 -316.492 -203.089 cm +BT +/F16 10.909 Tf 316.492 203.089 Td[(91)]TJ +ET +1 0 0 1 327.401 203.089 cm +0 g 0 G +1 0 0 1 -327.401 -203.089 cm +BT +/F16 10.909 Tf 63.135 189.358 Td[(126.)-250(Degenerate)-250(conics)-250(of)-250(the)-250(system)-309(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 189.358 cm +0 g 0 G +1 0 0 1 -316.492 -189.358 cm +BT +/F16 10.909 Tf 316.492 189.358 Td[(92)]TJ +ET +1 0 0 1 327.401 189.358 cm +0 g 0 G +1 0 0 1 -327.401 -189.358 cm +BT +/F16 10.909 Tf 63.135 175.626 Td[(127.)-250(Conics)-250(through)-250(four)-250(points)-250(touching)-250(a)-250(given)-250(line)-584(.)]TJ +ET +1 0 0 1 316.492 175.626 cm +0 g 0 G +1 0 0 1 -316.492 -175.626 cm +BT +/F16 10.909 Tf 316.492 175.626 Td[(92)]TJ +ET +1 0 0 1 327.401 175.626 cm +0 g 0 G +1 0 0 1 -327.401 -175.626 cm +BT +/F16 10.909 Tf 63.135 161.895 Td[(128.)-250(Double)-250(correspondence)-781(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 161.895 cm +0 g 0 G +1 0 0 1 -316.492 -161.895 cm +BT +/F16 10.909 Tf 316.492 161.895 Td[(93)]TJ +ET +1 0 0 1 327.401 161.895 cm +0 g 0 G +1 0 0 1 -327.401 -161.895 cm +BT +/F16 10.909 Tf 63.135 148.164 Td[(129.)-250(Steiner's)-250(construction)-904(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 148.164 cm +0 g 0 G +1 0 0 1 -316.492 -148.164 cm +BT +/F16 10.909 Tf 316.492 148.164 Td[(93)]TJ +ET +1 0 0 1 327.401 148.164 cm +0 g 0 G +1 0 0 1 -327.401 -148.164 cm +BT +/F16 10.909 Tf 63.135 134.433 Td[(130.)-634(Application)-378(of)-378(Steiner's)-378(construction)-378(to)-378(double)]TJ 25.091 -13.549 Td[(correspondence)-675(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 120.884 cm +0 g 0 G +1 0 0 1 -316.492 -120.884 cm +BT +/F16 10.909 Tf 316.492 120.884 Td[(94)]TJ +ET +1 0 0 1 327.401 120.884 cm +0 g 0 G +1 0 0 1 -327.401 -120.884 cm +BT +/F16 10.909 Tf 63.135 107.153 Td[(131.)-253(Involution)-250(of)-251(points)-251(on)-251(a)-251(point-row)-251(of)-251(the)-251(second)]TJ 25.091 -13.549 Td[(order.)-840(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 93.604 cm +0 g 0 G +1 0 0 1 -316.492 -93.604 cm +BT +/F16 10.909 Tf 316.492 93.604 Td[(95)]TJ +ET +1 0 0 1 327.401 93.604 cm +0 g 0 G +1 0 0 1 -327.401 -93.604 cm +BT +/F16 10.909 Tf 63.135 79.873 Td[(132.)-250(Involution)-250(of)-250(rays)-834(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 79.873 cm +0 g 0 G +1 0 0 1 -316.492 -79.873 cm +BT +/F16 10.909 Tf 316.492 79.873 Td[(96)]TJ +ET +1 0 0 1 327.401 79.873 cm +0 g 0 G +1 0 0 1 -327.401 -79.873 cm +BT +/F16 10.909 Tf 63.135 66.142 Td[(133.)-250(Double)-250(rays)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 316.492 66.142 cm +0 g 0 G +1 0 0 1 -316.492 -66.142 cm +BT +/F16 10.909 Tf 316.492 66.142 Td[(96)]TJ +ET +1 0 0 1 327.401 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +62 0 obj << +/Type /Page +/Contents 63 0 R +/Resources 61 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +61 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +67 0 obj << +/Length 11519 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(xiv)-1671(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 109.907 518.175 Td[(134.)-250(Conic)-250(through)-250(a)-250(fixed)-250(point)-250(touching)-250(four)-250(lines)-390(.)-500(.)]TJ +ET +1 0 0 1 363.264 518.175 cm +0 g 0 G +1 0 0 1 -363.264 -518.175 cm +BT +/F16 10.909 Tf 363.264 518.175 Td[(96)]TJ +ET +1 0 0 1 374.173 518.175 cm +0 g 0 G +1 0 0 1 -374.173 -518.175 cm +BT +/F16 10.909 Tf 109.907 504.457 Td[(135.)-250(Double)-250(correspondence)-781(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 504.457 cm +0 g 0 G +1 0 0 1 -363.264 -504.457 cm +BT +/F16 10.909 Tf 363.264 504.457 Td[(97)]TJ +ET +1 0 0 1 374.173 504.457 cm +0 g 0 G +1 0 0 1 -374.173 -504.457 cm +BT +/F16 10.909 Tf 109.907 490.738 Td[(136.)-250(Pencils)-250(of)-250(rays)-250(of)-250(the)-250(second)-250(order)-250(in)-250(involution)-780(.)]TJ +ET +1 0 0 1 363.264 490.738 cm +0 g 0 G +1 0 0 1 -363.264 -490.738 cm +BT +/F16 10.909 Tf 363.264 490.738 Td[(97)]TJ +ET +1 0 0 1 374.173 490.738 cm +0 g 0 G +1 0 0 1 -374.173 -490.738 cm +BT +/F16 10.909 Tf 109.907 477.02 Td[(137.)-365(Theore)-1(m)-288(concerning)-289(pencils)-288(of)-289(the)-288(second)-289(order)]TJ 25.091 -13.55 Td[(in)-250(involution)-310(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 463.47 cm +0 g 0 G +1 0 0 1 -363.264 -463.47 cm +BT +/F16 10.909 Tf 363.264 463.47 Td[(97)]TJ +ET +1 0 0 1 374.173 463.47 cm +0 g 0 G +1 0 0 1 -374.173 -463.47 cm +BT +/F16 10.909 Tf 109.907 449.752 Td[(138.)-250(Involution)-250(of)-250(rays)-250(determined)-250(by)-250(a)-250(conic)-725(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 449.752 cm +0 g 0 G +1 0 0 1 -363.264 -449.752 cm +BT +/F16 10.909 Tf 363.264 449.752 Td[(98)]TJ +ET +1 0 0 1 374.173 449.752 cm +0 g 0 G +1 0 0 1 -374.173 -449.752 cm +BT +/F16 10.909 Tf 109.907 436.033 Td[(139.)-250(Statement)-250(of)-250(theorem)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 436.033 cm +0 g 0 G +1 0 0 1 -363.264 -436.033 cm +BT +/F16 10.909 Tf 363.264 436.033 Td[(98)]TJ +ET +1 0 0 1 374.173 436.033 cm +0 g 0 G +1 0 0 1 -374.173 -436.033 cm +BT +/F16 10.909 Tf 109.907 422.315 Td[(140.)-250(Dual)-250(of)-250(the)-250(theorem)-724(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 422.315 cm +0 g 0 G +1 0 0 1 -363.264 -422.315 cm +BT +/F16 10.909 Tf 363.264 422.315 Td[(98)]TJ +ET +1 0 0 1 374.173 422.315 cm +0 g 0 G +1 0 0 1 -374.173 -422.315 cm +BT +/F16 10.909 Tf 109.907 408.596 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 363.264 408.596 cm +0 g 0 G +1 0 0 1 -363.264 -408.596 cm +BT +/F16 10.909 Tf 363.264 408.596 Td[(99)]TJ +ET +1 0 0 1 374.173 408.596 cm +0 g 0 G +1 0 0 1 -374.173 -408.596 cm +BT +/F16 10.909 Tf 93.543 394.878 Td[(CHAPTER)-353(IX)-354(-)-353(METRICAL)-353(PROPERTIES)-353(OF)-354(INVO-)]TJ 15.273 -13.549 Td[(LUTIONS)-573(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 381.329 cm +0 g 0 G +1 0 0 1 -357.81 -381.329 cm +BT +/F16 10.909 Tf 357.81 381.329 Td[(104)]TJ +ET +1 0 0 1 374.173 381.329 cm +0 g 0 G +1 0 0 1 -374.173 -381.329 cm +BT +/F16 10.909 Tf 109.907 367.61 Td[(141.)-250(Introduction)-250(of)-250(infinite)-250(point;)-250(center)-250(of)-250(involution)]TJ +ET +1 0 0 1 357.81 367.61 cm +0 g 0 G +1 0 0 1 -357.81 -367.61 cm +BT +/F16 10.909 Tf 357.81 367.61 Td[(104)]TJ +ET +1 0 0 1 374.173 367.61 cm +0 g 0 G +1 0 0 1 -374.173 -367.61 cm +BT +/F16 10.909 Tf 109.907 353.892 Td[(142.)-250(Fundamental)-250(metrical)-250(theorem)-974(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 353.892 cm +0 g 0 G +1 0 0 1 -357.81 -353.892 cm +BT +/F16 10.909 Tf 357.81 353.892 Td[(105)]TJ +ET +1 0 0 1 374.173 353.892 cm +0 g 0 G +1 0 0 1 -374.173 -353.892 cm +BT +/F16 10.909 Tf 109.907 340.173 Td[(143.)-250(Existence)-250(of)-250(double)-250(points)-362(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 340.173 cm +0 g 0 G +1 0 0 1 -357.81 -340.173 cm +BT +/F16 10.909 Tf 357.81 340.173 Td[(106)]TJ +ET +1 0 0 1 374.173 340.173 cm +0 g 0 G +1 0 0 1 -374.173 -340.173 cm +BT +/F16 10.909 Tf 109.907 326.455 Td[(144.)-250(Existence)-250(of)-250(double)-250(rays)-391(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 326.455 cm +0 g 0 G +1 0 0 1 -357.81 -326.455 cm +BT +/F16 10.909 Tf 357.81 326.455 Td[(106)]TJ +ET +1 0 0 1 374.173 326.455 cm +0 g 0 G +1 0 0 1 -374.173 -326.455 cm +BT +/F16 10.909 Tf 109.907 312.736 Td[(145.)-250(Construction)-250(of)-250(an)-250(involution)-250(by)-250(means)-250(of)-250(circles)]TJ +ET +1 0 0 1 357.81 312.736 cm +0 g 0 G +1 0 0 1 -357.81 -312.736 cm +BT +/F16 10.909 Tf 357.81 312.736 Td[(107)]TJ +ET +1 0 0 1 374.173 312.736 cm +0 g 0 G +1 0 0 1 -374.173 -312.736 cm +BT +/F16 10.909 Tf 109.907 299.018 Td[(146.)-250(Circular)-250(points)-528(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 299.018 cm +0 g 0 G +1 0 0 1 -357.81 -299.018 cm +BT +/F16 10.909 Tf 357.81 299.018 Td[(108)]TJ +ET +1 0 0 1 374.173 299.018 cm +0 g 0 G +1 0 0 1 -374.173 -299.018 cm +BT +/F16 10.909 Tf 109.907 285.299 Td[(147.)-454(Pairs)-318(in)-318(an)-318(involution)-318(of)-318(rays)-318(which)-318(are)-318(at)-318(right)]TJ 25.091 -13.549 Td[(angles.)-250(Circular)-250(involution)-756(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 271.75 cm +0 g 0 G +1 0 0 1 -357.81 -271.75 cm +BT +/F16 10.909 Tf 357.81 271.75 Td[(109)]TJ +ET +1 0 0 1 374.173 271.75 cm +0 g 0 G +1 0 0 1 -374.173 -271.75 cm +BT +/F16 10.909 Tf 109.907 258.032 Td[(148.)-250(Axes)-250(of)-250(conics)-557(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 258.032 cm +0 g 0 G +1 0 0 1 -357.81 -258.032 cm +BT +/F16 10.909 Tf 357.81 258.032 Td[(109)]TJ +ET +1 0 0 1 374.173 258.032 cm +0 g 0 G +1 0 0 1 -374.173 -258.032 cm +BT +/F16 10.909 Tf 109.907 244.313 Td[(149.)-544(Points)-348(at)-348(which)-348(the)-348(involution)-348(determined)-348(by)-349(a)]TJ 25.091 -13.549 Td[(conic)-250(is)-250(circular)-563(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 230.764 cm +0 g 0 G +1 0 0 1 -357.81 -230.764 cm +BT +/F16 10.909 Tf 357.81 230.764 Td[(110)]TJ +ET +1 0 0 1 374.173 230.764 cm +0 g 0 G +1 0 0 1 -374.173 -230.764 cm +BT +/F16 10.909 Tf 109.907 217.045 Td[(150.)-250(Properties)-250(of)-250(such)-250(a)-250(point)-779(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 217.045 cm +0 g 0 G +1 0 0 1 -357.81 -217.045 cm +BT +/F16 10.909 Tf 357.81 217.045 Td[(110)]TJ +ET +1 0 0 1 374.173 217.045 cm +0 g 0 G +1 0 0 1 -374.173 -217.045 cm +BT +/F16 10.909 Tf 109.907 203.327 Td[(151.)-250(Position)-250(of)-250(such)-250(a)-250(point)-805(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 203.327 cm +0 g 0 G +1 0 0 1 -357.81 -203.327 cm +BT +/F16 10.909 Tf 357.81 203.327 Td[(111)]TJ +ET +1 0 0 1 374.173 203.327 cm +0 g 0 G +1 0 0 1 -374.173 -203.327 cm +BT +/F16 10.909 Tf 109.907 189.608 Td[(152.)-250(Discovery)-250(of)-250(the)-250(foci)-250(of)-250(the)-250(conic)-559(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 189.608 cm +0 g 0 G +1 0 0 1 -357.81 -189.608 cm +BT +/F16 10.909 Tf 357.81 189.608 Td[(112)]TJ +ET +1 0 0 1 374.173 189.608 cm +0 g 0 G +1 0 0 1 -374.173 -189.608 cm +BT +/F16 10.909 Tf 109.907 175.89 Td[(153.)-250(The)-250(circle)-250(and)-250(the)-250(parabola)-865(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 175.89 cm +0 g 0 G +1 0 0 1 -357.81 -175.89 cm +BT +/F16 10.909 Tf 357.81 175.89 Td[(114)]TJ +ET +1 0 0 1 374.173 175.89 cm +0 g 0 G +1 0 0 1 -374.173 -175.89 cm +BT +/F16 10.909 Tf 109.907 162.171 Td[(154.)-250(Focal)-250(properties)-250(of)-250(conics)-641(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 162.171 cm +0 g 0 G +1 0 0 1 -357.81 -162.171 cm +BT +/F16 10.909 Tf 357.81 162.171 Td[(114)]TJ +ET +1 0 0 1 374.173 162.171 cm +0 g 0 G +1 0 0 1 -374.173 -162.171 cm +BT +/F16 10.909 Tf 109.907 148.453 Td[(155.)-250(Case)-250(of)-250(the)-250(parabola)-558(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 148.453 cm +0 g 0 G +1 0 0 1 -357.81 -148.453 cm +BT +/F16 10.909 Tf 357.81 148.453 Td[(115)]TJ +ET +1 0 0 1 374.173 148.453 cm +0 g 0 G +1 0 0 1 -374.173 -148.453 cm +BT +/F16 10.909 Tf 109.907 134.734 Td[(156.)-250(Parabolic)-250(reflector)-586(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 134.734 cm +0 g 0 G +1 0 0 1 -357.81 -134.734 cm +BT +/F16 10.909 Tf 357.81 134.734 Td[(116)]TJ +ET +1 0 0 1 374.173 134.734 cm +0 g 0 G +1 0 0 1 -374.173 -134.734 cm +BT +/F16 10.909 Tf 109.907 121.016 Td[(157.)-250(Directrix.)-250(Principal)-250(axis.)-250(Vertex)-447(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 121.016 cm +0 g 0 G +1 0 0 1 -357.81 -121.016 cm +BT +/F16 10.909 Tf 357.81 121.016 Td[(116)]TJ +ET +1 0 0 1 374.173 121.016 cm +0 g 0 G +1 0 0 1 -374.173 -121.016 cm +BT +/F16 10.909 Tf 109.907 107.297 Td[(158.)-250(Another)-250(definition)-250(of)-250(a)-250(conic)-891(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 107.297 cm +0 g 0 G +1 0 0 1 -357.81 -107.297 cm +BT +/F16 10.909 Tf 357.81 107.297 Td[(117)]TJ +ET +1 0 0 1 374.173 107.297 cm +0 g 0 G +1 0 0 1 -374.173 -107.297 cm +BT +/F16 10.909 Tf 109.907 93.579 Td[(159.)-250(Eccentricity)-918(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 93.579 cm +0 g 0 G +1 0 0 1 -357.81 -93.579 cm +BT +/F16 10.909 Tf 357.81 93.579 Td[(119)]TJ +ET +1 0 0 1 374.173 93.579 cm +0 g 0 G +1 0 0 1 -374.173 -93.579 cm +BT +/F16 10.909 Tf 109.907 79.86 Td[(160.)-250(Sum)-250(or)-250(difference)-250(of)-250(focal)-250(distances)-282(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 79.86 cm +0 g 0 G +1 0 0 1 -357.81 -79.86 cm +BT +/F16 10.909 Tf 357.81 79.86 Td[(119)]TJ +ET +1 0 0 1 374.173 79.86 cm +0 g 0 G +1 0 0 1 -374.173 -79.86 cm +BT +/F16 10.909 Tf 109.907 66.142 Td[(PROBLEMS)-971(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 357.81 66.142 cm +0 g 0 G +1 0 0 1 -357.81 -66.142 cm +BT +/F16 10.909 Tf 357.81 66.142 Td[(120)]TJ +ET +1 0 0 1 374.173 66.142 cm +0 g 0 G +1 0 0 1 -280.63 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +66 0 obj << +/Type /Page +/Contents 67 0 R +/Resources 65 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +65 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +70 0 obj << +/Length 10666 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(Contents)-21169(xv)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(CHAPTER)-430(X)-430(-)-430(ON)-430(THE)-430(HISTORY)-430(OF)-430(SYNTHETIC)]TJ 15.273 -13.549 Td[(PROJECTIVE)-250(GEOMETRY)-656(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 504.626 cm +0 g 0 G +1 0 0 1 -311.038 -504.626 cm +BT +/F16 10.909 Tf 311.038 504.626 Td[(122)]TJ +ET +1 0 0 1 327.401 504.626 cm +0 g 0 G +1 0 0 1 -327.401 -504.626 cm +BT +/F16 10.909 Tf 63.135 491.077 Td[(161.)-250(Ancient)-250(results)-473(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 491.077 cm +0 g 0 G +1 0 0 1 -311.038 -491.077 cm +BT +/F16 10.909 Tf 311.038 491.077 Td[(122)]TJ +ET +1 0 0 1 327.401 491.077 cm +0 g 0 G +1 0 0 1 -327.401 -491.077 cm +BT +/F16 10.909 Tf 63.135 477.528 Td[(162.)-250(Unifying)-250(principles)-945(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 477.528 cm +0 g 0 G +1 0 0 1 -311.038 -477.528 cm +BT +/F16 10.909 Tf 311.038 477.528 Td[(126)]TJ +ET +1 0 0 1 327.401 477.528 cm +0 g 0 G +1 0 0 1 -327.401 -477.528 cm +BT +/F16 10.909 Tf 63.135 463.978 Td[(163.)-250(Desargues)-835(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 463.978 cm +0 g 0 G +1 0 0 1 -311.038 -463.978 cm +BT +/F16 10.909 Tf 311.038 463.978 Td[(127)]TJ +ET +1 0 0 1 327.401 463.978 cm +0 g 0 G +1 0 0 1 -327.401 -463.978 cm +BT +/F16 10.909 Tf 63.135 450.429 Td[(164.)-250(Poles)-250(and)-250(polars)-695(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 450.429 cm +0 g 0 G +1 0 0 1 -311.038 -450.429 cm +BT +/F16 10.909 Tf 311.038 450.429 Td[(127)]TJ +ET +1 0 0 1 327.401 450.429 cm +0 g 0 G +1 0 0 1 -327.401 -450.429 cm +BT +/F16 10.909 Tf 63.135 436.88 Td[(165.)-488(Desargues's)-329(theorem)-329(concerning)-329(conics)-330(through)]TJ 25.091 -13.549 Td[(four)-250(points)-339(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 423.331 cm +0 g 0 G +1 0 0 1 -311.038 -423.331 cm +BT +/F16 10.909 Tf 311.038 423.331 Td[(128)]TJ +ET +1 0 0 1 327.401 423.331 cm +0 g 0 G +1 0 0 1 -327.401 -423.331 cm +BT +/F16 10.909 Tf 63.135 409.782 Td[(166.)-249(Extension)-249(of)-248(the)-248(theory)-248(of)-249(poles)-248(and)-248(polars)-248(to)-249(space)]TJ +ET +1 0 0 1 311.038 409.782 cm +0 g 0 G +1 0 0 1 -311.038 -409.782 cm +BT +/F16 10.909 Tf 311.038 409.782 Td[(128)]TJ +ET +1 0 0 1 327.401 409.782 cm +0 g 0 G +1 0 0 1 -327.401 -409.782 cm +BT +/F16 10.909 Tf 63.135 396.232 Td[(167.)-250(Desargues's)-250(method)-250(of)-250(describing)-250(a)-250(conic)-407(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 396.232 cm +0 g 0 G +1 0 0 1 -311.038 -396.232 cm +BT +/F16 10.909 Tf 311.038 396.232 Td[(129)]TJ +ET +1 0 0 1 327.401 396.232 cm +0 g 0 G +1 0 0 1 -327.401 -396.232 cm +BT +/F16 10.909 Tf 63.135 382.683 Td[(168.)-250(Reception)-250(of)-250(Desargues's)-250(work)-823(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 382.683 cm +0 g 0 G +1 0 0 1 -311.038 -382.683 cm +BT +/F16 10.909 Tf 311.038 382.683 Td[(129)]TJ +ET +1 0 0 1 327.401 382.683 cm +0 g 0 G +1 0 0 1 -327.401 -382.683 cm +BT +/F16 10.909 Tf 63.135 369.134 Td[(169.)-250(Conservatism)-250(in)-250(Desargues's)-250(time)-460(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 369.134 cm +0 g 0 G +1 0 0 1 -311.038 -369.134 cm +BT +/F16 10.909 Tf 311.038 369.134 Td[(130)]TJ +ET +1 0 0 1 327.401 369.134 cm +0 g 0 G +1 0 0 1 -327.401 -369.134 cm +BT +/F16 10.909 Tf 63.135 355.585 Td[(170.)-250(Desargues's)-250(style)-250(of)-250(writing)-655(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 355.585 cm +0 g 0 G +1 0 0 1 -311.038 -355.585 cm +BT +/F16 10.909 Tf 311.038 355.585 Td[(131)]TJ +ET +1 0 0 1 327.401 355.585 cm +0 g 0 G +1 0 0 1 -327.401 -355.585 cm +BT +/F16 10.909 Tf 63.135 342.036 Td[(171.)-250(Lack)-250(of)-250(appreciation)-250(of)-250(Desargues)-977(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 342.036 cm +0 g 0 G +1 0 0 1 -311.038 -342.036 cm +BT +/F16 10.909 Tf 311.038 342.036 Td[(132)]TJ +ET +1 0 0 1 327.401 342.036 cm +0 g 0 G +1 0 0 1 -327.401 -342.036 cm +BT +/F16 10.909 Tf 63.135 328.486 Td[(172.)-250(Pascal)-250(and)-250(his)-250(theorem)-307(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 328.486 cm +0 g 0 G +1 0 0 1 -311.038 -328.486 cm +BT +/F16 10.909 Tf 311.038 328.486 Td[(132)]TJ +ET +1 0 0 1 327.401 328.486 cm +0 g 0 G +1 0 0 1 -327.401 -328.486 cm +BT +/F16 10.909 Tf 63.135 314.937 Td[(173.)-250(Pascal's)-250(essay)-960(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 314.937 cm +0 g 0 G +1 0 0 1 -311.038 -314.937 cm +BT +/F16 10.909 Tf 311.038 314.937 Td[(133)]TJ +ET +1 0 0 1 327.401 314.937 cm +0 g 0 G +1 0 0 1 -327.401 -314.937 cm +BT +/F16 10.909 Tf 63.135 301.388 Td[(174.)-250(Pascal's)-250(originality)-459(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 301.388 cm +0 g 0 G +1 0 0 1 -311.038 -301.388 cm +BT +/F16 10.909 Tf 311.038 301.388 Td[(134)]TJ +ET +1 0 0 1 327.401 301.388 cm +0 g 0 G +1 0 0 1 -327.401 -301.388 cm +BT +/F16 10.909 Tf 63.135 287.839 Td[(175.)-250(De)-250(la)-250(Hire)-250(and)-250(his)-250(work)-669(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 287.839 cm +0 g 0 G +1 0 0 1 -311.038 -287.839 cm +BT +/F16 10.909 Tf 311.038 287.839 Td[(134)]TJ +ET +1 0 0 1 327.401 287.839 cm +0 g 0 G +1 0 0 1 -327.401 -287.839 cm +BT +/F16 10.909 Tf 63.135 274.29 Td[(176.)-250(Descartes)-250(and)-250(his)-250(influence)-781(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 274.29 cm +0 g 0 G +1 0 0 1 -311.038 -274.29 cm +BT +/F16 10.909 Tf 311.038 274.29 Td[(135)]TJ +ET +1 0 0 1 327.401 274.29 cm +0 g 0 G +1 0 0 1 -327.401 -274.29 cm +BT +/F16 10.909 Tf 63.135 260.74 Td[(177.)-250(Newton)-250(and)-250(Maclaurin)-280(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 260.74 cm +0 g 0 G +1 0 0 1 -311.038 -260.74 cm +BT +/F16 10.909 Tf 311.038 260.74 Td[(136)]TJ +ET +1 0 0 1 327.401 260.74 cm +0 g 0 G +1 0 0 1 -327.401 -260.74 cm +BT +/F16 10.909 Tf 63.135 247.191 Td[(178.)-250(Maclaurin's)-250(construction)-377(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 247.191 cm +0 g 0 G +1 0 0 1 -311.038 -247.191 cm +BT +/F16 10.909 Tf 311.038 247.191 Td[(137)]TJ +ET +1 0 0 1 327.401 247.191 cm +0 g 0 G +1 0 0 1 -327.401 -247.191 cm +BT +/F16 10.909 Tf 63.135 233.642 Td[(179.)-250(Descriptive)-250(geometry)-250(and)-250(the)-250(second)-250(revival)-643(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 233.642 cm +0 g 0 G +1 0 0 1 -311.038 -233.642 cm +BT +/F16 10.909 Tf 311.038 233.642 Td[(137)]TJ +ET +1 0 0 1 327.401 233.642 cm +0 g 0 G +1 0 0 1 -327.401 -233.642 cm +BT +/F16 10.909 Tf 63.135 220.093 Td[(180.)-250(Duality,)-250(homology,)-250(continuity,)-250(contingent)-250(relations)]TJ +ET +1 0 0 1 311.038 220.093 cm +0 g 0 G +1 0 0 1 -311.038 -220.093 cm +BT +/F16 10.909 Tf 311.038 220.093 Td[(138)]TJ +ET +1 0 0 1 327.401 220.093 cm +0 g 0 G +1 0 0 1 -327.401 -220.093 cm +BT +/F16 10.909 Tf 63.135 206.544 Td[(181.)-250(Poncelet)-250(and)-250(Cauchy)-307(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 206.544 cm +0 g 0 G +1 0 0 1 -311.038 -206.544 cm +BT +/F16 10.909 Tf 311.038 206.544 Td[(139)]TJ +ET +1 0 0 1 327.401 206.544 cm +0 g 0 G +1 0 0 1 -327.401 -206.544 cm +BT +/F16 10.909 Tf 63.135 192.994 Td[(182.)-250(The)-250(work)-250(of)-250(Poncelet)-863(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 192.994 cm +0 g 0 G +1 0 0 1 -311.038 -192.994 cm +BT +/F16 10.909 Tf 311.038 192.994 Td[(140)]TJ +ET +1 0 0 1 327.401 192.994 cm +0 g 0 G +1 0 0 1 -327.401 -192.994 cm +BT +/F16 10.909 Tf 63.135 179.445 Td[(183.)-1143(The)-547(debt)-548(which)-547(analytic)-548(geometry)-547(owes)-548(to)]TJ 25.091 -13.549 Td[(synthetic)-250(geometry)-812(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 165.896 cm +0 g 0 G +1 0 0 1 -311.038 -165.896 cm +BT +/F16 10.909 Tf 311.038 165.896 Td[(140)]TJ +ET +1 0 0 1 327.401 165.896 cm +0 g 0 G +1 0 0 1 -327.401 -165.896 cm +BT +/F16 10.909 Tf 63.135 152.347 Td[(184.)-250(Steiner)-250(and)-250(his)-250(work)-501(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 152.347 cm +0 g 0 G +1 0 0 1 -311.038 -152.347 cm +BT +/F16 10.909 Tf 311.038 152.347 Td[(141)]TJ +ET +1 0 0 1 327.401 152.347 cm +0 g 0 G +1 0 0 1 -327.401 -152.347 cm +BT +/F16 10.909 Tf 63.135 138.798 Td[(185.)-250(Von)-250(Staudt)-250(and)-250(his)-250(work)-306(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 138.798 cm +0 g 0 G +1 0 0 1 -311.038 -138.798 cm +BT +/F16 10.909 Tf 311.038 138.798 Td[(142)]TJ +ET +1 0 0 1 327.401 138.798 cm +0 g 0 G +1 0 0 1 -327.401 -138.798 cm +BT +/F16 10.909 Tf 63.135 125.248 Td[(186.)-250(Recent)-250(developments)-918(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 125.248 cm +0 g 0 G +1 0 0 1 -311.038 -125.248 cm +BT +/F16 10.909 Tf 311.038 125.248 Td[(142)]TJ +ET +1 0 0 1 327.401 125.248 cm +0 g 0 G +1 0 0 1 -327.401 -125.248 cm +BT +/F16 10.909 Tf 46.771 111.699 Td[(INDEX)-890(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)]TJ +ET +1 0 0 1 311.038 111.699 cm +0 g 0 G +1 0 0 1 -311.038 -111.699 cm +BT +/F16 10.909 Tf 311.038 111.699 Td[(144)]TJ +ET +1 0 0 1 327.401 111.699 cm +0 g 0 G +1 0 0 1 -280.63 -72.917 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +69 0 obj << +/Type /Page +/Contents 70 0 R +/Resources 68 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +68 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +73 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +72 0 obj << +/Type /Page +/Contents 73 0 R +/Resources 71 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +71 0 obj << +/ProcSet [ /PDF ] +>> endobj +74 0 obj +<< /S /GoTo /D (index3) >> +endobj +77 0 obj +(CHAPTER I - ONE-TO-ONE CORRESPONDENCE) +endobj +78 0 obj +<< /S /GoTo /D (index4) >> +endobj +81 0 obj +() +endobj +82 0 obj +<< /S /GoTo /D (index5) >> +endobj +85 0 obj +() +endobj +88 0 obj << +/Length 3059 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 -46.771 -529.134 cm +BT +/F16 7.97 Tf 337.795 512.811 Td[([1])]TJ/F16 18.959 Tf -291.024 -65.712 Td[(CHAPTER)-265(I)-265(-)-266(ONE-TO-ONE)]TJ 0 -24.647 Td[(CORRESPONDENCE)]TJ/F39 10.909 Tf 0 -73.574 Td[(1.)-592(Definition)-365(of)-364(one-to-one)-364(correspondence.)]TJ/F16 10.909 Tf 213.907 0 Td[(Given)-364(any)-364(two)]TJ -213.907 -13.55 Td[(sets)-177(of)-178(individuals,)-192(if)-177(it)-178(is)-177(possible)-177(to)-178(set)-177(up)-178(such)-177(a)-178(correspondence)]TJ 0 -13.549 Td[(between)-203(the)-202(two)-203(sets)-202(that)-203(to)-202(any)-203(individual)-202(in)-203(one)-202(set)-203(corresponds)]TJ 0 -13.549 Td[(one)-190(and)-189(only)-190(one)-190(individual)-189(in)-190(the)-190(other,)-201(then)-190(the)-190(two)-189(sets)-190(are)-190(said)]TJ 0 -13.549 Td[(to)-221(be)-221(in)]TJ/F20 10.909 Tf 34.498 0 Td[(one-to-one)-221(correspondence)]TJ/F16 10.909 Tf 121.752 0 Td[(with)-221(each)-221(other.)-240(This)-221(notion,)]TJ -156.25 -13.549 Td[(simple)-325(as)-324(it)-325(is,)-343(is)-324(of)-325(fundamental)-324(importance)-325(in)-325(all)-324(branches)-325(of)]TJ 0 -13.549 Td[(science.)-305(The)-268(process)-268(of)-269(counting)-268(is)-268(nothing)-268(but)-269(a)-268(setting)-268(up)-268(of)-269(a)]TJ 0 -13.55 Td[(one-to-one)-175(correspondence)-175(between)-175(the)-174(objects)-175(to)-175(be)-175(counted)-175(and)]TJ 0 -13.549 Td[(certain)-251(words,)-251('one,')-251('two,')-251('three,')-251(etc.,)-251(in)-251(the)-250(mind.)-253(Many)-251(savage)]TJ 0 -13.549 Td[(peoples)-346(have)-347(discovered)-346(no)-347(better)-346(method)-346(of)-347(counting)-346(than)-347(by)]TJ 0 -13.549 Td[(setting)-355(up)-355(a)-356(one-to-one)-355(correspondence)-355(between)-355(the)-355(objects)-356(to)]TJ 0 -13.549 Td[(be)-341(counted)-342(and)-341(their)-342(fingers.)-524(The)-341(scientist)-342(who)-341(busies)-342(himself)]TJ 0 -13.55 Td[(with)-267(naming)-267(and)-267(classifying)-267(the)-267(objects)-267(of)-267(nature)-267(is)-268(only)-267(setting)]TJ 0 -13.549 Td[(up)-265(a)-265(one-to-one)-266(correspondence)-265(between)-265(the)-265(objects)-265(and)-266(certain)]TJ 0 -13.549 Td[(words)-286(which)-286(serve,)-295(not)-286(as)-286(a)-286(means)-286(of)-286(counting)-286(the)-573(objects,)-295(but)]TJ/F16 7.97 Tf 291.024 0 Td[([2])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(of)-379(listing)-380(them)-379(in)-379(a)-380(convenient)-379(way.)-638(Thus)-379(he)-380(may)-379(be)-379(able)-380(to)]TJ 0 -13.549 Td[(marshal)-274(and)-274(array)-274(his)-274(material)-274(in)-274(such)-274(a)-274(way)-274(as)-274(to)-274(bring)-274(to)-274(light)]TJ 0 -13.55 Td[(relations)-262(that)-262(may)-261(exist)-262(between)-262(the)-262(objects)-261(themselves.)-286(Indeed,)]TJ 0 -13.549 Td[(the)-195(whole)-195(notion)-195(of)-195(language)-195(springs)-195(from)-195(this)-195(idea)-196(of)-195(one-to-one)]TJ 0 -13.549 Td[(correspondence.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +87 0 obj << +/Type /Page +/Contents 88 0 R +/Resources 86 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +89 0 obj << +/D [87 0 R /XYZ 46.771 518.175 null] +>> endobj +75 0 obj << +/D [87 0 R /XYZ 46.771 518.175 null] +>> endobj +79 0 obj << +/D [87 0 R /XYZ 46.771 379.284 null] +>> endobj +90 0 obj << +/D [87 0 R /XYZ 46.771 362.459 null] +>> endobj +93 0 obj << +/D [87 0 R /XYZ 273.488 159.189 null] +>> endobj +83 0 obj << +/D [87 0 R /XYZ 46.771 66.142 null] +>> endobj +86 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +94 0 obj +<< /S /GoTo /D (index6) >> +endobj +97 0 obj +() +endobj +98 0 obj +<< /S /GoTo /D (index7) >> +endobj +101 0 obj +() +endobj +106 0 obj << +/Length 3792 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(2)-2449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(2.)-751(Consequences)-418(of)-417(one-to-one)-417(correspondence.)]TJ/F16 10.909 Tf 237.898 0 Td[(The)-417(most)]TJ -237.898 -13.549 Td[(useful)-248(and)-247(interesting)-248(problem)-247(that)-248(may)-247(arise)-248(in)-247(connection)-248(with)]TJ 0 -13.549 Td[(any)-175(one-to-one)-174(correspondence)-175(is)-174(to)-175(determine)-174(just)-175(what)-175(relations)]TJ 0 -13.549 Td[(existing)-501(between)-500(the)-501(individuals)-501(of)-501(one)-500(assemblage)-501(may)-501(be)]TJ 0 -13.55 Td[(carried)-200(over)-200(to)-200(another)-200(assemblage)-200(in)-200(one-to-one)-200(correspondence)]TJ 0 -13.549 Td[(with)-332(it.)-495(It)-332(is)-332(a)-332(favorite)-332(error)-331(to)-332(assume)-332(that)-332(whatever)-332(holds)-332(for)]TJ 0 -13.549 Td[(one)-268(set)-269(must)-268(also)-268(hold)-268(for)-269(the)-268(other.)-305(Magicians)-268(are)-268(apt)-268(to)-269(assign)]TJ 0 -13.549 Td[(magic)-284(properties)-284(to)-284(many)-283(of)-284(the)-284(words)-284(and)-284(symbols)-284(which)-284(they)]TJ 0 -13.549 Td[(are)-286(in)-286(the)-285(habit)-286(of)-286(using,)-295(and)-285(scientists)-286(are)-286(constantly)-286(confusing)]TJ 0 -13.55 Td[(objective)-251(things)-250(with)-251(the)-250(subjective)-251(formulas)-250(for)-251(them.)-251(After)-251(the)]TJ 0 -13.549 Td[(physicist)-258(has)-258(set)-258(up)-258(correspondences)-258(between)-258(physical)-258(facts)-258(and)]TJ 0 -13.549 Td[(mathematical)-284(formulas,)-292(the)-284("interpretation")-284(of)-284(these)-284(formulas)-284(is)]TJ 0 -13.549 Td[(his)-250(most)-250(important)-250(and)-250(difficult)-250(task.)]TJ/F39 10.909 Tf 0 -49.877 Td[(3.)]TJ/F16 10.909 Tf 16.414 0 Td[(In)-418(mathematics,)-460(effo)-1(rt)-418(is)-418(constantly)-418(being)-418(made)-419(to)-418(set)-418(up)]TJ -16.414 -13.549 Td[(one-to-one)-381(correspondences)-381(between)-381(simple)-381(notions)-381(and)-381(more)]TJ 0 -13.55 Td[(complicated)-177(ones,)-191(or)-176(between)-177(the)-176(well-explored)-177(fields)-176(of)-177(research)]TJ 0 -13.549 Td[(and)-510(fields)-509(less)-510(known.)-1029(Thus,)-575(by)-509(mea)-1(ns)-509(of)-510(the)-510(mechanism)]TJ 0 -13.549 Td[(employed)-288(in)-288(analytic)-288(geometry,)-298(algebraic)-288(theorems)-288(are)-288(made)-288(to)]TJ 0 -13.549 Td[(yield)-286(geometric)-287(ones,)-295(and)-286(vice)-286(versa.)-359(In)-287(geometry)-286(we)-286(get)-286(at)-287(the)]TJ 0 -13.549 Td[(properties)-384(of)-384(the)-384(conic)-384(sections)-384(by)-384(means)-384(of)-384(the)-385(properties)-384(of)]TJ 0 -13.55 Td[(the)-285(straight)-286(line,)-294(and)-285(cubic)-285(surfaces)-285(are)-286(studied)-285(by)-285(means)-285(of)-286(the)]TJ 0 -13.549 Td[(plane.)]TJ/F16 7.97 Tf -72.755 0 Td[([3])]TJ/F39 10.909 Tf 84.711 -76.975 Td[(4.)-369(One-to-one)-290(correspondence)-290(and)-290(enumeration.)]TJ/F16 10.909 Tf 230.857 0 Td[(If)-290(a)-290(one-)]TJ -242.813 -13.549 Td[(to-one)-371(correspondence)-372(has)-371(been)-372(set)-371(up)-371(between)-372(the)-371(objects)-372(of)]TJ 0 -13.549 Td[(one)-369(set)-370(and)-369(the)-369(objects)-369(of)-370(another)-369(set,)-399(then)-369(the)-369(inference)-370(may)]TJ 0 -13.55 Td[(usually)-216(be)-216(drawn)-215(that)-216(they)-216(have)-216(the)-216(same)-215(number)-216(of)-216(elements.)-239(If,)]TJ 0 -13.549 Td[(however,)-234(there)-230(is)-230(an)-230(infinite)-230(number)-230(of)-230(individuals)-230(in)-230(each)-231(of)-230(the)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +105 0 obj << +/Type /Page +/Contents 106 0 R +/Resources 104 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 64 0 R +>> endobj +107 0 obj << +/D [105 0 R /XYZ 93.543 529.134 null] +>> endobj +95 0 obj << +/D [105 0 R /XYZ 93.543 331.999 null] +>> endobj +108 0 obj << +/D [105 0 R /XYZ 93.543 316.89 null] +>> endobj +109 0 obj << +/D [105 0 R /XYZ 93.543 194.947 null] +>> endobj +99 0 obj << +/D [105 0 R /XYZ 93.543 173.729 null] +>> endobj +110 0 obj << +/D [105 0 R /XYZ 105.499 120.339 null] +>> endobj +104 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +111 0 obj +<< /S /GoTo /D (index8) >> +endobj +114 0 obj +() +endobj +117 0 obj << +/Length 4790 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(4.)-250(One-to-one)-250(correspondence)-250(and)-250(enumeration)-6203(3)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.605 -184.904 cm + q 2.67513 0 0 2.67513 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +96.9596 0 0 69.1197 0 0 cm +/Im1 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.376 -344.23 cm +BT +/F16 10.909 Tf 174.29 325.226 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(1)]TJ +ET +1 0 0 1 46.771 319.668 cm +0 g 0 G +1 0 0 1 -46.771 -319.668 cm +BT +/F16 10.909 Tf 46.771 296.478 Td[(two)-294(sets,)-306(the)-294(notion)-295(of)-294(counting)-294(is)-295(necessarily)-294(ruled)-294(out.)-383(It)-295(may)]TJ 0 -13.549 Td[(be)-264(possible,)-268(nevertheless,)-267(to)-264(set)-264(up)-264(a)-264(one)-1(-to-one)-264(correspondence)]TJ 0 -13.549 Td[(between)-479(the)-478(elements)-478(of)-479(two)-478(sets)-479(even)-478(when)-479(the)-478(number)-479(is)]TJ 0 -13.549 Td[(infinite.)-244(Thus,)-235(it)-232(is)-231(easy)-232(to)-231(set)-232(up)-231(such)-232(a)-231(correspondence)-232(between)]TJ 0 -13.549 Td[(the)-193(points)-193(of)-193(a)-193(line)-193(an)-192(inch)-193(long)-193(and)-193(the)-193(points)-193(of)-193(a)-193(line)-193(two)-193(inches)]TJ 0 -13.55 Td[(long.)-284(For)-261(let)-262(the)-261(lines)-261(\050Fig.)-284(1\051)-261(be)]TJ/F20 10.909 Tf 145.72 0 Td[(AB)]TJ/F16 10.909 Tf 16.181 0 Td[(and)]TJ/F20 10.909 Tf 18.604 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)-261(Join)]TJ/F20 10.909 Tf 26.613 0 Td[(AA')]TJ/F16 10.909 Tf 18.516 0 Td[(and)]TJ/F20 10.909 Tf 18.604 0 Td[(BB')]TJ/F16 10.909 Tf 15.665 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-288(let)-288(these)-288(joining)-288(lines)-288(meet)-288(in)]TJ/F20 10.909 Tf 152.288 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-288(For)-288(every)-288(point)]TJ/F20 10.909 Tf 77.104 0 Td[(C)]TJ/F16 10.909 Tf 10.417 0 Td[(on)]TJ/F20 10.909 Tf 14.051 0 Td[(AB)]TJ/F16 10.909 Tf 16.472 0 Td[(a)]TJ -275.786 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.653 0 Td[(C')]TJ/F16 10.909 Tf 12.834 0 Td[(may)-296(be)-295(found)-296(on)]TJ/F20 10.909 Tf 78.34 0 Td[(A'B')]TJ/F16 10.909 Tf 21.224 0 Td[(by)-296(joining)]TJ/F20 10.909 Tf 48.273 0 Td[(C)]TJ/F16 10.909 Tf 10.5 0 Td[(to)]TJ/F20 10.909 Tf 11.712 0 Td[(S)]TJ/F16 10.909 Tf 8.678 0 Td[(and)-296(noting)-295(the)]TJ -217.214 -13.549 Td[(point)]TJ/F20 10.909 Tf 24.976 0 Td[(C')]TJ/F16 10.909 Tf 12.158 0 Td[(where)]TJ/F20 10.909 Tf 29.198 0 Td[(CS)]TJ/F16 10.909 Tf 15.279 0 Td[(meets)]TJ/F20 10.909 Tf 27.998 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)-234(Similarly,)-236(a)-234(point)]TJ/F20 10.909 Tf 83.567 0 Td[(C)]TJ/F16 10.909 Tf 9.824 0 Td[(may)-234(be)-233(found)]TJ -221 -13.549 Td[(on)]TJ/F20 10.909 Tf 14.715 0 Td[(AB)]TJ/F16 10.909 Tf 17.135 0 Td[(for)-349(any)-349(point)]TJ/F20 10.909 Tf 62.32 0 Td[(C')]TJ/F16 10.909 Tf 13.415 0 Td[(on)]TJ/F20 10.909 Tf 14.715 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)-349(The)-349(correspondence)-349(is)-349(clearly)]TJ -140.3 -13.55 Td[(one-to-one,)-349(but)-330(it)-329(would)-330(be)-329(absurd)-330(to)-329(infer)-330(from)-329(this)-330(that)-330(there)]TJ 0 -13.549 Td[(were)-306(just)-306(as)-306(many)-306(points)-307(on)]TJ/F20 10.909 Tf 127.904 0 Td[(AB)]TJ/F16 10.909 Tf 16.67 0 Td[(as)-306(on)]TJ/F20 10.909 Tf 26.675 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)-306(In)-306(fact,)-320(it)-306(would)-307(be)]TJ -189.249 -13.549 Td[(just)-309(as)-309(reasonable)-308(to)-309(infer)-309(that)-309(there)-308(were)-309(twice)-309(as)-309(many)-309(points)]TJ 0 -13.549 Td[(on)]TJ/F20 10.909 Tf 14.468 0 Td[(A'B')]TJ/F16 10.909 Tf 21.558 0 Td[(as)-326(on)]TJ/F20 10.909 Tf 27.115 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(.)-326(For)-326(if)-327(we)-326(bend)]TJ/F20 10.909 Tf 76.268 0 Td[(A'B')]TJ/F16 10.909 Tf 21.558 0 Td[(into)-326(a)-327(circle)-326(with)-326(center)]TJ -174.298 -13.549 Td[(at)]TJ/F20 10.909 Tf 12.287 0 Td[(S)]TJ/F16 10.909 Tf 9.864 0 Td[(\050Fig.)-713(2\051,)-443(we)-404(see)-405(that)-404(for)-404(every)-405(point)]TJ/F20 10.909 Tf 174.195 0 Td[(C)]TJ/F16 10.909 Tf 11.685 0 Td[(on)]TJ/F20 10.909 Tf 15.32 0 Td[(AB)]TJ/F16 10.909 Tf 17.74 0 Td[(there)-404(are)]TJ -241.091 -13.55 Td[(two)-264(points)-265(on)]TJ/F20 10.909 Tf 62.596 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)-264(Thus)-529(it)-264(is)-265(seen)-264(that)-264(the)-265(notion)-264(of)-264(one-to-one)]TJ/F16 7.97 Tf 210.427 0 Td[([4])]TJ/F16 10.909 Tf -291.023 -13.549 Td[(correspondence)-358(is)-359(more)-358(extensive)-359(than)-358(the)-359(notion)-358(of)-359(counting,)]TJ 0 -13.549 Td[(and)-306(includes)-306(the)-306(notion)-306(of)-306(counting)-306(only)-306(when)-306(applied)-306(to)-306(finite)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +116 0 obj << +/Type /Page +/Contents 117 0 R +/Resources 115 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +102 0 obj << +/Type /XObject +/Subtype /Image +/Width 404 +/Height 288 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 349056 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +118 0 obj << +/D [116 0 R /XYZ 157.681 93.24 null] +>> endobj +115 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im1 102 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +120 0 obj +<< /S /GoTo /D (index9) >> +endobj +123 0 obj +() +endobj +126 0 obj << +/Length 2270 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(4)-2449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.633 -210.783 cm + q 2.43962 0 0 2.43962 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +106.5596 0 0 86.3997 0 0 cm +/Im2 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.176 -318.351 cm +BT +/F16 10.909 Tf 221.062 299.348 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(2)]TJ +ET +1 0 0 1 93.543 293.789 cm +0 g 0 G +1 0 0 1 -93.543 -293.789 cm +BT +/F16 10.909 Tf 93.543 262.327 Td[(assemblages.)]TJ/F39 10.909 Tf 0 -60.693 Td[(5.)-948(Correspondence)-483(between)-482(a)-483(part)-483(and)-483(the)-482(whole)-483(of)-483(an)]TJ 0 -13.549 Td[(infinite)-442(assemblage.)]TJ/F16 10.909 Tf 102.628 0 Td[(In)-442(the)-442(discussion)-442(of)-443(the)-442(last)-442(paragraph)]TJ -102.628 -13.549 Td[(the)-423(remarkable)-422(fact)-423(was)-423(brought)-422(to)-423(light)-423(that)-422(it)-423(is)-423(sometimes)]TJ 0 -13.55 Td[(possible)-390(to)-389(set)-390(the)-389(elements)-390(of)-389(an)-390(assemblage)-389(into)-390(one-to-one)]TJ 0 -13.549 Td[(correspondence)-486(with)-485(a)-485(part)-486(of)-485(those)-486(elements.)-956(A)-486(moment's)]TJ 0 -13.549 Td[(reflection)-201(will)-200(convince)-201(one)-201(that)-200(this)-201(is)-201(never)-200(possible)-201(when)-201(there)]TJ 0 -13.549 Td[(is)-338(a)-338(finite)-338(number)-337(of)-338(elements)-338(in)-338(the)-338(assemblage.)]TJ/F21 10.909 Tf 220.665 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(Indeed,)-360(we)]TJ -231.574 -13.549 Td[(may)-192(take)-193(this)-192(property)-192(as)-192(our)-193(definition)-192(of)-192(an)-192(infinite)-193(assemblage,)]TJ 0 -13.55 Td[(and)-324(say)-325(that)-324(an)-325(infinite)-324(assemblage)-325(is)-324(one)-325(that)-324(may)-325(be)-324(put)-325(into)]TJ 0 -13.549 Td[(one-to-one)-487(correspondence)-487(with)-487(part)-486(of)-487(itself.)-961(This)-487(has)-487(the)]TJ 0 -13.549 Td[(advantage)-259(of)-258(being)-259(a)-259(positive)-258(definition,)-261(as)-259(opposed)-258(to)-259(the)-259(usual)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +125 0 obj << +/Type /Page +/Contents 126 0 R +/Resources 124 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +103 0 obj << +/Type /XObject +/Subtype /Image +/Width 444 +/Height 360 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 479520 +>> +stream +ÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +112 0 obj << +/D [125 0 R /XYZ 93.543 233.857 null] +>> endobj +127 0 obj << +/D [125 0 R /XYZ 93.543 213.874 null] +>> endobj +124 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F21 35 0 R >> +/XObject << /Im2 103 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +128 0 obj +<< /S /GoTo /D (index10) >> +endobj +131 0 obj +() +endobj +134 0 obj << +/Length 5318 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(6.)-250(Infinitely)-250(distant)-250(point)-15280(5)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(negative)-303(definition)-303(of)-304(an)-303(infinite)-303(assemblage)-303(as)-303(one)-303(that)-304(cannot)]TJ 0 -13.549 Td[(be)-250(counted.)]TJ/F39 10.909 Tf 0 -49.877 Td[(6.)-1126(Infinitely)-542(distant)-542(point.)]TJ/F16 10.909 Tf 146.712 0 Td[(We)-542(have)-542(illustrated)-542(above)-542(a)]TJ -146.712 -13.549 Td[(simple)-278(method)-278(of)-278(setting)-278(the)-278(points)-278(of)-278(two)-278(lines)-279(into)-278(one-to-one)]TJ 0 -13.549 Td[(correspondence.)-577(The)-359(same)-359(illustration)-359(will)-359(serve)-359(also)-359(to)-359(show)]TJ 0 -13.55 Td[(how)-426(it)-426(is)-426(possible)-427(to)-426(set)-426(the)-426(points)-426(on)-426(a)-426(line)-426(into)-427(one-to-one)]TJ 0 -13.549 Td[(correspondence)-391(with)-392(the)-391(lines)-391(through)-392(a)-391(point.)-674(Thus,)-426(for)-392(any)]TJ 0 -13.549 Td[(point)]TJ/F20 10.909 Tf 26.393 0 Td[(C)]TJ/F16 10.909 Tf 11.239 0 Td[(on)-363(the)-364(line)]TJ/F20 10.909 Tf 52.495 0 Td[(AB)]TJ/F16 10.909 Tf 17.293 0 Td[(there)-363(is)-364(a)-363(line)]TJ/F20 10.909 Tf 66.146 0 Td[(SC)]TJ/F16 10.909 Tf 16.693 0 Td[(through)]TJ/F20 10.909 Tf 37.902 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-363(We)-364(must)]TJ -233.615 -13.549 Td[(assume)-483(the)-483(line)]TJ/F20 10.909 Tf 77.625 0 Td[(AB)]TJ/F16 10.909 Tf 18.6 0 Td[(extended)-483(indefinitely)-483(in)-484(both)-483(directions,)]TJ -96.225 -13.549 Td[(however,)-350(if)-331(we)-330(are)-330(to)-330(have)-331(a)-330(point)-330(on)-331(it)-330(for)-330(every)-330(line)-331(through)]TJ/F20 10.909 Tf 0 -13.55 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(;)-462(and)-463(even)-463(with)-462(this)-463(extension)-462(there)-463(is)-462(one)-463(line)-462(through)]TJ/F20 10.909 Tf 266.993 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ -277.903 -13.549 Td[(according)-411(to)-412(Euclid's)-411(postulate,)-451(which)-412(does)-411(not)-411(meet)-411(the)-412(line)]TJ/F20 10.909 Tf 0 -13.549 Td[(AB)]TJ/F16 10.909 Tf 17.689 0 Td[(and)-400(which)-399(therefore)-400(has)-400(no)-399(point)-400(on)]TJ/F20 10.909 Tf 171.09 0 Td[(AB)]TJ/F16 10.909 Tf 17.689 0 Td[(to)-400(correspond)-399(to)]TJ -206.468 -13.549 Td[(it.)-536(In)-346(order)-345(to)-346(smooth)-345(out)-346(this)-345(discrepancy)-346(we)-345(are)-346(accustomed)]TJ/F16 7.97 Tf 291.024 0 Td[([5])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(to)-293(assume)-294(the)-293(existence)-293(of)-293(an)]TJ/F20 10.909 Tf 133.106 0 Td[(infinitely)-293(distant)]TJ/F16 10.909 Tf 74.895 0 Td[(point)-293(on)-293(the)-294(line)]TJ/F20 10.909 Tf -208.001 -13.55 Td[(AB)]TJ/F16 10.909 Tf 17.686 0 Td[(and)-399(to)-400(assign)-399(this)-399(point)-400(as)-399(the)-399(corresponding)-400(point)-399(of)-399(the)]TJ -17.686 -13.549 Td[(exceptional)-248(line)-247(of)]TJ/F20 10.909 Tf 83.847 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-248(With)-247(this)-248(understanding,)-248(then,)-248(we)-248(may)-248(say)]TJ -89.302 -13.549 Td[(that)-235(we)-234(have)-234(set)-235(the)-234(lines)-235(through)-234(a)-235(point)-234(and)-235(the)-234(points)-235(on)-234(a)-235(line)]TJ 0 -13.549 Td[(into)-270(one-to-one)-269(correspondence.)-309(This)-269(correspondence)-270(is)-269(of)-270(such)]TJ 0 -13.549 Td[(fundamental)-244(importance)-244(in)-244(the)-243(study)-244(of)-244(projective)-244(geometry)-244(that)]TJ 0 -13.55 Td[(a)-309(special)-310(name)-309(is)-310(given)-309(to)-310(it.)-428(Calling)-309(the)-310(totality)-309(of)-310(points)-309(on)-310(a)]TJ 0 -13.549 Td[(line)-239(a)]TJ/F20 10.909 Tf 26.412 0 Td[(point-row)]TJ/F16 10.909 Tf 43.036 0 Td[(,)-241(and)-238(the)-239(totality)-238(of)-239(lines)-238(through)-239(a)-238(point)-239(a)]TJ/F20 10.909 Tf 184.52 0 Td[(pencil)]TJ -253.968 -13.549 Td[(of)-229(rays)]TJ/F16 10.909 Tf 29.776 0 Td[(,)-234(we)-229(say)-229(that)-230(the)-229(point-row)-230(and)-229(the)-230(pencil)-229(related)-230(as)-229(above)]TJ -29.776 -13.549 Td[(are)-229(in)]TJ/F20 10.909 Tf 26.8 0 Td[(perspective)-229(position)]TJ/F16 10.909 Tf 87.335 0 Td[(,)-233(or)-229(that)-229(they)-229(are)]TJ/F20 10.909 Tf 72.81 0 Td[(perspectively)-229(related)]TJ/F16 10.909 Tf 90.958 0 Td[(.)]TJ/F39 10.909 Tf -277.903 -49.877 Td[(7.)-273(Axial)-258(pencil;)-261(fundamental)-258(forms.)]TJ/F16 10.909 Tf 168.372 0 Td[(A)-258(similar)-257(correspondence)]TJ -168.372 -13.549 Td[(may)-206(be)-205(set)-206(up)-205(between)-206(the)-206(points)-205(on)-206(a)-205(line)-206(and)-205(the)-206(planes)-206(through)]TJ 0 -13.549 Td[(another)-391(line)-392(which)-391(does)-392(not)-391(meet)-392(the)-391(first.)-674(Such)-392(a)-391(system)-392(of)]TJ 0 -13.55 Td[(planes)-287(is)-287(called)-286(an)]TJ/F20 10.909 Tf 84.014 0 Td[(axial)-287(pencil)]TJ/F16 10.909 Tf 51.608 0 Td[(,)-296(and)-287(the)-287(three)-286(assemblages)]TJ/F21 10.909 Tf 120.768 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(the)]TJ -267.299 -13.549 Td[(point-row,)-408(the)-377(pencil)-376(of)-377(rays,)-408(and)-377(the)-376(axial)-377(pencil)]TJ/F21 10.909 Tf 226.242 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(are)-377(called)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +133 0 obj << +/Type /Page +/Contents 134 0 R +/Resources 132 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +121 0 obj << +/D [133 0 R /XYZ 46.771 483.309 null] +>> endobj +135 0 obj << +/D [133 0 R /XYZ 46.771 468.2 null] +>> endobj +136 0 obj << +/D [133 0 R /XYZ 186.452 305.708 null] +>> endobj +129 0 obj << +/D [133 0 R /XYZ 46.771 146.619 null] +>> endobj +137 0 obj << +/D [133 0 R /XYZ 46.771 131.51 null] +>> endobj +132 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +138 0 obj +<< /S /GoTo /D (index11) >> +endobj +141 0 obj +() +endobj +142 0 obj +<< /S /GoTo /D (index12) >> +endobj +145 0 obj +() +endobj +148 0 obj << +/Length 4765 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(6)-2449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 93.543 518.175 Td[(fundamental)-332(forms)]TJ/F16 10.909 Tf 83.014 0 Td[(.)-495(The)-331(fact)-332(that)-331(they)-332(may)-332(all)-331(be)-332(set)-331(into)-332(one-)]TJ -83.014 -13.549 Td[(to-one)-376(correspondence)-376(with)-376(each)-376(other)-376(is)-376(expressed)-377(by)-376(saying)]TJ 0 -13.549 Td[(that)-277(they)-276(are)-276(of)-277(the)-276(same)-277(order.)-329(It)-277(is)-276(usual)-277(also)-276(to)-277(speak)-276(of)-277(them)]TJ 0 -13.549 Td[(as)-312(of)-312(the)-313(first)-312(order.)-436(We)-312(shall)-313(see)-312(presently)-312(that)-312(there)-312(are)-313(other)]TJ 0 -13.55 Td[(assemblages)-414(which)-414(cannot)-415(be)-414(put)-414(into)-414(this)-414(sort)-414(of)-415(one-to-one)]TJ 0 -13.549 Td[(correspondence)-256(with)-255(the)-255(points)-256(on)-255(a)-256(line,)-257(and)-255(that)-256(they)-255(will)-256(very)]TJ 0 -13.549 Td[(reasonably)-250(be)-250(said)-250(to)-250(be)-250(of)-250(a)-250(higher)-250(order.)]TJ/F39 10.909 Tf 0 -49.877 Td[(8.)-707(Perspective)-402(position.)]TJ/F16 10.909 Tf 121.007 0 Td[(We)-402(have)-402(said)-403(that)-402(a)-402(point-row)-402(and)]TJ -121.007 -13.549 Td[(a)-399(pencil)-399(of)-399(rays)-399(are)-398(in)-399(perspective)-399(position)-399(if)-399(each)-399(ray)-399(of)-399(the)]TJ 0 -13.549 Td[(pencil)-198(goes)-198(through)-199(the)-198(point)-198(of)-198(the)-198(point-row)-198(which)-199(corresponds)]TJ 0 -13.55 Td[(to)-399(it.)-695(Two)-399(pencils)-398(of)-399(rays)-797(are)-399(also)-398(said)-399(to)-398(be)-399(in)-399(perspective)]TJ/F16 7.97 Tf -72.755 0 Td[([6])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(position)-350(if)-351(corresponding)-350(rays)-351(meet)-350(on)-351(a)-350(straight)-351(line)-350(which)-351(is)]TJ 0 -13.549 Td[(called)-264(the)-264(axis)-264(of)-264(perspectivity.)-293(Also,)-267(two)-264(point-rows)-264(are)-264(said)-265(to)]TJ 0 -13.549 Td[(be)-272(in)-272(perspective)-272(position)-272(if)-272(corresponding)-272(points)-272(lie)-273(on)-272(straight)]TJ 0 -13.549 Td[(lines)-281(through)-281(a)-281(poin)-1(t)-281(which)-281(is)-281(called)-281(the)-281(center)-281(of)-282(perspectivity.)]TJ 0 -13.55 Td[(A)-389(point-row)-390(and)-390(an)-389(axial)-390(pencil)-389(are)-390(in)-389(perspective)-390(position)-390(if)]TJ 0 -13.549 Td[(each)-258(plane)-258(of)-258(the)-259(pencil)-258(goes)-258(through)-258(the)-258(point)-258(on)-258(the)-259(point-row)]TJ 0 -13.549 Td[(which)-271(corresponds)-271(to)-271(it,)-276(and)-271(an)-271(axial)-271(pencil)-271(and)-272(a)-271(pencil)-271(of)-271(rays)]TJ 0 -13.549 Td[(are)-385(in)-384(perspective)-385(position)-384(if)-385(each)-384(ray)-385(lies)-384(in)-385(the)-384(plane)-385(which)]TJ 0 -13.549 Td[(corresponds)-207(to)-207(it;)-222(and,)-215(finally,)-216(two)-207(axial)-207(pencils)-207(are)-208(perspectively)]TJ 0 -13.55 Td[(related)-250(if)-250(corresponding)-250(planes)-250(meet)-250(in)-250(a)-250(plane.)]TJ/F39 10.909 Tf 0 -49.877 Td[(9.)-692(Projective)-398(relation.)]TJ/F16 10.909 Tf 113.953 0 Td[(It)-397(is)-398(easy)-397(to)-398(imagine)-397(a)-397(more)-398(general)]TJ -113.953 -13.549 Td[(correspondence)-155(between)-155(the)-156(points)-155(of)-155(two)-155(point-rows)-155(than)-155(the)-156(one)]TJ 0 -13.549 Td[(just)-213(described.)-238(If)-213(we)-214(take)-213(two)-213(perspective)-214(pencils,)]TJ/F20 10.909 Tf 217.094 0 Td[(A)]TJ/F16 10.909 Tf 8.992 0 Td[(and)]TJ/F20 10.909 Tf 18.079 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-213(then)-214(a)]TJ -249.62 -13.549 Td[(point-row)]TJ/F20 10.909 Tf 44.786 0 Td[(a)]TJ/F16 10.909 Tf 7.216 0 Td[(perspective)-161(to)]TJ/F20 10.909 Tf 61.688 0 Td[(A)]TJ/F16 10.909 Tf 8.425 0 Td[(will)-161(be)-162(in)-161(one-to-one)-162(correspondence)]TJ -122.115 -13.549 Td[(with)-380(a)-380(point-row)]TJ/F20 10.909 Tf 79.707 0 Td[(b)]TJ/F16 10.909 Tf 9.602 0 Td[(perspective)-380(to)]TJ/F20 10.909 Tf 66.462 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-380(but)-380(corresponding)-381(points)]TJ -162.436 -13.549 Td[(will)-310(not,)-326(in)-310(general,)-325(lie)-311(on)-310(lines)-310(which)-310(all)-311(pass)-310(through)-310(a)-311(point.)]TJ 0 -13.55 Td[(Two)-497(such)-497(point-rows)-497(are)-497(said)-497(to)-497(be)]TJ/F20 10.909 Tf 174.892 0 Td[(projectively)-497(related)]TJ/F16 10.909 Tf 87.829 0 Td[(,)-559(or)]TJ -262.721 -13.549 Td[(simply)-320(projective)-319(to)-320(each)-319(other.)-459(Similarly,)-337(two)-319(pencils)-320(of)-320(rays,)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +147 0 obj << +/Type /Page +/Contents 148 0 R +/Resources 146 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +139 0 obj << +/D [147 0 R /XYZ 93.543 413.283 null] +>> endobj +149 0 obj << +/D [147 0 R /XYZ 93.543 398.174 null] +>> endobj +150 0 obj << +/D [147 0 R /XYZ 218.316 346.355 null] +>> endobj +143 0 obj << +/D [147 0 R /XYZ 93.543 187.267 null] +>> endobj +151 0 obj << +/D [147 0 R /XYZ 93.543 172.157 null] +>> endobj +146 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +152 0 obj +<< /S /GoTo /D (index13) >> +endobj +155 0 obj +() +endobj +156 0 obj +<< /S /GoTo /D (index14) >> +endobj +159 0 obj +() +endobj +162 0 obj << +/Length 4631 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(10.)-250(Infinity-to-one)-250(correspondence)-11312(7)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(or)-389(of)-389(planes,)-424(are)-389(projectively)-390(related)-389(to)-389(each)-389(other)-389(if)-389(they)-390(are)]TJ 0 -13.549 Td[(perspective)-431(to)-431(two)-432(perspective)-431(point-rows.)-793(This)-431(idea)-431(will)-432(be)]TJ 0 -13.549 Td[(generalized)-406(later)-405(on.)-717(It)-406(is)-405(important)-406(to)-406(note)-405(that)-406(between)-406(the)]TJ 0 -13.549 Td[(elements)-402(of)-402(two)-402(projective)-402(fundamental)-402(forms)-402(there)-402(is)-403(a)-402(one-)]TJ 0 -13.55 Td[(to-one)-362(correspondence,)-390(and)-362(also)-362(that)-362(this)-362(correspondence)-363(is)-362(in)]TJ 0 -13.549 Td[(general)]TJ/F20 10.909 Tf 35.261 0 Td[(continuous)]TJ/F16 10.909 Tf 47.88 0 Td[(;)-309(that)-289(is,)-299(by)-289(taking)-289(two)-290(elements)-289(of)-289(one)-289(form)]TJ -83.141 -13.549 Td[(sufficiently)-274(close)-275(to)-274(each)-275(other,)-280(the)-275(two)-274(corresponding)-275(elements)]TJ 0 -13.549 Td[(in)-214(the)-213(other)-214(form)-214(may)-214(be)-213(made)-214(to)-427(approach)-214(each)-214(other)-214(arbitrarily)]TJ/F16 7.97 Tf 291.024 0 Td[([7])]TJ/F16 10.909 Tf -291.023 -13.549 Td[(close.)-800(In)-433(the)-433(case)-433(of)-433(point-rows)-434(this)-433(continuity)-433(is)-433(subject)-434(to)]TJ 0 -13.55 Td[(exception)-250(in)-250(the)-250(neighborhood)-250(of)-250(the)-250(point)-250("at)-250(infinity.")]TJ/F39 10.909 Tf 0 -49.877 Td[(10.)-517(Infinity-to-one)-338(correspondence.)]TJ/F16 10.909 Tf 172.527 0 Td[(It)-339(might)-339(be)-339(inferred)-338(that)]TJ -172.527 -13.549 Td[(any)-272(infinite)-271(assemblage)-272(could)-272(be)-271(put)-272(into)-272(one-to-one)-271(corre)-1(spon-)]TJ 0 -13.549 Td[(dence)-432(with)-431(any)-432(other.)-795(Such)-431(is)-432(not)-431(the)-432(case,)-477(however,)-477(if)-432(the)]TJ 0 -13.549 Td[(correspondence)-437(is)-437(to)-437(be)-436(continuous,)-484(between)-437(the)-437(points)-437(on)-437(a)]TJ 0 -13.549 Td[(line)-324(and)-323(the)-324(points)-324(on)-323(a)-324(plane.)-471(Consider)-324(two)-323(lines)-324(which)-324(lie)-324(in)]TJ 0 -13.55 Td[(different)-343(planes,)-367(and)-344(take)]TJ/F20 10.909 Tf 117.327 0 Td[(m)]TJ/F16 10.909 Tf 11.623 0 Td[(points)-343(on)-344(one)-343(and)]TJ/F20 10.909 Tf 84.073 0 Td[(n)]TJ/F16 10.909 Tf 9.201 0 Td[(points)-343(on)-344(the)]TJ -222.224 -13.549 Td[(other.)-417(The)-306(number)-306(of)-306(lines)-306(joining)-306(the)]TJ/F20 10.909 Tf 173.95 0 Td[(m)]TJ/F16 10.909 Tf 11.212 0 Td[(points)-306(of)-306(one)-306(to)-305(the)]TJ/F20 10.909 Tf 90.013 0 Td[(n)]TJ/F16 10.909 Tf -275.175 -13.549 Td[(points)-349(jof)-348(the)-349(other)-349(is)-348(clearly)]TJ/F20 10.909 Tf 134.322 0 Td[(mn)]TJ/F16 10.909 Tf 13.331 0 Td[(.)-546(If)-349(we)-348(symbolize)-349(the)-349(totality)]TJ -147.653 -13.549 Td[(of)-369(points)-369(on)-369(a)-369(line)-369(by)-369([infinity],)-399(then)-369(a)-369(reasonable)-369(symbol)-369(for)]TJ 0 -13.549 Td[(the)-304(totality)-304(of)-304(lines)-303(drawn)-304(to)-304(cut)-304(two)-304(lines)-304(would)-304(be)-304([infinity])]TJ/F16 8.966 Tf 273.419 4.909 Td[(2)]TJ/F16 10.909 Tf 4.483 -4.909 Td[(.)]TJ -277.902 -13.55 Td[(Clearly,)-485(for)-437(every)-438(point)-438(on)-437(one)-438(line)-438(there)-437(are)-438([infinity])-438(lines)]TJ 0 -13.549 Td[(cutting)-413(across)-413(the)-413(other,)-453(so)-413(that)-413(the)-413(correspondence)-413(might)-413(be)]TJ 0 -13.549 Td[(called)-417([infinity]-to-one.)-752(Thus)-417(the)-418(assemblage)-417(of)-417(lines)-418(cutting)]TJ 0 -13.549 Td[(across)-258(two)-258(lines)-258(is)-259(of)-258(higher)-258(order)-258(than)-258(the)-258(assemblage)-258(of)-259(points)]TJ 0 -13.549 Td[(on)-268(a)-269(line;)-278(and)-268(as)-268(we)-269(have)-268(called)-269(the)-268(point-row)-269(an)-268(assemblage)-269(of)]TJ 0 -13.549 Td[(the)-260(first)-260(o)-1(rder,)-262(the)-261(system)-260(of)-260(lines)-260(cutting)-261(across)-260(two)-260(lines)-261(ought)]TJ 0 -13.55 Td[(to)-250(be)-250(called)-250(of)-250(the)-250(second)-250(order.)]TJ/F39 10.909 Tf 0 -49.877 Td[(11.)-578(Infinitudes)-360(of)-359(different)-360(orders.)]TJ/F16 10.909 Tf 171.648 0 Td[(Now)-360(it)-359(is)-360(easy)-359(to)-360(set)-359(up)]TJ -171.648 -13.549 Td[(a)-316(one-to-one)-316(correspondence)-316(between)-315(the)-316(points)-316(in)-316(a)-316(plane)-316(and)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +161 0 obj << +/Type /Page +/Contents 162 0 R +/Resources 160 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +163 0 obj << +/D [161 0 R /XYZ 192.065 423.331 null] +>> endobj +153 0 obj << +/D [161 0 R /XYZ 46.771 372.636 null] +>> endobj +164 0 obj << +/D [161 0 R /XYZ 46.771 357.526 null] +>> endobj +157 0 obj << +/D [161 0 R /XYZ 46.771 108.252 null] +>> endobj +165 0 obj << +/D [161 0 R /XYZ 46.771 93.142 null] +>> endobj +160 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +166 0 obj +<< /S /GoTo /D (index15) >> +endobj +169 0 obj +() +endobj +170 0 obj +<< /S /GoTo /D (index16) >> +endobj +173 0 obj +() +endobj +174 0 obj +<< /S /GoTo /D (index17) >> +endobj +177 0 obj +() +endobj +178 0 obj +<< /S /GoTo /D (index18) >> +endobj +181 0 obj +() +endobj +184 0 obj << +/Length 3791 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(8)-2449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(the)-243(system)-243(of)-243(lines)-243(cutting)-242(across)-243(two)-243(lines)-243(which)-243(lie)-243(in)-243(different)]TJ 0 -13.549 Td[(planes.)-242(In)-225(fact,)-231(each)-225(line)-225(of)-226(the)-225(system)-226(of)-225(lines)-225(meets)-226(the)-225(plane)-226(in)]TJ 0 -13.549 Td[(one)-310(point,)-325(and)-309(each)-310(point)-310(in)-310(the)-309(plane)-310(determines)-310(one)-310(and)-310(only)]TJ 0 -13.549 Td[(one)-291(line)-291(cutting)-291(across)-292(the)-291(two)-291(given)-291(lines)]TJ/F21 10.909 Tf 186.456 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(namely,)-301(the)-292(line)-291(of)]TJ -197.365 -13.55 Td[(intersection)-217(of)-217(the)-217(tw)-1(o)-217(planes)-217(determined)-217(by)-217(the)-217(given)-217(point)-218(with)]TJ 0 -13.549 Td[(each)-246(of)-246(the)-246(given)-246(lines.)-249(The)-246(assemblage)-492(of)-246(points)-246(in)-246(the)-246(plane)-246(is)]TJ/F16 7.97 Tf -72.755 0 Td[([8])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(thus)-223(of)-222(the)-223(same)-223(order)-222(as)-223(that)-223(of)-222(the)-223(lines)-223(cutting)-222(across)-223(two)-223(lines)]TJ 0 -13.549 Td[(which)-230(lie)-230(in)-230(different)-231(planes,)-234(and)-230(ought)-230(therefore)-230(to)-230(be)-230(spoken)-231(of)]TJ 0 -13.549 Td[(as)-250(of)-250(the)-250(second)-250(order.)-250(We)-250(express)-250(all)-250(these)-250(results)-250(as)-250(follows:)]TJ/F39 10.909 Tf 0 -52.025 Td[(12.)]TJ/F16 10.909 Tf 17.342 0 Td[(If)-280(the)-280(infinitude)-280(of)-280(points)-280(on)-279(a)-280(line)-280(is)-280(taken)-280(as)-280(the)-280(infinitude)]TJ -17.342 -13.55 Td[(of)-305(the)-305(first)-305(order,)-319(then)-305(the)-305(infinitude)-305(of)-305(lines)-305(in)-305(a)-305(pencil)-305(of)-305(rays)]TJ 0 -13.549 Td[(and)-244(the)-244(infinitude)-244(of)-245(planes)-244(in)-244(an)-244(axial)-244(pencil)-244(are)-244(also)-244(of)-244(the)-245(first)]TJ 0 -13.549 Td[(order,)-441(while)-402(the)-403(infinitude)-403(of)-402(lines)-403(cutting)-402(across)-403(two)-403("skew")]TJ 0 -13.549 Td[(lines,)-402(as)-372(well)-372(as)-372(the)-372(infinitude)-371(of)-372(points)-372(in)-372(a)-372(plane,)-402(are)-372(of)-372(the)]TJ 0 -13.549 Td[(second)-250(order.)]TJ/F39 10.909 Tf 0 -52.025 Td[(13.)]TJ/F16 10.909 Tf 20.652 0 Td[(If)-381(we)-381(join)-381(each)-381(of)-381(the)-381(points)-381(of)-381(a)-381(plane)-381(to)-381(a)-381(point)-381(not)-381(in)]TJ -20.652 -13.55 Td[(that)-323(plane,)-342(we)-323(set)-323(up)-323(a)-323(one-to-one)-323(correspondence)-323(between)-324(the)]TJ 0 -13.549 Td[(points)-254(in)-254(a)-254(plane)-254(and)-254(the)-254(lines)-254(through)-254(a)-254(point)-254(in)-254(space.)]TJ/F20 10.909 Tf 243.311 0 Td[(Thus)-254(the)]TJ -243.311 -13.549 Td[(infinitude)-211(of)-211(lines)-210(through)-211(a)-211(point)-211(in)-211(space)-210(is)-211(of)-211(the)-211(second)-211(order.)]TJ/F39 10.909 Tf 0 -52.025 Td[(14.)]TJ/F16 10.909 Tf 17.097 0 Td[(If)-272(to)-273(each)-272(line)-273(through)-272(a)-272(point)-273(in)-272(space)-273(we)-272(make)-272(correspond)]TJ -17.097 -13.549 Td[(that)-202(plane)-201(at)-202(right)-202(angles)-202(to)-201(it)-202(and)-202(passing)-201(through)-202(the)-202(same)-202(point,)]TJ 0 -13.549 Td[(we)-240(see)-239(that)]TJ/F20 10.909 Tf 50.853 0 Td[(the)-239(infinitu)-1(de)-239(of)-240(planes)-239(through)-240(a)-239(point)-240(in)-239(space)-240(is)-239(of)]TJ -50.853 -13.55 Td[(the)-250(second)-250(order.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +183 0 obj << +/Type /Page +/Contents 184 0 R +/Resources 182 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 119 0 R +>> endobj +185 0 obj << +/D [183 0 R /XYZ 269.589 450.429 null] +>> endobj +167 0 obj << +/D [183 0 R /XYZ 93.543 385.174 null] +>> endobj +186 0 obj << +/D [183 0 R /XYZ 93.543 369.044 null] +>> endobj +171 0 obj << +/D [183 0 R /XYZ 93.543 267.673 null] +>> endobj +187 0 obj << +/D [183 0 R /XYZ 93.543 251.542 null] +>> endobj +175 0 obj << +/D [183 0 R /XYZ 93.543 172.84 null] +>> endobj +188 0 obj << +/D [183 0 R /XYZ 93.543 156.709 null] +>> endobj +179 0 obj << +/D [183 0 R /XYZ 93.543 82.273 null] +>> endobj +189 0 obj << +/D [183 0 R /XYZ 93.543 66.142 null] +>> endobj +182 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +190 0 obj +<< /S /GoTo /D (index19) >> +endobj +193 0 obj +() +endobj +194 0 obj +<< /S /GoTo /D (index20) >> +endobj +197 0 obj +() +endobj +198 0 obj +<< /S /GoTo /D (index21) >> +endobj +201 0 obj +() +endobj +204 0 obj << +/Length 5025 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(16.)-250(Plane)-250(system)-250(and)-250(point)-250(system)-11447(9)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(15.)]TJ/F16 10.909 Tf 16.251 0 Td[(If)-219(to)-219(each)-219(plane)-219(through)-219(a)-218(point)-219(in)-219(space)-219(we)-219(make)-219(correspond)]TJ -16.251 -13.549 Td[(the)-430(line)-429(in)-430(which)-430(it)-429(intersects)-430(a)-430(given)-429(plane,)-475(we)-429(see)-430(that)]TJ/F20 10.909 Tf 267.299 0 Td[(the)]TJ -267.299 -13.549 Td[(infinitude)-205(of)-205(lines)-205(in)-206(a)-205(plane)-205(is)-205(of)-205(the)-205(second)-205(order.)]TJ/F16 10.909 Tf 220.399 0 Td[(This)-205(may)-205(also)]TJ -220.399 -13.549 Td[(be)-304(seen)-303(by)-304(setting)-303(up)-304(a)-303(one-to-one)-304(correspondence)-303(between)-304(the)]TJ 0 -13.55 Td[(points)-296(on)-296(a)-296(plane)-296(and)-295(the)-296(lines)-296(of)-296(that)-296(plane.)-388(Thus,)-307(take)-296(a)-296(point)]TJ/F20 10.909 Tf 0 -13.549 Td[(S)]TJ/F16 10.909 Tf 8.238 0 Td[(not)-255(in)-255(the)-255(plane.)-266(Join)-255(any)-255(point)]TJ/F20 10.909 Tf 138.08 0 Td[(M)]TJ/F16 10.909 Tf 11.87 0 Td[(of)-255(the)-255(plane)-255(to)]TJ/F20 10.909 Tf 65.668 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-255(Through)]TJ/F20 10.909 Tf 45.865 0 Td[(S)]TJ/F16 10.909 Tf -275.176 -13.549 Td[(draw)-322(a)-323(plane)-322(at)-322(right)-323(angles)-322(to)]TJ/F20 10.909 Tf 139.735 0 Td[(MS)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-322(This)-323(meets)-322(the)-322(given)-322(plane)]TJ -154.277 -13.549 Td[(in)-366(a)-366(line)]TJ/F20 10.909 Tf 41.68 0 Td[(m)]TJ/F16 10.909 Tf 11.871 0 Td[(which)-366(may)-366(be)-367(taken)-366(as)-366(corresponding)-366(to)-367(the)-366(point)]TJ/F20 10.909 Tf -53.551 -13.549 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(.)-342(Another)-342(very)-343(important)-684(method)-343(of)-342(setting)-342(up)-342(a)-343(one-to-one)]TJ/F16 7.97 Tf 281.936 0 Td[([9])]TJ/F16 10.909 Tf -291.024 -13.55 Td[(correspondence)-223(between)-223(lines)-223(and)-223(points)-223(in)-223(a)-223(plane)-223(will)-223(be)-223(given)]TJ 0 -13.549 Td[(later,)-250(and)-250(many)-250(weighty)-250(consequences)-250(will)-250(be)-250(derived)-250(from)-250(it.)]TJ/F39 10.909 Tf 0 -52.193 Td[(16.)-440(Plane)-313(system)-313(and)-314(point)-313(system.)]TJ/F16 10.909 Tf 170.54 0 Td[(The)-313(plane,)-329(considered)-314(as)]TJ -170.54 -13.549 Td[(made)-236(up)-237(of)-236(the)-236(points)-236(and)-237(lines)-236(in)-236(it,)-239(is)-236(c)-1(alled)-236(a)]TJ/F20 10.909 Tf 206.399 0 Td[(plane)-236(system)]TJ/F16 10.909 Tf 58.478 0 Td[(and)]TJ -264.877 -13.549 Td[(is)-227(a)-226(fundamental)-227(form)-226(of)-227(the)-226(second)-227(order.)-242(The)-226(point,)-232(considered)]TJ 0 -13.549 Td[(as)-216(made)-215(up)-216(of)-216(all)-215(the)-216(lines)-216(and)-215(planes)-216(passing)-216(through)-215(it,)-223(is)-216(called)]TJ 0 -13.549 Td[(a)]TJ/F20 10.909 Tf 9.423 0 Td[(point)-420(system)]TJ/F16 10.909 Tf 60.671 0 Td[(and)-420(is)-420(also)-419(a)-420(fundamental)-420(form)-420(of)-419(the)-420(second)]TJ -70.094 -13.549 Td[(order.)]TJ/F39 10.909 Tf 0 -52.193 Td[(17.)]TJ/F16 10.909 Tf 21.251 0 Td[(If)-399(now)-400(we)-399(take)-399(three)-400(lines)-399(in)-399(space)-400(all)-399(lying)-399(in)-400(different)]TJ -21.251 -13.549 Td[(planes,)-348(and)-328(select)]TJ/F20 10.909 Tf 82.144 0 Td[(l)]TJ/F16 10.909 Tf 6.613 0 Td[(points)-328(on)-328(the)-328(first,)]TJ/F20 10.909 Tf 85.745 0 Td[(m)]TJ/F16 10.909 Tf 11.456 0 Td[(points)-328(on)-328(the)-328(second,)]TJ -185.958 -13.55 Td[(and)]TJ/F20 10.909 Tf 18.304 0 Td[(n)]TJ/F16 10.909 Tf 8.006 0 Td[(points)-234(on)-234(the)-234(third,)-237(then)-234(the)-233(total)-234(number)-234(of)-234(planes)-234(passing)]TJ -26.31 -13.549 Td[(through)-273(one)-272(of)-273(the)-272(selected)-273(points)-272(on)-273(each)-273(line)-272(will)-273(be)]TJ/F20 10.909 Tf 241.158 0 Td[(lmn)]TJ/F16 10.909 Tf 16.364 0 Td[(.)-318(It)-272(is)]TJ -257.522 -13.549 Td[(reasonable,)-255(therefore,)-254(to)-254(symbolize)-254(the)-254(totality)-253(of)-254(planes)-254(that)-254(are)]TJ 0 -13.549 Td[(determined)-288(by)-289(the)-288([infinity])-289(points)-288(on)-289(each)-288(of)-288(the)-289(three)-288(lines)-289(by)]TJ 0 -13.549 Td[([infinity])]TJ/F16 8.966 Tf 39.393 4.909 Td[(3)]TJ/F16 10.909 Tf 4.483 -4.909 Td[(,)-260(and)-258(to)-257(c)-1(all)-257(it)-258(an)-258(infinitude)-258(of)-258(the)]TJ/F20 10.909 Tf 149.263 0 Td[(third)]TJ/F16 10.909 Tf 24.031 0 Td[(order.)-274(But)-257(it)-258(is)]TJ -217.17 -13.549 Td[(easily)-301(seen)-301(that)-301(every)-301(plane)-301(in)-301(space)-301(is)-301(included)-301(in)-301(this)-301(totality,)]TJ 0 -13.55 Td[(so)-261(that)]TJ/F20 10.909 Tf 31.751 0 Td[(the)-261(totality)-260(of)-261(planes)-261(in)-261(space)-260(is)-261(an)-261(infinitude)-261(of)-260(the)-261(third)]TJ -31.751 -13.549 Td[(order.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +203 0 obj << +/Type /Page +/Contents 204 0 R +/Resources 202 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +205 0 obj << +/D [203 0 R /XYZ 171.08 409.782 null] +>> endobj +191 0 obj << +/D [203 0 R /XYZ 46.771 357.991 null] +>> endobj +206 0 obj << +/D [203 0 R /XYZ 46.771 341.785 null] +>> endobj +195 0 obj << +/D [203 0 R /XYZ 46.771 240.332 null] +>> endobj +207 0 obj << +/D [203 0 R /XYZ 46.771 224.127 null] +>> endobj +199 0 obj << +/D [203 0 R /XYZ 46.771 66.142 null] +>> endobj +202 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +209 0 obj +<< /S /GoTo /D (index22) >> +endobj +212 0 obj +() +endobj +213 0 obj +<< /S /GoTo /D (index23) >> +endobj +216 0 obj +() +endobj +217 0 obj +<< /S /GoTo /D (index24) >> +endobj +220 0 obj +() +endobj +223 0 obj << +/Length 4061 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(10)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(18.)]TJ/F16 10.909 Tf 18.284 0 Td[(Consider)-309(now)-308(the)-309(planes)-309(perpendicular)-308(to)-309(these)-309(three)-309(lines.)]TJ -18.284 -13.549 Td[(Every)-420(set)-420(of)-419(three)-420(planes)-420(so)-420(drawn)-419(will)-420(determine)-420(a)-420(point)-420(in)]TJ 0 -13.549 Td[(space,)-465(and,)-464(conversely,)-465(through)-422(every)-422(point)-421(in)-422(space)-422(may)-422(be)]TJ 0 -13.549 Td[(drawn)-266(one)-265(and)-266(only)-265(one)-266(set)-265(of)-266(three)-265(planes)-266(at)-265(right)-266(angles)-265(to)-266(the)]TJ 0 -13.55 Td[(three)-279(given)-280(lines.)-337(It)-279(follows,)-287(therefore,)-287(that)]TJ/F20 10.909 Tf 192.084 0 Td[(the)-279(totality)-280(of)-279(points)]TJ -192.084 -13.549 Td[(in)-250(space)-250(is)-250(an)-250(infinitude)-250(of)-250(the)-250(third)-250(order.)]TJ/F39 10.909 Tf 0 -51.317 Td[(19.)-653(Space)-384(system.)]TJ/F16 10.909 Tf 93.581 0 Td[(Space)-384(of)-385(three)-384(dimensions,)-418(considered)-384(as)]TJ -93.581 -13.549 Td[(made)-275(up)-276(of)-275(all)-275(its)-276(planes)-275(and)-275(points,)-282(is)-276(then)-275(a)-275(fundamental)-276(form)]TJ 0 -13.549 Td[(of)-250(the)]TJ/F20 10.909 Tf 27.873 0 Td[(third)]TJ/F16 10.909 Tf 23.945 0 Td[(order,)-250(which)-250(we)-250(shall)-250(call)-250(a)]TJ/F20 10.909 Tf 122.695 0 Td[(space)-250(system.)]TJ/F16 7.97 Tf -247.269 0 Td[([10])]TJ/F39 10.909 Tf 72.756 -51.317 Td[(20.)-438(Lines)-312(in)-313(space.)]TJ/F16 10.909 Tf 92.746 0 Td[(If)-313(we)-312(join)-313(the)-312(twofold)-313(infinity)-313(of)-312(points)-313(in)]TJ -92.746 -13.549 Td[(one)-359(plane)-359(with)-358(the)-359(twofold)-359(infinity)-359(of)-358(points)-359(in)-359(another)-359(plane,)]TJ 0 -13.549 Td[(we)-266(get)-267(a)-266(totality)-267(of)-266(lines)-266(of)-267(space)-266(which)-267(is)-266(of)-266(the)-267(fourth)-266(order)-267(of)]TJ 0 -13.55 Td[(infinity.)]TJ/F20 10.909 Tf 38.096 0 Td[(The)-266(totality)-265(of)-266(lines)-266(in)-266(space)-265(gives,)-270(then,)-270(a)-265(fundamental)]TJ -38.096 -13.549 Td[(form)-250(of)-250(the)-250(fourth)-250(order.)]TJ/F39 10.909 Tf 0 -51.317 Td[(21.)-774(Correspondence)-424(between)-425(points)-424(and)-425(numbers.)]TJ/F16 10.909 Tf 253.581 0 Td[(In)-425(the)]TJ -253.581 -13.549 Td[(theory)-525(of)-525(analytic)-525(geometry)-525(a)-525(one-to-one)-525(corresp)-1(ondence)-525(is)]TJ 0 -13.549 Td[(assumed)-255(to)-255(exist)-254(between)-255(points)-255(on)-254(a)-255(line)-255(and)-255(numbers.)-264(In)-255(order)]TJ 0 -13.549 Td[(to)-309(justify)-309(this)-309(assumption)-309(a)-309(very)-309(extended)-309(definition)-310(of)-309(number)]TJ 0 -13.549 Td[(must)-327(be)-327(made)-327(use)-327(of.)-481(A)-327(one-to-one)-327(correspondence)-327(is)-328(then)-327(set)]TJ 0 -13.55 Td[(up)-344(between)-345(points)-344(in)-344(the)-345(plane)-344(and)-345(pairs)-344(of)-344(numbers,)-368(and)-345(also)]TJ 0 -13.549 Td[(between)-406(points)-405(in)-406(space)-406(and)-405(sets)-406(of)-406(three)-405(numbers.)-717(A)-406(single)]TJ 0 -13.549 Td[(constant)-371(will)-370(serve)-371(to)-371(define)-371(the)-370(position)-371(of)-371(a)-370(point)-371(on)-371(a)-371(line;)]TJ 0 -13.549 Td[(two,)-423(a)-388(point)-389(in)-388(the)-389(plane;)-457(three,)-423(a)-389(point)-388(in)-388(space;)-458(etc.)-665(In)-389(the)]TJ 0 -13.549 Td[(same)-273(theory)-272(a)-273(one-to-one)-272(corr)-1(espondence)-272(is)-273(set)-272(up)-273(between)-273(loci)]TJ 0 -13.55 Td[(in)-272(the)-272(plane)-272(and)-271(equations)-272(in)-272(two)-272(variables;)-283(between)-272(surfaces)-272(in)]TJ 0 -13.549 Td[(space)-360(and)-359(equations)-360(in)-359(three)-360(variables;)-414(etc.)-579(The)-359(equation)-360(of)-360(a)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +222 0 obj << +/Type /Page +/Contents 223 0 R +/Resources 221 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +224 0 obj << +/D [222 0 R /XYZ 93.543 529.134 null] +>> endobj +210 0 obj << +/D [222 0 R /XYZ 93.543 426.246 null] +>> endobj +225 0 obj << +/D [222 0 R /XYZ 93.543 410.43 null] +>> endobj +226 0 obj << +/D [222 0 R /XYZ 93.543 369.756 null] +>> endobj +214 0 obj << +/D [222 0 R /XYZ 93.543 347.831 null] +>> endobj +227 0 obj << +/D [222 0 R /XYZ 93.543 332.015 null] +>> endobj +218 0 obj << +/D [222 0 R /XYZ 93.543 242.317 null] +>> endobj +228 0 obj << +/D [222 0 R /XYZ 93.543 226.501 null] +>> endobj +221 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +229 0 obj +<< /S /GoTo /D (index25) >> +endobj +232 0 obj +() +endobj +235 0 obj << +/Length 4757 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(22.)-250(Elements)-250(at)-250(infinity)-15336(11)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(line)-275(in)-275(a)-276(plane)-275(involves)-275(two)-275(constants,)-282(either)-275(of)-275(which)-275(may)-276(take)]TJ 0 -13.549 Td[(an)-243(infinite)-243(number)-243(of)-243(values.)-248(From)-243(this)-243(it)-243(follows)-243(that)-243(there)-243(is)-243(an)]TJ 0 -13.549 Td[(infinity)-308(of)-308(lines)-308(in)-309(the)-308(plane)-308(which)-308(is)-308(of)-308(the)-308(second)-308(order)-308(if)-309(the)]TJ 0 -13.549 Td[(infinity)-328(of)-329(points)-328(on)-328(a)-329(line)-328(is)-328(assumed)-329(to)-328(be)-329(of)-328(the)-328(first.)-485(In)-329(the)]TJ 0 -13.55 Td[(same)-243(way)-243(a)-243(circle)-243(is)-243(determined)-243(by)-243(three)-242(conditions;)-246(a)-243(sphere)-243(by)]TJ 0 -13.549 Td[(four;)-251(etc.)-251(We)-251(might)-250(then)-251(expect)-250(to)-251(be)-250(able)-251(to)-250(set)-251(up)-250(a)-251(one-to-one)]TJ 0 -13.549 Td[(correspondence)-287(between)-287(circles)-287(in)-287(a)-287(plane)-287(and)-287(points,)-297(or)-287(planes)]TJ 0 -13.549 Td[(in)-335(space,)-356(or)-336(between)-335(spheres)-335(and)-335(lines)-335(in)-335(space.)-505(Such,)-357(indeed,)]TJ 0 -13.549 Td[(is)-280(the)-280(case,)-288(and)-280(it)-280(is)-281(often)-280(possible)-280(to)-280(infer)-280(theorems)-281(concerning)]TJ 0 -13.55 Td[(spheres)-710(from)-355(theorems)-355(concerning)-355(lines,)-381(and)-355(vice)-355(versa.)-565(It)-355(is)]TJ/F16 7.97 Tf 291.024 0 Td[([11])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(possibilities)-302(such)-302(as)-302(these)-302(that,)-315(give)-302(to)-302(the)-302(theory)-302(of)-302(one-to-one)]TJ 0 -13.549 Td[(correspondence)-374(its)-375(great)-374(importance)-375(for)-374(the)-374(mathematician.)-624(It)]TJ 0 -13.549 Td[(must)-394(not)-394(be)-394(forgotten,)-430(however,)-430(that)-394(we)-394(are)-394(considering)-394(only)]TJ/F20 10.909 Tf 0 -13.549 Td[(continuous)]TJ/F16 10.909 Tf 51.072 0 Td[(correspondences.)-378(It)-292(is)-293(perfectly)-292(possible)-293(to)-292(set,)-303(up)-293(a)]TJ -51.072 -13.55 Td[(one-to-one)-297(correspondence)-298(between)-297(the)-297(points)-297(of)-298(a)-297(line)-297(and)-298(the)]TJ 0 -13.549 Td[(points)-357(of)-358(a)-357(plane,)-384(or,)-384(indeed,)-384(between)-357(the)-358(points)-357(of)-357(a)-357(line)-358(and)]TJ 0 -13.549 Td[(the)-303(points)-302(of)-303(a)-302(sp)-1(ace)-302(of)-303(any)-302(finite)-303(number)-303(of)-302(dimensions,)-316(if)-303(the)]TJ 0 -13.549 Td[(correspondence)-250(is)-250(not)-250(restricted)-250(to)-250(be)-250(continuous.)]TJ/F39 10.909 Tf 0 -59.107 Td[(22.)-401(Elements)-301(at)-300(infinity.)]TJ/F16 10.909 Tf 117.73 0 Td[(A)-300(final)-301(word)-300(is)-300(necessary)-301(in)-300(order)-301(to)]TJ -117.73 -13.549 Td[(explain)-181(a)-181(phrase)-181(which)-181(is)-181(in)-181(constant)-181(use)-181(in)-181(the)-181(study)-182(of)-181(projective)]TJ 0 -13.549 Td[(geometry.)-244(We)-230(have)-231(spoken)-231(of)-230(the)-231("point)-231(at)-231(infinity")-230(on)-231(a)-231(straight)]TJ 0 -13.549 Td[(line)]TJ/F21 10.909 Tf 16.364 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(a)-291(fictitious)-290(point)-291(only)-290(used)-291(to)-291(bridge)-290(over)-291(the)-291(exceptional)]TJ -27.273 -13.549 Td[(case)-156(when)-155(we)-156(are)-155(setting)-156(up)-156(a)-155(one-to-one)-156(correspondence)-156(between)]TJ 0 -13.549 Td[(the)-269(points)-270(of)-269(a)-270(line)-269(and)-269(the)-270(lines)-269(through)-270(a)-269(point.)-308(We)-270(speak)-269(of)-270(it)]TJ 0 -13.55 Td[(as)-244("a)-243(point")-244(and)-243(not)-244(as)-243("points,")-244(because)-243(in)-244(the)-243(geometry)-244(studied)]TJ 0 -13.549 Td[(by)-354(Euclid)-354(we)-354(assume)-354(only)-354(one)-354(line)-354(through)-354(a)-354(point)-354(parallel)-354(to)]TJ 0 -13.549 Td[(a)-391(given)-391(line.)-674(In)-391(the)-391(same)-391(sense)-392(we)-391(speak)-391(of)-391(all)-391(the)-391(points)-392(at)]TJ 0 -13.549 Td[(infinity)-206(in)-206(a)-206(plane)-207(as)-206(lying)-206(on)-206(a)-206(line,)-215("the)-206(line)-206(at)-206(infinity,")-207(because)]TJ 0 -13.549 Td[(the)-283(straight)-284(line)-283(is)-283(the)-283(simplest)-283(locus)-284(we)-283(can)-283(imagine)-283(which)-284(has)]TJ 0 -13.55 Td[(only)-297(one)-298(point)-297(in)-297(common)-297(with)-298(any)-297(line)-297(in)-298(the)-297(plane.)-392(Likewise)]TJ 0 -13.549 Td[(we)-277(speak)-278(of)-277(the)-278("plane)-277(at)-278(infinity,")-277(because)-277(that)-278(seems)-277(the)-278(most)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +234 0 obj << +/Type /Page +/Contents 235 0 R +/Resources 233 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +236 0 obj << +/D [234 0 R /XYZ 83.36 396.232 null] +>> endobj +230 0 obj << +/D [234 0 R /XYZ 46.771 260.084 null] +>> endobj +237 0 obj << +/D [234 0 R /XYZ 46.771 240.807 null] +>> endobj +233 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +238 0 obj +<< /S /GoTo /D (index26) >> +endobj +241 0 obj +(PROBLEMS) +endobj +244 0 obj << +/Length 4115 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(12)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(convenient)-341(way)-340(of)-341(imagining)-341(the)-340(points)-341(at)-340(infinity)-341(in)-341(space.)-522(It)]TJ 0 -13.549 Td[(must)-365(not)-365(be)-365(inferred)-365(that)-365(these)-365(conceptions)-365(have)-365(any)-365(essential)]TJ 0 -13.549 Td[(connection)-299(with)-298(physical)-299(facts,)-311(or)-299(that)-298(other)-299(means)-299(of)-299(picturing)]TJ 0 -13.549 Td[(to)-226(ourselves)-226(the)-227(infinitely)-226(distant)-226(configurations)-226(are)-226(not)-227(possible.)]TJ 0 -13.55 Td[(In)-465(other)-465(branches)-465(of)-465(mathematics,)-1037(notably)-465(in)-465(the)-465(theory)-465(of)]TJ/F16 7.97 Tf -72.755 0 Td[([12])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(functions)-274(of)-275(a)-274(complex)-275(variable,)-280(quite)-275(different)-274(assumptions)-275(are)]TJ 0 -13.549 Td[(made)-291(and)-291(quite)-291(different)-290(conceptions)-291(of)-291(the)-291(elements)-291(at)-291(infinity)]TJ 0 -13.549 Td[(are)-357(used.)-570(As)-356(we)-357(can)-357(know)-357(nothing)-356(experimentally)-357(about)-357(such)]TJ 0 -13.549 Td[(things,)-296(we)-287(are)-286(at)-287(liberty)-287(to)-287(make)-286(any)-287(assumptions)-287(we)-287(please,)-296(so)]TJ 0 -13.55 Td[(long)-250(as)-250(they)-250(are)-250(consistent)-250(and)-250(serve)-250(some)-250(useful)-250(purpose.)]TJ/F16 15.781 Tf 0 -63.941 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -32.535 Td[(1.)-660(Since)-387(there)-387(is)-386(a)-387(threefold)-387(infinity)-387(of)-386(points)-387(in)-387(space,)-421(there)]TJ 0 -13.55 Td[(must)-228(be)-228(a)-228(sixfold)-228(infinity)-228(of)-227(p)-1(airs)-227(of)-228(points)-228(in)-228(space.)-243(Each)-228(pair)-228(of)]TJ 0 -13.549 Td[(points)-217(determines)-217(a)-217(line.)-238(Wh)-1(y,)-223(then,)-223(is)-217(there)-217(not)-217(a)-217(sixfold)-217(infinity)]TJ 0 -13.549 Td[(of)-250(lines)-250(in)-250(space?)]TJ 11.956 -14.205 Td[(2.)-249(If)-247(there)-248(is)-247(a)-247(fourfold)-248(infinity)-247(of)-247(lines)-248(in)-247(space,)-248(why)-247(is)-247(it)-248(that)]TJ -11.956 -13.549 Td[(there)-300(is)-300(not)-300(a)-299(fourfold)-300(infinity)-300(of)-300(planes)-300(through)-299(a)-300(point,)-313(seeing)]TJ 0 -13.549 Td[(that)-250(each)-250(line)-250(in)-250(space)-250(determines)-250(a)-250(plane)-250(through)-250(that)-250(point?)]TJ 11.956 -14.205 Td[(3.)-245(Show)-235(that)-234(there)-235(is)-235(a)-234(fourfold)-235(infinity)-235(of)-234(c)-1(ircles)-234(in)-235(space)-235(that)]TJ -11.956 -13.549 Td[(pass)-266(through)-266(a)-266(fixed)-266(point.)-297(\050Set)-266(up)-266(a)-266(one-to-one)-266(correspondence)]TJ 0 -13.549 Td[(between)-250(the)-250(axes)-250(of)-250(the)-250(circles)-250(and)-250(lines)-250(in)-250(space.\051)]TJ 11.956 -14.205 Td[(4.)-443(Find)-314(the)-314(o)-1(rder)-314(of)-314(infinity)-314(of)-315(all)-314(the)-314(lines)-315(of)-314(space)-314(that)-315(cut)]TJ -11.956 -13.549 Td[(across)-357(a)-356(given)-357(line;)-410(across)-357(two)-356(given)-357(lines;)-410(across)-357(three)-357(given)]TJ 0 -13.549 Td[(lines;)-250(across)-250(four)-250(given)-250(lines.)]TJ 11.956 -14.205 Td[(5.)-546(Find)-349(the)-348(order)-349(of)-349(infinity)-348(of)-349(all)-349(the)-349(spheres)-348(in)-349(space)-349(that)]TJ -11.956 -13.549 Td[(pass)-347(throug)-1(h)-347(a)-347(given)-348(point;)-396(through)-347(two)-348(given)-347(points;)-397(through)]TJ 0 -13.549 Td[(three)-250(given)-250(points;)-250(through)-250(four)-250(given)-250(points.)]TJ 11.956 -14.205 Td[(6.)-240(Find)-219(the)-220(order)-220(of)-219(infinity)-220(of)-219(all)-220(the)-220(circles)-219(on)-220(a)-219(sphere;)-230(of)-220(all)]TJ -11.956 -13.549 Td[(the)-321(circles)-320(on)-321(a)-320(sphere)-321(that)-320(pass)-321(through)-321(a)-320(fixed)-321(point;)-356(through)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +243 0 obj << +/Type /Page +/Contents 244 0 R +/Resources 242 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +245 0 obj << +/D [243 0 R /XYZ 256.724 463.978 null] +>> endobj +239 0 obj << +/D [243 0 R /XYZ 93.543 369.414 null] +>> endobj +242 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +248 0 obj << +/Length 2479 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(13)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(two)-281(fixed)-280(points;)-296(through)-280(three)-281(fixed)-280(points;)-296(of)-280(all)-281(the)-280(circles)-281(in)]TJ 0 -13.549 Td[(space;)-250(of)-250(all)-250(the)-250(circles)-250(that)-250(cut)-250(across)-250(a)-250(given)-250(line.)]TJ/F16 7.97 Tf 291.024 0 Td[([13])]TJ/F16 10.909 Tf -279.068 -13.549 Td[(7.)-498(Find)-333(the)-333(order)-333(of)-332(infinity)-333(of)-333(all)-333(lines)-332(tangent)-333(to)-333(a)-333(sphere;)]TJ -11.956 -13.549 Td[(of)-261(all)-261(planes)-260(tangent)-261(to)-261(a)-261(sphere;)-266(of)-261(lines)-260(and)-261(planes)-261(tangent)-261(to)-261(a)]TJ 0 -13.55 Td[(sphere)-250(and)-250(passing)-250(through)-250(a)-250(fixed)-250(point.)]TJ 11.956 -13.549 Td[(8.)-423(Set)-308(up)-308(a)-308(one-to-one)-307(correspondence)-308(between)-308(the)-308(series)-308(of)]TJ -11.956 -13.549 Td[(numbers)]TJ/F20 10.909 Tf 40.835 0 Td[(1)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 6.125 0 Td[(2)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 6.125 0 Td[(3)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 6.125 0 Td[(4)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-311(...)-398(and)-299(the)-299(series)-300(of)-299(even)-299(numbers)]TJ/F20 10.909 Tf 159.406 0 Td[(2)]TJ/F16 10.909 Tf 5.454 0 Td[(,)]TJ/F20 10.909 Tf 6.126 0 Td[(4)]TJ/F16 10.909 Tf 5.454 0 Td[(,)]TJ/F20 10.909 Tf 6.126 0 Td[(6)]TJ/F16 10.909 Tf 5.454 0 Td[(,)]TJ/F20 10.909 Tf 6.126 0 Td[(8)]TJ/F16 10.909 Tf -275.176 -13.549 Td[(....)-525(Are)-342(we)-342(justified)-342(in)-341(saying)-342(that)-342(there)-342(are)-341(just)-342(as)-342(many)-342(even)]TJ 0 -13.549 Td[(numbers)-250(as)-250(there)-250(are)-250(numbers)-250(altogether?)]TJ 11.956 -13.55 Td[(9.)-526(Is)-342(the)-342(axiom)-342("The)-342(whole)-342(is)-342(greater)-342(than)-342(one)-343(of)-342(its)-342(parts")]TJ -11.956 -13.549 Td[(applicable)-250(to)-250(infinite)-250(assemblages?)]TJ 11.956 -13.549 Td[(10.)-278(Make)-259(out)-260(a)-259(classified)-259(list)-260(of)-259(all)-259(the)-260(infinitudes)-259(of)-259(the)-260(first,)]TJ -11.956 -13.549 Td[(second,)-250(third,)-250(and)-250(fourth)-250(orders)-250(mentioned)-250(in)-250(this)-250(chapter.)]TJ/F16 7.97 Tf 291.024 -29.64 Td[([14])]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +247 0 obj << +/Type /Page +/Contents 248 0 R +/Resources 246 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +249 0 obj << +/D [247 0 R /XYZ 46.771 502.248 null] +>> endobj +250 0 obj << +/D [247 0 R /XYZ 46.771 325.945 null] +>> endobj +246 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +251 0 obj +<< /S /GoTo /D (index27) >> +endobj +254 0 obj +(CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE CORRESPONDENCE WITH EACH OTHER) +endobj +255 0 obj +<< /S /GoTo /D (index28) >> +endobj +258 0 obj +() +endobj +259 0 obj +<< /S /GoTo /D (index29) >> +endobj +262 0 obj +() +endobj +265 0 obj << +/Length 2639 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 18.959 Tf 93.543 479.321 Td[(CHAPTER)-266(II)-267(-)-266(RELATIONS)]TJ 0 -24.647 Td[(BETWEEN)-262(FUNDAMENTAL)]TJ 0 -24.646 Td[(FORMS)-271(IN)-271(ONE-TO-ONE)]TJ 0 -24.647 Td[(CORRESPONDENCE)-265(WITH)]TJ 0 -24.646 Td[(EACH)-250(OTHER)]TJ/F39 10.909 Tf 0 -74.458 Td[(23.)-668(Seven)-390(fundamental)-389(forms.)]TJ/F16 10.909 Tf 153.378 0 Td[(In)-389(the)-390(preceding)-389(chapter)-390(we)]TJ -153.378 -13.55 Td[(have)-232(called)-233(attention)-232(to)-232(seven)-233(fundamental)-232(forms:)-241(the)-233(point-row,)]TJ 0 -13.549 Td[(the)-336(pencil)-335(of)-336(rays,)-357(the)-335(axial)-336(pencil,)-357(the)-335(plane)-336(system,)-357(the)-336(point)]TJ 0 -13.549 Td[(system,)-224(the)-217(space)-217(system,)-223(and)-217(the)-217(system)-217(of)-217(lines)-218(in)-217(space.)-239(These)]TJ 0 -13.549 Td[(fundamental)-367(forms)-368(are)-367(the)-367(material)-368(which)-367(we)-368(intend)-367(to)-367(use)-368(in)]TJ 0 -13.549 Td[(building)-445(up)-445(a)-445(general)-445(theory)-445(which)-445(will)-445(be)-445(found)-445(to)-445(include)]TJ 0 -13.55 Td[(ordinary)-405(geometry)-405(as)-405(a)-405(special)-405(case.)-715(We)-405(shall)-405(be)-405(concerned,)]TJ 0 -13.549 Td[(not)-356(with)-357(measurement)-356(of)-356(angles)-356(and)-357(areas)-356(or)-356(line)-356(segments)-357(as)]TJ 0 -13.549 Td[(in)-372(the)-373(study)-372(of)-372(Euclid,)-403(but)-372(in)-373(combining)-372(and)-372(comparing)-373(these)]TJ 0 -13.549 Td[(fundamental)-447(forms)-448(and)-447(in)-448("generating")-447(new)-448(forms)-447(by)-448(means)]TJ 0 -13.549 Td[(of)-438(them.)-814(In)-438(problems)-438(of)-438(construction)-438(we)-438(shall)-438(make)-438(no)-438(use)]TJ 0 -13.55 Td[(of)-314(measurement,)-331(either)-314(of)-314(angles)-314(or)-315(of)-314(segments,)-330(and)-314(except)-315(in)]TJ 0 -13.549 Td[(certain)-190(special)-189(applications)-190(of)-190(the)-189(general)-190(theory)-190(we)-189(shall)-190(not)-190(find)]TJ 0 -13.549 Td[(it)-248(necessary)-248(to)-248(require)-249(more)-248(of)-248(ourselves)-248(than)-248(the)-248(ability)-248(to)-249(draw)]TJ 0 -13.549 Td[(the)-229(line)-229(joining)-229(two)-229(points,)-233(or)-229(to)-229(find)-229(the)-229(point)-230(of)-229(intersections)-229(of)]TJ 0 -13.549 Td[(two)-236(lines,)-239(or)-236(the)-236(line)-235(of)-236(intersection)-236(of)-236(two)-236(planes,)-239(or,)-239(in)-236(general,)]TJ 0 -13.55 Td[(the)-250(common)-250(elements)-250(of)-250(two)-250(fundamental)-250(forms.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +264 0 obj << +/Type /Page +/Contents 265 0 R +/Resources 263 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 208 0 R +>> endobj +252 0 obj << +/D [264 0 R /XYZ 93.543 529.134 null] +>> endobj +256 0 obj << +/D [264 0 R /XYZ 93.543 337.023 null] +>> endobj +266 0 obj << +/D [264 0 R /XYZ 93.543 319.926 null] +>> endobj +260 0 obj << +/D [264 0 R /XYZ 93.543 66.142 null] +>> endobj +263 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +267 0 obj +<< /S /GoTo /D (index30) >> +endobj +270 0 obj +() +endobj +274 0 obj << +/Length 4721 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(25.)-250(Desargues's)-250(theorem)-14964(15)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(24.)-710(Projective)-404(properties.)]TJ/F16 10.909 Tf 131.38 0 Td[(Our)-403(chie)-1(f)-403(interest)-403(in)-404(this)-403(chapter)]TJ -131.38 -13.549 Td[(will)-345(be)-345(the)-345(disco)-1(very)-345(of)-345(relations)-345(between)-345(the)-345(elements)-345(of)-346(one)]TJ 0 -13.549 Td[(form)-384(which)-383(hold)-384(between)-383(the)-767(corresponding)-384(elements)-383(of)-384(any)]TJ/F16 7.97 Tf 291.024 0 Td[([15])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(other)-498(form)-498(in)-498(one-to-one)-498(correspondence)-498(with)-498(it.)-995(We)-498(have)]TJ 0 -13.55 Td[(already)-266(called)-267(attention)-266(to)-266(the)-266(danger)-267(of)-266(assuming)-266(that)-267(whatever)]TJ 0 -13.549 Td[(relations)-445(hold)-445(between)-446(the)-445(elements)-445(of)-445(one)-445(assemblage)-446(must)]TJ 0 -13.549 Td[(also)-202(hold)-203(between)-202(the)-202(corresponding)-203(elements)-202(of)-202(any)-203(assemblage)]TJ 0 -13.549 Td[(in)-448(one-to-one)-448(correspondence)-449(with)-448(it.)-844(This)-448(false)-449(assumption)]TJ 0 -13.549 Td[(is)-467(the)-466(basis)-467(of)-467(the)-466(so-called)-467("proof)-467(by)-467(analogy")-466(so)-467(much)-467(in)]TJ 0 -13.55 Td[(vogue)-270(among)-270(speculative)-271(theorists.)-310(When)-270(it)-270(appears)-270(that)-271(certain)]TJ 0 -13.549 Td[(relations)-408(existing)-408(between)-408(the)-408(points)-408(of)-408(a)-408(given)-408(point-row)-408(do)]TJ 0 -13.549 Td[(not)-446(necessitate)-445(the)-446(same)-445(relations)-446(between)-445(the)-446(corresponding)]TJ 0 -13.549 Td[(elements)-396(of)-396(another)-395(in)-396(one-to-one)-396(correspondence)-396(with)-395(it,)-433(we)]TJ 0 -13.549 Td[(should)-449(view)-449(with)-449(suspicion)-449(any)-449(application)-449(of)-449(the)-449("proof)-449(by)]TJ 0 -13.55 Td[(analogy")-264(in)-264(realms)-265(of)-264(thought)-264(where)-264(accurate)-264(judgments)-264(are)-265(not)]TJ 0 -13.549 Td[(so)-387(easily)-386(made.)-661(For)-386(example,)-421(if)-387(in)-387(a)-386(given)-387(point-row)]TJ/F20 10.909 Tf 249.15 0 Td[(u)]TJ/F16 10.909 Tf 9.673 0 Td[(three)]TJ -258.823 -13.549 Td[(points,)]TJ/F20 10.909 Tf 32.663 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.883 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-289(and)]TJ/F20 10.909 Tf 24.791 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-289(are)-290(taken)-289(such)-289(that)]TJ/F20 10.909 Tf 91.814 0 Td[(B)]TJ/F16 10.909 Tf 9.821 0 Td[(is)-289(the)-290(middle)-289(point)-289(of)]TJ -185.579 -13.549 Td[(the)-337(segment)]TJ/F20 10.909 Tf 57.05 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-337(it)-338(does)-337(not)-337(follow)-337(that)-338(the)-337(three)-337(points)]TJ/F20 10.909 Tf 182.504 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 6.407 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(C')]TJ/F16 10.909 Tf 13.141 0 Td[(in)-324(a)-323(point-row)-324(perspective)-324(to)]TJ/F20 10.909 Tf 132.178 0 Td[(u)]TJ/F16 10.909 Tf 8.985 0 Td[(will)-324(be)-323(so)-324(related.)-471(Relations)]TJ -154.304 -13.55 Td[(between)-345(the)-346(elements)-345(of)-345(any)-345(form)-346(which)-345(do)-345(go)-345(over)-346(unaltered)]TJ 0 -13.549 Td[(to)-240(the)-239(corresponding)-240(elements)-239(of)-240(a)-239(form)-240(projectively)-239(relate)-1(d)-239(to)-240(it)]TJ 0 -13.549 Td[(are)-225(called)]TJ/F20 10.909 Tf 44.279 0 Td[(projective)-225(relations.)]TJ/F16 10.909 Tf 90.236 0 Td[(Relations)-225(involving)-225(measurement)]TJ -134.515 -13.549 Td[(of)-250(lines)-250(or)-250(of)-250(angles)-250(are)-250(not)-250(projective.)]TJ/F39 10.909 Tf 0 -57.647 Td[(25.)-896(Desargues's)-465(theorem.)]TJ/F16 10.909 Tf 134.897 0 Td[(We)-465(consider)-465(first)-466(the)-465(following)]TJ -134.897 -13.549 Td[(beautiful)-250(theorem,)-250(due)-250(to)-250(Desargues)-250(and)-250(called)-250(by)-250(his)-250(name.)]TJ/F20 10.909 Tf 11.956 -14.279 Td[(If)-245(two)-245(triangles,)-246(A,)-245(B,)-244(C)-245(and)-245(A',)-245(B',)-245(C',)-245(are)-245(so)-245(situated)-245(that)-245(the)]TJ -11.956 -13.549 Td[(lines)-222(AA',)-221(BB',)-222(and)-222(CC')-222(all)-221(meet)-222(in)-222(a)-221(point,)-228(then)-221(the)-222(pairs)-222(of)-222(sides)]TJ 0 -13.549 Td[(AB)-333(and)-333(A'B',)-333(BC)-333(and)-333(B'C',)-333(CA)-333(and)-333(C'A')-333(all)-333(meet)-333(on)-333(a)-333(straight)]TJ 0 -13.549 Td[(line,)-250(and)-250(conversely.)]TJ/F16 7.97 Tf 291.024 0 Td[([16])]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +273 0 obj << +/Type /Page +/Contents 274 0 R +/Resources 272 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +275 0 obj << +/D [273 0 R /XYZ 46.771 529.134 null] +>> endobj +276 0 obj << +/D [273 0 R /XYZ 184.634 491.077 null] +>> endobj +268 0 obj << +/D [273 0 R /XYZ 46.771 192.976 null] +>> endobj +277 0 obj << +/D [273 0 R /XYZ 46.771 174.347 null] +>> endobj +278 0 obj << +/D [273 0 R /XYZ 46.771 91.712 null] +>> endobj +272 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +280 0 obj +<< /S /GoTo /D (index31) >> +endobj +283 0 obj +() +endobj +286 0 obj << +/Length 3722 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(16)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.615 -216.53 cm + q 2.26118 0 0 2.26118 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +115.1996 0 0 95.7596 0 0 cm +/Im3 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.158 -312.604 cm +BT +/F16 10.909 Tf 221.062 293.6 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(3)]TJ +ET +1 0 0 1 93.543 288.003 cm +0 g 0 G +1 0 0 1 -93.543 -288.003 cm +BT +/F16 10.909 Tf 105.499 265.614 Td[(Let)-299(the)-299(lines)]TJ/F20 10.909 Tf 58.271 0 Td[(AA')]TJ/F16 10.909 Tf 15.665 0 Td[(,)]TJ/F20 10.909 Tf 5.991 0 Td[(BB')]TJ/F16 10.909 Tf 15.665 0 Td[(,)-299(and)]TJ/F20 10.909 Tf 25.008 0 Td[(CC')]TJ/F16 10.909 Tf 20.15 0 Td[(meet)-299(in)-299(the)-300(point)]TJ/F20 10.909 Tf 78.51 0 Td[(M)]TJ/F16 10.909 Tf 12.35 0 Td[(\050Fig.)-398(3\051.)]TJ -243.566 -13.549 Td[(Conceive)-323(of)-322(the)-323(figure)-323(as)-322(in)-323(space,)-341(so)-323(that)]TJ/F20 10.909 Tf 192.144 0 Td[(M)]TJ/F16 10.909 Tf 12.606 0 Td[(is)-323(the)-322(vertex)-323(of)-323(a)]TJ -204.75 -13.549 Td[(trihedral)-350(angle)-349(of)-350(which)-349(th)-1(e)-349(given)-350(triangles)-349(are)-350(plane)-350(sections.)]TJ 0 -13.549 Td[(The)-233(lines)]TJ/F20 10.909 Tf 42.646 0 Td[(AB)]TJ/F16 10.909 Tf 15.867 0 Td[(and)]TJ/F20 10.909 Tf 18.29 0 Td[(A'B')]TJ/F16 10.909 Tf 20.537 0 Td[(are)-233(in)-232(the)-233(same)-232(plane)-233(and)-233(must)-232(meet)-233(when)]TJ -97.34 -13.55 Td[(produced,)-302(their)-291(point)-291(of)-291(intersection)-291(being)-292(clearly)-291(a)-291(point)-291(in)-292(the)]TJ 0 -13.549 Td[(plane)-379(of)-378(each)-379(triangle)-379(and)-378(therefore)-379(in)-379(the)-378(line)-379(of)-379(intersection)]TJ 0 -13.549 Td[(of)-304(these)-303(two)-304(planes.)-411(Call)-304(this)-303(point)]TJ/F20 10.909 Tf 159.206 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-304(By)-303(similar)-304(reasoning)-304(the)]TJ -165.871 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.522 0 Td[(Q)]TJ/F16 10.909 Tf 10.969 0 Td[(of)-283(inte)-1(rsection)-283(of)-284(the)-283(lines)]TJ/F20 10.909 Tf 118.478 0 Td[(BC)]TJ/F16 10.909 Tf 17.034 0 Td[(and)]TJ/F20 10.909 Tf 18.846 0 Td[(B'C')]TJ/F16 10.909 Tf 21.703 0 Td[(must)-284(lie)-283(on)-284(this)]TJ -212.552 -13.549 Td[(same)-299(line)-298(as)-299(well)-299(as)-298(the)-299(point)]TJ/F20 10.909 Tf 134.308 0 Td[(R)]TJ/F16 10.909 Tf 9.923 0 Td[(of)-299(intersection)-298(of)]TJ/F20 10.909 Tf 78.851 0 Td[(CA)]TJ/F16 10.909 Tf 17.199 0 Td[(and)]TJ/F20 10.909 Tf 19.011 0 Td[(C'A')]TJ/F16 10.909 Tf 18.611 0 Td[(.)]TJ -277.903 -13.55 Td[(Therefore)-332(the)-332(points)]TJ/F20 10.909 Tf 93.874 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.35 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-332(and)]TJ/F20 10.909 Tf 25.724 0 Td[(R)]TJ/F16 10.909 Tf 10.287 0 Td[(all)-332(lie)-332(on)-332(the)-332(same)-332(line)]TJ/F20 10.909 Tf 106.573 0 Td[(m)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-496(If)]TJ -265.225 -13.549 Td[(now)-303(we)-303(consider)-302(the)-303(figure)-303(a)-303(plane)-302(figure,)-316(the)-303(points)]TJ/F20 10.909 Tf 238.275 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.03 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-303(and)]TJ/F20 10.909 Tf -258.847 -13.549 Td[(R)]TJ/F16 10.909 Tf 10.161 0 Td[(still)-321(all)-320(lie)-321(on)-320(a)-321(straight)-320(line,)-338(which)-321(proves)-320(the)-321(theorem.)-461(The)]TJ -10.161 -13.549 Td[(converse)-250(is)-250(established)-250(in)-250(the)-250(same)-250(manner.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +285 0 obj << +/Type /Page +/Contents 286 0 R +/Resources 284 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +271 0 obj << +/Type /XObject +/Subtype /Image +/Width 480 +/Height 399 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 574560 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +281 0 obj << +/D [285 0 R /XYZ 93.543 81.458 null] +>> endobj +287 0 obj << +/D [285 0 R /XYZ 93.543 66.142 null] +>> endobj +284 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im3 271 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +291 0 obj << +/Length 2810 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 316.492 548.934 Td[(17)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(26.)-658(Fundamental)-386(theorem)-386(concerning)-386(two)-386(complete)-386(quad-)]TJ 0 -13.549 Td[(rangles.)]TJ/F16 10.909 Tf 46.768 0 Td[(This)-475(theorem)-476(throws)-475(into)-475(our)-476(hands)-475(the)-475(followin)-1(g)]TJ -46.768 -13.549 Td[(fundamental)-380(theorem)-380(concerning)-381(two)-380(complete)-380(quadrangles,)-413(a)]TJ/F20 10.909 Tf 0 -13.549 Td[(complete)-424(quad)-1(rangle)]TJ/F16 10.909 Tf 98.944 0 Td[(being)-424(defined)-425(as)-424(the)-425(figure)-424(obtained)-425(by)]TJ -98.944 -13.55 Td[(joining)-253(any)-252(four)-253(given)-253(points)-252(by)-253(straight)-253(lines)-253(in)-252(the)-253(six)-253(possible)]TJ 0 -13.549 Td[(ways.)]TJ/F20 10.909 Tf 11.956 -13.688 Td[(Given)-318(two)-318(complete)-318(quadrangles,)-335(K,)-318(L,)-318(M,)-318(N)-318(and)-318(K',)-318(L',)-318(M',)]TJ -11.956 -13.549 Td[(N',)-243(so)-243(related)-243(that)-243(KL,)-243(K'L',)-243(MN,)-243(M'N')-243(all)-243(meet)-243(in)-243(a)-244(point)-243(A;)-243(LM,)]TJ 0 -13.549 Td[(L'M',)-346(NK,)-346(N'K')-346(all)-346(meet)-346(in)-345(a)-692(point)-346(Q;)-346(and)-346(LN,)-346(L'N')-346(meet)-346(in)-346(a)]TJ/F16 7.97 Tf 291.024 0 Td[([17])]TJ/F20 10.909 Tf -291.024 -13.549 Td[(point)-259(B)-260(on)-259(the)-259(line)-260(AC;)-259(then)-259(the)-260(lines)-259(KM)-259(and)-260(K'M')-259(also)-259(meet)-260(in)]TJ 0 -13.55 Td[(a)-250(point)-250(D)-250(on)-250(the)-250(line)-250(AC.)]TJ +ET +1 0 0 1 46.771 355.791 cm +0 g 0 G +1 0 0 1 5.635 -211.235 cm + q 1.36246 0 0 1.36246 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +192.9593 0 0 155.0394 0 0 cm +/Im4 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.406 -144.556 cm +BT +/F16 10.909 Tf 174.29 125.552 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(4)]TJ +ET +1 0 0 1 46.771 119.994 cm +0 g 0 G +1 0 0 1 -46.771 -119.994 cm +BT +/F16 10.909 Tf 58.727 79.691 Td[(For,)-241(by)-240(the)-239(converse)-240(of)-239(the)-239(last)-240(theorem,)]TJ/F20 10.909 Tf 177.873 0 Td[(KK')]TJ/F16 10.909 Tf 16.888 0 Td[(,)]TJ/F20 10.909 Tf 5.338 0 Td[(LL')]TJ/F16 10.909 Tf 14.465 0 Td[(,)-239(and)]TJ/F20 10.909 Tf 23.703 0 Td[(NN')]TJ/F16 10.909 Tf 19.498 0 Td[(all)]TJ -269.721 -13.549 Td[(meet)-347(in)-347(a)-348(point)]TJ/F20 10.909 Tf 72.118 0 Td[(S)]TJ/F16 10.909 Tf 9.241 0 Td[(\050Fig.)-542(4\051.)-541(Also)]TJ/F20 10.909 Tf 68.939 0 Td[(LL')]TJ/F16 10.909 Tf 14.466 0 Td[(,)]TJ/F20 10.909 Tf 6.515 0 Td[(MM')]TJ/F16 10.909 Tf 20.509 0 Td[(,)-347(and)]TJ/F20 10.909 Tf 26.055 0 Td[(NN')]TJ/F16 10.909 Tf 20.674 0 Td[(meet)-347(in)-347(a)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +290 0 obj << +/Type /Page +/Contents 291 0 R +/Resources 289 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +288 0 obj << +/Type /XObject +/Subtype /Image +/Width 804 +/Height 646 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1558152 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +292 0 obj << +/D [290 0 R /XYZ 178.294 409.643 null] +>> endobj +289 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im4 288 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +293 0 obj +<< /S /GoTo /D (index32) >> +endobj +296 0 obj +() +endobj +297 0 obj +<< /S /GoTo /D (index33) >> +endobj +300 0 obj +() +endobj +301 0 obj +<< /S /GoTo /D (index34) >> +endobj +304 0 obj +() +endobj +307 0 obj << +/Length 6592 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(18)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(point,)-237(and)-234(therefore)-233(in)-234(the)-233(same)-234(point)]TJ/F20 10.909 Tf 164.82 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-234(Thus)]TJ/F20 10.909 Tf 29.642 0 Td[(KK')]TJ/F16 10.909 Tf 16.887 0 Td[(,)]TJ/F20 10.909 Tf 5.276 0 Td[(LL')]TJ/F16 10.909 Tf 14.465 0 Td[(,)-234(and)]TJ/F20 10.909 Tf 23.577 0 Td[(MM')]TJ/F16 10.909 Tf -260.121 -13.549 Td[(meet)-269(in)-269(a)-269(point,)-274(and)-269(so,)-274(by)-269(Desargues's)-269(theorem)-269(itself,)]TJ/F20 10.909 Tf 240.223 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.662 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-269(and)]TJ/F20 10.909 Tf -259.215 -13.549 Td[(D)]TJ/F16 10.909 Tf 10.604 0 Td[(are)-250(on)-250(a)-250(straight)-250(line.)]TJ/F39 10.909 Tf -10.604 -51.309 Td[(27.)-235(Importance)-204(of)-203(the)-204(theorem.)]TJ/F16 10.909 Tf 145.09 0 Td[(The)-204(importance)-204(of)-204(this)-204(theorem)]TJ -145.09 -13.549 Td[(lies)-209(in)-208(the)-209(fact)-208(that,)]TJ/F20 10.909 Tf 83.88 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.002 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-208(and)]TJ/F20 10.909 Tf 23.029 0 Td[(C)]TJ/F16 10.909 Tf 9.551 0 Td[(being)-209(given,)-216(an)-209(indefinite)-208(number)]TJ -134.793 -13.549 Td[(of)-396(quadrangles)]TJ/F20 10.909 Tf 70.432 0 Td[(K')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ/F20 10.909 Tf 7.044 0 Td[(L')]TJ/F16 10.909 Tf 8.4 0 Td[(,)]TJ/F20 10.909 Tf 7.043 0 Td[(M')]TJ/F16 10.909 Tf 11.422 0 Td[(,)]TJ/F20 10.909 Tf 7.043 0 Td[(N')]TJ/F16 10.909 Tf 13.926 0 Td[(my)-396(be)-395(found)-396(such)-396(that)]TJ/F20 10.909 Tf 107.631 0 Td[(K'L')]TJ/F16 10.909 Tf 22.325 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(M'N')]TJ/F16 10.909 Tf 23.63 0 Td[(meet)-238(in)]TJ/F20 10.909 Tf 34.888 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.324 0 Td[(K'N')]TJ/F16 10.909 Tf 21.819 0 Td[(and)]TJ/F20 10.909 Tf 18.349 0 Td[(L'M')]TJ/F16 10.909 Tf 22.418 0 Td[(in)]TJ/F20 10.909 Tf 11.084 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-238(with)]TJ/F20 10.909 Tf 27.317 0 Td[(L'N')]TJ/F16 10.909 Tf 20.607 0 Td[(passing)-238(through)]TJ/F20 10.909 Tf 71.859 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(.)]TJ -277.903 -13.549 Td[(Indeed,)-283(the)-277(lines)]TJ/F20 10.909 Tf 75.477 0 Td[(AK')]TJ/F16 10.909 Tf 19.294 0 Td[(and)]TJ/F20 10.909 Tf 18.772 0 Td[(AM')]TJ/F16 10.909 Tf 21.105 0 Td[(may)-277(be)-276(drawn)-277(arbitrarily)-277(through)]TJ/F20 10.909 Tf -134.648 -13.55 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-212(and)-212(any)-211(line)-212(through)]TJ/F20 10.909 Tf 96.088 0 Td[(B)]TJ/F16 10.909 Tf 8.976 0 Td[(may)-212(be)-212(used)-211(to)-212(determine)]TJ/F20 10.909 Tf 112.746 0 Td[(L')]TJ/F16 10.909 Tf 10.711 0 Td[(and)]TJ/F20 10.909 Tf 18.063 0 Td[(N')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-212(By)]TJ -262.861 -13.549 Td[(joining)-203(these)-203(two)-203(points)-203(to)]TJ/F20 10.909 Tf 115.934 0 Td[(C)]TJ/F16 10.909 Tf 9.49 0 Td[(the)-203(points)]TJ/F20 10.909 Tf 44.434 0 Td[(K')]TJ/F16 10.909 Tf 11.826 0 Td[(and)]TJ/F20 10.909 Tf 17.967 0 Td[(M')]TJ/F16 10.909 Tf 13.637 0 Td[(are)-203(determined.)]TJ -213.288 -13.549 Td[(Then)-333(the)-333(line)-667(joining)]TJ/F20 10.909 Tf 101.204 0 Td[(K')]TJ/F16 10.909 Tf 13.245 0 Td[(and)]TJ/F20 10.909 Tf 19.388 0 Td[(M')]TJ/F16 10.909 Tf 11.422 0 Td[(,)-333(found)-333(in)-334(this)-333(way,)-354(must)-333(pass)]TJ/F16 7.97 Tf -218.015 0 Td[([18])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(through)-278(the)-279(point)]TJ/F20 10.909 Tf 78.808 0 Td[(D)]TJ/F16 10.909 Tf 10.912 0 Td[(already)-278(determined)-279(by)-278(the)-278(quadrangle)]TJ/F20 10.909 Tf 169.077 0 Td[(K)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 5.763 0 Td[(L)]TJ/F16 10.909 Tf 6.066 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(,)]TJ/F20 10.909 Tf 6.989 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(.)]TJ/F20 10.909 Tf 6.99 0 Td[(The)-391(three)-390(points)-391(A,)-391(B,)-391(C,)-390(given)-391(in)-391(order,)-426(serve)-390(thus)-391(to)]TJ -30.343 -13.55 Td[(determine)-250(a)-250(fourth)-250(point)-250(D.)]TJ/F39 10.909 Tf 0 -51.308 Td[(28.)]TJ/F16 10.909 Tf 18.193 0 Td[(In)-306(a)-306(complete)-306(quadrangle)-306(the)-305(line)-306(joining)-306(any)-306(two)-306(points)-306(is)]TJ -18.193 -13.549 Td[(called)-301(the)]TJ/F20 10.909 Tf 45.944 0 Td[(opposite)-301(side)]TJ/F16 10.909 Tf 61.108 0 Td[(to)-301(the)-301(line)-300(joining)-301(the)-301(other)-301(two)-300(points.)]TJ -107.052 -13.549 Td[(The)-440(result)-440(of)-439(the)-440(preceding)-440(paragraph)-440(may)-439(then)-440(be)-440(stated)-440(as)]TJ 0 -13.549 Td[(follows:)]TJ 11.955 -13.575 Td[(Given)-412(three)-412(points,)]TJ/F20 10.909 Tf 91.794 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 7.221 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 7.221 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-412(in)-412(a)-412(straight)-412(line,)-452(if)-412(a)-412(pair)-412(of)]TJ -138.799 -13.55 Td[(opposite)-424(sides)-423(of)-424(a)-423(complete)-424(quadrangle)-423(pass)-424(through)]TJ/F20 10.909 Tf 250.865 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-423(a)-1(nd)]TJ -257.53 -13.549 Td[(another)-256(pair)-255(through)]TJ/F20 10.909 Tf 91.983 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-256(and)-255(one)-256(of)-255(the)-256(remaining)-256(two)-255(sides)-256(goes)]TJ -99.259 -13.549 Td[(through)]TJ/F20 10.909 Tf 38.488 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-417(then)-417(the)-417(other)-417(of)-417(the)-417(remaining)-417(two)-417(sides)-417(will)-418(go)]TJ -45.153 -13.549 Td[(through)-295(a)-295(fixed)-295(point)-295(which)-295(does)-295(not)-295(depend)-295(on)-295(the)-296(quadrangle)]TJ 0 -13.549 Td[(employed.)]TJ/F39 10.909 Tf 0 -51.309 Td[(29.)-425(Four)-309(harmonic)-308(points.)]TJ/F16 10.909 Tf 128.745 0 Td[(Four)-308(points,)]TJ/F20 10.909 Tf 56.897 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.092 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.092 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.092 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-308(related)-309(as)]TJ -232.402 -13.549 Td[(in)-331(the)-332(preceding)-331(theorem)-332(are)-331(called)]TJ/F20 10.909 Tf 161.645 0 Td[(four)-331(harmonic)-332(points)]TJ/F16 10.909 Tf 93.903 0 Td[(.)-494(The)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +306 0 obj << +/Type /Page +/Contents 307 0 R +/Resources 305 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +294 0 obj << +/D [306 0 R /XYZ 93.543 466.777 null] +>> endobj +308 0 obj << +/D [306 0 R /XYZ 93.543 450.965 null] +>> endobj +309 0 obj << +/D [306 0 R /XYZ 156.561 344.924 null] +>> endobj +298 0 obj << +/D [306 0 R /XYZ 93.543 280.097 null] +>> endobj +310 0 obj << +/D [306 0 R /XYZ 93.543 264.285 null] +>> endobj +302 0 obj << +/D [306 0 R /XYZ 93.543 106.7 null] +>> endobj +311 0 obj << +/D [306 0 R /XYZ 93.543 90.888 null] +>> endobj +305 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +315 0 obj << +/Length 4904 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(29.)-250(Four)-250(harmonic)-250(points)-14614(19)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(point)]TJ/F20 10.909 Tf 26.977 0 Td[(D)]TJ/F16 10.909 Tf 12.423 0 Td[(is)-417(called)-417(the)]TJ/F20 10.909 Tf 60.302 0 Td[(fourth)-417(harmonic)-417(of)-417(B)-416(with)-417(respect)-417(to)-417(A)]TJ -99.702 -13.549 Td[(and)-345(C)]TJ/F16 10.909 Tf 27.399 0 Td[(.)-344(Since)]TJ/F20 10.909 Tf 34.483 0 Td[(B)]TJ/F16 10.909 Tf 10.423 0 Td[(and)]TJ/F20 10.909 Tf 19.511 0 Td[(D)]TJ/F16 10.909 Tf 11.634 0 Td[(play)-344(ex)-1(actly)-344(the)-345(same)-344(r\364le)-345(in)-344(the)-345(above)]TJ -103.45 -13.549 Td[(construction,)]TJ/F20 10.909 Tf 59.931 0 Td[(B)-290(is)-289(also)-290(the)-290(fourth)-289(harmonic)-290(of)-290(D)-289(with)-290(respect)-290(to)]TJ -59.931 -13.549 Td[(A)-321(and)-321(C)]TJ/F16 10.909 Tf 37.314 0 Td[(.)]TJ/F20 10.909 Tf 6.232 0 Td[(B)]TJ/F16 10.909 Tf 10.169 0 Td[(and)]TJ/F20 10.909 Tf 19.257 0 Td[(D)]TJ/F16 10.909 Tf 11.38 0 Td[(are)-321(called)]TJ/F20 10.909 Tf 46.38 0 Td[(harmonic)-321(conjugates)-322(with)-321(respect)]TJ -130.731 -13.55 Td[(to)-260(A)-261(and)-260(C)]TJ/F16 10.909 Tf 47.314 0 Td[(.)-260(We)-261(proceed)-260(to)-261(show)-260(that)]TJ/F20 10.909 Tf 117.32 0 Td[(A)]TJ/F16 10.909 Tf 9.506 0 Td[(and)]TJ/F20 10.909 Tf 18.593 0 Td[(C)]TJ/F16 10.909 Tf 10.117 0 Td[(are)-260(also)-261(harmonic)]TJ -202.85 -13.549 Td[(conjugates)-257(with)-257(respect)-257(to)]TJ/F20 10.909 Tf 116.653 0 Td[(B)]TJ/F16 10.909 Tf 9.469 0 Td[(and)]TJ/F20 10.909 Tf 18.557 0 Td[(D)]TJ/F21 10.909 Tf 7.877 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(that)-257(is,)-259(that)-257(it)-257(is)-257(possible)-257(to)]TJ -163.465 -13.549 Td[(find)-234(a)-234(quadrangle)-234(of)-233(which)-234(two)-234(opposite)-234(sides)-234(shall)-234(pass)-234(through)]TJ/F20 10.909 Tf 0 -13.549 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-275(two)-276(through)]TJ/F20 10.909 Tf 62.043 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-275(and)-276(of)-275(the)-276(remaining)-275(pair,)-282(one)-275(through)]TJ/F20 10.909 Tf 178.623 0 Td[(A)]TJ/F16 10.909 Tf 9.67 0 Td[(and)]TJ -264.877 -13.549 Td[(the)-250(other)-250(through)]TJ/F20 10.909 Tf 77.869 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)]TJ +ET +1 0 0 1 46.771 378.584 cm +0 g 0 G +1 0 0 1 5.623 -175.349 cm + q 1.6093 0 0 1.6093 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +162.9594 0 0 108.9596 0 0 cm +/Im5 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.394 -203.235 cm +BT +/F16 10.909 Tf 174.29 184.231 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(5)]TJ +ET +1 0 0 1 46.771 178.635 cm +0 g 0 G +1 0 0 1 -46.771 -178.635 cm +BT +/F16 10.909 Tf 58.727 133.888 Td[(Let)]TJ/F20 10.909 Tf 17.55 0 Td[(O)]TJ/F16 10.909 Tf 10.884 0 Td[(be)-276(the)-276(intersection)-275(of)]TJ/F20 10.909 Tf 95.651 0 Td[(KM)]TJ/F16 10.909 Tf 19.372 0 Td[(and)]TJ/F20 10.909 Tf 18.761 0 Td[(LN)]TJ/F16 10.909 Tf 16.35 0 Td[(\050Fig.)-327(5\051.)-328(Join)]TJ/F20 10.909 Tf 61.061 0 Td[(O)]TJ/F16 10.909 Tf 10.884 0 Td[(to)]TJ/F20 10.909 Tf 11.496 0 Td[(A)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(and)]TJ/F20 10.909 Tf 19.267 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(.)-322(The)-322(joining)-322(lines)-322(cut)-323(out)-322(on)-322(the)-322(sides)-322(of)-322(the)-322(quadrangle)]TJ -26.544 -13.549 Td[(four)-407(points,)]TJ/F20 10.909 Tf 56.879 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(R)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-407(Consider)-407(the)-407(quadrangle)]TJ/F20 10.909 Tf 121.673 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 7.166 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)]TJ -277.903 -13.55 Td[(One)-237(pair)-236(of)-237(opposite)-236(sides)-473(passes)-237(through)]TJ/F20 10.909 Tf 185.469 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-237(one)-236(through)]TJ/F20 10.909 Tf 60.16 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-237(and)]TJ/F16 7.97 Tf 31.454 0 Td[([19])]TJ/F16 10.909 Tf -291.023 -13.549 Td[(one)-217(remaining)-217(side)-216(through)]TJ/F20 10.909 Tf 120.963 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(;)-217(therefore)-217(the)-217(other)-216(remaining)-217(side)]TJ -128.839 -13.549 Td[(must)-248(pass)-247(through)]TJ/F20 10.909 Tf 82.049 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-248(Similarly,)]TJ/F20 10.909 Tf 51.479 0 Td[(RS)]TJ/F16 10.909 Tf 14.822 0 Td[(passes)-248(through)]TJ/F20 10.909 Tf 67.216 0 Td[(B)]TJ/F16 10.909 Tf 9.368 0 Td[(and)]TJ/F20 10.909 Tf 18.455 0 Td[(PS)]TJ/F16 10.909 Tf 14.823 0 Td[(and)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +314 0 obj << +/Type /Page +/Contents 315 0 R +/Resources 313 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +312 0 obj << +/Type /XObject +/Subtype /Image +/Width 679 +/Height 454 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 924798 +>> +stream +ÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +316 0 obj << +/D [314 0 R /XYZ 162.688 93.24 null] +>> endobj +313 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F21 35 0 R >> +/XObject << /Im5 312 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +317 0 obj +<< /S /GoTo /D (index35) >> +endobj +320 0 obj +() +endobj +321 0 obj +<< /S /GoTo /D (index36) >> +endobj +324 0 obj +() +endobj +325 0 obj +<< /S /GoTo /D (index37) >> +endobj +328 0 obj +() +endobj +329 0 obj +<< /S /GoTo /D (index38) >> +endobj +332 0 obj +() +endobj +335 0 obj << +/Length 7480 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(20)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 93.543 518.175 Td[(QR)]TJ/F16 10.909 Tf 17.226 0 Td[(pass)-246(through)]TJ/F20 10.909 Tf 58.092 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-246(The)-246(quadrangle)]TJ/F20 10.909 Tf 76.212 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.411 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 5.411 0 Td[(R)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.411 0 Td[(S)]TJ/F16 10.909 Tf 8.139 0 Td[(therefore)-246(has)-246(two)]TJ -204.986 -13.549 Td[(opposite)-250(sides)-251(through)]TJ/F20 10.909 Tf 100.924 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-250(two)-251(through)]TJ/F20 10.909 Tf 61.225 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-250(and)-251(the)-250(remaining)-251(pair)]TJ -176.691 -13.549 Td[(through)]TJ/F20 10.909 Tf 38.104 0 Td[(A)]TJ/F16 10.909 Tf 10.829 0 Td[(and)]TJ/F20 10.909 Tf 19.918 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)]TJ/F20 10.909 Tf 6.892 0 Td[(A)]TJ/F16 10.909 Tf 10.829 0 Td[(and)]TJ/F20 10.909 Tf 19.918 0 Td[(C)]TJ/F16 10.909 Tf 11.44 0 Td[(are)-382(thus)-382(harmonic)-381(conjugates)-382(with)]TJ -125.206 -13.549 Td[(respect)-248(to)]TJ/F20 10.909 Tf 44.798 0 Td[(B)]TJ/F16 10.909 Tf 9.373 0 Td[(and)]TJ/F20 10.909 Tf 18.461 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-248(We)-248(may)-249(sum)-248(up)-248(the)-248(discussion,)-249(therefore,)-249(as)]TJ -80.508 -13.55 Td[(follows:)]TJ/F39 10.909 Tf 0 -51.308 Td[(30.)]TJ/F16 10.909 Tf 16.683 0 Td[(If)]TJ/F20 10.909 Tf 10.1 0 Td[(A)]TJ/F16 10.909 Tf 9.499 0 Td[(and)]TJ/F20 10.909 Tf 18.586 0 Td[(C)]TJ/F16 10.909 Tf 10.11 0 Td[(are)-260(harmonic)-260(conjugates)-259(with)-260(respect)-260(to)]TJ/F20 10.909 Tf 176.963 0 Td[(B)]TJ/F16 10.909 Tf 9.499 0 Td[(and)]TJ/F20 10.909 Tf 18.586 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ -277.903 -13.549 Td[(then)]TJ/F20 10.909 Tf 21.513 0 Td[(B)]TJ/F16 10.909 Tf 9.393 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(D)]TJ/F16 10.909 Tf 10.603 0 Td[(are)-250(harmonic)-250(conjugates)-250(with)-250(respect)-250(to)]TJ/F20 10.909 Tf 176.324 0 Td[(A)]TJ/F16 10.909 Tf 9.392 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(.)]TJ/F39 10.909 Tf -271.462 -51.309 Td[(31.)-323(Importance)-274(of)-274(the)-274(notion.)]TJ/F16 10.909 Tf 140.243 0 Td[(The)-274(importance)-274(of)-275(the)-274(notion)-274(of)]TJ -140.243 -13.549 Td[(four)-278(harmonic)-278(points)-278(lies)-279(in)-278(the)-278(fact)-278(that)-278(it)-278(is)-278(a)-278(relation)-278(which)-279(is)]TJ 0 -13.549 Td[(carried)-278(over)-279(from)-278(four)-278(points)-279(in)-278(a)-278(point-row)]TJ/F20 10.909 Tf 196.367 0 Td[(u)]TJ/F16 10.909 Tf 8.49 0 Td[(to)-278(the)-279(four)-278(points)]TJ -204.857 -13.549 Td[(that)-250(correspond)-250(to)-250(them)-250(in)-250(any)-250(point-row)]TJ/F20 10.909 Tf 181.494 0 Td[(u')]TJ/F16 10.909 Tf 10.517 0 Td[(perspective)-250(to)]TJ/F20 10.909 Tf 63.621 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ -249.132 -13.575 Td[(To)-252(prove)-252(this)-252(statement)-252(we)-251(construct)-252(a)-252(quadrangle)]TJ/F20 10.909 Tf 222.545 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.475 0 Td[(L)]TJ/F16 10.909 Tf 6.066 0 Td[(,)]TJ/F20 10.909 Tf 5.475 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 5.475 0 Td[(N)]TJ/F16 10.909 Tf -273.354 -13.549 Td[(such)-239(that)]TJ/F20 10.909 Tf 41.584 0 Td[(KL)]TJ/F16 10.909 Tf 15.953 0 Td[(and)]TJ/F20 10.909 Tf 18.365 0 Td[(MN)]TJ/F16 10.909 Tf 18.975 0 Td[(pass)-239(through)]TJ/F20 10.909 Tf 57.948 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.339 0 Td[(KN)]TJ/F16 10.909 Tf 17.165 0 Td[(and)]TJ/F20 10.909 Tf 18.364 0 Td[(LM)]TJ/F16 10.909 Tf 17.765 0 Td[(through)]TJ/F20 10.909 Tf 36.55 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.339 0 Td[(LN)]TJ/F16 10.909 Tf -267.288 -13.549 Td[(through)]TJ/F20 10.909 Tf 37.066 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-287(and)]TJ/F20 10.909 Tf 24.734 0 Td[(KM)]TJ/F16 10.909 Tf 19.491 0 Td[(through)]TJ/F20 10.909 Tf 37.065 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-287(Take)-286(now)-287(any)-287(point)]TJ/F20 10.909 Tf 97.138 0 Td[(S)]TJ/F16 10.909 Tf 8.581 0 Td[(not)-287(in)-286(the)]TJ -238.616 -13.55 Td[(plane)-217(of)-218(the)-217(quadrangle)-218(and)-217(construct)-218(the)-217(planes)-218(determined)-217(by)]TJ/F20 10.909 Tf 275.175 0 Td[(S)]TJ/F16 10.909 Tf -275.175 -13.549 Td[(and)-254(all)-254(the)-254(seven)-254(lines)-255(of)-254(the)-254(figure.)-262(Cut)-254(across)-254(this)-254(set)-254(of)-255(planes)]TJ 0 -13.549 Td[(by)-326(another)-326(plane)-326(not)-327(passing)-326(through)]TJ/F20 10.909 Tf 169.208 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-326(This)-326(plane)-326(cuts)-327(out)-326(on)]TJ -174.663 -13.549 Td[(the)-384(set)-383(of)-384(seven)-383(planes)-384(another)-767(quadrangle)-384(which)-384(determines)]TJ/F16 7.97 Tf -72.756 0 Td[([20])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(four)-249(new)-248(harmonic)-248(points,)]TJ/F20 10.909 Tf 117.798 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.438 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.438 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ/F20 10.909 Tf 5.438 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(,)-248(on)-249(the)-248(lines)-249(joining)]TJ/F20 10.909 Tf 92.044 0 Td[(S)]TJ/F16 10.909 Tf 8.165 0 Td[(to)]TJ/F20 10.909 Tf -272.143 -13.55 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-311(But)]TJ/F20 10.909 Tf 25.271 0 Td[(S)]TJ/F16 10.909 Tf 8.843 0 Td[(may)-311(be)-311(taken)-310(as)-311(any)-311(point,)-326(since)-310(the)-311(original)]TJ -80.949 -13.549 Td[(quadrangle)-301(may)-302(be)-301(taken)-302(in)-301(any)-302(plane)-301(through)]TJ/F20 10.909 Tf 209.298 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.016 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.016 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.016 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(;)-301(and,)]TJ -255.829 -13.549 Td[(further,)-373(the)-348(points)]TJ/F20 10.909 Tf 84.085 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 6.528 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 6.529 0 Td[(C')]TJ/F16 10.909 Tf 9.61 0 Td[(,)]TJ/F20 10.909 Tf 6.529 0 Td[(D')]TJ/F16 10.909 Tf 14.01 0 Td[(are)-348(the)-349(intersection)-348(of)]TJ/F20 10.909 Tf 101.843 0 Td[(SA)]TJ/F16 10.909 Tf 12.12 0 Td[(,)]TJ/F20 10.909 Tf 6.529 0 Td[(SB)]TJ/F16 10.909 Tf 12.119 0 Td[(,)]TJ/F20 10.909 Tf -277.902 -13.549 Td[(SC)]TJ/F16 10.909 Tf 12.731 0 Td[(,)]TJ/F20 10.909 Tf 5.454 0 Td[(SD)]TJ/F16 10.909 Tf 16.059 0 Td[(by)-250(any)-250(line.)-250(We)-250(have,)-250(then,)-250(the)-250(remarkable)-250(theorem:)]TJ/F39 10.909 Tf -34.244 -51.308 Td[(32.)]TJ/F20 10.909 Tf 23.16 0 Td[(If)-458(any)-457(point)-458(is)-458(joined)-457(to)-458(four)-458(harmonic)-457(points,)-510(and)-458(the)]TJ -23.16 -13.55 Td[(four)-339(lines)-338(thus)-339(obtained)-338(are)-339(cut)-338(by)-339(any)-338(fifth,)-361(the)-338(fou)-1(r)-338(points)-339(of)]TJ 0 -13.549 Td[(intersection)-250(are)-250(again)-250(harmonic.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +334 0 obj << +/Type /Page +/Contents 335 0 R +/Resources 333 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 279 0 R +>> endobj +318 0 obj << +/D [334 0 R /XYZ 93.543 441.915 null] +>> endobj +336 0 obj << +/D [334 0 R /XYZ 93.543 426.103 null] +>> endobj +322 0 obj << +/D [334 0 R /XYZ 93.543 374.821 null] +>> endobj +337 0 obj << +/D [334 0 R /XYZ 93.543 359.009 null] +>> endobj +338 0 obj << +/D [334 0 R /XYZ 238.619 212.295 null] +>> endobj +326 0 obj << +/D [334 0 R /XYZ 93.543 120.249 null] +>> endobj +339 0 obj << +/D [334 0 R /XYZ 93.543 104.437 null] +>> endobj +333 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +340 0 obj +<< /S /GoTo /D (index39) >> +endobj +343 0 obj +() +endobj +344 0 obj +<< /S /GoTo /D (index40) >> +endobj +347 0 obj +() +endobj +350 0 obj << +/Length 6680 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(33.)-250(Four)-250(harmonic)-250(lines)-15170(21)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(33.)-268(Four)-256(harmonic)-256(lines.)]TJ/F16 10.909 Tf 116.882 0 Td[(We)-256(are)-256(now)-256(able)-256(to)-256(extend)-255(the)-256(notion)]TJ -116.882 -13.549 Td[(of)-432(harmonic)-432(elements)-433(to)-432(pencils)-432(of)-432(rays,)-478(and)-432(indeed)-432(to)-433(axial)]TJ 0 -13.549 Td[(pencils.)-341(For)-281(if)-280(we)-281(define)]TJ/F20 10.909 Tf 111.392 0 Td[(four)-280(harmonic)-281(rays)]TJ/F16 10.909 Tf 87.963 0 Td[(as)-280(four)-281(rays)-280(which)]TJ -199.355 -13.549 Td[(pass)-354(through)-354(a)-354(point)-355(and)-354(which)-354(pass)-354(one)-354(through)-354(each)-354(of)-355(four)]TJ 0 -13.55 Td[(harmonic)-250(points,)-250(we)-250(have)-250(the)-250(theorem)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(Four)-330(harmonic)-329(lines)-330(are)-330(cut)-329(by)-330(any)-330(transversal)-329(in)-330(four)-330(har-)]TJ -11.956 -13.549 Td[(monic)-250(points.)]TJ/F39 10.909 Tf 0 -49.877 Td[(34.)-820(Four)-441(harmonic)-440(planes.)]TJ/F16 10.909 Tf 141.447 0 Td[(We)-440(also)-440(define)]TJ/F20 10.909 Tf 74.382 0 Td[(four)-440(harmonic)]TJ -215.829 -13.549 Td[(planes)]TJ/F16 10.909 Tf 30.915 0 Td[(as)-223(four)-223(planes)-223(through)-222(a)-223(line)-223(which)-223(pass)-223(one)-223(through)-223(each)]TJ -30.915 -13.549 Td[(of)-250(four)-250(harmonic)-250(points,)-250(and)-250(we)-250(may)-250(show)-250(that)]TJ/F20 10.909 Tf 11.956 -13.55 Td[(Four)-521(harmonic)-520(planes)-521(are)-520(cut)-521(by)-521(any)-520(plane)-521(not)-521(passing)]TJ -11.956 -13.549 Td[(through)-323(their)-324(common)-323(line)-324(in)-323(four)-324(harmonic)-323(lines,)-342(and)-323(also)-324(by)]TJ 0 -13.549 Td[(any)-250(line)-250(in)-250(four)-250(harmonic)-250(points.)]TJ/F16 10.909 Tf 11.956 -13.549 Td[(For)-266(let)-266(the)-265(planes)]TJ/F41 10.909 Tf 78.862 0 Td[(\261)]TJ/F16 10.909 Tf 5.727 0 Td[(,)]TJ/F41 10.909 Tf 5.67 0 Td[(\262)]TJ/F16 10.909 Tf 5.433 0 Td[(,)]TJ/F41 10.909 Tf 5.669 0 Td[(\263)]TJ/F16 10.909 Tf 5.182 0 Td[(,)]TJ/F41 10.909 Tf 5.67 0 Td[(\264)]TJ/F16 10.909 Tf 5.225 0 Td[(,)-270(which)-266(all)-265(pass)-266(through)-266(the)-266(line)]TJ/F20 10.909 Tf 143.054 0 Td[(g)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ -277.903 -13.549 Td[(pass)-280(also)-281(through)-280(the)-281(four)-280(harmonic)-281(points)]TJ/F20 10.909 Tf 191.094 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.787 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.786 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 5.786 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-280(so)-281(that)]TJ/F41 10.909 Tf 37.967 0 Td[(\261)]TJ/F16 10.909 Tf -274.903 -13.55 Td[(passes)-308(through)]TJ/F20 10.909 Tf 68.533 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-308(etc.)-424(Then)-309(it)-308(is)-308(clear)-308(that)-308(any)-308(plane)]TJ/F41 10.909 Tf 162.394 0 Td[(\300)]TJ/F16 10.909 Tf 9.099 0 Td[(through)]TJ/F20 10.909 Tf -246.692 -13.549 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.529 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.529 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.529 0 Td[(D)]TJ/F16 10.909 Tf 10.678 0 Td[(will)-257(cut)-257(out)-256(four)-257(harmonic)-257(lines)-257(from)-257(the)-256(four)-257(planes,)]TJ -47.872 -13.549 Td[(for)-278(they)-279(are)-556(lines)-278(through)-279(the)-278(intersection)]TJ/F20 10.909 Tf 187.889 0 Td[(P)]TJ/F16 10.909 Tf 9.7 0 Td[(of)]TJ/F20 10.909 Tf 12.123 0 Td[(g)]TJ/F16 10.909 Tf 8.491 0 Td[(with)-278(the)-279(plane)]TJ/F16 7.97 Tf 72.821 0 Td[([21])]TJ/F41 10.909 Tf -291.024 -13.549 Td[(\300)]TJ/F16 10.909 Tf 5.739 0 Td[(,)-306(and)-306(they)-306(pass)-306(through)-306(the)-306(given)-306(harmonic)-306(points)]TJ/F20 10.909 Tf 225.483 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.066 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.066 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 6.065 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(.)]TJ -277.903 -13.549 Td[(Any)-303(other)-303(plane)]TJ/F41 10.909 Tf 74.745 0 Td[(\303)]TJ/F16 10.909 Tf 8.518 0 Td[(cuts)]TJ/F20 10.909 Tf 20.879 0 Td[(g)]TJ/F16 10.909 Tf 8.759 0 Td[(in)-303(a)-303(point)]TJ/F20 10.909 Tf 45.672 0 Td[(S)]TJ/F16 10.909 Tf 8.758 0 Td[(and)-303(cuts)]TJ/F41 10.909 Tf 39.935 0 Td[(\261)]TJ/F16 10.909 Tf 5.727 0 Td[(,)]TJ/F41 10.909 Tf 6.176 0 Td[(\262)]TJ/F16 10.909 Tf 5.433 0 Td[(,)]TJ/F41 10.909 Tf 6.175 0 Td[(\263)]TJ/F16 10.909 Tf 5.182 0 Td[(,)]TJ/F41 10.909 Tf 6.176 0 Td[(\264)]TJ/F16 10.909 Tf 8.529 0 Td[(in)-303(four)]TJ -250.664 -13.55 Td[(lines)-215(that)-216(meet)]TJ/F41 10.909 Tf 65.229 0 Td[(\300)]TJ/F16 10.909 Tf 8.088 0 Td[(in)-215(four)-216(points)]TJ/F20 10.909 Tf 60.385 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.077 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.078 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ/F20 10.909 Tf 5.077 0 Td[(D')]TJ/F16 10.909 Tf 12.561 0 Td[(lying)-215(on)]TJ/F20 10.909 Tf 38.038 0 Td[(PA)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 5.078 0 Td[(PB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 5.077 0 Td[(PC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ -277.903 -13.549 Td[(and)]TJ/F20 10.909 Tf 19.027 0 Td[(PD)]TJ/F16 10.909 Tf 17.815 0 Td[(respectively,)-313(and)-300(are)-300(thus)-300(four)-300(harmonic)-300(hues.)-400(Further,)]TJ -36.842 -13.549 Td[(any)-310(ray)-309(cuts)]TJ/F41 10.909 Tf 57.391 0 Td[(\261)]TJ/F16 10.909 Tf 5.727 0 Td[(,)]TJ/F41 10.909 Tf 6.267 0 Td[(\262)]TJ/F16 10.909 Tf 5.433 0 Td[(,)]TJ/F41 10.909 Tf 6.267 0 Td[(\263)]TJ/F16 10.909 Tf 5.182 0 Td[(,)]TJ/F41 10.909 Tf 6.268 0 Td[(\264)]TJ/F16 10.909 Tf 8.602 0 Td[(in)-310(four)-309(harmonic)-310(points,)-324(since)-310(any)-310(plane)]TJ -101.137 -13.549 Td[(through)-250(the)-250(ray)-250(gives)-250(four)-250(harmonic)-250(lines)-250(of)-250(intersection.)]TJ/F39 10.909 Tf 0 -49.877 Td[(35.)]TJ/F16 10.909 Tf 16.364 0 Td[(These)-250(results)-250(may)-250(be)-250(put)-250(together)-250(as)-250(follows:)]TJ/F20 10.909 Tf -4.408 -13.549 Td[(Given)-372(any)-371(two)-372(assemblages)-371(of)-372(points,)-402(rays,)-402(or)-372(planes,)-402(per-)]TJ -11.956 -13.549 Td[(spectively)-299(related)-298(to)-299(each)-299(other,)-311(four)-298(harmonic)-299(elements)-299(of)-299(one)]TJ 0 -13.55 Td[(must)-228(correspond)-228(to)-229(four)-228(elements)-228(of)-228(the)-228(other)-228(which)-228(are)-229(likewise)]TJ 0 -13.549 Td[(harmonic.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +349 0 obj << +/Type /Page +/Contents 350 0 R +/Resources 348 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +330 0 obj << +/D [349 0 R /XYZ 46.771 529.134 null] +>> endobj +351 0 obj << +/D [349 0 R /XYZ 46.771 529.134 null] +>> endobj +341 0 obj << +/D [349 0 R /XYZ 46.771 413.403 null] +>> endobj +352 0 obj << +/D [349 0 R /XYZ 46.771 398.294 null] +>> endobj +356 0 obj << +/D [349 0 R /XYZ 100.704 251.511 null] +>> endobj +345 0 obj << +/D [349 0 R /XYZ 46.771 146.619 null] +>> endobj +357 0 obj << +/D [349 0 R /XYZ 46.771 131.51 null] +>> endobj +348 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R /F41 355 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +359 0 obj +<< /S /GoTo /D (index41) >> +endobj +362 0 obj +() +endobj +364 0 obj +<< /S /GoTo /D (index42) >> +endobj +367 0 obj +() +endobj +370 0 obj << +/Length 2475 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(22)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 105.499 518.175 Td[(If,)-404(now,)-405(two)-374(forms)-373(are)-374(perspectively)-373(related)-374(to)-374(a)-373(third,)-405(any)]TJ -11.956 -13.549 Td[(four)-205(harmonic)-204(elements)-205(of)-204(one)-205(must)-204(correspond)-205(to)-204(four)-205(harmonic)]TJ 0 -13.549 Td[(elements)-224(in)-224(the)-223(other.)-241(We)-224(take)-224(this)-224(as)-223(our)-224(definition)-224(of)-224(projective)]TJ 0 -13.549 Td[(correspondence,)-250(and)-250(say:)]TJ/F39 10.909 Tf 0 -51.367 Td[(36.)-279(Definition)-259(of)-260(projectivity.)]TJ/F20 10.909 Tf 137.785 0 Td[(Two)-260(fundamental)-259(forms)-260(are)-259(pro-)]TJ -137.785 -13.549 Td[(tectively)-182(related)-181(to)-182(each)-181(other)-182(when)-181(a)-182(one-to-one)-182(correspondence)]TJ 0 -13.549 Td[(exists)-295(between)-295(the)-295(elements)-294(of)-295(the)-295(two)-295(and)-295(when)-295(four)-295(harmonic)]TJ 0 -13.549 Td[(elements)-408(of)-408(one)-408(correspond)-408(to)-408(four)-408(harmonic)-408(elements)-408(of)-408(the)]TJ 0 -13.549 Td[(other.)]TJ +ET +1 0 0 1 93.543 346.17 cm +0 g 0 G +1 0 0 1 5.64 -164.751 cm + q 1.61142 0 0 1.61142 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +162.7194 0 0 102.2396 0 0 cm +/Im6 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.183 -181.419 cm +BT +/F16 10.909 Tf 221.062 162.416 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(6)]TJ +ET +1 0 0 1 93.543 156.819 cm +0 g 0 G +1 0 0 1 -93.543 -156.819 cm +BT +/F39 10.909 Tf 93.543 79.691 Td[(37.)-706(Correspondence)-401(between)-402(harmonic)-402(conjugates.)]TJ/F16 10.909 Tf 253.968 0 Td[(Given)]TJ -253.968 -13.549 Td[(four)-287(harmonic)-287(points,)]TJ/F20 10.909 Tf 98.263 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.855 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.855 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.856 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(;)-287(if)-287(we)-286(fix)]TJ/F20 10.909 Tf 47.051 0 Td[(A)]TJ/F16 10.909 Tf 9.794 0 Td[(and)]TJ/F20 10.909 Tf 18.88 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-287(then)]TJ/F20 10.909 Tf 27.769 0 Td[(B)]TJ/F16 10.909 Tf 9.793 0 Td[(and)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +369 0 obj << +/Type /Page +/Contents 370 0 R +/Resources 368 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +363 0 obj << +/Type /XObject +/Subtype /Image +/Width 678 +/Height 426 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 866484 +>> +stream +ÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +360 0 obj << +/D [369 0 R /XYZ 93.543 453.202 null] +>> endobj +371 0 obj << +/D [369 0 R /XYZ 93.543 437.365 null] +>> endobj +365 0 obj << +/D [369 0 R /XYZ 93.543 109.11 null] +>> endobj +372 0 obj << +/D [369 0 R /XYZ 93.543 93.273 null] +>> endobj +368 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im6 363 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +373 0 obj +<< /S /GoTo /D (index43) >> +endobj +376 0 obj +() +endobj +377 0 obj +<< /S /GoTo /D (index44) >> +endobj +380 0 obj +() +endobj +383 0 obj << +/Length 7593 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(38.)-250(Separation)-250(of)-250(harmonic)-250(conjugates)-9311(23)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F20 10.909 Tf 46.771 518.175 Td[(D)]TJ/F16 10.909 Tf 11.003 0 Td[(vary)-287(together)-286(in)-287(a)-287(way)-286(that)-287(should)-287(be)-286(thoroughly)-287(understood.)]TJ -11.003 -13.549 Td[(To)-241(get)-242(a)-241(clear)-242(conception)-241(of)-241(their)-242(relative)-241(motion)-241(we)-242(may)-241(fix)-242(the)]TJ 0 -13.549 Td[(points)]TJ/F20 10.909 Tf 29.381 0 Td[(L)]TJ/F16 10.909 Tf 8.774 0 Td[(and)]TJ/F20 10.909 Tf 18.461 0 Td[(M)]TJ/F16 10.909 Tf 11.795 0 Td[(of)-248(the)-249(quadrangle)]TJ/F20 10.909 Tf 79.012 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.436 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 5.436 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 5.435 0 Td[(N)]TJ/F16 10.909 Tf 9.985 0 Td[(\050Fig.)-249(6\051.)-250(Then,)-248(as)]TJ/F20 10.909 Tf 77.822 0 Td[(B)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(describes)-248(the)-248(point-row)]TJ/F20 10.909 Tf 105.057 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-248(the)-248(point)]TJ/F20 10.909 Tf 46.595 0 Td[(N)]TJ/F16 10.909 Tf 9.979 0 Td[(describes)-248(the)-248(point-row)]TJ/F16 7.97 Tf 115.451 0 Td[([22])]TJ/F20 10.909 Tf -291.024 -13.55 Td[(AM)]TJ/F16 10.909 Tf 18.571 0 Td[(perspective)-258(to)-259(it.)-275(Projecting)]TJ/F20 10.909 Tf 123.261 0 Td[(N)]TJ/F16 10.909 Tf 10.094 0 Td[(again)-258(from)]TJ/F20 10.909 Tf 50.472 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-258(we)-259(get)-258(a)-258(point-)]TJ -209.675 -13.549 Td[(row)]TJ/F20 10.909 Tf 19.999 0 Td[(K)]TJ/F16 10.909 Tf 10.312 0 Td[(on)]TJ/F20 10.909 Tf 13.944 0 Td[(AL)]TJ/F16 10.909 Tf 15.766 0 Td[(perspective)-278(to)-278(the)-279(point-row)]TJ/F20 10.909 Tf 126.664 0 Td[(N)]TJ/F16 10.909 Tf 10.311 0 Td[(and)-278(thus)-278(pro)-1(jective)]TJ -196.996 -13.549 Td[(to)-304(the)-303(point-row)]TJ/F20 10.909 Tf 74.784 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-304(Project)-303(the)-304(point-row)]TJ/F20 10.909 Tf 103.242 0 Td[(K)]TJ/F16 10.909 Tf 10.589 0 Td[(from)]TJ/F20 10.909 Tf 24.52 0 Td[(M)]TJ/F16 10.909 Tf 12.4 0 Td[(and)-304(we)-303(get)]TJ -232.2 -13.549 Td[(a)-260(point-row)]TJ/F20 10.909 Tf 53.55 0 Td[(D)]TJ/F16 10.909 Tf 10.716 0 Td[(on)]TJ/F20 10.909 Tf 13.75 0 Td[(AC)]TJ/F16 10.909 Tf 16.781 0 Td[(again,)-263(which)-260(is)-261(projective)-260(to)-260(the)-261(point-row)]TJ/F20 10.909 Tf -94.797 -13.549 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-364(For)-363(every)-364(point)]TJ/F20 10.909 Tf 80.407 0 Td[(B)]TJ/F16 10.909 Tf 10.631 0 Td[(we)-364(have)-363(thus)-364(one)-364(and)-363(only)-364(one)-364(point)]TJ/F20 10.909 Tf 172.323 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ -277.903 -13.55 Td[(and)-387(conversely.)-660(In)-387(other)-387(words,)-421(we)-386(have)-387(set)-387(up)-387(a)-387(one-to-one)]TJ 0 -13.549 Td[(correspondence)-268(between)-268(the)-267(points)-268(of)-268(a)-268(single)-267(point-row,)-273(which)]TJ 0 -13.549 Td[(is)-209(also)-210(a)-209(projective)-210(correspondence)-209(because)-210(four)-209(harmonic)-210(points)]TJ/F20 10.909 Tf 0 -13.549 Td[(B)]TJ/F16 10.909 Tf 9.729 0 Td[(correspond)-281(to)-281(four)-281(harmonic)-281(points)]TJ/F20 10.909 Tf 158.327 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(.)-281(We)-281(may)-281(note)-280(also)-281(that)]TJ -175.933 -13.549 Td[(the)-224(correspondence)-223(is)-224(here)-224(characterized)-223(by)-224(a)-223(feature)-224(which)-224(does)]TJ 0 -13.55 Td[(not)-386(always)-385(appear)-386(in)-386(projective)-386(correspondences:)-521(namely,)-420(the)]TJ 0 -13.549 Td[(same)-339(process)-339(that)-338(carries)-339(one)-339(from)]TJ/F20 10.909 Tf 159.702 0 Td[(B)]TJ/F16 10.909 Tf 10.359 0 Td[(to)]TJ/F20 10.909 Tf 12.183 0 Td[(D)]TJ/F16 10.909 Tf 11.57 0 Td[(will)-339(carry)-338(one)-339(back)]TJ -193.814 -13.549 Td[(from)]TJ/F20 10.909 Tf 25.432 0 Td[(D)]TJ/F16 10.909 Tf 12.099 0 Td[(to)]TJ/F20 10.909 Tf 12.712 0 Td[(B)]TJ/F16 10.909 Tf 10.888 0 Td[(again.)-662(This)-387(special)-387(property)-387(will)-388(receive)-387(further)]TJ -61.131 -13.549 Td[(study)-250(in)-250(the)-250(chapter)-250(on)-250(Involution.)]TJ/F39 10.909 Tf 0 -49.877 Td[(38.)]TJ/F16 10.909 Tf 18.685 0 Td[(It)-321(is)-321(seen)-321(that)-321(as)]TJ/F20 10.909 Tf 76.282 0 Td[(B)]TJ/F16 10.909 Tf 10.165 0 Td[(approaches)]TJ/F20 10.909 Tf 52.57 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.228 0 Td[(D)]TJ/F16 10.909 Tf 11.377 0 Td[(also)-321(approaches)]TJ/F20 10.909 Tf 73.645 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-321(As)]TJ/F20 10.909 Tf -262.282 -13.549 Td[(B)]TJ/F16 10.909 Tf 11.189 0 Td[(moves)-415(from)]TJ/F20 10.909 Tf 58.74 0 Td[(A)]TJ/F16 10.909 Tf 11.188 0 Td[(toward)]TJ/F20 10.909 Tf 34.819 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 7.251 0 Td[(D)]TJ/F16 10.909 Tf 12.4 0 Td[(moves)-415(from)]TJ/F20 10.909 Tf 58.74 0 Td[(A)]TJ/F16 10.909 Tf 11.188 0 Td[(in)-415(the)-415(opposite)]TJ -212.792 -13.55 Td[(direction,)-386(passing)-358(throu)-1(gh)-358(the)-359(point)-358(at)-359(infinity)-359(on)-358(the)-359(line)]TJ/F20 10.909 Tf 263.961 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-205(returns)-204(on)-205(the)-205(other)-204(side)-205(to)-205(meet)]TJ/F20 10.909 Tf 157.836 0 Td[(B)]TJ/F16 10.909 Tf 8.898 0 Td[(at)]TJ/F20 10.909 Tf 10.109 0 Td[(C)]TJ/F16 10.909 Tf 9.509 0 Td[(again.)-235(In)-205(other)-204(words,)]TJ -186.352 -13.549 Td[(as)]TJ/F20 10.909 Tf 12.751 0 Td[(B)]TJ/F16 10.909 Tf 10.328 0 Td[(traverses)]TJ/F20 10.909 Tf 42.435 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ/F20 10.909 Tf 6.391 0 Td[(D)]TJ/F16 10.909 Tf 11.539 0 Td[(traverses)-336(the)-336(rest)-336(of)-335(the)-336(line)-336(from)]TJ/F20 10.909 Tf 153.489 0 Td[(A)]TJ/F16 10.909 Tf 10.328 0 Td[(to)]TJ/F20 10.909 Tf 12.151 0 Td[(C)]TJ/F16 10.909 Tf -273.354 -13.549 Td[(through)-269(infinity.)-308(In)-270(all)-269(positions)-269(of)]TJ/F20 10.909 Tf 155.332 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-269(except)-270(at)]TJ/F20 10.909 Tf 47.891 0 Td[(A)]TJ/F16 10.909 Tf 9.604 0 Td[(or)]TJ/F20 10.909 Tf 12.025 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 5.665 0 Td[(B)]TJ/F16 10.909 Tf 9.604 0 Td[(and)]TJ/F20 10.909 Tf 18.691 0 Td[(D)]TJ/F16 10.909 Tf -272.754 -13.549 Td[(are)-250(separated)-250(from)-250(each)-250(other)-250(by)]TJ/F20 10.909 Tf 145.397 0 Td[(A)]TJ/F16 10.909 Tf 9.392 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(.)]TJ/F16 7.97 Tf 110.478 0 Td[([23])]TJ/F39 10.909 Tf -291.024 -49.877 Td[(39.)-1142(Harmonic)-547(conjugate)-547(of)-547(the)-547(point)-548(at)-547(infinity.)]TJ/F16 10.909 Tf 260.719 0 Td[(It)-547(is)]TJ -260.719 -13.549 Td[(natural)-223(to)-222(inquire)-223(what)-223(position)-222(of)]TJ/F20 10.909 Tf 149.715 0 Td[(B)]TJ/F16 10.909 Tf 9.094 0 Td[(corresponds)-223(to)-222(the)-223(infinitely)]TJ -158.809 -13.55 Td[(distant)-296(position)-296(of)]TJ/F20 10.909 Tf 83.031 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-296(We)-296(have)-296(proved)-296(\050\247)-296(27\051)-296(that)-296(the)-296(particular)]TJ -90.907 -13.549 Td[(quadrangle)]TJ/F20 10.909 Tf 51.174 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.432 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 5.432 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 5.432 0 Td[(N)]TJ/F16 10.909 Tf 9.981 0 Td[(employed)-248(is)-248(of)-248(no)-248(consequence.)-249(We)-248(shall)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +382 0 obj << +/Type /Page +/Contents 383 0 R +/Resources 381 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +384 0 obj << +/D [382 0 R /XYZ 327.401 477.528 null] +>> endobj +374 0 obj << +/D [382 0 R /XYZ 46.771 264.242 null] +>> endobj +385 0 obj << +/D [382 0 R /XYZ 46.771 249.133 null] +>> endobj +386 0 obj << +/D [382 0 R /XYZ 46.771 154.288 null] +>> endobj +378 0 obj << +/D [382 0 R /XYZ 46.771 133.07 null] +>> endobj +387 0 obj << +/D [382 0 R /XYZ 46.771 117.961 null] +>> endobj +381 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +389 0 obj +<< /S /GoTo /D (index45) >> +endobj +392 0 obj +() +endobj +395 0 obj << +/Length 2666 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(24)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(therefore)-301(avail)-300(ourselves)-301(of)-301(one)-300(that)-301(lends)-301(itself)-300(most)-301(readily)-301(to)]TJ 0 -13.549 Td[(the)-324(solution)-323(of)-324(the)-324(problem.)-471(We)-324(choose)-323(the)-324(point)]TJ/F20 10.909 Tf 224.58 0 Td[(L)]TJ/F16 10.909 Tf 9.595 0 Td[(so)-324(that)-323(the)]TJ -234.175 -13.549 Td[(triangle)]TJ/F20 10.909 Tf 37.37 0 Td[(ALC)]TJ/F16 10.909 Tf 24.049 0 Td[(is)-371(isosceles)-370(\050Fig.)-612(7\051.)-612(Since)]TJ/F20 10.909 Tf 128.5 0 Td[(D)]TJ/F16 10.909 Tf 11.918 0 Td[(is)-371(supposed)-370(to)-371(be)]TJ -201.837 -13.549 Td[(at)-273(infinity,)-278(the)-273(line)]TJ/F20 10.909 Tf 84.388 0 Td[(KM)]TJ/F16 10.909 Tf 19.338 0 Td[(is)-273(parallel)-272(to)]TJ/F20 10.909 Tf 57.405 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(.)-273(Therefore)-272(the)-273(triangles)]TJ/F20 10.909 Tf -175.073 -13.55 Td[(KAC)]TJ/F16 10.909 Tf 24.032 0 Td[(and)]TJ/F20 10.909 Tf 18.565 0 Td[(MAC)]TJ/F16 10.909 Tf 25.842 0 Td[(are)-258(equal,)-260(and)-258(the)-257(triangle)]TJ/F20 10.909 Tf 116.174 0 Td[(ANC)]TJ/F16 10.909 Tf 24.031 0 Td[(is)-258(also)-258(isosceles.)]TJ -208.644 -13.549 Td[(The)-270(triangles)]TJ/F20 10.909 Tf 60.432 0 Td[(CNL)]TJ/F16 10.909 Tf 23.567 0 Td[(and)]TJ/F20 10.909 Tf 18.702 0 Td[(ANL)]TJ/F16 10.909 Tf 22.956 0 Td[(are)-270(therefore)-271(equal,)-275(and)-270(the)-271(line)]TJ/F20 10.909 Tf 142.242 0 Td[(LB)]TJ/F16 10.909 Tf -267.899 -13.549 Td[(bisects)-232(the)-232(angle)]TJ/F20 10.909 Tf 74.243 0 Td[(ALC)]TJ/F16 10.909 Tf 20.007 0 Td[(.)]TJ/F20 10.909 Tf 5.257 0 Td[(B)]TJ/F16 10.909 Tf 9.195 0 Td[(is)-232(therefore)-232(the)-232(middle)-232(point)-231(of)]TJ/F20 10.909 Tf 136.977 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-232(and)]TJ -259.621 -13.549 Td[(we)-250(have)-250(the)-250(theorem)]TJ/F20 10.909 Tf 11.955 -14.37 Td[(The)-181(harmonic)-181(conjugate)-180(of)-181(the)-181(middle)-181(point)-181(of)-180(AC)-181(is)-181(at)-181(infinity.)]TJ +ET +1 0 0 1 93.543 376.071 cm +0 g 0 G +1 0 0 1 5.614 -209.206 cm + q 3.01624 0 0 3.01624 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +85.6797 0 0 69.3597 0 0 cm +/Im7 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.157 -166.865 cm +BT +/F16 10.909 Tf 221.062 147.862 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(7)]TJ +ET +1 0 0 1 93.543 142.304 cm +0 g 0 G +1 0 0 1 0 -103.522 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +394 0 obj << +/Type /Page +/Contents 395 0 R +/Resources 393 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +388 0 obj << +/Type /XObject +/Subtype /Image +/Width 357 +/Height 289 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 309519 +>> +stream +ÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýûûûûûûûûûýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +390 0 obj << +/D [394 0 R /XYZ 93.543 85.134 null] +>> endobj +396 0 obj << +/D [394 0 R /XYZ 93.543 66.142 null] +>> endobj +393 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im7 388 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +397 0 obj +<< /S /GoTo /D (index46) >> +endobj +400 0 obj +() +endobj +403 0 obj << +/Length 4608 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(41.)-250(Parallels)-250(and)-250(mid-points)-13503(25)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(40.)-986(Projective)-495(theorems)-495(and)-496(metrical)-495(theorems.)-986(Linear)]TJ 0 -13.549 Td[(construction.)]TJ/F16 10.909 Tf 65.922 0 Td[(This)-320(theorem)-320(is)-320(the)-320(connecting)-320(link)-320(between)-320(the)]TJ -65.922 -13.549 Td[(general)-272(protective)-272(theorems)-272(which)-272(we)-272(have)-272(been)-272(considering)-272(so)]TJ 0 -13.549 Td[(far)-318(and)-317(the)-318(metrical)-318(theorems)-318(of)-317(ordinary)-318(geometry.)-453(Up)-318(to)-318(this)]TJ 0 -13.55 Td[(point)-347(we)-346(have)-347(said)-347(nothing)-347(about)-346(measurements,)-371(either)-347(of)-347(line)]TJ 0 -13.549 Td[(segments)-361(or)-360(of)-361(angles.)-582(Desargues's)-360(theorem)-361(and)-360(the)-361(theory)-361(of)]TJ 0 -13.549 Td[(harmonic)-262(elements)-261(which)-262(depends)-261(on)-262(it)-261(have)-262(nothing)-262(to)-261(do)-262(with)]TJ 0 -13.549 Td[(magnitudes)-368(at)-368(all.)-605(Not)-368(until)-369(the)-368(notion)-368(of)-368(an)-368(infinitely)-369(distant)]TJ 0 -13.549 Td[(point)-185(is)-184(brought)-185(in)-185(is)-184(any)-185(mention)-185(made)-185(of)-184(distances)-185(or)-185(directions.)]TJ 0 -13.55 Td[(We)-352(have)-353(been)-352(able)-353(to)-352(make)-352(all)-353(of)-352(our)-352(constructions)-353(up)-352(to)-353(this)]TJ 0 -13.549 Td[(point)-431(by)-431(means)-431(of)-430(the)-431(straightedge,)-476(or)-431(ungraduated)-431(ruler.)-793(A)]TJ 0 -13.549 Td[(construction)-445(made)-223(with)-223(such)-222(an)-223(instrument)-223(we)-223(shall)-222(call)-223(a)]TJ/F20 10.909 Tf 254.569 0 Td[(linear)]TJ/F16 7.97 Tf 36.455 0 Td[([24])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(construction.)-342(It)-280(requires)-281(merely)-280(that)-281(we)-280(be)-281(able)-280(to)-281(draw)-280(the)-281(line)]TJ 0 -13.549 Td[(joining)-250(two)-250(points)-250(or)-250(find)-250(the)-250(point)-250(of)-250(intersection)-250(of)-250(two)-250(lines.)]TJ/F39 10.909 Tf 0 -59.107 Td[(41.)-321(Parallels)-273(and)-274(mid-points.)]TJ/F16 10.909 Tf 137.832 0 Td[(It)-274(might)-273(be)-274(thought)-273(that)-274(drawing)]TJ -137.832 -13.549 Td[(a)-389(line)-390(through)-389(a)-389(given)-390(point)-389(parallel)-389(to)-389(a)-390(given)-389(line)-389(was)-390(only)]TJ 0 -13.549 Td[(a)-436(special)-435(case)-436(of)-436(drawing)-436(a)-435(line)-436(joining)-436(two)-435(points.)-808(Indeed,)]TJ 0 -13.549 Td[(it)-379(consists)-379(only)-379(in)-379(drawing)-379(a)-379(line)-379(through)-379(the)-379(given)-380(point)-379(and)]TJ 0 -13.549 Td[(through)-328(the)-328("infinitely)-328(distant)-328(point")-328(on)-328(the)-328(given)-328(line.)-484(It)-328(must)]TJ 0 -13.55 Td[(be)-297(remembered,)-308(however,)-308(that)-296(the)-297(expression)-296("infinitely)-297(distant)]TJ 0 -13.549 Td[(point")-243(must)-244(not)-243(be)-243(taken)-243(literally.)-248(When)-243(we)-244(say)-243(that)-243(two)-244(parallel)]TJ 0 -13.549 Td[(lines)-373(meet)-374("at)-373(infinity,")-373(we)-373(really)-373(mean)-374(that)-373(they)-373(do)-373(not)-374(meet)]TJ 0 -13.549 Td[(at)-348(all,)-372(and)-348(the)-348(only)-348(reason)-348(for)-348(using)-348(the)-348(expression)-348(is)-348(to)-348(avoid)]TJ 0 -13.549 Td[(tedious)-247(statement)-247(of)-248(exceptions)-247(and)-247(restrictions)-247(to)-247(our)-248(theorems.)]TJ 0 -13.55 Td[(We)-232(ought)-232(therefore)-233(to)-232(consider)-232(the)-232(drawing)-233(of)-232(a)-232(line)-232(parallel)-232(to)-233(a)]TJ 0 -13.549 Td[(given)-223(line)-223(as)-223(a)-223(different)-223(accomplishment)-223(from)-223(the)-223(drawing)-223(of)-223(the)]TJ 0 -13.549 Td[(line)-276(joining)-276(two)-276(given)-276(points.)-328(It)-276(is)-276(a)-276(remarkable)-276(consequence)-276(of)]TJ 0 -13.549 Td[(the)-278(last)-278(theorem)-279(that)-278(a)-278(parallel)-278(to)-279(a)-278(given)-278(line)-278(and)-278(the)-279(mid-point)]TJ 0 -13.549 Td[(of)-412(a)-412(giv)-1(en)-412(segment)-412(are)-412(equivalent)-412(data.)-737(For)-412(the)-413(construction)]TJ 0 -13.55 Td[(is)-384(reversible,)-418(and)-385(if)-384(we)-384(are)-385(given)-384(the)-384(middle)-385(point)-384(of)-384(a)-385(given)]TJ 0 -13.549 Td[(segment,)-210(we)-199(can)-200(construct)]TJ/F20 10.909 Tf 115.763 0 Td[(linearly)]TJ/F16 10.909 Tf 36.116 0 Td[(a)-200(line)-199(parallel)-200(to)-200(that)-199(segment.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +402 0 obj << +/Type /Page +/Contents 403 0 R +/Resources 401 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +404 0 obj << +/D [402 0 R /XYZ 103.135 369.134 null] +>> endobj +398 0 obj << +/D [402 0 R /XYZ 46.771 314.27 null] +>> endobj +405 0 obj << +/D [402 0 R /XYZ 46.771 294.992 null] +>> endobj +401 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +406 0 obj +<< /S /GoTo /D (index47) >> +endobj +409 0 obj +() +endobj +410 0 obj +<< /S /GoTo /D (index48) >> +endobj +413 0 obj +() +endobj +415 0 obj +<< /S /GoTo /D (index49) >> +endobj +418 0 obj +() +endobj +421 0 obj << +/Length 5034 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(26)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Thus,)-295(given)-286(that)]TJ/F20 10.909 Tf 74.606 0 Td[(B)]TJ/F16 10.909 Tf 9.785 0 Td[(is)-286(the)-286(middle)-286(point)-286(of)]TJ/F20 10.909 Tf 98.026 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-286(we)-286(may)-286(draw)-286(any)]TJ -196.359 -13.549 Td[(two)-188(lines)-187(through)]TJ/F20 10.909 Tf 77.052 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-188(and)-187(any)-188(line)-188(through)]TJ/F20 10.909 Tf 94.773 0 Td[(B)]TJ/F16 10.909 Tf 8.712 0 Td[(cutting)-188(them)-187(in)-188(points)]TJ/F20 10.909 Tf -187.203 -13.549 Td[(N)]TJ/F16 10.909 Tf 9.719 0 Td[(and)]TJ/F20 10.909 Tf 18.194 0 Td[(L)]TJ/F16 10.909 Tf 6.066 0 Td[(.)-224(Join)]TJ/F20 10.909 Tf 25.797 0 Td[(N)]TJ/F16 10.909 Tf 9.718 0 Td[(and)]TJ/F20 10.909 Tf 18.195 0 Td[(L)]TJ/F16 10.909 Tf 8.507 0 Td[(to)]TJ/F20 10.909 Tf 10.93 0 Td[(C)]TJ/F16 10.909 Tf 9.718 0 Td[(and)-224(get)-224(the)-224(points)]TJ/F20 10.909 Tf 78.856 0 Td[(K)]TJ/F16 10.909 Tf 9.718 0 Td[(and)]TJ/F20 10.909 Tf 18.195 0 Td[(M)]TJ/F16 10.909 Tf 11.529 0 Td[(on)-224(the)-224(two)]TJ -235.142 -13.549 Td[(lines)-329(through)]TJ/F20 10.909 Tf 61.723 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-329(Then)]TJ/F20 10.909 Tf 32.323 0 Td[(KM)]TJ/F16 10.909 Tf 19.952 0 Td[(is)-329(parallel)-329(to)]TJ/F20 10.909 Tf 59.245 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(.)]TJ/F20 10.909 Tf 6.316 0 Td[(The)-329(bisection)-329(of)-329(a)]TJ -200.166 -13.55 Td[(given)-273(segment)-273(and)-273(the)-273(drawing)-273(of)-273(a)-273(line)-273(parallel)-273(to)-274(the)-273(segment)]TJ 0 -13.549 Td[(are)-250(equivalent)-250(data)-250(when)-250(linear)-250(construction)-250(is)-250(used.)]TJ/F16 7.97 Tf -72.756 0 Td[([25])]TJ/F39 10.909 Tf 72.756 -51.317 Td[(42.)]TJ/F16 10.909 Tf 16.303 0 Td[(It)-233(is)-234(not)-233(difficult)-233(to)-233(give)-234(a)-233(linear)-233(construction)-234(for)-233(the)-233(problem)]TJ -16.303 -13.549 Td[(to)-215(divide)-215(a)-215(given)-216(segment)-215(into)]TJ/F20 10.909 Tf 132.259 0 Td[(n)]TJ/F16 10.909 Tf 7.801 0 Td[(equal)-215(parts,)-222(given)-215(only)-216(a)-215(parallel)]TJ -140.06 -13.549 Td[(to)-315(the)-315(segment.)-446(This)-315(is)-315(simple)-315(enough)-315(when)]TJ/F20 10.909 Tf 201.338 0 Td[(n)]TJ/F16 10.909 Tf 8.891 0 Td[(is)-315(a)-315(power)-315(of)]TJ/F20 10.909 Tf 62.219 0 Td[(2)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ -277.903 -13.549 Td[(For)-217(any)-217(other)-217(number,)-223(such)-217(as)]TJ/F20 10.909 Tf 132.733 0 Td[(29)]TJ/F16 10.909 Tf 10.909 0 Td[(,)-224(divide)-217(any)-216(segment)-217(on)-217(the)-217(line)]TJ -143.642 -13.55 Td[(parallel)-285(to)]TJ/F20 10.909 Tf 47.411 0 Td[(AC)]TJ/F16 10.909 Tf 17.045 0 Td[(into)]TJ/F20 10.909 Tf 20.078 0 Td[(32)]TJ/F16 10.909 Tf 14.012 0 Td[(equal)-285(parts,)-293(by)-284(a)-285(repetition)-284(of)-285(the)-284(process)]TJ -98.546 -13.549 Td[(just)-311(described.)-431(Take)]TJ/F20 10.909 Tf 93.583 0 Td[(29)]TJ/F16 10.909 Tf 14.296 0 Td[(of)-311(these,)-325(and)-311(join)-310(the)-311(first)-310(to)]TJ/F20 10.909 Tf 130.228 0 Td[(A)]TJ/F16 10.909 Tf 10.052 0 Td[(and)-311(the)]TJ -248.159 -13.549 Td[(last)-256(to)]TJ/F20 10.909 Tf 29.219 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-256(Let)-255(these)-256(joining)-256(lines)-256(meet)-255(in)]TJ/F20 10.909 Tf 140.431 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-256(Join)]TJ/F20 10.909 Tf 26.491 0 Td[(S)]TJ/F16 10.909 Tf 8.244 0 Td[(to)-256(all)-255(the)-256(other)]TJ -217.116 -13.549 Td[(points.)-314(Other)-272(problems,)-277(of)-271(a)-272(similar)-271(sort,)-277(are)-272(given)-271(at)-272(the)-271(end)-272(of)]TJ 0 -13.549 Td[(the)-250(chapter.)]TJ/F39 10.909 Tf 0 -51.317 Td[(43.)-673(Numerical)-391(relations.)]TJ/F16 10.909 Tf 124.997 0 Td[(Since)-391(three)-391(points,)-426(given)-391(in)-391(order,)]TJ -124.997 -13.549 Td[(are)-261(sufficient)-262(to)-261(determine)-261(a)-261(fourth,)-265(as)-261(explained)-261(above,)-264(it)-262(ought)]TJ 0 -13.55 Td[(to)-470(be)-470(possible)-470(to)-469(reproduce)-470(the)-470(process)-470(numerically)-470(in)-470(view)]TJ 0 -13.549 Td[(of)-366(the)-366(one-to-one)-367(correspondence)-366(which)-366(exists)-366(between)-367(points)]TJ 0 -13.549 Td[(on)-442(a)-442(line)-442(and)-442(numbers;)-538(a)-442(correspondence)-442(which,)-490(to)-442(be)-442(sure,)]TJ 0 -13.549 Td[(we)-448(have)-449(not)-448(established)-449(here,)-498(but)-448(which)-448(is)-449(discussed)-448(in)-449(any)]TJ 0 -13.549 Td[(treatise)-433(on)-434(the)-433(theory)-434(of)-433(point)-434(sets.)-800(We)-434(proceed)-433(to)-434(discover)]TJ 0 -13.55 Td[(what)-209(relation)-210(between)-209(four)-209(numbers)-210(corresponds)-209(to)-209(the)-210(harmonic)]TJ 0 -13.549 Td[(relation)-250(between)-250(four)-250(points.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +420 0 obj << +/Type /Page +/Contents 421 0 R +/Resources 419 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 358 0 R +>> endobj +422 0 obj << +/D [420 0 R /XYZ 93.543 448.171 null] +>> endobj +407 0 obj << +/D [420 0 R /XYZ 93.543 426.246 null] +>> endobj +423 0 obj << +/D [420 0 R /XYZ 93.543 410.43 null] +>> endobj +411 0 obj << +/D [420 0 R /XYZ 93.543 266.426 null] +>> endobj +424 0 obj << +/D [420 0 R /XYZ 93.543 250.61 null] +>> endobj +416 0 obj << +/D [420 0 R /XYZ 93.543 81.958 null] +>> endobj +425 0 obj << +/D [420 0 R /XYZ 93.543 66.142 null] +>> endobj +419 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +426 0 obj +<< /S /GoTo /D (index50) >> +endobj +429 0 obj +() +endobj +432 0 obj << +/Length 4205 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(44.)-250(Algebraic)-250(formula)-250(connecting)-250(four)-250(harmonic)-250(points)-2590(27)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.638 -197.681 cm + q 2.22014 0 0 2.22014 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +117.3596 0 0 89.0397 0 0 cm +/Im8 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.409 -331.453 cm +BT +/F16 10.909 Tf 174.29 312.45 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(8)]TJ +ET +1 0 0 1 46.771 306.853 cm +0 g 0 G +1 0 0 1 -46.771 -306.853 cm +BT +/F39 10.909 Tf 46.771 283.121 Td[(44.)]TJ/F16 10.909 Tf 17.518 0 Td[(Let)]TJ/F20 10.909 Tf 17.654 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.839 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.839 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.839 0 Td[(D)]TJ/F16 10.909 Tf 10.988 0 Td[(be)-285(four)-286(harmonic)-285(points)-285(\050Fig.)-356(8\051,)-294(and)-285(let)]TJ/F20 10.909 Tf 181.499 0 Td[(SA)]TJ/F16 10.909 Tf 12.12 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(SB)]TJ/F16 10.909 Tf 12.12 0 Td[(,)]TJ/F20 10.909 Tf 5.109 0 Td[(SC)]TJ/F16 10.909 Tf 12.731 0 Td[(,)]TJ/F20 10.909 Tf 5.109 0 Td[(SD)]TJ/F16 10.909 Tf 15.712 0 Td[(be)-218(four)-219(harmonic)-218(lines.)-239(Assume)-219(a)-218(line)-218(drawn)-219(through)]TJ/F20 10.909 Tf -50.781 -13.55 Td[(B)]TJ/F16 10.909 Tf 9.627 0 Td[(parallel)-272(to)]TJ/F20 10.909 Tf 47.128 0 Td[(SD)]TJ/F16 10.909 Tf 13.331 0 Td[(,)-271(meeting)]TJ/F20 10.909 Tf 43.8 0 Td[(SA)]TJ/F16 10.909 Tf 15.081 0 Td[(in)]TJ/F20 10.909 Tf 11.449 0 Td[(A')]TJ/F16 10.909 Tf 11.962 0 Td[(and)]TJ/F20 10.909 Tf 18.714 0 Td[(SC)]TJ/F16 10.909 Tf 15.693 0 Td[(in)]TJ/F20 10.909 Tf 11.449 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-271(Then)]TJ/F20 10.909 Tf 31.069 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.689 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.689 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-260(the)-261(infinitely)-260(distant)-260(point)-261(on)]TJ/F20 10.909 Tf 148.561 0 Td[(A'C')]TJ/F16 10.909 Tf 21.451 0 Td[(are)-260(four)-261(harmonic)-260(points,)]TJ -170.012 -13.549 Td[(and)-335(therefore)]TJ/F20 10.909 Tf 62.44 0 Td[(B)]TJ/F16 10.909 Tf 10.323 0 Td[(is)-335(the)-336(middle)-335(point)-335(of)-336(the)-335(segment)]TJ/F20 10.909 Tf 157.726 0 Td[(A'C')]TJ/F16 10.909 Tf 18.61 0 Td[(.)-335(Then,)]TJ -249.099 -13.549 Td[(since)-646(the)-323(triangle)]TJ/F20 10.909 Tf 83.166 0 Td[(DAS)]TJ/F16 10.909 Tf 23.518 0 Td[(is)-323(similar)-323(to)-323(the)-323(triangle)]TJ/F20 10.909 Tf 110.338 0 Td[(BAA')]TJ/F16 10.909 Tf 22.331 0 Td[(,)-323(we)-323(may)]TJ/F16 7.97 Tf 51.671 0 Td[([26])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(write)-250(the)-250(proportion)]TJ/F20 10.909 Tf 100.13 -13.652 Td[(AB)-277(:)-276(AD)-277(=)-276(BA')-277(:)-276(SD.)]TJ/F16 10.909 Tf -88.174 -13.651 Td[(Also,)-250(from)-250(the)-250(similar)-250(triangles)]TJ/F20 10.909 Tf 139.385 0 Td[(DSC)]TJ/F16 10.909 Tf 23.334 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(BCC')]TJ/F16 10.909 Tf 23.553 0 Td[(,)-250(we)-250(have)]TJ/F20 10.909 Tf -117.485 -13.652 Td[(CD)-276(:)-276(CB)-277(=)-276(SD)-276(:)-277(B'C.)]TJ/F16 10.909 Tf -87.267 -13.651 Td[(From)-227(these)-227(two)-227(proportions)-227(we)-228(have,)-231(remembering)-227(that)]TJ/F20 10.909 Tf 243.168 0 Td[(BA')-227(=)]TJ -255.124 -13.55 Td[(BC')]TJ/F16 10.909 Tf 16.277 0 Td[(,)]TJ/F24 10.909 Tf 86.884 -33.163 Td[(AB)]TJ/F27 10.909 Tf 19.427 0 Td[(\001)]TJ/F24 10.909 Tf 5.455 0 Td[(C)-71(D)]TJ +ET +1 0 0 1 149.932 95.636 cm +q +[]0 d +0 J +0.436 w +0 0.218 m +42.795 0.218 l +S +Q +1 0 0 1 -149.932 -95.636 cm +BT +/F24 10.909 Tf 149.932 85.644 Td[(AD)]TJ/F27 10.909 Tf 19.94 0 Td[(\001)]TJ/F24 10.909 Tf 5.455 0 Td[(C)-71(B)]TJ/F15 10.909 Tf 21.625 7.483 Td[(=)]TJ/F27 10.909 Tf 11.515 0 Td[(\000)]TJ/F15 10.909 Tf 8.485 0 Td[(1)]TJ/F24 10.909 Tf 5.454 0 Td[(;)]TJ/F16 10.909 Tf -163.679 -26.985 Td[(the)-279(minus)-280(sign)-279(being)-280(given)-279(to)-280(the)-279(ratio)-280(on)-279(account)-280(of)-279(the)-280(fact)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +431 0 obj << +/Type /Page +/Contents 432 0 R +/Resources 430 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +414 0 obj << +/Type /XObject +/Subtype /Image +/Width 489 +/Height 371 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 544257 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +433 0 obj << +/D [431 0 R /XYZ 72.712 215.375 null] +>> endobj +430 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R /F24 436 0 R /F27 439 0 R /F15 442 0 R >> +/XObject << /Im8 414 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +444 0 obj +<< /S /GoTo /D (index51) >> +endobj +447 0 obj +() +endobj +448 0 obj +<< /S /GoTo /D (index52) >> +endobj +451 0 obj +(PROBLEMS) +endobj +454 0 obj << +/Length 4793 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(28)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(that)]TJ/F20 10.909 Tf 19.552 0 Td[(A)]TJ/F16 10.909 Tf 9.853 0 Td[(and)]TJ/F20 10.909 Tf 18.941 0 Td[(C)]TJ/F16 10.909 Tf 10.464 0 Td[(are)-292(always)-293(separated)-292(from)]TJ/F20 10.909 Tf 118.768 0 Td[(B)]TJ/F16 10.909 Tf 9.853 0 Td[(and)]TJ/F20 10.909 Tf 18.941 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-292(so)-293(that)-292(one)-292(or)]TJ -214.248 -13.549 Td[(three)-250(of)-250(the)-250(segments)]TJ/F20 10.909 Tf 95.738 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(CD)]TJ/F16 10.909 Tf 15.152 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(AD)]TJ/F16 10.909 Tf 14.542 0 Td[(,)]TJ/F20 10.909 Tf 5.454 0 Td[(CB)]TJ/F16 10.909 Tf 16.669 0 Td[(must)-250(be)-250(negative.)]TJ/F39 10.909 Tf -171.796 -50.74 Td[(45.)]TJ/F16 10.909 Tf 16.364 0 Td[(Writing)-250(the)-250(last)-250(equation)-250(in)-250(the)-250(form)]TJ/F20 10.909 Tf 81.919 -13.549 Td[(CB)-276(:)-276(AB)-276(=)-276(-CD)-276(:)-276(AD,)]TJ/F16 10.909 Tf -86.327 -13.549 Td[(and)-239(using)-238(the)-239(fundamental)-239(relation)-238(con)-1(necting)-238(three)-239(points)-239(on)]TJ -11.956 -13.549 Td[(a)-250(line,)]TJ/F20 10.909 Tf 110.258 -13.549 Td[(PR)-280(+)-279(RQ)-280(=)-279(PQ,)]TJ/F16 10.909 Tf -98.303 -13.55 Td[(which)-280(holds)-279(for)-280(all)-279(positions)-280(of)-280(the)-279(three)-280(points)-279(if)-280(account)-280(be)]TJ -11.955 -13.549 Td[(taken)-389(of)-388(the)-389(sign)-389(of)-389(the)-388(segments,)-424(the)-388(last)-389(proportion)-389(may)-389(be)]TJ 0 -13.549 Td[(written)]TJ/F20 10.909 Tf 68.521 -13.549 Td[(\050CB)-267(-)-267(BA\051)-267(:)-267(AB)-267(=)-267(-\050CA)-267(-)-267(DA\051)-267(:)-267(AD,)]TJ/F16 10.909 Tf -56.566 -13.549 Td[(or)]TJ/F20 10.909 Tf 57.907 -13.55 Td[(\050AB)-267(-)-268(AC\051)-267(:)-268(AB)-267(=)-268(\050AC)-267(-)-267(AD\051)-268(:)-267(AD;)]TJ/F16 10.909 Tf -57.907 -13.549 Td[(so)-513(that)]TJ/F20 10.909 Tf 37.259 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 8.325 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-513(and)]TJ/F20 10.909 Tf 29.677 0 Td[(AD)]TJ/F16 10.909 Tf 20.137 0 Td[(are)-513(three)-513(quantities)-514(in)-513(hamonic)]TJ -134.626 -13.549 Td[(progression,)-274(since)-269(the)-269(difference)-269(between)-269(the)-269(first)-269(and)-269(second)-269(is)]TJ 0 -13.549 Td[(to)-206(the)-205(first)-206(as)-206(the)-206(difference)-205(between)-206(the)-206(second)-206(and)-205(third)-206(is)-206(to)-206(the)]TJ 0 -13.549 Td[(third.)-250(Also,)-250(from)-250(this)-250(last)-250(proportion)-250(comes)-250(the)-250(familiar)-250(relation)]TJ/F15 10.909 Tf 102.482 -32.198 Td[(2)]TJ +ET +1 0 0 1 190.373 227.129 cm +q +[]0 d +0 J +0.436 w +0 0.218 m +16.759 0.218 l +S +Q +1 0 0 1 -190.373 -227.129 cm +BT +/F24 10.909 Tf 190.373 217.137 Td[(AC)]TJ/F15 10.909 Tf 20.985 7.483 Td[(=)]TJ 18.485 7.38 Td[(1)]TJ +ET +1 0 0 1 224.068 227.129 cm +q +[]0 d +0 J +0.436 w +0 0.218 m +17.004 0.218 l +S +Q +1 0 0 1 -224.068 -227.129 cm +BT +/F24 10.909 Tf 224.068 217.137 Td[(AB)]TJ/F15 10.909 Tf 20.624 7.483 Td[(+)]TJ 18.136 7.38 Td[(1)]TJ +ET +1 0 0 1 256.797 227.129 cm +q +[]0 d +0 J +0.436 w +0 0.218 m +17.517 0.218 l +S +Q +1 0 0 1 -256.797 -227.129 cm +BT +/F24 10.909 Tf 256.797 217.137 Td[(AD)]TJ 18.712 7.483 Td[(;)]TJ/F16 10.909 Tf -170.01 -26.443 Td[(which)-342(is)-342(convenient)-342(for)-341(the)-342(computation)-342(of)-342(the)-342(distance)]TJ/F20 10.909 Tf 254.132 0 Td[(AD)]TJ/F16 10.909 Tf -266.088 -13.549 Td[(when)]TJ/F20 10.909 Tf 26.357 0 Td[(AB)]TJ/F16 10.909 Tf 16.058 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(AC)]TJ/F16 10.909 Tf 16.669 0 Td[(are)-250(given)-250(numerically.)]TJ/F16 7.97 Tf -150.319 0 Td[([27])]TJ/F39 10.909 Tf 72.755 -50.74 Td[(46.)-619(Anharmonic)-372(ratio.)]TJ/F16 10.909 Tf 115.134 0 Td[(The)-373(corresponding)-373(relations)-373(between)]TJ -115.134 -13.549 Td[(the)-445(trigonometric)-445(functions)-446(of)-445(the)-445(angles)-445(determined)-445(by)-446(four)]TJ 0 -13.549 Td[(harmonic)-206(lines)-206(are)-205(not)-206(difficult)-206(to)-205(obtain,)-215(but)-206(as)-205(we)-206(shall)-206(not)-206(need)]TJ 0 -13.549 Td[(them)-178(in)-179(building)-178(up)-179(the)-178(theory)-178(of)-179(projective)-178(geometry,)-193(we)-178(will)-179(not)]TJ 0 -13.55 Td[(discuss)-237(them)-238(here.)-246(Students)-237(who)-237(have)-238(a)-237(slight)-237(acquaintance)-238(with)]TJ 0 -13.549 Td[(trigonometry)-284(may)-284(read)-285(in)-284(a)-284(later)-284(chapter)-284(\050\247)-284(161\051)-284(a)-285(development)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +453 0 obj << +/Type /Page +/Contents 454 0 R +/Resources 452 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +427 0 obj << +/D [453 0 R /XYZ 93.543 480.598 null] +>> endobj +455 0 obj << +/D [453 0 R /XYZ 93.543 465.057 null] +>> endobj +456 0 obj << +/D [453 0 R /XYZ 93.543 182.249 null] +>> endobj +445 0 obj << +/D [453 0 R /XYZ 93.543 160.6 null] +>> endobj +457 0 obj << +/D [453 0 R /XYZ 93.543 145.059 null] +>> endobj +452 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R /F15 442 0 R /F24 436 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +460 0 obj << +/Length 6702 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(29)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(of)-308(the)-307(theory)-308(of)-308(a)-308(more)-307(general)-308(relation,)-322(called)-308(the)]TJ/F20 10.909 Tf 227.907 0 Td[(anharmonic)]TJ -227.907 -13.549 Td[(ratio)]TJ/F16 10.909 Tf 21.219 0 Td[(,)-250(or)]TJ/F20 10.909 Tf 17.269 0 Td[(cross)-250(ratio)]TJ/F16 10.909 Tf 46.974 0 Td[(,)-250(which)-250(connects)-250(any)-250(four)-250(points)-250(on)-250(a)-250(line.)]TJ/F16 15.781 Tf -85.462 -57.312 Td[(PROBLEMS)]TJ/F39 10.909 Tf 0 -28.893 Td[(1)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-495(Draw)-331(through)-332(a)-331(given)-332(point)-332(a)-331(line)-332(which)-331(shall)-332(pass)-332(through)]TJ -5.455 -13.549 Td[(the)-397(inaccessible)-397(point)-397(of)-397(intersection)-397(of)-397(two)-397(given)-397(lines.)-691(The)]TJ 0 -13.549 Td[(following)-207(constru)-1(ction)-207(may)-207(be)-208(made)-207(to)-208(depend)-207(upon)-208(Desargues's)]TJ 0 -13.549 Td[(theorem:)-382(Through)-316(the)-317(given)-316(point)]TJ/F20 10.909 Tf 154.318 0 Td[(P)]TJ/F16 10.909 Tf 10.114 0 Td[(draw)-316(any)-316(two)-316(rays)-317(cutting)]TJ -164.432 -13.55 Td[(the)-361(two)-360(lines)-361(in)-360(the)-361(points)]TJ/F20 10.909 Tf 122.392 0 Td[(AB')]TJ/F16 10.909 Tf 19.597 0 Td[(and)]TJ/F20 10.909 Tf 19.686 0 Td[(A'B)]TJ/F16 10.909 Tf 15.666 0 Td[(,)]TJ/F20 10.909 Tf 6.66 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.661 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-361(lying)-360(on)-361(one)-360(of)]TJ -203.992 -13.549 Td[(the)-340(given)-339(lines)-340(and)]TJ/F20 10.909 Tf 88.749 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 6.431 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-340(on)-339(the)-340(other.)-518(Join)]TJ/F20 10.909 Tf 90.774 0 Td[(AA')]TJ/F16 10.909 Tf 19.369 0 Td[(and)]TJ/F20 10.909 Tf 19.457 0 Td[(BB')]TJ/F16 10.909 Tf 15.666 0 Td[(,)-340(and)]TJ -258.446 -13.549 Td[(find)-273(their)-274(point)-273(of)-273(intersection)]TJ/F20 10.909 Tf 134.897 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-273(Through)]TJ/F20 10.909 Tf 46.261 0 Td[(S)]TJ/F16 10.909 Tf 8.436 0 Td[(draw)-273(any)-274(other)-273(ray,)]TJ -195.049 -13.549 Td[(cutting)-432(the)-431(given)-432(lines)-432(in)]TJ/F20 10.909 Tf 120.518 0 Td[(CC')]TJ/F16 10.909 Tf 16.887 0 Td[(.)-432(Join)]TJ/F20 10.909 Tf 30.332 0 Td[(BC')]TJ/F16 10.909 Tf 20.983 0 Td[(and)]TJ/F20 10.909 Tf 20.462 0 Td[(B'C)]TJ/F16 10.909 Tf 16.277 0 Td[(,)-432(and)-431(obtain)]TJ -225.459 -13.549 Td[(their)-299(point)-300(of)-299(intersection)]TJ/F20 10.909 Tf 115.48 0 Td[(Q)]TJ/F16 10.909 Tf 7.877 0 Td[(.)]TJ/F20 10.909 Tf 5.993 0 Td[(PQ)]TJ/F16 10.909 Tf 17.808 0 Td[(is)-299(the)-300(desired)-299(line.)-399(Justify)-299(this)]TJ -147.158 -13.55 Td[(construction.)]TJ/F39 10.909 Tf 11.956 -13.549 Td[(2.)]TJ/F16 10.909 Tf 13.489 0 Td[(To)-329(draw)-329(through)-328(a)-329(given)-329(point)]TJ/F20 10.909 Tf 140.901 0 Td[(P)]TJ/F16 10.909 Tf 10.252 0 Td[(a)-329(line)-329(which)-328(shall)-329(meet)]TJ -176.598 -13.549 Td[(two)-241(given)-241(lines)-241(in)-241(points)]TJ/F20 10.909 Tf 109.514 0 Td[(A)]TJ/F16 10.909 Tf 9.294 0 Td[(and)]TJ/F20 10.909 Tf 18.381 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-241(equally)-241(distant)-241(from)]TJ/F20 10.909 Tf 95.659 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-241(Justify)]TJ -246.18 -13.549 Td[(the)-301(following)-301(construction:)-351(Join)]TJ/F20 10.909 Tf 144.588 0 Td[(P)]TJ/F16 10.909 Tf 9.946 0 Td[(to)-301(the)-301(point)]TJ/F20 10.909 Tf 54.091 0 Td[(S)]TJ/F16 10.909 Tf 8.735 0 Td[(of)-301(intersection)]TJ -217.36 -13.549 Td[(of)-250(the)-251(two)-250(given)-250(lines.)-251(Construct)-251(the)-250(fourth)-251(harmonic)-250(of)]TJ/F20 10.909 Tf 246.383 0 Td[(PS)]TJ/F16 10.909 Tf 14.851 0 Td[(with)]TJ -261.234 -13.55 Td[(respect)-276(to)-277(the)-276(two)-276(given)-276(lines.)-329(Draw)-276(through)]TJ/F20 10.909 Tf 199.5 0 Td[(P)]TJ/F16 10.909 Tf 9.679 0 Td[(a)-276(line)-276(parallel)-277(to)]TJ -209.179 -13.549 Td[(this)-250(line.)-250(This)-250(is)-250(the)-250(required)-250(line.)]TJ/F39 10.909 Tf 11.956 -13.549 Td[(3.)]TJ/F16 10.909 Tf 17.104 0 Td[(Given)-439(a)-440(parallelogram)-439(in)-439(the)-440(same)-439(plane)-439(with)-439(a)-440(given)]TJ -29.06 -13.549 Td[(segment)]TJ/F20 10.909 Tf 39.088 0 Td[(AC)]TJ/F16 10.909 Tf 13.941 0 Td[(,)-250(to)-250(construct)-250(linearly)-250(the)-250(middle)-250(point)-250(of)]TJ/F20 10.909 Tf 181.505 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(.)]TJ/F16 7.97 Tf 42.548 0 Td[([28])]TJ/F39 10.909 Tf -279.068 -13.549 Td[(4.)]TJ/F16 10.909 Tf 13.365 0 Td[(Given)-325(four)-325(harmonic)-325(lines,)-344(of)-325(which)-325(one)-325(pair)-325(are)-325(at)-325(right)]TJ -25.321 -13.55 Td[(angles)-266(to)-265(each)-266(other,)-269(show)-265(that)-266(the)-266(other)-265(pair)-266(make)-265(equal)-266(angles)]TJ 0 -13.549 Td[(with)-221(them.)-241(This)-221(is)-221(a)-221(theorem)-221(of)-221(which)-221(frequent)-221(use)-221(will)-221(be)-222(made.)]TJ/F39 10.909 Tf 11.956 -13.549 Td[(5.)]TJ/F16 10.909 Tf 13.889 0 Td[(Given)-341(the)-341(middle)-341(point)-341(of)-341(a)-341(line)-341(segment,)-364(to)-341(draw)-341(a)-341(line)]TJ -25.845 -13.549 Td[(parallel)-250(to)-250(the)-250(segment)-250(and)-250(passing)-250(through)-250(a)-250(given)-250(point.)]TJ/F39 10.909 Tf 11.956 -13.549 Td[(6.)]TJ/F16 10.909 Tf 16.734 0 Td[(A)-428(line)-428(is)-428(drawn)-428(cutting)-428(the)-428(sides)-428(of)-428(a)-428(triangle)]TJ/F20 10.909 Tf 218.179 0 Td[(ABC)]TJ/F16 10.909 Tf 25.274 0 Td[(in)]TJ -272.143 -13.549 Td[(the)-469(points)]TJ/F20 10.909 Tf 50.226 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 7.839 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 7.838 0 Td[(C')]TJ/F16 10.909 Tf 14.72 0 Td[(the)-469(point)]TJ/F20 10.909 Tf 45.982 0 Td[(A')]TJ/F16 10.909 Tf 14.109 0 Td[(lying)-469(on)-468(the)-469(side)]TJ/F20 10.909 Tf 84.689 0 Td[(BC)]TJ/F16 10.909 Tf 13.941 0 Td[(,)-469(etc.)]TJ -257.344 -13.55 Td[(The)-362(harmonic)-363(conjugate)-362(of)]TJ/F20 10.909 Tf 125.479 0 Td[(A')]TJ/F16 10.909 Tf 12.952 0 Td[(with)-362(respect)-363(to)]TJ/F20 10.909 Tf 70.635 0 Td[(B)]TJ/F16 10.909 Tf 10.617 0 Td[(and)]TJ/F20 10.909 Tf 19.705 0 Td[(C)]TJ/F16 10.909 Tf 11.228 0 Td[(is)-362(then)]TJ -250.616 -13.549 Td[(constructed)-262(and)-262(called)]TJ/F20 10.909 Tf 100.671 0 Td[(A")]TJ/F16 10.909 Tf 11.247 0 Td[(.)-286(Similarly,)]TJ/F20 10.909 Tf 52.082 0 Td[(B")]TJ/F16 10.909 Tf 14.105 0 Td[(and)]TJ/F20 10.909 Tf 18.612 0 Td[(C")]TJ/F16 10.909 Tf 14.717 0 Td[(are)-262(constructed.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +459 0 obj << +/Type /Page +/Contents 460 0 R +/Resources 458 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +449 0 obj << +/D [459 0 R /XYZ 46.771 480.795 null] +>> endobj +461 0 obj << +/D [459 0 R /XYZ 46.771 185.707 null] +>> endobj +458 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +464 0 obj << +/Length 741 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(30)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Show)-277(that)]TJ/F20 10.909 Tf 47.265 0 Td[(A"B"C")]TJ/F16 10.909 Tf 37.378 0 Td[(lie)-277(on)-278(a)-277(straight)-277(line.)-332(Find)-278(other)-277(sets)-277(of)-278(three)]TJ -84.643 -13.549 Td[(points)-223(on)-224(a)-223(line)-223(in)-223(the)-224(figure.)-241(Find)-223(also)-223(sets)-224(of)-223(three)-223(lines)-224(through)]TJ 0 -13.549 Td[(a)-250(point.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +463 0 obj << +/Type /Page +/Contents 464 0 R +/Resources 462 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +462 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +465 0 obj +<< /S /GoTo /D (index53) >> +endobj +468 0 obj +(CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED FUNDAMENTAL FORMS) +endobj +469 0 obj +<< /S /GoTo /D (index54) >> +endobj +472 0 obj +() +endobj +476 0 obj << +/Length 3479 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 7.97 Tf 337.795 512.811 Td[([29])]TJ/F16 18.959 Tf -291.024 -66.575 Td[(CHAPTER)-256(III)-256(-)-256(COMBINATION)]TJ 0 -24.647 Td[(OF)-270(TWO)-270(PROJECTIVELY)]TJ 0 -24.646 Td[(RELATED)-264(FUNDAM)1(ENTAL)]TJ 0 -24.647 Td[(FORMS)]TJ/F39 10.909 Tf 11.956 -75.818 Td[(47.)-652(Superposed)-384(fundamental)-384(forms.)-653(Self-corresponding)]TJ -11.956 -13.549 Td[(elements.)]TJ/F16 10.909 Tf 48.881 0 Td[(We)-337(have)-336(seen)-337(\050\247)-336(37\051)-337(that)-337(two)-336(projective)-337(point-rows)]TJ -48.881 -13.549 Td[(may)-339(be)-339(superposed)-339(upon)-339(the)-338(same)-339(straight)-339(line.)-517(This)-339(happens,)]TJ 0 -13.549 Td[(for)-208(example,)-217(when)-209(two)-208(pencils)-208(which)-209(are)-208(projective)-209(to)-208(each)-209(other)]TJ 0 -13.549 Td[(are)-447(cut)-447(across)-447(by)-446(a)-447(straight)-447(line.)-840(It)-447(is)-447(also)-447(possible)-447(for)-447(two)]TJ 0 -13.55 Td[(projective)-387(pencils)-386(to)-387(have)-386(the)-387(same)-386(center.)-659(This)-387(happens,)-421(for)]TJ 0 -13.549 Td[(example,)-424(when)-389(two)-389(projective)-389(point-rows)-389(are)-389(projected)-389(to)-389(the)]TJ 0 -13.549 Td[(same)-253(point.)-259(Similarly,)-253(two)-253(projective)-253(axial)-253(pencils)-253(may)-253(have)-253(the)]TJ 0 -13.549 Td[(same)-253(axis.)-258(We)-253(examine)-253(now)-253(the)-252(possibility)-253(of)-253(two)-253(forms)-253(related)]TJ 0 -13.549 Td[(in)-362(this)-361(way,)-390(having)-362(an)-361(element)-362(or)-362(elements)-361(that)-362(correspond)-362(to)]TJ 0 -13.55 Td[(themselves.)-289(We)-263(have)-263(seen,)-266(indeed,)-267(that)-263(if)]TJ/F20 10.909 Tf 184.336 0 Td[(B)]TJ/F16 10.909 Tf 9.535 0 Td[(and)]TJ/F20 10.909 Tf 18.621 0 Td[(D)]TJ/F16 10.909 Tf 10.746 0 Td[(are)-263(harmonic)]TJ -223.238 -13.549 Td[(conjugates)-237(with)-237(respect)-236(to)]TJ/F20 10.909 Tf 115.767 0 Td[(A)]TJ/F16 10.909 Tf 9.248 0 Td[(and)]TJ/F20 10.909 Tf 18.336 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-237(then)-236(the)-237(point-row)-237(described)]TJ -150.627 -13.549 Td[(by)]TJ/F20 10.909 Tf 14.677 0 Td[(B)]TJ/F16 10.909 Tf 10.432 0 Td[(is)-345(projective)-346(to)-345(the)-346(point-row)-345(described)-345(by)]TJ/F20 10.909 Tf 194.832 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-345(and)-346(that)]TJ/F20 10.909 Tf 46.147 0 Td[(A)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(and)]TJ/F20 10.909 Tf 19.768 0 Td[(C)]TJ/F16 10.909 Tf 11.291 0 Td[(are)-368(self-corresponding)-368(points.)-604(Consider)-368(more)-368(generally)]TJ -31.059 -13.549 Td[(the)-380(case)-379(of)-380(two)-379(pencils)-380(perspective)-379(to)-380(each)-379(other)-380(with)-379(axis)-380(of)]TJ 0 -13.55 Td[(perspectivity)]TJ/F20 10.909 Tf 58.766 0 Td[(u')]TJ/F16 10.909 Tf 10.198 0 Td[(\050Fig.)-240(9\051.)-241(Cut)-220(acro)-1(ss)-220(them)-221(by)-221(a)-221(line)]TJ/F20 10.909 Tf 149.386 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-240(We)-221(get)-221(thus)]TJ -223.805 -13.549 Td[(two)-297(projective)-296(point-rows)-297(superposed)-297(on)-296(th)-1(e)-296(same)-297(line)]TJ/F20 10.909 Tf 245.252 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-308(and)-297(a)]TJ -250.706 -13.549 Td[(moment's)-171(reflection)-172(serves)-171(to)-171(sh)-1(ow)-171(that)-171(the)-172(point)]TJ/F20 10.909 Tf 209.627 0 Td[(N)]TJ/F16 10.909 Tf 9.145 0 Td[(of)-171(intersection)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +475 0 obj << +/Type /Page +/Contents 476 0 R +/Resources 474 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +477 0 obj << +/D [475 0 R /XYZ 46.771 518.175 null] +>> endobj +466 0 obj << +/D [475 0 R /XYZ 46.771 518.175 null] +>> endobj +470 0 obj << +/D [475 0 R /XYZ 46.771 327.747 null] +>> endobj +478 0 obj << +/D [475 0 R /XYZ 58.727 296.478 null] +>> endobj +474 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +480 0 obj +<< /S /GoTo /D (index55) >> +endobj +483 0 obj +() +endobj +486 0 obj << +/Length 2133 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(32)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.633 -263.165 cm + q 1.95459 0 0 1.95459 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +133.6795 0 0 134.6395 0 0 cm +/Im9 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.176 -265.969 cm +BT +/F16 10.909 Tf 221.062 246.965 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(9)]TJ +ET +1 0 0 1 93.543 241.27 cm +0 g 0 G +1 0 0 1 -93.543 -241.27 cm +BT +/F20 10.909 Tf 93.543 215.395 Td[(u)]TJ/F16 10.909 Tf 9.222 0 Td[(and)]TJ/F20 10.909 Tf 19.519 0 Td[(u')]TJ/F16 10.909 Tf 11.556 0 Td[(corresponds)-345(to)-346(itself)-345(in)-345(the)-345(two)-346(point-rows.)-536(Also,)-369(the)]TJ -40.297 -13.549 Td[(point)]TJ/F20 10.909 Tf 26.248 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-350(where)]TJ/F20 10.909 Tf 37.016 0 Td[(u)]TJ/F16 10.909 Tf 13.091 0 Td[(intersects)-350(the)-350(line)-350(joining)-350(the)-350(centers)-350(of)-350(the)]TJ/F16 7.97 Tf -158.197 0 Td[([30])]TJ/F16 10.909 Tf 72.755 -13.55 Td[(two)-361(pencils,)-390(is)-361(seen)-361(to)-362(correspond)-361(to)-361(itself.)-584(I)-1(t)-361(is)-361(thus)-362(possible)]TJ 0 -13.549 Td[(for)-241(two)-241(projective)-241(point-rows,)-243(superposed)-241(upon)-241(the)-241(same)-241(line,)-243(to)]TJ 0 -13.549 Td[(have)-336(two)-337(self-corresponding)-336(points.)-510(Clearly)]TJ/F20 10.909 Tf 200.508 0 Td[(M)]TJ/F16 10.909 Tf 12.757 0 Td[(and)]TJ/F20 10.909 Tf 19.422 0 Td[(N)]TJ/F16 10.909 Tf 10.946 0 Td[(may)-336(fall)]TJ -243.633 -13.549 Td[(together)-299(if)-298(the)-299(line)-298(joining)-299(the)-298(centers)-299(of)-298(the)-299(pencils)-298(happens)-299(to)]TJ 0 -13.549 Td[(pass)-250(through)-250(the)-250(point)-250(of)-250(intersection)-250(of)-250(the)-250(lines)]TJ/F20 10.909 Tf 216.044 0 Td[(u)]TJ/F16 10.909 Tf 8.181 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +485 0 obj << +/Type /Page +/Contents 486 0 R +/Resources 484 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 443 0 R +>> endobj +473 0 obj << +/Type /XObject +/Subtype /Image +/Width 557 +/Height 561 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 937431 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +487 0 obj << +/D [485 0 R /XYZ 175.167 201.846 null] +>> endobj +481 0 obj << +/D [485 0 R /XYZ 93.543 83.332 null] +>> endobj +488 0 obj << +/D [485 0 R /XYZ 93.543 66.142 null] +>> endobj +484 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im9 473 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +489 0 obj +<< /S /GoTo /D (index56) >> +endobj +492 0 obj +() +endobj +495 0 obj << +/Length 5773 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(49.)-250(Fundamental)-250(theorem.)-250(Postulate)-250(of)-250(continuity)-4920(33)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(48.)]TJ/F16 10.909 Tf 24.074 0 Td[(We)-486(may)-485(also)-486(give)-485(an)-486(illustration)-485(of)-486(a)-486(case)-485(where)-486(two)]TJ -24.074 -13.549 Td[(superposed)-502(projective)-501(point-rows)-502(have)-501(no)-502(self-corresponding)]TJ 0 -13.549 Td[(points)-413(at)-413(all.)-738(Thus)-412(we)-413(may)-413(take)-413(two)-412(lines)-413(revolving)-413(about)-413(a)]TJ 0 -13.549 Td[(fixed)-400(point)]TJ/F20 10.909 Tf 53.566 0 Td[(S)]TJ/F16 10.909 Tf 9.812 0 Td[(and)-400(always)-399(making)-400(the)-399(same)-400(angle)-400(a)-399(with)-400(each)]TJ -63.378 -13.55 Td[(other)-379(\050Fig.)-638(10\051.)-638(They)-380(will)-379(cut)-379(out)-380(on)-379(any)-379(line)]TJ/F20 10.909 Tf 217.314 0 Td[(u)]TJ/F16 10.909 Tf 9.593 0 Td[(in)-379(the)-380(plane)]TJ -226.907 -13.549 Td[(two)-226(point-rows)-227(which)-226(are)-227(easily)-226(seen)-226(to)-227(be)-226(projective.)-242(For,)-232(given)]TJ 0 -13.549 Td[(any)-389(four)-389(rays)]TJ/F20 10.909 Tf 64.836 0 Td[(SP)]TJ/F16 10.909 Tf 16.363 0 Td[(which)-389(are)-389(harmonic,)-424(the)-389(four)-389(corresponding)]TJ -81.199 -13.549 Td[(rays)]TJ/F20 10.909 Tf 20.58 0 Td[(SP')]TJ/F16 10.909 Tf 16.86 0 Td[(must)-221(also)-220(be)-221(harmonic,)-226(since)-221(they)-220(make)-221(the)-220(same)-221(angles)]TJ -37.44 -13.549 Td[(with)-302(each)-303(other.)-406(Four)-303(harmonic)-302(points)]TJ/F20 10.909 Tf 173.934 0 Td[(P)]TJ/F16 10.909 Tf 9.962 0 Td[(correspond,)-315(therefore,)]TJ -183.896 -13.55 Td[(to)-382(four)-381(harmonic)-382(points)]TJ/F20 10.909 Tf 111.19 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(.)-382(It)-381(is)-382(clear,)-414(however,)-415(that)-381(no)-382(point)]TJ/F20 10.909 Tf -120.19 -13.549 Td[(P)]TJ/F16 10.909 Tf 10.233 0 Td[(can)-327(coincide)-327(with)-327(its)-327(corresponding)-327(point)]TJ/F20 10.909 Tf 188.053 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-327(for)-327(in)-327(that)-327(case)]TJ -207.286 -13.549 Td[(the)-276(lines)]TJ/F20 10.909 Tf 39.959 0 Td[(PS)]TJ/F16 10.909 Tf 15.129 0 Td[(and)]TJ/F20 10.909 Tf 21.773 0 Td[(P'S)]TJ/F16 10.909 Tf 17.464 0 Td[(would)-276(coincide,)-282(which)-276(is)-276(impossible)-276(if)-276(the)]TJ/F16 7.97 Tf 196.699 0 Td[([31])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(angle)-250(between)-250(them)-250(is)-250(to)-250(be)-250(constant.)]TJ/F39 10.909 Tf 0 -57.647 Td[(49.)-379(Fundamental)-294(theorem.)-379(Postulate)-293(of)-293(continuity.)]TJ/F16 10.909 Tf 241.694 0 Td[(We)-293(have)]TJ -241.694 -13.549 Td[(thus)-362(shown)-361(that)-362(two)-362(projective)-362(point-rows,)-389(superposed)-362(one)-362(on)]TJ 0 -13.549 Td[(the)-409(other,)-450(may)-409(have)-409(two)-410(points,)-449(one)-409(point,)-449(or)-410(no)-409(point)-409(at)-410(all)]TJ 0 -13.549 Td[(corresponding)-250(to)-250(themselves.)-250(We)-250(proceed)-250(to)-250(show)-250(that)]TJ/F20 10.909 Tf 11.956 -14.279 Td[(If)-582(two)-582(projective)-582(point-rows,)-665(superposed)-582(upon)-583(the)-582(same)]TJ -11.956 -13.55 Td[(straight)-484(line,)-543(have)-484(more)-484(than)-484(two)-484(self-corresponding)-484(points,)]TJ 0 -13.549 Td[(they)-275(must)-274(have)-275(an)-274(infinite)-275(number,)-281(and)-274(every)-275(point)-275(corresponds)]TJ 0 -13.549 Td[(to)-250(itself;)-250(that)-250(is,)-250(the)-250(two)-250(point-rows)-250(are)-250(not)-250(essentially)-250(distinct.)]TJ/F16 10.909 Tf 11.956 -14.279 Td[(If)-486(three)-487(points,)]TJ/F20 10.909 Tf 75.031 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 8.032 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-486(and)]TJ/F20 10.909 Tf 29.089 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-486(are)-487(self-corresponding,)-545(then)]TJ -144.715 -13.549 Td[(the)-385(harmonic)-385(conjugate)]TJ/F20 10.909 Tf 109.541 0 Td[(D)]TJ/F16 10.909 Tf 12.072 0 Td[(of)]TJ/F20 10.909 Tf 13.285 0 Td[(B)]TJ/F16 10.909 Tf 10.861 0 Td[(with)-385(respect)-385(to)]TJ/F20 10.909 Tf 71.37 0 Td[(A)]TJ/F16 10.909 Tf 10.861 0 Td[(and)]TJ/F20 10.909 Tf 19.95 0 Td[(C)]TJ/F16 10.909 Tf 11.472 0 Td[(must)]TJ -259.412 -13.55 Td[(also)-286(correspond)-286(to)-285(itself.)-358(For)-285(four)-286(harmonic)-286(points)-286(must)-286(always)]TJ 0 -13.549 Td[(correspond)-153(to)-152(four)-153(harmonic)-152(points.)-218(In)-152(the)-153(same)-152(way)-153(the)-153(harmonic)]TJ 0 -13.549 Td[(conjugate)-230(of)]TJ/F20 10.909 Tf 56.512 0 Td[(D)]TJ/F16 10.909 Tf 10.381 0 Td[(with)-230(respect)-229(to)]TJ/F20 10.909 Tf 66.293 0 Td[(B)]TJ/F16 10.909 Tf 9.17 0 Td[(and)]TJ/F20 10.909 Tf 18.258 0 Td[(C)]TJ/F16 10.909 Tf 9.781 0 Td[(must)-230(correspond)-229(to)-230(itself.)]TJ -170.395 -13.549 Td[(Combining)-334(new)-334(points)-334(with)-335(old)-334(in)-334(this)-334(way,)-355(we)-334(may)-334(obtain)-335(as)]TJ 0 -13.549 Td[(many)-370(self-corresponding)-370(points)-371(as)-370(we)-370(wish.)-610(We)-370(show)-371(further)]TJ 0 -13.549 Td[(that)-376(every)-377(point)-376(on)-376(the)-376(line)-377(is)-376(the)-376(limiting)-376(p)-1(oint)-376(of)-376(a)-376(finite)-377(or)]TJ 0 -13.55 Td[(infinite)-289(sequence)-288(of)-289(self-corresponding)-288(points.)-365(Thu)-1(s,)-298(let)-288(a)-289(point)]TJ/F20 10.909 Tf 0 -13.549 Td[(P)]TJ/F16 10.909 Tf 10.473 0 Td[(lie)-349(between)]TJ/F20 10.909 Tf 54.873 0 Td[(A)]TJ/F16 10.909 Tf 10.473 0 Td[(and)]TJ/F20 10.909 Tf 19.56 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-349(Construct)-349(now)]TJ/F20 10.909 Tf 75.362 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-349(the)-349(fourth)-349(harmonic)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +494 0 obj << +/Type /Page +/Contents 495 0 R +/Resources 493 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +496 0 obj << +/D [494 0 R /XYZ 120.622 369.134 null] +>> endobj +490 0 obj << +/D [494 0 R /XYZ 46.771 328.468 null] +>> endobj +497 0 obj << +/D [494 0 R /XYZ 46.771 309.839 null] +>> endobj +493 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +499 0 obj +<< /S /GoTo /D (index57) >> +endobj +502 0 obj +() +endobj +503 0 obj +<< /S /GoTo /D (index58) >> +endobj +506 0 obj +() +endobj +509 0 obj << +/Length 5860 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(34)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(of)]TJ/F20 10.909 Tf 12.382 0 Td[(C)]TJ/F16 10.909 Tf 10.57 0 Td[(with)-302(respect)-302(to)]TJ/F20 10.909 Tf 68.661 0 Td[(A)]TJ/F16 10.909 Tf 9.959 0 Td[(and)]TJ/F20 10.909 Tf 19.047 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)]TJ/F20 10.909 Tf 6.022 0 Td[(D)]TJ/F16 10.909 Tf 11.17 0 Td[(may)-302(coincide)-302(with)]TJ/F20 10.909 Tf 85.024 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-302(in)-302(which)]TJ -236.165 -13.549 Td[(case)-335(the)-335(sequence)-336(is)-335(closed;)-378(otherwise)]TJ/F20 10.909 Tf 175.087 0 Td[(P)]TJ/F16 10.909 Tf 10.321 0 Td[(lies)-335(in)-335(the)-336(stretch)]TJ/F20 10.909 Tf 80.68 0 Td[(AD)]TJ/F16 10.909 Tf -266.088 -13.549 Td[(or)-377(in)-376(the)-377(stretch)]TJ/F20 10.909 Tf 76.418 0 Td[(DB)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-376(If)-377(it)-376(lies)-377(in)-376(th)-1(e)-376(stretch)]TJ/F20 10.909 Tf 110.863 0 Td[(DB)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-376(construc)-1(t)-376(the)]TJ -216.365 -13.549 Td[(fourth)-238(harmonic)-238(of)]TJ/F20 10.909 Tf 84.748 0 Td[(C)]TJ/F16 10.909 Tf 9.875 0 Td[(with)-238(respect)-238(to)]TJ/F20 10.909 Tf 66.573 0 Td[(D)]TJ/F16 10.909 Tf 10.475 0 Td[(and)]TJ/F20 10.909 Tf 18.351 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-238(This)-238(point)]TJ/F20 10.909 Tf 52.348 0 Td[(D')]TJ/F16 10.909 Tf 12.81 0 Td[(may)]TJ -261.845 -13.55 Td[(coincide)-227(with)]TJ/F20 10.909 Tf 61.314 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-227(in)-227(which)-228(case,)-231(as)-228(before,)-231(the)-228(sequence)-227(is)-227(closed.)]TJ -67.979 -13.549 Td[(If)]TJ/F20 10.909 Tf 10.335 0 Td[(P)]TJ/F16 10.909 Tf 9.735 0 Td[(lies)-281(in)-282(the)-281(stretch)]TJ/F20 10.909 Tf 78.332 0 Td[(DD')]TJ/F16 10.909 Tf 18.088 0 Td[(,)-281(we)-282(construct)-281(the)-281(fourth)-282(harmonic)-281(of)]TJ/F20 10.909 Tf -116.49 -13.549 Td[(C)]TJ/F16 10.909 Tf 10.657 0 Td[(with)-310(respect)-620(to)]TJ/F20 10.909 Tf 72.304 0 Td[(DD')]TJ/F16 10.909 Tf 18.088 0 Td[(,)-310(etc.)-430(In)-310(each)-310(step)-310(the)-310(region)-310(in)-310(which)]TJ/F20 10.909 Tf 172.916 0 Td[(P)]TJ/F16 7.97 Tf -346.721 0 Td[([32])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(lies)-334(is)-335(diminished,)-355(and)-334(the)-335(process)-334(may)-335(be)-334(continued)-334(until)-335(two)]TJ 0 -13.549 Td[(self-corresponding)-237(points)-237(are)-237(obtained)-236(on)-237(either)-237(side)-237(of)]TJ/F20 10.909 Tf 242.441 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-237(and)-237(at)]TJ -249.106 -13.55 Td[(distances)-250(from)-250(it)-250(arbitrarily)-250(small.)]TJ 11.955 -14.036 Td[(We)-216(now)-216(assume,)-223(explicitly,)-223(the)-216(fundamental)-216(postulate)-217(that)-216(the)]TJ -11.955 -13.549 Td[(correspondence)-296(is)]TJ/F20 10.909 Tf 82.198 0 Td[(continuous)]TJ/F16 10.909 Tf 47.88 0 Td[(,)-308(that)-296(is,)-308(that)]TJ/F20 10.909 Tf 58.645 0 Td[(the)-296(distance)-297(between)]TJ -188.723 -13.55 Td[(two)-356(points)-356(in)-355(one)-356(point-row)-356(may)-356(be)-355(made)-356(arbitrarily)-356(small)-356(by)]TJ 0 -13.549 Td[(sufficiently)-288(diminishing)-287(the)-288(distance)-287(between)-288(the)-288(corresponding)]TJ 0 -13.549 Td[(points)-159(in)-159(the)-159(other.)]TJ/F16 10.909 Tf 81.847 0 Td[(Suppose)-159(now)-159(that)]TJ/F20 10.909 Tf 77.323 0 Td[(P)]TJ/F16 10.909 Tf 8.399 0 Td[(is)-159(not)-159(a)-159(self-corresponding)]TJ -167.569 -13.549 Td[(point,)-264(but)-262(corresponds)-261(to)-262(a)-261(point)]TJ/F20 10.909 Tf 144.719 0 Td[(P')]TJ/F16 10.909 Tf 11.853 0 Td[(at)-261(a)-262(fixed)-262(distance)]TJ/F20 10.909 Tf 82.298 0 Td[(d)]TJ/F16 10.909 Tf 8.307 0 Td[(from)]TJ/F20 10.909 Tf 24.06 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(.)]TJ -277.903 -13.549 Td[(As)-205(noted)-204(above,)-214(we)-205(can)-204(fin)-1(d)-204(self-corresponding)-205(points)-205(arbitrarily)]TJ 0 -13.55 Td[(close)-193(to)]TJ/F20 10.909 Tf 35.127 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-193(and)-194(it)-193(appears,)-205(then,)-205(that)-193(we)-194(can)-193(take)-194(a)-193(point)]TJ/F20 10.909 Tf 195.236 0 Td[(D)]TJ/F16 10.909 Tf 9.986 0 Td[(as)-193(close)]TJ -247.014 -13.549 Td[(to)]TJ/F20 10.909 Tf 11.222 0 Td[(P)]TJ/F16 10.909 Tf 9.4 0 Td[(as)-251(we)-250(wish,)-251(and)-251(yet)-251(the)-250(distance)-251(between)-251(the)-250(corresponding)]TJ -20.622 -13.549 Td[(points)]TJ/F20 10.909 Tf 30.729 0 Td[(D')]TJ/F16 10.909 Tf 14.266 0 Td[(and)]TJ/F20 10.909 Tf 19.809 0 Td[(P')]TJ/F16 10.909 Tf 13.054 0 Td[(approaches)]TJ/F20 10.909 Tf 53.126 0 Td[(d)]TJ/F16 10.909 Tf 9.51 0 Td[(as)-372(a)-372(limit,)-402(and)-372(not)-372(zero,)-402(which)]TJ -140.494 -13.549 Td[(contradicts)-250(the)-250(postulate)-250(of)-250(continuity.)]TJ/F39 10.909 Tf 0 -55.463 Td[(50.)]TJ/F16 10.909 Tf 20.091 0 Td[(It)-364(follows)-364(also)-364(that)-363(two)-364(projective)-364(pencils)-364(which)-364(have)-364(the)]TJ -20.091 -13.549 Td[(same)-214(center)-214(may)-214(have)-214(no)-214(more)-214(than)-214(two)-214(self-corresponding)-214(rays,)]TJ 0 -13.549 Td[(unless)-374(the)-375(pencils)-374(are)-375(identical.)-623(For)-374(if)-375(we)-374(cut)-375(across)-374(them)-375(by)]TJ 0 -13.549 Td[(a)-365(line,)-393(we)-365(obtain)-365(two)-365(projective)-364(point-rows)-365(superposed)-365(on)-365(the)]TJ 0 -13.549 Td[(same)-476(straight)-475(line,)-532(which)-475(may)-476(have)-476(no)-475(more)-476(than)-475(two)-476(self-)]TJ 0 -13.55 Td[(corresponding)-436(points.)-807(The)-436(same)-435(considerations)-436(apply)-436(to)-436(two)]TJ 0 -13.549 Td[(projective)-250(axial)-250(pencils)-250(which)-250(have)-250(the)-250(same)-250(axis.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +508 0 obj << +/Type /Page +/Contents 509 0 R +/Resources 507 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +510 0 obj << +/D [508 0 R /XYZ 161.254 436.88 null] +>> endobj +500 0 obj << +/D [508 0 R /XYZ 93.543 220.558 null] +>> endobj +511 0 obj << +/D [508 0 R /XYZ 93.543 202.9 null] +>> endobj +504 0 obj << +/D [508 0 R /XYZ 93.543 83.8 null] +>> endobj +512 0 obj << +/D [508 0 R /XYZ 93.543 66.142 null] +>> endobj +507 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +513 0 obj +<< /S /GoTo /D (index59) >> +endobj +516 0 obj +() +endobj +518 0 obj +<< /S /GoTo /D (index60) >> +endobj +521 0 obj +() +endobj +522 0 obj +<< /S /GoTo /D (index61) >> +endobj +525 0 obj +() +endobj +528 0 obj << +/Length 4828 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(52.)-250(Point-rows)-250(in)-250(perspective)-250(position)-9531(35)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(51.)-428(Projective)-310(point-rows)-309(having)-310(a)-309(self-corresponding)-310(point)]TJ 0 -13.549 Td[(in)-325(common.)]TJ/F16 10.909 Tf 60.561 0 Td[(Consider)-325(now)-326(two)-325(projective)-325(point-rows)-326(lying)-325(on)]TJ -60.561 -13.549 Td[(different)-345(lines)-346(in)-345(the)-346(same)-345(plane.)-536(Their)-345(common)-346(point)-345(may)-346(or)]TJ 0 -13.549 Td[(may)-392(not)-392(be)-392(a)-392(self-corresponding)-392(point.)-676(If)-392(the)-392(two)-392(point-rows)]TJ 0 -13.55 Td[(are)-251(perspectively)-250(related,)-251(then)-251(their)-251(common)-250(point)-251(is)-251(evidently)-251(a)]TJ 0 -13.549 Td[(self-corresponding)-441(point.)-240(The)-221(converse)-220(is)-221(also)-220(true,)-227(and)-220(we)-221(have)]TJ/F16 7.97 Tf 291.024 0 Td[([33])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(the)-250(very)-250(important)-250(theorem:)]TJ/F39 10.909 Tf 0 -52.059 Td[(52.)]TJ/F20 10.909 Tf 22.268 0 Td[(If)-430(in)-431(two)-430(protective)-431(point-rows,)-475(the)-431(point)-430(of)-430(intersection)]TJ -22.268 -13.549 Td[(corresponds)-476(to)-476(itself,)-533(then)-476(the)-476(point-rows)-476(are)-476(in)-476(perspective)]TJ 0 -13.549 Td[(position.)]TJ/F16 10.909 Tf 11.956 -40.866 Td[(Let)-334(the)-334(two)-334(point-rows)-333(be)]TJ/F20 10.909 Tf 120.014 0 Td[(u)]TJ/F16 10.909 Tf 9.096 0 Td[(and)]TJ/F20 10.909 Tf 19.395 0 Td[(u')]TJ/F16 10.909 Tf 11.431 0 Td[(\050Fig.)-502(11\051.)-501(Let)]TJ/F20 10.909 Tf 67.309 0 Td[(A)]TJ/F16 10.909 Tf 10.307 0 Td[(and)]TJ/F20 10.909 Tf 19.395 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(B)]TJ/F16 10.909 Tf 10.492 0 Td[(and)]TJ/F20 10.909 Tf 19.581 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-351(be)-351(corresponding)-351(points,)-376(and)-351(let)-350(also)-351(the)-351(point)]TJ/F20 10.909 Tf 219.556 0 Td[(M)]TJ/F16 10.909 Tf 12.914 0 Td[(of)]TJ -271.543 -13.549 Td[(intersection)-381(of)]TJ/F20 10.909 Tf 68.293 0 Td[(u)]TJ/F16 10.909 Tf 9.606 0 Td[(and)]TJ/F20 10.909 Tf 19.905 0 Td[(u')]TJ/F16 10.909 Tf 11.941 0 Td[(correspond)-381(to)-380(itself.)-642(Let)]TJ/F20 10.909 Tf 115.5 0 Td[(AA')]TJ/F16 10.909 Tf 19.815 0 Td[(and)]TJ/F20 10.909 Tf 19.905 0 Td[(BB')]TJ/F16 10.909 Tf -264.965 -13.55 Td[(meet)-391(in)-391(the)-391(point)]TJ/F20 10.909 Tf 82.514 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-391(Take)]TJ/F20 10.909 Tf 33.064 0 Td[(S)]TJ/F16 10.909 Tf 9.718 0 Td[(as)-391(the)-391(center)-391(of)-391(two)-391(pencils,)-426(one)]TJ -130.751 -13.549 Td[(perspective)-384(to)]TJ/F20 10.909 Tf 66.538 0 Td[(u)]TJ/F16 10.909 Tf 9.64 0 Td[(and)-384(the)-383(other)-384(perspective)-384(to)]TJ/F20 10.909 Tf 130.595 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-651(In)-384(these)-383(two)]TJ -214.562 -13.549 Td[(pencils)]TJ/F20 10.909 Tf 34.041 0 Td[(SA)]TJ/F16 10.909 Tf 15.254 0 Td[(coincides)-287(with)-288(its)-287(corresponding)-287(ray)]TJ/F20 10.909 Tf 162.924 0 Td[(SA')]TJ/F16 10.909 Tf 14.455 0 Td[(,)]TJ/F20 10.909 Tf 5.862 0 Td[(SB)]TJ/F16 10.909 Tf 15.254 0 Td[(with)-287(its)]TJ -247.79 -13.549 Td[(corresponding)-317(ray)]TJ/F20 10.909 Tf 83.267 0 Td[(SB')]TJ/F16 10.909 Tf 14.455 0 Td[(,)-317(and)]TJ/F20 10.909 Tf 25.404 0 Td[(SM)]TJ/F16 10.909 Tf 18.004 0 Td[(with)-317(its)-318(corresponding)-317(ray)]TJ/F20 10.909 Tf 119.897 0 Td[(SM')]TJ/F16 10.909 Tf 16.876 0 Td[(.)]TJ -277.903 -13.549 Td[(The)-392(two)-392(pencils)-392(are)-392(thus)-392(identical,)-427(by)-392(the)-392(preceding)-392(theorem,)]TJ 0 -13.55 Td[(and)-360(any)-360(ray)]TJ/F20 10.909 Tf 57.211 0 Td[(SD)]TJ/F16 10.909 Tf 17.254 0 Td[(must)-360(coincide)-360(with)-359(its)-360(corresponding)-360(ray)]TJ/F20 10.909 Tf 187.772 0 Td[(SD')]TJ/F16 10.909 Tf 15.666 0 Td[(.)]TJ -277.903 -13.549 Td[(Corresponding)-474(points)-473(of)]TJ/F20 10.909 Tf 116.099 0 Td[(u)]TJ/F16 10.909 Tf 10.62 0 Td[(and)]TJ/F20 10.909 Tf 20.918 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-529(therefore,)-530(all)-473(lie)-474(on)-473(lines)]TJ -155.426 -13.549 Td[(through)-250(the)-250(point)]TJ/F20 10.909 Tf 77.88 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ/F39 10.909 Tf -83.335 -52.059 Td[(53.)]TJ/F16 10.909 Tf 16.364 0 Td[(An)-250(entirely)-250(similar)-250(discussion)-250(shows)-250(that)]TJ/F20 10.909 Tf -4.408 -13.658 Td[(If)-315(in)-315(two)-314(projective)-315(pencils)-315(the)-315(line)-314(joining)-315(their)-315(centers)-315(is)-315(a)]TJ -11.956 -13.549 Td[(self-corresponding)-389(ray,)-423(then)-389(the)-389(two)-388(pencils)-389(are)-389(perspectively)]TJ 0 -13.549 Td[(related.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +527 0 obj << +/Type /Page +/Contents 528 0 R +/Resources 526 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +529 0 obj << +/D [527 0 R /XYZ 130.973 450.429 null] +>> endobj +514 0 obj << +/D [527 0 R /XYZ 46.771 412.247 null] +>> endobj +530 0 obj << +/D [527 0 R /XYZ 46.771 396.101 null] +>> endobj +519 0 obj << +/D [527 0 R /XYZ 46.771 156.732 null] +>> endobj +531 0 obj << +/D [527 0 R /XYZ 46.771 140.586 null] +>> endobj +523 0 obj << +/D [527 0 R /XYZ 46.771 66.142 null] +>> endobj +526 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +532 0 obj +<< /S /GoTo /D (index62) >> +endobj +535 0 obj +() +endobj +536 0 obj +<< /S /GoTo /D (index63) >> +endobj +539 0 obj +() +endobj +540 0 obj +<< /S /GoTo /D (index64) >> +endobj +543 0 obj +() +endobj +546 0 obj << +/Length 3819 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(36)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(54.)]TJ/F16 10.909 Tf 20.575 0 Td[(A)-379(similar)-378(theorem)-379(may)-379(be)-378(stated)-379(for)-379(two)-378(axial)-379(pencils)-379(of)]TJ -20.575 -13.549 Td[(which)-219(the)-218(axes)-219(intersect.)-239(Very)-219(frequent)-219(use)-218(will)-219(be)-218(made)-219(of)-219(these)]TJ 0 -13.549 Td[(fundamental)-250(theorems.)]TJ/F39 10.909 Tf 0 -51.317 Td[(55.)-751(Point-row)-418(of)-417(the)-417(second)-417(order.)]TJ/F16 10.909 Tf 178.813 0 Td[(The)-417(question)-417(naturally)]TJ -178.813 -13.549 Td[(arises,)-185(What)-168(is)-169(the)-168(locus)-168(of)-169(points)-168(of)-169(intersection)-168(of)-169(corresponding)]TJ 0 -13.55 Td[(rays)-462(of)-462(two)-462(projective)-461(pencils)-924(which)-462(are)-462(not)-462(in)-462(perspective)]TJ/F16 7.97 Tf -72.755 0 Td[([34])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(position?)-1080(This)-527(locus,)-596(which)-527(will)-527(be)-526(discussed)-527(in)-527(detail)-527(in)]TJ 0 -13.549 Td[(subsequent)-362(chapters,)-389(is)-362(easily)-361(seen)-362(to)-361(have)-362(at)-361(most)-362(two)-362(points)]TJ 0 -13.549 Td[(in)-371(common)-370(with)-371(any)-370(line)-371(in)-370(the)-371(plane,)-400(and)-371(on)-371(account)-370(of)-371(this)]TJ 0 -13.549 Td[(fundamental)-365(property)-365(will)-365(be)-364(called)-365(a)]TJ/F20 10.909 Tf 173.541 0 Td[(point-row)-365(of)-365(the)-365(second)]TJ -173.541 -13.55 Td[(order)]TJ/F16 10.909 Tf 24.24 0 Td[(.)-673(For)-391(any)-391(line)]TJ/F20 10.909 Tf 70.137 0 Td[(u)]TJ/F16 10.909 Tf 9.72 0 Td[(in)-391(the)-391(plane)-391(of)-391(the)-391(two)-391(pencils)-391(will)-391(be)]TJ -104.097 -13.549 Td[(cut)-389(by)-390(them)-389(in)-389(two)-390(projective)-389(point-rows)-390(which)-389(have)-389(at)-390(most)]TJ 0 -13.549 Td[(two)-317(self-corresponding)-316(points.)-450(Such)-317(a)-317(self-corresponding)-317(point)]TJ 0 -13.549 Td[(is)-233(clearly)-233(a)-233(point)-233(of)-233(intersection)-233(of)-233(corresponding)-233(rays)-233(of)-233(the)-233(two)]TJ 0 -13.549 Td[(pencils.)]TJ/F39 10.909 Tf 0 -51.317 Td[(56.)]TJ/F16 10.909 Tf 16.335 0 Td[(This)-242(locus)-242(degenerates)-242(in)-242(the)-242(case)-241(of)-242(two)-242(perspective)-242(pencils)]TJ -16.335 -13.549 Td[(to)-211(a)-212(pair)-211(of)-212(straight)-211(lines,)-219(one)-211(of)-212(which)-211(is)-211(the)-212(axis)-211(of)-212(perspectivity)]TJ 0 -13.55 Td[(and)-478(the)-477(other)-478(the)-478(common)-478(ray,)-534(any)-478(point)-478(of)-477(which)-478(may)-478(be)]TJ 0 -13.549 Td[(considered)-303(as)-304(the)-303(point)-303(of)-303(intersection)-304(of)-303(corresponding)-303(rays)-304(of)]TJ 0 -13.549 Td[(the)-250(two)-250(pencils.)]TJ/F39 10.909 Tf 0 -51.317 Td[(57.)-924(Pencils)-475(of)-474(rays)-475(of)-475(the)-474(second)-475(order.)]TJ/F16 10.909 Tf 210.598 0 Td[(Similar)-475(investi-)]TJ -210.598 -13.549 Td[(gations)-445(may)-445(be)-445(made)-445(concerning)-445(the)-445(system)-445(of)-445(lines)-445(joining)]TJ 0 -13.549 Td[(corresponding)-254(points)-253(of)-253(two)-254(projective)-253(point-rows.)-261(If)-253(we)-254(project)]TJ 0 -13.549 Td[(the)-209(point-rows)-210(to)-209(any)-209(point)-210(in)-209(the)-209(plane,)-218(we)-209(obtain)-209(two)-210(projective)]TJ 0 -13.55 Td[(pencils)-475(having)-475(the)-475(same)-475(center.)-925(At)-475(most)-475(two)-475(pa)-1(irs)-475(of)-475(self-)]TJ 0 -13.549 Td[(corresponding)-211(rays)-211(may)-211(present)-211(themselves.)-237(Such)-211(a)-211(ray)-211(is)-211(clearly)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +545 0 obj << +/Type /Page +/Contents 546 0 R +/Resources 544 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +547 0 obj << +/D [545 0 R /XYZ 93.543 529.134 null] +>> endobj +533 0 obj << +/D [545 0 R /XYZ 93.543 469.054 null] +>> endobj +548 0 obj << +/D [545 0 R /XYZ 93.543 453.238 null] +>> endobj +549 0 obj << +/D [545 0 R /XYZ 236.891 412.661 null] +>> endobj +537 0 obj << +/D [545 0 R /XYZ 93.543 266.426 null] +>> endobj +550 0 obj << +/D [545 0 R /XYZ 93.543 250.61 null] +>> endobj +541 0 obj << +/D [545 0 R /XYZ 93.543 160.913 null] +>> endobj +551 0 obj << +/D [545 0 R /XYZ 93.543 145.097 null] +>> endobj +544 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +552 0 obj +<< /S /GoTo /D (index65) >> +endobj +555 0 obj +() +endobj +556 0 obj +<< /S /GoTo /D (index66) >> +endobj +559 0 obj +() +endobj +560 0 obj +<< /S /GoTo /D (index67) >> +endobj +563 0 obj +(PROBLEMS) +endobj +566 0 obj << +/Length 4785 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(58.)-250(Degenerate)-250(case)-16701(37)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(a)-355(line)-356(joining)-355(two)-355(corresponding)-355(points)-356(in)-355(the)-355(two)-356(point-rows.)]TJ 0 -13.549 Td[(The)-299(result)-299(may)-299(be)-299(stated)-299(as)-299(follows:)]TJ/F20 10.909 Tf 163.949 0 Td[(The)-299(system)-299(of)-299(rays)-299(joining)]TJ -163.949 -13.549 Td[(corresponding)-354(points)-355(in)-354(two)-354(protective)-355(point-rows)-354(has)-354(at)-355(most)]TJ 0 -13.549 Td[(two)-233(rays)-233(in)-234(common)-233(with)-233(any)-233(pencil)-233(in)-234(the)-233(plane.)]TJ/F16 10.909 Tf 215.553 0 Td[(For)-233(that)-233(reason)]TJ -215.553 -13.55 Td[(the)-250(system)-250(of)-250(rays)-250(is)-250(called)]TJ/F20 10.909 Tf 120.589 0 Td[(a)-250(pencil)-250(of)-250(rays)-250(of)-250(the)-250(second)-250(order.)]TJ/F39 10.909 Tf -120.589 -56.651 Td[(58.)]TJ/F16 10.909 Tf 21.607 0 Td[(In)-410(the)-410(case)-411(of)-410(two)-410(perspective)-410(point-rows)-411(this)-410(system)-410(of)]TJ -21.607 -13.549 Td[(rays)-315(degenerates)-315(into)-315(two)-315(pencils)-315(of)-315(rays)-315(of)-315(the)-314(first)-315(order,)-332(one)]TJ 0 -13.55 Td[(of)-291(which)-291(has)-292(its)-291(center)-291(at)-291(the)-291(center)-583(of)-291(perspectivity)-291(of)-291(the)-292(two)]TJ/F16 7.97 Tf 291.024 0 Td[([35])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(point-rows,)-417(and)-383(the)-383(other)-384(at)-383(the)-383(intersection)-384(of)-383(the)-383(two)-384(point-)]TJ 0 -13.549 Td[(rows,)-322(any)-307(ray)-308(through)-307(which)-308(may)-308(be)-307(considered)-308(as)-307(joining)-308(two)]TJ 0 -13.549 Td[(corresponding)-250(points)-250(of)-250(the)-250(two)-250(point-rows.)]TJ/F39 10.909 Tf 0 -56.652 Td[(59.)-654(Cone)-385(of)-385(the)-385(second)-385(order.)]TJ/F16 10.909 Tf 152.868 0 Td[(The)-385(corresponding)-385(theorems)]TJ -152.868 -13.549 Td[(in)-314(space)-313(may)-314(easily)-313(be)-314(obtained)-313(by)-314(joining)-313(the)-314(points)-313(and)-314(lines)]TJ 0 -13.549 Td[(considered)-400(in)-400(the)-400(plane)-400(theorems)-400(to)-400(a)-400(point)]TJ/F20 10.909 Tf 203.371 0 Td[(S)]TJ/F16 10.909 Tf 9.817 0 Td[(in)-400(space.)-700(Two)]TJ -213.188 -13.549 Td[(projective)-322(pencils)-321(give)-322(rise)-322(to)-321(two)-322(projective)-321(axial)-322(pencils)-322(with)]TJ 0 -13.55 Td[(axes)-298(intersecting.)-393(Corresponding)-298(planes)-298(meet)-297(in)-298(lines)-298(which)-298(all)]TJ 0 -13.549 Td[(pass)-430(through)]TJ/F20 10.909 Tf 62.099 0 Td[(S)]TJ/F16 10.909 Tf 10.14 0 Td[(and)-430(through)-429(the)-430(points)-430(on)-430(a)-429(point-row)-430(of)-430(the)]TJ -72.239 -13.549 Td[(second)-246(order)-245(generated)-246(by)-245(the)-246(two)-245(pencils)-246(of)-245(rays.)-249(They)-245(are)-246(thus)]TJ 0 -13.549 Td[(generating)-283(lines)-283(of)-282(a)]TJ/F20 10.909 Tf 92.924 0 Td[(cone)-283(of)-283(the)-282(second)-283(order)]TJ/F16 10.909 Tf 109.287 0 Td[(,)-291(or)]TJ/F20 10.909 Tf 18.073 0 Td[(quadric)-283(cone)]TJ/F16 10.909 Tf 57.619 0 Td[(,)]TJ -277.903 -13.549 Td[(so)-218(called)-218(because)-218(every)-218(plane)-217(in)-218(space)-218(not)-218(passing)-218(through)]TJ/F20 10.909 Tf 255.225 0 Td[(S)]TJ/F16 10.909 Tf 7.831 0 Td[(cuts)]TJ -263.056 -13.549 Td[(it)-297(in)-296(a)-297(point-row)-296(of)-297(the)-297(second)-296(order,)-309(and)-296(every)-297(line)-296(also)-297(cuts)-297(it)]TJ 0 -13.55 Td[(in)-302(at)-302(most)-302(two)-302(points.)-406(If,)-315(again,)-315(we)-302(project)-302(two)-302(poin)-1(t-rows)-302(to)-302(a)]TJ 0 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.78 0 Td[(S)]TJ/F16 10.909 Tf 8.804 0 Td[(in)-307(space,)-321(we)-308(obtain)-307(two)-307(pencils)-307(of)-307(rays)-307(with)-307(a)-307(common)]TJ -34.584 -13.549 Td[(center)-244(but)-244(lying)-244(in)-244(different)-244(planes.)-248(Corresponding)-244(lines)-245(of)-244(these)]TJ 0 -13.549 Td[(pencils)-367(determine)-368(planes)-367(which)-368(are)-367(the)-367(projections)-368(to)]TJ/F20 10.909 Tf 244.744 0 Td[(S)]TJ/F16 10.909 Tf 9.461 0 Td[(of)-367(the)]TJ -254.205 -13.549 Td[(lines)-257(which)-256(join)-257(the)-256(corr)-1(esponding)-256(points)-257(of)-256(the)-257(two)-257(point-rows.)]TJ 0 -13.55 Td[(At)-262(most)-262(two)-262(such)-262(planes)-262(may)-262(pass)-262(through)-262(any)-262(ray)-262(through)]TJ/F20 10.909 Tf 262.925 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-262(It)]TJ -268.38 -13.549 Td[(is)-250(called)]TJ/F20 10.909 Tf 38.782 0 Td[(a)-250(pencil)-250(of)-250(planes)-250(of)-250(the)-250(second)-250(order)]TJ/F16 10.909 Tf 164.531 0 Td[(.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +565 0 obj << +/Type /Page +/Contents 566 0 R +/Resources 564 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +553 0 obj << +/D [565 0 R /XYZ 46.771 437.304 null] +>> endobj +567 0 obj << +/D [565 0 R /XYZ 46.771 419.117 null] +>> endobj +568 0 obj << +/D [565 0 R /XYZ 207.293 380.228 null] +>> endobj +557 0 obj << +/D [565 0 R /XYZ 46.771 312.907 null] +>> endobj +569 0 obj << +/D [565 0 R /XYZ 46.771 294.72 null] +>> endobj +564 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +572 0 obj << +/Length 5219 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(38)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 15.781 Tf 93.543 518.175 Td[(PROBLEMS)]TJ/F39 10.909 Tf 0 -42.826 Td[(1.)]TJ/F16 10.909 Tf 16.648 0 Td[(A)-296(man)]TJ/F20 10.909 Tf 33.119 0 Td[(A)]TJ/F16 10.909 Tf 9.894 0 Td[(moves)-296(along)-296(a)-296(straight)-296(road)]TJ/F20 10.909 Tf 125.826 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-308(and)-296(another)-296(man)]TJ/F20 10.909 Tf 83.024 0 Td[(B)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(moves)-246(along)-246(the)-246(same)-246(road)-245(and)-246(walks)-246(so)-246(as)-246(always)-246(to)-246(keep)-246(sight)]TJ 0 -13.549 Td[(of)]TJ/F20 10.909 Tf 11.65 0 Td[(A)]TJ/F16 10.909 Tf 9.228 0 Td[(in)-235(a)-235(small)-235(mirror)]TJ/F20 10.909 Tf 75.093 0 Td[(M)]TJ/F16 10.909 Tf 11.65 0 Td[(at)-235(the)-235(side)-235(of)-235(the)-234(road.)-245(How)-235(many)-235(times)]TJ -107.621 -13.549 Td[(will)-269(th)-1(ey)-269(come)-269(together,)]TJ/F20 10.909 Tf 109.677 0 Td[(A)]TJ/F16 10.909 Tf 9.605 0 Td[(moving)-269(always)-270(in)-269(the)-270(same)-269(direction)]TJ -119.282 -13.549 Td[(along)-250(the)-250(road?)]TJ/F16 7.97 Tf -72.755 0 Td[([36])]TJ/F16 10.909 Tf 84.711 -16.263 Td[(2.)-459(How)-320(many)-320(times)-320(would)-320(the)-320(two)-319(men)-320(in)-320(the)-320(first)-320(problem)]TJ -11.956 -13.549 Td[(see)-342(each)-343(other)-342(in)-343(two)-342(mirrors)]TJ/F20 10.909 Tf 135.716 0 Td[(M)]TJ/F16 10.909 Tf 12.822 0 Td[(and)]TJ/F20 10.909 Tf 19.488 0 Td[(N)]TJ/F16 10.909 Tf 11.011 0 Td[(as)-342(they)-343(walk)-342(along)-343(the)]TJ -179.037 -13.549 Td[(road)-200(as)-200(before?)-233(\050The)-200(planes)-200(of)-200(the)-200(two)-200(mirrors)-200(are)-200(not)-200(necessarily)]TJ 0 -13.55 Td[(parallel)-250(to)]TJ/F20 10.909 Tf 46.658 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.\051)]TJ -40.157 -16.262 Td[(3.)-520(As)-341(A)-340(moves)-340(along)]TJ/F20 10.909 Tf 101.42 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-363(trace)-340(the)-340(path)-340(of)-340(B)-340(so)-340(that)-341(the)-340(two)]TJ -118.83 -13.549 Td[(men)-250(may)-250(always)-250(see)-250(each)-250(other)-250(in)-250(the)-250(two)-250(mirrors.)]TJ 11.956 -16.263 Td[(4.)-548(Two)-349(boys)-349(walk)-350(along)-349(two)-349(paths)]TJ/F20 10.909 Tf 162.46 0 Td[(u)]TJ/F16 10.909 Tf 9.265 0 Td[(and)]TJ/F20 10.909 Tf 19.563 0 Td[(u')]TJ/F16 10.909 Tf 11.599 0 Td[(each)-349(holding)-350(a)]TJ -214.843 -13.549 Td[(string)-403(which)-404(they)-403(keep)-403(stretched)-404(tightly)-403(between)-404(them.)-710(They)]TJ 0 -13.549 Td[(both)-240(move)-241(at)-240(constant)-240(but)-240(different)-240(rates)-241(of)-240(speed,)-242(letting)-240(out)-241(the)]TJ 0 -13.55 Td[(string)-332(or)-331(drawing)-332(it)-331(in)-332(as)-332(they)-331(walk.)-495(How)-332(many)-331(times)-332(will)-332(the)]TJ 0 -13.549 Td[(line)-342(of)-343(the)-342(string)-342(pass)-342(over)-343(any)-342(given)-342(point)-343(in)-342(the)-342(plane)-342(of)-343(the)]TJ 0 -13.549 Td[(paths?)]TJ 11.956 -16.263 Td[(5.)-249(Trace)-247(the)-247(lines)-248(of)-247(the)-247(string)-247(when)-248(the)-247(two)-247(boys)-247(move)-247(at)-248(the)]TJ -11.956 -13.549 Td[(same)-298(rate)-298(of)-298(speed)-298(in)-298(the)-298(two)-298(paths)-298(but)-298(do)-298(not)-298(start)-299(at)-298(the)-298(same)]TJ 0 -13.549 Td[(time)-250(from)-250(the)-250(point)-250(where)-250(the)-250(two)-250(paths)-250(intersect.)]TJ 11.956 -16.263 Td[(6.)-234(A)-202(ship)-202(is)-202(sailing)-203(on)-202(a)-202(straight)-202(course)-202(and)-202(keeps)-202(a)-202(gun)-203(trained)]TJ -11.956 -13.549 Td[(on)-325(a)-325(point)-325(on)-325(the)-325(shore.)-474(Show)-325(that)-325(a)-325(line)-325(at)-325(right)-325(angles)-325(to)-325(the)]TJ 0 -13.549 Td[(direction)-283(of)-282(the)-283(gun)-283(at)-283(its)-282(muzzle)-283(will)-283(pass)-282(through)-283(any)-283(point)-283(in)]TJ 0 -13.549 Td[(the)-293(plane)-293(twice)-293(or)-294(not)-293(at)-293(all.)-379(\050Consider)-293(the)-293(point-row)-293(at)-294(infinity)]TJ 0 -13.549 Td[(cut)-254(out)-255(by)-254(a)-254(line)-254(through)-255(the)-254(point)-254(on)-254(the)-255(shore)-254(at)-254(right)-254(angles)-255(to)]TJ 0 -13.55 Td[(the)-250(direction)-250(of)-250(the)-250(gun.\051)]TJ 11.956 -16.262 Td[(7.)-728(Two)-409(lines)]TJ/F20 10.909 Tf 65.658 0 Td[(u)]TJ/F16 10.909 Tf 9.92 0 Td[(and)]TJ/F20 10.909 Tf 20.218 0 Td[(u')]TJ/F16 10.909 Tf 12.255 0 Td[(revolve)-409(about)-410(two)-409(points)]TJ/F20 10.909 Tf 117.854 0 Td[(U)]TJ/F16 10.909 Tf 12.34 0 Td[(and)]TJ/F20 10.909 Tf 20.218 0 Td[(U')]TJ/F16 10.909 Tf -270.419 -13.55 Td[(respectively)-208(in)-207(the)-208(same)-208(plane.)-236(They)-207(go)-208(in)-208(the)-207(same)-208(direction)-208(and)]TJ 0 -13.549 Td[(at)-283(the)-284(same)-283(rate)-283(of)-284(speed,)-291(but)-284(one)-283(has)-284(an)-283(angle)-283(a)-284(the)-283(start)-283(of)-284(the)]TJ 0 -13.549 Td[(other.)-250(Show)-250(that)-250(they)-250(generate)-250(a)-250(point-row)-250(of)-250(the)-250(second)-250(order.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +571 0 obj << +/Type /Page +/Contents 572 0 R +/Resources 570 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 498 0 R +>> endobj +561 0 obj << +/D [571 0 R /XYZ 93.543 529.134 null] +>> endobj +573 0 obj << +/D [571 0 R /XYZ 93.543 418.775 null] +>> endobj +570 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +576 0 obj << +/Length 561 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(39)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 58.727 518.175 Td[(8.)-581(Discuss)-361(the)-360(question)-360(given)-361(in)-360(the)-360(last)-361(problem)-360(when)-361(the)]TJ -11.956 -13.549 Td[(two)-296(lines)-296(revolve)-296(in)-296(opposite)-296(directions.)-388(Can)-296(you)-296(recognize)-296(the)]TJ 0 -13.549 Td[(locus?)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +575 0 obj << +/Type /Page +/Contents 576 0 R +/Resources 574 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +574 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +580 0 obj << +/Length 666 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(40)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -47.088 cm +0 g 0 G +1 0 0 1 5.622 -383.816 cm + q 2.98366 0 0 2.98366 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +86.6397 0 0 128.6395 0 0 cm +/Im10 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.165 -118.03 cm +BT +/F16 10.909 Tf 218.337 99.026 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(10)]TJ +ET +1 0 0 1 93.543 93.43 cm +0 g 0 G +1 0 0 1 0 -54.648 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +579 0 obj << +/Type /Page +/Contents 580 0 R +/Resources 578 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +479 0 obj << +/Type /XObject +/Subtype /Image +/Width 361 +/Height 536 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 580488 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +578 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im10 479 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +583 0 obj << +/Length 593 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(41)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -142.711 cm +0 g 0 G +1 0 0 1 5.605 -192.608 cm + q 2.67513 0 0 2.67513 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +96.9596 0 0 71.9997 0 0 cm +/Im11 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.376 -213.615 cm +BT +/F16 10.909 Tf 171.565 194.611 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(11)]TJ +ET +1 0 0 1 46.771 189.053 cm +0 g 0 G +1 0 0 1 0 -150.271 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +582 0 obj << +/Type /Page +/Contents 583 0 R +/Resources 581 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +517 0 obj << +/Type /XObject +/Subtype /Image +/Width 404 +/Height 300 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 363600 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +581 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im11 517 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +584 0 obj +<< /S /GoTo /D (index68) >> +endobj +587 0 obj +(CHAPTER IV - POINT-ROWS OF THE SECOND ORDER) +endobj +588 0 obj +<< /S /GoTo /D (index69) >> +endobj +591 0 obj +() +endobj +592 0 obj +<< /S /GoTo /D (index70) >> +endobj +595 0 obj +() +endobj +598 0 obj << +/Length 3653 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([37])]TJ/F16 18.959 Tf 72.755 -65.493 Td[(CHAPTER)-252(IV)-253(-)-252(POINT-ROWS)-252(OF)]TJ 0 -24.646 Td[(THE)-250(SECOND)-250(ORDER)]TJ/F39 10.909 Tf 0 -73.003 Td[(60.)-720(Point-row)-406(of)-407(the)-406(second)-407(order)-406(defined.)]TJ/F16 10.909 Tf 216.638 0 Td[(We)-406(have)-407(seen)]TJ -216.638 -13.549 Td[(that)-327(two)-326(fundamental)-327(forms)-326(in)-327(one-to-one)-326(correspondence)-327(may)]TJ 0 -13.549 Td[(sometimes)-200(generate)-199(a)-200(form)-200(of)-199(higher)-200(order.)-233(Thus,)-210(two)-200(point-rows)]TJ 0 -13.55 Td[(\050\247)-357(55\051)-358(generate)-357(a)-357(system)-358(of)-357(rays)-357(of)-358(the)-357(second)-357(order,)-384(and)-358(two)]TJ 0 -13.549 Td[(pencils)-244(of)-243(rays)-244(\050\247)-244(57\051,)-245(a)-243(system)-244(of)-244(points)-244(of)-243(the)-244(second)-244(order.)-248(As)]TJ 0 -13.549 Td[(a)-248(system)-248(of)-247(points)-248(is)-248(more)-248(familiar)-247(to)-248(most)-248(students)-248(of)-248(geometry)]TJ 0 -13.549 Td[(than)-239(a)-238(system)-239(of)-239(lines,)-241(we)-238(study)-239(first)-239(the)-239(point-row)-238(of)-239(the)-239(second)]TJ 0 -13.549 Td[(order.)]TJ/F39 10.909 Tf 0 -53.191 Td[(61.)-293(Tangent)-264(line.)]TJ/F16 10.909 Tf 81.398 0 Td[(We)-264(have)-264(show)-1(n)-264(in)-264(the)-264(last)-264(chapter)-265(\050\247)-264(55\051)-264(that)]TJ -81.398 -13.549 Td[(the)-260(locus)-260(of)-260(intersection)-260(of)-260(corresponding)-260(rays)-260(of)-261(two)-260(projective)]TJ 0 -13.549 Td[(pencils)-279(is)-278(a)-279(point-row)-279(of)-278(the)-279(second)-278(order;)-293(that)-279(is,)-286(it)-278(has)-279(at)-279(most)]TJ 0 -13.55 Td[(two)-252(points)-252(in)-252(common)-252(with)-252(any)-252(line)-253(in)-252(the)-252(plane.)-256(It)-252(is)-252(clear,)-253(first)]TJ 0 -13.549 Td[(of)-299(all,)-311(that)-299(the)-299(centers)-299(of)-299(the)-299(pencils)-299(are)-299(points)-299(of)-299(the)-299(locus;)-324(for)]TJ 0 -13.549 Td[(to)-316(the)-316(line)]TJ/F20 10.909 Tf 48.525 0 Td[(SS')]TJ/F16 10.909 Tf 13.244 0 Td[(,)-316(considered)-316(as)-316(a)-316(ray)-316(of)]TJ/F20 10.909 Tf 107.62 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-316(must)-316(correspond)-316(some)]TJ -174.844 -13.549 Td[(ray)-263(of)]TJ/F20 10.909 Tf 28.759 0 Td[(S')]TJ/F16 10.909 Tf 10.659 0 Td[(which)-263(meets)-263(it)-263(in)]TJ/F20 10.909 Tf 78.146 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ/F20 10.909 Tf 5.597 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-263(and)-263(by)-263(the)-263(same)-264(argument)]TJ/F20 10.909 Tf 123.563 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-263(is)]TJ -267.756 -13.549 Td[(then)-281(a)-280(point)-281(where)-281(corresponding)-281(rays)-280(meet.)-342(Any)-281(ray)-281(through)]TJ/F20 10.909 Tf 275.176 0 Td[(S)]TJ/F16 10.909 Tf -275.176 -13.55 Td[(will)-278(meet)-277(it)-278(in)-277(one)-278(point)-277(besides)]TJ/F20 10.909 Tf 144.224 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-277(namely)-1(,)-284(the)-277(point)]TJ/F20 10.909 Tf 85.515 0 Td[(P)]TJ/F16 10.909 Tf 9.692 0 Td[(where)-278(it)]TJ -244.886 -13.549 Td[(meets)-297(its)-298(corresponding)-297(ray.)-393(Now,)-309(by)-297(choosing)-298(the)-297(ray)-298(through)]TJ/F20 10.909 Tf 0 -13.549 Td[(S)]TJ/F16 10.909 Tf 9.125 0 Td[(sufficiently)-337(close)-336(to)-337(the)-336(ray)]TJ/F20 10.909 Tf 126.213 0 Td[(SS')]TJ/F16 10.909 Tf 13.244 0 Td[(,)-336(the)-337(point)]TJ/F20 10.909 Tf 49.5 0 Td[(P)]TJ/F16 10.909 Tf 10.335 0 Td[(may)-337(be)-336(made)-337(to)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +597 0 obj << +/Type /Page +/Contents 598 0 R +/Resources 596 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +599 0 obj << +/D [597 0 R /XYZ 93.543 518.175 null] +>> endobj +585 0 obj << +/D [597 0 R /XYZ 93.543 518.175 null] +>> endobj +589 0 obj << +/D [597 0 R /XYZ 93.543 379.855 null] +>> endobj +600 0 obj << +/D [597 0 R /XYZ 93.543 363.207 null] +>> endobj +593 0 obj << +/D [597 0 R /XYZ 93.543 231.969 null] +>> endobj +601 0 obj << +/D [597 0 R /XYZ 93.543 215.32 null] +>> endobj +596 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +602 0 obj +<< /S /GoTo /D (index71) >> +endobj +605 0 obj +() +endobj +606 0 obj +<< /S /GoTo /D (index72) >> +endobj +609 0 obj +() +endobj +610 0 obj +<< /S /GoTo /D (index73) >> +endobj +613 0 obj +() +endobj +617 0 obj << +/Length 4947 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(62.)-250(Determination)-250(of)-250(the)-250(locus)-12532(43)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(approach)-282(arbitrarily)-282(close)-282(to)]TJ/F20 10.909 Tf 126.824 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-282(and)-282(the)-282(ray)]TJ/F20 10.909 Tf 58.052 0 Td[(S'P)]TJ/F16 10.909 Tf 17.532 0 Td[(may)-282(be)-282(made)-282(to)]TJ -210.197 -13.549 Td[(differ)-342(in)-342(position)-343(from)-342(the)-684(tangent)-342(line)-343(at)]TJ/F20 10.909 Tf 192.367 0 Td[(S')]TJ/F16 10.909 Tf 11.521 0 Td[(by)-342(as)-342(little)-343(as)-342(we)]TJ/F16 7.97 Tf 87.136 0 Td[([38])]TJ/F16 10.909 Tf -291.023 -13.549 Td[(please.)-250(We)-250(have,)-250(then,)-250(the)-250(important)-250(theorem)]TJ/F20 10.909 Tf 11.955 -13.571 Td[(The)-397(ray)-397(at)-397(S')-398(which)-397(corresponds)-397(to)-397(the)-397(common)-397(ray)-398(SS')-397(is)]TJ -11.955 -13.55 Td[(tangent)-250(to)-250(the)-250(locus)-250(at)-250(S'.)]TJ/F16 10.909 Tf 11.955 -13.571 Td[(In)-250(the)-250(same)-250(manner)-250(the)-250(tangent)-250(at)]TJ/F20 10.909 Tf 149.967 0 Td[(S)]TJ/F16 10.909 Tf 8.182 0 Td[(may)-250(be)-250(constructed.)]TJ/F39 10.909 Tf -170.104 -51.273 Td[(62.)-240(Determination)-218(of)-219(the)-219(locus.)]TJ/F16 10.909 Tf 143.886 0 Td[(We)-219(now)-219(show)-218(that)]TJ/F20 10.909 Tf 82.868 0 Td[(it)-219(is)-219(possible)]TJ -226.754 -13.549 Td[(to)-254(assig)-1(n)-254(arbitrarily)-255(the)-254(position)-255(of)-254(three)-255(points,)-255(A,)-255(B,)-254(and)-255(C,)-255(on)]TJ 0 -13.549 Td[(the)-360(locus)-359(\050besides)-360(the)-360(points)-360(S)-359(and)-360(S'\051;)-360(but,)-387(these)-360(three)-360(points)]TJ 0 -13.549 Td[(being)-250(chosen,)-250(the)-250(locus)-250(is)-250(completely)-250(determined.)]TJ/F39 10.909 Tf 0 -51.274 Td[(63.)]TJ/F16 10.909 Tf 16.363 0 Td[(This)-250(statement)-250(is)-250(equivalent)-250(to)-250(the)-250(following:)]TJ/F20 10.909 Tf -4.408 -13.571 Td[(Given)-447(three)-447(pairs)-446(of)-447(corresponding)-447(rays)-447(in)-447(two)-447(projective)]TJ -11.955 -13.549 Td[(pencils,)-315(it)-303(is)-302(possible)-302(to)-302(find)-303(a)-302(ray)-302(of)-303(one)-302(which)-302(corresponds)-303(to)]TJ 0 -13.549 Td[(any)-250(ray)-250(of)-250(the)-250(other.)]TJ/F39 10.909 Tf 0 -51.273 Td[(64.)]TJ/F16 10.909 Tf 16.363 0 Td[(We)-250(proceed,)-250(then,)-250(to)-250(the)-250(solution)-250(of)-250(the)-250(fundamental)]TJ -4.408 -13.571 Td[(P)]TJ/F16 7.97 Tf 6.065 0 Td[(ROBLEM)]TJ/F16 10.909 Tf 33.212 0 Td[(:)]TJ/F20 10.909 Tf 8.183 0 Td[(Given)-472(three)-472(pairs)-472(of)-472(rays,)-528(aa',)-528(bb',)-527(and)-472(cc',)-528(of)]TJ -59.415 -13.549 Td[(two)-363(protective)-363(pencils,)-392(S)-363(and)-363(S',)-363(to)-363(find)-364(the)-363(ray)-363(d')-363(of)-363(S')-364(which)]TJ 0 -13.55 Td[(corresponds)-250(to)-250(any)-250(ray)-250(d)-250(of)-250(S.)]TJ/F16 10.909 Tf 11.955 -40.691 Td[(Call)]TJ/F20 10.909 Tf 21.138 0 Td[(A)]TJ/F16 10.909 Tf 9.618 0 Td[(the)-271(intersection)-270(of)]TJ/F20 10.909 Tf 82.179 0 Td[(aa')]TJ/F16 10.909 Tf 13.244 0 Td[(,)]TJ/F20 10.909 Tf 5.736 0 Td[(B)]TJ/F16 10.909 Tf 9.618 0 Td[(the)-271(intersection)-270(of)]TJ/F20 10.909 Tf 82.179 0 Td[(bb')]TJ/F16 10.909 Tf 13.244 0 Td[(,)-276(and)]TJ/F20 10.909 Tf 24.442 0 Td[(C)]TJ/F16 10.909 Tf -273.353 -13.549 Td[(the)-312(intersection)-312(of)]TJ/F20 10.909 Tf 83.528 0 Td[(cc')]TJ/F16 10.909 Tf 15.425 0 Td[(\050Fig.)-436(12\051.)-436(Join)]TJ/F20 10.909 Tf 69.279 0 Td[(AB)]TJ/F16 10.909 Tf 16.734 0 Td[(by)-312(the)-312(line)]TJ/F20 10.909 Tf 50.812 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-327(and)]TJ/F20 10.909 Tf 25.455 0 Td[(AC)]TJ/F16 10.909 Tf -266.688 -13.549 Td[(by)-264(the)-265(line)]TJ/F20 10.909 Tf 49.257 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-293(Consider)]TJ/F20 10.909 Tf 48.204 0 Td[(u)]TJ/F16 10.909 Tf 8.34 0 Td[(as)-264(a)-265(point-row)-264(perspective)-265(to)]TJ/F20 10.909 Tf 129.546 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-264(and)]TJ/F20 10.909 Tf 24.249 0 Td[(u')]TJ/F16 10.909 Tf -272.84 -13.55 Td[(as)-257(a)-258(point-row)-257(perspective)-257(to)]TJ/F20 10.909 Tf 129.158 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ/F20 10.909 Tf 5.535 0 Td[(u)]TJ/F16 10.909 Tf 8.261 0 Td[(and)]TJ/F20 10.909 Tf 18.56 0 Td[(u')]TJ/F16 10.909 Tf 10.596 0 Td[(are)-257(projectively)-258(related)]TJ -179.899 -13.549 Td[(to)-304(each)-303(other,)-318(since)]TJ/F20 10.909 Tf 89.436 0 Td[(S)]TJ/F16 10.909 Tf 8.767 0 Td[(and)]TJ/F20 10.909 Tf 19.067 0 Td[(S')]TJ/F16 10.909 Tf 11.102 0 Td[(are,)-317(by)-304(hypothesis,)-317(so)-304(related.)-411(But)]TJ -128.372 -13.549 Td[(their)-305(point)-304(of)-305(intersection)]TJ/F20 10.909 Tf 115.708 0 Td[(A)]TJ/F16 10.909 Tf 9.988 0 Td[(is)-305(a)-304(self-corresponding)-305(point,)-318(since)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +616 0 obj << +/Type /Page +/Contents 617 0 R +/Resources 615 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +618 0 obj << +/D [616 0 R /XYZ 167.85 504.626 null] +>> endobj +603 0 obj << +/D [616 0 R /XYZ 46.771 426.102 null] +>> endobj +619 0 obj << +/D [616 0 R /XYZ 46.771 410.305 null] +>> endobj +607 0 obj << +/D [616 0 R /XYZ 46.771 334.301 null] +>> endobj +620 0 obj << +/D [616 0 R /XYZ 46.771 318.504 null] +>> endobj +611 0 obj << +/D [616 0 R /XYZ 46.771 242.358 null] +>> endobj +621 0 obj << +/D [616 0 R /XYZ 46.771 226.562 null] +>> endobj +615 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +622 0 obj +<< /S /GoTo /D (index74) >> +endobj +625 0 obj +() +endobj +628 0 obj << +/Length 5860 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(44)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.635 -142.326 cm + q 1.35086 0 0 1.35086 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +194.6393 0 0 105.3596 0 0 cm +/Im12 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.178 -386.808 cm +BT +/F16 10.909 Tf 218.337 367.804 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(12)]TJ +ET +1 0 0 1 93.543 362.246 cm +0 g 0 G +1 0 0 1 -93.543 -362.246 cm +BT +/F20 10.909 Tf 93.543 336.825 Td[(a)]TJ/F16 10.909 Tf 9.938 0 Td[(and)]TJ/F20 10.909 Tf 20.236 0 Td[(a')]TJ/F16 10.909 Tf 12.272 0 Td[(were)-411(supposed)-411(to)-411(be)-411(corresponding)-411(rays.)-733(It)-411(follows)]TJ -42.446 -13.549 Td[(\050\247)-376(52\051)-376(that)]TJ/F20 10.909 Tf 52.293 0 Td[(u)]TJ/F16 10.909 Tf 9.554 0 Td[(and)]TJ/F20 10.909 Tf 19.853 0 Td[(u')]TJ/F16 10.909 Tf 11.889 0 Td[(are)-376(in)-376(perspective)-376(position,)-407(and)-376(that)-376(lines)]TJ -93.589 -13.549 Td[(through)-381(corresponding)-381(points)-381(all)-381(pass)-762(through)-381(a)-381(point)]TJ/F20 10.909 Tf 251.329 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-381(the)]TJ/F16 7.97 Tf -333.172 0 Td[([39])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(center)-257(of)-256(perspectivity,)-259(the)-256(position)-257(of)-257(which)-256(will)-257(be)-257(determined)]TJ 0 -13.549 Td[(by)-313(any)-314(two)-313(such)-313(lines.)-440(But)-313(the)-313(intersection)-313(of)]TJ/F20 10.909 Tf 207.573 0 Td[(a)]TJ/F16 10.909 Tf 8.872 0 Td[(with)]TJ/F20 10.909 Tf 22.813 0 Td[(u)]TJ/F16 10.909 Tf 8.871 0 Td[(and)-313(the)]TJ -248.129 -13.55 Td[(intersection)-344(of)]TJ/F20 10.909 Tf 67.488 0 Td[(c')]TJ/F16 10.909 Tf 10.927 0 Td[(with)]TJ/F20 10.909 Tf 23.146 0 Td[(u')]TJ/F16 10.909 Tf 11.538 0 Td[(are)-344(corresponding)-343(points)-344(on)]TJ/F20 10.909 Tf 128.309 0 Td[(u)]TJ/F16 10.909 Tf 9.204 0 Td[(and)]TJ/F20 10.909 Tf 19.502 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-345(the)-345(line)-345(joining)-346(them)-345(is)-345(clearly)]TJ/F20 10.909 Tf 161.497 0 Td[(c)]TJ/F16 10.909 Tf 8.609 0 Td[(itself.)-535(Similarly,)]TJ/F20 10.909 Tf 77.752 0 Td[(b')]TJ/F16 10.909 Tf 11.554 0 Td[(joins)]TJ -259.412 -13.549 Td[(two)-371(corresponding)-372(points)-371(on)]TJ/F20 10.909 Tf 132.561 0 Td[(u)]TJ/F16 10.909 Tf 9.506 0 Td[(and)]TJ/F20 10.909 Tf 19.803 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-402(and)-371(so)-371(the)-372(center)]TJ/F20 10.909 Tf 88.747 0 Td[(M)]TJ/F16 10.909 Tf 13.137 0 Td[(of)]TJ -271.543 -13.549 Td[(perspectivity)-307(of)]TJ/F20 10.909 Tf 72.143 0 Td[(u)]TJ/F16 10.909 Tf 8.804 0 Td[(and)]TJ/F20 10.909 Tf 19.102 0 Td[(u')]TJ/F16 10.909 Tf 11.138 0 Td[(is)-307(the)-307(intersection)-307(of)]TJ/F20 10.909 Tf 93.994 0 Td[(c)]TJ/F16 10.909 Tf 8.193 0 Td[(and)]TJ/F20 10.909 Tf 19.102 0 Td[(b')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-421(To)-307(find)]TJ/F20 10.909 Tf -240.265 -13.549 Td[(d')]TJ/F16 10.909 Tf 10.916 0 Td[(in)]TJ/F20 10.909 Tf 11.613 0 Td[(S')]TJ/F16 10.909 Tf 10.915 0 Td[(corresponding)-287(to)-286(a)-287(given)-286(line)]TJ/F20 10.909 Tf 131.976 0 Td[(d)]TJ/F16 10.909 Tf 8.581 0 Td[(of)]TJ/F20 10.909 Tf 12.213 0 Td[(S)]TJ/F16 10.909 Tf 8.581 0 Td[(we)-287(note)-286(the)-287(point)]TJ/F20 10.909 Tf 79.77 0 Td[(L)]TJ/F16 10.909 Tf -274.565 -13.55 Td[(where)]TJ/F20 10.909 Tf 29.453 0 Td[(d)]TJ/F16 10.909 Tf 8.256 0 Td[(meets)]TJ/F20 10.909 Tf 28.252 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-270(Join)]TJ/F20 10.909 Tf 26.664 0 Td[(L)]TJ/F16 10.909 Tf 8.867 0 Td[(to)]TJ/F20 10.909 Tf 11.288 0 Td[(M)]TJ/F16 10.909 Tf 11.889 0 Td[(and)-257(get)-257(the)-256(point)]TJ/F20 10.909 Tf 76.049 0 Td[(N)]TJ/F16 10.909 Tf 10.077 0 Td[(where)-257(this)-257(line)]TJ -216.249 -13.549 Td[(meets)]TJ/F20 10.909 Tf 28.935 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ/F20 10.909 Tf 7.724 0 Td[(L)]TJ/F16 10.909 Tf 9.549 0 Td[(and)]TJ/F20 10.909 Tf 19.236 0 Td[(N)]TJ/F16 10.909 Tf 10.76 0 Td[(are)-319(corresponding)-320(points)-319(on)]TJ/F20 10.909 Tf 127.247 0 Td[(u)]TJ/F16 10.909 Tf 8.939 0 Td[(and)]TJ/F20 10.909 Tf 19.236 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-337(and)]TJ/F20 10.909 Tf 25.637 0 Td[(d')]TJ/F16 10.909 Tf -272.841 -13.549 Td[(must)-286(therefore)-286(pass)-286(through)]TJ/F20 10.909 Tf 125.787 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(.)-286(The)-286(intersection)]TJ/F20 10.909 Tf 79.948 0 Td[(P)]TJ/F16 10.909 Tf 9.784 0 Td[(of)]TJ/F20 10.909 Tf 12.206 0 Td[(d)]TJ/F16 10.909 Tf 8.573 0 Td[(and)]TJ/F20 10.909 Tf 18.871 0 Td[(d')]TJ/F16 10.909 Tf 10.908 0 Td[(is)]TJ -273.354 -13.549 Td[(thus)-255(another)-255(point)-254(on)-255(the)-255(locus.)-264(In)-255(the)-254(same)-255(manner)-255(any)-255(number)]TJ 0 -13.549 Td[(of)-250(other)-250(points)-250(may)-250(be)-250(obtained.)]TJ/F39 10.909 Tf 0 -53.897 Td[(65.)]TJ/F16 10.909 Tf 18.67 0 Td[(The)-320(lines)]TJ/F20 10.909 Tf 44.563 0 Td[(u)]TJ/F16 10.909 Tf 8.95 0 Td[(and)]TJ/F20 10.909 Tf 19.249 0 Td[(u')]TJ/F16 10.909 Tf 11.285 0 Td[(might)-320(have)-321(been)-320(drawn)-321(in)-320(any)-321(direction)]TJ -102.717 -13.549 Td[(through)]TJ/F20 10.909 Tf 36.499 0 Td[(A)]TJ/F16 10.909 Tf 9.226 0 Td[(\050avoiding,)-238(of)-235(course,)-237(the)-235(line)]TJ/F20 10.909 Tf 127.394 0 Td[(a)]TJ/F16 10.909 Tf 8.016 0 Td[(for)]TJ/F20 10.909 Tf 15.28 0 Td[(u)]TJ/F16 10.909 Tf 8.016 0 Td[(and)-235(the)-234(line)]TJ/F20 10.909 Tf 53.129 0 Td[(a')]TJ/F16 10.909 Tf 10.35 0 Td[(for)]TJ/F20 10.909 Tf -267.91 -13.549 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(\051,)-231(and)-226(the)-226(center)-226(of)-226(perspectivity)]TJ/F20 10.909 Tf 142.388 0 Td[(M)]TJ/F16 10.909 Tf 11.553 0 Td[(would)-226(be)-226(easily)-226(obtainable;)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +627 0 obj << +/Type /Page +/Contents 628 0 R +/Resources 626 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 577 0 R +>> endobj +614 0 obj << +/Type /XObject +/Subtype /Image +/Width 811 +/Height 439 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1068087 +>> +stream +ÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +629 0 obj << +/D [627 0 R /XYZ 267.038 309.727 null] +>> endobj +623 0 obj << +/D [627 0 R /XYZ 93.543 121.687 null] +>> endobj +630 0 obj << +/D [627 0 R /XYZ 93.543 104.725 null] +>> endobj +626 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im12 614 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +631 0 obj +<< /S /GoTo /D (index75) >> +endobj +634 0 obj +() +endobj +635 0 obj +<< /S /GoTo /D (index76) >> +endobj +638 0 obj +() +endobj +639 0 obj +<< /S /GoTo /D (index77) >> +endobj +642 0 obj +() +endobj +643 0 obj +<< /S /GoTo /D (index78) >> +endobj +646 0 obj +() +endobj +649 0 obj << +/Length 5500 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(66.)-250(Lines)-250(joining)-250(four)-250(points)-250(of)-250(the)-250(locus)-250(to)-250(a)-250(fifth)-4698(45)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(but)-431(the)-431(above)-432(construction)-431(furnishes)-431(a)-431(simple)-431(and)-432(instructive)]TJ 0 -13.549 Td[(figure.)-330(An)-277(equally)-277(simple)-277(one)-276(is)-277(obtained)-277(by)-277(taking)]TJ/F20 10.909 Tf 229.857 0 Td[(a')]TJ/F16 10.909 Tf 10.808 0 Td[(for)]TJ/F20 10.909 Tf 15.739 0 Td[(u)]TJ/F16 10.909 Tf 8.474 0 Td[(and)]TJ/F20 10.909 Tf -264.878 -13.549 Td[(a)]TJ/F16 10.909 Tf 8.182 0 Td[(for)]TJ/F20 10.909 Tf 15.448 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ/F16 7.97 Tf 259.605 0 Td[([40])]TJ/F39 10.909 Tf -291.023 -52.068 Td[(66.)-411(Lines)-304(joining)-304(four)-304(points)-303(of)-304(the)-304(locus)-304(to)-303(a)-304(fifth.)]TJ/F16 10.909 Tf 243.658 0 Td[(Suppose)]TJ -243.659 -13.549 Td[(that)-213(the)-213(points)]TJ/F20 10.909 Tf 63.333 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.049 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ/F20 10.909 Tf 5.049 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.049 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-213(and)]TJ/F20 10.909 Tf 23.124 0 Td[(D)]TJ/F16 10.909 Tf 10.198 0 Td[(are)-213(fixed,)-220(and)-213(that)-213(four)-213(points,)]TJ/F20 10.909 Tf 132.25 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(A)]TJ/F20 8.966 Tf 6.666 -3.927 Td[(1)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 6.001 0 Td[(A)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(2)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)-300(and)]TJ/F20 10.909 Tf 24.918 0 Td[(A)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(3)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)-300(are)-290(taken)-290(on)-290(the)-290(locus)-290(at)-290(the)-290(intersection)-290(with)-291(it)]TJ -64.364 -13.549 Td[(of)-287(any)-287(four)-287(harmonic)-287(rays)-287(through)]TJ/F20 10.909 Tf 155.113 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-287(These)-287(four)-287(harmonic)-287(rays)]TJ -161.778 -13.549 Td[(give)-229(four)-230(harmonic)-229(points,)]TJ/F20 10.909 Tf 117.621 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 5.23 0 Td[(L)]TJ/F20 8.966 Tf 6.066 -3.928 Td[(1)]TJ/F16 10.909 Tf 6.986 3.928 Td[(etc.,)-234(on)-229(the)-229(fixed)-230(ray)]TJ/F20 10.909 Tf 91.323 0 Td[(SD)]TJ/F16 10.909 Tf 13.331 0 Td[(.)-229(These,)]TJ -246.622 -13.55 Td[(in)-400(turn,)-436(project)-400(through)-400(the)-399(fixed)-400(point)]TJ/F20 10.909 Tf 182.117 0 Td[(M)]TJ/F16 10.909 Tf 13.444 0 Td[(into)-400(four)-399(harmonic)]TJ -195.561 -13.549 Td[(points,)]TJ/F20 10.909 Tf 31.891 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.159 0 Td[(N)]TJ/F20 8.966 Tf 7.276 -3.927 Td[(1)]TJ/F16 10.909 Tf 6.915 3.927 Td[(etc.,)-228(on)-223(the)-223(fixed)-223(line)]TJ/F20 10.909 Tf 93.413 0 Td[(DS')]TJ/F16 10.909 Tf 15.665 0 Td[(.)-223(These)-223(last)-223(four)-223(harmonic)]TJ -167.595 -13.549 Td[(points)-329(give)-330(four)-329(harmonic)-329(rays)]TJ/F20 10.909 Tf 140.971 0 Td[(CA)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ/F20 10.909 Tf 6.319 0 Td[(CA)]TJ/F20 8.966 Tf 13.942 -3.927 Td[(1)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 6.535 0 Td[(CA)]TJ/F20 8.966 Tf 13.942 -3.927 Td[(2)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 6.536 0 Td[(CA)]TJ/F20 8.966 Tf 13.942 -3.927 Td[(3)]TJ/F16 10.909 Tf 4.483 3.927 Td[(.)-488(Therefore)]TJ -229.578 -13.549 Td[(the)-306(four)-306(points)]TJ/F20 10.909 Tf 68.194 0 Td[(A)]TJ/F16 10.909 Tf 10.004 0 Td[(which)-306(project)-306(to)]TJ/F20 10.909 Tf 75.46 0 Td[(B)]TJ/F16 10.909 Tf 10.003 0 Td[(in)-306(four)-306(harmonic)-306(rays)-306(also)]TJ -163.661 -13.549 Td[(project)-306(to)]TJ/F20 10.909 Tf 45.455 0 Td[(C)]TJ/F16 10.909 Tf 10.612 0 Td[(in)-306(four)-306(harmonic)-306(rays.)-417(But)]TJ/F20 10.909 Tf 122.431 0 Td[(C)]TJ/F16 10.909 Tf 10.612 0 Td[(may)-306(be)-306(any)-306(point)-305(on)]TJ -189.11 -13.55 Td[(the)-250(locus,)-250(and)-250(so)-250(we)-250(have)-250(the)-250(very)-250(important)-250(theorem,)]TJ/F20 10.909 Tf 11.956 -13.659 Td[(Four)-350(points)-351(which)-350(are)-350(on)-351(the)-350(locus,)-375(and)-351(which)-350(project)-350(to)-351(a)]TJ -11.956 -13.549 Td[(fifth)-215(point)-215(of)-214(the)-215(locus)-215(in)-215(four)-215(harmonic)-214(rays,)-222(project)-215(to)-215(any)-215(point)]TJ 0 -13.549 Td[(of)-250(the)-250(locus)-250(in)-250(four)-250(harmonic)-250(rays.)]TJ/F39 10.909 Tf 0 -52.068 Td[(67.)]TJ/F16 10.909 Tf 16.364 0 Td[(The)-250(theorem)-250(may)-250(also)-250(be)-250(stated)-250(thus:)]TJ/F20 10.909 Tf -4.408 -13.659 Td[(The)-384(locus)-385(of)-384(points)-385(from)-384(which,)-419(four)-384(given)-385(points)-384(are)-385(seen)]TJ -11.956 -13.549 Td[(along)-411(four)-412(harmonic)-411(rays)-411(is)-412(a)-411(point-row)-412(of)-411(the)-411(second)-412(order)]TJ 0 -13.549 Td[(through)-250(them.)]TJ/F39 10.909 Tf 0 -52.068 Td[(68.)]TJ/F16 10.909 Tf 16.364 0 Td[(A)-250(further)-250(theorem)-250(of)-250(prime)-250(importance)-250(also)-250(follows:)]TJ/F20 10.909 Tf -4.408 -13.659 Td[(Any)-219(two)-220(points)-219(on)-220(the)-219(locus)-220(may)-219(be)-219(taken)-220(as)-219(the)-220(centers)-219(of)-220(two)]TJ -11.956 -13.549 Td[(projective)-250(pencils)-250(which)-250(will)-250(generate)-250(the)-250(locus.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +648 0 obj << +/Type /Page +/Contents 649 0 R +/Resources 647 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +650 0 obj << +/D [648 0 R /XYZ 46.771 490.979 null] +>> endobj +632 0 obj << +/D [648 0 R /XYZ 46.771 468.72 null] +>> endobj +651 0 obj << +/D [648 0 R /XYZ 46.771 452.57 null] +>> endobj +636 0 obj << +/D [648 0 R /XYZ 46.771 238.243 null] +>> endobj +652 0 obj << +/D [648 0 R /XYZ 46.771 222.093 null] +>> endobj +640 0 obj << +/D [648 0 R /XYZ 46.771 145.418 null] +>> endobj +653 0 obj << +/D [648 0 R /XYZ 46.771 129.268 null] +>> endobj +644 0 obj << +/D [648 0 R /XYZ 46.771 66.142 null] +>> endobj +647 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +656 0 obj +<< /S /GoTo /D (index79) >> +endobj +659 0 obj +() +endobj +662 0 obj << +/Length 2083 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(46)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(69.)-633(Pascal's)-377(theorem.)]TJ/F16 10.909 Tf 110.027 0 Td[(The)-378(points)]TJ/F20 10.909 Tf 51.873 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.846 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.845 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 6.846 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 6.846 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-378(and)]TJ/F20 10.909 Tf 26.717 0 Td[(S')]TJ/F16 10.909 Tf 11.907 0 Td[(may)]TJ -261.845 -13.549 Td[(thus)-389(be)-389(considered)-389(as)-389(chosen)-388(arbitrarily)-389(on)-389(the)-389(locus,)-424(and)-389(the)]TJ 0 -13.549 Td[(following)-250(remarkable)-250(theorem)-250(follows)-250(at)-250(once.)]TJ/F16 7.97 Tf -72.755 0 Td[([41])]TJ/F20 10.909 Tf 84.711 -13.549 Td[(Given)-210(six)-209(points,)-218(1,)-217(2,)-218(3,)-218(4,)-217(5,)-218(6,)-218(on)-209(the)-210(point-row)-209(of)-210(the)-210(second)]TJ -11.956 -13.55 Td[(order,)-250(if)-250(we)-250(call)]TJ 76.11 -13.549 Td[(L)-269(the)-270(intersection)-269(of)-269(12)-270(with)-269(45,)]TJ -1.496 -13.549 Td[(M)-269(the)-269(intersection)-269(of)-268(23)-269(with)-269(56,)]TJ 0.896 -13.549 Td[(N)-269(the)-269(intersection)-269(of)-270(34)-269(with)-269(61,)]TJ -63.554 -13.549 Td[(then)-250(L,)-250(M,)-250(and)-250(N)-250(are)-250(on)-250(a)-250(straight)-250(line.)]TJ +ET +1 0 0 1 93.543 384.951 cm +0 g 0 G +1 0 0 1 5.639 -232.863 cm + q 1.62796 0 0 1.62796 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +161.0394 0 0 143.0395 0 0 cm +/Im13 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -99.182 -152.088 cm +BT +/F16 10.909 Tf 218.337 133.085 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(13)]TJ +ET +1 0 0 1 93.543 127.488 cm +0 g 0 G +1 0 0 1 0 -88.706 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +661 0 obj << +/Type /Page +/Contents 662 0 R +/Resources 660 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +655 0 obj << +/Type /XObject +/Subtype /Image +/Width 671 +/Height 596 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1199748 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýýýýûûûûûûýýýýýýûûûûûûûûûýýýûûûûûûûûûýýýýýýûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +663 0 obj << +/D [661 0 R /XYZ 93.543 529.134 null] +>> endobj +664 0 obj << +/D [661 0 R /XYZ 93.543 488.699 null] +>> endobj +657 0 obj << +/D [661 0 R /XYZ 93.543 81.346 null] +>> endobj +665 0 obj << +/D [661 0 R /XYZ 93.543 66.142 null] +>> endobj +660 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im13 655 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +666 0 obj +<< /S /GoTo /D (index80) >> +endobj +669 0 obj +() +endobj +670 0 obj +<< /S /GoTo /D (index81) >> +endobj +673 0 obj +() +endobj +676 0 obj << +/Length 5900 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(71.)-250(Harmonic)-250(points)-250(on)-250(a)-250(point-row)-250(of)-250(the)-250(second)-250(order)-2451(47)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(70.)]TJ/F16 10.909 Tf 16.889 0 Td[(To)-266(get)-266(the)-266(notation)-266(to)-266(correspond)-266(to)-266(the)-266(figure,)-270(we)-266(may)-266(take)]TJ -16.889 -13.549 Td[(\050Fig.)-396(13\051)]TJ/F20 10.909 Tf 43.029 0 Td[(A)-299(=)-298(1)]TJ/F16 10.909 Tf 25.998 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(B)-298(=)-299(2)]TJ/F16 10.909 Tf 25.997 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(S')-299(=)-298(3)]TJ/F16 10.909 Tf 27.121 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(D)-299(=)-298(4)]TJ/F16 10.909 Tf 27.208 0 Td[(,)]TJ/F20 10.909 Tf 6.117 0 Td[(S)-299(=)-298(5)]TJ/F16 10.909 Tf 24.787 0 Td[(,)-311(and)]TJ/F20 10.909 Tf 25.127 0 Td[(C)-299(=)-298(6)]TJ/F16 10.909 Tf 26.608 0 Td[(.)-396(If)-298(we)]TJ -250.343 -13.549 Td[(make)]TJ/F20 10.909 Tf 26.049 0 Td[(A)-222(=)-221(1)]TJ/F16 10.909 Tf 24.321 0 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(C=2)]TJ/F16 10.909 Tf 20.095 0 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(S=3)]TJ/F16 10.909 Tf 18.272 0 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(D)-222(=)-222(4)]TJ/F16 10.909 Tf 25.533 0 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(S'=5)]TJ/F16 10.909 Tf 20.607 0 Td[(,)-227(and.)]TJ/F20 10.909 Tf 26.313 0 Td[(B)-222(=)-221(6)]TJ/F16 10.909 Tf 24.321 0 Td[(,)-227(the)-222(points)]TJ/F20 10.909 Tf 50.05 0 Td[(L)]TJ/F16 10.909 Tf 8.484 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(N)]TJ/F16 10.909 Tf 10.095 0 Td[(are)-258(interchanged,)-261(but)-258(the)-258(line)-259(is)-258(left)-258(unchanged.)-275(It)-259(is)-258(clear)-258(that)]TJ -10.095 -13.55 Td[(one)-289(point)-288(may)-289(be)-288(named)-289(arbitrarily)-288(and)-289(the)-288(other)-289(five)-288(named)-289(in)]TJ/F20 10.909 Tf 0 -13.549 Td[(5!)-235(=)-206(120)]TJ/F16 10.909 Tf 39.878 0 Td[(different)-206(ways,)-215(but)-206(since,)-215(as)-206(we)-206(have)-206(seen,)-215(two)-206(different)]TJ -39.878 -13.549 Td[(assignments)-362(of)-361(names)-362(give)-361(the)-362(same)-361(line,)-390(it)-361(follows)-362(that)-362(there)]TJ 0 -13.549 Td[(cannot)-238(be)-238(more)-238(than)-238(60)-237(different)-238(lines)]TJ/F20 10.909 Tf 167.826 0 Td[(LMN)]TJ/F16 10.909 Tf 25.023 0 Td[(obtained)-238(in)-238(this)-238(way)]TJ -192.849 -13.549 Td[(from)-321(a)-322(given)-321(set)-322(of)-321(six)-322(points.)-464(As)-321(a)-322(matter)-321(of)-322(fact,)-339(the)-322(number)]TJ 0 -13.55 Td[(obtained)-257(in)-257(this)-256(way)-257(is)-257(in)-257(general)]TJ/F20 10.909 Tf 147.472 0 Td[(60)]TJ/F16 10.909 Tf 10.909 0 Td[(.)-270(The)-257(above)-257(theorem,)-258(which)]TJ -158.381 -13.549 Td[(is)-354(of)-354(cardinal)-354(importance)-355(in)-354(the)-354(theory)-354(of)-354(the)-354(point-row)-354(of)-355(the)]TJ 0 -13.549 Td[(second)-276(order,)-281(is)-276(due)-275(to)-276(Pascal)-275(an)-1(d)-275(was)-276(discovered)-275(by)-276(him)-275(at)-276(the)]TJ 0 -13.549 Td[(age)-239(of)-239(sixteen.)-247(It)-239(is,)-241(no)-239(doubt,)-241(the)-239(most)-239(important)-239(co)-1(ntribution)-239(to)]TJ 0 -13.549 Td[(the)-291(theory)-291(of)-291(these)-291(loci)-292(since)-582(the)-291(days)-291(of)-291(Apollonius.)-373(If)-291(the)-292(six)]TJ/F16 7.97 Tf 291.024 0 Td[([42])]TJ/F16 10.909 Tf -291.024 -13.55 Td[(points)-256(be)-256(called)-255(the)-256(vertices)-256(of)-256(a)-255(hexagon)-256(inscribed)-256(in)-256(the)-256(curve,)]TJ 0 -13.549 Td[(then)-343(the)-343(sides)-344(12)-343(and)-343(45)-343(may)-344(be)-343(appropriately)-343(called)-343(a)-343(pair)-344(of)]TJ 0 -13.549 Td[(opposite)-250(sides.)-250(Pascal's)-250(theorem,)-250(then,)-250(may)-250(be)-250(stated)-250(as)-250(follows:)]TJ/F20 10.909 Tf 11.956 -14.352 Td[(The)-289(three)-290(pairs)-289(o)-1(f)-289(opposite)-290(sides)-289(of)-290(a)-289(hexagon)-290(inscribed)-289(in)-290(a)]TJ -11.956 -13.549 Td[(point-row)-250(of)-250(the)-250(second)-250(order)-250(meet)-250(in)-250(three)-250(points)-250(on)-250(a)-250(line.)]TJ/F39 10.909 Tf 0 -58.304 Td[(71.)-743(Harmonic)-415(points)-414(on)-414(a)-415(point-row)-414(of)-415(the)-414(second)-415(order.)]TJ/F16 10.909 Tf 0 -13.549 Td[(Before)-261(proceeding)-262(to)-261(develop)-262(the)-261(consequences)-262(of)-261(this)-262(theorem,)]TJ 0 -13.549 Td[(we)-340(note)-339(another)-340(result)-339(of)-340(the)-339(utmost)-340(importance)-339(for)-340(the)-340(higher)]TJ 0 -13.549 Td[(developments)-213(of)-213(pure)-213(geometry,)-220(which)-213(follows)-213(from)-213(the)-213(fact)-213(that)]TJ 0 -13.549 Td[(if)-394(four)-394(points)-394(on)-394(the)-394(locus)-394(project)-394(to)-394(a)-394(fifth)-394(in)-394(four)-394(harmonic)]TJ 0 -13.55 Td[(rays,)-259(they)-257(will)-258(project)-257(to)-257(any)-257(point)-257(of)-258(the)-257(locus)-257(in)-257(four)-258(harmonic)]TJ 0 -13.549 Td[(rays.)-388(It)-296(is)-297(natural)-296(to)-296(speak)-296(of)-296(four)-296(such)-296(points)-296(as)-296(four)-297(harmonic)]TJ 0 -13.549 Td[(points)-349(on)-349(the)-349(locus,)-374(and)-349(to)-349(use)-349(this)-349(notion)-349(to)-349(defin)-1(e)-349(projective)]TJ 0 -13.549 Td[(correspondence)-527(between)-527(point-rows)-528(of)-527(the)-527(second)-527(order,)-597(or)]TJ 0 -13.549 Td[(between)-353(a)-353(point-row)-353(of)-352(the)-353(second)-353(order)-353(and)-353(any)-353(fundamental)]TJ 0 -13.55 Td[(form)-422(of)-421(the)-422(first)-422(order.)-765(Thus,)-464(in)-422(particular,)-464(the)-422(point-row)-422(of)]TJ 0 -13.549 Td[(the)-408(second)-408(order,)]TJ/F41 10.909 Tf 83.158 0 Td[(\303)]TJ/F16 10.909 Tf 5.214 0 Td[(,)-408(is)-408(said)-408(to)-408(be)]TJ/F20 10.909 Tf 68.623 0 Td[(perspectively)-408(related)]TJ/F16 10.909 Tf 97.365 0 Td[(to)-408(the)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +675 0 obj << +/Type /Page +/Contents 676 0 R +/Resources 674 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +677 0 obj << +/D [675 0 R /XYZ 177.316 342.036 null] +>> endobj +667 0 obj << +/D [675 0 R /XYZ 46.771 246.198 null] +>> endobj +678 0 obj << +/D [675 0 R /XYZ 46.771 227.277 null] +>> endobj +674 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R /F41 355 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +679 0 obj +<< /S /GoTo /D (index82) >> +endobj +682 0 obj +() +endobj +685 0 obj << +/Length 5019 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(48)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(pencil)]TJ/F20 10.909 Tf 29.576 0 Td[(S)]TJ/F16 10.909 Tf 8.368 0 Td[(when)-267(every)-267(ray)-267(on)]TJ/F20 10.909 Tf 84.354 0 Td[(S)]TJ/F16 10.909 Tf 8.369 0 Td[(goes)-267(through)-267(the)-267(point)-267(on)]TJ/F41 10.909 Tf 115.173 0 Td[(\303)]TJ/F16 10.909 Tf 8.128 0 Td[(which)]TJ -253.968 -13.549 Td[(corresponds)-250(to)-250(it.)]TJ/F39 10.909 Tf 0 -49.877 Td[(72.)-296(Determination)-265(of)-265(the)-265(locus.)]TJ/F16 10.909 Tf 146.623 0 Td[(It)-265(is)-265(now)-266(clear)-265(that)-265(five)-265(points,)]TJ -146.623 -13.549 Td[(arbitrarily)-191(chosen)-192(in)-191(the)-191(plane,)-203(are)-191(sufficient)-192(to)-191(determine)-191(a)-192(point-)]TJ 0 -13.549 Td[(row)-238(of)-239(the)-238(second)-238(order)-239(through)-238(them.)-246(Two)-238(of)-239(the)-238(points)-238(may)-239(be)]TJ 0 -13.55 Td[(taken)-335(as)-335(centers)-335(of)-334(two)-335(projective)-335(pencils,)-356(and)-335(the)-335(three)-335(others)]TJ 0 -13.549 Td[(will)-319(determine)-318(three)-319(pairs)-319(of)-319(corresponding)-318(rays)-319(of)-319(the)-319(pencils,)]TJ 0 -13.549 Td[(and)-382(therefore)-381(all)-382(pairs.)-644(If)-382(four)-381(points)-382(of)-381(the)-382(locus)-382(are)-763(given,)]TJ/F16 7.97 Tf -72.756 0 Td[([43])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(together)-354(with)-354(the)-354(tangent)-355(at)-354(one)-354(of)-354(them,)-380(the)-354(locus)-354(is)-355(likewise)]TJ 0 -13.549 Td[(completely)-313(determined.)-439(For)-312(if)-313(the)-313(point)-313(at)-313(which)-313(the)-313(tangent)-313(is)]TJ 0 -13.55 Td[(given)-245(be)-244(taken)-245(as)-244(the)-245(center)]TJ/F20 10.909 Tf 123.246 0 Td[(S)]TJ/F16 10.909 Tf 8.123 0 Td[(of)-245(one)-244(pencil,)-246(and)-245(any)-244(other)-245(of)-244(the)]TJ -131.369 -13.549 Td[(points)-333(for)]TJ/F20 10.909 Tf 46.651 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-333(then,)-353(besides)-333(the)-332(two)-333(pairs)-333(of)-333(corresponding)-332(rays)]TJ -54.44 -13.549 Td[(determined)-239(by)-240(the)-239(remaining)-239(two)-240(points,)-241(we)-240(have)-239(one)-239(more)-240(pair,)]TJ 0 -13.549 Td[(consisting)-218(of)-218(the)-219(tangent)-218(at)]TJ/F20 10.909 Tf 118.559 0 Td[(S)]TJ/F16 10.909 Tf 7.834 0 Td[(and)-218(the)-218(ray)]TJ/F20 10.909 Tf 50.155 0 Td[(SS')]TJ/F16 10.909 Tf 13.243 0 Td[(.)-218(Similarly,)-225(the)-218(curve)]TJ -189.791 -13.549 Td[(is)-250(determined)-250(by)-250(three)-250(points)-250(and)-250(the)-250(tangents)-250(at)-250(two)-250(of)-250(them.)]TJ/F39 10.909 Tf 0 -49.877 Td[(73.)-256(Circles)-252(and)-253(conics)-252(as)-252(point-rows)-252(of)-252(the)-252(second)-252(order.)]TJ/F16 10.909 Tf 263.938 0 Td[(It)-252(is)]TJ -263.938 -13.55 Td[(not)-212(difficult)-212(to)-212(see)-212(that)-213(a)-212(circle)-212(is)-212(a)-212(point-row)-212(of)-212(the)-212(second)-213(order.)]TJ 0 -13.549 Td[(Indeed,)-362(take)-340(any)-339(point)]TJ/F20 10.909 Tf 103.833 0 Td[(S)]TJ/F16 10.909 Tf 9.159 0 Td[(on)-340(the)-339(circle)-340(and)-340(draw)-339(four)-340(harmonic)]TJ -112.992 -13.549 Td[(rays)-366(through)-365(it.)-597(They)-366(will)-366(cut)-365(the)-366(circle)-366(in)-365(four)-366(points,)-395(which)]TJ 0 -13.549 Td[(will)-218(project)-218(to)-218(any)-219(other)-218(point)-218(of)-218(the)-218(curve)-218(in)-218(four)-218(harmonic)-219(rays;)]TJ 0 -13.549 Td[(for,)-339(by)-321(the)-322(theorem)-321(concerning)-321(the)-321(angles)-322(inscribed)-321(in)-321(a)-322(circle,)]TJ 0 -13.549 Td[(the)-306(angles)-306(involved)-306(in)-307(the)-306(second)-306(set)-306(of)-306(four)-306(lines)-306(are)-306(the)-307(same)]TJ 0 -13.55 Td[(as)-352(those)-352(in)-352(the)-352(first)-352(set.)-556(If,)-378(moreover,)-377(we)-352(project)-352(the)-353(figure)-352(to)]TJ 0 -13.549 Td[(any)-348(point)-349(in)-348(space,)-373(we)-348(shall)-349(get)-348(a)-349(cone,)-372(standing)-349(on)-348(a)-349(circular)]TJ 0 -13.549 Td[(base,)-439(generated)-401(by)-401(two)-401(projective)-401(axial)-401(pencils)-401(which)-401(are)-402(the)]TJ 0 -13.549 Td[(projections)-342(of)-342(the)-343(pencils)-342(at)]TJ/F20 10.909 Tf 128.346 0 Td[(S)]TJ/F16 10.909 Tf 9.186 0 Td[(and)]TJ/F20 10.909 Tf 19.486 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-342(Cut)-342(across,)-366(now,)-365(by)-342(any)]TJ -164.807 -13.549 Td[(plane,)-299(and)-289(we)-289(get)-289(a)-289(conic)-289(section)-289(which)-289(is)-289(thus)-289(exhibited)-290(as)-289(the)]TJ 0 -13.55 Td[(locus)-352(of)-351(intersection)-352(of)-351(two)-352(projective)-352(pencils.)-554(It)-352(thus)-352(appears)]TJ 0 -13.549 Td[(that)-197(a)-196(conic)-197(section)-196(is)-197(a)-196(point-row)-197(of)-196(the)-197(second)-196(order.)-233(It)-196(will)-197(later)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +684 0 obj << +/Type /Page +/Contents 685 0 R +/Resources 683 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +671 0 obj << +/D [684 0 R /XYZ 93.543 481.04 null] +>> endobj +686 0 obj << +/D [684 0 R /XYZ 93.543 465.931 null] +>> endobj +687 0 obj << +/D [684 0 R /XYZ 343.044 387.003 null] +>> endobj +680 0 obj << +/D [684 0 R /XYZ 93.543 268.562 null] +>> endobj +688 0 obj << +/D [684 0 R /XYZ 93.543 253.453 null] +>> endobj +683 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F41 355 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +690 0 obj +<< /S /GoTo /D (index83) >> +endobj +693 0 obj +() +endobj +696 0 obj << +/Length 1679 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(74.)-250(Conic)-250(through)-250(five)-250(points)-12975(49)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(appear)-253(that)-252(a)-253(point-row)-253(of)-252(the)-253(second)-252(order)-253(is)-253(a)-252(conic)-253(section.)-258(In)]TJ 0 -13.549 Td[(the)-277(future,)-285(therefore,)-284(we)-278(shall)-277(refer)-277(to)-278(a)-277(point-row)-278(of)-277(the)-278(second)]TJ 0 -13.549 Td[(order)-250(as)-250(a)-250(conic.)]TJ +ET +1 0 0 1 46.771 462.619 cm +0 g 0 G +1 0 0 1 5.636 -249.107 cm + q 3.4143 0 0 3.4143 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +75.3597 0 0 72.9597 0 0 cm +/Im14 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.407 -213.512 cm +BT +/F16 10.909 Tf 171.565 194.508 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(14)]TJ +ET +1 0 0 1 46.771 188.95 cm +0 g 0 G +1 0 0 1 -46.771 -188.95 cm +BT +/F39 10.909 Tf 46.771 106.79 Td[(74.)-525(Conic)-342(through)-342(five)-342(points.)]TJ/F16 10.909 Tf 149.325 0 Td[(Pascal's)-342(theorem)-342(furnishes)-341(an)]TJ -149.325 -13.55 Td[(elegant)-284(solution)-284(of)-284(the)-284(problem)-284(of)-284(drawing)-284(a)-284(conic)-284(through)-284(five)]TJ 0 -13.549 Td[(given)-416(points.)-748(To)-416(construct)-416(a)-416(sixth)-831(point)-416(on)-416(the)-416(conic,)-458(draw)]TJ/F16 7.97 Tf 291.024 0 Td[([44])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(through)-373(the)-373(point)-373(numbered)-373(1)-373(an)-372(arbitrary)-373(line)-373(\050Fig.)-619(14\051,)-404(and)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +695 0 obj << +/Type /Page +/Contents 696 0 R +/Resources 694 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +689 0 obj << +/Type /XObject +/Subtype /Image +/Width 314 +/Height 304 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 286368 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +691 0 obj << +/D [695 0 R /XYZ 46.771 137.689 null] +>> endobj +697 0 obj << +/D [695 0 R /XYZ 46.771 120.667 null] +>> endobj +698 0 obj << +/D [695 0 R /XYZ 209.43 79.691 null] +>> endobj +694 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/XObject << /Im14 689 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +700 0 obj +<< /S /GoTo /D (index84) >> +endobj +703 0 obj +() +endobj +706 0 obj << +/Length 1947 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(50)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(let)-274(the)-273(desired)-274(point)-273(6)-274(be)-273(the)-274(second)-273(point)-274(of)-273(interse)-1(ction)-273(of)-274(this)]TJ 0 -13.549 Td[(line)-315(with)-315(the)-316(conic.)-445(The)-315(point)]TJ/F20 10.909 Tf 136.892 0 Td[(L)-315(=)-315(12-45)]TJ/F16 10.909 Tf 49.194 0 Td[(is)-315(obtainable)-315(at)-316(once;)]TJ -186.086 -13.549 Td[(also)-316(the)-316(point)]TJ/F20 10.909 Tf 63.68 0 Td[(N)-316(=)-316(34-61)]TJ/F16 10.909 Tf 46.988 0 Td[(.)-448(But)]TJ/F20 10.909 Tf 26.83 0 Td[(L)]TJ/F16 10.909 Tf 9.513 0 Td[(and)]TJ/F20 10.909 Tf 19.202 0 Td[(N)]TJ/F16 10.909 Tf 10.724 0 Td[(determine)-316(Pascal's)-316(line,)]TJ -176.937 -13.549 Td[(and)-250(the)-251(intersection)-250(of)-250(23)-251(with)-250(56)-250(must)-251(be)-250(on)-250(this)-251(line.)-251(Intersect,)]TJ 0 -13.55 Td[(then,)-237(the)-233(line)]TJ/F20 10.909 Tf 58.878 0 Td[(LN)]TJ/F16 10.909 Tf 15.887 0 Td[(with)-233(23)-234(and)-233(obtain)-233(the)-233(point)]TJ/F20 10.909 Tf 124.36 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(.)-233(Join)]TJ/F20 10.909 Tf 26.002 0 Td[(M)]TJ/F16 10.909 Tf 11.632 0 Td[(to)-233(5)-234(and)]TJ -245.846 -13.549 Td[(intersect)-250(with)-250(61)-250(for)-250(the)-250(desired)-250(point)-250(6.)]TJ +ET +1 0 0 1 93.543 423.583 cm +0 g 0 G +1 0 0 1 5.619 -306.144 cm + q 2.9057 0 0 2.9057 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +89.0397 0 0 105.3596 0 0 cm +/Im15 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.162 -117.439 cm +BT +/F16 10.909 Tf 218.337 98.435 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(15)]TJ +ET +1 0 0 1 93.543 92.839 cm +0 g 0 G +1 0 0 1 0 -54.057 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +705 0 obj << +/Type /Page +/Contents 706 0 R +/Resources 704 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 654 0 R +>> endobj +699 0 obj << +/Type /XObject +/Subtype /Image +/Width 371 +/Height 439 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 488607 +>> +stream +ÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûûûûûûûûûûûûûûûûýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +704 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im15 699 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +707 0 obj +<< /S /GoTo /D (index85) >> +endobj +710 0 obj +() +endobj +715 0 obj << +/Length 3038 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(75.)-250(Tangent)-250(to)-250(a)-250(conic)-15810(51)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(75.)-820(Tangent)-439(to)-440(a)-440(conic.)]TJ/F16 10.909 Tf 126.211 0 Td[(If)-440(two)-440(points)-440(of)-439(Pascal's)-440(hexagon)]TJ -126.211 -13.549 Td[(approach)-302(coincidence,)-314(then)-301(the)-302(line)-301(joining)-302(them)-301(approaches)-302(as)]TJ 0 -13.549 Td[(a)-228(limiting)-228(position)-228(the)-228(tangent)-228(line)-228(at)-228(that)-228(point.)-243(Pascal's)-228(theorem)]TJ 0 -13.549 Td[(thus)-200(affords)-199(a)-200(ready)-200(method)-200(of)-199(drawing)-200(the)-200(tangent)-199(line)-200(to)-200(a)-200(conic)]TJ 0 -13.55 Td[(at)-274(a)-274(given)-274(point.)-321(If)-274(the)-274(conic)-274(is)-274(determined)-273(by)-274(the)-274(points)-274(1,)-280(2,)-280(3,)]TJ 0 -13.549 Td[(4,)-249(5)-248(\050Fig.)-249(15\051,)-249(and)-248(it)-249(is)-248(desired)-248(to)-249(draw)-248(the)-248(tangent)-249(at)-248(the)-248(point)-249(1,)]TJ 0 -13.549 Td[(we)-281(may)-281(call)-281(that)-282(point)-281(1,)-289(6.)-343(The)-281(points)]TJ/F20 10.909 Tf 174.414 0 Td[(L)]TJ/F16 10.909 Tf 9.132 0 Td[(and)]TJ/F20 10.909 Tf 18.819 0 Td[(M)]TJ/F16 10.909 Tf 12.154 0 Td[(are)-281(obtained)-281(as)]TJ -214.519 -13.549 Td[(usual,)-290(and)-281(the)-282(intersection)-282(of)-281(34)-282(with)]TJ/F20 10.909 Tf 166.73 0 Td[(LM)]TJ/F16 10.909 Tf 18.225 0 Td[(gives)]TJ/F20 10.909 Tf 26.101 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(.)-282(Join)]TJ/F20 10.909 Tf 27.058 0 Td[(N)]TJ/F16 10.909 Tf 10.348 0 Td[(to)-282(the)]TJ -255.739 -13.549 Td[(point)-250(1)-250(for)-250(the)-250(desired)-250(tangent)-250(at)-250(that)-250(point.)]TJ/F39 10.909 Tf 0 -49.776 Td[(76.)-300(Inscribed)-267(quadrangle.)]TJ/F16 10.909 Tf 123.408 0 Td[(Two)-267(pairs)-266(of)-267(vertices)-266(may)-267(coalesce,)]TJ -123.408 -13.549 Td[(giving)-324(an)-325(inscribed)-324(quadrangle.)-473(Pascal's)-324(theorem)-324(gives)-324(for)-325(this)]TJ 0 -13.549 Td[(case)-250(the)-250(very)-250(important)-250(theorem)]TJ/F20 10.909 Tf 11.956 -13.55 Td[(Two)-285(pairs)-285(of)-285(opposite)-285(sides)-285(of)-285(any)-285(quadrangle)-285(inscribed)-285(in)-285(a)]TJ -11.956 -13.549 Td[(conic)-280(meet)-280(on)-280(a)-280(straight)-280(line,)-287(upon)-280(which)-280(line)-280(also)-280(intersect)-280(the)]TJ 0 -13.549 Td[(two)-250(pairs)-250(of)-250(tangents)-250(at)-250(the)-250(opposite)-250(vertices.)]TJ/F16 7.97 Tf 291.024 0 Td[([45])]TJ +ET +1 0 0 1 46.771 267.623 cm +0 g 0 G +1 0 0 1 5.627 -152.244 cm + q 1.38808 0 0 1.38808 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +189.3593 0 0 109.6796 0 0 cm +/Im16 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.398 -115.379 cm +BT +/F16 10.909 Tf 171.565 96.375 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(16)]TJ +ET +1 0 0 1 46.771 90.779 cm +0 g 0 G +1 0 0 1 0 -51.997 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +714 0 obj << +/Type /Page +/Contents 715 0 R +/Resources 713 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +711 0 obj << +/Type /XObject +/Subtype /Image +/Width 789 +/Height 457 +/BitsPerComponent 1 +/ColorSpace [/Indexed /DeviceRGB 1 720 0 R] +/Length 45243 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÿÿÿÿÿÿÿÿÿÿÿáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÿÿÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÿÿÿÿÿÿÿÿÿÿÿÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÿÿÿÿÿÿÿÿÿÿÿ‡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿü?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ?ÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ?ÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ?ÿÿÿÿÿÿÿÿÿø?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ?ÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿ‡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿø?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáÿÿÿÿÿÿÿÿÿƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãÿÿÿÿÿÿÿÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÿÿÿÿð +endobj +720 0 obj << +/Length 6 +>> +stream + +endobj +701 0 obj << +/D [714 0 R /XYZ 46.771 529.134 null] +>> endobj +716 0 obj << +/D [714 0 R /XYZ 46.771 529.134 null] +>> endobj +708 0 obj << +/D [714 0 R /XYZ 46.771 386.236 null] +>> endobj +717 0 obj << +/D [714 0 R /XYZ 46.771 371.177 null] +>> endobj +718 0 obj << +/D [714 0 R /XYZ 46.771 290.002 null] +>> endobj +713 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im16 711 0 R >> +/ProcSet [ /PDF /Text /ImageC /ImageI ] +>> endobj +723 0 obj << +/Length 2034 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(52)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -46.209 cm +0 g 0 G +1 0 0 1 5.613 -328.389 cm + q 2.50603 0 0 2.50603 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +103.6796 0 0 131.0395 0 0 cm +/Im17 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.156 -174.336 cm +BT +/F16 10.909 Tf 218.337 155.333 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(17)]TJ +ET +1 0 0 1 93.543 149.775 cm +0 g 0 G +1 0 0 1 -93.543 -149.775 cm +BT +/F16 10.909 Tf 105.499 106.79 Td[(For)-231(let)-231(the)-231(vertices)-231(be)]TJ/F20 10.909 Tf 96.223 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.248 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.249 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-231(and)]TJ/F20 10.909 Tf 23.522 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-231(and)-231(call)-231(the)-231(vertex)]TJ/F20 10.909 Tf 87.431 0 Td[(A)]TJ/F16 10.909 Tf 9.186 0 Td[(the)]TJ -267.299 -13.55 Td[(point)-323(1,)-340(6;)]TJ/F20 10.909 Tf 50.249 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-323(the)-322(point)-323(2;)]TJ/F20 10.909 Tf 61.446 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-323(the)-322(point)-323(3,)-340(4;)-359(and)]TJ/F20 10.909 Tf 92.617 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-323(the)-322(point)-323(5)]TJ -226.131 -13.549 Td[(\050Fig.)-323(16\051.)-322(Pascal's)-275(theorem)-274(then)-274(indicates)-274(that)]TJ/F20 10.909 Tf 203.941 0 Td[(L)-274(=)-274(AB-CD)]TJ/F16 10.909 Tf 51.528 0 Td[(,)]TJ/F20 10.909 Tf 5.719 0 Td[(M)-274(=)]TJ -261.188 -13.549 Td[(AD-BC)]TJ/F16 10.909 Tf 32.117 0 Td[(,)-250(and)]TJ/F20 10.909 Tf 23.944 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-250(w)-1(hich)-250(is)-250(the)-251(intersection)-250(of)-251(the)-250(tangents)-251(at)]TJ/F20 10.909 Tf 192.143 0 Td[(A)]TJ/F16 10.909 Tf 9.397 0 Td[(and)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +722 0 obj << +/Type /Page +/Contents 723 0 R +/Resources 721 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +712 0 obj << +/Type /XObject +/Subtype /Image +/Width 432 +/Height 546 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 707616 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +721 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im17 712 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +724 0 obj +<< /S /GoTo /D (index86) >> +endobj +727 0 obj +() +endobj +729 0 obj +<< /S /GoTo /D (index87) >> +endobj +732 0 obj +() +endobj +735 0 obj << +/Length 3065 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(77.)-250(Inscribed)-250(triangle)-16199(53)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F20 10.909 Tf 46.771 518.175 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-284(are)-284(all)-285(on)-284(a)-284(straight)-285(line)]TJ/F20 10.909 Tf 113.506 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-353(But)-284(if)-284(we)-285(were)-284(to)-284(call)]TJ/F20 10.909 Tf 105.766 0 Td[(A)]TJ/F16 10.909 Tf 9.766 0 Td[(the)-284(point)]TJ -241.769 -13.549 Td[(2,)]TJ/F20 10.909 Tf 11.464 0 Td[(B)]TJ/F16 10.909 Tf 9.836 0 Td[(the)-291(point)-290(6,)-301(1,)]TJ/F20 10.909 Tf 65.03 0 Td[(C)]TJ/F16 10.909 Tf 10.447 0 Td[(the)-291(point)-290(5,)-301(and)]TJ/F20 10.909 Tf 72.489 0 Td[(D)]TJ/F16 10.909 Tf 11.047 0 Td[(the)-291(point)-290(4,)-301(3,)-301(then)-291(the)]TJ -180.313 -13.549 Td[(intersection)]TJ/F20 10.909 Tf 54.451 0 Td[(P)]TJ/F16 10.909 Tf 10.213 0 Td[(of)-325(the)-326(tangents)-325(at)]TJ/F20 10.909 Tf 80.848 0 Td[(B)]TJ/F16 10.909 Tf 10.213 0 Td[(and)]TJ/F20 10.909 Tf 19.302 0 Td[(D)]TJ/F16 10.909 Tf 11.424 0 Td[(are)-325(also)-326(on)-325(this)-325(same)]TJ -186.451 -13.549 Td[(line)]TJ/F20 10.909 Tf 18.918 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-245(Thus)]TJ/F20 10.909 Tf 29.769 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 5.281 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 5.281 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-234(and)]TJ/F20 10.909 Tf 23.588 0 Td[(P)]TJ/F16 10.909 Tf 9.219 0 Td[(are)-234(four)-234(points)-234(on)-234(a)-234(straight)-235(line.)-244(The)]TJ -119.938 -13.55 Td[(consequences)-198(of)-199(this)-198(theorem)-198(are)-198(so)-199(numerous)-198(and)-198(important)-199(that)]TJ 0 -13.549 Td[(we)-250(shall)-250(devote)-250(a)-250(separate)-250(chapter)-250(to)-250(them.)]TJ/F39 10.909 Tf 0 -51.979 Td[(77.)-767(Inscribed)-422(triangle.)]TJ/F16 10.909 Tf 118.307 0 Td[(Finally,)-465(three)-423(of)-422(the)-422(vertices)-422(of)-423(the)]TJ -118.307 -13.549 Td[(hexagon)-398(may)-398(coalesce,)-435(giving)-398(a)-398(triangle)-398(inscribed)-398(in)-398(a)-398(conic.)]TJ 0 -13.549 Td[(Pascal's)-250(theorem)-250(then)-250(reads)-250(as)-250(follows)-250(\050Fig.)-250(17\051)-250(for)-250(this)-250(case:)]TJ/F20 10.909 Tf 11.956 -13.65 Td[(The)-284(three)-285(tangents)-285(at)-284(the)-285(vertices)-284(of)-285(a)-284(triangle)-285(inscribed)-284(in)-285(a)]TJ -11.956 -13.549 Td[(conic)-250(meet)-250(the)-250(opposite)-250(sides)-250(in)-250(three)-250(points)-250(on)-250(a)-250(straight)-250(line.)]TJ/F16 7.97 Tf 291.024 0 Td[([46])]TJ +ET +1 0 0 1 46.771 317.746 cm +0 g 0 G +1 0 0 1 5.636 -178.478 cm + q 1.46678 0 0 1.46678 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +179.0393 0 0 121.6796 0 0 cm +/Im18 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.407 -139.268 cm +BT +/F16 10.909 Tf 171.565 120.264 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(18)]TJ +ET +1 0 0 1 46.771 114.668 cm +0 g 0 G +1 0 0 1 0 -75.886 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +734 0 obj << +/Type /Page +/Contents 735 0 R +/Resources 733 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +728 0 obj << +/Type /XObject +/Subtype /Image +/Width 746 +/Height 507 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1134666 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +725 0 obj << +/D [734 0 R /XYZ 46.771 425.842 null] +>> endobj +736 0 obj << +/D [734 0 R /XYZ 46.771 409.732 null] +>> endobj +737 0 obj << +/D [734 0 R /XYZ 46.771 341.895 null] +>> endobj +730 0 obj << +/D [734 0 R /XYZ 46.771 66.142 null] +>> endobj +733 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im18 728 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +738 0 obj +<< /S /GoTo /D (index88) >> +endobj +741 0 obj +(PROBLEMS) +endobj +744 0 obj << +/Length 5353 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(54)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(78.)-999(Degenerate)-499(conic.)]TJ/F16 10.909 Tf 120.546 0 Td[(If)-500(we)-499(apply)-500(Pascal's)-499(theorem)-500(to)-499(a)]TJ -120.546 -13.549 Td[(degenerate)-303(conic)-303(made)-303(up)-303(of)-302(a)-303(pair)-303(of)-303(straight)-303(lines,)-316(we)-303(get)-303(the)]TJ 0 -13.549 Td[(following)-250(theorem)-250(\050Fig.)-250(18\051:)]TJ/F20 10.909 Tf 11.956 -14.731 Td[(If)-392(three)-391(points,)-427(A,)-392(B,)-391(C,)-392(are)-391(chosen)-392(on)-391(o)-1(ne)-391(line,)-427(and)-392(three)]TJ -11.956 -13.55 Td[(points,)-278(A',)-272(B',)-272(C',)-272(are)-273(chosen)-272(on)-272(another,)-278(then)-272(the)-272(three)-272(points)-273(L)]TJ 0 -13.549 Td[(=)-239(AB'-A'B,)-239(M)-240(=)-239(BC'-B'C,)-239(N)-239(=)-239(CA'-C'A)-240(are)-239(all)-239(on)-239(a)-239(straight)-240(line.)]TJ/F16 15.781 Tf 0 -68.68 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -35.167 Td[(1.)-454(In)-318(Fig.)-454(12,)-335(select)-318(different)-318(lines)]TJ/F20 10.909 Tf 158.632 0 Td[(u)]TJ/F16 10.909 Tf 8.924 0 Td[(and)-318(trace)-318(the)-318(locus)-318(of)-318(the)]TJ -167.556 -13.55 Td[(center)-250(of)-250(perspectivity)]TJ/F20 10.909 Tf 100.277 0 Td[(M)]TJ/F16 10.909 Tf 11.814 0 Td[(of)-250(the)-250(lines)]TJ/F20 10.909 Tf 51.207 0 Td[(u)]TJ/F16 10.909 Tf 8.182 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)]TJ -185.793 -14.731 Td[(2.)-651(Given)-383(four)-384(points,)]TJ/F20 10.909 Tf 102.433 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.912 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.912 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.911 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-384(in)-383(the)-384(plane,)-417(construct)-383(a)]TJ -163.607 -13.549 Td[(fifth)-353(point)]TJ/F20 10.909 Tf 48.914 0 Td[(P)]TJ/F16 10.909 Tf 10.514 0 Td[(such)-353(that)-353(the)-353(lines)]TJ/F20 10.909 Tf 85.697 0 Td[(PA)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 6.577 0 Td[(PB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 6.577 0 Td[(PC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ/F20 10.909 Tf 6.577 0 Td[(PD)]TJ/F16 10.909 Tf 18.391 0 Td[(shall)-353(be)-353(four)]TJ -223.851 -13.549 Td[(harmonic)-250(lines.)]TJ/F20 10.909 Tf 11.955 -14.731 Td[(Suggestion.)]TJ/F16 10.909 Tf 55.902 0 Td[(Draw)-328(a)-329(line)]TJ/F20 10.909 Tf 56.185 0 Td[(a)]TJ/F16 10.909 Tf 9.037 0 Td[(through)-328(the)-329(point)]TJ/F20 10.909 Tf 80.447 0 Td[(A)]TJ/F16 10.909 Tf 10.247 0 Td[(such)-328(that)-329(the)]TJ -223.773 -13.549 Td[(four)-316(lines)]TJ/F20 10.909 Tf 45.665 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 6.347 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 6.169 0 Td[(AC)]TJ/F16 10.909 Tf 13.941 0 Td[(,)]TJ/F20 10.909 Tf 6.169 0 Td[(AD)]TJ/F16 10.909 Tf 17.983 0 Td[(are)-315(harmonic.)-447(Construct)-315(now)-316(a)-315(conic)]TJ -115.06 -13.55 Td[(through)]TJ/F20 10.909 Tf 36.666 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-250(and)]TJ/F20 10.909 Tf 23.934 0 Td[(D)]TJ/F16 10.909 Tf 10.604 0 Td[(having)]TJ/F20 10.909 Tf 32.422 0 Td[(a)]TJ/F16 10.909 Tf 8.182 0 Td[(for)-250(a)-250(tangent)-250(at)]TJ/F20 10.909 Tf 68.465 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(.)]TJ -206.499 -14.731 Td[(3.)-351(Where)-284(are)-284(all)-284(the)-284(points)]TJ/F20 10.909 Tf 120.802 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-284(as)-284(determined)-284(in)-283(the)-284(preceding)]TJ -139.422 -13.549 Td[(question,)-250(to)-250(be)-250(found?)]TJ 11.955 -14.731 Td[(4.)-344(Select)-281(any)-281(five)-282(points)-281(in)-281(the)-281(plane)-282(and)-281(draw)-281(the)-281(tangent)-282(to)]TJ -11.955 -13.549 Td[(the)-250(conic)-250(through)-250(them)-250(at)-250(each)-250(of)-250(the)-250(five)-250(points.)]TJ 11.955 -14.731 Td[(5.)-477(Given)-325(four)-326(points)-325(on)-326(the)-325(conic,)-345(and)-325(the)-326(tangent)-326(at)-325(one)-326(of)]TJ -11.955 -13.55 Td[(them,)-392(to)-363(construct)-363(the)-363(conic.)-590(\050"To)-363(construct)-363(the)-363(conic")-364(means)]TJ 0 -13.549 Td[(here)-250(to)-250(construct)-250(as)-250(many)-250(other)-250(points)-250(as)-250(may)-250(be)-250(desired.\051)]TJ/F16 7.97 Tf -72.756 0 Td[([47])]TJ/F16 10.909 Tf 84.711 -14.731 Td[(6.)-395(Given)-298(three)-298(points)-299(on)-298(the)-298(conic,)-310(and)-299(the)-298(tangent)-298(at)-298(two)-299(of)]TJ -11.955 -13.549 Td[(them,)-250(to)-250(construct)-250(the)-250(conic.)]TJ 11.955 -14.731 Td[(7.)-374(Given)-292(five)-291(points,)-302(two)-291(of)-292(which)-291(are)-291(at)-292(infinity)-291(in)-292(different)]TJ -11.955 -13.549 Td[(directions,)-325(to)-311(construct)-310(the)-311(conic.)-431(\050In)-310(this,)-325(and)-311(in)-310(the)-311(following)]TJ 0 -13.55 Td[(examples,)-510(the)-458(student)-458(is)-457(supposed)-458(to)-458(be)-458(able)-458(to)-458(draw)-458(a)-458(line)]TJ 0 -13.549 Td[(parallel)-250(to)-250(a)-250(given)-250(line.\051)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +743 0 obj << +/Type /Page +/Contents 744 0 R +/Resources 742 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +745 0 obj << +/D [743 0 R /XYZ 93.543 529.134 null] +>> endobj +739 0 obj << +/D [743 0 R /XYZ 93.543 420.443 null] +>> endobj +746 0 obj << +/D [743 0 R /XYZ 93.543 147.423 null] +>> endobj +742 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +749 0 obj << +/Length 1732 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(55)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 58.727 518.175 Td[(8.)-403(Given)-301(four)-302(points)-301(on)-301(a)-301(conic)-301(\050two)-301(of)-301(which)-301(are)-302(at)-301(infinity)]TJ -11.956 -13.549 Td[(and)-257(two)-258(in)-257(the)-257(finite)-258(part)-257(of)-257(the)-258(plane\051,)-259(together)-257(with)-257(the)-258(tangent)]TJ 0 -13.549 Td[(at)-250(one)-250(of)-250(the)-250(finite)-250(points,)-250(to)-250(construct)-250(the)-250(conic.)]TJ 11.956 -13.549 Td[(9.)-511(The)-337(tangents)-337(to)-337(a)-337(curve)-337(at)-337(its)-337(infinitely)-337(distant)-337(points)-337(are)]TJ -11.956 -13.55 Td[(called)-420(its)]TJ/F20 10.909 Tf 45.517 0 Td[(asymptotes)]TJ/F16 10.909 Tf 53.058 0 Td[(if)-420(they)-419(pass)-420(through)-420(a)-419(finite)-420(part)-420(of)-419(the)]TJ -98.575 -13.549 Td[(plane.)-673(Given)-391(the)-390(asymptotes)-391(and)-391(a)-391(finite)-391(point)-391(of)-391(a)-390(c)-1(onic,)-426(to)]TJ 0 -13.549 Td[(construct)-250(the)-250(conic.)]TJ 11.956 -13.549 Td[(10.)-436(Given)-312(an)-311(asymptote)-312(and)-312(three)-312(finite)-312(points)-312(on)-312(the)-312(conic,)]TJ -11.956 -13.549 Td[(to)-250(determine)-250(the)-250(conic.)]TJ 11.956 -13.55 Td[(11.)-439(Given)-314(four)-313(points,)-329(one)-313(of)-313(which)-313(is)-313(at)-314(infinity,)-328(and)-314(given)]TJ -11.956 -13.549 Td[(also)-393(that)-393(the)-393(line)-394(at)-393(infinity)-393(is)-393(a)-393(tangent)-393(line,)-429(to)-393(construct)-394(the)]TJ 0 -13.549 Td[(conic.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +748 0 obj << +/Type /Page +/Contents 749 0 R +/Resources 747 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +747 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +750 0 obj +<< /S /GoTo /D (index89) >> +endobj +753 0 obj +(CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER) +endobj +754 0 obj +<< /S /GoTo /D (index90) >> +endobj +757 0 obj +() +endobj +759 0 obj +<< /S /GoTo /D (index91) >> +endobj +762 0 obj +() +endobj +765 0 obj << +/Length 2866 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([48])]TJ/F16 18.959 Tf 72.755 -65.451 Td[(CHAPTER)-238(V)-238(-)-238(PENCILS)-238(OF)-238(RAYS)]TJ 0 -24.646 Td[(OF)-250(THE)-250(SECOND)-250(ORDER)]TJ/F39 10.909 Tf 0 -72.894 Td[(79.)-1096(Pencil)-532(of)-533(rays)-532(of)-532(the)-532(second)-532(order)-532(defined.)]TJ/F16 10.909 Tf 254.229 0 Td[(If)-532(the)]TJ -254.229 -13.549 Td[(corresponding)-306(points)-306(of)-307(two)-306(projective)-306(point-rows)-306(be)-306(joined)-307(by)]TJ 0 -13.549 Td[(straight)-413(lines,)-455(a)-413(system)-413(of)-414(lines)-413(is)-413(obtained)-414(which)-413(is)-413(called)-414(a)]TJ 0 -13.55 Td[(pencil)-362(of)-362(rays)-361(of)-362(the)-362(second)-361(order.)-586(This)-361(name)-362(arises)-362(from)-362(the)]TJ 0 -13.549 Td[(fact,)-373(easily)-348(shown)-348(\050\247)-348(57\051,)-373(that)-348(at)-348(most)-348(two)-348(lines)-348(of)-348(the)-349(system)]TJ 0 -13.549 Td[(may)-245(pass)-245(through)-245(any)-246(arbitrary)-245(point)-245(in)-245(the)-245(plane.)-248(For)-245(if)-246(through)]TJ 0 -13.549 Td[(any)-334(point)-335(there)-334(should)-334(pass)-335(three)-334(lines)-334(of)-335(the)-334(system,)-355(then)-335(this)]TJ 0 -13.549 Td[(point)-431(might)-431(be)-431(tak)-1(en)-431(as)-431(the)-431(center)-431(of)-431(two)-431(projective)-432(pencils,)]TJ 0 -13.55 Td[(one)-282(projecting)-281(one)-282(point-row)-282(and)-281(the)-282(other)-281(projecting)-282(the)-282(other.)]TJ 0 -13.549 Td[(Since,)-264(now,)-264(these)-262(pencils)-261(have)-261(three)-261(rays)-262(of)-261(one)-261(coincident)-262(with)]TJ 0 -13.549 Td[(the)-389(corresponding)-389(rays)-389(of)-389(the)-389(other,)-424(the)-389(two)-389(are)-389(identical)-389(and)]TJ 0 -13.549 Td[(the)-371(two)-370(point-rows)-371(are)-371(in)-371(perspective)-370(position,)-401(which)-371(was)-371(not)]TJ 0 -13.549 Td[(supposed.)]TJ/F39 10.909 Tf 0 -80.44 Td[(80.)-491(Tangents)-330(to)-330(a)-330(circle.)]TJ/F16 10.909 Tf 120.888 0 Td[(To)-330(get)-330(a)-330(clear)-331(notion)-330(of)-330(this)-330(system)]TJ -120.888 -13.55 Td[(of)-326(lines,)-345(we)-326(may)-326(first)-326(show)-326(that)-326(the)-326(tangents)-326(to)-326(a)-326(circle)-326(form)-326(a)]TJ 0 -13.549 Td[(system)-358(of)-359(this)-358(kind.)-575(For)-358(take)-358(any)-359(two)-358(tangents,)]TJ/F20 10.909 Tf 219.646 0 Td[(u)]TJ/F16 10.909 Tf 9.363 0 Td[(and)]TJ/F20 10.909 Tf 19.661 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-385(to)-359(a)]TJ -256.459 -13.549 Td[(circle,)-375(and)-351(let)]TJ/F20 10.909 Tf 65.353 0 Td[(A)]TJ/F16 10.909 Tf 10.485 0 Td[(and)]TJ/F20 10.909 Tf 19.573 0 Td[(B)]TJ/F16 10.909 Tf 10.485 0 Td[(be)-350(the)-350(points)-351(of)-350(contact)-350(\050Fig.)-551(19\051.)-550(Let)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +764 0 obj << +/Type /Page +/Contents 765 0 R +/Resources 763 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 719 0 R +>> endobj +751 0 obj << +/D [764 0 R /XYZ 93.543 529.134 null] +>> endobj +766 0 obj << +/D [764 0 R /XYZ 93.543 518.175 null] +>> endobj +755 0 obj << +/D [764 0 R /XYZ 93.543 379.964 null] +>> endobj +767 0 obj << +/D [764 0 R /XYZ 93.543 363.349 null] +>> endobj +760 0 obj << +/D [764 0 R /XYZ 93.543 137.18 null] +>> endobj +768 0 obj << +/D [764 0 R /XYZ 93.543 120.565 null] +>> endobj +763 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +769 0 obj +<< /S /GoTo /D (index92) >> +endobj +772 0 obj +() +endobj +775 0 obj << +/Length 5368 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(81.)-250(Tangents)-250(to)-250(a)-250(conic)-15421(57)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.626 -177.218 cm + q 2.46136 0 0 2.46136 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +105.5996 0 0 71.9997 0 0 cm +/Im19 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.397 -351.916 cm +BT +/F16 10.909 Tf 171.565 332.912 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(19)]TJ +ET +1 0 0 1 46.771 327.218 cm +0 g 0 G +1 0 0 1 -46.771 -327.218 cm +BT +/F16 10.909 Tf 46.771 305.385 Td[(now)]TJ/F20 10.909 Tf 21.214 0 Td[(t)]TJ/F16 10.909 Tf 5.461 0 Td[(be)-223(any)-222(third)-223(tangent)-222(with)-223(point)-222(of)-223(contact)-223(at)]TJ/F20 10.909 Tf 190.921 0 Td[(C)]TJ/F16 10.909 Tf 9.704 0 Td[(and)-223(meeting)]TJ/F20 10.909 Tf -227.3 -13.55 Td[(u)]TJ/F16 10.909 Tf 8.874 0 Td[(and)]TJ/F20 10.909 Tf 19.171 0 Td[(u')]TJ/F16 10.909 Tf 11.207 0 Td[(in)]TJ/F20 10.909 Tf 11.906 0 Td[(P)]TJ/F16 10.909 Tf 10.084 0 Td[(and)]TJ/F20 10.909 Tf 19.171 0 Td[(P')]TJ/F16 10.909 Tf 12.418 0 Td[(respectively.)-440(Join)]TJ/F20 10.909 Tf 81.845 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.146 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.146 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.146 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-313(and)]TJ/F20 10.909 Tf 25.317 0 Td[(C)]TJ/F16 10.909 Tf 10.694 0 Td[(to)]TJ/F20 10.909 Tf 11.906 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ -277.903 -13.549 Td[(the)-304(center)-305(of)-304(the)-304(circle.)-413(Tangents)-304(from)-304(any)-305(point)-304(to)-304(a)-304(circle)-305(are)]TJ 0 -13.549 Td[(equal,)-397(and)-367(therefore)-367(the)-368(triangles)]TJ/F20 10.909 Tf 152.737 0 Td[(POA)]TJ/F16 10.909 Tf 25.212 0 Td[(and)]TJ/F20 10.909 Tf 19.76 0 Td[(POC)]TJ/F16 10.909 Tf 25.824 0 Td[(are)-367(equal,)-397(as)]TJ -223.533 -13.549 Td[(also)-243(are)-243(the)-243(triangles)]TJ/F20 10.909 Tf 92.398 0 Td[(P'OB)]TJ/F16 10.909 Tf 28.842 0 Td[(and)]TJ/F20 10.909 Tf 18.403 0 Td[(P'OC)]TJ/F16 10.909 Tf 24.153 0 Td[(.)-243(Therefore)-243(the)-243(angle)]TJ/F20 10.909 Tf 93.292 0 Td[(POP')]TJ/F16 7.97 Tf 33.936 0 Td[([49])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(is)-282(constant,)-290(being)-281(equal)-282(to)-282(half)-282(the)-281(constant)-282(angle)]TJ/F20 10.909 Tf 220.756 0 Td[(AOC)-282(+)-281(COB)]TJ/F16 10.909 Tf 57.147 0 Td[(.)]TJ -277.903 -13.55 Td[(This)-256(being)-256(true,)-258(if)-256(we)-256(take)-256(any)-256(four)-256(harmonic)-256(points,)]TJ/F20 10.909 Tf 233.383 0 Td[(P)]TJ/F20 8.966 Tf 6.666 -3.927 Td[(1)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 5.537 0 Td[(P)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(2)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 5.537 0 Td[(P)]TJ/F20 8.966 Tf 6.666 -3.927 Td[(3)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(P)]TJ/F20 8.966 Tf 6.666 -3.927 Td[(4)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)-326(on)-310(the)-310(line)]TJ/F20 10.909 Tf 57.041 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-326(they)-310(will)-310(project)-311(to)]TJ/F20 10.909 Tf 94.365 0 Td[(O)]TJ/F16 10.909 Tf 11.262 0 Td[(in)-310(four)-311(harmonic)-310(lines,)]TJ -179.271 -13.549 Td[(and)-354(the)-354(tangents)-354(to)-354(the)-354(circle)-354(from)-354(these)-354(four)-354(points)-355(will)-354(meet)]TJ/F20 10.909 Tf 0 -13.549 Td[(u')]TJ/F16 10.909 Tf 11.518 0 Td[(in)-342(four)-342(harmonic)-341(points,)]TJ/F20 10.909 Tf 112.431 0 Td[(P')]TJ/F20 8.966 Tf 9 -3.928 Td[(1)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)]TJ/F20 10.909 Tf 6.707 0 Td[(P')]TJ/F20 8.966 Tf 9 -3.928 Td[(2)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)]TJ/F20 10.909 Tf 6.706 0 Td[(P')]TJ/F20 8.966 Tf 9 -3.928 Td[(3)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)]TJ/F20 10.909 Tf 6.707 0 Td[(P')]TJ/F20 8.966 Tf 9 -3.928 Td[(4)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)-365(because)-342(the)-341(lines)]TJ -198.001 -13.549 Td[(from)-269(these)-269(points)-269(to)]TJ/F20 10.909 Tf 90.522 0 Td[(O)]TJ/F16 10.909 Tf 10.81 0 Td[(inclose)-269(the)-269(same)-269(angles)-269(as)-269(the)-269(lines)-269(from)]TJ -101.332 -13.55 Td[(the)-310(points)]TJ/F20 10.909 Tf 46.767 0 Td[(P)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(1)]TJ/F16 10.909 Tf 4.484 3.927 Td[(,)]TJ/F20 10.909 Tf 6.272 0 Td[(P)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(2)]TJ/F16 10.909 Tf 4.484 3.927 Td[(,)]TJ/F20 10.909 Tf 6.272 0 Td[(P)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(3)]TJ/F16 10.909 Tf 4.484 3.927 Td[(,)]TJ/F20 10.909 Tf 6.272 0 Td[(P)]TJ/F20 8.966 Tf 6.665 -3.927 Td[(4)]TJ/F16 10.909 Tf 7.865 3.927 Td[(on)]TJ/F20 10.909 Tf 14.291 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-430(The)-310(point-row)-310(on)]TJ/F20 10.909 Tf 88.46 0 Td[(u)]TJ/F16 10.909 Tf 8.836 0 Td[(is)-310(therefore)]TJ -230.601 -13.549 Td[(projective)-215(to)-214(the)-215(point-row)-214(on)]TJ/F20 10.909 Tf 131.082 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-238(Thus)-215(the)-214(tangents)-215(to)-215(a)-214(circle)-215(are)]TJ -138.871 -13.549 Td[(seen)-296(to)-295(join)-296(corresponding)-296(points)-296(on)-295(two)-296(projective)-296(point-rows,)]TJ 0 -13.549 Td[(and)-304(so,)-317(according)-304(to)-304(the)-304(definition,)-317(form)-304(a)-304(pencil)-304(of)-304(rays)-304(of)-304(the)]TJ 0 -13.549 Td[(second)-250(order.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +774 0 obj << +/Type /Page +/Contents 775 0 R +/Resources 773 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +758 0 obj << +/Type /XObject +/Subtype /Image +/Width 440 +/Height 300 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 396000 +>> +stream +ýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +776 0 obj << +/D [774 0 R /XYZ 165.361 251.188 null] +>> endobj +770 0 obj << +/D [774 0 R /XYZ 46.771 81.041 null] +>> endobj +777 0 obj << +/D [774 0 R /XYZ 46.771 66.142 null] +>> endobj +773 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/XObject << /Im19 758 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +779 0 obj +<< /S /GoTo /D (index93) >> +endobj +782 0 obj +() +endobj +783 0 obj +<< /S /GoTo /D (index94) >> +endobj +786 0 obj +() +endobj +790 0 obj << +/Length 4672 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(58)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(81.)-712(Tangents)-404(to)-404(a)-404(conic.)]TJ/F16 10.909 Tf 126.941 0 Td[(If)-404(now)-404(this)-404(figure)-404(be)-404(projected)-404(to)]TJ -126.941 -13.549 Td[(a)-384(point)-385(outside)-384(the)-384(plane)-385(of)-384(the)-384(circle,)-418(and)-385(any)-384(section)-384(of)-385(the)]TJ 0 -13.549 Td[(resulting)-371(cone)-371(be)-371(made)-370(by)-371(a)-371(plane,)-401(we)-371(can)-371(easily)-371(see)-371(that)-371(the)]TJ 0 -13.549 Td[(system)-352(of)-353(rays)-352(tangent)-353(to)-352(any)-352(conic)-353(section)-352(is)-352(a)-353(pencil)-352(of)-353(rays)]TJ 0 -13.55 Td[(of)-333(the)-332(second)-333(order.)-497(The)-332(co)-1(nverse)-332(is)-332(also)-333(true,)-353(as)-333(we)-332(shall)-333(see)]TJ 0 -13.549 Td[(later,)-229(and)-225(a)-224(pencil)-224(of)-225(rays)-224(of)-224(the)-225(second)-224(order)-224(is)-224(also)-225(a)-224(set)-224(of)-225(lines)]TJ 0 -13.549 Td[(tangent)-250(to)-250(a)-250(conic)-250(section.)]TJ/F39 10.909 Tf 0 -55.258 Td[(82.)]TJ/F16 10.909 Tf 16.464 0 Td[(The)-253(point-rows)]TJ/F20 10.909 Tf 69.755 0 Td[(u)]TJ/F16 10.909 Tf 8.215 0 Td[(and)]TJ/F20 10.909 Tf 18.513 0 Td[(u')]TJ/F16 10.909 Tf 10.55 0 Td[(are,)-254(themselves,)-254(lines)-253(of)-253(the)-253(system,)]TJ -123.497 -13.549 Td[(for)-295(to)-295(the)-295(common)-295(point)-295(of)-295(the)-295(two)-295(point-rows,)-306(considered)-295(as)-295(a)]TJ 0 -13.549 Td[(point)-227(of)]TJ/F20 10.909 Tf 36.47 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-232(must)-227(correspond)-227(some)-227(point)-227(of)]TJ/F20 10.909 Tf 141.87 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-232(and)-227(the)-227(line)-227(joining)]TJ -191.583 -13.549 Td[(these)-297(two)-296(corresponding)-297(points)-296(is)-297(clearly)]TJ/F20 10.909 Tf 184.238 0 Td[(u')]TJ/F16 10.909 Tf 11.025 0 Td[(itself.)-390(Similarly)-296(for)]TJ -195.263 -13.55 Td[(the)-250(line)]TJ/F20 10.909 Tf 35.149 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ/F39 10.909 Tf -40.604 -55.257 Td[(83.)-858(Determination)-453(of)-452(the)-453(pencil.)]TJ/F16 10.909 Tf 169.277 0 Td[(We)-453(now)-452(show)-453(that)]TJ/F20 10.909 Tf 93.073 0 Td[(it)-453(is)]TJ -262.35 -13.55 Td[(possible)-404(to)-404(assign)-404(arbitrarily)-404(three)-404(lines,)-442(a,)-443(b,)-442(and)-404(c,)-443(of)-808(the)]TJ/F16 7.97 Tf -72.756 0 Td[([50])]TJ/F20 10.909 Tf 72.756 -13.549 Td[(system)-340(\050besides)-340(the)-340(lines)-340(u)-340(and)-340(u'\051;)-385(but)-340(if)-340(these)-340(three)-340(lines)-340(are)]TJ 0 -13.549 Td[(chosen,)-250(the)-250(system)-250(is)-250(completely)-250(determined.)]TJ/F16 10.909 Tf 11.955 -14.014 Td[(This)-250(statement)-250(is)-250(equivalent)-250(to)-250(the)-250(following:)]TJ/F20 10.909 Tf 0 -14.014 Td[(Given)-357(three)-356(pairs)-356(of)-357(corresponding)-356(points)-357(in)-356(two)-357(projective)]TJ -11.955 -13.549 Td[(point-rows,)-209(it)-198(is)-199(possible)-199(to)-198(find)-199(a)-198(point)-199(in)-198(one)-199(which)-199(corresponds)]TJ 0 -13.549 Td[(to)-250(any)-250(point)-250(of)-250(the)-250(other.)]TJ/F16 10.909 Tf 11.955 -14.014 Td[(We)-250(proceed,)-250(then,)-250(to)-250(the)-250(solution)-250(of)-250(the)-250(fundamental)]TJ 0 -14.014 Td[(P)]TJ/F16 7.97 Tf 6.066 0 Td[(ROBLEM)]TJ/F16 10.909 Tf 33.211 0 Td[(.)]TJ/F20 10.909 Tf 6.368 0 Td[(Given)-334(three)-333(pairs)-334(of)-334(points,)-355(AA',)-333(BB',)-334(and)-334(CC',)-334(of)]TJ -57.6 -13.549 Td[(two)-409(projective)-408(point-rows)-409(u)-408(and)-409(u',)-448(to)-409(find)-408(the)-409(point)-409(D')-408(of)-409(u')]TJ 0 -13.549 Td[(which)-250(corresponds)-250(to)-250(any)-250(given)-250(point)-250(D)-250(of)-250(u.)]TJ/F16 10.909 Tf 11.955 -41.577 Td[(On)-310(the)-310(line)]TJ/F20 10.909 Tf 53.168 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-325(joining)]TJ/F20 10.909 Tf 40.568 0 Td[(A)]TJ/F16 10.909 Tf 10.046 0 Td[(and)]TJ/F20 10.909 Tf 19.133 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)-310(take)-310(two)-310(points,)]TJ/F20 10.909 Tf 80.352 0 Td[(S)]TJ/F16 10.909 Tf 8.835 0 Td[(and)]TJ/F20 10.909 Tf 19.134 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-310(as)]TJ -265.435 -13.549 Td[(centers)-284(of)-283(pencils)-284(perspective)-284(to)]TJ/F20 10.909 Tf 144.529 0 Td[(u)]TJ/F16 10.909 Tf 8.55 0 Td[(and)]TJ/F20 10.909 Tf 18.847 0 Td[(u')]TJ/F16 10.909 Tf 10.884 0 Td[(respectively)-284(\050Fig.)-351(20\051.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +789 0 obj << +/Type /Page +/Contents 790 0 R +/Resources 788 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +780 0 obj << +/D [789 0 R /XYZ 93.543 410.825 null] +>> endobj +791 0 obj << +/D [789 0 R /XYZ 93.543 393.258 null] +>> endobj +784 0 obj << +/D [789 0 R /XYZ 93.543 303.651 null] +>> endobj +792 0 obj << +/D [789 0 R /XYZ 93.543 286.083 null] +>> endobj +793 0 obj << +/D [789 0 R /XYZ 356.435 258.618 null] +>> endobj +788 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +794 0 obj +<< /S /GoTo /D (index95) >> +endobj +797 0 obj +() +endobj +799 0 obj +<< /S /GoTo /D (index96) >> +endobj +802 0 obj +() +endobj +805 0 obj << +/Length 7916 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(84.)-250(Brianchon's)-250(theorem)-14963(59)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(The)-248(figure)-247(will)-248(be)-247(much)-248(simplified)-248(if)-247(we)-248(take)]TJ/F20 10.909 Tf 200.645 0 Td[(S)]TJ/F16 10.909 Tf 8.155 0 Td[(on)]TJ/F20 10.909 Tf 13.611 0 Td[(BB')]TJ/F16 10.909 Tf 18.366 0 Td[(and)]TJ/F20 10.909 Tf 18.454 0 Td[(S')]TJ/F16 10.909 Tf 10.49 0 Td[(on)]TJ/F20 10.909 Tf -269.721 -13.549 Td[(CC')]TJ/F16 10.909 Tf 16.888 0 Td[(.)]TJ/F20 10.909 Tf 5.511 0 Td[(SA)]TJ/F16 10.909 Tf 14.904 0 Td[(and)]TJ/F20 10.909 Tf 18.536 0 Td[(S'A')]TJ/F16 10.909 Tf 19.573 0 Td[(are)-255(corresponding)-255(rays)-256(of)]TJ/F20 10.909 Tf 114.128 0 Td[(S)]TJ/F16 10.909 Tf 8.239 0 Td[(and)]TJ/F20 10.909 Tf 18.536 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-255(and)-255(the)-256(two)]TJ -224.104 -13.549 Td[(pencils)-267(are)-266(therefore)-267(in)-267(perspective)-267(position.)-300(It)-266(is)-267(not)-267(difficult)-267(to)]TJ 0 -13.549 Td[(see)-307(that)-306(the)-307(axis)-306(of)-307(perspectivity)]TJ/F20 10.909 Tf 146.706 0 Td[(m)]TJ/F16 10.909 Tf 11.22 0 Td[(is)-306(the)-307(line)-306(joining)]TJ/F20 10.909 Tf 81.261 0 Td[(B')]TJ/F16 10.909 Tf 12.343 0 Td[(and)]TJ/F20 10.909 Tf 19.097 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)]TJ -277.903 -13.55 Td[(Given)-252(any)-251(point)]TJ/F20 10.909 Tf 73.076 0 Td[(D)]TJ/F16 10.909 Tf 10.621 0 Td[(on)]TJ/F20 10.909 Tf 13.653 0 Td[(u)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-252(to)-252(find)-251(the)-252(corresponding)-251(point)]TJ/F20 10.909 Tf 143.429 0 Td[(D')]TJ/F16 10.909 Tf 12.955 0 Td[(on)]TJ/F20 10.909 Tf 13.653 0 Td[(u')]TJ/F16 10.909 Tf -272.841 -13.549 Td[(we)-323(proceed)-323(as)-323(follows:)-397(Join)]TJ/F20 10.909 Tf 128.703 0 Td[(D)]TJ/F16 10.909 Tf 11.4 0 Td[(to)]TJ/F20 10.909 Tf 12.012 0 Td[(S)]TJ/F16 10.909 Tf 8.979 0 Td[(and)-323(note)-323(where)-323(the)-324(joining)]TJ -161.094 -13.549 Td[(line)-300(meets)]TJ/F20 10.909 Tf 48.354 0 Td[(m)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-399(Join)-300(this)-300(point)-299(to)]TJ/F20 10.909 Tf 85.026 0 Td[(S')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-300(This)-299(last)-300(line)-300(meets)]TJ/F20 10.909 Tf 95.439 0 Td[(u')]TJ/F16 10.909 Tf 11.058 0 Td[(in)-300(the)]TJ -255.542 -13.549 Td[(desired)-250(point)]TJ/F20 10.909 Tf 59.389 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(.)]TJ -57.644 -13.549 Td[(We)-279(have)-279(now)-279(in)-279(this)-280(figure)-279(six)-279(lines)-279(of)-279(the)-279(system,)]TJ/F20 10.909 Tf 227.185 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.851 0 Td[(b)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.851 0 Td[(c)]TJ/F16 10.909 Tf 4.844 0 Td[(,)]TJ/F20 10.909 Tf 5.851 0 Td[(d)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.55 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-257(and)]TJ/F20 10.909 Tf 24.066 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(.)-266(Fix)-255(now)-256(the)-255(position)-256(of)]TJ/F20 10.909 Tf 110.474 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.528 0 Td[(u')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ/F20 10.909 Tf 5.527 0 Td[(b)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.527 0 Td[(c)]TJ/F16 10.909 Tf 4.844 0 Td[(,)-257(and)]TJ/F20 10.909 Tf 24.066 0 Td[(d)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-257(and)-255(take)-255(four)]TJ -217.429 -13.549 Td[(lines)-229(of)-229(the)-229(system,)]TJ/F20 10.909 Tf 86.102 0 Td[(a)]TJ/F20 8.966 Tf 5.455 -3.927 Td[(1)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 5.273 0 Td[(a)]TJ/F20 8.966 Tf 5.454 -3.927 Td[(2)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 5.273 0 Td[(a)]TJ/F20 8.966 Tf 5.454 -3.927 Td[(3)]TJ/F16 10.909 Tf 4.483 3.927 Td[(,)]TJ/F20 10.909 Tf 5.273 0 Td[(a)]TJ/F20 8.966 Tf 5.454 -3.927 Td[(4)]TJ/F16 10.909 Tf 4.484 3.927 Td[(,)-233(which)-229(meet)]TJ/F20 10.909 Tf 58.14 0 Td[(b)]TJ/F16 10.909 Tf 7.954 0 Td[(in)-229(four)-229(harmonic)]TJ -207.765 -13.549 Td[(points.)-431(These)-311(points)-310(project)-311(to)]TJ/F20 10.909 Tf 142.545 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-310(givin)-1(g)-310(four)-310(harmonic)-311(points)]TJ/F16 7.97 Tf 140.603 0 Td[([51])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(on)]TJ/F20 10.909 Tf 13.858 0 Td[(m)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-311(These)-270(again)-270(project)-271(to)]TJ/F20 10.909 Tf 106.373 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(,)-270(giving)-271(four)-270(harmonic)-270(points)-270(on)]TJ/F20 10.909 Tf -138.318 -13.549 Td[(c)]TJ/F16 10.909 Tf 4.844 0 Td[(.)-241(It)-221(is)-222(thus)-222(clear)-221(that)-222(the)-222(rays)]TJ/F20 10.909 Tf 123.475 0 Td[(a)]TJ/F20 8.966 Tf 5.455 -3.928 Td[(1)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(a)]TJ/F20 8.966 Tf 5.454 -3.928 Td[(2)]TJ/F16 10.909 Tf 4.484 3.928 Td[(,)]TJ/F20 10.909 Tf 5.207 0 Td[(a)]TJ/F20 8.966 Tf 5.455 -3.928 Td[(3)]TJ/F16 10.909 Tf 4.483 3.928 Td[(,)]TJ/F20 10.909 Tf 5.208 0 Td[(a)]TJ/F20 8.966 Tf 5.454 -3.928 Td[(4)]TJ/F16 10.909 Tf 6.902 3.928 Td[(cut)-222(out)-221(two)-222(projective)]TJ -186.112 -13.55 Td[(point-rows)-364(on)-364(any)-364(two)-364(lines)-364(of)-364(the)-364(system.)-592(Thus)]TJ/F20 10.909 Tf 226.4 0 Td[(u)]TJ/F16 10.909 Tf 9.426 0 Td[(and)]TJ/F20 10.909 Tf 19.724 0 Td[(u')]TJ/F16 10.909 Tf 11.76 0 Td[(are)]TJ -267.31 -13.549 Td[(not)-242(special)-242(rays,)-243(and)-242(any)-242(two)-242(rays)-242(of)-241(the)-242(system)-242(will)-242(serve)-242(as)-242(the)]TJ 0 -13.549 Td[(point-rows)-250(to)-250(generate)-250(the)-250(system)-250(of)-250(lines.)]TJ/F39 10.909 Tf 0 -49.877 Td[(84.)-904(Brianchon's)-468(theorem.)]TJ/F16 10.909 Tf 136.345 0 Td[(From)-468(the)-468(figure)-468(also)-468(appears)-468(a)]TJ -136.345 -13.549 Td[(fundamental)-250(theorem)-250(due)-250(to)-250(Brianchon:)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(If)-346(1,)-370(2,)-370(3,)-371(4,)-370(5,)-370(6)-346(are)-346(any)-347(six)-346(rays)-346(of)-346(a)-346(pencil)-346(of)-346(the)-347(second)]TJ -11.956 -13.55 Td[(order,)-292(then)-284(the)-284(lines)-283(l)-284(=)-284(\05012,)-292(45\051,)-292(m)-284(=)-284(\05023,)-292(56\051,)-292(n)-284(=)-284(\05034,)-292(61\051)-284(all)]TJ 0 -13.549 Td[(pass)-250(through)-250(a)-250(point.)]TJ/F39 10.909 Tf 0 -76.975 Td[(85.)]TJ/F16 10.909 Tf 16.705 0 Td[(To)-260(make)-261(the)-260(notation)-261(fit)-260(the)-261(figure)-260(\050Fig.)-281(21\051,)-263(make)]TJ/F20 10.909 Tf 224.397 0 Td[(a=1)]TJ/F16 10.909 Tf 18.272 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(b)-260(=)]TJ -264.971 -13.549 Td[(2)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.236 0 Td[(u')-225(=)-225(3)]TJ/F16 10.909 Tf 25.515 0 Td[(,)]TJ/F20 10.909 Tf 5.236 0 Td[(d)-225(=)-225(4)]TJ/F16 10.909 Tf 23.181 0 Td[(,)]TJ/F20 10.909 Tf 5.235 0 Td[(u)-225(=)-225(5)]TJ/F16 10.909 Tf 23.181 0 Td[(,)]TJ/F20 10.909 Tf 5.236 0 Td[(c)-225(=)-225(6)]TJ/F16 10.909 Tf 22.57 0 Td[(;)-233(or,)-230(interchanging)-225(two)-225(of)-225(the)-225(lines,)]TJ/F20 10.909 Tf 154.33 0 Td[(a)]TJ -275.175 -13.549 Td[(=)-219(1)]TJ/F16 10.909 Tf 15.206 0 Td[(,)]TJ/F20 10.909 Tf 5.182 0 Td[(c)-219(=)-219(2)]TJ/F16 10.909 Tf 22.436 0 Td[(,)]TJ/F20 10.909 Tf 5.182 0 Td[(u)-219(=)-219(3)]TJ/F16 10.909 Tf 23.047 0 Td[(,)]TJ/F20 10.909 Tf 5.182 0 Td[(d)-219(=)-219(4)]TJ/F16 10.909 Tf 23.047 0 Td[(,)]TJ/F20 10.909 Tf 5.182 0 Td[(u')-219(=)-219(5)]TJ/F16 10.909 Tf 25.381 0 Td[(,)]TJ/F20 10.909 Tf 5.183 0 Td[(b)-219(=)-219(6)]TJ/F16 10.909 Tf 23.047 0 Td[(.)-240(Thus,)-225(by)-218(different)-219(namings)]TJ -158.075 -13.55 Td[(of)-245(the)-246(lines,)-246(it)-246(appears)-245(that)-245(not)-246(more)-245(than)-246(60)-245(different)]TJ/F20 10.909 Tf 234.572 0 Td[(Brianchon)]TJ -234.572 -13.549 Td[(points)]TJ/F16 10.909 Tf 30.206 0 Td[(are)-324(possible.)-472(If)-324(we)-323(call)-324(12)-324(and)-324(45)-324(opposite)-324(vertices)-324(of)-324(a)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +804 0 obj << +/Type /Page +/Contents 805 0 R +/Resources 803 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +806 0 obj << +/D [804 0 R /XYZ 185.929 369.134 null] +>> endobj +795 0 obj << +/D [804 0 R /XYZ 46.771 277.791 null] +>> endobj +807 0 obj << +/D [804 0 R /XYZ 46.771 262.682 null] +>> endobj +800 0 obj << +/D [804 0 R /XYZ 46.771 148.997 null] +>> endobj +808 0 obj << +/D [804 0 R /XYZ 46.771 133.888 null] +>> endobj +803 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +809 0 obj +<< /S /GoTo /D (index97) >> +endobj +812 0 obj +() +endobj +814 0 obj +<< /S /GoTo /D (index98) >> +endobj +817 0 obj +() +endobj +819 0 obj +<< /S /GoTo /D (index99) >> +endobj +822 0 obj +() +endobj +825 0 obj << +/Length 3842 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(60)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(circumscribed)-241(hexagon,)-243(then)-241(Brianchon's)-241(theorem)-241(may)-241(be)-241(stated)]TJ 0 -13.549 Td[(as)-250(follows:)]TJ/F20 10.909 Tf 11.956 -14.025 Td[(The)-296(three)-296(lines)-297(joining)-296(the)-296(three)-297(pairs)-296(of)-296(opposite)-296(vertices)-297(of)]TJ -11.956 -13.549 Td[(a)-250(hexagon)-250(circumscribed)-250(about)-250(a)-250(conic)-250(meet)-250(in)-250(a)-250(point.)]TJ/F39 10.909 Tf 0 -55.358 Td[(86.)-1038(Construction)-512(of)-513(the)-513(pencil)-512(by)-513(Brianchon's)-513(theorem.)]TJ/F16 10.909 Tf 0 -13.549 Td[(Brianchon's)-284(theorem)-284(furnishes)-284(a)-284(ready)-284(method)-284(of)-284(determining)-284(a)]TJ 0 -13.549 Td[(sixth)-243(line)-242(of)-243(the)-243(pencil)-242(of)-243(rays)-243(of)-242(the)-243(second)-486(order)-242(when)-243(five)-243(are)]TJ/F16 7.97 Tf -72.755 0 Td[([52])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(given.)-312(Thus,)-276(select)-271(a)-270(point)-271(in)-271(line)-271(1)-270(and)-271(suppose)-271(that)-270(line)-271(6)-271(is)-271(to)]TJ 0 -13.55 Td[(pass)-250(through)-251(it.)-251(Then)]TJ/F20 10.909 Tf 94.869 0 Td[(l)-250(=)-251(\05012,)-250(45\051)]TJ/F16 10.909 Tf 50.403 0 Td[(,)]TJ/F20 10.909 Tf 5.46 0 Td[(n)-250(=)-251(\05034,)-250(61\051)]TJ/F16 10.909 Tf 52.825 0 Td[(,)-250(and)-251(the)-250(line)]TJ/F20 10.909 Tf 59.102 0 Td[(m)-250(=)]TJ -262.659 -13.549 Td[(\05023,)-233(56\051)]TJ/F16 10.909 Tf 36.844 0 Td[(must)-229(pass)-228(through)]TJ/F20 10.909 Tf 81.42 0 Td[(\050l,)-233(n\051)]TJ/F16 10.909 Tf 21.02 0 Td[(.)-243(Then)]TJ/F20 10.909 Tf 30.287 0 Td[(\05023,)-233(ln\051)]TJ/F16 10.909 Tf 34.422 0 Td[(meets)-229(5)-228(in)-229(a)-228(point)]TJ -203.993 -13.549 Td[(of)-250(the)-250(required)-250(sixth)-250(line.)]TJ/F39 10.909 Tf 0 -82.932 Td[(87.)-736(Point)-412(of)-412(contact)-413(of)-412(a)-412(tangent)-412(to)-412(a)-412(conic.)]TJ/F16 10.909 Tf 224.729 0 Td[(If)-412(the)-412(line)-412(2)]TJ -224.729 -13.549 Td[(approach)-329(as)-329(a)-329(limiting)-329(position)-329(the)-329(line)-329(1,)-349(then)-329(the)-329(intersection)]TJ/F20 10.909 Tf 0 -13.549 Td[(\0501,)-368(2\051)]TJ/F16 10.909 Tf 28.67 0 Td[(approaches)-344(as)-345(a)-344(limiting)-344(position)-344(the)-345(point)-344(of)-344(contact)-344(of)]TJ -28.67 -13.549 Td[(1)-391(with)-392(the)-391(conic.)-675(This)-391(suggests)-391(an)-392(easy)-391(way)-392(to)-391(construct)-392(the)]TJ 0 -13.549 Td[(point)-321(of)-320(contact)-321(of)-321(any)-321(tangent)-320(with)-321(the)-321(conic.)-462(Thus)-320(\050Fig.)-463(22\051,)]TJ 0 -13.55 Td[(given)-324(the)-325(lines)-324(1,)-343(2,)-343(3,)-343(4,)-343(5)-324(to)-325(construct)-324(the)-324(point)-325(of)-324(contact)-325(of)]TJ/F20 10.909 Tf 0 -13.549 Td[(1=6)]TJ/F16 10.909 Tf 18.273 0 Td[(.)-278(Draw)]TJ/F20 10.909 Tf 32.813 0 Td[(l)-259(=)-259(\05012,45\051)]TJ/F16 10.909 Tf 47.863 0 Td[(,)]TJ/F20 10.909 Tf 5.58 0 Td[(m)-259(=\05023,56\051)]TJ/F16 10.909 Tf 49.879 0 Td[(;)-264(then)]TJ/F20 10.909 Tf 27.524 0 Td[(\05034,)-261(lm\051)]TJ/F16 10.909 Tf 37.491 0 Td[(meets)-259(1)-259(in)-260(the)]TJ -219.423 -13.549 Td[(required)-250(point)-250(of)-250(contact)]TJ/F20 10.909 Tf 110.28 0 Td[(T)]TJ/F16 10.909 Tf 6.066 0 Td[(.)]TJ/F39 10.909 Tf -116.346 -82.932 Td[(88.)-890(Circumscribed)-463(quadrilateral.)]TJ/F16 10.909 Tf 172.342 0 Td[(If)-463(two)-464(pairs)-463(of)-463(lines)-463(in)]TJ -172.342 -13.549 Td[(Brianchon's)-287(hexagon)-286(coalesce,)-296(we)-287(have)-287(a)-286(theorem)-287(concerning)-287(a)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +824 0 obj << +/Type /Page +/Contents 825 0 R +/Resources 823 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +810 0 obj << +/D [824 0 R /XYZ 93.543 451.073 null] +>> endobj +826 0 obj << +/D [824 0 R /XYZ 93.543 433.461 null] +>> endobj +827 0 obj << +/D [824 0 R /XYZ 286.653 394.596 null] +>> endobj +815 0 obj << +/D [824 0 R /XYZ 93.543 289.104 null] +>> endobj +828 0 obj << +/D [824 0 R /XYZ 93.543 271.492 null] +>> endobj +820 0 obj << +/D [824 0 R /XYZ 93.543 111.328 null] +>> endobj +829 0 obj << +/D [824 0 R /XYZ 93.543 93.716 null] +>> endobj +823 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +831 0 obj +<< /S /GoTo /D (index100) >> +endobj +834 0 obj +() +endobj +835 0 obj +<< /S /GoTo /D (index101) >> +endobj +838 0 obj +() +endobj +839 0 obj +<< /S /GoTo /D (index102) >> +endobj +842 0 obj +() +endobj +843 0 obj +<< /S /GoTo /D (index103) >> +endobj +846 0 obj +() +endobj +849 0 obj << +/Length 3264 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(89.)-250(Circumscribed)-250(triangle)-14032(61)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(quadrilateral)-224(circumscribed)-224(about)-224(a)-224(conic.)-242(It)-224(is)-224(easily)-224(found)-224(to)-224(be)]TJ 0 -13.549 Td[(\050Fig.)-250(23\051)]TJ/F20 10.909 Tf 11.956 -14.01 Td[(The)-183(four)-184(lines)-183(joining)-183(the)-184(two)-183(opposite)-183(pairs)-184(of)-183(vertices)-183(and)-184(the)]TJ -11.956 -13.549 Td[(two)-299(opposite)-299(points)-299(of)-298(contact)-299(of)-299(a)-299(quadrilateral)-299(circumscribed)]TJ 0 -13.549 Td[(about)-417(a)-417(conic)-417(all)-417(meet)-417(in)-417(a)-417(point.)]TJ/F16 10.909 Tf 165.189 0 Td[(The)-417(consequences)-417(of)-417(this)]TJ -165.189 -13.549 Td[(theorem)-250(will)-250(be)-250(deduced)-250(later.)]TJ/F16 7.97 Tf 291.024 0 Td[([53])]TJ/F39 10.909 Tf -291.024 -82.778 Td[(89.)-242(Circumscribed)-227(triangle.)]TJ/F16 10.909 Tf 130.174 0 Td[(The)-227(hexagon)-227(may)-227(further)-227(degener-)]TJ -130.174 -13.55 Td[(ate)-248(into)-247(a)-248(triangle,)-248(giving)-247(the)-248(theorem)-248(\050Fig.)-249(24\051)]TJ/F20 10.909 Tf 207.341 0 Td[(The)-248(lines)-247(joining)]TJ -207.341 -13.549 Td[(the)-380(vertices)-380(to)-380(the)-380(points)-379(of)-380(contact)-380(of)-380(the)-380(opposite)-380(sides)-380(of)-380(a)]TJ 0 -13.549 Td[(triangle)-250(circumscribed)-250(about)-250(a)-250(conic)-250(all)-250(meet)-250(in)-250(a)-250(point.)]TJ/F39 10.909 Tf 0 -55.22 Td[(90.)]TJ/F16 10.909 Tf 16.307 0 Td[(Brianchon's)-234(theorem)-234(may)-235(also)-234(be)-234(used)-234(to)-234(solve)-235(the)-234(following)]TJ -16.307 -13.549 Td[(problems:)]TJ/F20 10.909 Tf 11.956 -14.009 Td[(Given)-365(four)-366(tangents)-365(and)-365(the)-366(point)-365(of)-365(contact)-366(on)-365(any)-365(one)-366(of)]TJ -11.956 -13.549 Td[(them,)-207(to)-195(construct)-196(other)-196(tangents)-196(to)-195(a)-196(conic.)-232(Given)-196(three)-196(tangents)]TJ 0 -13.55 Td[(and)-298(the)-298(points)-297(of)-298(contact)-298(of)-298(any)-298(two)-297(of)-298(them,)-310(to)-298(construct)-298(other)]TJ 0 -13.549 Td[(tangents)-250(to)-250(a)-250(conic.)]TJ/F39 10.909 Tf 0 -55.219 Td[(91.)-450(Harmonic)-317(tangents.)]TJ/F16 10.909 Tf 116.309 0 Td[(We)-317(have)-317(seen)-316(that)-317(a)-317(variable)-317(tangent)]TJ -116.309 -13.55 Td[(cuts)-437(out)-438(on)-437(any)-437(two)-438(fixed)-437(tangents)-437(projective)-438(point-rows.)-812(It)]TJ 0 -13.549 Td[(follows)-301(that)-301(if)-301(four)-301(tangents)-301(cut)-301(a)-301(fifth)-301(in)-301(four)-301(harmonic)-301(points,)]TJ 0 -13.549 Td[(they)-172(must)-173(cut)-172(every)-173(tangent)-172(in)-173(four)-172(harmonic)-173(points.)-224(It)-172(is)-173(possible,)]TJ 0 -13.549 Td[(therefore,)-250(to)-250(make)-250(the)-250(following)-250(definition:)]TJ/F20 10.909 Tf 11.956 -14.01 Td[(Four)-315(tangents)-315(to)-315(a)-314(conic)-315(are)-315(said)-315(to)-315(be)-315(harmonic)-315(when)-315(they)]TJ -11.956 -13.549 Td[(meet)-250(every)-250(other)-250(tangent)-250(in)-250(four)-250(harmonic)-250(points.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +848 0 obj << +/Type /Page +/Contents 849 0 R +/Resources 847 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +850 0 obj << +/D [848 0 R /XYZ 46.771 449.827 null] +>> endobj +832 0 obj << +/D [848 0 R /XYZ 46.771 398.751 null] +>> endobj +851 0 obj << +/D [848 0 R /XYZ 46.771 381.2 null] +>> endobj +836 0 obj << +/D [848 0 R /XYZ 46.771 300.625 null] +>> endobj +852 0 obj << +/D [848 0 R /XYZ 46.771 283.075 null] +>> endobj +840 0 obj << +/D [848 0 R /XYZ 46.771 177.199 null] +>> endobj +853 0 obj << +/D [848 0 R /XYZ 46.771 159.649 null] +>> endobj +847 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +855 0 obj +<< /S /GoTo /D (index104) >> +endobj +858 0 obj +() +endobj +859 0 obj +<< /S /GoTo /D (index105) >> +endobj +862 0 obj +() +endobj +863 0 obj +<< /S /GoTo /D (index106) >> +endobj +866 0 obj +(PROBLEMS) +endobj +869 0 obj << +/Length 3630 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(62)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(92.)-274(Projectivity)-258(and)-258(perspectivity.)]TJ/F16 10.909 Tf 160.065 0 Td[(This)-258(definition)-258(suggests)-258(the)]TJ -160.065 -13.549 Td[(possibility)-303(of)-302(defining)-303(a)-303(projective)-302(correspondence)-303(between)-303(the)]TJ 0 -13.549 Td[(elements)-232(of)-232(a)-233(pencil)-232(of)-232(rays)-232(of)-233(the)-232(second)-232(order)-232(and)-232(the)-233(elements)]TJ 0 -13.549 Td[(of)-314(any)-314(form)-314(heretofore)-315(discussed.)-442(In)-314(particular,)-330(the)-314(points)-314(on)-315(a)]TJ 0 -13.55 Td[(tangent)-319(are)-319(said)-319(to)-319(be)]TJ/F20 10.909 Tf 99.189 0 Td[(perspectively)-319(related)]TJ/F16 10.909 Tf 95.418 0 Td[(to)-319(the)-319(tangents)-319(of)-319(a)]TJ -194.607 -13.549 Td[(conic)-290(when)-289(each)-290(point)-289(lies)-290(on)-289(the)-290(tangent)-289(which)-290(corresponds)-290(to)]TJ 0 -13.549 Td[(it.)-433(These)-312(notions)-311(are)-311(of)-311(importance)-311(in)-311(the)-311(higher)-312(developments)]TJ 0 -13.549 Td[(of)-250(the)-250(subject.)]TJ/F16 7.97 Tf -72.755 0 Td[([54])]TJ/F39 10.909 Tf 72.755 -84.035 Td[(93.)]TJ/F16 10.909 Tf 20.644 0 Td[(Brianchon's)-381(theorem)-381(may)-380(also)-381(be)-381(applied)-381(to)-380(a)-381(degenerate)]TJ -20.644 -13.549 Td[(conic)-156(made)-157(up)-156(of)-156(two)-156(points)-157(and)-156(the)-156(lines)-157(through)-156(them.)-219(Thus\050Fig.)]TJ 0 -13.549 Td[(25\051,)]TJ/F20 10.909 Tf 11.956 -14.135 Td[(If)-322(a,)-340(b,)-341(c)-322(are)-322(three)-322(lines)-322(through)-322(a)-323(point)-322(S,)-322(and)-322(a',)-340(b',)-340(c')-323(are)]TJ -11.956 -13.549 Td[(three)-258(lines)-259(through)-258(another)-259(point)-258(S',)-258(then)-259(the)-258(lines)-258(l)-259(=)-258(\050ab',)-261(a'b\051,)]TJ 0 -13.55 Td[(m)-250(=)-250(\050bc',)-250(b'c\051,)-250(and)-250(n)-250(=)-250(\050ca',)-250(c'a\051)-250(all)-250(meet)-250(in)-250(a)-250(point.)]TJ/F39 10.909 Tf 0 -56.35 Td[(94.)-394(Law)-298(of)-298(duality.)]TJ/F16 10.909 Tf 93.885 0 Td[(The)-298(observant)-298(student)-298(will)-298(not)-298(have)-297(failed)]TJ -93.885 -13.549 Td[(to)-353(note)-352(the)-353(remarkable)-352(similarity)-353(between)-352(the)-353(theorems)-352(of)-353(this)]TJ 0 -13.549 Td[(chapter)-197(and)-197(those)-197(of)-197(the)-197(preceding.)-232(He)-197(will)-197(have)-197(noted)-197(that)-197(points)]TJ 0 -13.549 Td[(have)-228(replaced)-227(lines)-228(and)-228(lines)-228(have)-227(replaced)-228(points;)-235(that)-228(points)-228(on)]TJ 0 -13.55 Td[(a)-316(curve)-316(have)-316(been)-316(replaced)-316(by)-316(tangents)-316(to)-316(a)-316(curve;)-350(that)-316(pencils)]TJ 0 -13.549 Td[(have)-341(been)-341(replaced)-341(by)-341(point-rows,)-364(and)-341(that)-341(a)-341(conic)-342(considered)]TJ 0 -13.549 Td[(as)-403(mad)-1(e)-403(up)-403(of)-404(a)-403(succession)-404(of)-403(points)-404(has)-403(been)-404(replaced)-403(by)-404(a)]TJ 0 -13.549 Td[(conic)-387(considered)-387(as)-387(generated)-387(by)-387(a)-387(moving)-387(tangent)-387(line.)-662(The)]TJ 0 -13.549 Td[(theory)-248(upon)-248(which)-247(this)-248(wonderful)]TJ/F20 10.909 Tf 150.467 0 Td[(law)-248(of)-248(duality)]TJ/F16 10.909 Tf 62.665 0 Td[(is)-248(based)-248(will)-247(be)]TJ -213.132 -13.55 Td[(developed)-250(in)-250(the)-250(next)-250(chapter.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +868 0 obj << +/Type /Page +/Contents 869 0 R +/Resources 867 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 778 0 R +>> endobj +844 0 obj << +/D [868 0 R /XYZ 93.543 529.134 null] +>> endobj +870 0 obj << +/D [868 0 R /XYZ 93.543 529.134 null] +>> endobj +871 0 obj << +/D [868 0 R /XYZ 93.543 420.953 null] +>> endobj +856 0 obj << +/D [868 0 R /XYZ 93.543 371.484 null] +>> endobj +872 0 obj << +/D [868 0 R /XYZ 93.543 353.431 null] +>> endobj +860 0 obj << +/D [868 0 R /XYZ 93.543 244.544 null] +>> endobj +873 0 obj << +/D [868 0 R /XYZ 93.543 226.491 null] +>> endobj +864 0 obj << +/D [868 0 R /XYZ 93.543 66.142 null] +>> endobj +867 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +876 0 obj << +/Length 3631 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(63)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 15.781 Tf 46.771 518.175 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -29.258 Td[(1.)-258(Given)-252(four)-253(lines)-252(in)-253(the)-252(plane,)-253(to)-253(construct)-253(another)-252(which)-253(shall)]TJ 0 -13.549 Td[(meet)-250(them)-250(in)-250(four)-250(harmonic)-250(points.)]TJ 11.956 -13.55 Td[(2.)-250(Where)-250(are)-250(all)-250(such)-250(lines)-250(found?)]TJ 0 -13.549 Td[(3.)-626(Given)-375(any)-376(five)-375(lines)-375(in)-376(the)-375(plane,)-407(construct)-375(on)-375(each)-376(the)]TJ -11.956 -13.549 Td[(point)-250(of)-250(contact)-250(with)-250(the)-250(conic)-250(tangent)-250(to)-250(them)-250(all.)]TJ/F16 7.97 Tf 291.024 0 Td[([55])]TJ/F16 10.909 Tf -279.068 -13.549 Td[(4.)-229(Given)-187(four)-187(lines)-187(and)-187(the)-187(point)-187(of)-187(contact)-187(on)-187(one,)-200(to)-187(construct)]TJ -11.956 -13.549 Td[(the)-242(conic.)-247(\050"To)-242(construct)-241(the)-242(conic")-242(means)-242(here)-241(to)-242(draw)-242(as)-242(many)]TJ 0 -13.55 Td[(other)-250(tangents)-250(as)-250(may)-250(be)-250(desired.\051)]TJ 11.956 -13.549 Td[(5.)-362(Given)-287(three)-287(lines)-287(and)-287(the)-287(point)-288(of)-287(contact)-287(on)-287(two)-287(of)-288(them,)]TJ -11.956 -13.549 Td[(to)-250(construct)-250(the)-250(conic.)]TJ 11.956 -13.549 Td[(6.)-563(Given)-354(four)-354(lines)-354(and)-354(the)-355(line)-354(at)-354(infinity,)-380(to)-354(construct)-355(the)]TJ -11.956 -13.549 Td[(conic.)]TJ 11.956 -13.55 Td[(7.)-349(Given)-283(three)-283(lines)-283(and)-283(the)-283(line)-283(at)-283(infinity,)-291(together)-283(with)-283(the)]TJ -11.956 -13.549 Td[(point)-250(of)-250(contact)-250(at)-250(infinity,)-250(to)-250(construct)-250(the)-250(conic.)]TJ 11.956 -13.549 Td[(8.)-235(Given)-206(three)-206(lines,)-214(two)-206(of)-206(which)-206(are)-205(asymptotes,)-215(to)-206(construct)]TJ -11.956 -13.549 Td[(the)-250(conic.)]TJ 11.956 -13.549 Td[(9.)-601(Given)-367(five)-367(tangents)-367(to)-367(a)-367(conic,)-396(to)-367(draw)-367(a)-367(tangent)-367(which)]TJ -11.956 -13.55 Td[(shall)-250(be)-250(parallel)-250(to)-250(any)-250(one)-250(of)-250(them.)]TJ 11.956 -13.549 Td[(10.)-240(The)-220(lines)]TJ/F20 10.909 Tf 58.626 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.193 0 Td[(b)]TJ/F16 10.909 Tf 5.454 0 Td[(,)]TJ/F20 10.909 Tf 5.194 0 Td[(c)]TJ/F16 10.909 Tf 7.244 0 Td[(are)-220(drawn)-220(parallel)-220(to)-220(each)-220(other.)-240(The)-220(lines)]TJ/F20 10.909 Tf -99.121 -13.549 Td[(a')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ/F20 10.909 Tf 5.112 0 Td[(b')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ/F20 10.909 Tf 5.113 0 Td[(c')]TJ/F16 10.909 Tf 9.478 0 Td[(are)-211(also)-211(drawn)-210(parallel)-211(to)-211(each)-211(other.)-237(Show)-211(why)-211(the)-210(lines)]TJ -35.281 -13.549 Td[(\050)]TJ/F20 10.909 Tf 3.632 0 Td[(ab')]TJ/F16 10.909 Tf 13.244 0 Td[(,)]TJ/F20 10.909 Tf 5.898 0 Td[(a'b)]TJ/F16 10.909 Tf 13.243 0 Td[(\051,)-291(\050)]TJ/F20 10.909 Tf 13.164 0 Td[(bc')]TJ/F16 10.909 Tf 12.633 0 Td[(,)]TJ/F20 10.909 Tf 5.898 0 Td[(b'c)]TJ/F16 10.909 Tf 12.632 0 Td[(\051,)-291(\050)]TJ/F20 10.909 Tf 13.164 0 Td[(ca')]TJ/F16 10.909 Tf 12.632 0 Td[(,)]TJ/F20 10.909 Tf 5.898 0 Td[(c'a)]TJ/F16 10.909 Tf 12.633 0 Td[(\051)-283(meet)-282(in)-283(a)-282(point.)-348(\050In)-282(problems)-283(6)-282(to)]TJ -124.671 -13.549 Td[(10)-250(inclusive,)-250(parallel)-250(lines)-250(are)-250(to)-250(be)-250(drawn.\051)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +875 0 obj << +/Type /Page +/Contents 876 0 R +/Resources 874 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +877 0 obj << +/D [875 0 R /XYZ 46.771 432.342 null] +>> endobj +874 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +881 0 obj << +/Length 668 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(64)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -55.372 cm +0 g 0 G +1 0 0 1 5.637 -367.248 cm + q 2.74722 0 0 2.74722 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +94.3197 0 0 133.6795 0 0 cm +/Im20 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -99.18 -126.314 cm +BT +/F16 10.909 Tf 218.337 107.31 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(20)]TJ +ET +1 0 0 1 93.543 101.714 cm +0 g 0 G +1 0 0 1 0 -62.932 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +880 0 obj << +/Type /Page +/Contents 881 0 R +/Resources 879 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +787 0 obj << +/Type /XObject +/Subtype /Image +/Width 393 +/Height 557 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 656703 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +879 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im20 787 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +884 0 obj << +/Length 959 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(65)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -24.054 cm +0 g 0 G +1 0 0 1 5.627 -219.451 cm + q 1.76521 0 0 1.76521 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +148.3195 0 0 124.3195 0 0 cm +/Im21 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.398 -305.429 cm +BT +/F16 10.909 Tf 171.565 286.426 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(21)]TJ +ET +1 0 0 1 46.771 280.868 cm +0 g 0 G +1 0 0 1 0 -16.478 cm +0 g 0 G +1 0 0 1 5.643 -169.432 cm + q 1.82893 0 0 1.82893 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +143.0395 0 0 92.6397 0 0 cm +/Im22 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.414 -94.958 cm +BT +/F16 10.909 Tf 171.565 75.954 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(22)]TJ +ET +1 0 0 1 46.771 70.396 cm +0 g 0 G +1 0 0 1 0 -31.614 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +883 0 obj << +/Type /Page +/Contents 884 0 R +/Resources 882 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +798 0 obj << +/Type /XObject +/Subtype /Image +/Width 618 +/Height 518 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 960372 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +813 0 obj << +/Type /XObject +/Subtype /Image +/Width 596 +/Height 386 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 690168 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +882 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im21 798 0 R /Im22 813 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +887 0 obj << +/Length 670 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(66)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -84.931 cm +0 g 0 G +1 0 0 1 5.633 -308.13 cm + q 2.31747 0 0 2.31747 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +112.3196 0 0 132.9595 0 0 cm +/Im23 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.176 -155.873 cm +BT +/F16 10.909 Tf 218.337 136.869 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(23)]TJ +ET +1 0 0 1 93.543 131.273 cm +0 g 0 G +1 0 0 1 0 -92.491 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +886 0 obj << +/Type /Page +/Contents 887 0 R +/Resources 885 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +818 0 obj << +/Type /XObject +/Subtype /Image +/Width 468 +/Height 554 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 777816 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +885 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im23 818 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +890 0 obj << +/Length 592 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(67)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -107.083 cm +0 g 0 G +1 0 0 1 5.643 -263.864 cm + q 2.6115 0 0 2.6115 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +99.3596 0 0 101.0396 0 0 cm +/Im24 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.414 -177.987 cm +BT +/F16 10.909 Tf 171.565 158.983 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(24)]TJ +ET +1 0 0 1 46.771 153.425 cm +0 g 0 G +1 0 0 1 0 -114.643 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +889 0 obj << +/Type /Page +/Contents 890 0 R +/Resources 888 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +830 0 obj << +/Type /XObject +/Subtype /Image +/Width 414 +/Height 421 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 522882 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +888 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im24 830 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +893 0 obj << +/Length 673 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(68)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -100.114 cm +0 g 0 G +1 0 0 1 5.636 -277.764 cm + q 2.25166 0 0 2.25166 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +115.6796 0 0 123.3596 0 0 cm +/Im25 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.179 -171.056 cm +BT +/F16 10.909 Tf 218.337 152.052 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(25)]TJ +ET +1 0 0 1 93.543 146.456 cm +0 g 0 G +1 0 0 1 0 -107.674 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +892 0 obj << +/Type /Page +/Contents 893 0 R +/Resources 891 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 878 0 R +>> endobj +854 0 obj << +/Type /XObject +/Subtype /Image +/Width 482 +/Height 514 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 743244 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýüüüüüüýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýüüüüüüýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýüüüüüüýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýüüüüüüýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýûûûûûûûûûûûûýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +891 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im25 854 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +894 0 obj +<< /S /GoTo /D (index107) >> +endobj +897 0 obj +(CHAPTER VI - POLES AND POLARS) +endobj +898 0 obj +<< /S /GoTo /D (index108) >> +endobj +901 0 obj +() +endobj +903 0 obj +<< /S /GoTo /D (index109) >> +endobj +906 0 obj +() +endobj +909 0 obj << +/Length 4044 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 7.97 Tf 337.795 512.7 Td[([56])]TJ/F16 18.959 Tf -291.024 -65.264 Td[(CHAPTER)-265(VI)-264(-)-265(POLES)-265(AND)]TJ 0 -24.647 Td[(POLARS)]TJ/F39 10.909 Tf 0 -72.697 Td[(95.)-367(Inscribed)-290(and)-289(circumscribed)-289(quadrilaterals.)]TJ/F16 10.909 Tf 228.396 0 Td[(The)-289(follow-)]TJ -228.396 -13.549 Td[(ing)-366(theorems)-366(have)-367(been)-366(noted)-366(as)-366(special)-366(cases)-366(of)-366(Pascal's)-367(and)]TJ 0 -13.55 Td[(Brianchon's)-250(theorems:)]TJ/F20 10.909 Tf 11.956 -13.76 Td[(If)-195(a)-195(quadrilateral)-195(be)-195(inscribed)-195(in)-195(a)-195(conic,)-206(two)-195(pairs)-195(of)-195(opposite)]TJ -11.956 -13.549 Td[(sides)-175(and)-176(the)-175(tangents)-175(at)-175(opposite)-176(vertices)-175(intersect)-175(in)-175(four)-176(points,)]TJ 0 -13.55 Td[(all)-250(of)-250(which)-250(lie)-250(on)-250(a)-250(straight)-250(line.)]TJ 11.956 -13.76 Td[(If)-354(a)-354(quadrilateral)-355(be)-354(circumscribed)-354(about)-354(a)-354(conic,)-380(the)-355(lines)]TJ -11.956 -13.549 Td[(joining)-322(two)-323(pairs)-322(of)-322(opposite)-322(vertices)-323(and)-322(the)-322(lines)-322(joining)-323(two)]TJ 0 -13.549 Td[(opposite)-250(points)-250(of)-250(contact)-250(are)-250(four)-250(lines)-250(which)-250(meet)-250(in)-250(a)-250(point.)]TJ/F39 10.909 Tf 0 -80.289 Td[(96.)-905(Definition)-469(of)-468(the)-468(polar)-469(line)-468(of)-469(a)-468(point.)]TJ/F16 10.909 Tf 222.797 0 Td[(Consider)-468(the)]TJ -222.797 -13.55 Td[(quadrilateral)]TJ/F20 10.909 Tf 59.684 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 7.276 0 Td[(L)]TJ/F16 10.909 Tf 6.066 0 Td[(,)]TJ/F20 10.909 Tf 7.276 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 7.276 0 Td[(N)]TJ/F16 10.909 Tf 11.823 0 Td[(inscribed)-417(in)-417(the)-417(conic)-417(\050Fig.)-751(26\051.)-751(It)]TJ -115.764 -13.549 Td[(determines)-365(the)-364(four)-364(harmonic)-365(points)]TJ/F20 10.909 Tf 167.13 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.703 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.704 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.703 0 Td[(D)]TJ/F16 10.909 Tf 11.851 0 Td[(which)-364(project)]TJ -219.698 -13.549 Td[(from)]TJ/F20 10.909 Tf 25.78 0 Td[(N)]TJ/F16 10.909 Tf 11.847 0 Td[(in)-419(to)-419(the)-419(four)-419(har)-1(monic)-419(points)]TJ/F20 10.909 Tf 143.789 0 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(,)]TJ/F20 10.909 Tf 7.299 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 7.299 0 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 7.3 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-419(Now)-419(the)]TJ -234.22 -13.549 Td[(tangents)-293(at)]TJ/F20 10.909 Tf 50.627 0 Td[(K)]TJ/F16 10.909 Tf 10.471 0 Td[(and)]TJ/F20 10.909 Tf 18.948 0 Td[(M)]TJ/F16 10.909 Tf 12.282 0 Td[(meet)-293(in)]TJ/F20 10.909 Tf 36.086 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-293(a)-293(point)-293(on)-293(the)-293(line)]TJ/F20 10.909 Tf 89.775 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(.)-293(The)-293(line)]TJ/F20 10.909 Tf -238.185 -13.549 Td[(AB)]TJ/F16 10.909 Tf 16.855 0 Td[(is)-323(thus)-323(determined)-323(entirely)-323(by)-646(the)-323(point)]TJ/F20 10.909 Tf 182.73 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-323(For)-323(if)-323(we)-323(draw)]TJ/F16 7.97 Tf 83.563 0 Td[([57])]TJ/F16 10.909 Tf -291.024 -13.55 Td[(any)-264(line)-264(through)-264(it,)-268(meeting)-264(the)-264(conic)-264(in)]TJ/F20 10.909 Tf 178.521 0 Td[(K)]TJ/F16 10.909 Tf 10.157 0 Td[(and)]TJ/F20 10.909 Tf 18.632 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-264(and)-264(construct)]TJ -216.397 -13.549 Td[(the)-233(harmonic)-234(conjugate)]TJ/F20 10.909 Tf 104.589 0 Td[(B)]TJ/F16 10.909 Tf 9.211 0 Td[(of)]TJ/F20 10.909 Tf 11.634 0 Td[(O)]TJ/F16 10.909 Tf 10.423 0 Td[(with)-233(respect)-234(to)]TJ/F20 10.909 Tf 66.417 0 Td[(K)]TJ/F16 10.909 Tf 9.822 0 Td[(and)]TJ/F20 10.909 Tf 18.3 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-233(and)-234(also)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +908 0 obj << +/Type /Page +/Contents 909 0 R +/Resources 907 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +895 0 obj << +/D [908 0 R /XYZ 46.771 529.134 null] +>> endobj +910 0 obj << +/D [908 0 R /XYZ 46.771 518.175 null] +>> endobj +899 0 obj << +/D [908 0 R /XYZ 46.771 380.161 null] +>> endobj +911 0 obj << +/D [908 0 R /XYZ 46.771 363.606 null] +>> endobj +904 0 obj << +/D [908 0 R /XYZ 46.771 191.302 null] +>> endobj +912 0 obj << +/D [908 0 R /XYZ 46.771 174.747 null] +>> endobj +913 0 obj << +/D [908 0 R /XYZ 200.024 93.24 null] +>> endobj +907 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +915 0 obj +<< /S /GoTo /D (index110) >> +endobj +918 0 obj +() +endobj +919 0 obj +<< /S /GoTo /D (index111) >> +endobj +922 0 obj +() +endobj +923 0 obj +<< /S /GoTo /D (index112) >> +endobj +926 0 obj +() +endobj +929 0 obj << +/Length 3611 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(70)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.636 -142.884 cm + q 1.43459 0 0 1.43459 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +183.1193 0 0 99.5996 0 0 cm +/Im26 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.179 -386.25 cm +BT +/F16 10.909 Tf 218.337 367.246 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(26)]TJ +ET +1 0 0 1 93.543 361.65 cm +0 g 0 G +1 0 0 1 -93.543 -361.65 cm +BT +/F16 10.909 Tf 93.543 336.711 Td[(the)-268(two)-268(tangents)-269(at)]TJ/F20 10.909 Tf 85.633 0 Td[(K)]TJ/F16 10.909 Tf 10.202 0 Td[(and)]TJ/F20 10.909 Tf 18.678 0 Td[(M)]TJ/F16 10.909 Tf 12.013 0 Td[(which)-268(meet)-268(in)-269(the)-268(point)]TJ/F20 10.909 Tf 106.744 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-268(then)]TJ/F20 10.909 Tf 27.364 0 Td[(BP)]TJ/F16 10.909 Tf -267.299 -13.549 Td[(is)-371(the)-372(line)-371(in)-371(question.)-614(It)-371(thus)-371(appears)-372(that)-371(the)-371(line)]TJ/F20 10.909 Tf 236.578 0 Td[(LON)]TJ/F16 10.909 Tf 25.267 0 Td[(may)]TJ -261.845 -13.549 Td[(be)-328(any)-327(line)-328(whatever)-327(through)]TJ/F20 10.909 Tf 134.198 0 Td[(O)]TJ/F16 10.909 Tf 7.877 0 Td[(;)-327(and)-328(since)]TJ/F20 10.909 Tf 51.921 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ/F20 10.909 Tf 6.3 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 6.3 0 Td[(O)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ/F20 10.909 Tf 6.3 0 Td[(N)]TJ/F16 10.909 Tf 10.848 0 Td[(are)-327(four)]TJ -245.563 -13.549 Td[(harmonic)-369(points,)-399(we)-369(may)-369(describe)-369(the)-369(line)]TJ/F20 10.909 Tf 196.661 0 Td[(AB)]TJ/F16 10.909 Tf 17.356 0 Td[(as)-369(the)-369(locus)-369(of)]TJ -214.017 -13.55 Td[(points)-340(which)-339(are)-340(harmonic)-339(conjugates)-340(of)]TJ/F20 10.909 Tf 185.829 0 Td[(O)]TJ/F16 10.909 Tf 11.58 0 Td[(with)-340(respect)-339(to)-340(the)]TJ -197.409 -13.549 Td[(two)-250(points)-250(where)-250(any)-250(line)-250(through)]TJ/F20 10.909 Tf 152.105 0 Td[(O)]TJ/F16 10.909 Tf 10.604 0 Td[(meets)-250(the)-250(curve.)]TJ/F39 10.909 Tf -162.709 -53.354 Td[(97.)]TJ/F16 10.909 Tf 16.293 0 Td[(Furthermore,)-234(since)-231(the)-230(tangents)-231(at)]TJ/F20 10.909 Tf 149.86 0 Td[(L)]TJ/F16 10.909 Tf 8.58 0 Td[(and)]TJ/F20 10.909 Tf 18.266 0 Td[(N)]TJ/F16 10.909 Tf 9.791 0 Td[(meet)-230(on)-231(this)-230(same)]TJ -202.79 -13.549 Td[(line,)-319(it)-305(appears)-304(as)-305(the)-305(locus)-305(of)-305(intersections)-305(of)-305(pairs)-305(of)-305(tangents)]TJ 0 -13.549 Td[(drawn)-250(at)-250(the)-250(extremities)-250(of)-250(chords)-250(through)]TJ/F20 10.909 Tf 188.149 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)]TJ/F39 10.909 Tf -196.025 -53.354 Td[(98.)]TJ/F16 10.909 Tf 17.91 0 Td[(This)-297(important)-297(lin)-1(e,)-309(which)-297(is)-297(completely)-297(determined)-298(by)-297(the)]TJ -17.91 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.924 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-320(is)-321(called)-320(the)]TJ/F20 10.909 Tf 63.364 0 Td[(polar)]TJ/F16 10.909 Tf 27.134 0 Td[(of)]TJ/F20 10.909 Tf 12.582 0 Td[(O)]TJ/F16 10.909 Tf 11.37 0 Td[(with)-320(respect)-321(to)-320(the)-320(conic;)-356(and)]TJ -148.25 -13.549 Td[(the)-225(point)]TJ/F20 10.909 Tf 40.661 0 Td[(O)]TJ/F16 10.909 Tf 10.326 0 Td[(is)-225(called)-224(the)]TJ/F20 10.909 Tf 54.009 0 Td[(pole)]TJ/F16 10.909 Tf 21.235 0 Td[(of)-225(the)-224(line)-225(with)-224(respect)-225(to)-225(the)-224(conic.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +928 0 obj << +/Type /Page +/Contents 929 0 R +/Resources 927 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +902 0 obj << +/Type /XObject +/Subtype /Image +/Width 763 +/Height 415 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 949935 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +916 0 obj << +/D [928 0 R /XYZ 93.543 243.757 null] +>> endobj +930 0 obj << +/D [928 0 R /XYZ 93.543 227.036 null] +>> endobj +920 0 obj << +/D [928 0 R /XYZ 93.543 163.305 null] +>> endobj +931 0 obj << +/D [928 0 R /XYZ 93.543 146.583 null] +>> endobj +924 0 obj << +/D [928 0 R /XYZ 93.543 82.863 null] +>> endobj +932 0 obj << +/D [928 0 R /XYZ 93.543 66.142 null] +>> endobj +927 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im26 902 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +933 0 obj +<< /S /GoTo /D (index113) >> +endobj +936 0 obj +() +endobj +938 0 obj +<< /S /GoTo /D (index114) >> +endobj +941 0 obj +() +endobj +944 0 obj << +/Length 2697 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(100.)-250(Conjugate)-250(points)-250(and)-250(lines)-12086(71)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(99.)]TJ/F16 10.909 Tf 20.918 0 Td[(If)-389(a)-389(point)]TJ/F20 10.909 Tf 47.275 0 Td[(B)]TJ/F16 10.909 Tf 10.909 0 Td[(is)-389(on)-389(the)-390(polar)-389(of)]TJ/F20 10.909 Tf 84.249 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-389(then)-389(it)-389(is)-390(harmonically)]TJ -171.227 -13.549 Td[(conjugate)-283(to)]TJ/F20 10.909 Tf 57.074 0 Td[(O)]TJ/F16 10.909 Tf 10.962 0 Td[(with)-283(respect)-283(to)-283(the)-283(two)-282(intersections)]TJ/F20 10.909 Tf 162.133 0 Td[(K)]TJ/F16 10.909 Tf 10.362 0 Td[(and)]TJ/F20 10.909 Tf 18.839 0 Td[(M)]TJ/F16 10.909 Tf 12.173 0 Td[(of)]TJ -271.543 -13.549 Td[(the)-294(line)]TJ/F20 10.909 Tf 36.103 0 Td[(BC)]TJ/F16 10.909 Tf 17.146 0 Td[(with)-294(the)-293(conic.)-382(But)-293(for)-294(the)-294(same)-294(reason)]TJ/F20 10.909 Tf 178.376 0 Td[(O)]TJ/F16 10.909 Tf 11.08 0 Td[(is)-294(on)-293(the)]TJ -242.705 -13.549 Td[(polar)-250(of)]TJ/F20 10.909 Tf 36.96 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-250(We)-250(have,)-250(then,)-250(the)-250(fundamental)-250(theorem)]TJ/F20 10.909 Tf -31.67 -13.55 Td[(If)-256(one)-255(point)-256(lies)-255(on)-256(the)-256(polar)-255(of)-256(a)-256(second,)-257(then)-255(the)-256(second)-256(lies)]TJ -11.956 -13.549 Td[(on)-250(the)-250(polar)-250(of)-250(the)-250(first.)]TJ/F39 10.909 Tf 0 -50.588 Td[(100.)-301(Conjugate)-266(points)-267(and)-267(lines.)]TJ/F16 10.909 Tf 152.885 0 Td[(Such)-267(a)-267(pair)-267(of)-266(points)-267(are)-267(said)]TJ -152.885 -13.549 Td[(to)-209(be)]TJ/F20 10.909 Tf 23.354 0 Td[(conjugate)]TJ/F16 10.909 Tf 45.31 0 Td[(with)-209(respect)-210(to)-209(the)-210(conic.)-236(Similarly,)-218(lines)-209(are)-209(said)]TJ -68.664 -13.549 Td[(to)-220(be)]TJ/F20 10.909 Tf 23.59 0 Td[(conjugate)]TJ/F16 10.909 Tf 45.427 0 Td[(to)-220(each)-220(other)-221(with)-220(respect)-220(to)-220(the)-220(conic)-221(if)-220(one,)-226(and)]TJ -69.017 -13.549 Td[(consequently)-250(each,)-250(passes)-250(through)-250(the)-250(pole)-250(of)-250(the)-250(other.)]TJ/F16 7.97 Tf 291.024 0 Td[([58])]TJ +ET +1 0 0 1 46.771 334.015 cm +0 g 0 G +1 0 0 1 5.636 -181.094 cm + q 3.4143 0 0 3.4143 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +75.3597 0 0 53.0398 0 0 cm +/Im27 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.407 -152.921 cm +BT +/F16 10.909 Tf 171.565 133.917 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(27)]TJ +ET +1 0 0 1 46.771 128.359 cm +0 g 0 G +1 0 0 1 0 -89.577 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +943 0 obj << +/Type /Page +/Contents 944 0 R +/Resources 942 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +937 0 obj << +/Type /XObject +/Subtype /Image +/Width 314 +/Height 221 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 208182 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +934 0 obj << +/D [943 0 R /XYZ 46.771 426.597 null] +>> endobj +945 0 obj << +/D [943 0 R /XYZ 46.771 411.132 null] +>> endobj +946 0 obj << +/D [943 0 R /XYZ 46.771 356.816 null] +>> endobj +939 0 obj << +/D [943 0 R /XYZ 46.771 81.607 null] +>> endobj +947 0 obj << +/D [943 0 R /XYZ 46.771 66.142 null] +>> endobj +942 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im27 937 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +948 0 obj +<< /S /GoTo /D (index115) >> +endobj +951 0 obj +() +endobj +952 0 obj +<< /S /GoTo /D (index116) >> +endobj +955 0 obj +() +endobj +956 0 obj +<< /S /GoTo /D (index117) >> +endobj +959 0 obj +() +endobj +962 0 obj << +/Length 6114 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(72)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(101.)-378(Construction)-293(of)-293(the)-293(polar)-292(line)-293(of)-293(a)-293(given)-293(point.)]TJ/F16 10.909 Tf 245.931 0 Td[(Given)-293(a)]TJ -245.931 -13.549 Td[(point)]TJ/F20 10.909 Tf 26.052 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-332(if)-332(it)-332(is)-332(within)-332(the)-332(conic)-333(\050that)-332(is,)-352(if)-332(no)-332(tangents)-332(may)-333(be)]TJ -32.717 -13.549 Td[(drawn)-321(from)]TJ/F20 10.909 Tf 55.469 0 Td[(P)]TJ/F16 10.909 Tf 10.165 0 Td[(to)-321(the)-321(conic\051,)-338(we)-321(may)-321(construct)-321(its)-320(polar)-321(line)-321(by)]TJ -65.634 -13.549 Td[(drawing)-263(through)-263(it)-263(any)-263(two)-263(chords)-263(and)-263(joining)-263(the)-263(two)-263(points)-263(of)]TJ 0 -13.55 Td[(intersection)-332(of)-331(the)-332(two)-331(pairs)-332(of)-331(tangents)-332(at)-331(their)-332(extremities.)-495(If)]TJ 0 -13.549 Td[(the)-307(point)]TJ/F20 10.909 Tf 42.461 0 Td[(P)]TJ/F16 10.909 Tf 10.015 0 Td[(is)-307(outside)-307(the)-307(conic,)-322(we)-307(may)-307(draw)-307(the)-307(two)-307(tangents)]TJ -52.476 -13.549 Td[(and)-250(construct)-250(the)-250(chord)-250(of)-250(contact)-250(\050Fig.)-250(27\051.)]TJ/F39 10.909 Tf 0 -50.524 Td[(102.)-329(Self-polar)-276(tria)-1(ngle.)]TJ/F16 10.909 Tf 114.431 0 Td[(In)-276(Fig.)-329(26)-277(it)-276(is)-277(not)-276(difficult)-276(to)-277(see)-276(that)]TJ/F20 10.909 Tf -114.431 -13.549 Td[(AOC)]TJ/F16 10.909 Tf 25.616 0 Td[(is)-348(a)]TJ/F20 10.909 Tf 19.717 0 Td[(self-polar)]TJ/F16 10.909 Tf 46.224 0 Td[(triangle,)-373(that)-348(is,)-373(each)-348(vertex)-348(is)-348(the)-349(pole)-348(of)]TJ -91.557 -13.55 Td[(the)-284(opposite)-283(side.)-351(For)]TJ/F20 10.909 Tf 98.859 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.82 0 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(,)]TJ/F20 10.909 Tf 5.82 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 5.82 0 Td[(K)]TJ/F16 10.909 Tf 10.369 0 Td[(are)-283(f)-1(our)-283(harmonic)-284(points,)-291(and)]TJ -150.317 -13.549 Td[(they)-276(project)-276(to)]TJ/F20 10.909 Tf 66.606 0 Td[(C)]TJ/F16 10.909 Tf 10.289 0 Td[(in)-276(four)-276(harmonic)-277(rays.)-328(The)-276(line)]TJ/F20 10.909 Tf 140.744 0 Td[(CO)]TJ/F16 10.909 Tf 15.153 0 Td[(,)-276(therefore,)]TJ -232.792 -13.549 Td[(meets)-255(the)-255(line)]TJ/F20 10.909 Tf 63.482 0 Td[(AMN)]TJ/F16 10.909 Tf 25.808 0 Td[(in)-255(a)-254(point)-255(on)-255(the)-255(polar)-254(of)]TJ/F20 10.909 Tf 110.957 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-255(being)-255(separated)]TJ -206.912 -13.549 Td[(from)]TJ/F20 10.909 Tf 24.504 0 Td[(A)]TJ/F16 10.909 Tf 9.96 0 Td[(harmonically)-302(by)-302(the)-302(po)-1(ints)]TJ/F20 10.909 Tf 121.664 0 Td[(M)]TJ/F16 10.909 Tf 12.383 0 Td[(and)]TJ/F20 10.909 Tf 19.049 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-302(Similarly,)-315(the)-302(line)]TJ/F20 10.909 Tf -194.836 -13.549 Td[(CO)]TJ/F16 10.909 Tf 18.598 0 Td[(meets)]TJ/F20 10.909 Tf 28.896 0 Td[(KL)]TJ/F16 10.909 Tf 16.786 0 Td[(in)-316(a)-316(point)-316(on)-315(the)-316(polar)-316(of)]TJ/F20 10.909 Tf 115.624 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-316(and)-316(therefore)]TJ/F20 10.909 Tf 68.187 0 Td[(CO)]TJ/F16 10.909 Tf 18.598 0 Td[(is)]TJ -273.354 -13.55 Td[(the)-236(polar)-237(of)]TJ/F20 10.909 Tf 52.571 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-236(Similarly,)]TJ/F20 10.909 Tf 51.255 0 Td[(OA)]TJ/F16 10.909 Tf 17.12 0 Td[(is)-236(the)-237(polar)-236(of)]TJ/F20 10.909 Tf 62.425 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-236(and)-237(therefore)]TJ/F20 10.909 Tf 65.585 0 Td[(O)]TJ/F16 10.909 Tf 10.455 0 Td[(is)]TJ -273.354 -13.549 Td[(the)-250(pole)-250(of)]TJ/F20 10.909 Tf 49.386 0 Td[(AC)]TJ/F16 10.909 Tf 13.941 0 Td[(.)]TJ/F39 10.909 Tf -63.327 -50.524 Td[(103.)-1108(Pole)-535(and)-536(polar)-536(projectively)-536(related.)]TJ/F16 10.909 Tf 219.65 0 Td[(Another)-536(very)]TJ -219.65 -13.549 Td[(important)-250(theorem)-250(comes)-250(directly)-250(from)-250(Fig.)-250(26.)]TJ/F20 10.909 Tf 11.955 -13.549 Td[(As)-238(a)-237(point)-237(A)-238(moves)-237(along)-238(a)-237(straight)-238(line)-237(its)-238(polar)-237(with)-238(respect)]TJ -11.955 -13.55 Td[(to)-359(a)-359(conic)-359(revolves)-359(about)-359(a)-359(fixed)-359(point)-359(and)-359(describes)-360(a)-359(pencil)]TJ 0 -13.549 Td[(projective)-250(to)-250(the)-250(point-row)-250(described)-250(by)-250(A.)]TJ/F16 10.909 Tf 11.955 -13.549 Td[(For,)-254(fix)-253(the)-253(points)]TJ/F20 10.909 Tf 81.061 0 Td[(L)]TJ/F16 10.909 Tf 8.828 0 Td[(and)]TJ/F20 10.909 Tf 18.515 0 Td[(N)]TJ/F16 10.909 Tf 10.038 0 Td[(and)-253(let)-253(the)-254(point)]TJ/F20 10.909 Tf 73.47 0 Td[(A)]TJ/F16 10.909 Tf 9.428 0 Td[(move)-253(along)-253(the)]TJ -213.295 -13.549 Td[(line)]TJ/F20 10.909 Tf 19.171 0 Td[(AQ)]TJ/F16 10.909 Tf 14.541 0 Td[(;)-257(then)-258(the)-257(point-row)]TJ/F20 10.909 Tf 89.402 0 Td[(A)]TJ/F16 10.909 Tf 9.472 0 Td[(is)-257(projective)-258(to)-257(the)-257(pencil)]TJ/F20 10.909 Tf 113.415 0 Td[(LK)]TJ/F16 10.909 Tf 13.342 0 Td[(,)-257(and)]TJ -259.343 -13.549 Td[(since)]TJ/F20 10.909 Tf 25.124 0 Td[(K)]TJ/F16 10.909 Tf 9.982 0 Td[(moves)-248(along)-248(the)-248(conic,)-248(the)-248(pencil)]TJ/F20 10.909 Tf 148.64 0 Td[(LK)]TJ/F16 10.909 Tf 16.048 0 Td[(is)-248(projective)-248(to)-248(the)]TJ -199.794 -13.549 Td[(pencil)]TJ/F20 10.909 Tf 29.283 0 Td[(NK)]TJ/F16 10.909 Tf 14.552 0 Td[(,)-240(which)-240(in)-241(turn)-240(is)-240(projective)-240(to)-241(the)-240(point-row)]TJ/F20 10.909 Tf 194.782 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-240(which,)]TJ -245.893 -13.55 Td[(finally,)-250(is)-250(projective)-250(to)-250(the)-250(pencil)]TJ/F20 10.909 Tf 146.956 0 Td[(OC)]TJ/F16 10.909 Tf 15.153 0 Td[(,)-250(which)-250(is)-250(the)-250(polar)-250(of)]TJ/F20 10.909 Tf 97.865 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(.)]TJ/F16 7.97 Tf -339.396 0 Td[([59])]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +961 0 obj << +/Type /Page +/Contents 962 0 R +/Resources 960 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +949 0 obj << +/D [961 0 R /XYZ 93.543 412.96 null] +>> endobj +963 0 obj << +/D [961 0 R /XYZ 93.543 397.527 null] +>> endobj +953 0 obj << +/D [961 0 R /XYZ 93.543 254.053 null] +>> endobj +964 0 obj << +/D [961 0 R /XYZ 93.543 238.62 null] +>> endobj +965 0 obj << +/D [961 0 R /XYZ 93.543 103.117 null] +>> endobj +957 0 obj << +/D [961 0 R /XYZ 93.543 81.575 null] +>> endobj +966 0 obj << +/D [961 0 R /XYZ 93.543 66.142 null] +>> endobj +960 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +967 0 obj +<< /S /GoTo /D (index118) >> +endobj +970 0 obj +() +endobj +973 0 obj << +/Length 4756 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(105.)-250(Self-dual)-250(theorems)-15143(73)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(104.)-722(Dualit)-1(y.)]TJ/F16 10.909 Tf 72.13 0 Td[(We)-407(have,)-447(then,)-447(in)-408(the)-407(pole)-408(and)-407(polar)-408(relation)]TJ -72.13 -13.549 Td[(a)-432(device)-432(for)-431(setting)-432(up)-432(a)-432(one-to-one)-432(correspondence)-432(between)]TJ 0 -13.549 Td[(the)-291(points)-291(and)-291(lines)-291(of)-291(the)-291(plane)]TJ/F21 10.909 Tf 141.454 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(a)-291(correspondence)-291(which)-291(may)]TJ -152.363 -13.549 Td[(be)-395(called)-395(projective,)-431(because)-395(to)-395(four)-395(harmonic)-395(points)-395(or)-395(lines)]TJ 0 -13.55 Td[(correspond)-211(always)-211(four)-211(harmonic)-211(lines)-211(or)-211(points.)-237(To)-211(every)-211(figure)]TJ 0 -13.549 Td[(made)-260(up)-260(of)-259(points)-260(and)-260(lines)-260(will)-260(correspond)-259(a)-260(figure)-260(made)-260(up)-260(of)]TJ 0 -13.549 Td[(lines)-282(and)-281(points.)-345(To)-282(a)-281(point-row)-282(of)-282(the)-281(second)-282(order,)-289(which)-282(is)-282(a)]TJ 0 -13.549 Td[(conic)-214(considered)-214(as)-214(a)-214(point-locus,)-221(corresponds)-214(a)-214(penc)-1(il)-214(of)-214(rays)-214(of)]TJ 0 -13.549 Td[(the)-204(second)-205(order,)-213(which)-204(is)-205(a)-204(conic)-204(considered)-204(as)-205(a)-204(line-locus.)-235(The)]TJ 0 -13.55 Td[(name)-283('duality')-283(is)-283(used)-283(to)-283(describe)-283(this)-283(sort)-283(of)-283(correspondence.)-350(It)]TJ 0 -13.549 Td[(is)-301(important)-301(to)-302(note)-301(that)-301(the)-301(dual)-302(relation)-301(is)-301(subject)-301(to)-301(the)-302(same)]TJ 0 -13.549 Td[(exceptions)-251(as)-251(the)-250(one-to-o)-1(ne)-250(correspondence)-251(is,)-251(and)-251(must)-251(not)-251(be)]TJ 0 -13.549 Td[(appealed)-203(to)-203(in)-202(cases)-203(where)-203(the)-203(one-to-one)-203(correspondence)-203(breaks)]TJ 0 -13.549 Td[(down.)-634(We)-378(have)-378(seen)-378(that)-378(there)-378(is)-378(in)-378(Euclidean)-378(geometry)-378(one)]TJ 0 -13.55 Td[(and)-317(only)-316(one)-317(ray)-317(in)-316(a)-317(pencil)-317(which)-316(has)-317(no)-317(point)-316(in)-317(a)-317(point-row)]TJ 0 -13.549 Td[(perspective)-456(to)-455(it)-456(for)-456(a)-456(corresponding)-455(point;)-559(namely,)-507(the)-456(line)]TJ 0 -13.549 Td[(parallel)-394(to)-394(the)-394(line)-394(of)-393(the)-394(point-row.)-682(Any)-394(theorem,)-430(therefore,)]TJ 0 -13.549 Td[(that)-233(involves)-232(explicitly)-233(the)-232(point)-233(at)-232(infinity)-233(is)-232(not)-233(to)-232(be)-233(translated)]TJ 0 -13.549 Td[(into)-278(a)-277(theorem)-278(concerning)-278(lines.)-333(Further,)-285(in)-277(the)-278(pencil)-278(the)-278(angle)]TJ 0 -13.55 Td[(between)-263(two)-263(lines)-263(has)-263(nothing)-263(to)-263(correspond)-263(to)-263(it)-263(in)-264(a)-263(point-row)]TJ 0 -13.549 Td[(perspective)-269(to)-269(the)-270(pencil.)-307(Any)-269(theorem,)-274(therefore,)-274(that)-270(mentions)]TJ 0 -13.549 Td[(angles)-317(is)-318(not)-317(translatable)-317(into)-317(another)-318(theorem)-317(by)-317(means)-317(of)-318(the)]TJ 0 -13.549 Td[(law)-219(of)-218(duality.)-240(Now)-219(we)-218(have)-219(seen)-218(that)-219(the)-219(notion)-218(of)-219(the)-219(infinitely)]TJ 0 -13.549 Td[(distant)-268(point)-268(on)-268(a)-268(line)-267(involves)-268(the)-268(notion)-268(of)-268(dividing)-268(a)-268(segment)]TJ 0 -13.55 Td[(into)-320(any)-319(number)-320(of)-320(equal)-319(parts)]TJ/F21 10.909 Tf 137.415 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(in)-320(other)-319(words,)-337(of)]TJ/F20 10.909 Tf 83.521 0 Td[(measuring)]TJ/F16 10.909 Tf 46.058 0 Td[(.)]TJ -277.903 -13.549 Td[(If,)-300(therefore,)-299(we)-290(call)-290(any)-289(theorem)-290(that)-290(has)-289(to)-290(do)-290(with)-289(the)-290(line)-290(at)]TJ 0 -13.549 Td[(infinity)-292(or)-293(with)-584(the)-292(measurement)-293(of)-292(angles)-292(a)]TJ/F20 10.909 Tf 202.606 0 Td[(metrical)]TJ/F16 10.909 Tf 39.548 0 Td[(theorem,)]TJ/F16 7.97 Tf 48.87 0 Td[([60])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(and)-258(any)-257(other)-257(kind)-258(a)]TJ/F20 10.909 Tf 92.207 0 Td[(projective)]TJ/F16 10.909 Tf 46.435 0 Td[(theorem,)-259(we)-258(may)-257(put)-258(the)-257(case)-258(as)]TJ -138.642 -13.549 Td[(follows:)]TJ/F20 10.909 Tf 11.956 -15.57 Td[(Any)-313(projective)-313(theorem)-313(involves)-313(another)-314(theorem,)-328(dual)-314(to)-313(it,)]TJ -11.956 -13.549 Td[(obtainable)-376(by)-376(interchanging)-376(everywhere)-376(the)-376(words)-376('point')-376(and)]TJ 0 -13.549 Td[('line.')]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +972 0 obj << +/Type /Page +/Contents 973 0 R +/Resources 971 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +974 0 obj << +/D [972 0 R /XYZ 116.947 165.896 null] +>> endobj +968 0 obj << +/D [972 0 R /XYZ 46.771 66.142 null] +>> endobj +971 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F21 35 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +975 0 obj +<< /S /GoTo /D (index119) >> +endobj +978 0 obj +() +endobj +979 0 obj +<< /S /GoTo /D (index120) >> +endobj +982 0 obj +(PROBLEMS) +endobj +985 0 obj << +/Length 3499 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(74)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(105.)-424(Self-dual)-309(theorems.)]TJ/F16 10.909 Tf 119.278 0 Td[(The)-308(theorems)-308(of)-308(this)-308(chapter)-309(will)-308(be)]TJ -119.278 -13.549 Td[(found,)-214(upon)-204(examination,)-214(to)-204(be)]TJ/F20 10.909 Tf 136.797 0 Td[(self-dual)]TJ/F16 10.909 Tf 38.181 0 Td[(;)-220(that)-204(is,)-214(no)-204(new)-205(theorem)]TJ -174.978 -13.549 Td[(results)-480(from)-480(applying)-480(the)-480(process)-480(indicated)-480(in)-480(the)-480(preceding)]TJ 0 -13.549 Td[(paragraph.)-578(It)-360(is)-359(therefore)-360(useless)-359(to)-360(look)-359(for)-360(new)-359(results)-360(from)]TJ 0 -13.55 Td[(the)-477(theorem)-478(on)-477(the)-477(circumscribed)-478(quadrilateral)-477(derived)-478(from)]TJ 0 -13.549 Td[(Brianchon's,)-281(which)-275(is)-275(itself)-275(clearly)-274(the)-275(dual)-275(of)-275(Pascal's)-275(theorem,)]TJ 0 -13.549 Td[(and)-250(in)-250(fact)-250(was)-250(first)-250(discovered)-250(by)-250(dualization)-250(of)-250(Pascal's.)]TJ/F39 10.909 Tf 0 -60.784 Td[(106.)]TJ/F16 10.909 Tf 26.151 0 Td[(It)-382(should)-383(not)-382(be)-382(inferred)-383(from)-382(the)-383(above)-382(discussion)-382(that)]TJ -26.151 -13.549 Td[(one-to-one)-230(correspondences)-230(may)-230(not)-230(be)-230(devised)-230(that)-231(will)-230(control)]TJ 0 -13.549 Td[(certain)-276(of)-276(the)-276(so-called)-276(metrical)-276(relations.)-328(A)-276(very)-276(important)-276(one)]TJ 0 -13.55 Td[(may)-342(be)-341(easily)-342(found)-341(that)-342(leaves)-342(angles)-341(unaltered.)-525(The)-342(relation)]TJ 0 -13.549 Td[(called)]TJ/F20 10.909 Tf 29.699 0 Td[(similarity)]TJ/F16 10.909 Tf 45.474 0 Td[(leaves)-334(ratios)-335(between)-334(corresponding)-335(segments)]TJ -75.173 -13.549 Td[(unaltered.)-777(The)-426(above)-425(statements)-426(apply)-426(only)-425(to)-426(the)-426(particular)]TJ 0 -13.549 Td[(one-to-one)-250(correspondence)-250(considered.)]TJ/F16 15.781 Tf 0 -67.75 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -34.652 Td[(1.)-242(Given)-227(a)-226(quadrilateral,)-231(construct)-227(the)-226(quadrangle)-226(polar)-227(to)-226(it)-227(with)]TJ 0 -13.549 Td[(respect)-250(to)-250(a)-250(given)-250(conic.)]TJ 11.956 -14.628 Td[(2.)-559(A)-353(point)-353(moves)-353(along)-353(a)-353(straight)-353(line.)-559(Show)-354(that)-353(its)-353(polar)]TJ -11.956 -13.549 Td[(lines)-356(with)-357(respect)-356(to)-356(two)-356(given)-357(conics)-356(generate)-356(a)-356(point-row)-357(of)]TJ 0 -13.549 Td[(the)-250(second)-250(order.)]TJ/F16 7.97 Tf -72.755 0 Td[([61])]TJ/F16 10.909 Tf 84.711 -14.628 Td[(3.)-289(Given)-264(five)-263(points,)-266(draw)-263(the)-264(polar)-263(of)-263(a)-263(point)-263(with)-263(respect)-264(to)]TJ -11.956 -13.549 Td[(the)-222(conic)-222(passing)-222(through)-222(them,)-228(without)-222(drawing)-222(the)-222(conic)-223(itself.)]TJ 11.956 -14.628 Td[(4.)-406(G)-1(iven)-302(five)-302(lines,)-315(draw)-302(the)-302(polar)-303(of)-302(a)-302(point)-302(with)-302(respect)-303(to)]TJ -11.956 -13.549 Td[(the)-250(conic)-250(tangent)-250(to)-250(them,)-250(without)-250(drawing)-250(the)-250(conic)-250(itself.)]TJ 11.956 -14.628 Td[(5.)-250(Dualize)-250(problems)-250(3)-250(and)-250(4.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +984 0 obj << +/Type /Page +/Contents 985 0 R +/Resources 983 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 914 0 R +>> endobj +986 0 obj << +/D [984 0 R /XYZ 93.543 529.134 null] +>> endobj +976 0 obj << +/D [984 0 R /XYZ 93.543 408.369 null] +>> endobj +987 0 obj << +/D [984 0 R /XYZ 93.543 388.345 null] +>> endobj +980 0 obj << +/D [984 0 R /XYZ 93.543 266.301 null] +>> endobj +988 0 obj << +/D [984 0 R /XYZ 93.543 137.026 null] +>> endobj +983 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +991 0 obj << +/Length 2803 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(75)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 58.727 518.175 Td[(6.)-477(Given)-325(four)-326(points)-325(on)-326(the)-325(conic,)-345(and)-325(the)-326(tangent)-326(at)-325(one)-326(of)]TJ -11.956 -13.549 Td[(them,)-244(draw)-243(the)-243(polar)-243(of)-243(a)-242(given)-243(point)-243(without)-243(drawing)-243(the)-243(conic.)]TJ 0 -13.549 Td[(Dualize.)]TJ 11.956 -13.549 Td[(7.)-545(A)-348(point)-349(moves)-348(on)-348(a)-349(conic.)-545(Show)-348(that)-349(its)-348(polar)-348(line)-349(with)]TJ -11.956 -13.55 Td[(respect)-274(to)-273(another)-274(conic)-273(describes)-274(a)-274(pencil)-273(of)-274(rays)-273(of)-274(the)-274(second)]TJ 0 -13.549 Td[(order.)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(Suggestion.)]TJ/F16 10.909 Tf 56.54 0 Td[(Replace)-348(the)-348(given)-348(conic)-348(by)-348(a)-348(pair)-348(of)-348(protective)]TJ -68.496 -13.549 Td[(pencils.)]TJ 11.956 -13.549 Td[(8.)-230(Show)-191(that)-190(the)-191(poles)-191(of)-190(the)-191(tangents)-190(of)-191(one)-190(conic)-191(with)-191(respect)]TJ -11.956 -13.55 Td[(to)-250(another)-250(lie)-250(on)-250(a)-250(conic.)]TJ 11.956 -13.549 Td[(9.)-428(The)-310(polar)-309(of)-310(a)-309(point)]TJ/F20 10.909 Tf 105.473 0 Td[(A)]TJ/F16 10.909 Tf 10.04 0 Td[(with)-309(respect)-310(to)-309(one)-310(conic)-309(is)]TJ/F20 10.909 Tf 125.689 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-324(and)]TJ -258.613 -13.549 Td[(the)-281(pole)-281(of)]TJ/F20 10.909 Tf 50.392 0 Td[(a)]TJ/F16 10.909 Tf 8.517 0 Td[(with)-281(respect)-281(to)-280(another)-281(conic)-281(is)]TJ/F20 10.909 Tf 140.776 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(.)-281(Show)-281(that)-280(as)]TJ/F20 10.909 Tf 65.28 0 Td[(A)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(travels)-230(along)-229(a)-230(line,)]TJ/F20 10.909 Tf 87.323 0 Td[(A')]TJ/F16 10.909 Tf 11.504 0 Td[(also)-230(travels)-229(along)-230(another)-230(line.)-243(In)-229(general,)]TJ -98.827 -13.549 Td[(if)]TJ/F20 10.909 Tf 9.127 0 Td[(A)]TJ/F16 10.909 Tf 9.127 0 Td[(describes)-226(a)-225(curve)-226(of)-226(degree)]TJ/F20 10.909 Tf 120.133 0 Td[(n)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-231(show)-225(that)]TJ/F20 10.909 Tf 49.558 0 Td[(A')]TJ/F16 10.909 Tf 11.461 0 Td[(describes)-226(another)]TJ -204.86 -13.55 Td[(curve)-224(of)-224(the)-224(same)-224(degree)]TJ/F20 10.909 Tf 110.353 0 Td[(n)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-241(\050The)-224(degree)-224(of)-224(a)-224(curve)-224(is)-224(the)-224(greatest)]TJ -115.807 -13.549 Td[(number)-329(of)-329(points)-329(that)-329(it)-329(may)-329(have)-329(in)-329(common)-329(with)-329(any)-329(line)-329(in)]TJ 0 -13.549 Td[(the)-250(plane.\051)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +990 0 obj << +/Type /Page +/Contents 991 0 R +/Resources 989 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +989 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +993 0 obj +<< /S /GoTo /D (index121) >> +endobj +996 0 obj +(CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS) +endobj +997 0 obj +<< /S /GoTo /D (index122) >> +endobj +1000 0 obj +() +endobj +1001 0 obj +<< /S /GoTo /D (index123) >> +endobj +1004 0 obj +() +endobj +1005 0 obj +<< /S /GoTo /D (index124) >> +endobj +1008 0 obj +() +endobj +1011 0 obj << +/Length 2251 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([62])]TJ/F16 18.959 Tf 72.755 -65.556 Td[(CHAPTER)-265(VII)-265(-)-265(METRICAL)]TJ 0 -24.647 Td[(PROPERTIES)-260(OF)-260(THE)-261(CONIC)]TJ 0 -24.646 Td[(SECTIONS)]TJ/F39 10.909 Tf 0 -73.168 Td[(107.)-852(Diameters.)-851(Center.)]TJ/F16 10.909 Tf 132.383 0 Td[(After)-451(what)-450(has)-451(been)-450(said)-451(in)-450(the)]TJ -132.383 -13.549 Td[(last)-406(chapter)-407(one)-406(would)-406(naturally)-406(expect)-407(to)-406(get)-406(at)-406(the)-407(metrical)]TJ 0 -13.549 Td[(properties)-223(of)-223(the)-222(conic)-223(sections)-223(by)-223(the)-222(introduction)-223(of)-223(the)-223(infinite)]TJ 0 -13.55 Td[(elements)-424(in)-424(the)-424(plane.)-772(Entering)-424(into)-424(the)-424(theory)-424(of)-425(poles)-424(and)]TJ 0 -13.549 Td[(polars)-250(with)-250(these)-250(elements,)-250(we)-250(have)-250(the)-250(following)-250(definitions:)]TJ 11.956 -13.797 Td[(The)-186(polar)-186(line)-186(of)-187(an)-186(infinitely)-186(distant)-186(point)-186(is)-186(called)-186(a)]TJ/F20 10.909 Tf 227.165 0 Td[(diameter)]TJ/F16 10.909 Tf 38.782 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-298(the)-298(pole)-298(of)-298(the)-298(infinitely)-298(distant)-298(line)-298(is)-298(called)-298(the)]TJ/F20 10.909 Tf 238.171 0 Td[(center)]TJ/F16 10.909 Tf 27.262 0 Td[(,)-310(of)]TJ -265.433 -13.549 Td[(the)-250(conic.)]TJ/F39 10.909 Tf 0 -53.305 Td[(108.)]TJ/F16 10.909 Tf 21.818 0 Td[(From)-250(the)-250(harmonic)-250(properties)-250(of)-250(poles)-250(and)-250(polars,)]TJ/F20 10.909 Tf -9.862 -13.797 Td[(The)-250(center)-250(bisects)-250(all)-250(chords)-250(through)-250(it)-250(\050\247)-250(39\051.)]TJ 0 -13.797 Td[(Every)-250(diameter)-250(passes)-250(through)-250(the)-250(center.)]TJ 0 -13.796 Td[(All)-221(chords)-221(through)-220(the)-221(same)-221(point)-221(at)-221(infinity)-221(\050that)-220(is,)-227(each)-221(of)-221(a)]TJ -11.956 -13.55 Td[(set)-273(of)-273(parallel)-273(chords\051)-274(are)-273(bisected)-273(by)-273(the)-273(diameter)-273(which)-273(is)-274(the)]TJ 0 -13.549 Td[(polar)-250(of)-250(that)-250(infinitely)-250(distant)-250(point.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1010 0 obj << +/Type /Page +/Contents 1011 0 R +/Resources 1009 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +994 0 obj << +/D [1010 0 R /XYZ 93.543 529.134 null] +>> endobj +1012 0 obj << +/D [1010 0 R /XYZ 93.543 518.175 null] +>> endobj +998 0 obj << +/D [1010 0 R /XYZ 93.543 355.044 null] +>> endobj +1013 0 obj << +/D [1010 0 R /XYZ 93.543 338.344 null] +>> endobj +1002 0 obj << +/D [1010 0 R /XYZ 93.543 206.795 null] +>> endobj +1014 0 obj << +/D [1010 0 R /XYZ 93.543 190.096 null] +>> endobj +1006 0 obj << +/D [1010 0 R /XYZ 93.543 82.841 null] +>> endobj +1015 0 obj << +/D [1010 0 R /XYZ 93.543 66.142 null] +>> endobj +1009 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1016 0 obj +<< /S /GoTo /D (index125) >> +endobj +1019 0 obj +() +endobj +1020 0 obj +<< /S /GoTo /D (index126) >> +endobj +1023 0 obj +() +endobj +1024 0 obj +<< /S /GoTo /D (index127) >> +endobj +1027 0 obj +() +endobj +1031 0 obj << +/Length 3972 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(110.)-250(Classification)-250(of)-250(conics)-13337(77)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(109.)-306(Conjugate)-268(diameters.)]TJ/F16 10.909 Tf 125.94 0 Td[(We)-268(have)-269(already)-269(defined)-268(conjugate)]TJ -125.94 -13.549 Td[(lines)-343(as)-343(lines)-343(which)-344(pass)-343(each)-343(through)-343(the)-343(pole)-343(of)-343(the)-343(other)-344(\050\247)]TJ 0 -13.549 Td[(100\051.)]TJ/F20 10.909 Tf 11.956 -13.572 Td[(Any)-250(diameter)-250(bisects)-250(all)-250(chords)-250(parallel)-250(to)-250(its)-250(conjugate.)]TJ 0 -13.572 Td[(The)-314(tangents)-314(at)-314(the)-313(extremities)-314(of)-314(any)-314(diameter)-314(are)-314(parallel,)]TJ -11.956 -13.549 Td[(and)-250(parallel)-250(to)-250(the)-250(conjugate)-250(diameter.)]TJ 11.956 -13.572 Td[(Diameters)-287(parallel)-287(to)-287(the)-287(sides)-287(of)-287(a)-288(circumscribed)-287(parallelo-)]TJ -11.956 -13.549 Td[(gram)-250(are)-250(conjugate.)]TJ/F16 10.909 Tf 11.956 -13.572 Td[(All)-250(these)-250(theorems)-250(are)-250(easy)-250(exercises)-250(for)-250(the)-250(student.)]TJ/F16 7.97 Tf 279.068 0 Td[([63])]TJ/F39 10.909 Tf -291.024 -51.279 Td[(110.)-532(Classification)-344(of)-344(conics.)]TJ/F16 10.909 Tf 141.53 0 Td[(Conics)-344(are)-344(classified)-344(according)]TJ -141.53 -13.549 Td[(to)-312(their)-312(relation)-312(to)-311(the)-312(infinitely)-312(distant)-312(line.)-435(If)-312(a)-312(conic)-312(has)-312(two)]TJ 0 -13.549 Td[(points)-182(in)-182(common)-182(with)-182(the)-182(line)-182(at)-181(infinity,)-196(it)-182(is)-182(called)-182(a)]TJ/F20 10.909 Tf 233.361 0 Td[(hyperbola)]TJ/F16 10.909 Tf 44.237 0 Td[(;)]TJ -277.598 -13.55 Td[(if)-275(it)-275(has)-276(no)-275(point)-275(in)-275(common)-275(with)-275(the)-276(infinitely)-275(distant)-275(line,)-281(it)-276(is)]TJ 0 -13.549 Td[(called)-263(an)]TJ/F20 10.909 Tf 42.096 0 Td[(ellipse)]TJ/F16 10.909 Tf 28.484 0 Td[(;)-270(if)-263(it)-264(is)-263(tangent)-264(to)-263(the)-263(line)-264(at)-263(infinity,)-267(it)-263(is)-264(called)]TJ -70.58 -13.549 Td[(a)]TJ/F20 10.909 Tf 7.571 0 Td[(parabola)]TJ/F16 10.909 Tf 40.004 0 Td[(.)]TJ/F39 10.909 Tf -47.575 -51.279 Td[(111.)]TJ/F20 10.909 Tf 27.358 0 Td[(In)-419(a)-420(hyperbola)-419(the)-419(center)-419(is)-420(outside)-419(the)-419(curve)]TJ/F16 10.909 Tf 216.888 0 Td[(\050\247)-419(101\051,)]TJ -244.246 -13.55 Td[(since)-306(the)-306(two)-306(tangents)-306(to)-306(the)-306(curve)-306(at)-306(the)-306(points)-306(wh)-1(ere)-306(it)-306(meets)]TJ 0 -13.549 Td[(the)-276(line)-276(at)-276(infinity)-276(determine)-276(by)-276(their)-276(intersection)-276(the)-276(center.)-328(As)]TJ 0 -13.549 Td[(previously)-226(noted,)-230(these)-225(tw)-1(o)-225(tangents)-226(are)-225(called)-226(the)]TJ/F20 10.909 Tf 220.603 0 Td[(asymptotes)]TJ/F16 10.909 Tf 50.94 0 Td[(of)]TJ -271.543 -13.549 Td[(the)-250(curve.)-250(The)-250(ellipse)-250(and)-250(the)-250(parabola)-250(have)-250(no)-250(asymptotes.)]TJ/F39 10.909 Tf 0 -51.279 Td[(112.)]TJ/F20 10.909 Tf 21.692 0 Td[(The)-215(center)-215(of)-216(the)-215(parabola)-215(is)-215(at)-215(infinity,)-223(and)-215(therefore)-215(all)-215(its)]TJ -21.692 -13.55 Td[(diameters)-271(are)-271(parallel,)]TJ/F16 10.909 Tf 103.762 0 Td[(for)-271(the)-271(pole)-270(of)-271(a)-271(tangent)-271(line)-270(is)-271(the)-271(point)]TJ -103.762 -13.549 Td[(of)-250(contact.)]TJ/F20 10.909 Tf 11.956 -13.572 Td[(The)-233(locus)-233(of)-233(the)-233(middle)-232(points)-233(of)-233(a)-233(series)-233(of)-233(parallel)-233(chords)-233(in)]TJ -11.956 -13.549 Td[(a)-257(parabola)-257(is)-257(a)-257(diameter,)-259(and)-257(the)-257(direction)-257(of)-257(the)-257(line)-258(of)-257(centers)]TJ 0 -13.549 Td[(is)-250(the)-250(same)-250(for)-250(all)-250(series)-250(of)-250(parallel)-250(chords.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1030 0 obj << +/Type /Page +/Contents 1031 0 R +/Resources 1029 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +1032 0 obj << +/D [1030 0 R /XYZ 46.771 407.313 null] +>> endobj +1017 0 obj << +/D [1030 0 R /XYZ 46.771 385.405 null] +>> endobj +1033 0 obj << +/D [1030 0 R /XYZ 46.771 369.606 null] +>> endobj +1021 0 obj << +/D [1030 0 R /XYZ 46.771 266.5 null] +>> endobj +1034 0 obj << +/D [1030 0 R /XYZ 46.771 250.7 null] +>> endobj +1025 0 obj << +/D [1030 0 R /XYZ 46.771 160.903 null] +>> endobj +1035 0 obj << +/D [1030 0 R /XYZ 46.771 145.104 null] +>> endobj +1029 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1036 0 obj +<< /S /GoTo /D (index128) >> +endobj +1039 0 obj +() +endobj +1042 0 obj << +/Length 2095 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(78)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 105.499 518.175 Td[(The)-250(center)-250(of)-250(an)-250(ellipse)-250(is)-250(within)-250(the)-250(curve.)]TJ +ET +1 0 0 1 93.543 492.509 cm +0 g 0 G +1 0 0 1 5.622 -243.585 cm + q 2.32251 0 0 2.32251 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +112.0796 0 0 104.8796 0 0 cm +/Im28 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.165 -248.924 cm +BT +/F16 10.909 Tf 218.337 229.921 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(28)]TJ +ET +1 0 0 1 93.543 224.324 cm +0 g 0 G +1 0 0 1 -93.543 -224.324 cm +BT +/F39 10.909 Tf 93.543 147.437 Td[(113.)-941(Theorems)-481(concerning)-480(asymptotes.)]TJ/F16 10.909 Tf 203.119 0 Td[(We)-480(derived)-481(as)-480(a)]TJ -203.119 -13.549 Td[(consequence)-260(of)-260(the)-260(theorem)-260(of)-260(Brianchon)-260(\050\247)-260(89\051)-261(the)-260(proposition)]TJ 0 -13.549 Td[(that)-225(if)-225(a)-225(triangle)-224(be)-225(circumscribed)-225(about)-225(a)-225(conic,)-230(the)-225(lines)-225(joining)]TJ 0 -13.549 Td[(the)-237(vertices)-236(to)-237(the)-236(points)-237(of)-236(contact)-237(of)-236(the)-237(opposite)-236(sid)-1(es)-236(all)-237(meet)]TJ 0 -13.55 Td[(in)-357(a)-358(point.)-572(Take,)-384(now,)-384(for)-358(two)-357(of)-357(the)-358(tangents)-357(the)-358(asymptotes)]TJ 0 -13.549 Td[(of)-368(a)-368(hyperbola,)-397(and)-368(let)-368(any)-368(third)-368(tangent)-367(cut)-368(them)-368(in)]TJ/F20 10.909 Tf 243.522 0 Td[(A)]TJ/F16 10.909 Tf 10.677 0 Td[(and)]TJ/F20 10.909 Tf 19.766 0 Td[(B)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(\050Fig.)-314(28\051.)-315(If,)-276(then,)]TJ/F20 10.909 Tf 82.582 0 Td[(O)]TJ/F16 10.909 Tf 10.837 0 Td[(is)-271(the)-272(intersection)-271(of)-272(the)-271(asymptotes,)]TJ/F21 10.909 Tf 160.549 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(and)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1041 0 obj << +/Type /Page +/Contents 1042 0 R +/Resources 1040 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +1028 0 obj << +/Type /XObject +/Subtype /Image +/Width 467 +/Height 437 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 612237 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1037 0 obj << +/D [1041 0 R /XYZ 93.543 176.786 null] +>> endobj +1043 0 obj << +/D [1041 0 R /XYZ 93.543 161.004 null] +>> endobj +1040 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R /F21 35 0 R >> +/XObject << /Im28 1028 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1044 0 obj +<< /S /GoTo /D (index129) >> +endobj +1047 0 obj +() +endobj +1048 0 obj +<< /S /GoTo /D (index130) >> +endobj +1051 0 obj +() +endobj +1052 0 obj +<< /S /GoTo /D (index131) >> +endobj +1055 0 obj +() +endobj +1057 0 obj +<< /S /GoTo /D (index132) >> +endobj +1060 0 obj +() +endobj +1063 0 obj << +/Length 5394 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(114.)-250(Asymptotes)-250(and)-250(conjugate)-250(diameters)-7977(79)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(therefore)-392(the)-393(center)-392(of)-392(the)-392(curve,)]TJ/F21 10.909 Tf 150.122 0 Td[(\024)]TJ/F16 10.909 Tf 19.467 0 Td[(then)-392(the)-392(triangle)]TJ/F20 10.909 Tf 78.28 0 Td[(OAB)]TJ/F16 10.909 Tf 25.485 0 Td[(is)]TJ/F16 7.97 Tf -346.109 0 Td[([64])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(circumscribed)-302(about)-303(the)-302(curve.)-407(By)-303(the)-302(theorem)-303(just)-302(quoted,)-316(the)]TJ 0 -13.549 Td[(line)-278(through)]TJ/F20 10.909 Tf 56.372 0 Td[(A)]TJ/F16 10.909 Tf 9.7 0 Td[(parallel)-278(to)]TJ/F20 10.909 Tf 47.274 0 Td[(OB)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-278(the)-278(line)-279(through)]TJ/F20 10.909 Tf 78.499 0 Td[(B)]TJ/F16 10.909 Tf 9.701 0 Td[(parallel)-278(to)]TJ/F20 10.909 Tf 47.273 0 Td[(OA)]TJ/F16 10.909 Tf 14.542 0 Td[(,)]TJ -277.903 -13.549 Td[(and)-223(the)-222(line)]TJ/F20 10.909 Tf 52.734 0 Td[(OP)]TJ/F16 10.909 Tf 16.971 0 Td[(through)-223(the)-222(point)-223(of)-223(contact)-222(of)-223(the)-223(tangent)]TJ/F20 10.909 Tf 184.257 0 Td[(AB)]TJ/F16 10.909 Tf 15.759 0 Td[(all)]TJ -269.721 -13.55 Td[(meet)-292(in)-291(a)-292(point)]TJ/F20 10.909 Tf 69.693 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-292(But)]TJ/F20 10.909 Tf 24.854 0 Td[(OACB)]TJ/F16 10.909 Tf 31.664 0 Td[(is)-292(a)-291(parallelogram,)-302(and)]TJ/F20 10.909 Tf 104.028 0 Td[(PA)-292(=)-291(PB)]TJ/F16 10.909 Tf 40.388 0 Td[(.)]TJ -277.903 -13.549 Td[(Therefore)]TJ/F20 10.909 Tf 11.956 -13.572 Td[(The)-369(asymptotes)-368(cut)-369(off)-368(on)-369(each)-368(tangent)-369(a)-368(se)-1(gment)-368(which)-369(is)]TJ -11.956 -13.55 Td[(bisected)-250(by)-250(the)-250(point)-250(of)-250(contact.)]TJ/F39 10.909 Tf 0 -51.285 Td[(114.)]TJ/F16 10.909 Tf 23.542 0 Td[(If)-303(we)-302(draw)-303(a)-303(line)]TJ/F20 10.909 Tf 79.509 0 Td[(OQ)]TJ/F16 10.909 Tf 19.054 0 Td[(parallel)-303(to)]TJ/F20 10.909 Tf 47.807 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)-303(then)]TJ/F20 10.909 Tf 28.116 0 Td[(OP)]TJ/F16 10.909 Tf 17.843 0 Td[(and)]TJ/F20 10.909 Tf 19.054 0 Td[(OQ)]TJ/F16 10.909 Tf 19.054 0 Td[(are)]TJ -267.31 -13.55 Td[(conjugate)-362(diameters,)-390(since)]TJ/F20 10.909 Tf 122.119 0 Td[(OQ)]TJ/F16 10.909 Tf 19.698 0 Td[(is)-362(parallel)-362(to)-361(the)-362(tangent)-362(at)-362(the)]TJ -141.817 -13.549 Td[(point)-338(where)]TJ/F20 10.909 Tf 56.46 0 Td[(OP)]TJ/F16 10.909 Tf 18.231 0 Td[(meets)-338(the)-339(curve.)-514(Then,)-361(since)]TJ/F20 10.909 Tf 133.918 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.417 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.417 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-338(and)-339(the)]TJ -241.439 -13.549 Td[(point)-374(at)-374(infinity)-374(on)]TJ/F20 10.909 Tf 89.66 0 Td[(AB)]TJ/F16 10.909 Tf 17.409 0 Td[(are)-374(four)-374(harmonic)-374(points,)-405(we)-374(have)-374(the)]TJ -107.069 -13.549 Td[(theorem)]TJ/F20 10.909 Tf 11.956 -13.573 Td[(Conjugate)-392(diameters)-391(of)-392(the)-392(hyperbola)-391(are)-392(harmonic)-392(conju-)]TJ -11.956 -13.549 Td[(gates)-250(with)-250(respect)-250(to)-250(the)-250(asymptotes.)]TJ/F39 10.909 Tf 0 -51.286 Td[(115.)]TJ/F16 10.909 Tf 25.01 0 Td[(The)-347(chord)]TJ/F20 10.909 Tf 49.385 0 Td[(A"B")]TJ/F16 10.909 Tf 22.495 0 Td[(,)-372(parallel)-347(to)-348(the)-347(diameter)]TJ/F20 10.909 Tf 114.653 0 Td[(OQ)]TJ/F16 10.909 Tf 15.753 0 Td[(,)-347(is)-348(bisected)]TJ -227.296 -13.549 Td[(at)]TJ/F20 10.909 Tf 11.143 0 Td[(P')]TJ/F16 10.909 Tf 12.265 0 Td[(by)-299(the)-300(conjugate)-299(diameter)]TJ/F20 10.909 Tf 117.889 0 Td[(OP)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-299(If)-300(the)-299(chord)]TJ/F20 10.909 Tf 61.227 0 Td[(A"B")]TJ/F16 10.909 Tf 25.76 0 Td[(meet)-299(the)]TJ -242.826 -13.549 Td[(asymptotes)-288(in)]TJ/F20 10.909 Tf 63.854 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.866 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-288(then)]TJ/F20 10.909 Tf 27.788 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.866 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.865 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-288(and)-287(the)-288(point)-288(at)-287(infinity)-288(are)]TJ -154.239 -13.549 Td[(four)-204(harmonic)-204(points,)-213(and)-204(therefore)]TJ/F20 10.909 Tf 155.126 0 Td[(P')]TJ/F16 10.909 Tf 11.224 0 Td[(is)-204(the)-204(middle)-204(point)-204(of)]TJ/F20 10.909 Tf 93.553 0 Td[(A'B')]TJ/F16 10.909 Tf 18 0 Td[(.)]TJ -277.903 -13.55 Td[(Therefore)]TJ/F20 10.909 Tf 45.731 0 Td[(A'A")-250(=)-250(B'B")]TJ/F16 10.909 Tf 56.04 0 Td[(and)-250(we)-250(have)-250(the)-250(theorem)]TJ/F20 10.909 Tf -89.815 -13.572 Td[(The)-235(segments)-236(cut)-235(off)-235(on)-236(any)-235(chord)-236(between)-235(the)-235(hyperbola)-236(and)]TJ -11.956 -13.549 Td[(its)-250(asymptotes)-250(are)-250(equal.)]TJ/F39 10.909 Tf 0 -51.286 Td[(116.)]TJ/F16 10.909 Tf 24.152 0 Td[(This)-321(theorem)-322(furnishes)-321(a)-321(ready)-322(means)-321(of)-321(constructing)-322(the)]TJ -24.152 -13.549 Td[(hyperbola)-455(by)-455(points)-455(when)-455(a)-455(point)-455(on)-455(the)-455(curve)-455(a)-1(nd)-455(the)-455(two)]TJ 0 -13.549 Td[(asymptotes)-250(are)-250(given.)]TJ/F16 7.97 Tf 291.024 0 Td[([65])]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1062 0 obj << +/Type /Page +/Contents 1063 0 R +/Resources 1061 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +1064 0 obj << +/D [1062 0 R /XYZ 212.081 518.175 null] +>> endobj +1045 0 obj << +/D [1062 0 R /XYZ 46.771 399.138 null] +>> endobj +1065 0 obj << +/D [1062 0 R /XYZ 46.771 383.336 null] +>> endobj +1049 0 obj << +/D [1062 0 R /XYZ 46.771 266.534 null] +>> endobj +1066 0 obj << +/D [1062 0 R /XYZ 46.771 250.732 null] +>> endobj +1053 0 obj << +/D [1062 0 R /XYZ 46.771 133.929 null] +>> endobj +1067 0 obj << +/D [1062 0 R /XYZ 46.771 118.127 null] +>> endobj +1068 0 obj << +/D [1062 0 R /XYZ 46.771 77.336 null] +>> endobj +1061 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1071 0 obj << +/Length 3371 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(80)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.636 -198.084 cm + q 1.6376 0 0 1.6376 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +160.0794 0 0 120.9596 0 0 cm +/Im29 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.179 -331.05 cm +BT +/F16 10.909 Tf 218.337 312.046 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(29)]TJ +ET +1 0 0 1 93.543 306.352 cm +0 g 0 G +1 0 0 1 -93.543 -306.352 cm +BT +/F39 10.909 Tf 93.543 228.732 Td[(117.)]TJ/F16 10.909 Tf 25.319 0 Td[(For)-357(the)-357(circumscribed)-357(quadrilateral,)-384(Brianchon's)-357(theorem)]TJ -25.319 -13.549 Td[(gave)-434(\050\247)-434(88\051)]TJ/F20 10.909 Tf 58.421 0 Td[(The)-434(lines)-434(joining)-433(opposite)-434(vertices)-434(and)-434(the)-433(lines)]TJ -58.421 -13.549 Td[(joining)-400(opposite)-400(points)-401(of)-400(contact)-400(are)-400(four)-400(lines)-400(meeting)-400(in)-401(a)]TJ 0 -13.549 Td[(point.)]TJ/F16 10.909 Tf 32.499 0 Td[(Take)-391(now)-391(for)-391(two)-391(of)-391(the)-391(tangents)-391(the)-391(asymptotes,)-426(and)]TJ -32.499 -13.549 Td[(let)]TJ/F20 10.909 Tf 15.493 0 Td[(AB)]TJ/F16 10.909 Tf 17.913 0 Td[(and)]TJ/F20 10.909 Tf 20.336 0 Td[(CD)]TJ/F16 10.909 Tf 19.735 0 Td[(be)-420(any)-420(other)-421(two)-420(\050Fig.)-760(29\051.)-761(If)]TJ/F20 10.909 Tf 149.791 0 Td[(B)]TJ/F16 10.909 Tf 11.248 0 Td[(and)]TJ/F20 10.909 Tf 20.336 0 Td[(D)]TJ/F16 10.909 Tf 12.458 0 Td[(are)]TJ -267.31 -13.55 Td[(opposite)-225(vertices,)-230(and)-224(also)]TJ/F20 10.909 Tf 116.813 0 Td[(A)]TJ/F16 10.909 Tf 9.117 0 Td[(and)]TJ/F20 10.909 Tf 18.204 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-225(then)]TJ/F20 10.909 Tf 26.415 0 Td[(AC)]TJ/F16 10.909 Tf 16.393 0 Td[(and)]TJ/F20 10.909 Tf 18.204 0 Td[(BD)]TJ/F16 10.909 Tf 16.993 0 Td[(are)-225(parallel,)]TJ -229.415 -13.549 Td[(and)-327(parallel)-327(to)]TJ/F20 10.909 Tf 67.651 0 Td[(PQ)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-327(the)-327(line)-326(joining)-327(the)-327(points)-327(of)-327(contact)-326(of)]TJ/F20 10.909 Tf 185.106 0 Td[(AB)]TJ/F16 10.909 Tf -267.299 -13.549 Td[(and)]TJ/F20 10.909 Tf 18.953 0 Td[(CD)]TJ/F16 10.909 Tf 15.153 0 Td[(,)-293(for)-294(these)-293(are)-293(three)-294(of)-293(the)-293(four)-294(lines)-293(of)-293(the)-294(theorem)-293(just)]TJ -34.106 -13.549 Td[(quoted.)-292(The)-264(fourth)-265(is)-264(the)-264(line)-264(at)-264(infinity)-264(which)-264(joins)-264(the)-264(point)-265(of)]TJ 0 -13.549 Td[(contact)-289(of)-289(the)-288(asymptotes.)-367(It)-289(is)-289(thus)-288(seen)-289(that)-289(the)-289(triangles)]TJ/F20 10.909 Tf 260.023 0 Td[(ABC)]TJ/F16 10.909 Tf -260.023 -13.55 Td[(and)]TJ/F20 10.909 Tf 19.998 0 Td[(ADC)]TJ/F16 10.909 Tf 26.061 0 Td[(are)-389(equivalent,)-424(and)-389(therefore)-389(the)-389(triangles)]TJ/F20 10.909 Tf 193.368 0 Td[(AOB)]TJ/F16 10.909 Tf 25.45 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(COD)]TJ/F16 10.909 Tf 25.436 0 Td[(are)-221(also.)-240(The)-221(tangent)-220(AB)-221(may)-221(be)-220(fixed,)-227(and)-221(the)-220(tangent)]TJ/F20 10.909 Tf 240.041 0 Td[(CD)]TJ/F16 10.909 Tf -265.477 -13.549 Td[(chosen)-250(arbitrarily;)-250(therefore)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1070 0 obj << +/Type /Page +/Contents 1071 0 R +/Resources 1069 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 992 0 R +>> endobj +1056 0 obj << +/Type /XObject +/Subtype /Image +/Width 667 +/Height 504 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1008504 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1058 0 obj << +/D [1070 0 R /XYZ 93.543 259.058 null] +>> endobj +1072 0 obj << +/D [1070 0 R /XYZ 93.543 242.495 null] +>> endobj +1069 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im29 1056 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1073 0 obj +<< /S /GoTo /D (index133) >> +endobj +1076 0 obj +() +endobj +1077 0 obj +<< /S /GoTo /D (index134) >> +endobj +1080 0 obj +() +endobj +1084 0 obj << +/Length 6743 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(118.)-250(Equation)-250(of)-250(hyperbola)-250(referred)-250(to)-250(the)-250(asymptotes)-3118(81)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F20 10.909 Tf 58.727 518.175 Td[(The)-296(triangle)-297(formed)-296(by)-296(any)-297(tangent)-296(to)-297(the)-296(hyperbola)-296(and)-297(the)]TJ -11.956 -13.549 Td[(two)-250(asymptotes)-250(is)-250(of)-250(constant)-250(area.)]TJ/F39 10.909 Tf 0 -49.877 Td[(118.)-245(Equation)-234(of)-234(hyperbola)-234(referred)-234(to)-235(the)-234(asymptotes.)]TJ/F16 10.909 Tf 256.401 0 Td[(Draw)]TJ -256.401 -13.549 Td[(through)-307(the)-307(point)-307(of)-308(contact)]TJ/F20 10.909 Tf 127.042 0 Td[(P)]TJ/F16 10.909 Tf 10.015 0 Td[(of)-307(the)-307(tangent)]TJ/F20 10.909 Tf 64.586 0 Td[(AB)]TJ/F16 10.909 Tf 16.68 0 Td[(two)-307(lines,)-322(one)]TJ -218.323 -13.549 Td[(parallel)-245(to)-246(one)-245(asymptote)-245(and)-246(the)-245(other)-245(parallel)-246(to)-245(the)-245(other.)-249(One)]TJ 0 -13.55 Td[(of)-366(these)-366(lines)-366(meets)]TJ/F20 10.909 Tf 93.533 0 Td[(OB)]TJ/F16 10.909 Tf 18.533 0 Td[(at)-366(a)-366(distance)]TJ/F20 10.909 Tf 60.446 0 Td[(y)]TJ/F16 10.909 Tf 8.836 0 Td[(from)]TJ/F20 10.909 Tf 25.2 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-366(and)-366(the)-366(other)]TJ -214.424 -13.549 Td[(meets)]TJ/F20 10.909 Tf 29.305 0 Td[(OA)]TJ/F16 10.909 Tf 18.394 0 Td[(at)-353(a)-353(distance)]TJ/F20 10.909 Tf 60.028 0 Td[(x)]TJ/F16 10.909 Tf 8.697 0 Td[(from)]TJ/F20 10.909 Tf 25.061 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-353(Then,)-379(since)]TJ/F20 10.909 Tf 62.132 0 Td[(P)]TJ/F16 10.909 Tf 10.518 0 Td[(is)-353(the)-353(middle)]TJ -222.011 -13.549 Td[(point)-654(of)]TJ/F20 10.909 Tf 42.225 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 6.297 0 Td[(x)]TJ/F16 10.909 Tf 8.413 0 Td[(is)-327(one)-327(half)-328(of)]TJ/F20 10.909 Tf 63.358 0 Td[(OA)]TJ/F16 10.909 Tf 18.111 0 Td[(and)]TJ/F20 10.909 Tf 19.322 0 Td[(y)]TJ/F16 10.909 Tf 8.413 0 Td[(is)-327(one)-327(half)-328(of)]TJ/F20 10.909 Tf 63.358 0 Td[(OB)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-327(The)]TJ/F16 7.97 Tf 33.654 0 Td[([66])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(area)-242(of)-241(the)-242(parallelogram)-242(whose)-241(adjacent)-242(sides)-241(are)]TJ/F20 10.909 Tf 221.618 0 Td[(x)]TJ/F16 10.909 Tf 7.479 0 Td[(and)]TJ/F20 10.909 Tf 18.389 0 Td[(y)]TJ/F16 10.909 Tf 7.479 0 Td[(is)-242(one)]TJ -254.965 -13.549 Td[(half)-228(the)-228(area)-228(of)-227(the)-228(triangle)]TJ/F20 10.909 Tf 119.116 0 Td[(AOB)]TJ/F16 10.909 Tf 21.207 0 Td[(,)-228(and)-228(therefore,)-232(by)-228(the)-228(preceding)]TJ -140.323 -13.55 Td[(paragraph,)-394(is)-366(constant.)-597(This)-365(area)-366(is)-365(equal)-366(to)]TJ/F20 10.909 Tf 204.397 0 Td[(xy)-366(\267)]TJ/F16 10.909 Tf 20.39 0 Td[(sin)]TJ/F43 10.909 Tf 16.718 0 Td[(\261)]TJ/F16 10.909 Tf 5.444 0 Td[(,)-394(where)]TJ/F41 10.909 Tf -246.949 -13.549 Td[(\261)]TJ/F16 10.909 Tf 9.27 0 Td[(is)-325(the)-324(constant)-325(angle)-325(between)-325(the)-324(asymptotes.)-474(It)-325(follows)-325(that)]TJ -9.27 -13.549 Td[(the)-416(product)]TJ/F20 10.909 Tf 55.738 0 Td[(xy)]TJ/F16 10.909 Tf 14.227 0 Td[(is)-416(constant,)-458(and)-416(since)]TJ/F20 10.909 Tf 103.148 0 Td[(x)]TJ/F16 10.909 Tf 9.383 0 Td[(and)]TJ/F20 10.909 Tf 20.293 0 Td[(y)]TJ/F16 10.909 Tf 9.383 0 Td[(are)-416(the)-416(oblique)]TJ -212.172 -13.549 Td[(co\366rdinates)-437(of)-436(the)-437(point)]TJ/F20 10.909 Tf 114.192 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-437(the)-436(asymptotes)-437(being)-437(the)-436(axes)-437(of)]TJ -120.857 -13.549 Td[(reference,)-250(we)-250(have)]TJ/F20 10.909 Tf 11.956 -13.55 Td[(The)-300(equation)-300(of)-300(the)-300(hyperbola,)-313(referred)-300(to)-300(the)-300(asymptotes)-301(as)]TJ -11.956 -13.549 Td[(axes,)-250(is)-250(xy)-250(=)-250(constant.)]TJ/F16 10.909 Tf 11.956 -13.549 Td[(This)-379(identifies)-379(the)-379(curve)-379(with)-379(the)-379(hyperbola)-379(as)-379(defined)-379(and)]TJ -11.956 -13.549 Td[(discussed)-250(in)-250(works)-250(on)-250(analytic)-250(geometry.)]TJ/F39 10.909 Tf 11.956 -49.877 Td[(119.)-519(Equation)-340(of)-339(parabola.)]TJ/F16 10.909 Tf 134.509 0 Td[(We)-340(have)-339(defined)-340(the)-340(parabola)]TJ -146.465 -13.549 Td[(as)-295(a)-295(conic)-295(which)-294(is)-295(tangent)-295(to)-295(the)-295(line)-295(at)-294(infinity)-295(\050\247)-295(110\051.)-385(Draw)]TJ 0 -13.549 Td[(now)-243(two)-243(tangents)-243(to)-242(the)-243(curve)-243(\050Fig.)-248(30\051,)-244(meeting)-243(in)]TJ/F20 10.909 Tf 225.935 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-243(the)-243(points)]TJ -232.601 -13.55 Td[(of)-278(contact)-277(being)]TJ/F20 10.909 Tf 73.921 0 Td[(B)]TJ/F16 10.909 Tf 9.694 0 Td[(and)]TJ/F20 10.909 Tf 18.782 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(.)-278(These)-277(two)-278(tangents,)-285(together)-277(with)-278(the)]TJ -109.674 -13.549 Td[(line)-368(at)-368(infinity,)-397(form)-368(a)-367(triangle)-368(circumscribed)-368(about)-368(the)-368(conic.)]TJ 0 -13.549 Td[(Draw)-240(through)]TJ/F20 10.909 Tf 63.4 0 Td[(B)]TJ/F16 10.909 Tf 9.281 0 Td[(a)-240(parallel)-240(to)]TJ/F20 10.909 Tf 53.895 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-240(and)-240(through)]TJ/F20 10.909 Tf 60.266 0 Td[(C)]TJ/F16 10.909 Tf 9.893 0 Td[(a)-240(parallel)-240(to)]TJ/F20 10.909 Tf 53.895 0 Td[(AB)]TJ/F16 10.909 Tf 13.331 0 Td[(.)]TJ -277.903 -13.549 Td[(If)-379(these)-379(meet)-379(in)]TJ/F20 10.909 Tf 75.913 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-379(then)]TJ/F20 10.909 Tf 29.78 0 Td[(AD)]TJ/F16 10.909 Tf 18.674 0 Td[(is)-379(a)-758(diameter.)-637(Let)]TJ/F20 10.909 Tf 91.041 0 Td[(AD)]TJ/F16 10.909 Tf 18.674 0 Td[(meet)-379(the)]TJ/F16 7.97 Tf 49.066 0 Td[([67])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(curve)-267(in)]TJ/F20 10.909 Tf 38.541 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-267(and)-267(the)-267(chord)]TJ/F20 10.909 Tf 68.3 0 Td[(BC)]TJ/F16 10.909 Tf 16.854 0 Td[(in)]TJ/F20 10.909 Tf 11.4 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(.)]TJ/F20 10.909 Tf 5.64 0 Td[(P)]TJ/F16 10.909 Tf 9.577 0 Td[(is)-267(then)-267(the)-267(middle)-267(point)-267(of)]TJ/F20 10.909 Tf -164.854 -13.55 Td[(AQ)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-303(Also,)]TJ/F20 10.909 Tf 32.808 0 Td[(Q)]TJ/F16 10.909 Tf 11.177 0 Td[(is)-303(the)-302(middle)-303(point)-302(of)-303(the)-303(chord)]TJ/F20 10.909 Tf 143.708 0 Td[(BC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)-303(and)-302(therefore)]TJ -216.177 -13.549 Td[(the)-306(diameter)]TJ/F20 10.909 Tf 58.184 0 Td[(AD)]TJ/F16 10.909 Tf 17.882 0 Td[(bisects)-306(all)-307(chords)-306(parallel)-306(to)]TJ/F20 10.909 Tf 127.595 0 Td[(BC)]TJ/F16 10.909 Tf 13.942 0 Td[(.)-306(In)-307(particular,)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1083 0 obj << +/Type /Page +/Contents 1084 0 R +/Resources 1082 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1074 0 obj << +/D [1083 0 R /XYZ 46.771 481.149 null] +>> endobj +1085 0 obj << +/D [1083 0 R /XYZ 46.771 466.04 null] +>> endobj +1086 0 obj << +/D [1083 0 R /XYZ 72.77 387.003 null] +>> endobj +1078 0 obj << +/D [1083 0 R /XYZ 46.771 214.365 null] +>> endobj +1090 0 obj << +/D [1083 0 R /XYZ 58.727 188.085 null] +>> endobj +1091 0 obj << +/D [1083 0 R /XYZ 199.402 106.79 null] +>> endobj +1082 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R /F43 1089 0 R /F41 355 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1095 0 obj << +/Length 5661 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(82)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 93.543 518.175 Td[(AD)]TJ/F16 10.909 Tf 17.881 0 Td[(passes)-306(through)]TJ/F20 10.909 Tf 68.49 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-306(the)-306(point)-306(of)-307(contact)-306(of)-306(the)-306(tangent)-306(drawn)]TJ -93.037 -13.549 Td[(parallel)-250(to)]TJ/F20 10.909 Tf 46.658 0 Td[(BC)]TJ/F16 10.909 Tf 13.942 0 Td[(.)]TJ -48.644 -13.783 Td[(Draw)-345(now)-344(another)-345(tangent,)-368(meeting)]TJ/F20 10.909 Tf 164.78 0 Td[(AB)]TJ/F16 10.909 Tf 17.09 0 Td[(in)]TJ/F20 10.909 Tf 12.247 0 Td[(B')]TJ/F16 10.909 Tf 12.759 0 Td[(and)]TJ/F20 10.909 Tf 19.512 0 Td[(AC)]TJ/F16 10.909 Tf 17.701 0 Td[(in)]TJ/F20 10.909 Tf 12.247 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(.)]TJ -277.903 -13.549 Td[(Then)-267(these)-266(three,)-271(with)-266(the)-267(line)-266(at)-267(infinity,)-271(make)-266(a)-267(circumscribed)]TJ 0 -13.549 Td[(quadrilateral.)-234(But,)-212(by)-202(Brianchon's)-203(theorem)-202(applied)-202(to)-202(a)-203(quadrilat-)]TJ 0 -13.55 Td[(eral)-274(\050\247)-275(88\051,)-280(it)-274(appears)-274(that)-275(a)-274(parallel)-274(to)]TJ/F20 10.909 Tf 171.496 0 Td[(AC)]TJ/F16 10.909 Tf 16.933 0 Td[(through)]TJ/F20 10.909 Tf 36.93 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-274(a)-275(parallel)]TJ -234.359 -13.549 Td[(to)]TJ/F20 10.909 Tf 11.251 0 Td[(AB)]TJ/F16 10.909 Tf 16.095 0 Td[(through)]TJ/F20 10.909 Tf 36.701 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)-253(and)-254(the)-253(line)]TJ/F20 10.909 Tf 59.229 0 Td[(BC)]TJ/F16 10.909 Tf 16.705 0 Td[(meet)-253(in)-254(a)-253(point)]TJ/F20 10.909 Tf 68.022 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(.)-253(Also,)-254(from)]TJ -227.825 -13.549 Td[(the)-242(similar)-241(triangles)]TJ/F20 10.909 Tf 89.118 0 Td[(BB'D')]TJ/F16 10.909 Tf 28.513 0 Td[(and)]TJ/F20 10.909 Tf 18.39 0 Td[(BAC)]TJ/F16 10.909 Tf 23.244 0 Td[(we)-242(have,)-243(for)-242(all)-241(positions)-242(of)]TJ -159.265 -13.549 Td[(the)-250(tangent)-250(line)]TJ/F20 10.909 Tf 69.993 0 Td[(B'C)]TJ/F16 10.909 Tf 16.276 0 Td[(,)]TJ/F20 10.909 Tf 11.247 -13.783 Td[(B'D')-276(:)-275(BB')-276(=)-276(AC)-276(:)-276(AB,)]TJ/F16 10.909 Tf -85.56 -13.783 Td[(or,)-250(since)]TJ/F20 10.909 Tf 39.687 0 Td[(B'D')-250(=)-250(AC')]TJ/F16 10.909 Tf 48.305 0 Td[(,)]TJ/F20 10.909 Tf -21.169 -13.783 Td[(AC':)-270(BB')-270(=)-270(AC:AB)-270(=)]TJ/F16 10.909 Tf 95.941 0 Td[(constant.)]TJ -162.764 -13.783 Td[(If)-250(another)-250(tangent)-250(meet)]TJ/F20 10.909 Tf 104.214 0 Td[(AB)]TJ/F16 10.909 Tf 16.058 0 Td[(in)]TJ/F20 10.909 Tf 11.215 0 Td[(B")]TJ/F16 10.909 Tf 13.974 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(AC)]TJ/F16 10.909 Tf 16.669 0 Td[(in)]TJ/F20 10.909 Tf 11.215 0 Td[(C")]TJ/F16 10.909 Tf 11.858 0 Td[(,)-250(we)-250(have)]TJ/F20 10.909 Tf -119.828 -13.783 Td[(AC')-274(:)-275(BB')-274(=)-274(AC")-275(:)-298(BB",)]TJ/F16 10.909 Tf -83.855 -13.783 Td[(and)-250(by)-250(subtraction)-250(we)-250(get)]TJ/F20 10.909 Tf 82.155 -13.783 Td[(C'C")-275(:)-299(B'B")-275(=)]TJ/F16 10.909 Tf 64.971 0 Td[(constant;)]TJ -147.126 -13.783 Td[(whence)]TJ/F20 10.909 Tf 0 -13.783 Td[(The)-293(segments)-293(cut)-293(off)-294(on)-293(any)-293(two)-293(tangents)-293(to)-293(a)-293(parabola)-294(by)-293(a)]TJ -11.956 -13.549 Td[(variable)-250(tangent)-250(are)-250(proportional.)]TJ/F16 10.909 Tf 11.956 -13.783 Td[(If)-305(now)-306(we)-305(take)-305(the)-306(tangent)]TJ/F20 10.909 Tf 122.376 0 Td[(B'C')]TJ/F16 10.909 Tf 21.941 0 Td[(as)-305(axis)-306(of)-305(ordinates,)-319(and)-305(the)]TJ -156.273 -13.549 Td[(diameter)-420(through)-420(the)-420(point)-420(of)-420(contact)]TJ/F20 10.909 Tf 175.957 0 Td[(O)]TJ/F16 10.909 Tf 12.457 0 Td[(as)-420(axis)-420(of)-420(abscissas,)]TJ -188.414 -13.55 Td[(calling)-278(the)-277(coordinates)-278(of)]TJ/F20 10.909 Tf 114.516 0 Td[(B\050x,)-284(y\051)]TJ/F16 10.909 Tf 32.477 0 Td[(and)-278(of)]TJ/F20 10.909 Tf 30.896 0 Td[(C\050x',)-284(y'\051)]TJ/F16 10.909 Tf 34.729 0 Td[(,)-284(then,)-285(from)-277(the)]TJ -212.618 -13.549 Td[(similar)-250(triangles)]TJ/F20 10.909 Tf 73.331 0 Td[(BMD')]TJ/F16 10.909 Tf 28.691 0 Td[(and)-250(we)-250(have)]TJ/F20 10.909 Tf -23.6 -13.783 Td[(y)-270(:)-290(y')-270(=)-270(BD')-270(:)-270(D'C)-270(=)-270(BB')-270(:)-270(AB'.)]TJ/F16 10.909 Tf -66.466 -13.783 Td[(Also)]TJ/F20 10.909 Tf 64.714 -13.783 Td[(y)-269(:)-289(y')-270(=)-269(B'D')-270(:)-269(C'C)-270(=)-269(AC')-270(:)-269(C'C.)]TJ/F16 7.97 Tf -149.425 0 Td[([68])]TJ/F16 10.909 Tf 84.711 -13.783 Td[(If)-184(now)-183(a)-184(line)-183(is)-184(drawn)-184(through)]TJ/F20 10.909 Tf 129.755 0 Td[(A)]TJ/F16 10.909 Tf 8.668 0 Td[(parallel)-184(to)-183(a)-184(diameter,)-197(meeting)]TJ -150.379 -13.549 Td[(the)-250(axis)-250(of)-250(ordinates)-250(in)]TJ/F20 10.909 Tf 102.109 0 Td[(K)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-250(we)-250(have)]TJ/F20 10.909 Tf -30.718 -13.783 Td[(AK)-270(:)-270(OQ')-270(=)-270(AC')-270(:)-271(CC')-270(=)-270(y)-270(:)-290(y',)]TJ/F16 10.909 Tf -66.712 -13.783 Td[(and)]TJ/F20 10.909 Tf 68.164 -13.783 Td[(OM)-271(:)-270(AK)-271(=)-270(BB')-271(:)-270(AB')-271(=)-270(y)-271(:)-291(y',)]TJ/F16 10.909 Tf -68.164 -13.783 Td[(and,)-250(by)-250(multiplication,)]TJ/F20 10.909 Tf 88.441 -13.783 Td[(OM)-277(:)-276(OQ')-277(=)-276(y)]TJ/F20 8.966 Tf 62.961 4.909 Td[(2)]TJ/F20 10.909 Tf 7.501 -4.909 Td[(:)-303(y')]TJ/F20 8.966 Tf 14.119 4.909 Td[(2)]TJ/F20 10.909 Tf 4.484 -4.909 Td[(,)]TJ/F16 10.909 Tf -177.506 -13.783 Td[(or)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1094 0 obj << +/Type /Page +/Contents 1095 0 R +/Resources 1093 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1096 0 obj << +/D [1094 0 R /XYZ 93.543 173.914 null] +>> endobj +1093 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1097 0 obj +<< /S /GoTo /D (index135) >> +endobj +1100 0 obj +() +endobj +1104 0 obj << +/Length 4938 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 316.492 548.934 Td[(83)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F20 10.909 Tf 157.943 518.101 Td[(x)-280(:)-310(x')-279(=)-280(y)]TJ/F20 8.966 Tf 40.4 4.909 Td[(2)]TJ/F20 10.909 Tf 7.536 -4.909 Td[(:)-310(y')]TJ/F20 8.966 Tf 14.19 4.909 Td[(2)]TJ/F20 10.909 Tf 4.484 -4.909 Td[(;)]TJ/F16 10.909 Tf -165.826 -13.895 Td[(whence)]TJ/F20 10.909 Tf 0 -13.895 Td[(The)-310(abscissas)-309(of)-310(two)-309(points)-310(on)-310(a)-309(parabola)-310(are)-309(to)-310(each)-310(other)]TJ -11.956 -13.549 Td[(as)-238(the)-238(squares)-237(of)-238(the)-238(corresponding)-238(co\366rdinates,)-240(a)-238(diameter)-238(and)]TJ 0 -13.55 Td[(the)-344(tangent)-344(to)-344(the)-344(curve)-344(at)-344(the)-344(extremity)-344(of)-344(the)-344(diameter)-344(being)]TJ 0 -13.549 Td[(the)-250(axes)-250(of)-250(reference.)]TJ/F16 10.909 Tf 11.956 -13.895 Td[(The)-250(last)-250(equation)-250(may)-250(be)-250(written)]TJ/F20 10.909 Tf 113.651 -13.895 Td[(y)]TJ/F20 8.966 Tf 4.844 4.909 Td[(2)]TJ/F20 10.909 Tf 7.584 -4.909 Td[(=)-284(2px,)]TJ/F16 10.909 Tf -126.079 -13.895 Td[(where)]TJ/F20 10.909 Tf 29.378 0 Td[(2p)]TJ/F16 10.909 Tf 13.636 0 Td[(stands)-250(for)]TJ/F20 10.909 Tf 45.447 0 Td[(y')]TJ/F20 8.966 Tf 7.178 4.909 Td[(2)]TJ/F20 10.909 Tf 7.211 -4.909 Td[(:)-250(x')]TJ/F16 10.909 Tf 13.538 0 Td[(.)]TJ -116.388 -13.895 Td[(The)-413(parabola)-414(is)-413(thus)-413(identified)-413(with)-414(the)-413(curve)-413(of)-413(the)-414(same)]TJ -11.956 -13.549 Td[(name)-250(studied)-250(in)-250(treatises)-250(on)-250(analytic)-250(geometry.)]TJ/F39 10.909 Tf 0 -54.19 Td[(120.)-410(Equation)-303(of)-304(central)-303(conics)-304(referred)-303(to)-303(conjugate)-304(diam-)]TJ 0 -13.549 Td[(eters.)]TJ/F16 10.909 Tf 29.443 0 Td[(Consider)-298(now)-299(a)]TJ/F20 10.909 Tf 72.785 0 Td[(central)-298(conic)]TJ/F16 10.909 Tf 57.788 0 Td[(,)-310(that)-299(is,)-310(one)-298(which)-299(is)-298(not)-298(a)]TJ -160.016 -13.549 Td[(parabola)-256(and)-256(the)-256(center)-256(of)-256(which)-256(is)-256(therefore)-256(at)-256(a)-256(finite)-256(distance.)]TJ 0 -13.55 Td[(Draw)-248(any)-248(four)-249(tangents)-248(to)-248(it,)-248(two)-249(of)-248(which)-248(are)-248(parallel)-248(\050Fig.)-250(31\051.)]TJ 0 -13.549 Td[(Let)-265(the)-264(parallel)-264(tangents)-265(meet)-264(one)-265(of)-264(the)-265(other)-264(tangents)-265(in)]TJ/F20 10.909 Tf 255.327 0 Td[(A)]TJ/F16 10.909 Tf 9.55 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(B)]TJ/F16 10.909 Tf 10.665 0 Td[(and)-367(the)-366(other)-367(in)]TJ/F20 10.909 Tf 75.989 0 Td[(C)]TJ/F16 10.909 Tf 11.276 0 Td[(and)]TJ/F20 10.909 Tf 19.752 0 Td[(D)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-367(and)-366(let)]TJ/F20 10.909 Tf 41.389 0 Td[(P)]TJ/F16 10.909 Tf 10.665 0 Td[(and)]TJ/F20 10.909 Tf 19.752 0 Td[(Q)]TJ/F16 10.909 Tf 11.876 0 Td[(be)-367(the)-366(points)-367(of)]TJ -209.241 -13.549 Td[(contact)-290(of)-290(the)-291(parallel)-290(tangents)]TJ/F20 10.909 Tf 138.828 0 Td[(R)]TJ/F16 10.909 Tf 9.831 0 Td[(and)]TJ/F20 10.909 Tf 18.918 0 Td[(S)]TJ/F16 10.909 Tf 8.62 0 Td[(of)-290(the)-290(others.)-371(Then)]TJ/F20 10.909 Tf 87.764 0 Td[(AC)]TJ/F16 10.909 Tf 13.942 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(BD)]TJ/F16 10.909 Tf 14.542 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(PQ)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-250(and)]TJ/F20 10.909 Tf 23.934 0 Td[(RS)]TJ/F16 10.909 Tf 14.847 0 Td[(all)-250(meet)-250(in)-250(a)-250(point)]TJ/F20 10.909 Tf 81.513 0 Td[(W)]TJ/F16 10.909 Tf 11.814 0 Td[(\050\247)-250(88\051.)-250(From)-250(the)-250(figure,)]TJ/F20 10.909 Tf -94.3 -13.895 Td[(PW)-268(:)-268(WQ)-269(=)-268(AP)-268(:)-268(QC)-268(=)-268(PD)-269(:)-268(BQ,)]TJ/F16 10.909 Tf -60.391 -13.895 Td[(or)]TJ/F20 10.909 Tf 88.725 -13.896 Td[(AP)-277(\267)-276(BQ)-277(=)-277(PD)-277(\267)-276(QC.)]TJ/F16 7.97 Tf 190.343 0 Td[([69])]TJ/F16 10.909 Tf -279.068 -13.895 Td[(If)-281(now)]TJ/F20 10.909 Tf 32.184 0 Td[(DC)]TJ/F16 10.909 Tf 18.22 0 Td[(is)-281(a)-281(fixed)-281(tangent)-282(and)]TJ/F20 10.909 Tf 97.742 0 Td[(AB)]TJ/F16 10.909 Tf 16.397 0 Td[(a)-281(variable)-281(one,)-289(we)-281(have)]TJ -176.499 -13.549 Td[(from)-250(this)-250(equation)]TJ/F20 10.909 Tf 101.723 -13.895 Td[(AP)-277(\267)-277(BQ)-277(=)]TJ/F16 10.909 Tf 50.052 0 Td[(constant.)]TJ -139.819 -13.895 Td[(This)-403(constant)-404(will)-404(be)-403(positive)-404(or)-403(negative)-404(according)-403(as)]TJ/F20 10.909 Tf 255.343 0 Td[(PA)]TJ/F16 10.909 Tf -267.299 -13.549 Td[(and)]TJ/F20 10.909 Tf 20.821 0 Td[(BQ)]TJ/F16 10.909 Tf 19.608 0 Td[(are)-465(measured)-464(in)-465(the)-464(same)-465(or)-464(in)-465(opposite)-465(directions.)]TJ -40.429 -13.549 Td[(Accordingly)-250(we)-250(write)]TJ/F20 10.909 Tf 109.676 -13.896 Td[(AP)-279(\267)-280(BQ)-279(=)-280(\261)-279(b)]TJ/F20 8.966 Tf 66.023 4.91 Td[(2)]TJ/F20 10.909 Tf 4.483 -4.91 Td[(.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1103 0 obj << +/Type /Page +/Contents 1104 0 R +/Resources 1102 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1098 0 obj << +/D [1103 0 R /XYZ 46.771 354.954 null] +>> endobj +1105 0 obj << +/D [1103 0 R /XYZ 46.771 337.861 null] +>> endobj +1106 0 obj << +/D [1103 0 R /XYZ 46.771 187.862 null] +>> endobj +1102 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1107 0 obj +<< /S /GoTo /D (index136) >> +endobj +1110 0 obj +(PROBLEMS) +endobj +1113 0 obj << +/Length 6365 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(84)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 105.499 518.175 Td[(Since)]TJ/F20 10.909 Tf 27.366 0 Td[(AD)]TJ/F16 10.909 Tf 17.668 0 Td[(and)]TJ/F20 10.909 Tf 18.879 0 Td[(BC)]TJ/F16 10.909 Tf 17.068 0 Td[(are)-287(parallel)-286(tangents,)]TJ/F20 10.909 Tf 94.602 0 Td[(PQ)]TJ/F16 10.909 Tf 17.668 0 Td[(is)-287(a)-286(diameter)-287(and)]TJ -205.207 -13.549 Td[(the)-387(conjugate)-386(diameter)-387(is)-387(parallel)-386(to)]TJ/F20 10.909 Tf 167.704 0 Td[(AD)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-387(The)-386(middle)-387(point)-387(of)]TJ/F20 10.909 Tf -182.246 -13.549 Td[(PQ)]TJ/F16 10.909 Tf 19.253 0 Td[(is)-432(the)-432(center)-432(of)-432(the)-432(conic.)-796(We)-432(take)-433(now)-432(for)-432(the)-432(axis)-432(of)]TJ -19.253 -13.549 Td[(abscissas)-368(the)-368(diameter)]TJ/F20 10.909 Tf 103.544 0 Td[(PQ)]TJ/F16 10.909 Tf 14.541 0 Td[(,)-368(and)-368(the)-369(conjugate)-368(diameter)-368(for)-368(the)]TJ -118.085 -13.55 Td[(axis)-243(of)-242(ordinates.)-248(Join)]TJ/F20 10.909 Tf 98.209 0 Td[(A)]TJ/F16 10.909 Tf 9.312 0 Td[(to)]TJ/F20 10.909 Tf 11.134 0 Td[(Q)]TJ/F16 10.909 Tf 10.524 0 Td[(and)]TJ/F20 10.909 Tf 18.399 0 Td[(B)]TJ/F16 10.909 Tf 9.313 0 Td[(to)]TJ/F20 10.909 Tf 11.134 0 Td[(P)]TJ/F16 10.909 Tf 9.312 0 Td[(and)-243(draw)-242(a)-243(line)-243(through)]TJ/F20 10.909 Tf -177.337 -13.549 Td[(S)]TJ/F16 10.909 Tf 8.308 0 Td[(parallel)-262(to)-261(the)-262(axis)-261(of)-262(ordinates.)-285(These)-261(three)-262(lines)-261(all)-262(meet)-261(in)-262(a)]TJ -8.308 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.437 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-276(because)]TJ/F20 10.909 Tf 43.271 0 Td[(AP)]TJ/F16 10.909 Tf 13.331 0 Td[(,)]TJ/F20 10.909 Tf 5.735 0 Td[(BQ)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-276(and)]TJ/F20 10.909 Tf 24.496 0 Td[(AB)]TJ/F16 10.909 Tf 16.339 0 Td[(form)-276(a)-275(triangle)-276(circumscribed)]TJ -150.428 -13.549 Td[(to)-334(the)-335(conic.)-502(Let)]TJ/F20 10.909 Tf 79.14 0 Td[(NS)]TJ/F16 10.909 Tf 16.377 0 Td[(meet)]TJ/F20 10.909 Tf 24.853 0 Td[(PQ)]TJ/F16 10.909 Tf 18.188 0 Td[(in)]TJ/F20 10.909 Tf 12.133 0 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(.)-334(Then,)-356(from)-334(the)-334(properties)]TJ -159.779 -13.549 Td[(of)-359(the)-360(circumscribed)-359(triangle)-359(\050\247)-360(89\051,)]TJ/F20 10.909 Tf 167.721 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 6.647 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 6.647 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-359(and)-360(the)-359(point)-359(at)]TJ -202.834 -13.55 Td[(infinity)-330(on)]TJ/F20 10.909 Tf 50.226 0 Td[(NS)]TJ/F16 10.909 Tf 16.325 0 Td[(are)-330(four)-329(harmonic)-330(points,)-349(and)-330(therefore)]TJ/F20 10.909 Tf 179.007 0 Td[(N)]TJ/F16 10.909 Tf 10.87 0 Td[(is)-330(the)]TJ -256.428 -13.549 Td[(middle)-244(poin)-1(t)-244(of)]TJ/F20 10.909 Tf 69.822 0 Td[(MS)]TJ/F16 10.909 Tf 14.542 0 Td[(.)-244(If)-245(the)-244(co\366rdinates)-245(of)]TJ/F20 10.909 Tf 96.035 0 Td[(S)]TJ/F16 10.909 Tf 8.121 0 Td[(are)]TJ/F20 10.909 Tf 15.987 0 Td[(\050x,)-246(y\051)]TJ/F16 10.909 Tf 22.358 0 Td[(,)-246(so)-244(that)]TJ/F20 10.909 Tf 36.802 0 Td[(OM)]TJ/F16 10.909 Tf -263.667 -13.549 Td[(is)]TJ/F20 10.909 Tf 10.188 0 Td[(x)]TJ/F16 10.909 Tf 7.755 0 Td[(and)]TJ/F20 10.909 Tf 18.665 0 Td[(MS)]TJ/F16 10.909 Tf 17.453 0 Td[(is)]TJ/F20 10.909 Tf 10.188 0 Td[(y)]TJ/F16 10.909 Tf 4.843 0 Td[(,)-271(then)]TJ/F20 10.909 Tf 27.382 0 Td[(MN)-267(=)-267(y/2)]TJ/F16 10.909 Tf 42.881 0 Td[(.)-301(Now)-267(from)-266(the)-267(similar)-267(triangles)]TJ/F20 10.909 Tf -139.355 -13.549 Td[(PMN)]TJ/F16 10.909 Tf 25.757 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(PQB)]TJ/F16 10.909 Tf 23.934 0 Td[(we)-250(have)]TJ/F20 10.909 Tf 29.815 -14.239 Td[(BQ)-276(:)-276(PQ)-276(=)-276(NM)-275(:)-276(PM,)]TJ/F16 7.97 Tf -170.741 0 Td[([70])]TJ/F16 10.909 Tf 84.711 -14.239 Td[(and)-250(from)-250(the)-250(similar)-250(triangles)]TJ/F20 10.909 Tf 131.803 0 Td[(PQA)]TJ/F16 10.909 Tf 23.934 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(MQN)]TJ/F16 10.909 Tf 24.24 0 Td[(,)]TJ/F20 10.909 Tf -112.427 -14.238 Td[(AP)-276(:)-276(PQ)-276(=)-276(MN)-275(:)-276(MQ,)]TJ/F16 10.909 Tf -86.03 -14.239 Td[(whence,)-250(multiplying,)-250(we)-250(have)]TJ/F20 10.909 Tf 67.661 -14.239 Td[(\261b)]TJ/F20 8.966 Tf 12.818 4.909 Td[(2)]TJ/F20 10.909 Tf 4.484 -4.909 Td[(/4)-270(a)]TJ/F20 8.966 Tf 16.891 4.909 Td[(2)]TJ/F20 10.909 Tf 7.433 -4.909 Td[(=)-270(y)]TJ/F20 8.966 Tf 15.156 4.909 Td[(2)]TJ/F20 10.909 Tf 4.484 -4.909 Td[(/4)-270(\050a)-271(+)-270(x\051\050a)-270(-)-271(x\051,)]TJ/F16 10.909 Tf -128.927 -14.239 Td[(where)]TJ/F24 10.909 Tf 106.921 -41.718 Td[(a)]TJ/F15 10.909 Tf 8.797 0 Td[(=)]TJ/F24 10.909 Tf 12.71 7.38 Td[(P)-139(Q)]TJ +ET +1 0 0 1 233.927 230.943 cm +q +[]0 d +0 J +0.436 w +0 0.218 m +17.143 0.218 l +S +Q +1 0 0 1 -233.927 -230.943 cm +BT +/F15 10.909 Tf 239.772 220.951 Td[(2)]TJ/F24 10.909 Tf 12.494 7.483 Td[(;)]TJ/F16 10.909 Tf -146.767 -28.159 Td[(or,)-250(simplifying,)]TJ/F24 10.909 Tf 77.38 -39.436 Td[(x)]TJ/F22 7.97 Tf 6.235 4.504 Td[(2)]TJ/F24 10.909 Tf 4.732 -4.504 Td[(=a)]TJ/F22 7.97 Tf 11.221 4.504 Td[(2)]TJ/F15 10.909 Tf 7.157 -4.504 Td[(+)]TJ/F24 10.909 Tf 10.909 0 Td[(y)]TJ/F22 7.97 Tf 5.74 4.504 Td[(2)]TJ/F24 10.909 Tf 4.732 -4.504 Td[(=)]TJ/F27 10.909 Tf 7.879 0 Td[(\006)]TJ/F24 10.909 Tf 10.909 0 Td[(b)]TJ/F22 7.97 Tf 4.682 4.504 Td[(2)]TJ/F15 10.909 Tf 7.762 -4.504 Td[(=)-278(1)]TJ/F24 10.909 Tf 16.97 0 Td[(;)]TJ/F16 10.909 Tf -176.308 -27.095 Td[(which)-210(is)-211(the)-210(equation)-211(of)-210(an)-211(ellipse)-210(when)]TJ/F20 10.909 Tf 174.705 0 Td[(b)]TJ/F20 8.966 Tf 5.455 4.909 Td[(2)]TJ/F16 10.909 Tf 6.779 -4.909 Td[(has)-210(a)-211(positive)-210(sign,)]TJ -198.895 -13.549 Td[(and)-315(of)-314(a)-314(hyperbola)-315(when)]TJ/F20 10.909 Tf 114.091 0 Td[(b)]TJ/F20 8.966 Tf 5.454 4.909 Td[(2)]TJ/F16 10.909 Tf 7.914 -4.909 Td[(has)-314(a)-315(negative)-314(sign.)-444(We)-314(have)-315(thus)]TJ -127.459 -13.549 Td[(identified)-309(point-rows)-310(of)-309(the)-310(second)-309(order)-309(with)-310(the)-309(curves)-310(given)]TJ 0 -13.549 Td[(by)-250(equations)-250(of)-250(the)-250(second)-250(degree.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1112 0 obj << +/Type /Page +/Contents 1113 0 R +/Resources 1111 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1114 0 obj << +/D [1112 0 R /XYZ 93.543 339.393 null] +>> endobj +1108 0 obj << +/D [1112 0 R /XYZ 93.543 66.142 null] +>> endobj +1111 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F24 436 0 R /F15 442 0 R /F22 1117 0 R /F27 439 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1120 0 obj << +/Length 3373 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(85)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 15.781 Tf 46.771 518.175 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -29.258 Td[(1.)-474(Draw)-325(a)-324(chord)-325(of)-324(a)-325(given)-325(conic)-324(which)-325(shall)-325(be)-324(bisected)-325(by)-325(a)]TJ 0 -13.549 Td[(given)-250(point)]TJ/F20 10.909 Tf 52.124 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)]TJ -46.833 -13.55 Td[(2.)-265(Show)-256(that)-255(all)-255(chords)-255(of)-255(a)-256(given)-255(conic)-255(that)-255(are)-255(bisected)-255(by)-256(a)]TJ -11.956 -13.549 Td[(given)-250(chord)-250(are)-250(tangent)-250(to)-250(a)-250(parabola.)]TJ 11.956 -13.549 Td[(3.)-381(Construct)-294(a)-293(parabola,)-305(given)-294(two)-294(tangents)-293(with)-294(their)-294(points)]TJ -11.956 -13.549 Td[(of)-250(contact.)]TJ 11.956 -13.549 Td[(4.)-441(Construct)-313(a)-314(parabola,)-330(given)-313(three)-314(points)-313(and)-314(the)-314(direction)]TJ -11.956 -13.55 Td[(of)-250(the)-250(diameters.)]TJ 11.956 -13.549 Td[(5.)-569(A)-356(line)]TJ/F20 10.909 Tf 46.399 0 Td[(u')]TJ/F16 10.909 Tf 11.676 0 Td[(is)-356(drawn)-357(through)-356(the)-356(pole)]TJ/F20 10.909 Tf 120.026 0 Td[(U)]TJ/F16 10.909 Tf 11.762 0 Td[(of)-356(a)-357(line)]TJ/F20 10.909 Tf 41.954 0 Td[(u)]TJ/F16 10.909 Tf 9.342 0 Td[(and)-356(at)]TJ -253.114 -13.549 Td[(right)-263(angles)-263(to)]TJ/F20 10.909 Tf 65.581 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-290(The)-263(line)]TJ/F20 10.909 Tf 44.958 0 Td[(u)]TJ/F16 10.909 Tf 8.326 0 Td[(revolves)-263(about)-263(a)-264(point)]TJ/F20 10.909 Tf 99.959 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-263(Show)-264(that)]TJ -230.944 -13.549 Td[(the)-264(line)]TJ/F20 10.909 Tf 35.446 0 Td[(u')]TJ/F16 10.909 Tf 10.666 0 Td[(is)-264(tangent)-263(to)-264(a)-264(parabola.)-291(\050The)-263(lines)]TJ/F20 10.909 Tf 154.645 0 Td[(u)]TJ/F16 10.909 Tf 8.331 0 Td[(and)]TJ/F20 10.909 Tf 18.629 0 Td[(u')]TJ/F16 10.909 Tf 10.665 0 Td[(are)-264(called)]TJ -238.382 -13.549 Td[(normal)-250(conjugates.\051)]TJ 11.955 -13.55 Td[(6.)-538(Given)-346(a)-346(circle)-346(and)-346(its)-346(center)]TJ/F20 10.909 Tf 145.142 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-346(to)-346(draw)-346(a)-346(line)-346(through)-346(a)]TJ -164.973 -13.549 Td[(given)-400(point)]TJ/F20 10.909 Tf 55.393 0 Td[(P)]TJ/F16 10.909 Tf 11.027 0 Td[(parallel)-400(to)-400(a)-400(given)-400(line)]TJ/F20 10.909 Tf 108.463 0 Td[(q)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-700(Prove)-400(the)-399(fo)-1(llowing)]TJ -180.337 -13.549 Td[(construction:)-309(Let)]TJ/F20 10.909 Tf 77.927 0 Td[(p)]TJ/F16 10.909 Tf 8.503 0 Td[(be)-279(the)-280(polar)-279(of)]TJ/F20 10.909 Tf 67.328 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.775 0 Td[(Q)]TJ/F16 10.909 Tf 10.925 0 Td[(the)-279(pole)-280(of)]TJ/F20 10.909 Tf 50.349 0 Td[(q)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-287(and)]TJ/F20 10.909 Tf 24.658 0 Td[(A)]TJ/F16 10.909 Tf 9.713 0 Td[(the)]TJ -267.298 -13.549 Td[(intersection)-250(of)]TJ/F20 10.909 Tf 65.443 0 Td[(p)]TJ/F16 10.909 Tf 8.182 0 Td[(with)]TJ/F20 10.909 Tf 22.123 0 Td[(OQ)]TJ/F16 10.909 Tf 15.753 0 Td[(.)-250(The)-250(polar)-250(of)]TJ/F20 10.909 Tf 62.105 0 Td[(A)]TJ/F16 10.909 Tf 9.393 0 Td[(is)-250(the)-250(desired)-250(line.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1119 0 obj << +/Type /Page +/Contents 1120 0 R +/Resources 1118 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1118 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1123 0 obj << +/Length 670 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(86)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -83.911 cm +0 g 0 G +1 0 0 1 5.621 -310.17 cm + q 1.68498 0 0 1.68498 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +155.5194 0 0 184.0793 0 0 cm +/Im30 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.164 -154.853 cm +BT +/F16 10.909 Tf 218.337 135.849 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(30)]TJ +ET +1 0 0 1 93.543 130.253 cm +0 g 0 G +1 0 0 1 0 -91.471 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1122 0 obj << +/Type /Page +/Contents 1123 0 R +/Resources 1121 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1092 0 R +>> endobj +1081 0 obj << +/Type /XObject +/Subtype /Image +/Width 648 +/Height 767 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1491048 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1121 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im30 1081 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1126 0 obj << +/Length 593 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(87)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -90.897 cm +0 g 0 G +1 0 0 1 5.611 -296.198 cm + q 2.17282 0 0 2.17282 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +119.9996 0 0 136.3195 0 0 cm +/Im31 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.382 -161.839 cm +BT +/F16 10.909 Tf 171.565 142.835 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(31)]TJ +ET +1 0 0 1 46.771 137.239 cm +0 g 0 G +1 0 0 1 0 -98.457 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1125 0 obj << +/Type /Page +/Contents 1126 0 R +/Resources 1124 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1101 0 obj << +/Type /XObject +/Subtype /Image +/Width 500 +/Height 568 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 852000 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1124 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im31 1101 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1128 0 obj +<< /S /GoTo /D (index137) >> +endobj +1131 0 obj +(CHAPTER VIII - INVOLUTION) +endobj +1132 0 obj +<< /S /GoTo /D (index138) >> +endobj +1135 0 obj +() +endobj +1139 0 obj << +/Length 645 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([71])]TJ/F16 18.959 Tf 72.755 -80.268 Td[(CHAPTER)-250(VIII)-250(-)-250(INVOLUTION)]TJ +ET +1 0 0 1 93.543 300.14 cm +0 g 0 G +1 0 0 1 5.634 -175.112 cm + q 1.4477 0 0 1.4477 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +181.4393 0 0 120.9596 0 0 cm +/Im32 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.177 -125.028 cm +BT +/F16 10.909 Tf 218.337 106.024 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(32)]TJ +ET +1 0 0 1 93.543 100.428 cm +0 g 0 G +1 0 0 1 0 -61.646 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1138 0 obj << +/Type /Page +/Contents 1139 0 R +/Resources 1137 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1136 0 obj << +/Type /XObject +/Subtype /Image +/Width 756 +/Height 504 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1143072 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1140 0 obj << +/D [1138 0 R /XYZ 93.543 518.175 null] +>> endobj +1129 0 obj << +/D [1138 0 R /XYZ 93.543 518.175 null] +>> endobj +1133 0 obj << +/D [1138 0 R /XYZ 93.543 366.085 null] +>> endobj +1137 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im32 1136 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1141 0 obj +<< /S /GoTo /D (index139) >> +endobj +1144 0 obj +() +endobj +1147 0 obj << +/Length 6703 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(122.)-250(Linear)-250(construction)-14921(89)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 58.727 518.175 Td[(121.)-656(Fundamental)-385(theorem.)]TJ/F16 10.909 Tf 141.539 0 Td[(The)-385(important)-386(theorem)-385(con-)]TJ -153.495 -13.549 Td[(cerning)-232(two)-232(complete)-232(quadrangles)-232(\050\247)-231(26\051,)-236(upon)-232(which)-232(the)-232(theory)]TJ 0 -13.549 Td[(of)-240(four)-241(harmonic)-240(points)-241(was)-240(based,)-242(ca)-1(n)-240(easily)-240(be)-241(extended)-240(to)-241(the)]TJ 0 -13.549 Td[(case)-287(where)-287(the)-287(four)-287(lines)]TJ/F20 10.909 Tf 113.195 0 Td[(KL)]TJ/F16 10.909 Tf 13.342 0 Td[(,)]TJ/F20 10.909 Tf 5.858 0 Td[(K'L')]TJ/F16 10.909 Tf 18.011 0 Td[(,)]TJ/F20 10.909 Tf 5.859 0 Td[(MN)]TJ/F16 10.909 Tf 16.363 0 Td[(,)]TJ/F20 10.909 Tf 5.859 0 Td[(M'N')]TJ/F16 10.909 Tf 24.164 0 Td[(do)-287(not)-287(all)-287(meet)-287(in)]TJ -202.651 -13.55 Td[(the)-251(same)-250(point)]TJ/F20 10.909 Tf 66.379 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-251(and)-250(the)-251(more)-250(general)-251(theorem)-251(that)-250(results)-251(may)]TJ -73.045 -13.549 Td[(also)-294(be)-293(made)-294(the)-293(basis)-294(of)-293(a)-294(theory)-293(no)-294(less)-294(important,)-304(which)-294(has)]TJ 0 -13.549 Td[(to)-250(do)-250(with)-250(six)-250(points)-250(on)-250(a)-250(line.)-250(The)-250(theorem)-250(is)-250(as)-250(follows:)]TJ/F20 10.909 Tf 11.956 -14.218 Td[(Given)-318(two)-318(complete)-318(quadrangles,)-335(K,)-318(L,)-318(M,)-318(N)-318(and)-318(K',)-318(L',)-318(M',)]TJ -11.956 -13.55 Td[(N',)-331(so)-331(related)-331(that)-331(KL)-331(and)-331(K'L')-331(meet)-331(in)-331(A,)-331(MN)-331(and)-331(M'N')-331(in)-331(A',)]TJ 0 -13.549 Td[(KN)-241(and)-242(K'N')-241(in)-241(B,)-242(LM)-241(and)-241(L'M')-242(in)-241(B',)-242(LN)-241(and)-241(L'N')-242(in)-241(C,)-241(and)-242(KM)]TJ 0 -13.549 Td[(and)-271(K'M')-272(in)-271(C',)-272(then,)-276(if)-272(A,)-271(A',)-271(B,)-272(B',)-271(and)-272(C)-271(are)-271(in)-272(a)-271(straight)-272(line,)]TJ 0 -13.549 Td[(the)-250(point)-250(C')-250(also)-250(lies)-250(on)-250(that)-250(straight)-250(line.)]TJ/F16 10.909 Tf 11.956 -14.219 Td[(The)-311(theorem)-311(follows)-311(from)-311(Desargues's)-310(theorem)-311(\050Fig.)-433(32\051.)-433(It)]TJ -11.956 -13.549 Td[(is)-348(seen)-348(that)]TJ/F20 10.909 Tf 54.413 0 Td[(KK')]TJ/F16 10.909 Tf 16.887 0 Td[(,)]TJ/F20 10.909 Tf 6.523 0 Td[(LL')]TJ/F16 10.909 Tf 14.465 0 Td[(,)]TJ/F20 10.909 Tf 6.523 0 Td[(MM')]TJ/F16 10.909 Tf 20.509 0 Td[(,)]TJ/F20 10.909 Tf 6.523 0 Td[(NN')]TJ/F16 10.909 Tf 20.682 0 Td[(all)-696(meet)-348(in)-348(a)-348(point,)-372(and)-348(thus,)]TJ/F16 7.97 Tf 144.499 0 Td[([72])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(from)-213(the)-214(same)-213(theorem,)-221(applied)-213(to)-213(the)-214(triangles)]TJ/F20 10.909 Tf 205.635 0 Td[(KLM)]TJ/F16 10.909 Tf 24.755 0 Td[(and)]TJ/F20 10.909 Tf 18.08 0 Td[(K'L'M')]TJ/F16 10.909 Tf 29.433 0 Td[(,)]TJ -277.903 -13.549 Td[(the)-274(point)]TJ/F20 10.909 Tf 41.728 0 Td[(C')]TJ/F16 10.909 Tf 12.594 0 Td[(is)-273(on)-274(the)-273(sa)-1(me)-273(line)-274(with)]TJ/F20 10.909 Tf 107.596 0 Td[(A)]TJ/F16 10.909 Tf 9.649 0 Td[(and)]TJ/F20 10.909 Tf 18.736 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(.)-274(As)-273(in)-274(the)-273(simpler)]TJ -199.303 -13.549 Td[(case,)-288(it)-280(is)-280(seen)-281(that)-280(there)-280(is)-280(an)-281(indefinite)-280(number)-280(of)-281(quadrangles)]TJ 0 -13.549 Td[(which)-319(may)-319(be)-320(drawn,)-336(two)-319(sides)-320(of)-319(which)-319(go)-319(through)]TJ/F20 10.909 Tf 239.521 0 Td[(A)]TJ/F16 10.909 Tf 10.147 0 Td[(and)]TJ/F20 10.909 Tf 19.235 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ -277.903 -13.55 Td[(two)-334(through)]TJ/F20 10.909 Tf 57.596 0 Td[(B)]TJ/F16 10.909 Tf 10.311 0 Td[(and)]TJ/F20 10.909 Tf 19.4 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-334(and)-335(one)-334(through)]TJ/F20 10.909 Tf 82.758 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-334(The)-335(sixth)-334(side)-334(must)]TJ -186.341 -13.549 Td[(then)-250(go)-250(through)]TJ/F20 10.909 Tf 71.815 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-250(Therefore,)]TJ/F39 10.909 Tf -81.426 -57.099 Td[(122.)]TJ/F20 10.909 Tf 26.876 0 Td[(Two)-405(pairs)-404(of)-405(points,)-443(A,)-404(A')-405(and)-404(B,)-405(B',)-404(being)-405(given,)-443(then)]TJ -26.876 -13.549 Td[(the)-451(point)-451(C')-451(corresponding)-451(to)-451(any)-451(given)-452(point)-451(C)-451(is)-451(uniquely)]TJ 0 -13.549 Td[(determined.)]TJ/F16 10.909 Tf 11.956 -14.219 Td[(The)-388(construction)-387(of)-388(this)-388(sixth)-387(point)-388(is)-388(easily)-388(accomplished.)]TJ -11.956 -13.549 Td[(Draw)-216(thro)-1(ugh)]TJ/F20 10.909 Tf 62.89 0 Td[(A)]TJ/F16 10.909 Tf 9.026 0 Td[(and)]TJ/F20 10.909 Tf 18.114 0 Td[(A')]TJ/F16 10.909 Tf 11.361 0 Td[(any)-216(two)-217(lines,)-223(and)-217(cut)-216(across)-216(them)-217(by)-216(any)]TJ -101.391 -13.549 Td[(line)-226(through)]TJ/F20 10.909 Tf 55.232 0 Td[(C)]TJ/F16 10.909 Tf 9.742 0 Td[(in)-226(the)-226(points)]TJ/F20 10.909 Tf 55.886 0 Td[(L)]TJ/F16 10.909 Tf 8.53 0 Td[(and)]TJ/F20 10.909 Tf 18.218 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(.)-226(Join)]TJ/F20 10.909 Tf 25.843 0 Td[(N)]TJ/F16 10.909 Tf 9.741 0 Td[(to)]TJ/F20 10.909 Tf 10.952 0 Td[(B)]TJ/F16 10.909 Tf 9.131 0 Td[(and)]TJ/F20 10.909 Tf 18.217 0 Td[(L)]TJ/F16 10.909 Tf 8.531 0 Td[(to)]TJ/F20 10.909 Tf 10.952 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-226(thus)]TJ -257.252 -13.549 Td[(determining)-187(the)-187(points)]TJ/F20 10.909 Tf 98.841 0 Td[(K)]TJ/F16 10.909 Tf 9.314 0 Td[(and)]TJ/F20 10.909 Tf 17.791 0 Td[(M)]TJ/F16 10.909 Tf 11.124 0 Td[(on)-187(the)-187(two)-187(lines)-186(through)]TJ/F20 10.909 Tf 105.339 0 Td[(A)]TJ/F16 10.909 Tf 8.703 0 Td[(and)]TJ/F20 10.909 Tf 17.791 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ -277.903 -13.549 Td[(The)-210(line)]TJ/F20 10.909 Tf 37.918 0 Td[(KM)]TJ/F16 10.909 Tf 18.658 0 Td[(determines)-210(the)-211(desired)-210(point)]TJ/F20 10.909 Tf 124.316 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-210(Manifestly,)-219(starting)]TJ -190.503 -13.549 Td[(from)]TJ/F20 10.909 Tf 24.622 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)-313(we)-313(come)-313(in)-313(this)-313(way)-313(always)-313(to)-313(the)-313(same)-313(point)]TJ/F20 10.909 Tf 216.016 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-313(The)]TJ -257.525 -13.55 Td[(particular)-203(quadrangle)-203(employed)-204(is)-203(of)-203(no)-203(consequence.)-235(Moreover,)]TJ 0 -13.549 Td[(since)-288(one)-289(pair)-288(of)-289(opposite)-288(sides)-289(in)-288(a)-288(complete)-289(quadrangle)-288(is)-289(not)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1146 0 obj << +/Type /Page +/Contents 1147 0 R +/Resources 1145 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1148 0 obj << +/D [1146 0 R /XYZ 58.727 518.175 null] +>> endobj +1149 0 obj << +/D [1146 0 R /XYZ 208.001 340.697 null] +>> endobj +1142 0 obj << +/D [1146 0 R /XYZ 46.771 232.529 null] +>> endobj +1150 0 obj << +/D [1146 0 R /XYZ 46.771 214.143 null] +>> endobj +1145 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1151 0 obj +<< /S /GoTo /D (index140) >> +endobj +1154 0 obj +() +endobj +1156 0 obj +<< /S /GoTo /D (index141) >> +endobj +1159 0 obj +() +endobj +1162 0 obj << +/Length 2282 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(90)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(distinguishable)-334(in)-335(any)-334(way)-335(from)-334(any)-334(other,)-356(the)-334(same)-335(set)-334(of)-335(six)]TJ 0 -13.549 Td[(points)-226(will)-226(be)-227(obtained)-226(by)-226(starting)-226(from)-227(the)-226(pairs)]TJ/F20 10.909 Tf 213.107 0 Td[(AA')]TJ/F16 10.909 Tf 18.133 0 Td[(and)]TJ/F20 10.909 Tf 18.221 0 Td[(CC')]TJ/F16 10.909 Tf 16.887 0 Td[(,)-226(or)]TJ -266.348 -13.549 Td[(from)-250(the)-250(pairs)]TJ/F20 10.909 Tf 63.928 0 Td[(BB')]TJ/F16 10.909 Tf 18.392 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(CC')]TJ/F16 10.909 Tf 16.887 0 Td[(.)]TJ/F39 10.909 Tf -117.687 -50.436 Td[(123.)-250(Definition)-250(of)-250(involution)-250(of)-250(points)-250(on)-250(a)-250(line.)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(Three)-300(pairs)-301(of)-300(points)-300(on)-301(a)-300(line)-300(are)-301(said)-300(to)-301(be)-300(in)-300(involution)-301(if)]TJ -11.956 -13.549 Td[(through)-352(each)-352(pair)-352(may)-352(be)-352(drawn)-352(a)-352(pair)-352(of)-352(opposite)-352(sid)-1(es)-352(of)-352(a)]TJ 0 -13.549 Td[(complete)-267(quadrangle.)-302(If)-268(two)-267(pairs)-267(are)-268(fixed)-267(and)-268(one)-267(of)-267(the)-268(third)]TJ 0 -13.549 Td[(pair)-381(describes)-380(the)-381(line,)-413(then)-380(the)-381(other)-380(also)-381(describes)-380(the)-381(line,)]TJ 0 -13.55 Td[(and)-282(the)-282(points)-283(of)-282(the)-282(line)-282(are)-282(said)-283(to)-282(be)-282(paired)-282(in)-282(the)-283(involution)]TJ 0 -13.549 Td[(determined)-250(by)-250(the)-250(two)-250(fixed)-250(pairs.)]TJ/F16 7.97 Tf -72.756 0 Td[([73])]TJ +ET +1 0 0 1 93.543 334.269 cm +0 g 0 G +1 0 0 1 5.636 -181.564 cm + q 1.48047 0 0 1.48047 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +177.3594 0 0 122.6396 0 0 cm +/Im33 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.179 -152.705 cm +BT +/F16 10.909 Tf 218.337 133.701 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(33)]TJ +ET +1 0 0 1 93.543 128.105 cm +0 g 0 G +1 0 0 1 0 -89.323 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1161 0 obj << +/Type /Page +/Contents 1162 0 R +/Resources 1160 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1155 0 obj << +/Type /XObject +/Subtype /Image +/Width 739 +/Height 511 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1132887 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1152 0 obj << +/D [1161 0 R /XYZ 93.543 467.212 null] +>> endobj +1163 0 obj << +/D [1161 0 R /XYZ 93.543 451.823 null] +>> endobj +1164 0 obj << +/D [1161 0 R /XYZ 93.543 357.088 null] +>> endobj +1157 0 obj << +/D [1161 0 R /XYZ 93.543 81.531 null] +>> endobj +1165 0 obj << +/D [1161 0 R /XYZ 93.543 66.142 null] +>> endobj +1160 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im33 1155 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1167 0 obj +<< /S /GoTo /D (index142) >> +endobj +1170 0 obj +() +endobj +1173 0 obj << +/Length 7373 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 316.492 548.934 Td[(91)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(124.)-771(Double-points)-423(in)-424(an)-424(involution.)]TJ/F16 10.909 Tf 185.872 0 Td[(The)-424(points)]TJ/F20 10.909 Tf 52.878 0 Td[(C)]TJ/F16 10.909 Tf 11.896 0 Td[(and)]TJ/F20 10.909 Tf 20.373 0 Td[(C')]TJ/F16 10.909 Tf -271.019 -13.549 Td[(describe)-431(projective)-431(point-rows,)-476(as)-431(may)-431(be)-431(seen)-431(by)-431(fixing)-431(the)]TJ 0 -13.549 Td[(points)]TJ/F20 10.909 Tf 30.488 0 Td[(L)]TJ/F16 10.909 Tf 9.88 0 Td[(and)]TJ/F20 10.909 Tf 19.568 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(.)-350(The)-350(self-corresponding)-349(points,)-375(of)-350(which)-349(there)]TJ -69.023 -13.549 Td[(are)-326(two)-327(or)-326(none,)-346(are)-326(called)-327(the)]TJ/F20 10.909 Tf 140.544 0 Td[(double-points)]TJ/F16 10.909 Tf 63.561 0 Td[(in)-326(the)-327(involution.)]TJ -204.105 -13.55 Td[(It)-323(is)-324(not)-323(difficult)-324(to)-323(see)-324(that)-323(the)-323(double-points)-324(in)-323(the)-324(involution)]TJ 0 -13.549 Td[(are)-265(harmonic)-264(conjugates)-265(with)-265(respect)-265(to)-264(corresponding)-265(points)-265(in)]TJ 0 -13.549 Td[(the)-303(involution.)-409(For,)-316(fixing)-303(as)-302(before)-303(the)-303(points)]TJ/F20 10.909 Tf 209.542 0 Td[(L)]TJ/F16 10.909 Tf 9.369 0 Td[(and)]TJ/F20 10.909 Tf 19.057 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-303(let)-303(the)]TJ -247.055 -13.549 Td[(intersection)-313(of)-314(the)-313(lines)]TJ/F20 10.909 Tf 107.598 0 Td[(CL)]TJ/F16 10.909 Tf 16.759 0 Td[(and)]TJ/F20 10.909 Tf 19.171 0 Td[(C'M)]TJ/F16 10.909 Tf 22.115 0 Td[(be)]TJ/F20 10.909 Tf 13.716 0 Td[(P)]TJ/F16 10.909 Tf 10.082 0 Td[(\050Fig.)-440(33\051.)-440(The)-313(locus)]TJ -189.44 -13.549 Td[(of)]TJ/F20 10.909 Tf 12.855 0 Td[(P)]TJ/F16 10.909 Tf 10.434 0 Td[(is)-345(a)-346(conic)-345(which)-346(goes)-345(through)-346(the)-345(double-points,)-370(because)]TJ -23.289 -13.55 Td[(the)-301(point-rows)]TJ/F20 10.909 Tf 67.164 0 Td[(C)]TJ/F16 10.909 Tf 10.559 0 Td[(and)]TJ/F20 10.909 Tf 19.035 0 Td[(C')]TJ/F16 10.909 Tf 12.892 0 Td[(are)-301(projective,)-314(and)-300(therefore)-301(so)-301(are)-301(the)]TJ -109.65 -13.549 Td[(pencils)]TJ/F20 10.909 Tf 34.212 0 Td[(LC)]TJ/F16 10.909 Tf 16.648 0 Td[(and)]TJ/F20 10.909 Tf 19.059 0 Td[(MC')]TJ/F16 10.909 Tf 22.004 0 Td[(which)-303(generate)-303(the)-303(locus)-304(of)]TJ/F20 10.909 Tf 125.592 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-303(Also,)-317(when)]TJ/F20 10.909 Tf -224.18 -13.549 Td[(C)]TJ/F16 10.909 Tf 10.196 0 Td[(and)]TJ/F20 10.909 Tf 18.673 0 Td[(C')]TJ/F16 10.909 Tf 12.531 0 Td[(fall)-268(together,)-272(the)-268(point)]TJ/F20 10.909 Tf 100.508 0 Td[(P)]TJ/F16 10.909 Tf 9.585 0 Td[(coincides)-268(with)-267(them.)-304(Further,)]TJ -151.493 -13.549 Td[(the)-246(tangents)-247(at)]TJ/F20 10.909 Tf 65.633 0 Td[(L)]TJ/F16 10.909 Tf 8.754 0 Td[(and)]TJ/F20 10.909 Tf 18.441 0 Td[(M)]TJ/F16 10.909 Tf 11.776 0 Td[(to)-246(this)-247(conic)-246(described)-247(by)]TJ/F20 10.909 Tf 114.036 0 Td[(P)]TJ/F16 10.909 Tf 9.354 0 Td[(are)-246(the)-247(lines)]TJ/F20 10.909 Tf -227.994 -13.549 Td[(LB)]TJ/F16 10.909 Tf 15.218 0 Td[(and)]TJ/F20 10.909 Tf 18.24 0 Td[(MB)]TJ/F16 10.909 Tf 15.753 0 Td[(.)-228(For)-228(in)-228(the)-228(pencil)-228(at)]TJ/F20 10.909 Tf 89.162 0 Td[(L)]TJ/F16 10.909 Tf 8.553 0 Td[(the)-228(ray)]TJ/F20 10.909 Tf 32.237 0 Td[(LM)]TJ/F16 10.909 Tf 17.64 0 Td[(common)-228(to)-228(the)-228(two)]TJ -196.803 -13.55 Td[(pencils)-285(which)-285(generate)-285(the)-285(conic)-285(is)-285(the)-285(ray)]TJ/F20 10.909 Tf 190.882 0 Td[(LB')]TJ/F16 10.909 Tf 18.174 0 Td[(and)-285(corresponds)]TJ -209.056 -13.549 Td[(to)-362(the)-361(ray)]TJ/F20 10.909 Tf 47.585 0 Td[(MB)]TJ/F16 10.909 Tf 19.697 0 Td[(of)]TJ/F20 10.909 Tf 13.032 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)-362(which)-361(is)-362(therefore)-362(the)-361(tangent)-362(line)-362(to)-361(the)]TJ -89.401 -13.549 Td[(conic)-240(at)]TJ/F20 10.909 Tf 36.735 0 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(.)-240(Similarly)-239(for)-240(the)-240(tangent)]TJ/F20 10.909 Tf 114.585 0 Td[(LB)]TJ/F16 10.909 Tf 15.346 0 Td[(at)]TJ/F20 10.909 Tf 10.491 0 Td[(L)]TJ/F16 10.909 Tf 6.066 0 Td[(.)]TJ/F20 10.909 Tf 5.342 0 Td[(LM)]TJ/F16 10.909 Tf 17.768 0 Td[(is)-240(therefore)-239(the)]TJ -215.421 -13.549 Td[(polar)-293(of)]TJ/F20 10.909 Tf 37.902 0 Td[(B)]TJ/F16 10.909 Tf 9.864 0 Td[(with)-293(respect)-293(to)-294(this)-293(conic,)-304(and)]TJ/F20 10.909 Tf 135.961 0 Td[(B)]TJ/F16 10.909 Tf 9.863 0 Td[(and)]TJ/F20 10.909 Tf 18.952 0 Td[(B')]TJ/F16 10.909 Tf 12.198 0 Td[(are)-293(therefore)]TJ -224.74 -13.549 Td[(harmonic)-209(conjugates)-209(with)-209(respect)-210(to)-209(the)-209(double-points.)-236(The)-210(same)]TJ 0 -13.55 Td[(discussion)-346(applies)-346(to)-346(any)-347(other)-346(pair)-346(of)-346(corresponding)-346(points)-347(in)]TJ 0 -13.549 Td[(the)-250(involution.)]TJ/F16 7.97 Tf 291.023 0 Td[([74])]TJ/F39 10.909 Tf -291.023 -86.205 Td[(125.)-720(Desargues's)-407(theorem)-407(concerning)-407(conics)-407(through)-407(four)]TJ 0 -13.549 Td[(points.)]TJ/F16 10.909 Tf 33.699 0 Td[(Let)]TJ/F20 10.909 Tf 16.519 0 Td[(DD')]TJ/F16 10.909 Tf 20.063 0 Td[(be)-181(any)-182(pair)-181(of)-181(points)-181(in)-182(the)-181(involution)-181(determined)]TJ -70.281 -13.549 Td[(as)-270(above,)-274(and)-270(consider)-269(the)-270(conic)-269(passing)-270(through)-269(the)-270(five)-270(points)]TJ/F20 10.909 Tf 0 -13.549 Td[(K)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.239 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 6.239 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf 6.239 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.239 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-322(We)-322(shall)-322(use)-322(Pascal's)-321(theorem)-322(to)-322(show)-322(that)-322(this)]TJ -62.536 -13.549 Td[(conic)-455(also)-455(passes)-455(through)]TJ/F20 10.909 Tf 122.867 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(.)-455(The)-455(point)]TJ/F20 10.909 Tf 57.01 0 Td[(D')]TJ/F16 10.909 Tf 15.171 0 Td[(is)-455(determined)-455(as)]TJ -205.259 -13.549 Td[(follows:)-283(Fix)]TJ/F20 10.909 Tf 56.307 0 Td[(L)]TJ/F16 10.909 Tf 8.972 0 Td[(and)]TJ/F20 10.909 Tf 18.66 0 Td[(M)]TJ/F16 10.909 Tf 11.995 0 Td[(as)-266(before)-267(\050Fig.)-299(3)-1(4\051)-266(and)-267(join)]TJ/F20 10.909 Tf 122.934 0 Td[(D)]TJ/F16 10.909 Tf 10.783 0 Td[(to)]TJ/F20 10.909 Tf 11.395 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)-267(giving)]TJ -247.111 -13.55 Td[(on)]TJ/F20 10.909 Tf 15.148 0 Td[(MN)]TJ/F16 10.909 Tf 20.602 0 Td[(the)-389(point)]TJ/F20 10.909 Tf 44.239 0 Td[(N')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-389(Join)]TJ/F20 10.909 Tf 29.392 0 Td[(N')]TJ/F16 10.909 Tf 13.849 0 Td[(to)]TJ/F20 10.909 Tf 12.727 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-389(giving)-388(on)]TJ/F20 10.909 Tf 54.239 0 Td[(LK)]TJ/F16 10.909 Tf 17.58 0 Td[(the)-389(point)]TJ/F20 10.909 Tf 44.239 0 Td[(K')]TJ/F16 10.909 Tf 9.611 0 Td[(.)]TJ -277.902 -13.549 Td[(Then)]TJ/F20 10.909 Tf 25.601 0 Td[(MK')]TJ/F16 10.909 Tf 21.881 0 Td[(determines)-292(the)-292(point)]TJ/F20 10.909 Tf 93.178 0 Td[(D')]TJ/F16 10.909 Tf 13.394 0 Td[(on)-292(the)-292(line)]TJ/F20 10.909 Tf 50.153 0 Td[(AA')]TJ/F16 10.909 Tf 15.666 0 Td[(,)-292(given)-292(by)-291(the)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1172 0 obj << +/Type /Page +/Contents 1173 0 R +/Resources 1171 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1174 0 obj << +/D [1172 0 R /XYZ 46.771 247.049 null] +>> endobj +1168 0 obj << +/D [1172 0 R /XYZ 46.771 194.26 null] +>> endobj +1175 0 obj << +/D [1172 0 R /XYZ 46.771 175.339 null] +>> endobj +1171 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1176 0 obj +<< /S /GoTo /D (index143) >> +endobj +1179 0 obj +() +endobj +1180 0 obj +<< /S /GoTo /D (index144) >> +endobj +1183 0 obj +() +endobj +1186 0 obj << +/Length 3737 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(92)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.64 -168.862 cm + q 1.42717 0 0 1.42717 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +184.0793 0 0 118.3196 0 0 cm +/Im34 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.183 -360.272 cm +BT +/F16 10.909 Tf 218.337 341.268 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(34)]TJ +ET +1 0 0 1 93.543 335.672 cm +0 g 0 G +1 0 0 1 -93.543 -335.672 cm +BT +/F16 10.909 Tf 93.543 314.234 Td[(complete)-397(quadrangle)]TJ/F20 10.909 Tf 97.13 0 Td[(K')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ/F20 10.909 Tf 7.061 0 Td[(L)]TJ/F16 10.909 Tf 6.065 0 Td[(,)]TJ/F20 10.909 Tf 7.061 0 Td[(M)]TJ/F16 10.909 Tf 9.088 0 Td[(,)]TJ/F20 10.909 Tf 7.061 0 Td[(N')]TJ/F16 10.909 Tf 9.611 0 Td[(.)-397(Consider)-398(the)-397(following)-397(six)]TJ -152.688 -13.55 Td[(points,)-237(numbering)-235(them)-234(in)-234(order:)]TJ/F20 10.909 Tf 145.922 0 Td[(D)-234(=)-234(1)]TJ/F16 10.909 Tf 25.805 0 Td[(,)]TJ/F20 10.909 Tf 5.317 0 Td[(D')-234(=)-234(2)]TJ/F16 10.909 Tf 28.139 0 Td[(,)]TJ/F20 10.909 Tf 5.317 0 Td[(M)-234(=)-234(3)]TJ/F16 10.909 Tf 27.015 0 Td[(,)]TJ/F20 10.909 Tf 5.317 0 Td[(N)-234(=)-234(4)]TJ/F16 10.909 Tf 25.205 0 Td[(,)]TJ/F20 10.909 Tf 5.317 0 Td[(K)]TJ -273.354 -13.549 Td[(=)-196(5)]TJ/F16 10.909 Tf 14.955 0 Td[(,)-207(and)]TJ/F20 10.909 Tf 22.87 0 Td[(L)-196(=)-196(6)]TJ/F16 10.909 Tf 23.155 0 Td[(.)-232(We)-196(have)-196(the)-195(following)-196(intersections:)]TJ/F20 10.909 Tf 165.906 0 Td[(B)-196(=)-196(\05012-45\051)]TJ/F16 10.909 Tf 51.017 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(K')-283(=)-283(\05023-56\051)]TJ/F16 10.909 Tf 55.867 0 Td[(,)]TJ/F20 10.909 Tf 5.905 0 Td[(N')-283(=)-283(\05034-61\051)]TJ/F16 10.909 Tf 55.866 0 Td[(;)-300(and)-283(since)-283(by)-283(construction)]TJ/F20 10.909 Tf 121.667 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.815 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(,)-283(and)]TJ/F20 10.909 Tf -259.062 -13.549 Td[(K')]TJ/F16 10.909 Tf 12.512 0 Td[(are)-266(on)-266(a)-266(straight)-266(line,)-270(it)-266(follows)-266(from)-266(the)-266(converse)-266(of)-266(Pascal's)]TJ -12.512 -13.549 Td[(theorem,)-284(which)-277(is)-277(easily)-277(established,)-284(that)-277(the)-277(six)-277(points)-277(are)-277(on)-277(a)]TJ 0 -13.55 Td[(conic.)-250(We)-250(have,)-250(then,)-250(the)-250(beautiful)-250(theorem)-250(due)-250(to)-250(Desargues:)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(The)-239(system)-239(of)-239(conics)-239(through)-239(four)-239(points)-239(meets)-239(any)-240(line)-239(in)-239(the)]TJ -11.956 -13.549 Td[(plane)-250(in)-250(pairs)-250(of)-250(points)-250(in)-250(involution.)]TJ/F39 10.909 Tf 0 -48.863 Td[(126.)]TJ/F16 10.909 Tf 23.115 0 Td[(It)-290(appears)-289(also)-290(that)-290(the)-289(six)-290(points)-289(in)-290(involution)-290(determined)]TJ -23.115 -13.549 Td[(by)-314(the)-313(quadrangle)-314(through)-313(the)-314(four)-314(fixed)-627(points)-313(belong)-314(also)-314(to)]TJ/F16 7.97 Tf -72.755 0 Td[([75])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(the)-414(same)-415(involution)-414(with)-414(the)-415(points)-414(cut)-414(out)-415(by)-414(the)-414(system)-415(of)]TJ 0 -13.549 Td[(conics,)-461(as)-418(indeed)-419(we)-419(might)-418(infer)-419(from)-418(the)-419(fact)-418(that)-419(the)-419(three)]TJ 0 -13.549 Td[(pairs)-323(of)-323(opposite)-323(sides)-323(of)-323(the)-323(quadrangle)-323(may)-323(be)-323(considered)-323(as)]TJ 0 -13.55 Td[(degenerate)-250(conics)-250(of)-250(the)-250(system.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1185 0 obj << +/Type /Page +/Contents 1186 0 R +/Resources 1184 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1127 0 R +>> endobj +1166 0 obj << +/Type /XObject +/Subtype /Image +/Width 767 +/Height 493 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1134393 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýÿÿÿýýýýýýýýýýýýýýýýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýýýýýýýýýýûûûûûûýýýýýýýýýýýýýýýûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûýýýýýýýýýûûûûûûûûûûûûûûûýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1177 0 obj << +/D [1185 0 R /XYZ 93.543 182.871 null] +>> endobj +1187 0 obj << +/D [1185 0 R /XYZ 93.543 168.268 null] +>> endobj +1188 0 obj << +/D [1185 0 R /XYZ 278.061 143.428 null] +>> endobj +1181 0 obj << +/D [1185 0 R /XYZ 93.543 66.142 null] +>> endobj +1184 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im34 1166 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1190 0 obj +<< /S /GoTo /D (index145) >> +endobj +1193 0 obj +() +endobj +1195 0 obj +<< /S /GoTo /D (index146) >> +endobj +1198 0 obj +() +endobj +1201 0 obj << +/Length 4580 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(128.)-250(Double)-250(correspondence)-13256(93)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(127.)-488(Conics)-329(through)-330(four)-329(points)-329(touching)-330(a)-329(given)-329(line.)]TJ/F16 10.909 Tf 263.096 0 Td[(It)-329(is)]TJ -263.096 -13.549 Td[(further)-356(evident)-356(that)-356(the)-356(involution)-356(determined)-356(on)-356(a)-356(line)-357(by)-356(the)]TJ 0 -13.549 Td[(system)-314(of)-314(conics)-313(will)-314(have)-314(a)-314(double-point)-314(where)-313(a)-314(conic)-314(of)-314(the)]TJ 0 -13.549 Td[(system)-224(is)-224(tangent)-224(to)-223(the)-224(line.)-241(We)-224(may)-224(therefore)-224(infer)-224(the)-224(theorem)]TJ/F20 10.909 Tf 11.956 -13.55 Td[(Through)-219(four)-219(fixed)-218(points)-219(in)-219(the)-219(plane)-218(two)-219(conics)-219(or)-219(none)-219(may)]TJ -11.956 -13.549 Td[(be)-250(drawn)-250(tangent)-250(to)-250(any)-250(given)-250(line.)]TJ/F39 10.909 Tf 0 -76.975 Td[(128.)-246(Double)-236(correspondence.)]TJ/F16 10.909 Tf 136.413 0 Td[(We)-236(have)-237(seen)-236(that)-237(corresponding)]TJ -136.413 -13.549 Td[(points)-396(in)-397(an)-396(involution)-396(form)-397(two)-396(projective)-396(point-rows)-397(super-)]TJ 0 -13.55 Td[(posed)-470(on)-470(the)-470(same)-470(straight)-470(line.)-910(Two)-470(projective)-470(point-rows)]TJ 0 -13.549 Td[(superposed)-254(on)-254(the)-254(same)-253(straight)-254(line)-254(are,)-255(however,)-255(not)-254(necessar-)]TJ 0 -13.549 Td[(ily)-239(in)-240(involution,)-241(as)-239(a)-240(simple)-239(example)-239(will)-240(show.)-246(Take)-239(two)-240(lines,)]TJ/F20 10.909 Tf 0 -13.549 Td[(a)]TJ/F16 10.909 Tf 8.286 0 Td[(and)]TJ/F20 10.909 Tf 18.583 0 Td[(a')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-262(which)-259(both)-260(revolve)-259(about)-260(a)-259(fixed)-260(point)]TJ/F20 10.909 Tf 178.103 0 Td[(S)]TJ/F16 10.909 Tf 8.285 0 Td[(and)-259(which)-260(al-)]TJ -221.045 -13.549 Td[(ways)-236(make)-237(the)-236(same)-237(angle)-236(with)-236(each)-237(other)-236(\050Fig.)-246(35\051.)-245(These)-237(lines)]TJ 0 -13.55 Td[(cut)-325(out)-325(on)-325(any)-325(line)-326(in)-325(the)-325(plane)-325(which)-325(does)-325(not)-325(pass)-325(through)]TJ/F20 10.909 Tf 275.175 0 Td[(S)]TJ/F16 10.909 Tf -275.175 -13.549 Td[(two)-232(projective)-232(point-rows,)-235(which)-232(are)-232(not,)-236(however,)-236(in)-231(in)-1(volution)]TJ 0 -13.549 Td[(unless)-300(the)-300(angle)-300(between)-300(the)-300(lines)-300(is)-300(a)-300(right)-300(angles.)-400(For)-300(a)-300(point)]TJ/F20 10.909 Tf 0 -13.549 Td[(P)]TJ/F16 10.909 Tf 10.396 0 Td[(may)-342(correspond)-342(to)-342(a)-343(point)]TJ/F20 10.909 Tf 121.677 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-342(which)-342(in)-342(turn)-343(will)-342(correspond)]TJ -141.073 -13.549 Td[(to)-397(some)-397(other)-397(point)-793(than)]TJ/F20 10.909 Tf 121.125 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-397(The)-397(peculiarity)-397(of)-396(point-row)-1(s)-396(in)]TJ/F16 7.97 Tf 163.233 0 Td[([76])]TJ/F16 10.909 Tf -291.023 -13.55 Td[(involution)-255(is)-255(that)-255(any)-255(point)-256(will)-255(correspond)-255(to)-255(the)-255(same)-255(point,)-257(in)]TJ 0 -13.549 Td[(whichever)-208(point-row)-208(it)-208(is)-208(considered)-209(as)-208(belonging.)-236(In)-208(this)-208(case,)-217(if)]TJ 0 -13.549 Td[(a)-231(point)]TJ/F20 10.909 Tf 32.311 0 Td[(P)]TJ/F16 10.909 Tf 9.185 0 Td[(corresponds)-231(to)-231(a)-231(point)]TJ/F20 10.909 Tf 98.551 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-231(then)-231(the)-231(point)]TJ/F20 10.909 Tf 67.35 0 Td[(P')]TJ/F16 10.909 Tf 11.52 0 Td[(corresponds)]TJ -227.917 -13.549 Td[(back)-324(again)-325(to)-324(the)-325(point)]TJ/F20 10.909 Tf 106.167 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-324(The)-325(points)]TJ/F20 10.909 Tf 56.98 0 Td[(P)]TJ/F16 10.909 Tf 10.204 0 Td[(and)]TJ/F20 10.909 Tf 19.291 0 Td[(P')]TJ/F16 10.909 Tf 12.539 0 Td[(are)-324(then)-325(said)-324(to)]TJ/F20 10.909 Tf -211.846 -13.549 Td[(correspond)-250(doubly)]TJ/F16 10.909 Tf 82.112 0 Td[(.)-250(This)-250(notion)-250(is)-250(worthy)-250(of)-250(further)-250(study.)]TJ/F39 10.909 Tf -82.112 -76.976 Td[(129.)-239(Steiner's)-218(construction.)]TJ/F16 10.909 Tf 128.196 0 Td[(It)-218(will)-218(be)-218(observed)-217(that)-218(the)-218(solution)]TJ -128.196 -13.549 Td[(of)-405(the)-405(fundamental)-405(problem)-405(given)-405(in)-405(\247)-405(83,)]TJ/F20 10.909 Tf 200.896 0 Td[(Given)-405(three)-405(pairs)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1200 0 obj << +/Type /Page +/Contents 1201 0 R +/Resources 1199 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1202 0 obj << +/D [1200 0 R /XYZ 46.771 529.134 null] +>> endobj +1191 0 obj << +/D [1200 0 R /XYZ 46.771 402.112 null] +>> endobj +1203 0 obj << +/D [1200 0 R /XYZ 46.771 387.003 null] +>> endobj +1204 0 obj << +/D [1200 0 R /XYZ 140.452 224.413 null] +>> endobj +1196 0 obj << +/D [1200 0 R /XYZ 46.771 108.35 null] +>> endobj +1205 0 obj << +/D [1200 0 R /XYZ 46.771 93.24 null] +>> endobj +1199 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1207 0 obj +<< /S /GoTo /D (index147) >> +endobj +1210 0 obj +() +endobj +1213 0 obj << +/Length 8355 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(94)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 93.543 518.175 Td[(of)-307(points)-307(of)-307(two)-308(protective)-307(point-rows,)-321(to)-307(construct)-307(other)-308(pairs)]TJ/F16 10.909 Tf 277.903 0 Td[(,)]TJ -277.903 -13.549 Td[(cannot)-465(be)-466(carried)-465(out)-465(if)-465(the)-465(two)-466(point-rows)-465(lie)-465(on)-465(the)-466(same)]TJ 0 -13.549 Td[(straight)-213(line.)-238(Of)-213(course)-213(the)-213(method)-213(may)-213(be)-213(easily)-213(altered)-214(to)-213(cover)]TJ 0 -13.549 Td[(that)-216(case)-215(also,)-223(but)-215(it)-216(is)-215(worth)-216(while)-216(to)-215(give)-216(another)-215(solution)-216(of)-216(the)]TJ 0 -13.55 Td[(problem,)-232(due)-228(to)-228(Steiner,)-233(which)-228(will)-228(also)-228(give)-228(further)-228(information)]TJ 0 -13.549 Td[(regarding)-348(the)-347(theory)-348(of)-347(involution,)-372(and)-347(which)-348(may,)-372(indeed,)-372(be)]TJ 0 -13.549 Td[(used)-224(as)-223(a)-224(foundation)-223(for)-224(that)-223(th)-1(eory.)-241(Let)-223(the)-224(two)-223(point-rows)]TJ/F20 10.909 Tf 259.406 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.166 0 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ/F20 10.909 Tf 5.393 0 Td[(D)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-244(...)-248(and)]TJ/F20 10.909 Tf 34.699 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.393 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.393 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)]TJ/F20 10.909 Tf 5.393 0 Td[(D')]TJ/F16 10.909 Tf 10.211 0 Td[(,)-244(...)-248(be)-245(superposed)-244(on)-244(the)-245(line)]TJ/F20 10.909 Tf 129.59 0 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-248(Project)]TJ -244.291 -13.549 Td[(them)-285(both)-286(to)-285(a)-286(point)]TJ/F20 10.909 Tf 92.542 0 Td[(S)]TJ/F16 10.909 Tf 8.567 0 Td[(and)-285(pass)-286(any)-285(conic)]TJ/F43 10.909 Tf 86.373 0 Td[(\272)]TJ/F16 10.909 Tf 8.361 0 Td[(through)]TJ/F20 10.909 Tf 37.051 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-285(We)-286(thus)]TJ -238.349 -13.55 Td[(obtain)-260(two)-261(projective)-260(pencils,)]TJ/F20 10.909 Tf 132.288 0 Td[(a)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(b)]TJ/F16 10.909 Tf 5.454 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(c)]TJ/F16 10.909 Tf 4.844 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(d)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-263(...)-281(and)]TJ/F20 10.909 Tf 38.283 0 Td[(a')]TJ/F16 10.909 Tf 7.789 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(b')]TJ/F16 10.909 Tf 7.79 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(c')]TJ/F16 10.909 Tf 7.178 0 Td[(,)]TJ/F20 10.909 Tf 5.597 0 Td[(d')]TJ/F16 10.909 Tf 7.789 0 Td[(,)-263(...)-281(at)]TJ/F16 7.97 Tf -328.661 0 Td[([77])]TJ/F20 10.909 Tf 72.755 -13.549 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-235(which)-235(meet)-236(the)-235(conic)-235(in)-235(the)-236(points)]TJ/F43 10.909 Tf 156.576 0 Td[(\261)]TJ/F16 10.909 Tf 5.444 0 Td[(,)]TJ/F43 10.909 Tf 5.325 0 Td[(\262)]TJ/F16 10.909 Tf 5.04 0 Td[(,)]TJ/F43 10.909 Tf 5.326 0 Td[(\263)]TJ/F16 10.909 Tf 4.92 0 Td[(,)]TJ/F43 10.909 Tf 5.326 0 Td[(\264)]TJ/F16 10.909 Tf 4.636 0 Td[(,)-238(...)-245(and)]TJ/F43 10.909 Tf 34.5 0 Td[(\261)]TJ/F20 10.909 Tf 5.443 0 Td[(')]TJ/F16 10.909 Tf 2.335 0 Td[(,)]TJ/F43 10.909 Tf 5.326 0 Td[(\262)]TJ/F20 10.909 Tf 5.04 0 Td[(')]TJ/F16 10.909 Tf 2.334 0 Td[(,)]TJ/F43 10.909 Tf 5.326 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F16 10.909 Tf 2.334 0 Td[(,)]TJ/F43 10.909 Tf 5.326 0 Td[(\264)]TJ/F20 10.909 Tf 4.636 0 Td[(')]TJ/F16 10.909 Tf 2.335 0 Td[(,)]TJ -277.903 -13.549 Td[(...)-338(\050Fig.)-338(36\051.)-338(Take)-279(now)]TJ/F43 10.909 Tf 104.107 0 Td[(\263)]TJ/F16 10.909 Tf 7.967 0 Td[(as)-279(the)-280(center)-279(of)-279(a)-279(pencil)-280(projecting)-279(the)]TJ -112.074 -13.549 Td[(points)]TJ/F43 10.909 Tf 29.361 0 Td[(\261)]TJ/F20 10.909 Tf 5.444 0 Td[(')]TJ/F16 10.909 Tf 2.334 0 Td[(,)]TJ/F43 10.909 Tf 5.423 0 Td[(\262)]TJ/F20 10.909 Tf 5.04 0 Td[(')]TJ/F16 10.909 Tf 2.335 0 Td[(,)]TJ/F43 10.909 Tf 5.423 0 Td[(\264)]TJ/F20 10.909 Tf 4.636 0 Td[(')]TJ/F16 10.909 Tf 2.335 0 Td[(,)-247(...,)-247(and)-247(take)]TJ/F43 10.909 Tf 58.331 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F16 10.909 Tf 5.022 0 Td[(as)-246(the)-247(center)-246(of)-247(a)-246(pencil)-246(projecting)]TJ -130.604 -13.549 Td[(the)-343(points)]TJ/F43 10.909 Tf 47.486 0 Td[(\261)]TJ/F16 10.909 Tf 5.443 0 Td[(,)]TJ/F43 10.909 Tf 6.722 0 Td[(\262)]TJ/F16 10.909 Tf 5.04 0 Td[(,)]TJ/F43 10.909 Tf 6.721 0 Td[(\264)]TJ/F16 10.909 Tf 4.637 0 Td[(,)-366(....)-529(These)-343(two)-343(pencils)-343(are)-343(projective)-342(to)-343(each)]TJ -76.049 -13.55 Td[(other,)-360(and)-338(since)-338(they)-338(have)-338(a)-338(self-correspondin)-338(ray)-338(in)-338(common,)]TJ 0 -13.549 Td[(they)-431(are)-432(in)-431(perspective)-432(position)-431(and)-432(corresponding)-431(rays)-432(meet)]TJ 0 -13.549 Td[(on)-362(the)-361(line)-362(joining)]TJ/F20 10.909 Tf 87.304 0 Td[(\050)]TJ/F43 10.909 Tf 3.633 0 Td[(\263\261)]TJ/F20 10.909 Tf 10.363 0 Td[(',)]TJ/F43 10.909 Tf 9.313 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.334 0 Td[(\261)]TJ/F20 10.909 Tf 5.444 0 Td[(\051)]TJ/F16 10.909 Tf 7.579 0 Td[(to)]TJ/F20 10.909 Tf 12.433 0 Td[(\050)]TJ/F43 10.909 Tf 3.633 0 Td[(\263\262)]TJ/F20 10.909 Tf 9.96 0 Td[(',)]TJ/F43 10.909 Tf 9.312 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.335 0 Td[(\262)]TJ/F20 10.909 Tf 5.04 0 Td[(\051)]TJ/F16 10.909 Tf 3.632 0 Td[(.)-585(The)-362(correspondence)]TJ -182.155 -13.549 Td[(between)-250(points)-250(in)-250(the)-250(two)-250(point-rows)-250(on)]TJ/F20 10.909 Tf 178.473 0 Td[(u)]TJ/F16 10.909 Tf 8.181 0 Td[(is)-250(now)-250(easily)-250(traced.)]TJ/F39 10.909 Tf -186.654 -59.107 Td[(130.)-881(Application)-460(of)-460(Steiner's)-460(construction)-460(to)-460(double)-461(cor-)]TJ 0 -13.549 Td[(respondence.)]TJ/F16 10.909 Tf 67.842 0 Td[(Steiner's)-379(construction)-378(throws)-379(into)-378(our)-379(hands)-379(an)]TJ -67.842 -13.549 Td[(important)-434(theorem)-433(concerning)-434(double)-433(correspondence:)]TJ/F20 10.909 Tf 253.472 0 Td[(If)-434(two)]TJ -253.472 -13.549 Td[(projective)-394(point-rows,)-431(superposed)-394(on)-395(the)-394(same)-395(line,)-430(have)-395(one)]TJ 0 -13.549 Td[(pair)-334(of)-335(points)-334(which)-334(correspond)-334(to)-335(each)-334(other)-334(doubly,)-355(then)-335(all)]TJ 0 -13.549 Td[(pairs)-280(correspond)-280(to)-280(each)-280(other)-280(doubly,)-287(and)-280(the)-280(line)-280(is)-280(paired)-280(in)]TJ 0 -13.55 Td[(involution.)]TJ/F16 10.909 Tf 51.439 0 Td[(To)-303(make)-303(this)-303(appear,)-317(let)-303(us)-303(call)-303(the)-303(point)]TJ/F20 10.909 Tf 185.335 0 Td[(A)]TJ/F16 10.909 Tf 9.971 0 Td[(on)]TJ/F20 10.909 Tf 14.215 0 Td[(u)]TJ/F16 10.909 Tf 8.761 0 Td[(by)]TJ -269.721 -13.549 Td[(two)-296(names,)]TJ/F20 10.909 Tf 53.558 0 Td[(A)]TJ/F16 10.909 Tf 9.898 0 Td[(and)]TJ/F20 10.909 Tf 18.986 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-296(according)-297(as)-296(it)-297(is)-296(thought)-297(of)-296(as)-296(belonging)]TJ -91.442 -13.549 Td[(to)-308(the)-307(one)-308(or)-307(to)-308(the)-307(other)-308(of)-307(the)-308(two)-307(point-rows.)-423(If)-308(this)-307(point)-308(is)]TJ 0 -13.549 Td[(one)-354(of)-355(a)-354(pair)-355(which)-354(correspond)-354(to)-355(each)-354(other)-355(doubly,)-380(then)-355(the)]TJ 0 -13.549 Td[(points)]TJ/F20 10.909 Tf 29.692 0 Td[(A')]TJ/F16 10.909 Tf 12.02 0 Td[(and)]TJ/F20 10.909 Tf 18.772 0 Td[(P)]TJ/F16 10.909 Tf 9.684 0 Td[(must)-277(coincide)-277(\050Fig.)-330(37\051.)-330(Take)-277(now)-277(any)-277(point)]TJ/F20 10.909 Tf 200.458 0 Td[(C)]TJ/F16 10.909 Tf 7.277 0 Td[(,)]TJ -277.903 -13.55 Td[(which)-231(we)-231(will)-231(also)-231(call)]TJ/F20 10.909 Tf 102.286 0 Td[(R')]TJ/F16 10.909 Tf 9 0 Td[(.)-231(We)-231(must)-231(show)-231(that)-231(the)-231(corresponding)]TJ -111.286 -13.549 Td[(point)]TJ/F20 10.909 Tf 25.695 0 Td[(C')]TJ/F16 10.909 Tf 12.876 0 Td[(must)-299(also)-300(coincide)-299(with)-300(the)-299(point)]TJ/F20 10.909 Tf 150.505 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-299(Join)-300(all)-299(the)-300(points)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1212 0 obj << +/Type /Page +/Contents 1213 0 R +/Resources 1211 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1214 0 obj << +/D [1212 0 R /XYZ 299.271 396.232 null] +>> endobj +1208 0 obj << +/D [1212 0 R /XYZ 93.543 260.074 null] +>> endobj +1215 0 obj << +/D [1212 0 R /XYZ 93.543 240.796 null] +>> endobj +1211 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F43 1089 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1218 0 obj +<< /S /GoTo /D (index148) >> +endobj +1221 0 obj +() +endobj +1224 0 obj << +/Length 5920 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 316.492 548.934 Td[(95)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(to)]TJ/F20 10.909 Tf 11.852 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-308(as)-309(before,)-323(and)-308(it)-309(appears)-308(that)-308(the)-309(points)]TJ/F41 10.909 Tf 184.342 0 Td[(\261)]TJ/F16 10.909 Tf 9.091 0 Td[(and)]TJ/F43 10.909 Tf 19.117 0 Td[(\300)]TJ/F20 10.909 Tf 5.389 0 Td[(')]TJ/F16 10.909 Tf 5.698 0 Td[(coincide,)]TJ -240.943 -13.549 Td[(as)-305(also)-306(do)-305(the)-305(points)]TJ/F43 10.909 Tf 94.227 0 Td[(\261)]TJ/F20 10.909 Tf 5.444 0 Td[(')]TJ/F43 10.909 Tf 2.334 0 Td[(\300)]TJ/F16 10.909 Tf 8.719 0 Td[(and)]TJ/F43 10.909 Tf 19.083 0 Td[(\263\301)]TJ/F20 10.909 Tf 9.731 0 Td[(')]TJ/F16 10.909 Tf 2.335 0 Td[(.)-305(By)-306(the)-305(above)-305(construction)-305(the)]TJ -141.873 -13.549 Td[(line)]TJ/F43 10.909 Tf 18.931 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.334 0 Td[(\301)]TJ/F16 10.909 Tf 7.378 0 Td[(must)-235(meet)]TJ/F43 10.909 Tf 47.558 0 Td[(\263\301)]TJ/F20 10.909 Tf 9.731 0 Td[(')]TJ/F16 10.909 Tf 4.901 0 Td[(on)-235(the)-236(line)-235(joining)]TJ/F20 10.909 Tf 81.786 0 Td[(\050)]TJ/F43 10.909 Tf 3.633 0 Td[(\263\261)]TJ/F20 10.909 Tf 10.363 0 Td[(',)]TJ/F43 10.909 Tf 7.661 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.335 0 Td[(\261)]TJ/F20 10.909 Tf 5.443 0 Td[(\051)]TJ/F16 10.909 Tf 6.199 0 Td[(with)]TJ/F20 10.909 Tf 21.963 0 Td[(\050)]TJ/F43 10.909 Tf 3.633 0 Td[(\263\300)]TJ/F20 10.909 Tf 10.309 0 Td[(',)]TJ/F43 10.909 Tf 7.629 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.334 0 Td[(\300)]TJ/F20 10.909 Tf 5.389 0 Td[(\051)]TJ/F16 10.909 Tf 3.633 0 Td[(.)]TJ -277.903 -13.549 Td[(But)-320(these)-320(four)-320(points)-320(form)-320(a)-320(quadrangle)-320(inscribed)-320(in)-321(the)-320(conic,)]TJ 0 -13.55 Td[(and)-300(we)-299(know)-300(by)-299(\247)-300(95)-300(that)-299(the)-300(tangents)-299(at)-300(the)-299(opposite)-600(vertices)]TJ/F16 7.97 Tf 291.024 0 Td[([78])]TJ/F43 10.909 Tf -291.024 -13.549 Td[(\263)]TJ/F16 10.909 Tf 9.184 0 Td[(and)]TJ/F43 10.909 Tf 20.016 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F16 10.909 Tf 6.597 0 Td[(meet)-391(on)-391(the)-390(line)]TJ/F20 10.909 Tf 78.864 0 Td[(v)]TJ/F16 10.909 Tf 4.844 0 Td[(.)-672(The)-391(line)]TJ/F43 10.909 Tf 51.916 0 Td[(\263)]TJ/F20 10.909 Tf 4.92 0 Td[(')]TJ/F43 10.909 Tf 2.335 0 Td[(\301)]TJ/F16 10.909 Tf 9.072 0 Td[(is)-391(thus)-391(a)-390(tangent)-391(to)]TJ -192.668 -13.549 Td[(the)-290(conic,)-300(and)]TJ/F20 10.909 Tf 65.042 0 Td[(C')]TJ/F16 10.909 Tf 12.774 0 Td[(and)]TJ/F20 10.909 Tf 18.917 0 Td[(R)]TJ/F16 10.909 Tf 9.829 0 Td[(are)-290(the)-290(same)-290(point.)-370(That)-290(two)-290(projective)]TJ -106.562 -13.549 Td[(point-rows)-377(superposed)-377(on)-377(the)-377(same)-377(line)-377(are)-377(also)-378(in)-377(involution)]TJ 0 -13.549 Td[(when)-216(one)-216(pair,)-223(and)-217(therefore)-216(all)-216(pairs,)-223(correspond)-216(doubly)-216(may)-217(be)]TJ 0 -13.55 Td[(shown)-238(by)-238(taking)]TJ/F20 10.909 Tf 74.456 0 Td[(S)]TJ/F16 10.909 Tf 8.051 0 Td[(at)-238(one)-238(vertex)-238(of)-238(a)-238(complete)-238(quadrangle)-238(which)]TJ -82.507 -13.549 Td[(has)-215(two)-215(pairs)-215(of)-215(opposite)-215(sides)-215(going)-215(through)-215(two)-215(pairs)-215(of)-215(points.)]TJ 0 -13.549 Td[(The)-250(details)-250(we)-250(leave)-250(to)-250(the)-250(student.)]TJ/F39 10.909 Tf 0 -113.303 Td[(131.)-278(Involution)-260(of)-259(points)-259(on)-260(a)-259(point-row)-259(of)-260(the)-259(second)-260(order.)]TJ/F16 10.909 Tf 0 -13.549 Td[(It)-205(is)-204(important)-205(to)-204(note)-205(also,)-214(in)-204(Steiner's)-205(construction,)-213(that)-205(we)-205(have)]TJ 0 -13.55 Td[(obtained)-309(two)-310(point-rows)-309(of)-310(the)-309(second)-309(order)-310(superposed)-309(on)-310(the)]TJ 0 -13.549 Td[(same)-364(conic,)-393(and)-364(have)-364(paired)-364(the)-364(points)-364(of)-364(one)-364(with)-364(th)-1(e)-364(points)]TJ 0 -13.549 Td[(of)-387(the)-387(other)-387(in)-387(such)-387(a)-387(way)-387(that)-387(the)-387(correspondence)-388(is)-387(double.)]TJ 0 -13.549 Td[(We)-356(may)-356(then)-356(extend)-356(the)-356(notion)-356(of)-356(involution)-356(to)-356(point-rows)-356(of)]TJ 0 -13.549 Td[(the)-270(second)-269(order)-270(and)-270(say)-269(that)]TJ/F20 10.909 Tf 130.952 0 Td[(the)-270(points)-269(of)-270(a)-270(conic)-269(are)-270(paired)-270(in)]TJ -130.952 -13.55 Td[(involution)-229(when)-228(th)-1(ey)-228(are)-229(corresponding)-457(points)-229(of)-229(two)-229(projective)]TJ/F16 7.97 Tf 291.024 0 Td[([79])]TJ/F20 10.909 Tf -291.024 -13.549 Td[(point-rows)-294(superposed)-295(on)-294(the)-294(conic,)-306(and)-294(when)-294(they)-295(correspond)]TJ 0 -13.549 Td[(to)-396(each)-396(other)-397(doubly.)]TJ/F16 10.909 Tf 105.014 0 Td[(With)-396(this)-396(definition)-397(we)-396(may)-396(prove)-396(the)]TJ -105.014 -13.549 Td[(theorem:)]TJ/F20 10.909 Tf 42.589 0 Td[(The)-300(lines)-299(joining)-300(corresponding)-299(points)-300(of)-299(a)-300(point-row)]TJ -42.589 -13.549 Td[(of)-202(the)-201(second)-202(order)-201(in)-202(involution)-201(all)-202(pass)-201(through)-202(a)-202(fixed)-201(point)-202(U,)]TJ 0 -13.549 Td[(and)-216(the)-216(line)-216(joining)-216(any)-216(two)-216(points)-216(A,)-216(B)-216(meets)-216(the)-216(line)-216(joining)-216(the)]TJ 0 -13.55 Td[(two)-236(corresponding)-236(points)-236(A',)-237(B')-236(in)-236(the)-236(points)-236(of)-236(a)-236(line)-237(u,)-238(which)-237(is)]TJ 0 -13.549 Td[(the)-254(polar)-254(of)-254(U)-254(with)-254(respect)-254(to)-254(the)-254(conic.)]TJ/F16 10.909 Tf 176.84 0 Td[(For)-254(take)]TJ/F20 10.909 Tf 38.869 0 Td[(A)]TJ/F16 10.909 Tf 9.437 0 Td[(and)]TJ/F20 10.909 Tf 18.524 0 Td[(A')]TJ/F16 10.909 Tf 11.771 0 Td[(as)-254(the)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1223 0 obj << +/Type /Page +/Contents 1224 0 R +/Resources 1222 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1225 0 obj << +/D [1223 0 R /XYZ 290.206 463.978 null] +>> endobj +1219 0 obj << +/D [1223 0 R /XYZ 46.771 288.739 null] +>> endobj +1226 0 obj << +/D [1223 0 R /XYZ 46.771 270.11 null] +>> endobj +1227 0 obj << +/D [1223 0 R /XYZ 222.872 160.986 null] +>> endobj +1222 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F41 355 0 R /F43 1089 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1228 0 obj +<< /S /GoTo /D (index149) >> +endobj +1231 0 obj +() +endobj +1232 0 obj +<< /S /GoTo /D (index150) >> +endobj +1235 0 obj +() +endobj +1236 0 obj +<< /S /GoTo /D (index151) >> +endobj +1239 0 obj +() +endobj +1242 0 obj << +/Length 4472 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(96)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(centers)-306(of)-305(two)-306(pencils,)-320(the)-305(first)-306(perspective)-306(to)-305(the)-306(point-row)]TJ/F20 10.909 Tf 268.903 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.349 0 Td[(C')]TJ/F16 10.909 Tf 12.232 0 Td[(and)-240(the)-241(second)-240(perspective)-240(to)-240(th)-1(e)-240(point-row)]TJ/F20 10.909 Tf 192.251 0 Td[(A)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.349 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 5.349 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-240(Then,)]TJ -250.136 -13.549 Td[(since)-342(the)-343(common)-342(ray)-342(of)-342(the)-343(two)-342(pencils)-342(corresponds)-342(to)-343(itself,)]TJ 0 -13.549 Td[(they)-259(are)-259(in)-258(perspective)-259(position,)-261(and)-259(their)-258(axis)-259(of)-259(perspectivity)]TJ/F20 10.909 Tf 275.176 0 Td[(u)]TJ/F16 10.909 Tf -275.176 -13.55 Td[(\050Fig.)-315(38\051)-272(is)-271(the)-272(line)-271(which)-272(joins)-272(the)-271(point)]TJ/F20 10.909 Tf 183.207 0 Td[(\050AB',)-272(A'B\051)]TJ/F16 10.909 Tf 47.249 0 Td[(to)-272(the)-271(point)]TJ/F20 10.909 Tf -230.456 -13.549 Td[(\050AC',)-247(A'C\051)]TJ/F16 10.909 Tf 45.239 0 Td[(.)-247(It)-247(is)-247(then)-247(immediately)-247(clear,)-247(from)-247(the)-247(theory)-247(of)-247(poles)]TJ -45.239 -13.549 Td[(and)-277(polars,)-283(that)]TJ/F20 10.909 Tf 70.636 0 Td[(BB')]TJ/F16 10.909 Tf 18.684 0 Td[(and)]TJ/F20 10.909 Tf 18.772 0 Td[(CC')]TJ/F16 10.909 Tf 19.906 0 Td[(pass)-277(through)-277(the)-276(pole)]TJ/F20 10.909 Tf 96.917 0 Td[(U)]TJ/F16 10.909 Tf 10.895 0 Td[(of)-277(the)-277(line)]TJ/F20 10.909 Tf -235.81 -13.549 Td[(u)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ/F39 10.909 Tf -5.455 -54.938 Td[(132.)-463(Involution)-321(of)-320(rays.)]TJ/F16 10.909 Tf 116.499 0 Td[(The)-321(whole)-321(theory)-321(thus)-321(far)-320(developed)]TJ -116.499 -13.549 Td[(may)-239(be)-238(dualized,)-241(and)-239(a)-238(theory)-239(of)-239(lines)-238(in)-239(involution)-238(may)-239(be)-239(built)]TJ 0 -13.549 Td[(up,)-250(starting)-250(with)-250(the)-250(complete)-250(quadrilateral.)-250(Thus,)]TJ/F20 10.909 Tf 11.955 -13.978 Td[(The)-411(three)-410(pairs)-411(of)-411(rays)-411(which)-410(may)-411(be)-411(drawn)-410(from)-411(a)-411(point)]TJ -11.955 -13.55 Td[(through)-206(the)-206(three)-206(pairs)-206(of)-206(opposite)-206(vertices)-206(of)-206(a)-206(complete)-206(quadri-)]TJ 0 -13.549 Td[(lateral)-307(are)-307(said)-306(to)-307(be)-307(in)-307(involution.)-420(If)-307(the)-307(pairs)-306(aa')-307(and)-307(bb')-307(are)]TJ 0 -13.549 Td[(fixed,)-245(and)-243(the)-244(line)-243(c)-244(describes)-243(a)-243(pencil,)-245(the)-244(corresponding)-243(line)-244(c')]TJ 0 -13.549 Td[(also)-267(describes)-267(a)-267(pencil,)-272(and)-267(the)-267(rays)-267(of)-267(the)-267(pencil)-267(are)-267(said)-268(to)-267(be)]TJ 0 -13.549 Td[(paired)-250(in)-250(the)-250(involution)-250(determined)-250(by)-250(aa')-250(and)-250(bb'.)]TJ/F16 7.97 Tf -72.756 0 Td[([80])]TJ/F39 10.909 Tf 72.756 -54.938 Td[(133.)-1007(Double)-503(rays.)]TJ/F16 10.909 Tf 102.608 0 Td[(The)-502(self-corresponding)-503(rays,)-565(of)-503(which)]TJ -102.608 -13.549 Td[(there)-317(are)-318(two)-317(or)-317(none,)-335(are)-317(called)]TJ/F20 10.909 Tf 148.3 0 Td[(double)-317(rays)]TJ/F16 10.909 Tf 55.403 0 Td[(of)-317(the)-318(involution.)]TJ -203.703 -13.549 Td[(Corresponding)-382(rays)-382(of)-381(the)-382(involution)-382(are)-382(harmonic)-382(conjugates)]TJ 0 -13.55 Td[(with)-364(respect)-364(to)-364(the)-364(double)-364(rays.)-592(To)-364(the)-364(theorem)-365(of)-364(Desargues)]TJ 0 -13.549 Td[(\050\247)-297(125\051)-296(which)-297(has)-297(to)-297(do)-296(with)-297(the)-297(system)-296(of)-297(conics)-297(through)-297(four)]TJ 0 -13.549 Td[(points)-250(we)-250(have)-250(the)-250(dual:)]TJ/F20 10.909 Tf 11.955 -13.978 Td[(The)-279(tangents)-280(from)-279(a)-280(fixed)-279(point)-280(to)-279(a)-279(system)-280(of)-279(conics)-280(tangent)]TJ -11.955 -13.549 Td[(to)-250(four)-250(fixed)-250(lines)-250(form)-250(a)-250(pencil)-250(of)-250(rays)-250(in)-250(involution.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1241 0 obj << +/Type /Page +/Contents 1242 0 R +/Resources 1240 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1229 0 obj << +/D [1241 0 R /XYZ 93.543 399.698 null] +>> endobj +1243 0 obj << +/D [1241 0 R /XYZ 93.543 382.273 null] +>> endobj +1244 0 obj << +/D [1241 0 R /XYZ 93.543 257.312 null] +>> endobj +1233 0 obj << +/D [1241 0 R /XYZ 93.543 233.778 null] +>> endobj +1245 0 obj << +/D [1241 0 R /XYZ 93.543 216.353 null] +>> endobj +1237 0 obj << +/D [1241 0 R /XYZ 93.543 83.567 null] +>> endobj +1246 0 obj << +/D [1241 0 R /XYZ 93.543 66.142 null] +>> endobj +1240 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1247 0 obj +<< /S /GoTo /D (index152) >> +endobj +1250 0 obj +() +endobj +1251 0 obj +<< /S /GoTo /D (index153) >> +endobj +1254 0 obj +() +endobj +1255 0 obj +<< /S /GoTo /D (index154) >> +endobj +1258 0 obj +() +endobj +1261 0 obj << +/Length 3965 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(135.)-250(Double)-250(correspondence)-13256(97)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(134.)]TJ/F16 10.909 Tf 22.998 0 Td[(If)-286(a)-286(conic)-286(of)-286(the)-286(system)-286(should)-286(go)-286(through)-286(the)-286(fixed)-286(point,)]TJ -22.998 -13.549 Td[(it)-369(is)-369(clear)-370(that)-369(the)-369(two)-369(tangents)-370(would)-369(coincide)-369(and)-369(indicate)-370(a)]TJ 0 -13.549 Td[(double)-250(ray)-250(of)-250(the)-250(involution.)-250(The)-250(theorem,)-250(therefore,)-250(follows:)]TJ/F20 10.909 Tf 11.956 -13.575 Td[(Two)-247(conics)-247(or)-247(none)-247(may)-246(be)-247(drawn)-247(through)-247(a)-247(fixed)-247(point)-247(to)-247(be)]TJ -11.956 -13.549 Td[(tangent)-250(to)-250(four)-250(fixed)-250(lines.)]TJ/F39 10.909 Tf 0 -51.309 Td[(135.)-1017(Double)-505(correspondence.)]TJ/F16 10.909 Tf 156.176 0 Td[(It)-506(further)-505(appears)-506(that)-505(two)]TJ -156.176 -13.549 Td[(projective)-434(pencils)-435(of)-434(rays)-434(which)-434(have)-435(the)-434(same)-434(center)-434(are)-435(in)]TJ 0 -13.549 Td[(involution)-292(if)-293(two)-292(pairs)-292(of)-292(rays)-293(correspond)-292(to)-292(each)-292(other)-293(doubly.)]TJ 0 -13.549 Td[(From)-445(this)-445(it)-444(is)-445(clear)-445(that)-445(we)-445(might)-444(have)-445(deemed)-445(six)-445(rays)-445(in)]TJ 0 -13.55 Td[(involution)-182(as)-182(six)-182(rays)-183(which)-182(pass)-182(through)-182(a)-182(point)-182(and)-182(also)-183(through)]TJ 0 -13.549 Td[(six)-387(points)-386(in)-387(involution.)-660(While)-386(this)-387(would)-386(have)-387(been)-387(entirely)]TJ 0 -13.549 Td[(in)-260(accord)-260(with)-260(the)-260(treatment)-260(which)-260(was)-260(given)-261(the)-260(corresponding)]TJ 0 -13.549 Td[(problem)-354(in)-354(the)-354(theory)-354(of)-354(harmonic)-354(points)-354(and)-354(lines,)-381(it)-354(is)-354(more)]TJ 0 -13.549 Td[(satisfactory,)-284(from)-277(an)-277(aesthetic)-277(point)-277(of)-277(view,)-284(to)-277(build)-277(the)-277(theory)]TJ 0 -13.549 Td[(of)-266(lines)-266(in)-266(involution)-265(on)-266(its)-266(own)-266(base.)-297(The)-266(student)-266(can)-266(show,)-270(by)]TJ 0 -13.55 Td[(methods)-282(entirely)-281(analogous)-282(to)-281(those)-282(used)-281(in)-282(the)-281(second)-282(chapter,)]TJ 0 -13.549 Td[(that)-511(involution)-512(is)-511(a)-511(projective)-511(property;)-642(that)-512(is,)-576(six)-511(rays)-512(in)]TJ 0 -13.549 Td[(involution)-250(are)-250(cut)-250(by)-250(any)-250(transversal)-250(in)-250(six)-250(points)-250(in)-250(involution.)]TJ/F16 7.97 Tf 291.024 0 Td[([81])]TJ/F39 10.909 Tf -291.024 -51.308 Td[(136.)-584(Pencils)-361(of)-362(rays)-361(of)-361(the)-362(second)-361(order)-361(in)-362(involution.)]TJ/F16 10.909 Tf 265.488 0 Td[(We)]TJ -265.488 -13.55 Td[(may)-369(also)-369(extend)-369(the)-369(notion)-369(of)-369(involution)-369(to)-369(pencils)-370(of)-369(rays)-369(of)]TJ 0 -13.549 Td[(the)-261(second)-261(order.)-282(Thus,)]TJ/F20 10.909 Tf 105.564 0 Td[(the)-261(tangents)-261(to)-260(a)-261(conic)-261(are)-261(in)-261(involution)]TJ -105.564 -13.549 Td[(when)-200(th)-1(ey)-200(are)-200(corresponding)-201(rays)-200(of)-201(two)-200(protective)-201(pencils)-200(of)-201(the)]TJ 0 -13.549 Td[(second)-353(order)-353(superposed)-352(upon)-353(the)-353(same)-353(conic,)-378(and)-353(when)-353(they)]TJ 0 -13.549 Td[(correspond)-250(to)-250(each)-250(other)-250(doubly.)]TJ/F16 10.909 Tf 147.862 0 Td[(We)-250(have)-250(then)-250(the)-250(theorem:)]TJ/F39 10.909 Tf -147.862 -51.309 Td[(137.)]TJ/F20 10.909 Tf 28.603 0 Td[(The)-457(intersections)-458(of)-457(corresponding)-457(rays)-458(of)-457(a)-457(pencil)-458(of)]TJ -28.603 -13.549 Td[(the)-493(second)-492(order)-493(in)-492(involution)-493(are)-493(all)-492(on)-493(a)-492(straight)-493(line)-493(u,)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1260 0 obj << +/Type /Page +/Contents 1261 0 R +/Resources 1259 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1248 0 obj << +/D [1260 0 R /XYZ 46.771 439.773 null] +>> endobj +1262 0 obj << +/D [1260 0 R /XYZ 46.771 423.961 null] +>> endobj +1263 0 obj << +/D [1260 0 R /XYZ 46.771 247.676 null] +>> endobj +1252 0 obj << +/D [1260 0 R /XYZ 46.771 225.754 null] +>> endobj +1264 0 obj << +/D [1260 0 R /XYZ 46.771 209.942 null] +>> endobj +1256 0 obj << +/D [1260 0 R /XYZ 46.771 106.82 null] +>> endobj +1265 0 obj << +/D [1260 0 R /XYZ 46.771 91.008 null] +>> endobj +1259 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1266 0 obj +<< /S /GoTo /D (index155) >> +endobj +1269 0 obj +() +endobj +1270 0 obj +<< /S /GoTo /D (index156) >> +endobj +1273 0 obj +() +endobj +1274 0 obj +<< /S /GoTo /D (index157) >> +endobj +1277 0 obj +() +endobj +1278 0 obj +<< /S /GoTo /D (index158) >> +endobj +1281 0 obj +(PROBLEMS) +endobj +1284 0 obj << +/Length 4528 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(98)-1949(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 93.543 518.175 Td[(and)-305(the)-304(intersection)-305(of)-304(any)-305(two)-304(tangents)-305(ab,)-318(when)-305(joined)-304(to)-305(the)]TJ 0 -13.549 Td[(intersection)-183(of)-183(the)-182(corresponding)-183(tangents)-183(a'b',)-196(gives)-183(a)-183(line)-183(which)]TJ 0 -13.549 Td[(passes)-225(through)-224(a)-225(fixed)-224(point)-225(U,)-225(the)-224(pole)-225(of)-224(the)-225(line)-224(u)-225(with)-225(respect)]TJ 0 -13.549 Td[(to)-250(the)-250(conic.)]TJ/F39 10.909 Tf 0 -55.834 Td[(138.)-334(Involution)-278(of)-279(rays)-278(determined)-278(by)-278(a)-278(conic.)]TJ/F16 10.909 Tf 219.439 0 Td[(We)-278(have)-278(seen)]TJ -219.439 -13.549 Td[(in)-274(the)-274(theory)-275(of)-274(poles)-274(and)-274(polars)-274(\050\247)-275(103\051)-274(that)-274(if)-274(a)-274(point)]TJ/F20 10.909 Tf 242.49 0 Td[(P)]TJ/F16 10.909 Tf 9.657 0 Td[(moves)]TJ -252.147 -13.549 Td[(along)-300(a)-299(line)]TJ/F20 10.909 Tf 55.251 0 Td[(m)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-312(then)-299(the)-300(polar)-300(of)]TJ/F20 10.909 Tf 82.823 0 Td[(P)]TJ/F16 10.909 Tf 9.932 0 Td[(revolves)-300(about)-299(a)-300(point.)-398(This)]TJ -155.882 -13.549 Td[(pencil)-426(cuts)-427(out)-426(on)]TJ/F20 10.909 Tf 87.692 0 Td[(m)]TJ/F16 10.909 Tf 12.527 0 Td[(another)-426(point-row)]TJ/F20 10.909 Tf 85.044 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-426(projective)-427(also)-426(to)]TJ/F20 10.909 Tf -194.263 -13.55 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-356(Since)-357(the)-356(polar)-357(of)]TJ/F20 10.909 Tf 91.245 0 Td[(P)]TJ/F16 10.909 Tf 10.553 0 Td[(passes)-356(through)]TJ/F20 10.909 Tf 69.587 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-356(the)-357(polar)-356(of)]TJ/F20 10.909 Tf 63.117 0 Td[(P')]TJ/F16 10.909 Tf 12.888 0 Td[(also)]TJ -263.056 -13.549 Td[(passes)-221(through)]TJ/F20 10.909 Tf 66.636 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-221(so)-221(that)-221(the)-222(correspondence)-221(between)]TJ/F20 10.909 Tf 161.398 0 Td[(P)]TJ/F16 10.909 Tf 9.078 0 Td[(and)]TJ/F20 10.909 Tf 18.165 0 Td[(P')]TJ/F16 10.909 Tf 11.412 0 Td[(is)]TJ -273.354 -13.549 Td[(double.)-378(The)-292(two)-293(point-rows)-292(are)-293(therefore)-292(in)-293(involution,)-303(and)-293(the)]TJ 0 -13.549 Td[(double)-250(points,)-251(if)-250(any)-251(exist,)-250(are)-251(the)-250(points)-251(where)-250(the)-251(line)]TJ/F20 10.909 Tf 244.571 0 Td[(m)]TJ/F16 10.909 Tf 10.608 0 Td[(meets)]TJ -255.179 -13.549 Td[(the)-228(conic.)-243(A)-228(similar)-229(involution)-228(of)-229(rays)-228(may)-228(be)-229(found)-228(at)-228(any)-229(point)]TJ 0 -13.55 Td[(in)-335(the)-335(plane,)-356(corresponding)-335(rays)-334(passing)-335(each)-335(through)-335(the)-335(pole)]TJ 0 -13.549 Td[(of)-235(the)-234(other.)-245(We)-235(have)-234(called)-235(such)-234(points)-235(and)-234(rays)]TJ/F20 10.909 Tf 215.65 0 Td[(conjugate)]TJ/F16 10.909 Tf 45.584 0 Td[(with)]TJ -261.234 -13.549 Td[(respect)-349(to)-349(the)-348(conic)-349(\050\247)-349(100\051.)-547(We)-348(may)-349(then)-349(state)-349(the)-349(following)]TJ 0 -13.549 Td[(important)-250(theorem:)]TJ/F39 10.909 Tf 0 -55.833 Td[(139.)]TJ/F20 10.909 Tf 21.615 0 Td[(A)-194(conic)-194(determines)-194(on)-194(every)-194(line)-194(in)-194(its)-194(plane)-194(an)-194(involution)-194(of)]TJ -21.615 -13.55 Td[(points,)-330(corresponding)-314(points)-315(in)-314(the)-314(involution)-628(being)-315(conjugate)]TJ/F16 7.97 Tf -72.755 0 Td[([82])]TJ/F20 10.909 Tf 72.755 -13.549 Td[(with)-260(respect)-260(to)-260(the)-259(conic.)-280(The)-260(double)-260(points,)-262(if)-260(any)-259(exist,)-263(are)-260(the)]TJ 0 -13.549 Td[(points)-250(where)-250(the)-250(line)-250(meets)-250(the)-250(conic.)]TJ/F39 10.909 Tf 0 -55.833 Td[(140.)]TJ/F16 10.909 Tf 22.746 0 Td[(The)-278(dual)-279(theorem)-278(reads:)]TJ/F20 10.909 Tf 110.004 0 Td[(A)-278(conic)-279(determines)-278(at)-278(every)-279(point)]TJ -132.75 -13.549 Td[(in)-431(the)-430(plane)-431(an)-430(involution)-430(of)-431(rays,)-476(corresponding)-430(rays)-431(being)]TJ 0 -13.55 Td[(conjugate)-223(with)-223(respect)-223(to)-223(the)-223(conic.)-241(The)-223(double)-223(rays,)-229(if)-223(any)-223(exist,)]TJ 0 -13.549 Td[(are)-250(the)-250(tangents)-250(from)-250(the)-250(point)-250(to)-250(the)-250(conic.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1283 0 obj << +/Type /Page +/Contents 1284 0 R +/Resources 1282 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1206 0 R +>> endobj +1267 0 obj << +/D [1283 0 R /XYZ 93.543 453.508 null] +>> endobj +1285 0 obj << +/D [1283 0 R /XYZ 93.543 435.685 null] +>> endobj +1271 0 obj << +/D [1283 0 R /XYZ 93.543 232.804 null] +>> endobj +1286 0 obj << +/D [1283 0 R /XYZ 93.543 214.981 null] +>> endobj +1287 0 obj << +/D [1283 0 R /XYZ 300.053 189.721 null] +>> endobj +1275 0 obj << +/D [1283 0 R /XYZ 93.543 136.432 null] +>> endobj +1288 0 obj << +/D [1283 0 R /XYZ 93.543 118.609 null] +>> endobj +1282 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1291 0 obj << +/Length 5194 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-19446(99)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 15.781 Tf 46.771 518.175 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -30.316 Td[(1.)-363(Two)-287(lines)-288(are)-287(drawn)-288(through)-287(a)-288(point)-287(on)-288(a)-287(conic)-288(so)-287(as)-288(always)]TJ 0 -13.549 Td[(to)-245(make)-245(right)-245(angles)-245(with)-245(each)-245(other.)-249(Show)-245(that)-245(the)-245(lines)-245(joining)]TJ 0 -13.549 Td[(the)-374(points)-375(where)-374(they)-374(meet)-375(the)-374(conic)-374(again)-375(all)-374(pass)-374(through)-375(a)]TJ 0 -13.549 Td[(fixed)-250(point.)]TJ 11.956 -13.761 Td[(2.)-522(Two)-341(lines)-341(are)-341(drawn)-341(through)-341(a)-340(fixed)-341(point)-341(on)-341(a)-341(conic)-341(so)]TJ -11.956 -13.549 Td[(as)-362(always)-361(to)-362(make)-361(equal)-362(angles)-362(with)-361(the)-362(tangent)-361(at)-362(that)-362(point.)]TJ 0 -13.549 Td[(Show)-303(that)-304(the)-303(lines)-303(joining)-304(the)-303(two)-303(points)-304(where)-303(the)-303(lines)-304(meet)]TJ 0 -13.55 Td[(the)-250(conic)-250(again)-250(all)-250(pass)-250(through)-250(a)-250(fixed)-250(point.)]TJ 11.956 -13.76 Td[(3.)-239(Four)-217(lines)-217(divide)-217(the)-217(plane)-217(into)-217(a)-217(certain)-217(number)-218(of)-217(regions.)]TJ -11.956 -13.55 Td[(Determine)-323(for)-323(each)-324(region)-323(whether)-323(two)-323(conics)-323(or)-323(none)-323(may)-324(be)]TJ 0 -13.549 Td[(drawn)-312(to)-313(pass)-312(through)-312(points)-312(of)-313(it)-312(and)-312(also)-313(to)-312(be)-312(tangent)-312(to)-313(the)]TJ 0 -13.549 Td[(four)-250(lines.)]TJ 11.956 -13.761 Td[(4.)-416(If)-305(a)-305(variable)-306(quadrangle)-305(move)-305(in)-305(such)-306(a)-305(way)-305(as)-305(always)-306(to)]TJ -11.956 -13.549 Td[(remain)-359(inscribed)-359(in)-360(a)-359(fixed)-359(conic,)-387(while)-359(three)-359(of)-359(its)-359(sides)-360(turn)]TJ 0 -13.549 Td[(each)-319(around)-318(one)-319(of)-318(three)-319(fixed)-318(collinear)-319(points,)-336(then)-318(the)-319(fourth)]TJ 0 -13.549 Td[(will)-238(also)-238(turn)-238(around)-238(a)-237(fourth)-238(fixed)-238(point)-238(collinear)-238(with)-238(the)-238(other)]TJ 0 -13.549 Td[(three.)]TJ 11.956 -13.761 Td[(5.)-250(State)-250(and)-250(prove)-250(the)-250(dual)-250(of)-250(problem)-250(4.)]TJ 0 -13.761 Td[(6.)-457(Extend)-319(problem)-319(4)-319(as)-319(follows:)-388(If)-319(a)-319(variable)-319(polygon)-319(of)-319(an)]TJ -11.956 -13.549 Td[(even)-320(number)-320(of)-320(sides)-320(move)-320(in)-320(such)-320(a)-320(way)-320(as)-320(alway)-1(s)-320(to)-320(remain)]TJ 0 -13.549 Td[(inscribed)-220(in)-220(a)-219(fixed)-220(conic,)-226(while)-220(all)-220(its)-219(sides)-220(but)-220(one)-220(pass)-220(through)]TJ 0 -13.549 Td[(as)-324(many)-325(fixed)-324(collinear)-325(points,)-343(then)-324(the)-325(last)-324(side)-325(will)-324(also)-325(pass)]TJ 0 -13.55 Td[(through)-250(a)-250(fixed)-250(point)-250(collinear)-250(with)-250(the)-250(others.)]TJ/F16 7.97 Tf 291.024 0 Td[([83])]TJ/F16 10.909 Tf -279.068 -13.76 Td[(7.)-238(If)-213(a)-213(triangle)]TJ/F20 10.909 Tf 63.183 0 Td[(QRS)]TJ/F16 10.909 Tf 22.32 0 Td[(be)-213(inscribed)-213(in)-213(a)-213(conic,)-221(and)-213(if)-213(a)-213(transversal)]TJ/F20 10.909 Tf -97.458 -13.55 Td[(s)]TJ/F16 10.909 Tf 7.06 0 Td[(meet)-258(two)-258(o)-1(f)-258(its)-258(sides)-258(in)]TJ/F20 10.909 Tf 104.175 0 Td[(A)]TJ/F16 10.909 Tf 9.482 0 Td[(and)]TJ/F20 10.909 Tf 18.57 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)-258(the)-258(third)-259(side)-258(and)-258(the)-258(tangent)]TJ -148.288 -13.549 Td[(at)-305(the)-304(opposite)-305(vertex)-304(in)]TJ/F20 10.909 Tf 110.539 0 Td[(B)]TJ/F16 10.909 Tf 9.987 0 Td[(and)]TJ/F20 10.909 Tf 19.075 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-305(and)-304(the)-305(conic)-304(itself)-305(in)]TJ/F20 10.909 Tf 105.679 0 Td[(C)]TJ/F16 10.909 Tf 10.598 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(C')]TJ/F16 10.909 Tf 9.61 0 Td[(,)-250(then)]TJ/F20 10.909 Tf 26.968 0 Td[(AA')]TJ/F16 10.909 Tf 15.665 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(BB')]TJ/F16 10.909 Tf 15.665 0 Td[(,)]TJ/F20 10.909 Tf 5.455 0 Td[(CC')]TJ/F16 10.909 Tf 19.614 0 Td[(are)-250(three)-250(pairs)-250(of)-250(points)-250(in)-250(an)-250(involution.)]TJ -86.477 -13.761 Td[(8.)-761(Use)-421(the)-420(last)-421(exercise)-420(to)-420(solve)-421(the)-420(problem:)-591(Given)-421(five)]TJ -11.955 -13.549 Td[(points,)]TJ/F20 10.909 Tf 32.334 0 Td[(Q)]TJ/F16 10.909 Tf 7.876 0 Td[(,)]TJ/F20 10.909 Tf 5.62 0 Td[(R)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.62 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)]TJ/F20 10.909 Tf 5.62 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 5.62 0 Td[(C')]TJ/F16 10.909 Tf 9.611 0 Td[(,)-265(on)-265(a)-266(conic,)-269(to)-265(draw)-265(the)-265(tangent)-265(at)-266(any)-265(one)]TJ -91.698 -13.549 Td[(of)-250(them.)]TJ 11.955 -13.761 Td[(9.)-432(State)-311(and)-310(prove)-311(the)-310(dual)-311(of)-311(problem)-310(7)-311(and)-311(use)-310(it)-311(to)-311(prove)]TJ -11.955 -13.549 Td[(the)-250(dual)-250(of)-250(problem)-250(8.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1290 0 obj << +/Type /Page +/Contents 1291 0 R +/Resources 1289 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1279 0 obj << +/D [1290 0 R /XYZ 46.771 529.134 null] +>> endobj +1292 0 obj << +/D [1290 0 R /XYZ 46.771 186.341 null] +>> endobj +1289 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1296 0 obj << +/Length 3806 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(100)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 105.499 518.175 Td[(10.)-517(If)-339(a)-339(transversal)-339(cut)-339(two)-339(tangents)-339(to)-339(a)-340(conic)-339(in)]TJ/F20 10.909 Tf 227.132 0 Td[(B)]TJ/F16 10.909 Tf 10.364 0 Td[(and)]TJ/F20 10.909 Tf 19.451 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ -277.903 -13.549 Td[(their)-271(chord)-271(of)-271(contact)-271(in)]TJ/F20 10.909 Tf 108.692 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-271(and)-271(the)-271(conic)-271(itself)-270(in)]TJ/F20 10.909 Tf 103.476 0 Td[(P)]TJ/F16 10.909 Tf 9.621 0 Td[(and)]TJ/F20 10.909 Tf 18.707 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-271(then)]TJ -256.162 -13.549 Td[(the)-237(point)]TJ/F20 10.909 Tf 40.932 0 Td[(A)]TJ/F16 10.909 Tf 9.251 0 Td[(is)-237(a)-237(double)-237(point)-237(of)-237(the)-237(involution)-237(determined)-237(by)]TJ/F20 10.909 Tf 214.782 0 Td[(BB')]TJ/F16 10.909 Tf -264.965 -13.549 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(PP')]TJ/F16 10.909 Tf 15.666 0 Td[(.)]TJ -22.19 -13.55 Td[(11.)-250(State)-250(and)-250(prove)-250(the)-250(dual)-250(of)-250(problem)-250(10.)]TJ 0 -13.549 Td[(12.)-437(If)-313(a)-312(variable)-312(conic)-313(pass)-312(through)-312(tw)-1(o)-312(given)-312(points,)]TJ/F20 10.909 Tf 242.849 0 Td[(P)]TJ/F16 10.909 Tf 10.072 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-247(and)-247(if)-247(it)-247(be)-247(tangent)-247(to)-247(two)-247(given)-247(lines,)-248(the)-247(chord)-247(of)-247(contact)-247(of)]TJ -9 -13.549 Td[(these)-221(two)-221(tangents)-221(will)-221(always)-220(pass)-221(through)-221(a)-221(fixed)-221(point)-221(on)]TJ/F20 10.909 Tf 262.237 0 Td[(PP')]TJ/F16 10.909 Tf 15.666 0 Td[(.)]TJ -265.947 -13.549 Td[(13.)-620(Use)-373(the)-374(last)-373(theorem)-373(to)-374(solve)-373(the)-374(problem:)-496(Given)-374(four)]TJ -11.956 -13.55 Td[(points,)]TJ/F20 10.909 Tf 32.085 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 5.402 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ/F20 10.909 Tf 5.401 0 Td[(Q)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ/F20 10.909 Tf 5.402 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-245(on)-245(a)-246(conic,)-246(and)-245(the)-245(tangent)-245(at)-245(one)-246(of)-245(them,)]TJ/F20 10.909 Tf 192.739 0 Td[(Q)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ -277.903 -13.549 Td[(to)-250(draw)-250(the)-250(tangent)-250(at)-250(any)-250(one)-250(of)-250(the)-250(other)-250(points,)]TJ/F20 10.909 Tf 219.36 0 Td[(S)]TJ/F16 10.909 Tf 5.454 0 Td[(.)]TJ -212.858 -13.549 Td[(14.)-242(Apply)-225(the)-225(theorem)-225(of)-225(problem)-225(9)-225(to)-225(the)-225(case)-225(of)-225(a)-225(hyperbola)]TJ -11.956 -13.549 Td[(where)-364(the)-364(two)-364(tangents)-364(are)-363(the)-364(asymptotes.)-592(Show)-364(in)-364(this)-364(way)]TJ 0 -13.549 Td[(that)-372(if)-372(a)-371(hyperbola)-372(and)-372(its)-372(asymptotes)-371(be)-372(cut)-372(by)-372(a)-372(transversal,)]TJ 0 -13.55 Td[(the)-414(segments)-415(intercepted)-414(by)-414(the)-414(curve)-415(and)-414(by)-414(the)-415(asymptotes)]TJ 0 -13.549 Td[(respectively)-250(have)-250(the)-250(same)-250(middle)-250(point.)]TJ 11.956 -13.549 Td[(15.)-759(In)-419(a)-420(triangle)-420(circumscribed)-419(about)-420(a)-419(conic,)-462(any)-420(side)-420(is)]TJ -11.956 -13.549 Td[(divided)-256(harmonically)-256(by)-256(its)-256(point)-256(of)-256(contact)-256(and)-256(the)-257(point)-256(where)]TJ 0 -13.549 Td[(it)-292(meets)-292(the)-292(chord)-292(joining)-292(the)-292(points)-292(of)-292(contact)-292(of)-292(the)-293(other)-292(two)]TJ 0 -13.55 Td[(sides.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1295 0 obj << +/Type /Page +/Contents 1296 0 R +/Resources 1294 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1294 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1299 0 obj << +/Length 593 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-18946(101)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -71.427 cm +0 g 0 G +1 0 0 1 5.605 -335.138 cm + q 2.67513 0 0 2.67513 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +96.9596 0 0 125.2795 0 0 cm +/Im35 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.376 -142.369 cm +BT +/F16 10.909 Tf 171.565 123.365 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(35)]TJ +ET +1 0 0 1 46.771 117.769 cm +0 g 0 G +1 0 0 1 0 -78.987 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1298 0 obj << +/Type /Page +/Contents 1299 0 R +/Resources 1297 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1189 0 obj << +/Type /XObject +/Subtype /Image +/Width 404 +/Height 522 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 632664 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1297 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im35 1189 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1302 0 obj << +/Length 1038 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(102)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -47.728 cm +0 g 0 G +1 0 0 1 5.628 -128.863 cm + q 1.26337 0 0 1.26337 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +208.3192 0 0 101.9996 0 0 cm +/Im36 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.171 -372.343 cm +BT +/F16 10.909 Tf 218.337 353.339 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(36)]TJ +ET +1 0 0 1 93.543 347.743 cm +0 g 0 G +1 0 0 1 0 -63.825 cm +0 g 0 G +1 0 0 1 5.633 -165.248 cm + q 1.13432 0 0 1.13432 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +232.3191 0 0 145.6795 0 0 cm +/Im37 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.176 -118.67 cm +BT +/F16 10.909 Tf 218.337 99.666 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(37)]TJ +ET +1 0 0 1 93.543 94.07 cm +0 g 0 G +1 0 0 1 0 -55.288 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1301 0 obj << +/Type /Page +/Contents 1302 0 R +/Resources 1300 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1194 0 obj << +/Type /XObject +/Subtype /Image +/Width 868 +/Height 425 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1106700 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1216 0 obj << +/Type /XObject +/Subtype /Image +/Width 968 +/Height 607 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1762728 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1300 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im36 1194 0 R /Im37 1216 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1305 0 obj << +/Length 594 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-18946(103)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -125.619 cm +0 g 0 G +1 0 0 1 5.634 -226.754 cm + q 2.84583 0 0 2.84583 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +90.9597 0 0 79.6797 0 0 cm +/Im38 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.405 -196.561 cm +BT +/F16 10.909 Tf 171.565 177.557 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(38)]TJ +ET +1 0 0 1 46.771 171.961 cm +0 g 0 G +1 0 0 1 0 -133.179 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1304 0 obj << +/Type /Page +/Contents 1305 0 R +/Resources 1303 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1217 0 obj << +/Type /XObject +/Subtype /Image +/Width 379 +/Height 332 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 377484 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1303 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im38 1217 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1306 0 obj +<< /S /GoTo /D (index159) >> +endobj +1309 0 obj +(CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS) +endobj +1310 0 obj +<< /S /GoTo /D (index160) >> +endobj +1313 0 obj +() +endobj +1317 0 obj << +/Length 696 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([84])]TJ/F16 18.959 Tf 72.755 -81.941 Td[(CHAPTER)-267(IX)-267(-)-266(METRICAL)]TJ 0 -24.647 Td[(PROPERTIES)-250(OF)-250(INVOLUTIONS)]TJ +ET +1 0 0 1 93.543 267.128 cm +0 g 0 G +1 0 0 1 5.631 -139.66 cm + q 1.36922 0 0 1.36922 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +191.9993 0 0 101.9996 0 0 cm +/Im39 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.174 -127.468 cm +BT +/F16 10.909 Tf 218.337 108.464 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(39)]TJ +ET +1 0 0 1 93.543 102.77 cm +0 g 0 G +1 0 0 1 0 -63.988 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1316 0 obj << +/Type /Page +/Contents 1317 0 R +/Resources 1315 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1293 0 R +>> endobj +1314 0 obj << +/Type /XObject +/Subtype /Image +/Width 800 +/Height 425 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 1020000 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1318 0 obj << +/D [1316 0 R /XYZ 93.543 518.175 null] +>> endobj +1307 0 obj << +/D [1316 0 R /XYZ 93.543 518.175 null] +>> endobj +1311 0 obj << +/D [1316 0 R /XYZ 93.543 337.088 null] +>> endobj +1315 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im39 1314 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1319 0 obj +<< /S /GoTo /D (index161) >> +endobj +1322 0 obj +() +endobj +1323 0 obj +<< /S /GoTo /D (index162) >> +endobj +1326 0 obj +() +endobj +1329 0 obj << +/Length 5139 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(142.)-250(Fundamental)-250(metrical)-250(theorem)-9949(105)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 58.727 518.175 Td[(141.)-615(Introduction)-372(of)-371(infinite)-372(point;)-432(center)-372(of)-372(involution.)]TJ/F16 10.909 Tf -11.956 -13.549 Td[(We)-220(connect)-220(the)-220(projective)-219(theory)-220(of)-220(involution)-220(with)-220(the)-220(metrical,)]TJ 0 -13.549 Td[(as)-353(usual,)-379(by)-353(the)-353(introduction)-353(of)-353(the)-353(elements)-353(at)-353(infinity.)-560(In)-353(an)]TJ 0 -13.549 Td[(involution)-406(of)-406(points)-406(on)-405(a)-406(line)-406(the)-406(point)-406(which)-406(corresponds)-406(to)]TJ 0 -13.55 Td[(the)-292(infinitely)-292(distant)-292(point)-292(is)-292(called)-292(the)]TJ/F20 10.909 Tf 173.81 0 Td[(center)]TJ/F16 10.909 Tf 30.447 0 Td[(of)-292(the)-292(involution.)]TJ -204.257 -13.549 Td[(Since)-355(corresponding)-354(points)-355(in)-355(the)-355(involution)-354(have)-355(been)-355(shown)]TJ 0 -13.549 Td[(to)-270(be)-269(harmonic)-269(conjugates)-270(with)-269(respect)-270(to)-269(the)-270(double)-269(points,)-275(the)]TJ 0 -13.549 Td[(center)-253(is)-253(midway)-252(between)-253(the)-253(double)-253(points)-253(when)-252(they)-253(exist.)-259(To)]TJ 0 -13.549 Td[(construct)-253(the)-253(center)-253(\050Fig.)-260(39\051)-253(we)-253(draw)-253(as)-253(usual)-253(through)]TJ/F20 10.909 Tf 243.69 0 Td[(A)]TJ/F16 10.909 Tf 9.426 0 Td[(and)]TJ/F20 10.909 Tf 18.514 0 Td[(A')]TJ/F16 10.909 Tf -271.63 -13.55 Td[(any)-275(two)-275(rays)-274(and)-275(cut)-275(them)-275(by)-274(a)-275(line)-275(parallel)-275(to)]TJ/F20 10.909 Tf 207.483 0 Td[(AA')]TJ/F16 10.909 Tf 18.662 0 Td[(in)-275(the)-275(points)]TJ/F20 10.909 Tf -226.145 -13.549 Td[(K)]TJ/F16 10.909 Tf 10.362 0 Td[(and)]TJ/F20 10.909 Tf 18.839 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(.)-283(Join)-283(these)-283(points)-283(to)]TJ/F20 10.909 Tf 93.921 0 Td[(B)]TJ/F16 10.909 Tf 9.751 0 Td[(and)]TJ/F20 10.909 Tf 18.839 0 Td[(B')]TJ/F16 10.909 Tf 9 0 Td[(,)-283(thus)-283(determining)-283(on)]TJ/F20 10.909 Tf 96.889 0 Td[(AK)]TJ/F16 10.909 Tf -266.688 -13.549 Td[(and)]TJ/F20 10.909 Tf 18.812 0 Td[(AN)]TJ/F16 10.909 Tf 17.001 0 Td[(the)-280(points)]TJ/F20 10.909 Tf 46.122 0 Td[(L)]TJ/F16 10.909 Tf 9.125 0 Td[(and)]TJ/F20 10.909 Tf 18.812 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(.)]TJ/F20 10.909 Tf 5.787 0 Td[(LN)]TJ/F16 10.909 Tf 16.401 0 Td[(meets)]TJ/F20 10.909 Tf 28.51 0 Td[(AA')]TJ/F16 10.909 Tf 18.724 0 Td[(in)-280(the)-281(center)]TJ/F20 10.909 Tf 57.647 0 Td[(O)]TJ/F16 10.909 Tf 10.936 0 Td[(of)-280(the)]TJ -255.153 -13.549 Td[(involution.)]TJ/F16 7.97 Tf 291.024 0 Td[([85])]TJ/F39 10.909 Tf -291.024 -61.298 Td[(142.)-850(Fundamental)-450(metrical)-450(theorem.)]TJ/F16 10.909 Tf 190.16 0 Td[(From)-450(the)-450(figure)-450(we)]TJ -190.16 -13.55 Td[(see)-399(that)-400(the)-399(triangles)]TJ/F20 10.909 Tf 98.625 0 Td[(OLB')]TJ/F16 10.909 Tf 27.298 0 Td[(and)]TJ/F20 10.909 Tf 20.11 0 Td[(PLM)]TJ/F16 10.909 Tf 26.173 0 Td[(are)-399(similar,)]TJ/F20 10.909 Tf 55.475 0 Td[(P)]TJ/F16 10.909 Tf 11.021 0 Td[(being)-399(the)]TJ -238.702 -13.549 Td[(intersection)-220(of)-221(KM)-220(and)-220(LN.)-220(Also)-220(the)-221(triangles)]TJ/F20 10.909 Tf 201.314 0 Td[(KPN)]TJ/F16 10.909 Tf 23.62 0 Td[(and)]TJ/F20 10.909 Tf 18.156 0 Td[(BON)]TJ/F16 10.909 Tf 24.22 0 Td[(are)]TJ -267.31 -13.549 Td[(similar.)-250(We)-250(thus)-250(have)]TJ/F20 10.909 Tf 101.129 -14.685 Td[(OB)-277(:)-277(PK)-277(=)-276(ON)-277(:)-277(PN)]TJ/F16 10.909 Tf -89.174 -14.685 Td[(and)]TJ/F20 10.909 Tf 86.522 -14.685 Td[(OB')-276(:)-276(PM)-276(=)-276(OL)-276(:)-276(PL;)]TJ/F16 10.909 Tf -86.522 -14.685 Td[(whence)]TJ/F20 10.909 Tf 41.716 -14.685 Td[(OB)-263(\267)-262(OB')-263(:)-262(PK)-263(\267)-262(PM)-263(=)-262(ON)-263(\267)-263(OL)-262(:)-263(PN)-262(\267)-263(PL.)]TJ/F16 10.909 Tf -41.715 -14.685 Td[(In)-213(the)-214(same)-213(way,)-221(from)-213(the)-213(similar)-213(triangles)]TJ/F20 10.909 Tf 186.847 0 Td[(OAL)]TJ/F16 10.909 Tf 22.934 0 Td[(and)]TJ/F20 10.909 Tf 18.079 0 Td[(PKL)]TJ/F16 10.909 Tf 20.007 0 Td[(,)-213(and)]TJ -259.823 -13.549 Td[(also)]TJ/F20 10.909 Tf 20.302 0 Td[(OA'N)]TJ/F16 10.909 Tf 26.88 0 Td[(and)]TJ/F20 10.909 Tf 18.48 0 Td[(PMN)]TJ/F16 10.909 Tf 23.029 0 Td[(,)-250(we)-250(obtain)]TJ/F20 10.909 Tf -35.02 -14.685 Td[(OA)-263(\267)-262(OA')-263(:)-262(PK)-263(\267)-262(PM)-263(=)-262(ON)-263(\267)-263(OL)-262(:)-263(PN)-262(\267)-263(PL,)]TJ/F16 10.909 Tf -41.715 -14.685 Td[(and)-366(this,)-396(with)-366(the)-366(preceding,)-395(gives)-367(at)-366(once)-366(the)-367(fundamental)]TJ -11.956 -13.549 Td[(theorem,)-521(which)-467(is)-466(sometimes)-467(taken)-467(also)-466(as)-467(the)-467(definition)-467(of)]TJ 0 -13.549 Td[(involution:)]TJ/F20 10.909 Tf 73.523 -14.685 Td[(OA)-268(\267)-269(OA')-269(=)-268(OB)-269(\267)-268(OB')-269(=)]TJ/F16 10.909 Tf 106.453 0 Td[(constant)]TJ/F20 10.909 Tf 36.36 0 Td[(,)]TJ/F16 10.909 Tf -204.38 -14.685 Td[(or,)-250(in)-250(words,)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1328 0 obj << +/Type /Page +/Contents 1329 0 R +/Resources 1327 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1330 0 obj << +/D [1328 0 R /XYZ 58.727 518.175 null] +>> endobj +1331 0 obj << +/D [1328 0 R /XYZ 46.771 355.443 null] +>> endobj +1320 0 obj << +/D [1328 0 R /XYZ 46.771 329.082 null] +>> endobj +1332 0 obj << +/D [1328 0 R /XYZ 46.771 308.83 null] +>> endobj +1327 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1334 0 obj +<< /S /GoTo /D (index163) >> +endobj +1337 0 obj +() +endobj +1339 0 obj +<< /S /GoTo /D (index164) >> +endobj +1342 0 obj +() +endobj +1345 0 obj << +/Length 5420 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(106)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F20 10.909 Tf 105.499 518.175 Td[(The)-396(product)-397(of)-396(the)-396(distances)-397(from)-396(the)-397(center)-396(to)-396(two)-397(corre-)]TJ -11.956 -13.549 Td[(sponding)-250(points)-250(in)-250(an)-250(involution)-250(of)-250(points)-250(is)-250(constant.)]TJ/F39 10.909 Tf 0 -49.877 Td[(143.)-775(Existence)-425(of)-425(double)-424(points.)]TJ/F16 10.909 Tf 165.971 0 Td[(Clearly,)-469(according)-425(as)-424(the)]TJ -165.971 -13.549 Td[(constant)-378(is)-378(positive)-378(or)-378(negative)-378(the)-378(involution)-378(will)-378(or)-378(will)-378(not)]TJ 0 -13.549 Td[(have)-186(double)-186(points.)-229(The)-186(constant)-186(is)-186(the)-186(square)-186(root)-186(of)-186(th)-1(e)-186(distance)]TJ 0 -13.55 Td[(from)-291(the)-291(center)-290(to)-291(the)-291(double)-291(points.)-372(If)]TJ/F20 10.909 Tf 175.635 0 Td[(A)]TJ/F16 10.909 Tf 9.837 0 Td[(and)]TJ/F20 10.909 Tf 18.925 0 Td[(A')]TJ/F16 10.909 Tf 12.171 0 Td[(lie)-291(both)-291(on)-290(the)]TJ -216.568 -13.549 Td[(same)-285(side)-286(of)-285(the)-286(center,)-294(the)-285(product)]TJ/F20 10.909 Tf 160.337 0 Td[(OA)-285(\267)-286(OA')]TJ/F16 10.909 Tf 43.484 0 Td[(is)-285(positive;)-303(and)-286(if)]TJ -203.821 -13.549 Td[(they)-353(lie)-353(on)-354(opposite)-353(sides,)-379(it)-353(is)-353(negative.)-560(Take)-353(the)-353(case)-354(where)]TJ 0 -13.549 Td[(they)-220(both)-221(lie)-220(on)-220(the)-221(same)-220(side)-220(of)-221(the)-220(center,)-226(and)-221(take)-220(also)-220(the)-221(pair)]TJ 0 -13.549 Td[(of)-226(corresponding)-225(points)]TJ/F20 10.909 Tf 105.556 0 Td[(BB')]TJ/F16 10.909 Tf 15.666 0 Td[(.)-226(Then,)-230(since)]TJ/F20 10.909 Tf 57.729 0 Td[(OA)-226(\267)-225(OA')-226(=)-226(OB)-225(\267)-226(OB')]TJ/F16 10.909 Tf 90.425 0 Td[(,)-226(it)]TJ -269.376 -13.55 Td[(cannot)-279(happen)-280(that)]TJ/F20 10.909 Tf 86.093 0 Td[(B)]TJ/F16 10.909 Tf 9.712 0 Td[(and)]TJ/F20 10.909 Tf 18.8 0 Td[(B')]TJ/F16 10.909 Tf 12.046 0 Td[(are)-279(separated)-280(from)-279(each)-279(other)-280(by)]TJ/F20 10.909 Tf 147.314 0 Td[(A)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(and)]TJ/F20 10.909 Tf 18.466 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(.)-249(This)-248(is)-249(evident)-249(enough)-249(if)-248(the)-249(points)-249(are)-248(on)-249(opposite)-249(sides)]TJ -27.466 -13.549 Td[(of)-362(the)-361(center.)-586(If)-361(the)-362(pairs)-362(are)-362(on)-361(the)-362(same)-362(side)-361(of)-362(the)-724(center,)]TJ/F16 7.97 Tf -72.756 0 Td[([86])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(and)]TJ/F20 10.909 Tf 19.974 0 Td[(B)]TJ/F16 10.909 Tf 10.886 0 Td[(lies)-387(between)]TJ/F20 10.909 Tf 59.944 0 Td[(A)]TJ/F16 10.909 Tf 10.885 0 Td[(and)]TJ/F20 10.909 Tf 19.974 0 Td[(A')]TJ/F16 10.909 Tf 9 0 Td[(,)-387(so)-387(that)]TJ/F20 10.909 Tf 41.453 0 Td[(OB)]TJ/F16 10.909 Tf 18.761 0 Td[(is)-387(greater,)-421(say,)-421(than)]TJ/F20 10.909 Tf -190.877 -13.549 Td[(OA)]TJ/F16 10.909 Tf 14.542 0 Td[(,)-343(but)-342(less)-343(than)]TJ/F20 10.909 Tf 66.765 0 Td[(OA')]TJ/F16 10.909 Tf 16.877 0 Td[(,)-343(then,)-365(by)-343(the)-342(equation)]TJ/F20 10.909 Tf 104.987 0 Td[(OA)-342(\267)-343(OA')-342(=)-343(OB)-342(\267)]TJ -203.171 -13.55 Td[(OB')]TJ/F16 10.909 Tf 16.877 0 Td[(,)-290(we)-289(must)-290(have)]TJ/F20 10.909 Tf 69.903 0 Td[(OB')]TJ/F16 10.909 Tf 20.037 0 Td[(also)-290(less)-289(than)]TJ/F20 10.909 Tf 62.204 0 Td[(OA')]TJ/F16 10.909 Tf 20.037 0 Td[(and)-290(greater)-289(than)]TJ/F20 10.909 Tf 74.303 0 Td[(OA)]TJ/F16 10.909 Tf 14.542 0 Td[(.)]TJ -277.903 -13.549 Td[(A)-316(similar)-316(discussion)-316(may)-317(be)-316(made)-316(for)-316(the)-316(case)-316(where)]TJ/F20 10.909 Tf 242.315 0 Td[(A)]TJ/F16 10.909 Tf 10.114 0 Td[(and)]TJ/F20 10.909 Tf 19.201 0 Td[(A')]TJ/F16 10.909 Tf -271.63 -13.549 Td[(lie)-274(on)-273(opposite)-274(sides)-273(of)]TJ/F20 10.909 Tf 104.615 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-274(The)-273(results)-274(may)-273(be)-274(stated)-273(as)-274(follows,)]TJ -112.491 -13.549 Td[(without)-250(any)-250(reference)-250(to)-250(the)-250(center:)]TJ/F20 10.909 Tf 11.955 -13.549 Td[(Given)-400(two)-399(pairs)-399(of)-400(points)-399(in)-400(an)-399(involution)-400(of)-399(points,)-437(if)-400(the)]TJ -11.955 -13.55 Td[(points)-236(of)-237(one)-236(pair)-237(are)-236(separated)-236(from)-237(each)-236(other)-236(by)-237(the)-236(points)-237(of)]TJ 0 -13.549 Td[(the)-332(other)-332(pair,)-352(then)-332(the)-332(involution)-332(has)-332(no)-332(double)-332(points.)-496(If)-332(the)]TJ 0 -13.549 Td[(points)-195(of)-194(one)-195(pair)-195(are)-195(not)-194(separated)-195(from)-195(each)-194(other)-195(by)-195(the)-195(points)]TJ 0 -13.549 Td[(of)-250(the)-250(other)-250(pair,)-250(then)-250(the)-250(involution)-250(has)-250(two)-250(double)-250(points.)]TJ/F39 10.909 Tf 0 -49.877 Td[(144.)]TJ/F16 10.909 Tf 22.654 0 Td[(An)-276(entirely)-275(similar)-276(criterion)-275(decides)-276(whether)-275(an)-276(involution)]TJ -22.654 -13.549 Td[(of)-321(rays)-321(has)-320(or)-321(has)-321(not)-321(double)-321(rays,)-338(or)-321(whether)-321(an)-321(involution)-321(of)]TJ 0 -13.549 Td[(planes)-250(has)-250(or)-250(has)-250(not)-250(double)-250(planes.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1344 0 obj << +/Type /Page +/Contents 1345 0 R +/Resources 1343 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1324 0 obj << +/D [1344 0 R /XYZ 93.543 481.149 null] +>> endobj +1346 0 obj << +/D [1344 0 R /XYZ 93.543 466.04 null] +>> endobj +1347 0 obj << +/D [1344 0 R /XYZ 340.849 319.257 null] +>> endobj +1335 0 obj << +/D [1344 0 R /XYZ 93.543 146.739 null] +>> endobj +1348 0 obj << +/D [1344 0 R /XYZ 93.543 131.63 null] +>> endobj +1343 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1351 0 obj << +/Length 4768 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(145.)-250(Construction)-250(of)-250(an)-250(involution)-250(by)-250(means)-250(of)-250(circles)-2421(107)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.631 -163.124 cm + q 2.35185 0 0 2.35185 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +110.6396 0 0 69.3597 0 0 cm +/Im40 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.402 -366.01 cm +BT +/F16 10.909 Tf 171.565 347.006 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(40)]TJ +ET +1 0 0 1 46.771 341.41 cm +0 g 0 G +1 0 0 1 -46.771 -341.41 cm +BT +/F39 10.909 Tf 46.771 310.028 Td[(145.)-424(Construction)-308(of)-307(an)-308(involution)-308(by)-308(means)-308(of)-308(circles.)]TJ/F16 10.909 Tf 263.667 0 Td[(The)]TJ -263.667 -13.55 Td[(equation)-348(just)-347(derived,)]TJ/F20 10.909 Tf 100.42 0 Td[(OA)-347(\267)-348(OA')-348(=)-347(OB)-348(\267)-347(OB')]TJ/F16 10.909 Tf 98.401 0 Td[(,)-348(indicates)-347(another)]TJ -198.821 -13.549 Td[(simple)-354(way)-354(in)-353(which)-354(points)-354(of)-354(an)-353(involution)-354(of)-354(points)-354(may)-354(be)]TJ 0 -13.549 Td[(constructed.)-513(Through)]TJ/F20 10.909 Tf 99.865 0 Td[(A)]TJ/F16 10.909 Tf 10.347 0 Td[(and)]TJ/F20 10.909 Tf 19.435 0 Td[(A')]TJ/F16 10.909 Tf 12.681 0 Td[(draw)-338(any)-337(circle,)-360(and)-337(draw)-338(also)]TJ -142.328 -13.549 Td[(any)-208(circle)-209(through)]TJ/F20 10.909 Tf 80.738 0 Td[(B)]TJ/F16 10.909 Tf 8.937 0 Td[(and)]TJ/F20 10.909 Tf 18.025 0 Td[(B')]TJ/F16 10.909 Tf 11.272 0 Td[(to)-208(cut)-209(the)-208(first)-208(in)-209(the)-208(two)-208(points)]TJ/F20 10.909 Tf 135.757 0 Td[(G)]TJ/F16 10.909 Tf 10.148 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(G')]TJ/F16 10.909 Tf 12.83 0 Td[(\050Fig.)-247(40\051.)-246(Then)-240(any)-240(circle)-240(through)]TJ/F20 10.909 Tf 150.374 0 Td[(G)]TJ/F16 10.909 Tf 10.495 0 Td[(and)]TJ/F20 10.909 Tf 18.371 0 Td[(G')]TJ/F16 10.909 Tf 12.829 0 Td[(will)-240(meet)-240(the)-240(line)]TJ -204.899 -13.55 Td[(in)-323(pairs)-322(of)-323(points)-322(in)-323(the)-322(involution)-323(determined)-322(by)]TJ/F20 10.909 Tf 223.784 0 Td[(AA')]TJ/F16 10.909 Tf 19.183 0 Td[(and)]TJ/F20 10.909 Tf 19.271 0 Td[(BB')]TJ/F16 10.909 Tf 15.665 0 Td[(.)]TJ -277.903 -13.549 Td[(For)-267(if)-266(such)-266(a)-267(circle)-266(meets)-267(the)-266(line)-267(in)-266(the)-267(points)]TJ/F20 10.909 Tf 206.498 0 Td[(CC')]TJ/F16 10.909 Tf 16.887 0 Td[(,)-266(then,)-271(by)-267(the)]TJ -223.385 -13.549 Td[(theorem)-200(in)-199(the)-200(geometry)-200(of)-199(the)-200(circle)-199(which)-200(says)-200(that)]TJ/F20 10.909 Tf 229.006 0 Td[(if)-200(any)-199(chord)]TJ -229.006 -13.549 Td[(is)-500(drawn)-250(through)-250(a)-250(fixed)-250(point)-250(within)-250(a)-250(circle,)-250(the)-251(product)-250(of)-250(its)]TJ/F16 7.97 Tf 291.024 0 Td[([87])]TJ/F20 10.909 Tf -291.024 -13.549 Td[(segments)-324(is)-325(constant)-324(in)-325(whatever)-324(direction)-324(the)-325(chord)-324(is)-325(drawn,)]TJ 0 -13.55 Td[(and)-246(if)-246(a)-246(secant)-246(line)-245(be)-246(drawn)-246(from)-246(a)-246(fixed)-246(point)-246(without)-246(a)-246(circle,)]TJ 0 -13.549 Td[(the)-273(product)-273(of)-273(the)-273(secant)-273(and)-273(its)-273(external)-273(segment)-274(is)-273(constant)-273(in)]TJ 0 -13.549 Td[(whatever)-308(direction)-308(the)-308(secant)-308(line)-308(is)-308(drawn)]TJ/F16 10.909 Tf 192.267 0 Td[(,)-322(we)-308(have)]TJ/F20 10.909 Tf 46.279 0 Td[(OC)-308(\267)-308(OC')]TJ -238.546 -13.549 Td[(=)-363(OG)-363(\267)-363(OG')-363(=)]TJ/F16 10.909 Tf 71.099 0 Td[(constant.)-589(So)-363(that)-364(for)-363(all)-363(such)-363(points)]TJ/F20 10.909 Tf 167.465 0 Td[(OA)-363(\267)-363(OA')]TJ -238.564 -13.549 Td[(=)-293(OB)-294(\267)-293(OB')-293(=)-293(OC)-293(\267)-294(OC')]TJ/F16 10.909 Tf 106.633 0 Td[(.)-293(Further,)-304(the)-294(line)]TJ/F20 10.909 Tf 80.18 0 Td[(GG')]TJ/F16 10.909 Tf 21.286 0 Td[(meets)]TJ/F20 10.909 Tf 28.65 0 Td[(AA')]TJ/F16 10.909 Tf 18.864 0 Td[(in)-293(the)]TJ -255.613 -13.55 Td[(center)-271(of)-272(the)-271(involution.)-314(To)-271(find)-271(the)-271(double)-272(points,)-276(if)-271(they)-272(exist,)]TJ 0 -13.549 Td[(we)-251(draw)-252(a)-251(tangent)-251(from)]TJ/F20 10.909 Tf 106.4 0 Td[(O)]TJ/F16 10.909 Tf 10.618 0 Td[(to)-251(any)-252(of)-251(the)-251(circles)-251(through)]TJ/F20 10.909 Tf 125.515 0 Td[(GG')]TJ/F16 10.909 Tf 18.087 0 Td[(.)-251(Let)]TJ/F20 10.909 Tf -260.62 -13.549 Td[(T)]TJ/F16 10.909 Tf 9.082 0 Td[(be)-277(the)-276(point)-277(of)-276(contact.)-330(Then)-276(lay)-277(off)-276(on)-277(the)-276(line)]TJ/F20 10.909 Tf 212.209 0 Td[(OA)]TJ/F16 10.909 Tf 17.558 0 Td[(a)-276(line)]TJ/F20 10.909 Tf 27.239 0 Td[(OF)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1350 0 obj << +/Type /Page +/Contents 1351 0 R +/Resources 1349 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1338 0 obj << +/Type /XObject +/Subtype /Image +/Width 461 +/Height 289 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 399687 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1340 0 obj << +/D [1350 0 R /XYZ 46.771 320.986 null] +>> endobj +1352 0 obj << +/D [1350 0 R /XYZ 46.771 320.986 null] +>> endobj +1353 0 obj << +/D [1350 0 R /XYZ 56.775 188.085 null] +>> endobj +1349 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im40 1338 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1354 0 obj +<< /S /GoTo /D (index165) >> +endobj +1357 0 obj +() +endobj +1359 0 obj +<< /S /GoTo /D (index166) >> +endobj +1362 0 obj +() +endobj +1365 0 obj << +/Length 3572 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(108)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(equal)-370(to)]TJ/F20 10.909 Tf 40.188 0 Td[(OT)]TJ/F16 10.909 Tf 13.942 0 Td[(.)-370(Then,)-400(since)-370(by)-370(the)-370(above)-370(theorem)-370(of)-370(elementary)]TJ -54.13 -13.549 Td[(geometry)]TJ/F20 10.909 Tf 44.259 0 Td[(OA)-280(\267)-280(OA')-280(=)-280(OT)]TJ/F20 8.966 Tf 67.668 4.909 Td[(2)]TJ/F20 10.909 Tf 7.538 -4.909 Td[(=)-280(OF)]TJ/F20 8.966 Tf 24.96 4.909 Td[(2)]TJ/F16 10.909 Tf 4.483 -4.909 Td[(,)-288(we)-280(have)-280(one)-280(double)-280(point)]TJ/F20 10.909 Tf 122.329 0 Td[(F)]TJ/F16 10.909 Tf 6.666 0 Td[(.)]TJ -277.903 -13.549 Td[(The)-374(other)-375(is)-374(at)-375(an)-374(equal)-375(distance)-374(on)-374(the)-375(other)-374(side)-375(of)]TJ/F20 10.909 Tf 246.546 0 Td[(O)]TJ/F16 10.909 Tf 7.876 0 Td[(.)-374(This)]TJ -254.422 -13.549 Td[(simple)-431(and)-431(effective)-432(method)-431(of)-431(constructing)-431(an)-431(involution)-432(of)]TJ 0 -13.55 Td[(points)-276(is)-276(often)-276(taken)-276(as)-277(the)-276(basis)-276(for)-276(the)-276(theory)-276(of)-276(involution.)-329(In)]TJ 0 -13.549 Td[(projective)-336(geometry,)-358(however,)-358(the)-336(circle,)-358(which)-337(is)-336(not)-336(a)-337(figure)]TJ 0 -13.549 Td[(that)-219(remains)-219(unaltered)-220(by)-219(projection,)-225(and)-219(is)-219(essentially)-219(a)-220(metrical)]TJ 0 -13.549 Td[(notion,)-226(ought)-220(not)-219(to)-220(be)-220(used)-219(to)-220(build)-220(up)-219(the)-220(purely)-220(projective)-220(part)]TJ 0 -13.549 Td[(of)-250(the)-250(theory.)]TJ/F39 10.909 Tf 0 -56.669 Td[(146.)]TJ/F16 10.909 Tf 21.586 0 Td[(It)-186(ought)-186(to)-186(be)-186(mentioned)-186(that)-186(the)-186(theory)-186(of)-186(analytic)-186(geometry)]TJ -21.586 -13.549 Td[(indicates)-356(that)-357(the)-356(circle)-356(is)-356(a)-357(special)-356(conic)-356(section)-356(that)-357(happens)]TJ 0 -13.55 Td[(to)-384(pass)-384(through)-383(two)-384(particular)-384(imaginary)-384(points)-383(on)-384(the)-384(line)-384(at)]TJ 0 -13.549 Td[(infinity,)-308(called)-297(the)]TJ/F20 10.909 Tf 84.067 0 Td[(circular)-296(points)]TJ/F16 10.909 Tf 68.29 0 Td[(and)-296(usu)-1(ally)-296(denoted)-297(by)]TJ/F20 10.909 Tf 105.654 0 Td[(I)]TJ/F16 10.909 Tf 6.866 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(J)]TJ/F16 10.909 Tf 4.844 0 Td[(.)-328(The)-328(above)-328(method)-329(of)-328(obtaining)-328(a)-328(point-row)-328(in)-328(involution)-329(is,)]TJ -4.844 -13.549 Td[(then,)-405(nothing)-374(but)-374(a)-375(special)-374(case)-374(of)-374(the)-374(general)-374(theorem)-374(of)-375(the)]TJ 0 -13.549 Td[(last)-465(chapter)-465(\050\247)-464(125\051,)-519(which)-465(asserted)-464(that)-465(a)-465(system)-465(of)-465(conics)]TJ 0 -13.55 Td[(through)-287(four)-288(points)-287(will)-288(cut)-287(any)-287(line)-288(in)-287(the)-287(plane)-288(in)-287(a)-288(point-row)]TJ 0 -13.549 Td[(in)-250(involution.)]TJ/F16 7.97 Tf -72.755 0 Td[([88])]TJ +ET +1 0 0 1 93.543 213.622 cm +0 g 0 G +1 0 0 1 5.633 -122.918 cm + q 2.31747 0 0 2.31747 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +112.3196 0 0 53.0398 0 0 cm +/Im41 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.176 -90.704 cm +BT +/F16 10.909 Tf 218.337 71.7 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(41)]TJ +ET +1 0 0 1 93.543 66.142 cm +0 g 0 G +1 0 0 1 0 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1364 0 obj << +/Type /Page +/Contents 1365 0 R +/Resources 1363 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1358 0 obj << +/Type /XObject +/Subtype /Image +/Width 468 +/Height 221 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 310284 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1355 0 obj << +/D [1364 0 R /XYZ 93.543 383.1 null] +>> endobj +1366 0 obj << +/D [1364 0 R /XYZ 93.543 364.905 null] +>> endobj +1367 0 obj << +/D [1364 0 R /XYZ 93.543 244.577 null] +>> endobj +1363 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im41 1358 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1368 0 obj +<< /S /GoTo /D (index167) >> +endobj +1371 0 obj +() +endobj +1374 0 obj << +/Length 5336 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 311.038 548.934 Td[(109)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 468.298 Td[(147.)-321(Pairs)-273(in)-274(an)-274(involution)-273(of)-274(rays)-273(which)-274(are)-273(at)-274(right)-274(angles.)]TJ 0 -13.549 Td[(Circular)-245(involution.)]TJ/F16 10.909 Tf 95.393 0 Td[(In)-245(an)-245(involution)-245(of)-245(rays)-245(there)-245(is)-245(no)-245(one)-245(ray)]TJ -95.393 -13.549 Td[(which)-349(may)-349(be)-349(distinguished)-349(from)-348(all)-349(the)-349(others)-349(as)-349(the)-349(point)-349(at)]TJ 0 -13.549 Td[(infinity)-280(is)-280(distinguished)-280(from)-281(all)-280(other)-280(points)-280(on)-280(a)-280(line.)-340(There)-281(is)]TJ 0 -13.55 Td[(one)-287(pair)-287(of)-287(rays,)-296(however,)-297(which)-287(does)-287(differ)-287(from)-287(all)-287(the)-287(others)]TJ 0 -13.549 Td[(in)-313(that)-314(for)-313(this)-313(particular)-314(pair)-313(the)-313(angle)-313(is)-314(a)-313(right)-313(angle.)-440(This)-314(is)]TJ 0 -13.549 Td[(most)-195(easily)-195(shown)-195(by)-194(using)-195(the)-195(construction)-195(that)-195(employs)-195(circles,)]TJ 0 -13.549 Td[(as)-289(indicated)-289(above.)-368(The)-289(centers)-289(of)-289(all)-289(the)-289(circles)-289(through)]TJ/F20 10.909 Tf 253.848 0 Td[(G)]TJ/F16 10.909 Tf 11.03 0 Td[(and)]TJ/F20 10.909 Tf -264.878 -13.549 Td[(G')]TJ/F16 10.909 Tf 13.085 0 Td[(lie)-263(on)-264(the)-263(perpendicular)-264(bisector)-263(of)-264(the)-263(line)]TJ/F20 10.909 Tf 191.44 0 Td[(GG')]TJ/F16 10.909 Tf 18.087 0 Td[(.)-263(Let)-264(this)-263(line)]TJ -222.612 -13.55 Td[(meet)-333(the)-333(line)]TJ/F20 10.909 Tf 61.796 0 Td[(AA')]TJ/F16 10.909 Tf 19.295 0 Td[(in)-333(the)-333(point)]TJ/F20 10.909 Tf 55.141 0 Td[(C)]TJ/F16 10.909 Tf 10.907 0 Td[(\050Fig.)-499(41\051,)-353(and)-333(draw)-333(the)-333(circle)]TJ -147.139 -13.549 Td[(with)-408(center)]TJ/F20 10.909 Tf 54.947 0 Td[(C)]TJ/F16 10.909 Tf 11.724 0 Td[(which)-408(goes)-408(through)]TJ/F20 10.909 Tf 93.946 0 Td[(G)]TJ/F16 10.909 Tf 12.324 0 Td[(and)]TJ/F20 10.909 Tf 20.202 0 Td[(G')]TJ/F16 10.909 Tf 10.211 0 Td[(.)-408(This)-408(circle)-408(cuts)]TJ -203.354 -13.549 Td[(out)-364(two)-364(points)]TJ/F20 10.909 Tf 68.891 0 Td[(M)]TJ/F16 10.909 Tf 13.056 0 Td[(and)]TJ/F20 10.909 Tf 19.724 0 Td[(M')]TJ/F16 10.909 Tf 15.391 0 Td[(in)-364(the)-364(involution.)-592(The)-364(rays)]TJ/F20 10.909 Tf 126.882 0 Td[(GM)]TJ/F16 10.909 Tf 20.933 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(GM')]TJ/F16 10.909 Tf 22.693 0 Td[(are)-311(clearly)-311(at)-312(right)-311(angles,)-326(being)-312(inscribed)-311(in)-311(a)-311(semicircle.)]TJ -22.693 -13.549 Td[(If,)-293(therefore,)-293(the)-284(involution)-285(of)-284(points)-285(is)-284(projected)-284(to)]TJ/F20 10.909 Tf 230.505 0 Td[(G)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-284(we)-285(have)]TJ -238.382 -13.55 Td[(found)-306(two)-307(corresponding)-306(rays)-306(which)-307(are)-306(at)-307(right)-306(angles)-306(to)-307(each)]TJ 0 -13.549 Td[(other.)-335(Given)-278(now)-278(any)-279(involution)-278(of)-278(rays)-278(with)-279(center)]TJ/F20 10.909 Tf 232.45 0 Td[(G)]TJ/F16 10.909 Tf 7.876 0 Td[(,)-278(we)-279(may)]TJ -240.326 -13.549 Td[(cut)-257(across)-257(it)-256(by)-257(a)-257(straight)-257(line)-257(and)-257(proceed)-256(to)-257(find)-257(the)-257(two)-257(points)]TJ/F20 10.909 Tf 0 -13.549 Td[(M)]TJ/F16 10.909 Tf 13.064 0 Td[(and)]TJ/F20 10.909 Tf 19.731 0 Td[(M')]TJ/F16 10.909 Tf 11.421 0 Td[(.)-365(Clearly)-364(there)-365(will)-365(be)-364(only)-365(one)-365(such)-364(pair)-365(unless)-364(the)]TJ -44.216 -13.549 Td[(perpendicular)-233(bisector)-233(of)]TJ/F20 10.909 Tf 111.224 0 Td[(GG')]TJ/F16 10.909 Tf 20.627 0 Td[(coincides)-233(with)-233(the)-233(line)]TJ/F20 10.909 Tf 100.455 0 Td[(AA')]TJ/F16 10.909 Tf 15.666 0 Td[(.)-233(In)-233(this)]TJ -247.972 -13.55 Td[(case)-253(every)-253(ray)-253(is)-253(at)-253(right)-252(angles)-253(to)-253(its)-253(corresponding)-253(ray,)-254(and)-253(the)]TJ 0 -13.549 Td[(involution)-250(is)-250(called)]TJ/F20 10.909 Tf 86.367 0 Td[(circular)]TJ/F16 10.909 Tf 35.149 0 Td[(.)]TJ/F39 10.909 Tf -121.516 -49.877 Td[(148.)-605(Axes)-369(of)-368(conics.)]TJ/F16 10.909 Tf 103.055 0 Td[(At)-368(the)-369(close)-368(of)-369(the)-368(last)-369(chapter)-368(\050\247)-369(140\051)]TJ -103.055 -13.549 Td[(we)-355(gave)-354(the)-355(theorem:)]TJ/F20 10.909 Tf 102.05 0 Td[(A)-355(conic)-354(determines)-355(at)-355(every)-355(point)-354(in)-355(its)]TJ -102.05 -13.549 Td[(plane)-219(an)-219(involution)-218(of)-219(rays,)-225(corresponding)-219(rays)-438(being)-219(conjugate)]TJ/F16 7.97 Tf 291.024 0 Td[([89])]TJ/F20 10.909 Tf -291.024 -13.549 Td[(with)-310(respect)-309(to)-310(the)-310(conic.)-429(The)-310(double)-309(rays,)-325(if)-310(any)-309(exist,)-325(are)-310(the)]TJ 0 -13.549 Td[(tangents)-382(from)-382(the)-382(point)-382(to)-381(the)-382(conic.)]TJ/F16 10.909 Tf 173.551 0 Td[(In)-382(particular,)-415(taking)-382(the)]TJ -173.551 -13.55 Td[(point)-240(as)-241(the)-240(center)-241(of)-240(the)-241(conic,)-242(we)-240(find)-241(that)-240(conjugate)-241(diameters)]TJ 0 -13.549 Td[(form)-364(a)-364(system)-365(of)-364(rays)-364(in)-364(involution,)-393(of)-364(which)-364(the)-365(asymptotes,)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1373 0 obj << +/Type /Page +/Contents 1374 0 R +/Resources 1372 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1360 0 obj << +/D [1373 0 R /XYZ 46.771 496.957 null] +>> endobj +1375 0 obj << +/D [1373 0 R /XYZ 46.771 481.847 null] +>> endobj +1369 0 obj << +/D [1373 0 R /XYZ 46.771 175.954 null] +>> endobj +1376 0 obj << +/D [1373 0 R /XYZ 46.771 160.845 null] +>> endobj +1377 0 obj << +/D [1373 0 R /XYZ 255.362 120.339 null] +>> endobj +1372 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1378 0 obj +<< /S /GoTo /D (index168) >> +endobj +1381 0 obj +() +endobj +1382 0 obj +<< /S /GoTo /D (index169) >> +endobj +1385 0 obj +() +endobj +1388 0 obj << +/Length 4482 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(110)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(if)-306(there)-307(are)-306(any,)-320(are)-307(the)-306(double)-306(rays.)-419(Also,)-320(conjugate)-307(diameters)]TJ 0 -13.549 Td[(are)-291(harmonic)-291(conjugates)-291(with)-291(respect)-291(to)-291(the)-291(asymptotes.)-373(By)-291(the)]TJ 0 -13.549 Td[(theorem)-251(of)-251(the)-251(last)-251(paragraph,)-251(there)-251(are)-251(tw)-1(o)-251(conjugate)-251(diameters)]TJ 0 -13.549 Td[(which)-258(are)-257(at)-258(right)-257(angles)-258(to)-258(each)-257(other.)-273(These)-258(are)-257(called)-258(axes.)-273(In)]TJ 0 -13.55 Td[(the)-322(case)-322(of)-321(the)-322(parabola,)-340(where)-322(the)-322(center)-321(is)-322(at)-322(infinity,)-340(and)-322(on)]TJ 0 -13.549 Td[(the)-289(curve,)-299(there)-289(are,)-299(properly)-289(speaking,)-299(no)-289(conjugate)-290(diameters.)]TJ 0 -13.549 Td[(While)-253(the)-253(line)-253(at)-253(infinity)-253(might)-253(be)-253(considered)-253(as)-253(conjugate)-253(to)-253(all)]TJ 0 -13.549 Td[(the)-220(other)-219(diameters,)-226(it)-220(is)-220(not)-219(possible)-220(to)-220(assign)-219(to)-220(it)-220(any)-220(particular)]TJ 0 -13.549 Td[(direction,)-374(and)-350(so)-349(it)-349(cannot)-350(be)-349(used)-349(for)-350(the)-349(purpose)-349(of)-350(defining)]TJ 0 -13.55 Td[(an)-360(axis)-359(of)-360(a)-360(parabola.)-579(There)-359(is)-360(one)-359(diameter,)-388(however,)-387(which)]TJ 0 -13.549 Td[(is)-284(at)-285(right)-284(angles)-284(to)-285(its)-284(conjugate)-284(system)-285(of)-284(chords,)-293(and)-284(this)-285(one)]TJ 0 -13.549 Td[(is)-353(called)-353(the)]TJ/F20 10.909 Tf 58.217 0 Td[(axis)]TJ/F16 10.909 Tf 21.428 0 Td[(of)-353(the)-353(parabola.)-560(The)-353(circle)-353(also)-354(furnishes)-353(an)]TJ -79.645 -13.549 Td[(exception)-224(in)-223(that)-224(every)-223(diameter)-224(is)-223(an)-224(axis.)-241(The)-224(involution)-223(in)-224(this)]TJ 0 -13.549 Td[(case)-320(is)-320(circular,)-337(every)-320(ray)-320(being)-319(at)-320(right)-320(angles)-320(to)-320(its)-320(conjugate)]TJ 0 -13.55 Td[(ray)-250(at)-250(the)-250(center.)]TJ/F39 10.909 Tf 0 -49.877 Td[(149.)-614(Points)-371(at)-372(which)-371(the)-371(involution)-372(determined)-371(by)-371(a)-372(conic)]TJ 0 -13.549 Td[(is)-327(circular.)]TJ/F16 10.909 Tf 55.773 0 Td[(It)-327(is)-327(an)-327(important)-326(pr)-1(oblem)-326(to)-327(discover)-327(whether)-327(for)]TJ -55.773 -13.549 Td[(any)-287(conic)-286(other)-287(than)-287(the)-286(circle)-287(it)-287(is)-286(possible)-287(to)-287(find)-286(any)-287(point)-287(in)]TJ 0 -13.549 Td[(the)-245(plane)-245(where)-245(the)-246(involution)-245(determined)-245(as)-245(above)-245(by)-245(the)-246(conic)]TJ 0 -13.549 Td[(is)-299(circular.)-398(We)-299(shall)-299(proceed)-300(to)-299(the)-299(curious)-299(problem)-299(of)-300(proving)]TJ 0 -13.55 Td[(the)-223(existence)-223(of)-223(such)-222(points)-223(and)-223(of)-223(determining)-223(their)-223(number)-223(and)]TJ 0 -13.549 Td[(situation.)-244(We)-230(shall)-231(then)-230(develop)-231(the)-231(important)-230(properties)-231(of)-231(such)]TJ 0 -13.549 Td[(points.)]TJ/F16 7.97 Tf -72.755 0 Td[([90])]TJ/F39 10.909 Tf 72.755 -49.877 Td[(150.)]TJ/F16 10.909 Tf 22.988 0 Td[(It)-286(is)-285(clear,)-295(in)-286(the)-286(first)-285(place,)-295(that)-286(such)-285(a)-286(point)-286(cannot)-286(be)-285(on)]TJ -22.988 -13.549 Td[(the)-313(outside)-313(of)-312(the)-313(conic,)-329(else)-312(the)-313(involution)-313(would)-313(have)-313(double)]TJ 0 -13.549 Td[(rays)-197(and)-198(such)-197(rays)-197(would)-198(have)-197(to)-197(be)-197(at)-198(right)-197(angles)-197(to)-198(themselves.)]TJ 0 -13.549 Td[(In)-398(the)-397(second)-398(place,)-435(if)-397(two)-398(such)-398(points)-398(exist,)-434(the)-398(line)-398(joining)]TJ 0 -13.55 Td[(them)-337(must)-337(be)-337(a)-337(diameter)-337(and,)-358(indeed,)-359(an)-337(axis.)-511(For)-337(if)]TJ/F20 10.909 Tf 241.862 0 Td[(F)]TJ/F16 10.909 Tf 10.34 0 Td[(and)]TJ/F20 10.909 Tf 19.428 0 Td[(F')]TJ/F16 10.909 Tf -271.63 -13.549 Td[(were)-331(two)-330(such)-331(points,)-350(then,)-351(since)-330(the)-331(conjugate)-331(ray)-330(at)]TJ/F20 10.909 Tf 244.936 0 Td[(F)]TJ/F16 10.909 Tf 10.27 0 Td[(to)-331(the)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1387 0 obj << +/Type /Page +/Contents 1388 0 R +/Resources 1386 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1333 0 R +>> endobj +1379 0 obj << +/D [1387 0 R /XYZ 93.543 304.89 null] +>> endobj +1389 0 obj << +/D [1387 0 R /XYZ 93.543 289.78 null] +>> endobj +1390 0 obj << +/D [1387 0 R /XYZ 93.543 181.398 null] +>> endobj +1383 0 obj << +/D [1387 0 R /XYZ 93.543 160.179 null] +>> endobj +1391 0 obj << +/D [1387 0 R /XYZ 93.543 145.07 null] +>> endobj +1386 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1393 0 obj +<< /S /GoTo /D (index170) >> +endobj +1396 0 obj +() +endobj +1399 0 obj << +/Length 2407 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(151.)-250(Position)-250(of)-250(such)-250(a)-250(point)-12780(111)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(line)]TJ/F20 10.909 Tf 18.818 0 Td[(FF')]TJ/F16 10.909 Tf 18.119 0 Td[(must)-225(be)-225(at)-225(right)-225(angles)-225(to)-225(it,)-230(and)-225(also)-225(since)-225(the)-225(conjugate)]TJ -36.937 -13.549 Td[(ray)-357(at)]TJ/F20 10.909 Tf 29.597 0 Td[(F')]TJ/F16 10.909 Tf 12.893 0 Td[(to)-357(the)-357(line)]TJ/F20 10.909 Tf 49.865 0 Td[(FF')]TJ/F16 10.909 Tf 19.559 0 Td[(must)-357(be)-357(at)-357(right)-357(angles)-357(to)-357(it,)-384(the)-357(pole)]TJ -111.914 -13.549 Td[(of)]TJ/F20 10.909 Tf 12.858 0 Td[(FF')]TJ/F16 10.909 Tf 19.434 0 Td[(must)-346(be)-345(at)-346(infinity)-345(in)-346(a)-346(direction)-345(at)-346(right)-345(angles)-346(to)]TJ/F20 10.909 Tf 229.945 0 Td[(FF')]TJ/F16 10.909 Tf 15.666 0 Td[(.)]TJ -277.903 -13.549 Td[(The)-284(line)]TJ/F20 10.909 Tf 39.526 0 Td[(FF')]TJ/F16 10.909 Tf 18.764 0 Td[(is)-284(then)-284(a)-284(diameter,)-293(and)-284(since)-284(it)-284(is)-284(at)-284(right)-284(angles)-284(to)]TJ -58.29 -13.55 Td[(its)-324(conjugate)-323(diameter,)-342(it)-324(must)-323(be)-324(an)-323(axis.)-471(From)-323(this)-324(it)-324(follows)]TJ 0 -13.549 Td[(also)-254(that)-255(the)-254(points)-254(we)-255(are)-254(seeking)-254(must)-255(all)-254(lie)-254(on)-255(one)-254(of)-254(the)-255(two)]TJ 0 -13.549 Td[(axes,)-257(else)-256(we)-255(should)-256(have)-255(a)-256(diameter)-255(which)-256(does)-255(not)-256(go)-256(through)]TJ 0 -13.549 Td[(the)-255(intersection)-255(of)-255(all)-255(axes)]TJ/F21 10.909 Tf 114.737 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(the)-255(center)-255(of)-255(the)-255(conic.)-264(At)-255(least)-255(one)]TJ -125.646 -13.549 Td[(axis,)-250(therefore,)-250(must)-250(be)-250(free)-250(from)-250(any)-250(such)-250(points.)]TJ +ET +1 0 0 1 46.771 381.141 cm +0 g 0 G +1 0 0 1 5.628 -238.933 cm + q 2.12273 0 0 2.12273 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +122.8796 0 0 112.5596 0 0 cm +/Im42 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.399 -142.208 cm +BT +/F16 10.909 Tf 171.565 123.204 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(42)]TJ +ET +1 0 0 1 46.771 117.646 cm +0 g 0 G +1 0 0 1 0 -78.864 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1398 0 obj << +/Type /Page +/Contents 1399 0 R +/Resources 1397 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1392 0 obj << +/Type /XObject +/Subtype /Image +/Width 512 +/Height 469 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 720384 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1394 0 obj << +/D [1398 0 R /XYZ 46.771 66.142 null] +>> endobj +1397 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F21 35 0 R >> +/XObject << /Im42 1392 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1402 0 obj +<< /S /GoTo /D (index171) >> +endobj +1405 0 obj +() +endobj +1408 0 obj << +/Length 6435 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(112)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(151.)]TJ/F16 10.909 Tf 21.79 0 Td[(Let)-242(now)]TJ/F20 10.909 Tf 38.613 0 Td[(P)]TJ/F16 10.909 Tf 9.308 0 Td[(be)-242(a)-242(point)-243(on)-242(one)-242(of)-242(the)-243(axes)-242(\050Fig.)-247(42\051,)-244(and)-242(draw)]TJ -69.711 -13.549 Td[(any)-293(ray)-293(through)-293(it,)-304(such)-293(as)]TJ/F20 10.909 Tf 120.797 0 Td[(q)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-379(As)]TJ/F20 10.909 Tf 22.18 0 Td[(q)]TJ/F16 10.909 Tf 8.652 0 Td[(revolves)-293(about)]TJ/F20 10.909 Tf 67.593 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-293(its)-293(pole)]TJ/F20 10.909 Tf 41.412 0 Td[(Q)]TJ/F16 10.909 Tf -272.754 -13.549 Td[(moves)-344(along)-345(a)-344(line)-344(at)-345(right)-344(angles)-345(to)-344(the)-344(axis)-345(on)-344(which)]TJ/F20 10.909 Tf 252.329 0 Td[(P)]TJ/F16 10.909 Tf 10.421 0 Td[(lies,)]TJ -262.75 -13.549 Td[(describing)-302(a)-302(point-row)]TJ/F20 10.909 Tf 103.194 0 Td[(p)]TJ/F16 10.909 Tf 8.747 0 Td[(projective)-302(to)-302(the)-301(pencil)-302(of)-302(rays)]TJ/F20 10.909 Tf 139.121 0 Td[(q)]TJ/F16 10.909 Tf 5.455 0 Td[(.)-405(The)]TJ -256.517 -13.55 Td[(point)-231(at)-231(infinity)-231(in)-232(a)-231(direction)-231(at)-231(right)-231(angles)-231(to)]TJ/F20 10.909 Tf 204.601 0 Td[(q)]TJ/F16 10.909 Tf 7.976 0 Td[(also)-231(describes)-231(a)]TJ -212.577 -13.549 Td[(point-row)-270(projective)-270(to)]TJ/F20 10.909 Tf 103.97 0 Td[(q)]TJ/F16 10.909 Tf 5.454 0 Td[(.)-310(The)-269(line)-270(joining)-270(corresponding)-270(points)]TJ -109.424 -13.549 Td[(of)-357(these)-357(two)-357(point-rows)-357(is)-357(always)-357(a)-357(conjugate)-357(line)-357(to)]TJ/F20 10.909 Tf 243.758 0 Td[(q)]TJ/F16 10.909 Tf 9.349 0 Td[(and)-357(at)]TJ -253.107 -13.549 Td[(right)-277(angles)-276(to)]TJ/F20 10.909 Tf 66.022 0 Td[(q)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-283(or,)-284(as)-276(we)-277(may)-277(call)-276(it,)-284(a)]TJ/F20 10.909 Tf 108.888 0 Td[(conjugate)-277(normal)]TJ/F16 10.909 Tf 80.578 0 Td[(to)]TJ/F20 10.909 Tf 11.505 0 Td[(q)]TJ/F16 10.909 Tf 5.455 0 Td[(.)]TJ -277.903 -13.549 Td[(These)-287(conjugate)-286(normals)-287(to)]TJ/F20 10.909 Tf 124.608 0 Td[(q)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-296(joining)-286(as)-287(they)-287(do)-286(corresponding)]TJ -130.062 -13.55 Td[(points)-275(in)-275(two)-276(projective)-275(point-rows,)-281(form)-276(a)-275(pencil)-275(of)-275(rays)-275(of)-276(the)]TJ 0 -13.549 Td[(second)-536(order.)-305(But)-268(since)-268(the)-268(point)-269(at)-268(infinity)-268(on)-268(the)-268(point-row)]TJ/F20 10.909 Tf 272.754 0 Td[(Q)]TJ/F16 7.97 Tf -345.51 0 Td[([91])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(corresponds)-293(to)-294(the)-293(point)-293(at)-294(infinity)-293(in)-293(a)-294(direction)-293(at)-293(right)-294(angles)]TJ 0 -13.549 Td[(to)]TJ/F20 10.909 Tf 11.25 0 Td[(q)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-254(these)-253(point-rows)-254(are)-253(in)-253(perspective)-253(position)-254(and)-253(the)-253(normal)]TJ -16.705 -13.549 Td[(conjugates)-284(of)-284(all)-284(the)-284(lines)-284(through)]TJ/F20 10.909 Tf 153.118 0 Td[(P)]TJ/F16 10.909 Tf 9.762 0 Td[(meet)-284(in)-284(a)-284(point.)-352(This)-284(point)]TJ -162.88 -13.55 Td[(lies)-224(on)-225(the)-224(same)-225(axis)-224(with)]TJ/F20 10.909 Tf 113.468 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-224(as)-225(is)-224(seen)-224(by)-225(taking)]TJ/F20 10.909 Tf 91.344 0 Td[(q)]TJ/F16 10.909 Tf 7.902 0 Td[(at)-224(right)-225(angles)]TJ -219.379 -13.549 Td[(to)-369(the)-369(axis)-369(on)-369(which)]TJ/F20 10.909 Tf 97.086 0 Td[(P)]TJ/F16 10.909 Tf 10.688 0 Td[(lies.)-607(The)-369(center)-369(of)-368(th)-1(is)-368(pencil)-369(may)-369(be)]TJ -107.774 -13.549 Td[(called)]TJ/F20 10.909 Tf 29.053 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)-275(and)-275(thus)-276(we)-275(have)-275(paired)-275(the)-275(point)]TJ/F20 10.909 Tf 157.02 0 Td[(P)]TJ/F16 10.909 Tf 9.667 0 Td[(with)-275(the)-275(point)]TJ/F20 10.909 Tf 64.163 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(.)]TJ -277.903 -13.549 Td[(By)-348(moving)-348(the)-348(point)]TJ/F20 10.909 Tf 97.008 0 Td[(P)]TJ/F16 10.909 Tf 10.459 0 Td[(along)-348(the)-348(axis,)-372(and)-348(by)-348(keeping)-348(the)-347(ray)]TJ/F20 10.909 Tf -107.467 -13.549 Td[(q)]TJ/F16 10.909 Tf 8.807 0 Td[(parallel)-307(to)-308(a)-307(fixed)-307(direction,)-322(we)-307(may)-307(see)-307(that)-308(the)-307(point-row)]TJ/F20 10.909 Tf 265.158 0 Td[(P)]TJ/F16 10.909 Tf -273.965 -13.55 Td[(and)-297(the)-297(point-row)]TJ/F20 10.909 Tf 81.828 0 Td[(P')]TJ/F16 10.909 Tf 12.239 0 Td[(are)-297(projective.)-391(Also)-297(the)-297(correspondence)-297(is)]TJ -94.067 -13.549 Td[(double,)-228(and)-223(by)-223(starting)-223(from)-223(the)-223(point)]TJ/F20 10.909 Tf 165.855 0 Td[(P')]TJ/F16 10.909 Tf 11.431 0 Td[(we)-223(arrive)-223(at)-223(the)-222(point)]TJ/F20 10.909 Tf 93.951 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(.)]TJ -277.903 -13.549 Td[(Therefore)-286(the)-286(point-rows)]TJ/F20 10.909 Tf 112.96 0 Td[(P)]TJ/F16 10.909 Tf 9.783 0 Td[(and)]TJ/F20 10.909 Tf 18.871 0 Td[(P')]TJ/F16 10.909 Tf 12.119 0 Td[(are)-286(in)-286(involution,)-295(and)-285(if)-286(only)]TJ -153.733 -13.549 Td[(the)-356(involution)-356(has)-356(double)-356(points,)-383(we)-356(shall)-356(have)-356(found)-356(in)-356(them)]TJ 0 -13.549 Td[(the)-344(points)-343(we)-344(are)-344(seeking.)-531(For)-343(it)-344(is)-344(clear)-344(that)-343(the)-344(rays)-344(through)]TJ/F20 10.909 Tf 0 -13.55 Td[(P)]TJ/F16 10.909 Tf 9.715 0 Td[(and)-279(the)-280(corresponding)-280(rays)-279(through)]TJ/F20 10.909 Tf 158.852 0 Td[(P')]TJ/F16 10.909 Tf 12.049 0 Td[(are)-279(conjuga)-1(te)-279(normals;)]TJ -180.616 -13.549 Td[(and)-352(if)]TJ/F20 10.909 Tf 30.095 0 Td[(P)]TJ/F16 10.909 Tf 10.503 0 Td[(and)]TJ/F20 10.909 Tf 19.591 0 Td[(P')]TJ/F16 10.909 Tf 12.838 0 Td[(coincide,)-377(we)-352(shall)-352(have)-352(a)-352(point)-352(where)-352(all)-351(rays)]TJ -73.027 -13.549 Td[(are)-315(at)-314(right)-315(angles)-314(to)-315(their)-315(conjugates.)-443(We)-315(shall)-314(now)-315(show)-315(that)]TJ 0 -13.549 Td[(the)-334(involution)-333(thus)-334(obtained)-334(on)-333(one)-334(of)-334(the)-334(two)-333(axes)-334(must)-334(have)]TJ 0 -13.549 Td[(double)-250(points.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1407 0 obj << +/Type /Page +/Contents 1408 0 R +/Resources 1406 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1409 0 obj << +/D [1407 0 R /XYZ 93.543 529.134 null] +>> endobj +1410 0 obj << +/D [1407 0 R /XYZ 126.763 382.683 null] +>> endobj +1403 0 obj << +/D [1407 0 R /XYZ 93.543 85.42 null] +>> endobj +1411 0 obj << +/D [1407 0 R /XYZ 93.543 66.142 null] +>> endobj +1406 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1414 0 obj << +/Length 3356 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(152.)-250(Discovery)-250(of)-250(the)-250(foci)-250(of)-250(the)-250(conic)-8784(113)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.617 -271.366 cm + q 2.95993 0 0 2.95993 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +87.3597 0 0 91.6797 0 0 cm +/Im43 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.388 -257.768 cm +BT +/F16 10.909 Tf 171.565 238.765 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(43)]TJ +ET +1 0 0 1 46.771 233.168 cm +0 g 0 G +1 0 0 1 -46.771 -233.168 cm +BT +/F39 10.909 Tf 46.771 201.634 Td[(152.)-757(Discovery)-419(of)-419(the)-419(foci)-419(of)-419(the)-419(conic.)]TJ/F16 10.909 Tf 200.264 0 Td[(We)-419(know)-419(that)-419(on)]TJ -200.264 -13.549 Td[(one)-317(axis)-317(no)-318(such)-317(points)-317(as)-317(we)-317(are)-317(seeking)-318(can)-317(lie)-317(\050\247)-317(150\051.)-452(The)]TJ 0 -13.549 Td[(involution)-451(of)-450(points)]TJ/F20 10.909 Tf 95.368 0 Td[(PP')]TJ/F16 10.909 Tf 20.58 0 Td[(on)-451(this)-450(axis)-902(can)-451(therefore)-450(have)-451(no)]TJ/F16 7.97 Tf 175.076 0 Td[([92])]TJ/F16 10.909 Tf -291.024 -13.55 Td[(double)-402(points.)-704(Nevertheless,)-439(let)]TJ/F20 10.909 Tf 150.314 0 Td[(PP')]TJ/F16 10.909 Tf 20.044 0 Td[(and)]TJ/F20 10.909 Tf 20.133 0 Td[(RR')]TJ/F16 10.909 Tf 20.043 0 Td[(be)-402(two)-401(pairs)-402(of)]TJ -210.534 -13.549 Td[(corresponding)-219(points)-219(on)-219(this)-218(axis)-219(\050Fig.)-240(43\051.)-239(Then)-219(we)-219(know)-219(that)]TJ/F20 10.909 Tf 273.965 0 Td[(P)]TJ/F16 10.909 Tf -273.965 -13.549 Td[(and)]TJ/F20 10.909 Tf 18.208 0 Td[(P')]TJ/F16 10.909 Tf 11.454 0 Td[(are)-225(separated)-225(from)-225(each)-225(other)-225(by)]TJ/F20 10.909 Tf 143.759 0 Td[(R)]TJ/F16 10.909 Tf 9.119 0 Td[(and)]TJ/F20 10.909 Tf 18.207 0 Td[(R')]TJ/F16 10.909 Tf 11.454 0 Td[(\050\247)-225(143\051.)-242(Draw)-225(a)]TJ -212.201 -13.549 Td[(circle)-254(on)]TJ/F20 10.909 Tf 40.67 0 Td[(PP')]TJ/F16 10.909 Tf 18.43 0 Td[(as)-254(a)-253(diameter,)-254(and)-254(one)-253(on)]TJ/F20 10.909 Tf 113.846 0 Td[(RR')]TJ/F16 10.909 Tf 18.431 0 Td[(as)-254(a)-253(diameter.)-261(These)]TJ -191.377 -13.549 Td[(must)-355(intersect)-356(in)-355(two)-356(points,)]TJ/F20 10.909 Tf 132.104 0 Td[(F)]TJ/F16 10.909 Tf 10.542 0 Td[(and)]TJ/F20 10.909 Tf 19.63 0 Td[(F')]TJ/F16 10.909 Tf 9 0 Td[(,)-355(and)-356(since)-355(the)-356(center)-355(of)]TJ -171.276 -13.55 Td[(the)-386(conic)-386(is)-386(the)-386(center)-386(of)-386(the)-386(involution)]TJ/F20 10.909 Tf 185.185 0 Td[(PP')]TJ/F16 10.909 Tf 15.665 0 Td[(,)]TJ/F20 10.909 Tf 6.939 0 Td[(RR')]TJ/F16 10.909 Tf 15.665 0 Td[(,)-386(as)-386(is)-386(easily)]TJ -223.454 -13.549 Td[(seen,)-310(it)-298(follows)-297(th)-1(at)]TJ/F20 10.909 Tf 90.396 0 Td[(F)]TJ/F16 10.909 Tf 9.914 0 Td[(and)]TJ/F20 10.909 Tf 19.001 0 Td[(F')]TJ/F16 10.909 Tf 12.249 0 Td[(are)-298(on)-298(the)-298(other)-297(axis)-298(of)-298(the)-298(conic.)]TJ -131.56 -13.549 Td[(Moreover,)]TJ/F20 10.909 Tf 48.862 0 Td[(FR)]TJ/F16 10.909 Tf 16.372 0 Td[(and)]TJ/F20 10.909 Tf 18.795 0 Td[(FR')]TJ/F16 10.909 Tf 18.706 0 Td[(are)-279(conjugate)-279(normal)-279(rays,)-286(since)]TJ/F20 10.909 Tf 145.247 0 Td[(RFR')]TJ/F16 10.909 Tf 25.372 0 Td[(is)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1413 0 obj << +/Type /Page +/Contents 1414 0 R +/Resources 1412 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1401 0 obj << +/Type /XObject +/Subtype /Image +/Width 364 +/Height 382 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 417144 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1415 0 obj << +/D [1413 0 R /XYZ 221.717 174.536 null] +>> endobj +1412 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im43 1401 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1416 0 obj +<< /S /GoTo /D (index172) >> +endobj +1419 0 obj +() +endobj +1421 0 obj +<< /S /GoTo /D (index173) >> +endobj +1424 0 obj +() +endobj +1427 0 obj << +/Length 4954 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(114)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(inscribed)-253(in)-253(a)-252(se)-1(micircle,)-253(and)-253(the)-253(two)-252(rays)-253(go)-253(one)-253(through)]TJ/F20 10.909 Tf 255.454 0 Td[(R)]TJ/F16 10.909 Tf 9.423 0 Td[(and)]TJ -264.877 -13.549 Td[(the)-259(other)-258(through)]TJ/F20 10.909 Tf 78.149 0 Td[(R')]TJ/F16 10.909 Tf 9 0 Td[(.)-259(The)-258(involution)-259(of)-258(points)]TJ/F20 10.909 Tf 114.411 0 Td[(PP')]TJ/F16 10.909 Tf 15.666 0 Td[(,)]TJ/F20 10.909 Tf 5.547 0 Td[(RR')]TJ/F16 10.909 Tf 18.486 0 Td[(therefore)]TJ -241.259 -13.549 Td[(projects)-411(to)-411(the)-412(two)-411(points)]TJ/F20 10.909 Tf 121.823 0 Td[(F)]TJ/F16 10.909 Tf 11.149 0 Td[(and)]TJ/F20 10.909 Tf 20.239 0 Td[(F')]TJ/F16 10.909 Tf 13.484 0 Td[(in)-411(two)-411(pencils)-412(of)-411(rays)-411(in)]TJ -166.695 -13.549 Td[(involution)-231(which)-231(have)-231(for)-231(corresponding)-231(rays)-231(con)-1(jugate)-231(normals)]TJ 0 -13.55 Td[(to)-250(the)-250(conic.)-250(We)-250(may,)-250(then,)-250(say:)]TJ/F20 10.909 Tf 11.956 -13.549 Td[(There)-411(are)-410(two)-411(and)-411(only)-410(two)-411(points)-411(of)-411(the)-410(plane)-411(where)-411(the)]TJ -11.956 -13.549 Td[(involution)-271(determined)-270(by)-271(the)-270(conic)-271(is)-270(circular.)-312(These)-270(two)-271(points)]TJ 0 -13.549 Td[(lie)-265(on)-265(one)-264(of)-265(the)-265(axes,)-268(at)-265(equal)-265(distances)-265(from)-265(the)-264(center,)-269(on)-265(the)]TJ 0 -13.549 Td[(inside)-250(of)-250(the)-250(conic.)-250(These)-250(points)-250(are)-250(called)-250(the)-250(foci)-250(of)-250(the)-250(conic.)]TJ/F39 10.909 Tf 0 -49.877 Td[(153.)-239(The)-218(circle)-218(and)-218(the)-218(parabola.)]TJ/F16 10.909 Tf 154.123 0 Td[(The)-218(above)-218(discussion)-218(applies)]TJ -154.123 -13.55 Td[(only)-270(to)-270(the)-270(central)-270(conics,)-276(apart)-270(from)-270(the)-270(circle.)-310(In)-270(the)-270(circle)-271(the)]TJ 0 -13.549 Td[(two)-314(foci)-314(fall)-315(together)-314(at)-314(the)-314(center.)-443(In)-314(the)-314(case)-314(of)-314(the)-315(parabola,)]TJ 0 -13.549 Td[(that)-306(part)-306(of)-306(the)-307(investigation)-306(which)-306(proves)-306(the)-306(existence)-306(of)-307(two)]TJ 0 -13.549 Td[(foci)-247(on)-246(on)-1(e)-246(of)-247(the)-247(axes)-246(will)-247(not)-247(hold,)-247(as)-247(we)-247(have)-246(but)-247(one)-494(axis.)-249(It)]TJ/F16 7.97 Tf -72.756 0 Td[([93])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(is)-270(seen,)-275(however,)-275(that)-270(as)]TJ/F20 10.909 Tf 109.966 0 Td[(P)]TJ/F16 10.909 Tf 9.611 0 Td[(moves)-270(to)-270(infinity,)-275(carrying)-270(the)-270(line)]TJ/F20 10.909 Tf 155.599 0 Td[(q)]TJ/F16 10.909 Tf -275.176 -13.55 Td[(with)-295(it,)]TJ/F20 10.909 Tf 34.744 0 Td[(q)]TJ/F16 10.909 Tf 8.671 0 Td[(becomes)-295(the)-295(line)-295(at)-294(infinity,)-306(which)-295(for)-295(the)-295(parabola)-295(is)]TJ -43.415 -13.549 Td[(a)-265(tangent)-264(line.)-294(Its)-265(pole)]TJ/F20 10.909 Tf 100.496 0 Td[(Q)]TJ/F16 10.909 Tf 10.763 0 Td[(is)-265(thus)-264(at)-265(infinity)-264(and)-265(also)-265(the)-264(point)]TJ/F20 10.909 Tf 157.644 0 Td[(P')]TJ/F16 10.909 Tf 9 0 Td[(,)]TJ -277.903 -13.549 Td[(so)-272(that)]TJ/F20 10.909 Tf 31.989 0 Td[(P)]TJ/F16 10.909 Tf 9.629 0 Td[(and)]TJ/F20 10.909 Tf 18.717 0 Td[(P')]TJ/F16 10.909 Tf 11.963 0 Td[(fall)-272(together)-271(at)-272(infinity,)-277(and)-272(therefore)-272(one)-271(focus)]TJ -72.298 -13.549 Td[(of)-243(the)-242(parabola)-243(is)-242(at)-243(infinity.)-247(There)-243(must)-242(therefore)-243(be)-243(another,)-244(so)]TJ 0 -13.549 Td[(that)]TJ/F20 10.909 Tf 11.955 -13.55 Td[(A)-232(parabola)-232(has)-232(one)-233(and)-232(only)-232(one)-232(focus)-232(in)-232(the)-232(finite)-232(part)-233(of)-232(the)]TJ -11.955 -13.549 Td[(plane.)]TJ/F39 10.909 Tf 0 -76.975 Td[(154.)-412(Focal)-304(properties)-304(of)-304(conics.)]TJ/F16 10.909 Tf 151.643 0 Td[(We)-304(proceed)-304(to)-304(develop)-304(some)]TJ -151.643 -13.549 Td[(theorems)-223(which)-222(will)-223(exhibit)-223(the)-222(importance)-223(of)-223(these)-222(points)-223(in)-223(the)]TJ 0 -13.549 Td[(theory)-231(of)-230(th)-1(e)-230(conic)-231(section.)-244(Draw)-230(a)-231(tangent)-231(to)-231(the)-230(conic,)-235(and)-231(also)]TJ 0 -13.55 Td[(the)-281(normal)-280(at)-281(the)-281(point)-281(of)-280(contact)]TJ/F20 10.909 Tf 149.901 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-281(These)-280(two)-281(lines)-281(are)-281(clearly)]TJ -156.566 -13.549 Td[(conjugate)-187(normals.)-229(The)-187(two)-187(points)]TJ/F20 10.909 Tf 150.943 0 Td[(T)]TJ/F16 10.909 Tf 8.104 0 Td[(and)]TJ/F20 10.909 Tf 17.791 0 Td[(N)]TJ/F16 10.909 Tf 7.277 0 Td[(,)-187(therefore,)-199(where)-187(they)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1426 0 obj << +/Type /Page +/Contents 1427 0 R +/Resources 1425 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1417 0 obj << +/D [1426 0 R /XYZ 93.543 386.305 null] +>> endobj +1428 0 obj << +/D [1426 0 R /XYZ 93.543 371.196 null] +>> endobj +1429 0 obj << +/D [1426 0 R /XYZ 341.799 305.708 null] +>> endobj +1422 0 obj << +/D [1426 0 R /XYZ 93.543 148.997 null] +>> endobj +1430 0 obj << +/D [1426 0 R /XYZ 93.543 133.888 null] +>> endobj +1425 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1431 0 obj +<< /S /GoTo /D (index174) >> +endobj +1434 0 obj +() +endobj +1438 0 obj << +/Length 2421 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(155.)-250(Case)-250(of)-250(the)-250(parabola)-14033(115)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.627 -187.018 cm + q 2.87544 0 0 2.87544 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +89.9997 0 0 65.0398 0 0 cm +/Im44 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.398 -342.116 cm +BT +/F16 10.909 Tf 171.565 323.112 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(44)]TJ +ET +1 0 0 1 46.771 317.554 cm +0 g 0 G +1 0 0 1 -46.771 -317.554 cm +BT +/F16 10.909 Tf 46.771 294.127 Td[(meet)-305(the)-305(axis)-304(which)-305(contains)-305(the)-305(foci,)-318(are)-305(corresponding)-305(points)]TJ 0 -13.549 Td[(in)-322(the)-321(involution)-322(considered)-322(above,)-339(and)-322(are)-322(therefore)-322(harmonic)]TJ 0 -13.549 Td[(conjugates)-248(with)-248(respect)-248(to)-248(the)-248(foci)-248(\050Fig.)-249(44\051;)-249(and)-248(if)-248(we)-248(join)-248(them)]TJ 0 -13.549 Td[(to)-314(the)-314(point)]TJ/F20 10.909 Tf 54.516 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-314(we)-314(shall)-313(obtain)-314(four)-314(harmonic)-314(lines.)-441(But)-314(two)-313(of)]TJ -61.181 -13.55 Td[(them)-353(are)-352(at)-353(right)-353(angles)-352(to)-353(each)-353(other,)-378(and)-353(so)-352(the)-353(others)-353(make)]TJ 0 -13.549 Td[(equal)-250(angles)-250(with)-250(them)-250(\050Problem)-250(4,)-250(Chapter)-250(II\051.)-250(Therefore)]TJ/F20 10.909 Tf 11.956 -13.613 Td[(The)-302(lines)-303(joining)-302(a)-303(point)-302(on)-303(the)-302(conic)-303(to)-302(the)-303(foci)-302(make)-303(equal)]TJ -11.956 -13.549 Td[(angles)-250(with)-250(the)-250(tangent.)]TJ/F16 10.909 Tf 11.956 -13.614 Td[(It)-386(follows)-386(that)-386(rays)-387(from)-386(a)-386(source)-386(of)-386(light)-386(at)-386(one)-386(focus)-387(are)]TJ -11.956 -13.549 Td[(reflected)-250(by)-250(an)-250(ellipse)-250(to)-250(the)-250(other.)]TJ/F16 7.97 Tf 291.024 0 Td[([94])]TJ/F39 10.909 Tf -291.024 -51.653 Td[(155.)]TJ/F16 10.909 Tf 23.566 0 Td[(In)-303(the)-304(case)-303(of)-304(the)-303(parabola,)-317(where)-303(one)-304(of)-303(the)-304(foci)-303(must)-303(be)]TJ -23.566 -13.549 Td[(considered)-315(to)-315(be)-314(at)-315(infinity)-315(in)-315(the)-314(direction)-315(of)-315(the)-315(diameter,)-331(we)]TJ 0 -13.549 Td[(have)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1437 0 obj << +/Type /Page +/Contents 1438 0 R +/Resources 1436 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1420 0 obj << +/Type /XObject +/Subtype /Image +/Width 375 +/Height 271 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 304875 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1439 0 obj << +/D [1437 0 R /XYZ 46.771 169.678 null] +>> endobj +1432 0 obj << +/D [1437 0 R /XYZ 46.771 147.603 null] +>> endobj +1440 0 obj << +/D [1437 0 R /XYZ 46.771 131.638 null] +>> endobj +1436 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im44 1420 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1441 0 obj +<< /S /GoTo /D (index175) >> +endobj +1444 0 obj +() +endobj +1445 0 obj +<< /S /GoTo /D (index176) >> +endobj +1448 0 obj +() +endobj +1451 0 obj << +/Length 2735 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(116)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.625 -178.756 cm + q 2.37204 0 0 2.37204 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +109.6796 0 0 75.3597 0 0 cm +/Im45 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -99.168 -350.378 cm +BT +/F16 10.909 Tf 218.337 331.374 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(45)]TJ +ET +1 0 0 1 93.543 325.778 cm +0 g 0 G +1 0 0 1 -93.543 -325.778 cm +BT +/F20 10.909 Tf 105.499 303.094 Td[(A)-479(diameter)-480(makes)-480(the)-479(same)-480(angle)-480(with)-480(the)-479(tangent)-480(at)-480(its)]TJ -11.956 -13.549 Td[(extremity)-419(as)-420(that)-419(tangent)-419(does)-420(with)-419(the)-419(line)-420(from)-419(its)-419(point)-420(of)]TJ 0 -13.549 Td[(contact)-250(to)-250(the)-250(focus)-250(\050Fig.)-250(45\051.)]TJ/F39 10.909 Tf 0 -50.73 Td[(156.)]TJ/F16 10.909 Tf 25.606 0 Td[(This)-366(last)-365(theorem)-366(is)-366(the)-366(basis)-365(for)-366(the)-366(construction)-366(of)-365(the)]TJ -25.606 -13.549 Td[(parabolic)-203(reflector.)-234(A)-202(ray)-203(of)-202(light)-203(from)-202(the)-203(focus)-202(is)-203(reflected)-203(from)]TJ 0 -13.55 Td[(such)-248(a)-249(reflector)-248(in)-249(a)-248(direction)-249(parallel)-248(to)-249(the)-248(axis)-249(of)-248(the)-249(reflector.)]TJ/F39 10.909 Tf 0 -50.73 Td[(157.)-384(Directrix.)-383(Principal)-295(axis.)-384(Vertex.)]TJ/F16 10.909 Tf 182.348 0 Td[(The)-295(polar)-294(of)-295(the)-294(focus)]TJ -182.348 -13.549 Td[(with)-298(respect)-297(to)-298(the)-297(conic)-298(is)-297(called)-298(the)]TJ/F20 10.909 Tf 168.36 0 Td[(directrix)]TJ/F16 10.909 Tf 37.57 0 Td[(.)-393(The)-297(axis)-298(which)]TJ -205.93 -13.549 Td[(contains)-248(the)-247(foci)-248(is)-248(called)-248(the)]TJ/F20 10.909 Tf 129.526 0 Td[(principal)-248(axis)]TJ/F16 10.909 Tf 60.28 0 Td[(,)-248(and)-248(the)-248(intersection)]TJ -189.806 -13.549 Td[(of)-302(the)-303(axis)-302(with)-303(the)-302(curve)-303(is)-302(called)-303(the)]TJ/F20 10.909 Tf 173.3 0 Td[(vertex)]TJ/F16 10.909 Tf 29.95 0 Td[(of)-302(the)-303(curve.)-407(The)]TJ -203.25 -13.55 Td[(directrix)-374(is)-375(at)-374(right)-375(angles)-374(to)-375(the)-374(principal)-374(axis.)-624(In)-374(a)-375(parabola)]TJ 0 -13.549 Td[(the)-409(vertex)-409(is)-409(equally)-409(distant)-409(from)-409(the)-409(focus)-409(and)-409(the)-409(directrix,)]TJ 0 -13.549 Td[(these)-435(three)-434(points)-435(and)-435(the)-434(point)-435(at)-435(infinity)-435(on)-434(the)-435(axis)-435(being)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1450 0 obj << +/Type /Page +/Contents 1451 0 R +/Resources 1449 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1400 0 R +>> endobj +1435 0 obj << +/Type /XObject +/Subtype /Image +/Width 457 +/Height 314 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 430494 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1442 0 obj << +/D [1450 0 R /XYZ 93.543 252.093 null] +>> endobj +1452 0 obj << +/D [1450 0 R /XYZ 93.543 236.557 null] +>> endobj +1446 0 obj << +/D [1450 0 R /XYZ 93.543 174.155 null] +>> endobj +1453 0 obj << +/D [1450 0 R /XYZ 93.543 158.619 null] +>> endobj +1449 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/XObject << /Im45 1435 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1455 0 obj +<< /S /GoTo /D (index177) >> +endobj +1458 0 obj +() +endobj +1461 0 obj << +/Length 1135 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(158.)-250(Another)-250(definition)-250(of)-250(a)-250(conic)-10616(117)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(four)-349(harmonic)-349(points.)-546(In)-349(the)-349(ellipse)-349(the)-348(vertex)-349(is)-349(nearer)-349(to)-349(the)]TJ 0 -13.549 Td[(focus)-323(than)-322(it)-322(is)-323(to)-322(the)-323(directrix,)-341(for)-322(the)-323(same)-322(reason,)-341(and)-322(in)-323(the)]TJ 0 -13.549 Td[(hyperbola)-230(it)-229(is)-230(farther)-230(from)-230(the)-229(focus)-230(than)-230(it)-229(is)-230(from)-230(the)-230(directrix.)]TJ +ET +1 0 0 1 46.771 458.235 cm +0 g 0 G +1 0 0 1 5.64 -291.416 cm + q 2.26537 0 0 2.26537 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +114.9596 0 0 128.6395 0 0 cm +/Im46 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -52.411 -166.819 cm +BT +/F16 10.909 Tf 171.565 147.815 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(46)]TJ +ET +1 0 0 1 46.771 142.219 cm +0 g 0 G +1 0 0 1 0 -103.437 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1460 0 obj << +/Type /Page +/Contents 1461 0 R +/Resources 1459 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1454 0 obj << +/Type /XObject +/Subtype /Image +/Width 479 +/Height 536 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 770232 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1456 0 obj << +/D [1460 0 R /XYZ 46.771 85.112 null] +>> endobj +1462 0 obj << +/D [1460 0 R /XYZ 46.771 66.142 null] +>> endobj +1459 0 obj << +/Font << /F16 6 0 R >> +/XObject << /Im46 1454 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1465 0 obj +<< /S /GoTo /D (index178) >> +endobj +1468 0 obj +() +endobj +1471 0 obj << +/Length 4713 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(118)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F39 10.909 Tf 93.543 518.175 Td[(158.)-417(Another)-306(definition)-306(of)-306(a)-306(conic.)]TJ/F16 10.909 Tf 166.689 0 Td[(Let)]TJ/F20 10.909 Tf 17.877 0 Td[(P)]TJ/F16 10.909 Tf 10.001 0 Td[(be)-306(any)-306(point)-305(on)-306(the)]TJ -194.567 -13.549 Td[(directrix)-278(through)-279(which)-278(a)-278(line)-279(is)-278(drawn)-278(meeting)-279(the)-278(conic)-278(in)-279(the)]TJ 0 -13.549 Td[(points)]TJ/F20 10.909 Tf 30.38 0 Td[(A)]TJ/F16 10.909 Tf 10.371 0 Td[(and)]TJ/F20 10.909 Tf 19.459 0 Td[(B)]TJ/F16 10.909 Tf 10.371 0 Td[(\050Fig.)-519(46\051.)-520(Let)-339(the)-340(tangents)-340(at)]TJ/F20 10.909 Tf 136.447 0 Td[(A)]TJ/F16 10.909 Tf 10.371 0 Td[(and)]TJ/F20 10.909 Tf 19.459 0 Td[(B)]TJ/F16 10.909 Tf 10.371 0 Td[(meet)-340(in)]TJ/F20 10.909 Tf -247.229 -13.549 Td[(T)]TJ/F16 10.909 Tf 6.066 0 Td[(,)-387(and)-387(call)-387(the)-388(focus)]TJ/F20 10.909 Tf 92.309 0 Td[(F)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-387(Then)]TJ/F20 10.909 Tf 33.592 0 Td[(TF)]TJ/F16 10.909 Tf 16.953 0 Td[(and)]TJ/F20 10.909 Tf 19.976 0 Td[(PF)]TJ/F16 10.909 Tf 17.552 0 Td[(are)-387(conjugate)-387(lines,)]TJ -193.114 -13.55 Td[(and)-375(a)-1(s)-375(they)-375(pass)-376(through)-375(a)-376(focus)-375(they)-376(must)-375(be)-376(at)-375(right)-376(angles)]TJ 0 -13.549 Td[(to)-320(each)-320(other.)-459(Let)]TJ/F20 10.909 Tf 87.128 0 Td[(TF)]TJ/F16 10.909 Tf 16.219 0 Td[(meet)]TJ/F20 10.909 Tf 24.696 0 Td[(AB)]TJ/F16 10.909 Tf 16.819 0 Td[(in)]TJ/F20 10.909 Tf 11.976 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-320(Then)]TJ/F20 10.909 Tf 32.124 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.216 0 Td[(A)]TJ/F16 10.909 Tf 6.666 0 Td[(,)]TJ/F20 10.909 Tf 6.216 0 Td[(C)]TJ/F16 10.909 Tf 7.276 0 Td[(,)]TJ/F20 10.909 Tf 6.216 0 Td[(B)]TJ/F16 10.909 Tf 10.154 0 Td[(are)-320(four)]TJ/F16 7.97 Tf -318.402 0 Td[([95])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(harmonic)-346(points.)-539(Project)-347(these)-346(four)-346(points)-347(parallel)-346(to)]TJ/F20 10.909 Tf 242.304 0 Td[(TF)]TJ/F16 10.909 Tf 16.508 0 Td[(upon)]TJ -258.812 -13.549 Td[(the)-384(directrix,)-417(and)-384(we)-384(then)-384(get)-384(the)-384(four)-384(harmonic)-384(points)]TJ/F20 10.909 Tf 255.235 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(,)]TJ/F20 10.909 Tf 6.916 0 Td[(M)]TJ/F16 10.909 Tf 9.087 0 Td[(,)]TJ/F20 10.909 Tf -277.903 -13.549 Td[(Q)]TJ/F16 10.909 Tf 7.877 0 Td[(,)]TJ/F20 10.909 Tf 7.004 0 Td[(N)]TJ/F16 10.909 Tf 7.276 0 Td[(.)-392(Since,)-428(now,)]TJ/F20 10.909 Tf 64.811 0 Td[(TFP)]TJ/F16 10.909 Tf 23.672 0 Td[(is)-392(a)-392(right)-392(angle,)-428(the)-392(angles)]TJ/F20 10.909 Tf 126.333 0 Td[(MFQ)]TJ/F16 10.909 Tf 27.904 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.55 Td[(NFQ)]TJ/F16 10.909 Tf 25.281 0 Td[(are)-317(equal,)-335(as)-317(well)-318(as)-317(the)-317(angles)]TJ/F20 10.909 Tf 142.263 0 Td[(AFC)]TJ/F16 10.909 Tf 24.07 0 Td[(and)]TJ/F20 10.909 Tf 19.215 0 Td[(BFC)]TJ/F16 10.909 Tf 20.607 0 Td[(.)-317(Therefore)]TJ -231.436 -13.549 Td[(the)-363(triangles)]TJ/F20 10.909 Tf 58.825 0 Td[(MAF)]TJ/F16 10.909 Tf 26.378 0 Td[(and)]TJ/F20 10.909 Tf 19.714 0 Td[(NFB)]TJ/F16 10.909 Tf 24.568 0 Td[(are)-363(similar,)-392(and)]TJ/F20 10.909 Tf 74.298 0 Td[(FA)-363(:)-363(FM)-363(=)-363(FB)-363(:)]TJ -203.783 -13.549 Td[(BN)]TJ/F16 10.909 Tf 13.942 0 Td[(.)-229(D)-1(ropping)-229(perpendiculars)]TJ/F20 10.909 Tf 116.274 0 Td[(AA)]TJ/F16 10.909 Tf 15.834 0 Td[(and)]TJ/F20 10.909 Tf 18.256 0 Td[(BB')]TJ/F16 10.909 Tf 18.169 0 Td[(upon)-230(the)-229(directrix,)-234(this)]TJ -182.475 -13.549 Td[(becomes)]TJ/F20 10.909 Tf 41.285 0 Td[(FA)-285(:)-286(AA')-285(=)-286(FB)-285(:)-285(BB')]TJ/F16 10.909 Tf 91.303 0 Td[(.)-285(We)-286(have)-285(thus)-286(the)-285(property)-286(often)]TJ -132.588 -13.549 Td[(taken)-250(as)-250(the)-250(definition)-250(of)-250(a)-250(conic:)]TJ/F20 10.909 Tf 11.955 -13.751 Td[(The)-386(ratio)-385(of)-386(the)-386(distances)-386(from)-385(a)-386(point)-386(on)-386(the)-385(conic)-386(to)-386(the)]TJ -11.955 -13.549 Td[(focus)-250(and)-250(the)-250(directrix)-250(is)-250(constant.)]TJ +ET +1 0 0 1 93.543 287.423 cm +0 g 0 G +1 0 0 1 5.613 -169.607 cm + q 2.50603 0 0 2.50603 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +103.6796 0 0 67.6798 0 0 cm +/Im47 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -99.156 -117.816 cm +BT +/F16 10.909 Tf 218.337 98.812 Td[(F)]TJ/F16 7.97 Tf 6.065 0 Td[(IG)]TJ/F16 10.909 Tf 8.409 0 Td[(.)-269(47)]TJ +ET +1 0 0 1 93.543 93.254 cm +0 g 0 G +1 0 0 1 0 -54.472 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1470 0 obj << +/Type /Page +/Contents 1471 0 R +/Resources 1469 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1464 0 obj << +/Type /XObject +/Subtype /Image +/Width 432 +/Height 282 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 365472 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1472 0 obj << +/D [1470 0 R /XYZ 177.182 450.429 null] +>> endobj +1469 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im47 1464 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1474 0 obj +<< /S /GoTo /D (index179) >> +endobj +1477 0 obj +() +endobj +1480 0 obj << +/Length 1765 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(159.)-250(Eccentricity)-17393(119)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(159.)-248(Eccentricity.)]TJ/F16 10.909 Tf 83.581 0 Td[(By)-245(taking)-245(the)-245(point)-245(at)-244(the)-245(vertex)-245(of)-245(the)-245(conic,)]TJ -83.581 -13.549 Td[(we)-339(note)-339(that)-339(this)-338(ratio)-339(is)-339(less)-339(than)-339(unity)-339(for)-339(the)-339(ellipse,)-361(greater)]TJ 0 -13.549 Td[(than)-253(unity)-253(for)-253(the)-253(hyperbola,)-254(and)-253(equal)-253(to)-253(unity)-253(for)-254(the)-253(parabola.)]TJ 0 -13.549 Td[(This)-250(ratio)-250(is)-250(called)-250(the)]TJ/F20 10.909 Tf 99.687 0 Td[(eccentricity)]TJ/F16 10.909 Tf 50.891 0 Td[(.)]TJ +ET +1 0 0 1 46.771 448.912 cm +0 g 0 G +1 0 0 1 5.628 -248.613 cm + q 2.12273 0 0 2.12273 0 0 cm +1 0 0 1 2.727 0 cm + q 1 0 0 1 0 0 cm +q +122.8796 0 0 117.1196 0 0 cm +/Im48 Do +Q + Q +1 0 0 1 -2.727 0 cm + Q +1 0 0 1 -52.399 -200.299 cm +BT +/F16 10.909 Tf 171.565 181.295 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)-269(48)]TJ +ET +1 0 0 1 46.771 175.699 cm +0 g 0 G +1 0 0 1 -46.771 -175.699 cm +BT +/F39 10.909 Tf 46.771 93.24 Td[(160.)-347(Sum)-282(or)-282(difference)-282(of)-282(focal)-282(dist)-1(ances.)]TJ/F16 10.909 Tf 196.865 0 Td[(The)-282(ellipse)-282(and)-283(the)]TJ -196.865 -13.549 Td[(hyperbola)-234(have)-234(two)-234(foci)-234(and)-234(two)-235(directrices.)-244(The)-234(eccentricity,)-238(of)]TJ 0 -13.549 Td[(course,)-242(is)-240(the)-239(same)-240(for)-240(one)-239(focus)-240(as)-240(for)-240(the)-239(other,)-242(since)-240(the)-240(curve)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1479 0 obj << +/Type /Page +/Contents 1480 0 R +/Resources 1478 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1473 0 obj << +/Type /XObject +/Subtype /Image +/Width 512 +/Height 488 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 749568 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1466 0 obj << +/D [1479 0 R /XYZ 46.771 529.134 null] +>> endobj +1481 0 obj << +/D [1479 0 R /XYZ 46.771 529.134 null] +>> endobj +1475 0 obj << +/D [1479 0 R /XYZ 46.771 124.227 null] +>> endobj +1482 0 obj << +/D [1479 0 R /XYZ 46.771 107.135 null] +>> endobj +1478 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/XObject << /Im48 1473 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1483 0 obj +<< /S /GoTo /D (index180) >> +endobj +1486 0 obj +(PROBLEMS) +endobj +1489 0 obj << +/Length 5642 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(120)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(is)-224(symmetrical)-223(with)-224(respect)-223(to)-223(both.)-242(If)-223(the)-224(distances)-223(from)-447(a)-224(point)]TJ/F16 7.97 Tf 291.024 0 Td[([96])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(on)-347(a)-346(conic)-347(to)-346(the)-347(two)-347(foci)-346(are)]TJ/F20 10.909 Tf 138.096 0 Td[(r)]TJ/F16 10.909 Tf 8.024 0 Td[(and)]TJ/F20 10.909 Tf 19.534 0 Td[(r')]TJ/F16 10.909 Tf 6.578 0 Td[(,)-371(and)-346(the)-347(distances)-347(from)]TJ -172.232 -13.549 Td[(the)-246(same)-247(point)-246(to)-246(the)-247(corresponding)-246(directrices)-246(are)]TJ/F20 10.909 Tf 222.66 0 Td[(d)]TJ/F16 10.909 Tf 8.142 0 Td[(and)]TJ/F20 10.909 Tf 18.439 0 Td[(d')]TJ/F16 10.909 Tf 10.476 0 Td[(\050Fig.)]TJ -259.717 -13.549 Td[(47\051,)-267(we)-264(have)]TJ/F20 10.909 Tf 59.255 0 Td[(r)-264(:)-277(d)-264(=)-264(r')-263(:)-278(d')]TJ/F16 10.909 Tf 56.256 0 Td[(;)]TJ/F20 10.909 Tf 5.985 0 Td[(\050r)-264(\261)-264(r'\051)-263(:)-278(\050d)-263(\261)-264(d'\051)]TJ/F16 10.909 Tf 74.369 0 Td[(.)-291(In)-264(the)-264(ellipse)]TJ/F20 10.909 Tf 65.437 0 Td[(\050d)-264(+)]TJ -261.302 -13.55 Td[(d'\051)]TJ/F16 10.909 Tf 14.312 0 Td[(is)-265(constant,)-269(being)-264(the)-265(distance)-265(between)-265(the)-265(directrices.)-295(In)-265(the)]TJ -14.312 -13.549 Td[(hyperbola)-250(this)-250(distance)-250(is)]TJ/F20 10.909 Tf 113.324 0 Td[(\050d)-250(-)-250(d'\051)]TJ/F16 10.909 Tf 29.596 0 Td[(.)-250(It)-250(follows)-250(\050Fig.)-250(48\051)-250(that)]TJ/F20 10.909 Tf -130.964 -13.549 Td[(In)-224(the)-223(ellipse)-224(the)-224(sum)-223(of)-224(the)-224(focal)-223(distances)-224(of)-224(any)-223(point)-224(on)-224(the)]TJ -11.956 -13.549 Td[(curve)-347(is)-346(constant,)-371(and)-347(in)-347(the)-346(hyperbola)-347(the)-347(difference)-347(between)]TJ 0 -13.549 Td[(the)-250(focal)-250(distances)-250(is)-250(constant.)]TJ/F16 15.781 Tf 0 -57.312 Td[(PROBLEMS)]TJ/F16 10.909 Tf 0 -28.893 Td[(1.)-250(Construct)-250(the)-250(axis)-250(of)-250(a)-250(parabola,)-250(given)-250(four)-250(tangents.)]TJ 11.956 -13.549 Td[(2.)-246(Given)-239(two)-238(conjugate)-238(lines)-239(at)-238(right)-239(angles)-238(to)-238(each)-239(other,)-241(and)]TJ -11.956 -13.55 Td[(let)-237(them)-238(meet)-237(the)-237(axis)-238(which)-237(has)-237(no)-237(foci)-238(on)-237(it)-237(in)-238(the)-237(points)]TJ/F20 10.909 Tf 255.623 0 Td[(A)]TJ/F16 10.909 Tf 9.254 0 Td[(and)]TJ/F20 10.909 Tf -264.877 -13.549 Td[(B)]TJ/F16 10.909 Tf 6.666 0 Td[(.)-255(The)-255(circle)-254(on)]TJ/F20 10.909 Tf 65.947 0 Td[(AB)]TJ/F16 10.909 Tf 16.111 0 Td[(as)-255(diameter)-255(will)-254(pass)-255(through)-255(the)-255(foci)-255(of)-254(th)-1(e)]TJ -88.724 -13.549 Td[(conic.)]TJ 11.956 -13.549 Td[(3.)-523(Given)-341(the)-342(axes)-341(of)-341(a)-341(conic)-341(in)-341(position,)-364(and)-341(also)-341(a)-342(tangent)]TJ -11.956 -13.549 Td[(with)-280(its)-280(point)-280(of)-280(contact,)-288(to)-280(construct)-280(the)-280(foci)-280(and)-280(determine)-281(the)]TJ 0 -13.549 Td[(length)-250(of)-250(the)-250(axes.)]TJ 11.956 -13.55 Td[(4.)-246(Given)-237(the)-237(tangent)-237(at)-237(the)-237(vertex)-237(of)-238(a)-237(parabola,)-239(and)-237(two)-238(other)]TJ -11.956 -13.549 Td[(tangents,)-250(to)-250(find)-250(the)-250(focus.)]TJ 11.956 -13.549 Td[(5.)-232(The)-196(locus)-195(of)-196(the)-196(center)-195(of)-196(a)-196(circle)-195(touching)-196(two)-196(given)-196(circles)]TJ -11.956 -13.549 Td[(is)-250(a)-250(conic)-250(with)-250(the)-250(centers)-250(of)-250(the)-250(given)-250(circles)-250(for)-250(its)-250(foci.)]TJ 11.956 -13.549 Td[(6.)-248(Given)-245(the)-245(axis)-245(of)-245(a)-245(parabola)-244(and)-245(a)-245(tangent,)-246(with)-245(its)-245(point)-245(of)]TJ -11.956 -13.55 Td[(contact,)-250(to)-250(find)-250(the)-250(focus.)]TJ/F16 7.97 Tf -72.756 0 Td[([97])]TJ/F16 10.909 Tf 84.712 -13.549 Td[(7.)-475(The)-325(locus)-326(of)-325(the)-325(center)-325(of)-325(a)-325(circle)-325(which)-325(touches)-325(a)-326(given)]TJ -11.956 -13.549 Td[(line)-250(and)-250(a)-250(given)-250(circle)-250(consists)-250(of)-250(two)-250(parabolas.)]TJ 11.956 -13.549 Td[(8.)-249(Let)]TJ/F20 10.909 Tf 28.125 0 Td[(F)]TJ/F16 10.909 Tf 9.354 0 Td[(and)]TJ/F20 10.909 Tf 18.44 0 Td[(F')]TJ/F16 10.909 Tf 11.688 0 Td[(be)-246(the)-247(foci)-246(of)-247(an)-246(ellipse,)-247(and)]TJ/F20 10.909 Tf 125.766 0 Td[(P)]TJ/F16 10.909 Tf 9.354 0 Td[(any)-246(point)-247(on)-246(it.)]TJ -214.683 -13.549 Td[(Produce)]TJ/F20 10.909 Tf 38.477 0 Td[(PF)]TJ/F16 10.909 Tf 16.058 0 Td[(to)]TJ/F20 10.909 Tf 11.214 0 Td[(G)]TJ/F16 10.909 Tf 7.877 0 Td[(,)-250(making)]TJ/F20 10.909 Tf 40.909 0 Td[(PG)]TJ/F16 10.909 Tf 17.269 0 Td[(equal)-250(to)]TJ/F20 10.909 Tf 37.571 0 Td[(PF')]TJ/F16 10.909 Tf 15.665 0 Td[(.)-250(Find)-250(the)-250(locus)-250(of)]TJ/F20 10.909 Tf 81.818 0 Td[(G)]TJ/F16 10.909 Tf 7.876 0 Td[(.)]TJ -262.778 -13.55 Td[(9.)-243(If)-231(the)-230(points)]TJ/F20 10.909 Tf 65.64 0 Td[(G)]TJ/F16 10.909 Tf 10.388 0 Td[(of)-230(a)-230(circle)-231(be)-230(folded)-230(over)-230(upon)-231(a)-230(point)]TJ/F20 10.909 Tf 167.411 0 Td[(F)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-230(the)]TJ -262.06 -13.549 Td[(creases)-238(will)-238(all)-238(be)-237(tangent)-238(to)-238(a)-238(conic.)-246(If)]TJ/F20 10.909 Tf 172.187 0 Td[(F)]TJ/F16 10.909 Tf 9.26 0 Td[(is)-238(within)-238(the)-238(circle,)-240(the)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1488 0 obj << +/Type /Page +/Contents 1489 0 R +/Resources 1487 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1490 0 obj << +/D [1488 0 R /XYZ 342.024 518.175 null] +>> endobj +1484 0 obj << +/D [1488 0 R /XYZ 93.543 386.071 null] +>> endobj +1491 0 obj << +/D [1488 0 R /XYZ 93.543 145.921 null] +>> endobj +1487 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1494 0 obj << +/Length 3104 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(PROBLEMS)-18946(121)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(conic)-279(will)-278(be)-279(an)-279(ellipse;)-292(if)]TJ/F20 10.909 Tf 117.775 0 Td[(F)]TJ/F16 10.909 Tf 9.704 0 Td[(is)-279(without)-278(the)-279(circle,)-286(the)-278(conic)-279(will)]TJ -127.479 -13.549 Td[(be)-250(a)-250(hyperbola.)]TJ 11.956 -13.549 Td[(10.)-398(If)-300(the)-300(points)]TJ/F20 10.909 Tf 75.054 0 Td[(G)]TJ/F16 10.909 Tf 11.144 0 Td[(in)-299(the)-300(last)-300(example)-299(be)-300(taken)-299(on)-300(a)-299(straight)]TJ -98.154 -13.549 Td[(line,)-250(the)-250(locus)-250(is)-250(a)-250(parabola.)]TJ 11.956 -13.55 Td[(11.)-534(Find)-345(the)-344(foci)-345(and)-345(the)-344(length)-345(of)-345(the)-345(principal)-344(axis)-345(of)-345(the)]TJ -11.956 -13.549 Td[(conics)-250(in)-250(problems)-250(9)-250(and)-250(10.)]TJ 11.956 -13.549 Td[(12.)-246(In)-237(problem)-238(10)-237(a)-238(correspondence)-237(is)-238(set)-238(up)-237(between)-238(straight)]TJ -11.956 -13.549 Td[(lines)-218(and)-219(parabolas.)-239(As)-219(there)-218(is)-219(a)-218(fourfold)-218(infinity)-219(of)-218(parabolas)-219(in)]TJ 0 -13.549 Td[(the)-222(plane,)-227(and)-221(only)-222(a)-222(twofold)-221(infinity)-222(of)-221(straight)-222(lines,)-227(there)-222(must)]TJ 0 -13.55 Td[(be)-380(some)-380(restriction)-381(on)-380(the)-380(parabolas)-380(obtained)-380(by)-380(this)-381(method.)]TJ 0 -13.549 Td[(Find)-250(and)-250(explain)-250(this)-250(restriction.)]TJ 11.956 -13.549 Td[(13.)-250(State)-250(and)-250(explain)-250(the)-250(similar)-250(problem)-250(for)-250(problem)-250(9.)]TJ 0 -13.549 Td[(14.)-540(The)-347(last)-347(four)-347(problems)-347(are)-346(a)-347(study)-347(of)-347(the)-347(consequences)]TJ -11.956 -13.549 Td[(of)-269(the)-269(following)-269(transformation:)-287(A)-269(point)]TJ/F20 10.909 Tf 180.219 0 Td[(O)]TJ/F16 10.909 Tf 10.81 0 Td[(is)-269(fixed)-269(in)-269(the)-268(plane.)]TJ -191.029 -13.55 Td[(Then)-167(to)-167(any)-167(point)]TJ/F20 10.909 Tf 76.376 0 Td[(P)]TJ/F16 10.909 Tf 8.487 0 Td[(is)-167(made)-167(to)-167(correspond)-167(the)-167(line)]TJ/F20 10.909 Tf 128.49 0 Td[(p)]TJ/F16 10.909 Tf 7.277 0 Td[(at)-167(right)-167(angles)]TJ -220.63 -13.549 Td[(to)]TJ/F20 10.909 Tf 11.616 0 Td[(OP)]TJ/F16 10.909 Tf 17.67 0 Td[(and)-287(bisecting)-287(it.)-360(In)-287(this)-286(correspondence,)-296(what)-287(happens)-287(to)]TJ/F20 10.909 Tf -29.286 -13.549 Td[(p)]TJ/F16 10.909 Tf 8.584 0 Td[(when)]TJ/F20 10.909 Tf 26.758 0 Td[(P)]TJ/F16 10.909 Tf 9.793 0 Td[(moves)-287(along)-287(a)-286(straig)-1(ht)-286(line?)-361(What)-287(corresponds)-286(to)-287(the)]TJ -45.135 -13.549 Td[(theorem)-248(that)-248(two)-247(lines)-248(have)-248(only)-247(one)-248(point)-248(in)-248(common?)-249(What)-248(to)]TJ 0 -13.549 Td[(the)-274(theorem)-273(that)-274(the)-274(angle)-273(sum)-274(of)-273(a)-274(triangle)-274(is)-273(two)-274(right)-274(angles?)]TJ 0 -13.55 Td[(Etc.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1493 0 obj << +/Type /Page +/Contents 1494 0 R +/Resources 1492 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1492 0 obj << +/Font << /F16 6 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1495 0 obj +<< /S /GoTo /D (index181) >> +endobj +1498 0 obj +(CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY) +endobj +1499 0 obj +<< /S /GoTo /D (index182) >> +endobj +1502 0 obj +() +endobj +1506 0 obj << +/Length 4171 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 7.97 Tf 20.788 512.811 Td[([98])]TJ/F16 18.959 Tf 72.755 -66.598 Td[(CHAPTER)-251(X)-251(-)-252(ON)-251(THE)-251(HISTORY)]TJ 0 -24.646 Td[(OF)-259(SYNTHETIC)-259(PROJECTIVE)]TJ 0 -24.647 Td[(GEOMETRY)]TJ/F39 10.909 Tf 0 -75.875 Td[(161.)-1138(Ancient)-546(results.)]TJ/F16 10.909 Tf 119.865 0 Td[(The)-546(theory)-546(of)-546(synthetic)-546(projective)]TJ -119.865 -13.549 Td[(geometry)-423(as)-424(we)-423(have)-424(built)-423(it)-424(up)-423(in)-423(this)-424(course)-423(is)-424(less)-423(than)-424(a)]TJ 0 -13.55 Td[(century)-494(old.)-982(This)-493(is)-494(not)-494(to)-494(say)-494(that)-494(many)-494(of)-494(the)-494(theorems)]TJ 0 -13.549 Td[(and)-369(principles)-369(involved)-368(were)-369(not)-369(discovered)-368(much)-369(earlier,)-399(but)]TJ 0 -13.549 Td[(isolated)-271(theorems)-271(do)-271(not)-271(make)-271(a)-271(theory,)-276(any)-271(more)-271(than)-271(a)-271(pile)-271(of)]TJ 0 -13.549 Td[(bricks)-182(makes)-183(a)-182(building.)-227(The)-182(materials)-183(for)-182(our)-182(building)-182(have)-183(been)]TJ 0 -13.549 Td[(contributed)-254(by)-254(many)-254(different)-253(workmen)-254(from)-254(the)-254(days)-254(of)-254(Euclid)]TJ 0 -13.55 Td[(down)-160(to)-160(the)-160(present)-160(time.)-220(Thus,)-178(the)-160(notion)-160(of)-160(four)-160(harmonic)-160(points)]TJ 0 -13.549 Td[(was)-242(familiar)-242(to)-243(the)-242(ancients,)-244(who)-242(considered)-242(it)-242(from)-242(the)-243(metrical)]TJ 0 -13.549 Td[(point)-324(of)-323(view)-324(as)-324(the)-323(division)-324(of)-324(a)-324(line)-323(internally)-324(and)-324(externally)]TJ 0 -13.549 Td[(in)-392(the)-392(same)-392(ratio)]TJ/F16 7.97 Tf 77.058 3.959 Td[(1)]TJ/F16 10.909 Tf 8.758 -3.959 Td[(the)-392(involution)-392(of)-392(six)-392(points)-391(cut)-392(out)-392(by)-392(any)]TJ +ET +1 0 0 1 93.543 172.604 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -175.194 cm +BT +/F16 5.978 Tf 99.77 168.581 Td[(1)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(The)-221(more)-222(general)-221(notion)-222(of)]TJ/F20 8.966 Tf 99.064 0 Td[(anharmonic)-222(ratio)]TJ/F16 8.966 Tf 62.759 0 Td[(,)-227(which)-221(includ)-1(es)-221(the)-221(harmonic)]TJ -173.779 -10.959 Td[(ratio)-358(as)-357(a)-358(special)-358(case,)-384(w)-1(as)-357(also)-358(known)-358(to)-357(the)-358(ancients.)-573(While)-358(we)-358(have)-357(not)]TJ 0 -10.959 Td[(found)-399(it)-400(necessary)-399(to)-400(make)-399(use)-399(of)-400(the)-399(anharmonic)-400(ratio)-399(in)-399(buildin)-1(g)-399(up)-399(our)]TJ 0 -10.959 Td[(theory,)-268(it)-264(is)-265(so)-264(frequently)-265(met)-264(with)-265(in)-264(treatises)-264(on)-265(geometry)-264(that)-265(some)-264(account)]TJ 0 -10.958 Td[(of)-250(it)-250(should)-250(be)-250(given.)]TJ 11.956 -10.959 Td[(Consider)-232(any)-232(four)-232(points,)]TJ/F20 8.966 Tf 92.78 0 Td[(A)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf 4.354 0 Td[(B)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 4.354 0 Td[(C)]TJ/F16 8.966 Tf 5.981 0 Td[(,)]TJ/F20 8.966 Tf 4.354 0 Td[(D)]TJ/F16 8.966 Tf 6.474 0 Td[(,)-236(on)-232(a)-232(line,)-235(and)-232(join)-233(them)-232(to)-232(any)-232(point)]TJ/F20 8.966 Tf 134.937 0 Td[(S)]TJ/F16 8.966 Tf -276.147 -10.959 Td[(not)-266(on)-266(that)-266(line.)-299(Then)-266(the)-266(triangles)]TJ/F20 8.966 Tf 126.817 0 Td[(ASB)]TJ/F16 8.966 Tf 15.44 0 Td[(,)]TJ/F20 8.966 Tf 4.663 0 Td[(GSD)]TJ/F16 8.966 Tf 17.431 0 Td[(,)]TJ/F20 8.966 Tf 4.663 0 Td[(ASD)]TJ/F16 8.966 Tf 16.435 0 Td[(,)]TJ/F20 8.966 Tf 4.663 0 Td[(CSB)]TJ/F16 8.966 Tf 15.942 0 Td[(,)-270(having)-266(all)-266(the)-267(same)]TJ -206.054 -10.959 Td[(altitude,)-268(are)-264(to)-265(each)-264(other)-264(as)-265(their)-264(bases.)-293(Also,)-268(since)-264(the)-265(area)-264(of)-264(an)-1(y)-264(triangle)-264(is)]TJ 0 -10.959 Td[(one)-311(half)-310(the)-311(product)-311(of)-310(any)-311(two)-311(of)-310(its)-311(sides)-310(by)-311(the)-311(sine)-310(of)-311(the)-311(angle)-310(included)]TJ 0 -10.959 Td[(between)-250(them,)-250(we)-250(have)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1505 0 obj << +/Type /Page +/Contents 1506 0 R +/Resources 1504 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1463 0 R +>> endobj +1496 0 obj << +/D [1505 0 R /XYZ 93.543 529.134 null] +>> endobj +1507 0 obj << +/D [1505 0 R /XYZ 93.543 518.175 null] +>> endobj +1500 0 obj << +/D [1505 0 R /XYZ 93.543 352.336 null] +>> endobj +1508 0 obj << +/D [1505 0 R /XYZ 93.543 334.803 null] +>> endobj +1504 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1511 0 obj << +/Length 6306 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(161.)-250(Ancient)-250(results)-16198(123)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(transversal)-244(which)-244(intersects)-244(the)-244(sides)-244(of)-244(a)-245(complete)-244(quadrilateral)]TJ 4.423 -13.549 Td[(as)-405(studied)-406(by)-405(Pappus)]TJ/F16 7.97 Tf 96.298 3.959 Td[(2)]TJ/F16 10.909 Tf 4.483 -3.959 Td[(;)-483(but)-406(these)-405(notions)-406(were)-405(not)-405(made)-406(the)]TJ +ET +1 0 0 1 46.771 432.282 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -434.872 cm +BT +/F20 8.966 Tf 46.771 426.248 Td[(\050ABCD\051)-312(=)-313(\050BADC\051)-312(=)-313(\050CDAB\051)-312(=)-312(\050DCB)-1(A\051)]TJ/F16 8.966 Tf 152.49 0 Td[(.)-437(If)-312(we)-313(write)]TJ/F20 8.966 Tf 49.414 0 Td[(\050ABCD\051)-312(=)-313(a)]TJ/F16 8.966 Tf 45.518 0 Td[(,)-328(it)-312(is)-313(not)]TJ -247.422 -10.959 Td[(difficult)-250(to)-250(show)-250(that)-250(the)-250(six)-250(v)-1(alues)-250(are)]TJ/F45 8.966 Tf 52.952 -59.89 Td[(a)]TJ/F44 8.966 Tf 4.882 0 Td[(;)-171(1)]TJ/F45 8.966 Tf 8.703 0 Td[(=a)]TJ/F44 8.966 Tf 9.49 0 Td[(;)-171(1)]TJ/F46 8.966 Tf 10.751 0 Td[(\000)]TJ/F45 8.966 Tf 9.216 0 Td[(a)]TJ/F44 8.966 Tf 4.882 0 Td[(;)-171(1)]TJ/F45 8.966 Tf 8.703 0 Td[(=)]TJ/F44 8.966 Tf 4.608 0 Td[(\0501)]TJ/F46 8.966 Tf 10.239 0 Td[(\000)]TJ/F45 8.966 Tf 9.215 0 Td[(a)]TJ/F44 8.966 Tf 4.882 0 Td[(\051;)-171(\050)]TJ/F45 8.966 Tf 11.264 0 Td[(a)]TJ/F46 8.966 Tf 6.93 0 Td[(\000)]TJ/F44 8.966 Tf 9.215 0 Td[(1\051)]TJ/F45 8.966 Tf 8.191 0 Td[(=a)]TJ/F44 8.966 Tf 9.49 0 Td[(;)]TJ/F45 8.966 Tf 4.096 0 Td[(a)1(=)]TJ/F44 8.966 Tf 9.49 0 Td[(\050)]TJ/F45 8.966 Tf 3.583 0 Td[(a)]TJ/F46 8.966 Tf 6.93 0 Td[(\000)]TJ/F44 8.966 Tf 9.216 0 Td[(1\051)]TJ/F45 8.966 Tf 8.191 0 Td[(:)]TJ/F16 8.966 Tf -213.163 -48.93 Td[(The)-250(proof)-250(of)-250(this)-250(we)-250(leave)-250(to)-250(the)-250(st)-1(udent.)]TJ 0 -10.959 Td[(If)]TJ/F20 8.966 Tf 7.629 0 Td[(A)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 4.016 0 Td[(B)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf 4.015 0 Td[(C)]TJ/F16 8.966 Tf 5.981 0 Td[(,)]TJ/F20 8.966 Tf 4.016 0 Td[(D)]TJ/F16 8.966 Tf 8.131 0 Td[(are)-185(four)-185(harmonic)-185(points)-185(\050see)-185(Fig.)-228(6,)-198(p.)-228(*22\051,)-198(and)-185(a)-185(quadrilateral)]TJ/F20 8.966 Tf -56.701 -10.959 Td[(KLMN)]TJ/F16 8.966 Tf 26.22 0 Td[(is)-201(constructed)-201(s)-1(uch)-201(that)]TJ/F20 8.966 Tf 84.415 0 Td[(KL)]TJ/F16 8.966 Tf 12.769 0 Td[(and)]TJ/F20 8.966 Tf 14.752 0 Td[(MN)]TJ/F16 8.966 Tf 15.253 0 Td[(pass)-201(through)]TJ/F20 8.966 Tf 46.942 0 Td[(A)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 4.133 0 Td[(KN)]TJ/F16 8.966 Tf 13.765 0 Td[(and)]TJ/F20 8.966 Tf 14.751 0 Td[(LM)]TJ/F16 8.966 Tf 14.258 0 Td[(through)]TJ/F20 8.966 Tf -252.735 -10.959 Td[(C)]TJ/F16 8.966 Tf 5.98 0 Td[(,)]TJ/F20 8.966 Tf 4.654 0 Td[(LN)]TJ/F16 8.966 Tf 13.345 0 Td[(through)]TJ/F20 8.966 Tf 30.273 0 Td[(B)]TJ/F16 8.966 Tf 5.478 0 Td[(,)-269(and)]TJ/F20 8.966 Tf 19.98 0 Td[(KM)]TJ/F16 8.966 Tf 15.828 0 Td[(through)]TJ/F20 8.966 Tf 30.273 0 Td[(D)]TJ/F16 8.966 Tf 6.474 0 Td[(,)-269(then,)-269(projecting)]TJ/F20 8.966 Tf 63.486 0 Td[(A)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 4.655 0 Td[(B)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 4.654 0 Td[(C)]TJ/F16 8.966 Tf 5.981 0 Td[(,)]TJ/F20 8.966 Tf 4.654 0 Td[(D)]TJ/F16 8.966 Tf 8.853 0 Td[(from)]TJ/F20 8.966 Tf 19.809 0 Td[(L)]TJ/F16 8.966 Tf 7.363 0 Td[(upon)]TJ/F20 8.966 Tf -262.696 -10.959 Td[(KM)]TJ/F16 8.966 Tf 13.449 0 Td[(,)-243(we)-241(have)]TJ/F20 8.966 Tf 36.125 0 Td[(\050ABCD\051)-241(=)-241(\050KOMD\051)]TJ/F16 8.966 Tf 72.126 0 Td[(,)-243(where)]TJ/F20 8.966 Tf 28.484 0 Td[(O)]TJ/F16 8.966 Tf 8.635 0 Td[(is)-241(the)-241(intersection)-241(of)]TJ/F20 8.966 Tf 74.889 0 Td[(KM)]TJ/F16 8.966 Tf 15.61 0 Td[(with)]TJ/F20 8.966 Tf 18.104 0 Td[(LN)]TJ/F16 8.966 Tf 10.966 0 Td[(.)]TJ -278.388 -10.959 Td[(But,)-262(projecting)-259(again)-260(the)-259(points)]TJ/F20 8.966 Tf 115.507 0 Td[(K)]TJ/F16 8.966 Tf 5.981 0 Td[(,)]TJ/F20 8.966 Tf 4.588 0 Td[(O)]TJ/F16 8.966 Tf 6.474 0 Td[(,)]TJ/F20 8.966 Tf 4.588 0 Td[(M)]TJ/F16 8.966 Tf 7.469 0 Td[(,)]TJ/F20 8.966 Tf 4.589 0 Td[(D)]TJ/F16 8.966 Tf 8.799 0 Td[(from)]TJ/F20 8.966 Tf 19.757 0 Td[(N)]TJ/F16 8.966 Tf 8.306 0 Td[(back)-259(u)-1(pon)-259(the)-259(line)]TJ/F20 8.966 Tf 68.571 0 Td[(AB)]TJ/F16 8.966 Tf 10.957 0 Td[(,)-262(we)]TJ -265.586 -10.959 Td[(have)]TJ/F20 8.966 Tf 19.17 0 Td[(\050KOMD\051)-250(=)-250(\050CBAD\051)]TJ/F16 8.966 Tf 72.286 0 Td[(.)-250(From)-250(this)-250(we)-250(have)]TJ/F20 8.966 Tf 18.799 -10.958 Td[(\050ABCD\051)-280(=)-279(\050CBAD\051)-1(,)]TJ/F16 8.966 Tf -98.3 -10.959 Td[(or)]TJ/F45 8.966 Tf 99.79 -59.89 Td[(a)]TJ/F44 8.966 Tf 7.442 0 Td[(=)]TJ/F45 8.966 Tf 9.727 0 Td[(a=)]TJ/F44 8.966 Tf 9.49 0 Td[(\050)]TJ/F45 8.966 Tf 3.583 0 Td[(a)]TJ/F46 8.966 Tf 6.93 0 Td[(\000)]TJ/F44 8.966 Tf 9.216 0 Td[(1\051;)]TJ/F16 8.966 Tf -146.178 -48.93 Td[(whence)]TJ/F20 8.966 Tf 29.927 0 Td[(a)-284(=)-283(0)]TJ/F16 8.966 Tf 22.649 0 Td[(or)]TJ/F20 8.966 Tf 10.013 0 Td[(a)-284(=)-283(2)]TJ/F16 8.966 Tf 20.106 0 Td[(.)-351(But)-284(it)-283(is)-284(easy)-284(to)-284(see)-283(that)]TJ/F20 8.966 Tf 94.925 0 Td[(a)-284(=)-283(0)]TJ/F16 8.966 Tf 22.649 0 Td[(implies)-284(that)-284(two)-283(of)]TJ -212.224 -10.959 Td[(the)-261(four)-262(points)-261(coincide.)-284(For)-262(four)-261(harmonic)-261(poi)-1(nts,)-264(therefore,)-264(the)-261(six)-262(values)-261(of)]TJ 0 -10.959 Td[(the)-247(anharmonic)-247(ratio)-247(reduce)-247(to)-247(three,)-248(namely,)-248(2,)]TJ/F23 5.978 Tf 175.049 3.673 Td[(1)]TJ +ET +1 0 0 1 221.821 90.112 cm +q +[]0 d +0 J +0.379 w +0 0.189 m +3.653 0.189 l +S +Q +1 0 0 1 -221.821 -90.112 cm +BT +/F23 5.978 Tf 221.821 85.017 Td[(2)]TJ/F16 8.966 Tf 4.848 3.043 Td[(,)-248(and)-247(-1.)-249(Incidentally)-247(we)-247(see)]TJ -179.898 -10.959 Td[(that)-224(if)-224(an)-224(interch)-1(ange)-224(of)-224(any)-224(two)-224(points)-224(in)-224(an)-224(an)-1(harmonic)-224(ratio)-224(does)-224(not)-224(change)]TJ 0 -10.959 Td[(its)-250(value,)-250(then)-250(the)-250(four)-250(points)-251(are)-250(harmonic.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1510 0 obj << +/Type /Page +/Contents 1511 0 R +/Resources 1509 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1512 0 obj << +/D [1510 0 R /XYZ 46.771 504.626 null] +>> endobj +1509 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F45 1515 0 R /F44 1518 0 R /F46 1521 0 R /F23 1524 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1528 0 obj << +/Length 2338 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(124)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 5.625 -274.397 cm + q 2.37204 0 0 2.37204 0 0 cm +1 0 0 1 2.728 0 cm + q 1 0 0 1 0 0 cm +q +109.6796 0 0 115.6796 0 0 cm +/Im49 Do +Q + Q +1 0 0 1 -2.728 0 cm + Q +1 0 0 1 -99.168 -254.737 cm +BT +/F16 10.909 Tf 208.215 235.733 Td[(F)]TJ/F16 7.97 Tf 6.066 0 Td[(IG)]TJ/F16 10.909 Tf 8.408 0 Td[(.)]TJ/F27 10.909 Tf 2.728 0 Td[(f)]TJ/F16 7.97 Tf 5.454 0 Td[(FNS)]TJ/F16 10.909 Tf 17.721 0 Td[(49)]TJ +ET +1 0 0 1 93.543 226.214 cm +0 g 0 G +1 0 0 1 -93.543 -226.214 cm +BT +/F16 10.909 Tf 93.543 200.836 Td[(foundation)-359(for)-359(any)-359(general)-360(theory.)-577(Taken)-359(by)-359(themselves,)-387(they)]TJ 0 -13.549 Td[(are)-346(of)-346(small)-346(consequence;)-393(it)-346(is)-346(their)-346(relation)-346(to)-346(other)-346(theorems)]TJ 0 -13.549 Td[(and)-458(sets)-457(of)-458(theorems)-457(that)-458(gives)-458(them)-457(their)-458(importance.)-873(The)]TJ 0 -13.549 Td[(ancients)-422(were)-423(doubtless)-422(familiar)-422(with)-423(the)-422(theorem,)]TJ/F20 10.909 Tf 236.62 0 Td[(Two)-422(lines)]TJ -236.62 -13.55 Td[(determine)-420(a)-419(point,)-462(and)-420(two)-419(points)-420(determine)-419(a)-420(line)]TJ/F16 10.909 Tf 235.559 0 Td[(,)-462(but)-420(they)]TJ -235.559 -13.549 Td[(had)-354(no)-354(glimpse)-354(of)-355(the)-354(wonderful)-354(law)-354(of)-354(duality,)-380(of)-354(which)-355(this)]TJ 0 -13.549 Td[(theorem)-386(is)-387(a)-386(simple)-386(example.)-659(The)-387(principle)-386(of)-386(projection,)-421(by)]TJ 0 -13.549 Td[(which)-421(many)-420(properties)-421(of)-421(the)-420(conic)-421(sections)-420(may)-421(be)-421(inferred)]TJ 0 -13.549 Td[(from)-223(corresponding)-223(properties)-224(of)-223(the)-223(circle)-223(which)-223(forms)-223(the)-224(base)]TJ 0 -13.549 Td[(of)-456(the)-457(cone)-456(from)-456(which)-457(they)-456(are)-457(cut)]TJ/F21 10.909 Tf 171.168 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(a)-456(principle)-457(so)-456(natural)]TJ +ET +1 0 0 1 93.543 66.142 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 0 -2.59 cm +0 g 0 G +1 0 0 1 0 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1527 0 obj << +/Type /Page +/Contents 1528 0 R +/Resources 1526 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1503 0 obj << +/Type /XObject +/Subtype /Image +/Width 457 +/Height 482 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 660822 +>> +stream +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ +endobj +1526 0 obj << +/Font << /F16 6 0 R /F27 439 0 R /F20 29 0 R /F21 35 0 R >> +/XObject << /Im49 1503 0 R >> +/ProcSet [ /PDF /Text /ImageC ] +>> endobj +1531 0 obj << +/Length 6543 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(161.)-250(Ancient)-250(results)-16198(125)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -280.63 -140.081 cm +0 g 0 G +1 0 0 1 0 2.591 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -411.444 cm +BT +/F16 8.966 Tf 58.727 386.936 Td[(Many)-392(theorems)-391(of)-392(projective)-391(geometry)-392(are)-391(su)-1(ccinctly)-391(stated)-392(in)-391(terms)-392(of)]TJ -11.956 -10.959 Td[(anharmonic)-271(ratios.)-314(Thus,)-276(the)]TJ/F20 8.966 Tf 105.773 0 Td[(anharmonic)-271(ratio)-271(of)-271(a)-1(ny)-271(four)-271(elements)-271(of)-271(a)-271(form)]TJ -105.773 -10.959 Td[(is)-368(equal)-367(to)-368(the)-367(anharmonic)-368(ratio)-368(of)-367(the)-368(corresponding)-367(fou)-1(r)-367(elements)-368(in)-367(any)]TJ 0 -10.959 Td[(form)-309(projectively)-309(related)-309(to)-309(it)-1(.)-427(The)-309(anharmonic)-309(ratio)-309(of)-309(the)-309(lines)-309(joining)-309(any)]TJ 0 -10.959 Td[(four)-329(fixed)-329(points)-329(on)-329(a)-328(conic)-329(to)-329(a)-329(variable)-329(fifthpoint)-329(on)-329(the)-328(coni)-1(c)-328(is)-329(constant.)]TJ 0 -10.959 Td[(The)-253(locus)-253(of)-254(points)-253(from)-253(which)-253(four)-254(points)-253(in)-253(a)-253(plane)-253(are)-254(seen)-253(along)-253(four)-253(rays)]TJ 0 -10.959 Td[(of)-209(constant)-209(anharmonic)-209(ratio)-209(is)-209(a)-209(conic)-209(through)-209(the)-209(four)-209(points.)]TJ/F16 8.966 Tf 227.093 0 Td[(We)-209(leave)-209(these)]TJ -227.093 -10.959 Td[(theorems)-340(for)-341(the)-340(student,)-363(who)-340(may)-340(also)-341(justify)-340(the)-340(following)-341(solution)-340(of)-340(the)]TJ 0 -10.959 Td[(problem:)]TJ/F20 8.966 Tf 35.512 0 Td[(Given)-300(three)-300(points)-299(an)-1(d)-299(a)-300(certain)-300(anharmonic)-300(ratio,)-312(to)-300(find)-300(a)-299(fou)-1(rth)]TJ -35.512 -10.958 Td[(point)-250(which)-249(shall)-250(have)-250(with)-249(the)-250(given)-249(three)-250(the)-250(given)-249(anharmonic)-250(ratio.)]TJ/F16 8.966 Tf 258.721 0 Td[(Let)]TJ/F20 8.966 Tf 14.189 0 Td[(A)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf -278.389 -10.959 Td[(B)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf 4.318 0 Td[(D)]TJ/F16 8.966 Tf 8.51 0 Td[(be)-227(the)-227(three)-227(given)-228(points)-227(\050Fig.)-242(49\051.)-243(On)-227(any)-227(convenient)-227(line)-227(through)]TJ/F20 8.966 Tf 239.871 0 Td[(A)]TJ/F16 8.966 Tf 7.514 0 Td[(take)]TJ -265.692 -10.959 Td[(two)-264(points)]TJ/F20 8.966 Tf 40.106 0 Td[(B')]TJ/F16 8.966 Tf 9.763 0 Td[(and)]TJ/F20 8.966 Tf 15.314 0 Td[(D')]TJ/F16 8.966 Tf 10.759 0 Td[(such)-264(that)]TJ/F20 8.966 Tf 34.618 0 Td[(AB'/AD')]TJ/F16 8.966 Tf 31.606 0 Td[(is)-264(equal)-264(to)-264(the)-264(given)-264(anharmonic)-264(ratio.)]TJ -142.166 -10.959 Td[(Join)]TJ/F20 8.966 Tf 17.313 0 Td[(BB')]TJ/F16 8.966 Tf 15.241 0 Td[(and)]TJ/F20 8.966 Tf 15.314 0 Td[(DD')]TJ/F16 8.966 Tf 17.232 0 Td[(and)-264(let)-264(the)-264(two)-264(lines)-263(m)-1(eet)-263(in)]TJ/F20 8.966 Tf 104.224 0 Td[(S)]TJ/F16 8.966 Tf 4.483 0 Td[(.)-292(Draw)-263(t)-1(hrough)]TJ/F20 8.966 Tf 57.396 0 Td[(S)]TJ/F16 8.966 Tf 6.849 0 Td[(a)-264(parallel)-264(to)]TJ/F20 8.966 Tf -238.052 -10.959 Td[(AB')]TJ/F16 8.966 Tf 12.876 0 Td[(.)-250(This)-250(line)-250(will)-250(meet)]TJ/F20 8.966 Tf 74.224 0 Td[(AB)]TJ/F16 8.966 Tf 13.198 0 Td[(in)-250(the)-250(required)-250(point)]TJ/F20 8.966 Tf 75.21 0 Td[(C)]TJ/F16 8.966 Tf 5.981 0 Td[(.)]TJ/F45 8.966 Tf -180.293 -73.54 Td[(AB)]TJ/F46 8.966 Tf 16.378 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(C)-71(D)]TJ +ET +1 0 0 1 47.967 167.183 cm +q +[]0 d +0 J +0.379 w +0 0.189 m +40.664 0.189 l +S +Q +1 0 0 1 -47.967 -167.183 cm +BT +/F45 8.966 Tf 47.967 159.05 Td[(AD)]TJ/F46 8.966 Tf 16.813 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(C)-71(B)]TJ/F44 8.966 Tf 18.391 6.081 Td[(=)]TJ/F45 8.966 Tf 10.923 5.799 Td[(AS)]TJ/F46 8.966 Tf 15.098 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(B)-50(S)]TJ/F44 8.966 Tf 15.095 0 Td[(sin)]TJ/F45 8.966 Tf 12.85 0 Td[(AS)-56(B)]TJ/F46 8.966 Tf 22.517 0 Td[(\002)]TJ/F45 8.966 Tf 9.216 0 Td[(C)-71(S)]TJ/F46 8.966 Tf 15.403 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(D)-28(S)]TJ/F44 8.966 Tf 15.531 0 Td[(sin)]TJ/F45 8.966 Tf 12.85 0 Td[(C)-71(S)-57(D)]TJ +ET +1 0 0 1 103.309 167.183 cm +q +[]0 d +0 J +0.379 w +0 0.189 m +158.2 0.189 l +S +Q +1 0 0 1 -103.309 -167.183 cm +BT +/F45 8.966 Tf 103.309 159.05 Td[(AS)]TJ/F46 8.966 Tf 15.098 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(D)-28(S)]TJ/F44 8.966 Tf 15.53 0 Td[(sin)]TJ/F45 8.966 Tf 12.851 0 Td[(AS)-56(D)]TJ/F46 8.966 Tf 22.952 0 Td[(\002)]TJ/F45 8.966 Tf 9.216 0 Td[(C)-71(S)]TJ/F46 8.966 Tf 15.403 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(B)-50(S)]TJ/F44 8.966 Tf 15.095 0 Td[(sin)]TJ/F45 8.966 Tf 12.85 0 Td[(C)-71(S)-57(B)]TJ/F44 8.966 Tf 24.531 6.081 Td[(=)]TJ 10.922 5.799 Td[(sin)]TJ/F45 8.966 Tf 12.851 0 Td[(AS)-56(B)]TJ/F46 8.966 Tf 22.517 0 Td[(\002)]TJ/F44 8.966 Tf 9.215 0 Td[(sin)]TJ/F45 8.966 Tf 12.851 0 Td[(C)-71(S)-56(D)]TJ +ET +1 0 0 1 276.187 167.183 cm +q +[]0 d +0 J +0.379 w +0 0.189 m +78.643 0.189 l +S +Q +1 0 0 1 -276.187 -167.183 cm +BT +/F44 8.966 Tf 276.187 159.05 Td[(sin)]TJ/F45 8.966 Tf 12.851 0 Td[(AS)-56(D)]TJ/F46 8.966 Tf 22.952 0 Td[(\002)]TJ/F44 8.966 Tf 9.216 0 Td[(sin)]TJ/F45 8.966 Tf 12.85 0 Td[(C)-71(S)-57(B)]TJ/F16 8.966 Tf -275.329 -70.99 Td[(Now)-297(the)-297(fraction)-296(o)-1(n)-296(the)-297(right)-297(would)-297(be)-297(unchanged)-296(i)-1(f)-296(instead)-297(of)-297(the)-297(points)]TJ/F20 8.966 Tf -11.955 -10.959 Td[(A)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 5.611 0 Td[(B)]TJ/F16 8.966 Tf 5.478 0 Td[(,)]TJ/F20 8.966 Tf 5.611 0 Td[(C)]TJ/F16 8.966 Tf 5.98 0 Td[(,)]TJ/F20 8.966 Tf 5.611 0 Td[(D)]TJ/F16 8.966 Tf 9.617 0 Td[(we)-351(should)-350(take)-351(any)-351(other)-350(four)-351(points)]TJ/F20 8.966 Tf 139.545 0 Td[(A')]TJ/F16 8.966 Tf 7.398 0 Td[(,)]TJ/F20 8.966 Tf 5.61 0 Td[(B')]TJ/F16 8.966 Tf 7.398 0 Td[(,)]TJ/F20 8.966 Tf 5.61 0 Td[(C')]TJ/F16 8.966 Tf 7.9 0 Td[(,)]TJ/F20 8.966 Tf 5.61 0 Td[(D')]TJ/F16 8.966 Tf 11.536 0 Td[(lying)-351(on)-350(any)]TJ -233.993 -10.959 Td[(other)-318(line)-319(cutting)-318(across)]TJ/F20 8.966 Tf 90.608 0 Td[(SA)]TJ/F16 8.966 Tf 9.962 0 Td[(,)]TJ/F20 8.966 Tf 5.249 0 Td[(SB)]TJ/F16 8.966 Tf 9.962 0 Td[(,)]TJ/F20 8.966 Tf 5.249 0 Td[(SC)]TJ/F16 8.966 Tf 10.464 0 Td[(,)]TJ/F20 8.966 Tf 5.249 0 Td[(SD)]TJ/F16 8.966 Tf 10.957 0 Td[(.)-455(In)-319(other)-318(words,)]TJ/F20 8.966 Tf 65.089 0 Td[(the)-318(fracti)-1(on)-318(on)-318(the)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1530 0 obj << +/Type /Page +/Contents 1531 0 R +/Resources 1529 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1529 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F45 1515 0 R /F46 1521 0 R /F44 1518 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1532 0 obj +<< /S /GoTo /D (index183) >> +endobj +1535 0 obj +() +endobj +1538 0 obj << +/Length 6411 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(126)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(to)-341(modern)-341(mathematicians)]TJ/F21 10.909 Tf 117.732 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(seems)-341(not)-341(to)-341(have)-341(occurred)-341(to)-341(the)]TJ -128.641 -13.549 Td[(Greeks.)-222(The)-167(ellipse,)-184(the)-167(hyperbola,)-184(and)-167(the)-167(parabola)-334(were)-167(to)-167(them)]TJ/F16 7.97 Tf -72.756 0 Td[([100])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(entirely)-335(different)-335(curves,)-357(to)-335(be)-335(treated)-335(separately)-335(with)-336(methods)]TJ 0 -13.549 Td[(appropriate)-236(to)-236(each.)-245(Thus)-236(the)-236(focus)-236(of)-237(the)-236(ellipse)-236(was)-236(discovered)]TJ 0 -13.55 Td[(some)-248(five)-249(hundred)-248(years)-248(before)-249(the)-248(focus)-248(of)-249(the)-248(parabola!)-249(It)-249(was)]TJ 0 -13.549 Td[(not)-251(till)-252(1522)-251(that)-251(Verner)]TJ/F16 7.97 Tf 105.503 3.959 Td[(3)]TJ/F16 10.909 Tf 7.224 -3.959 Td[(of)-251(N\374rnberg)-252(undertook)-251(to)-251(demonstrate)]TJ -112.727 -13.549 Td[(the)-250(properties)-250(of)-250(the)-250(conic)-250(sections)-250(by)-250(means)-250(of)-250(the)-250(circle.)]TJ/F39 10.909 Tf 0 -67.45 Td[(162.)-386(Unifying)-295(principles.)]TJ/F16 10.909 Tf 120.14 0 Td[(In)-295(the)-296(early)-295(years)-295(of)-295(the)-296(seventeenth)]TJ -120.14 -13.549 Td[(century)]TJ/F21 10.909 Tf 32.717 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(that)-235(wonderful)-236(epoch)-235(in)-235(the)-235(history)-236(of)-235(the)-235(world)-235(wh)-1(ich)]TJ -43.626 -13.549 Td[(produced)-413(a)-412(Galileo,)-453(a)-413(Kepler,)-453(a)-413(Tycho)-412(Bra)-1(he,)-453(a)-412(Descartes,)-454(a)]TJ 0 -13.55 Td[(Desargues,)-263(a)-261(Pascal,)-263(a)-261(Cavalieri,)-263(a)-261(Wallis,)-263(a)-261(Fermat,)-263(a)-261(Huygens,)]TJ 0 -13.549 Td[(a)-379(Bacon,)-412(a)-379(Napier,)-411(and)-379(a)-379(goodly)-380(array)-379(of)-379(lesser)-379(lights,)-411(to)-380(say)]TJ 0 -13.549 Td[(nothing)-408(of)-409(a)-408(Rembrandt)-408(or)-408(of)-409(a)-408(Shakespeare)]TJ/F21 10.909 Tf 204.468 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(there)-408(began)-409(to)]TJ -215.377 -13.549 Td[(appear)-485(certain)-485(unifying)-486(principles)-485(connecting)-485(the)-485(great)-486(mass)]TJ 0 -13.549 Td[(of)-408(material)-407(dug)-408(out)-408(by)-407(the)-408(ancients.)-723(Thus,)-447(in)-407(1604)-408(the)-408(great)]TJ +ET +1 0 0 1 93.543 259.819 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -262.409 cm +BT +/F20 8.966 Tf 93.543 249.856 Td[(left)-234(i)-1(s)-234(unaltered)-234(in)-235(value)-234(if)-235(the)-234(points)-235(A,)-237(B,)-238(C,)-237(D)-235(are)-234(replaced)-235(by)-234(any)-235(other)-234(four)]TJ 0 -10.959 Td[(points)-233(perspective)-232(to)-233(them.)]TJ/F16 8.966 Tf 97.74 0 Td[(Again,)-236(the)-233(fraction)-232(on)-233(the)-232(left)-233(is)-232(unchanged)-233(if)-232(some)]TJ -97.74 -10.958 Td[(other)-256(point)-257(were)-256(taken)-256(instead)-257(of)]TJ/F20 8.966 Tf 120.358 0 Td[(S)]TJ/F16 8.966 Tf 4.483 0 Td[(.)-269(In)-256(other)-256(words,)]TJ/F20 8.966 Tf 61.606 0 Td[(the)-256(fraction)-257(on)-256(the)-256(right)-256(is)]TJ -186.447 -10.959 Td[(unaltered)-304(if)-305(we)-304(replace)-305(the)-304(four)-304(lines)-305(SA,)-318(SB,)-317(S)-1(C,)-317(SD)-305(by)-304(any)-304(oth)-1(er)-304(four)-304(lines)]TJ 0 -10.959 Td[(perspective)-282(to)-282(them.)]TJ/F16 8.966 Tf 75.063 0 Td[(The)-282(fraction)-282(on)-282(the)-282(left)-282(is)-281(cal)-1(led)-281(the)]TJ/F20 8.966 Tf 132.27 0 Td[(anharmonic)-282(ratio)]TJ/F16 8.966 Tf 65.828 0 Td[(of)]TJ -273.161 -10.959 Td[(the)-313(four)-313(points)]TJ/F20 8.966 Tf 56.236 0 Td[(A)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf 5.188 0 Td[(B)]TJ/F16 8.966 Tf 5.479 0 Td[(,)]TJ/F20 8.966 Tf 5.189 0 Td[(C)]TJ/F16 8.966 Tf 5.98 0 Td[(,)]TJ/F20 8.966 Tf 5.189 0 Td[(D)]TJ/F16 8.966 Tf 6.474 0 Td[(;)-344(the)-313(fract)-1(ion)-313(on)-313(the)-313(right)-313(is)-313(called)-313(the)]TJ/F20 8.966 Tf 142.082 0 Td[(anharmonic)]TJ -237.296 -10.959 Td[(ratio)]TJ/F16 8.966 Tf 20.016 0 Td[(of)-287(the)-288(four)-287(lines)]TJ/F20 8.966 Tf 60.605 0 Td[(SA)]TJ/F16 8.966 Tf 9.962 0 Td[(,)]TJ/F20 8.966 Tf 4.901 0 Td[(SB)]TJ/F16 8.966 Tf 9.962 0 Td[(,)]TJ/F20 8.966 Tf 4.901 0 Td[(SC)]TJ/F16 8.966 Tf 10.464 0 Td[(,)]TJ/F20 8.966 Tf 4.901 0 Td[(SD)]TJ/F16 8.966 Tf 10.957 0 Td[(.)-362(The)-287(anharmonic)-288(ratio)-287(of)-287(f)-1(our)-287(points)-287(is)]TJ -136.669 -10.959 Td[(sometimes)-250(written)-250(\050)]TJ/F20 8.966 Tf 71.229 0 Td[(ABCD)]TJ/F16 8.966 Tf 23.411 0 Td[(\051,)-250(so)-250(that)]TJ/F45 8.966 Tf -0.364 -27.265 Td[(AB)]TJ/F46 8.966 Tf 16.377 0 Td[(\002)]TJ/F45 8.966 Tf 9.216 0 Td[(C)-71(D)]TJ +ET +1 0 0 1 187.819 142.132 cm +q +[]0 d +0 J +0.379 w +0 0.189 m +40.664 0.189 l +S +Q +1 0 0 1 -187.819 -142.132 cm +BT +/F45 8.966 Tf 187.819 133.999 Td[(AD)]TJ/F46 8.966 Tf 16.813 0 Td[(\002)]TJ/F45 8.966 Tf 9.215 0 Td[(C)-71(B)]TJ/F44 8.966 Tf 18.391 6.081 Td[(=)-286(\050)]TJ/F45 8.966 Tf 13.311 0 Td[(AB)-49(C)-71(D)]TJ/F44 8.966 Tf 29.401 0 Td[(\051)]TJ/F45 8.966 Tf 3.584 0 Td[(:)]TJ/F16 8.966 Tf -173.035 -23.125 Td[(If)-323(we)-324(take)-323(the)-324(points)-323(in)-323(different)-324(order,)-342(the)-323(value)-323(of)-324(the)-323(anharmonic)-324(ratio)]TJ -11.956 -10.959 Td[(will)-199(not)-199(necessarily)-199(remain)-199(the)-199(same.)-233(The)-198(tw)-1(enty-four)-198(di)-1(fferent)-198(ways)-199(of)-199(writing)]TJ 0 -10.959 Td[(them)-228(will,)-233(however,)-233(give)-228(not)-229(more)-228(than)-228(six)-229(different)-228(values)-228(for)-229(the)-228(anharmonic)]TJ 0 -7.989 Td[(ratio,)-467(for)-424(by)-424(writing)-424(out)-424(the)-424(fractions)-424(which)-424(define)-424(them)-424(we)-423(can)-424(find)-424(that)]TJ/F16 5.978 Tf 6.227 -5.977 Td[(2)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(Pappus,)-250(Mathematicae)-250(Collectiones)-1(,)-250(vii,)-250(129.)]TJ/F16 5.978 Tf -5.729 -7.311 Td[(3)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(J.)-250(Verneri,)-250(Libellus)-250(super)-250(vigintiduo)-1(bus)-250(elementis)-250(conicis,)-250(etc.)-250(1522.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1537 0 obj << +/Type /Page +/Contents 1538 0 R +/Resources 1536 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1539 0 obj << +/D [1537 0 R /XYZ 317.206 504.626 null] +>> endobj +1533 0 obj << +/D [1537 0 R /XYZ 93.543 405.406 null] +>> endobj +1540 0 obj << +/D [1537 0 R /XYZ 93.543 382.42 null] +>> endobj +1536 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F39 92 0 R /F20 29 0 R /F45 1515 0 R /F46 1521 0 R /F44 1518 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1541 0 obj +<< /S /GoTo /D (index184) >> +endobj +1544 0 obj +() +endobj +1545 0 obj +<< /S /GoTo /D (index185) >> +endobj +1548 0 obj +() +endobj +1551 0 obj << +/Length 5032 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(163.)-250(Desargues)-18060(127)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(astronomer)-522(Kepler)]TJ/F16 7.97 Tf 84.453 3.959 Td[(4)]TJ/F16 10.909 Tf 10.172 -3.959 Td[(introduced)-522(the)-521(notion)-522(that)-521(parallel)-522(lines)]TJ -94.625 -13.549 Td[(should)-270(be)-269(considered)-270(as)-269(meeting)-270(at)-269(an)-270(infinite)-270(distance,)-274(and)-270(that)]TJ 0 -13.549 Td[(a)-411(parabola)-411(is)-410(at)-411(once)-411(the)-411(limiting)-411(case)-411(of)-410(an)-411(ellipse)-411(and)-411(of)-411(a)]TJ 0 -13.549 Td[(hyperbola.)-741(He)-414(also)-414(attributes)-414(to)-413(the)-414(parabola)-414(a)-414("blind)-414(focus")]TJ 0 -13.55 Td[(\050)]TJ/F20 10.909 Tf 3.633 0 Td[(caecus)-250(focus)]TJ/F16 10.909 Tf 55.44 0 Td[(\051)-250(at)-250(infinity)-250(on)-250(the)-250(axis.)]TJ/F39 10.909 Tf -59.073 -49.004 Td[(163.)-668(Desargues.)]TJ/F16 10.909 Tf 84.266 0 Td[(In)-389(1639)-390(Desargues,)]TJ/F16 7.97 Tf 87.564 3.958 Td[(5)]TJ/F16 10.909 Tf 9.111 -3.958 Td[(an)-389(architect)-390(of)-389(Lyons,)]TJ -180.941 -13.55 Td[(published)-253(a)-254(little)-253(treatise)-253(on)-253(the)-254(conic)-253(sections,)-254(in)-253(which)-254(appears)]TJ 0 -13.549 Td[(the)-417(theore)-1(m)-417(upon)-417(which)-418(we)-417(have)-418(founded)-417(the)-418(theory)-417(of)-418(four)]TJ 0 -13.549 Td[(harmonic)-358(points)-357(\050\247)-358(25\051.)-1145(Desargues,)-384(however,)-385(does)-357(not)-358(make)]TJ/F16 7.97 Tf 291.024 0 Td[([101])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(use)-352(of)-351(it)-352(for)-351(that)-352(purpose.)-555(Four)-352(harmonic)-351(points)-352(are)-351(for)-352(him)-352(a)]TJ 0 -13.549 Td[(special)-379(case)-380(of)-379(six)-379(points)-379(in)-379(involution)-380(when)-379(two)-379(of)-379(the)-380(three)]TJ 0 -13.55 Td[(pairs)-431(coincide)-431(giving)-431(double)-431(points.)-793(His)-431(development)-431(of)-431(the)]TJ 0 -13.549 Td[(theory)-309(of)-310(involution)-309(is)-309(also)-309(different)-310(from)-309(the)-309(purely)-310(geometric)]TJ 0 -13.549 Td[(one)-234(which)-234(we)-235(have)-234(adopted,)-237(and)-234(is)-235(based)-234(on)-234(the)-234(theorem)-234(\050\247)-235(142\051)]TJ 0 -13.549 Td[(that)-218(the)-217(product)-218(of)-218(the)-217(distances)-218(of)-218(two)-218(conjugate)-217(points)-218(from)-218(the)]TJ 0 -13.549 Td[(center)-286(is)-285(constant.)-357(He)-285(also)-286(proves)-285(the)-286(projective)-285(c)-1(haracter)-285(of)-286(an)]TJ 0 -13.55 Td[(involution)-239(of)-239(points)-239(by)-239(showing)-239(that)-239(when)-239(six)-239(lines)-240(pass)-239(through)]TJ 0 -13.549 Td[(a)-242(point)-242(and)-241(through)-242(six)-242(points)-242(in)-242(involution,)-243(then)-242(any)-242(transversal)]TJ 0 -13.549 Td[(must)-250(meet)-250(them)-250(in)-250(six)-250(points)-250(which)-250(are)-250(also)-250(in)-250(involution.)]TJ/F39 10.909 Tf 0 -49.005 Td[(164.)-584(Poles)-361(and)-361(polars.)]TJ/F16 10.909 Tf 113.356 0 Td[(In)-361(this)-362(little)-361(treatise)-361(is)-361(also)-362(contained)]TJ -113.356 -13.549 Td[(the)-520(theory)-520(of)-519(poles)-520(and)-520(polars.)-1059(The)-520(polar)-519(line)-520(is)-520(called)-520(a)]TJ/F20 10.909 Tf 0 -13.549 Td[(traversal)]TJ/F16 10.909 Tf 39.393 0 Td[(.)]TJ/F16 7.97 Tf 2.727 3.959 Td[(6)]TJ/F16 10.909 Tf 13.98 -3.959 Td[(The)-457(harmonic)-457(properties)-457(of)-456(poles)-457(and)-457(polars)-457(are)]TJ +ET +1 0 0 1 46.771 151.091 cm +0 g 0 G +1 0 0 1 0 2.591 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -153.682 cm +BT +/F16 5.978 Tf 52.998 147.068 Td[(4)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(Kepler,)-618(Ad)-545(Vitellionem)-545(paralipomena)-545(quibus)-544(astronomiae)-545(pars)-545(optica)]TJ -11.956 -10.958 Td[(traditur.)-250(1604.)]TJ/F16 5.978 Tf 6.227 -7.395 Td[(5)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(Desargues,)-358(Bruillon-project)-336(d'une)-337(atteinte)-336(aux)-336(\351v\351nements)-336(des)-337(rencontres)]TJ -11.956 -10.959 Td[(d'un)-250(c\364ne)-250(avec)-250(un)-250(plan.)-250(1639)-1(.)-250(Edited)-250(and)-250(analyzed)-250(by)-250(Poudra,)-250(1864.)]TJ/F16 5.978 Tf 6.227 -7.31 Td[(6)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(The)-346(term)-347('pole')-346(was)-347(first)-346(introduced,)-371(in)-346(the)-347(sense)-346(in)-346(whic)-1(h)-346(we)-346(have)-347(used)]TJ -11.956 -10.959 Td[(it,)-418(in)-384(1810,)-417(by)-385(a)-384(French)-384(mathematician)-384(named)-384(Servois)-384(\050Gerg)-1(onne,)]TJ/F20 8.966 Tf 251.741 0 Td[(Annales)]TJ -251.741 -10.959 Td[(des)-272(Math\351\351matiques)]TJ/F16 8.966 Tf 73.656 0 Td[(,)-277(I,)-272(337\051,)-277(and)-272(the)-271(correspo)-1(nding)-271(term)-272('polar')-272(by)-271(th)-1(e)-271(editor,)]TJ -73.656 -10.959 Td[(Gergonne,)-250(of)-250(this)-250(same)-250(journ)-1(al)-250(three)-250(years)-250(later.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1550 0 obj << +/Type /Page +/Contents 1551 0 R +/Resources 1549 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1542 0 obj << +/D [1550 0 R /XYZ 46.771 440.818 null] +>> endobj +1552 0 obj << +/D [1550 0 R /XYZ 46.771 426.145 null] +>> endobj +1553 0 obj << +/D [1550 0 R /XYZ 158.95 374.326 null] +>> endobj +1546 0 obj << +/D [1550 0 R /XYZ 46.771 215.684 null] +>> endobj +1554 0 obj << +/D [1550 0 R /XYZ 46.771 201.011 null] +>> endobj +1549 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1555 0 obj +<< /S /GoTo /D (index186) >> +endobj +1558 0 obj +() +endobj +1559 0 obj +<< /S /GoTo /D (index187) >> +endobj +1562 0 obj +() +endobj +1565 0 obj << +/Length 4869 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(128)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(given,)-356(but)-335(Desargues)-334(seems)-335(not)-335(to)-335(have)-334(arrived)-335(at)-335(the)-335(metrical)]TJ 0 -13.549 Td[(properties)-334(which)-334(result)-334(when)-334(the)-334(infinite)-334(elements)-334(of)-335(the)-334(plane)]TJ 0 -13.549 Td[(are)-197(introduced.)-232(Thus)-197(he)-196(says,)-208("When)-196(the)]TJ/F20 10.909 Tf 175.689 0 Td[(traversal)]TJ/F16 10.909 Tf 41.538 0 Td[(is)-197(at)-196(an)-197(infinite)]TJ -217.227 -13.549 Td[(distance,)-250(all)-250(is)-250(unimaginable.")]TJ/F39 10.909 Tf 0 -49.877 Td[(165.)-720(Desargues's)-407(theorem)-407(concerning)-407(conics)-407(through)-407(four)]TJ 0 -13.55 Td[(points.)]TJ/F16 10.909 Tf 33.854 0 Td[(We)-224(find)-223(in)-224(this)-224(little)-223(book)-224(the)-224(beautiful)-224(theorem)-223(concern-)]TJ -33.854 -13.549 Td[(ing)-346(a)-345(quadrilateral)-345(inscribed)-346(in)-345(a)-346(conic)-345(section,)-370(which)-345(is)-346(given)]TJ 0 -13.549 Td[(by)-402(his)-402(name)-402(in)-402(\247)-403(138.)-706(The)-402(theorem)-402(is)-402(not)-402(given)-402(in)-402(terms)-403(of)]TJ 0 -13.549 Td[(a)-383(system)-384(of)-383(conics)-384(through)-383(four)-384(points,)-416(for)-384(Desargues)-383(had)-384(no)]TJ 0 -13.549 Td[(conception)-251(of)-501(any)-250(such)-251(system.)-252(He)-250(states)-251(the)-250(theorem,)-251(in)-251(effect,)]TJ/F16 7.97 Tf -72.755 0 Td[([102])]TJ/F16 10.909 Tf 72.755 -13.55 Td[(as)-386(follows:)]TJ/F20 10.909 Tf 54.768 0 Td[(Given)-386(a)-387(simple)-386(quadrilateral)-387(inscribed)-386(in)-387(a)-386(conic)]TJ -54.768 -13.549 Td[(section,)-329(every)-313(transversal)-312(meets)-313(the)-313(conic)-313(and)-313(the)-313(four)-313(sides)-313(of)]TJ 0 -13.549 Td[(the)-250(quadrilateral)-250(in)-250(six)-250(points)-250(which)-250(are)-250(in)-250(involution.)]TJ/F39 10.909 Tf 0 -49.877 Td[(166.)-653(Extension)-385(of)-384(the)-385(theory)-384(of)-385(poles)-384(and)-385(polars)-384(to)-385(space.)]TJ/F16 10.909 Tf 0 -13.549 Td[(As)-226(an)-225(illustration)-226(of)-226(his)-225(remarkable)-226(powers)-225(of)-226(generalization,)-231(we)]TJ 0 -13.549 Td[(may)-240(note)-239(that)-240(Desargues)-239(extended)-240(the)-239(notion)-240(of)-239(poles)-240(and)-240(polars)]TJ 0 -13.55 Td[(to)-269(space)-268(of)-269(three)-268(dimensions)-269(for)-268(the)-269(sphere)-268(and)-269(for)-268(certain)-269(other)]TJ 0 -13.549 Td[(surfaces)-362(of)-362(the)-361(second)-362(degree.)-585(This)-362(is)-362(a)-361(matter)-362(which)-362(has)-362(not)]TJ 0 -13.549 Td[(been)-348(touched)-347(on)-348(in)-348(this)-347(book,)-373(but)-347(the)-348(notion)-348(is)-347(not)-348(difficult)-348(to)]TJ 0 -13.549 Td[(grasp.)-663(If)-387(we)-388(draw)-387(through)-388(any)-387(point)]TJ/F20 10.909 Tf 172.861 0 Td[(P)]TJ/F16 10.909 Tf 10.891 0 Td[(in)-387(spa)-1(ce)-387(a)-388(line)-387(to)-388(cut)]TJ -183.752 -13.549 Td[(a)-364(sphere)-364(in)-364(two)-363(points,)]TJ/F20 10.909 Tf 107.724 0 Td[(A)]TJ/F16 10.909 Tf 10.633 0 Td[(and)]TJ/F20 10.909 Tf 19.722 0 Td[(S)]TJ/F16 10.909 Tf 5.455 0 Td[(,)-364(and)-364(then)-364(construct)-363(the)-364(fourth)]TJ -143.534 -13.55 Td[(harmonic)-319(of)]TJ/F20 10.909 Tf 57.247 0 Td[(P)]TJ/F16 10.909 Tf 10.143 0 Td[(with)-319(respect)-319(to)]TJ/F20 10.909 Tf 69.212 0 Td[(A)]TJ/F16 10.909 Tf 10.142 0 Td[(and)]TJ/F20 10.909 Tf 19.231 0 Td[(B)]TJ/F16 10.909 Tf 6.665 0 Td[(,)-319(the)-319(locus)-319(of)-318(this)-319(fourth)]TJ -172.64 -13.549 Td[(harmonic,)-244(for)-243(various)-243(lines)-243(through)]TJ/F20 10.909 Tf 156.573 0 Td[(P)]TJ/F16 10.909 Tf 6.666 0 Td[(,)-243(is)-243(a)-242(plane)-243(called)-243(the)]TJ/F20 10.909 Tf 93.751 0 Td[(polar)]TJ -256.99 -13.549 Td[(plane)]TJ/F16 10.909 Tf 27.858 0 Td[(of)]TJ/F20 10.909 Tf 12.704 0 Td[(P)]TJ/F16 10.909 Tf 10.282 0 Td[(with)-332(respect)-331(to)-332(the)-331(sphere.)-495(With)-332(this)-331(definition)-332(and)]TJ -50.844 -13.549 Td[(theorem)-365(one)-365(can)-365(easily)-365(find)-365(dual)-365(relations)-365(between)-365(points)-365(and)]TJ 0 -13.549 Td[(planes)-334(in)-334(space)-334(analogous)-333(to)-334(those)-334(between)-334(points)-334(and)-334(lines)-334(in)]TJ 0 -13.549 Td[(a)-437(plane.)-812(Desargues)-438(closes)-437(his)-437(discussion)-438(of)-437(this)-437(matter)-438(with)]TJ 0 -13.55 Td[(the)-411(remark,)-451("Similar)-411(properties)-411(may)-410(be)-411(found)-411(for)-411(those)-411(other)]TJ 0 -13.549 Td[(solids)-329(which)-330(are)-329(related)-329(to)-330(the)-329(sphere)-329(in)-329(the)-330(same)-329(way)-329(that)-330(the)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1564 0 obj << +/Type /Page +/Contents 1565 0 R +/Resources 1563 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1525 0 R +>> endobj +1556 0 obj << +/D [1564 0 R /XYZ 93.543 453.931 null] +>> endobj +1566 0 obj << +/D [1564 0 R /XYZ 93.543 438.822 null] +>> endobj +1567 0 obj << +/D [1564 0 R /XYZ 155.966 359.905 null] +>> endobj +1560 0 obj << +/D [1564 0 R /XYZ 93.543 295.78 null] +>> endobj +1568 0 obj << +/D [1564 0 R /XYZ 93.543 280.671 null] +>> endobj +1563 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1569 0 obj +<< /S /GoTo /D (index188) >> +endobj +1572 0 obj +() +endobj +1573 0 obj +<< /S /GoTo /D (index189) >> +endobj +1576 0 obj +() +endobj +1579 0 obj << +/Length 4185 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(167.)-250(Desargues's)-250(method)-250(of)-250(describing)-250(a)-250(conic)-5632(129)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(conic)-261(section)-260(is)-260(to)-261(the)-260(circle.")-261(It)-260(should)-261(not)-260(be)-261(inferred)-260(from)-261(this)]TJ 0 -13.549 Td[(remark,)-372(however,)-372(that)-347(he)-347(was)-348(acquainted)-347(with)-348(all)-347(the)-348(different)]TJ 0 -13.549 Td[(varieties)-253(of)-253(surfaces)-254(of)-253(the)-253(second)-253(order.)-260(The)-253(ancients)-253(were)-254(well)]TJ 0 -13.549 Td[(acquainted)-272(with)-273(the)-272(surfaces)-273(obtained)-272(by)-272(revolving)-273(an)-272(ellipse)-273(or)]TJ 0 -13.55 Td[(a)-348(parabola)-348(about)-347(an)-348(axis.)-544(Even)-347(the)-348(hyperboloid)-348(of)-348(two)-348(sheets,)]TJ 0 -13.549 Td[(obtained)-365(by)-364(revolving)-365(the)-365(hyperbola)-364(about)-365(its)-365(major)-364(axis,)-394(was)]TJ 0 -13.549 Td[(known)-321(to)-321(them,)-338(but)-321(probably)-321(not)-321(the)-321(hyperboloid)-321(of)-321(one)-321(sheet,)]TJ 0 -13.549 Td[(which)-618(results)-309(from)-309(revolving)-309(a)-309(hyperbola)-309(about)-309(the)-309(other)-309(axis.)]TJ/F16 7.97 Tf 291.024 0 Td[([103])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(All)-212(the)-212(other)-212(solids)-211(of)-212(the)-212(second)-212(degree)-212(were)-212(probably)-212(unknown)]TJ 0 -13.55 Td[(until)-250(their)-250(discovery)-250(by)-250(Euler.)]TJ/F16 7.97 Tf 130.593 3.959 Td[(7)]TJ/F39 10.909 Tf -130.593 -63.455 Td[(167.)]TJ/F16 10.909 Tf 25.551 0 Td[(Desargues)-364(had)-364(no)-364(conception)-364(of)-364(the)-364(conic)-364(section)-364(of)-364(the)]TJ -25.551 -13.549 Td[(locus)-445(of)-446(intersection)-445(of)-445(corresponding)-446(rays)-445(of)-445(two)-446(projective)]TJ 0 -13.549 Td[(pencils)-284(of)-285(rays.)-353(He)-284(seems)-284(to)-285(have)-284(tried)-284(to)-285(describe)-284(the)-284(curve)-285(by)]TJ 0 -13.549 Td[(means)-359(of)-360(a)-359(pair)-359(of)-359(c)-1(ompasses,)-386(moving)-359(one)-360(leg)-359(back)-359(and)-360(forth)]TJ 0 -13.55 Td[(along)-325(a)-324(straight)-324(line)-325(instead)-324(of)-325(holding)-324(it)-325(fixed)-324(as)-325(in)-324(drawing)-325(a)]TJ 0 -13.549 Td[(circle.)-482(He)-328(does)-327(not)-328(attempt)-327(to)-327(define)-328(the)-327(law)-328(of)-327(the)-328(movement)]TJ 0 -13.549 Td[(necessary)-250(to)-250(obtain)-250(a)-250(conic)-250(by)-250(this)-250(means.)]TJ/F39 10.909 Tf 0 -59.496 Td[(168.)-558(Reception)-352(of)-353(Desargues's)-353(work.)]TJ/F16 10.909 Tf 180.656 0 Td[(Strange)-353(to)-352(say,)-378(Desar-)]TJ -180.656 -13.549 Td[(gues's)-357(immortal)-357(work)-357(was)-357(heaped)-357(with)-357(the)-357(most)-358(violent)-357(abuse)]TJ 0 -13.55 Td[(and)-273(held)-272(up)-273(to)-273(ridicule)-272(and)-273(scorn!)-318("Incredible)-273(errors!)-318(Enormous)]TJ 0 -13.549 Td[(mistakes)-269(and)-269(falsities!)-306(Really)-269(it)-269(is)-268(impossible)-269(for)-269(anyone)-269(who)-269(is)]TJ 0 -13.549 Td[(familiar)-206(with)-207(the)-206(science)-206(concerning)-206(which)-207(he)-206(wishes)-206(to)-206(retail)-207(his)]TJ 0 -13.549 Td[(thoughts,)-361(to)-338(keep)-339(from)-339(laughing!")-338(Such)-339(were)-338(the)-339(comments)-339(of)]TJ 0 -13.549 Td[(reviewers)-217(and)-217(critics.)-240(Nor)-217(were)-217(his)-217(detractors)-217(altogether)-218(ignorant)]TJ 0 -13.549 Td[(and)-285(uninstructed)-284(men.)-354(In)-284(spite)-285(of)-284(the)-285(devotion)-284(of)-285(his)-284(pupils)-285(and)]TJ 0 -13.55 Td[(in)-298(spite)-298(of)-298(the)-297(admiration)-298(and)-298(friendship)-298(of)-298(men)-298(like)-298(Descartes,)]TJ +ET +1 0 0 1 46.771 73.974 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -76.564 cm +BT +/F16 5.978 Tf 52.998 69.951 Td[(7)]TJ/F16 8.966 Tf 5.729 -3.809 Td[(Euler,)-250(Introductio)-250(in)-250(analysin)-250(infin)-1(itorum,)-250(Appendix,)-250(cap.)-250(V.)-250(1748.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1578 0 obj << +/Type /Page +/Contents 1579 0 R +/Resources 1577 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1580 0 obj << +/D [1578 0 R /XYZ 76.804 423.331 null] +>> endobj +1570 0 obj << +/D [1578 0 R /XYZ 46.771 368.294 null] +>> endobj +1581 0 obj << +/D [1578 0 R /XYZ 46.771 348.843 null] +>> endobj +1574 0 obj << +/D [1578 0 R /XYZ 46.771 227.503 null] +>> endobj +1582 0 obj << +/D [1578 0 R /XYZ 46.771 208.051 null] +>> endobj +1577 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1584 0 obj +<< /S /GoTo /D (index190) >> +endobj +1587 0 obj +() +endobj +1588 0 obj +<< /S /GoTo /D (index191) >> +endobj +1591 0 obj +() +endobj +1594 0 obj << +/Length 4366 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(130)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Fermat,)-279(Mersenne,)-279(and)-273(Roberval,)-278(his)-273(book)-274(disappeared)-273(so)-273(com-)]TJ 0 -13.549 Td[(pletely)-297(that)-296(two)-297(centuries)-297(after)-296(the)-297(date)-297(of)-297(its)-296(publication,)-309(when)]TJ 0 -13.549 Td[(the)-476(French)-477(geometer)-476(Chasles)-477(wrote)-476(his)-477(history)-476(of)-477(geometry,)]TJ 0 -13.549 Td[(there)-264(w)-1(as)-264(no)-264(means)-265(of)-264(estimating)-265(the)-264(value)-265(of)-264(the)-265(work)-264(done)-265(by)]TJ 0 -13.55 Td[(Desargues.)-500(Six)-333(year)-1(s)-333(later,)-354(however,)-354(in)-334(1845,)-354(Chasles)-333(found)-334(a)]TJ 0 -13.549 Td[(manuscript)-267(copy)-268(of)-267(the)-267("Bruillon-proje)-1(ct,")-267(made)-267(by)-268(Desargues's)]TJ 0 -13.549 Td[(pupil,)-250(De)-250(la)-250(Hire.)]TJ/F16 7.97 Tf -72.755 0 Td[([104])]TJ/F39 10.909 Tf 72.755 -59.106 Td[(169.)-654(Conservatism)-385(in)-385(Desargues's)-384(time.)]TJ/F16 10.909 Tf 197.753 0 Td[(It)-385(is)-384(not)-385(necessary)]TJ -197.753 -13.55 Td[(to)-450(suppose)-450(that)-450(this)-450(effacement)-450(of)-450(Desargues's)-450(work)-450(for)-450(two)]TJ 0 -13.549 Td[(centuries)-219(was)-218(due)-219(to)-219(the)-219(savage)-218(attacks)-219(of)-219(his)-219(critics.)-239(All)-219(this)-219(was)]TJ 0 -13.549 Td[(in)-280(accordance)-281(with)-280(the)-280(fashion)-281(of)-280(the)-281(time,)-288(and)-280(no)-280(man)-281(escaped)]TJ 0 -13.549 Td[(bitter)-382(denunciation)-383(who)-382(attempted)-383(to)-382(improve)-383(on)-382(the)-383(methods)]TJ 0 -13.549 Td[(of)-327(the)-327(ancients.)-482(Those)-327(were)-327(days)-327(when)-327(men)-327(refused)-327(to)-328(believe)]TJ 0 -13.55 Td[(that)-360(a)-359(heavy)-360(body)-360(falls)-359(at)-360(the)-359(same)-360(rate)-360(as)-359(a)-360(lighter)-360(one,)-387(even)]TJ 0 -13.549 Td[(when)-329(Galileo)-329(made)-330(them)-329(see)-329(it)-329(with)-330(their)-329(own)-329(eyes)-329(at)-329(the)-330(foot)]TJ 0 -13.549 Td[(of)-310(the)-309(tower)-310(of)-310(Pisa.)-428(Could)-310(they)-310(not)-309(turn)-310(to)-310(the)-309(exact)-310(page)-310(and)]TJ 0 -13.549 Td[(line)-312(of)-312(Aristotle)-311(which)-312(declared)-312(that)-312(the)-311(heavier)-312(body)-312(must)-312(fall)]TJ 0 -13.549 Td[(the)-408(faster!)-723("I)-407(have)-408(read)-407(Aristotle's)-408(writings)-408(from)-407(end)-408(to)-408(end,)]TJ 0 -13.55 Td[(many)-255(times,")-254(wrote)-255(a)-254(Je)-1(suit)-254(provincial)-255(to)-254(the)-255(mathematician)-255(and)]TJ 0 -13.549 Td[(astronomer,)-349(Christoph)-329(Scheiner,)-349(at)-329(Ingolstadt,)-349(whose)-329(telescope)]TJ 0 -13.549 Td[(seemed)-264(to)-264(reveal)-263(certain)-264(mysterious)-264(spots)-263(on)-264(the)-264(sun,)-267("and)-264(I)-264(can)]TJ 0 -13.549 Td[(assure)-323(you)-323(I)-323(have)-322(nowhere)-323(found)-323(anything)-323(similar)-323(to)-323(what)-323(you)]TJ 0 -13.549 Td[(describe.)-446(Go,)-332(my)-315(son,)-332(and)-315(tranquilize)-316(yourself;)-348(be)-315(assured)-316(that)]TJ 0 -13.55 Td[(what)-259(you)-259(take)-259(for)-259(spots)-259(on)-259(the)-259(sun)-259(are)-259(the)-259(faults)-259(of)-260(your)-259(glasses,)]TJ 0 -13.549 Td[(or)-187(of)-186(your)-187(eyes.")-187(The)-187(dead)-186(hand)-187(of)-187(Aristotle)-186(barred)-187(the)-187(advance)-187(in)]TJ 0 -13.549 Td[(every)-259(department)-259(of)-259(research.)-277(Physicians)-259(would)-259(have)-260(nothing)-259(to)]TJ 0 -13.549 Td[(do)-292(with)-293(Harvey's)-292(discoveries)-293(about)-292(the)-292(circulation)-293(of)-292(the)-293(blood.)]TJ 0 -13.549 Td[("Nature)-330(is)-330(accused)-330(of)-330(tolerating)-330(a)-330(vacuum!")-330(exclaimed)-331(a)-330(priest)]TJ 0 -13.549 Td[(when)-204(Pascal)-205(began)-204(his)-205(experiments)-204(on)-204(the)-205(Puy-de-Dome)-204(to)-205(show)]TJ 0 -13.55 Td[(that)-278(the)-278(column)-279(of)-278(mercury)-278(in)-278(a)-279(glass)-278(tube)-278(varied)-278(in)-278(height)-279(with)]TJ 0 -13.549 Td[(the)-250(pressure)-250(of)-250(the)-250(atmosphere.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1593 0 obj << +/Type /Page +/Contents 1594 0 R +/Resources 1592 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1595 0 obj << +/D [1593 0 R /XYZ 93.543 434.513 null] +>> endobj +1585 0 obj << +/D [1593 0 R /XYZ 93.543 409.126 null] +>> endobj +1596 0 obj << +/D [1593 0 R /XYZ 93.543 389.848 null] +>> endobj +1592 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1599 0 obj << +/Length 5123 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(170.)-250(Desargues's)-250(style)-250(of)-250(writing)-11130(131)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(170.)-910(Desargues's)-470(style)-470(of)-470(writing.)]TJ/F16 10.909 Tf 176.437 0 Td[(Nevertheless,)-525(authority)]TJ -176.437 -13.549 Td[(counted)-291(for)-291(less)-292(at)-291(this)-291(time)-291(in)-291(Paris)-291(than)-292(it)-291(did)-291(in)-291(Italy,)-301(and)-292(the)]TJ 0 -13.549 Td[(tragedy)-309(enacted)-309(in)-308(Rome)-309(when)-309(Galileo)-617(was)-309(forced)-309(to)-309(deny)-309(his)]TJ/F16 7.97 Tf 291.024 0 Td[([105])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(inmost)-195(convictions)-194(at)-195(the)-195(bidding)-194(of)-195(a)-195(brutal)-194(Inquisition)-195(could)-195(not)]TJ 0 -13.55 Td[(have)-301(been)-300(staged)-301(in)-300(France.)-401(Mo)-1(reover,)-313(in)-300(the)-301(little)-300(company)-301(of)]TJ 0 -13.549 Td[(scientists)-309(of)-310(which)-309(Desargues)-309(was)-309(a)-310(member)-309(the)-309(utmost)-310(liberty)]TJ 0 -13.549 Td[(of)-198(thought)-197(and)-198(expression)-197(was)-198(maintained.)-232(One)-198(very)-197(good)-198(reason)]TJ 0 -13.549 Td[(for)-255(the)-256(disappearance)-255(of)-256(the)-255(work)-255(of)-256(Desargues)-255(is)-255(to)-256(be)-255(found)-256(in)]TJ 0 -13.549 Td[(his)-229(style)-228(of)-229(writing.)-242(He)-229(failed)-228(to)-229(heed)-229(the)-228(very)-229(good)-228(advice)-229(given)]TJ 0 -13.55 Td[(him)-375(in)-374(a)-374(letter)-375(from)-374(his)-375(warm)-374(admirer)-375(Descartes.)]TJ/F16 7.97 Tf 223.24 3.959 Td[(8)]TJ/F16 10.909 Tf 11.283 -3.959 Td[("You)-375(may)]TJ -234.523 -13.549 Td[(have)-293(two)-293(designs,)-304(both)-292(very)-293(good)-293(and)-293(very)-293(laudable,)-304(but)-293(which)]TJ 0 -13.549 Td[(do)-227(not)-226(require)-226(the)-227(same)-226(method)-227(of)-226(procedure:)-239(The)-226(one)-227(is)-226(to)-227(write)]TJ 0 -13.549 Td[(for)-235(the)-236(learned,)-238(and)-235(show)-236(them)-235(some)-235(new)-236(properties)-235(of)-235(the)-236(conic)]TJ 0 -13.549 Td[(sections)-398(which)-398(they)-397(do)-398(not)-398(already)-398(know;)-471(and)-398(the)-398(other)-398(is)-398(to)]TJ 0 -13.55 Td[(write)-330(for)-330(the)-329(curious)-330(unlearned,)-350(and)-330(to)-330(do)-329(it)-330(so)-330(that)-330(this)-330(matter)]TJ 0 -13.549 Td[(which)-349(until)-350(now)-349(has)-349(been)-350(understood)-349(by)-349(only)-350(a)-349(very)-349(few,)-375(and)]TJ 0 -13.549 Td[(which)-345(is)-345(nevertheless)-346(very)-345(useful)-345(for)-345(perspective,)-369(for)-346(painting,)]TJ 0 -13.549 Td[(architecture,)-463(etc.,)-463(shall)-420(become)-421(common)-420(and)-420(easy)-421(to)-420(all)-421(who)]TJ 0 -13.549 Td[(wish)-267(to)-266(study)-267(them)-267(in)-267(your)-266(book.)-300(If)-267(you)-267(have)-266(the)-267(first)-267(idea,)-271(then)]TJ 0 -13.55 Td[(it)-277(seems)-277(to)-277(me)-277(that)-277(it)-277(is)-278(necessary)-277(to)-277(avoid)-277(using)-277(new)-277(terms;)-291(for)]TJ 0 -13.549 Td[(the)-232(learned)-233(are)-232(already)-232(accustomed)-232(to)-233(using)-232(those)-232(of)-233(Apollonius,)]TJ 0 -13.549 Td[(and)-319(will)-320(not)-319(readily)-320(change)-319(them)-319(for)-320(others,)-336(though)-320(better,)-337(and)]TJ 0 -13.549 Td[(thus)-340(yours)-340(will)-340(serve)-340(only)-340(to)-340(render)-340(your)-341(demonstrations)-340(more)]TJ 0 -13.549 Td[(difficult,)-495(and)-445(to)-446(turn)-445(aw)-1(ay)-445(your)-446(readers)-445(from)-446(your)-446(book.)-837(If)]TJ 0 -13.55 Td[(you)-314(have)-314(the)-314(second)-314(plan)-313(in)-314(mind,)-330(it)-314(is)-314(certain)-314(that)-314(your)-314(terms,)]TJ 0 -13.549 Td[(which)-330(are)-330(French,)-351(and)-330(conceived)-330(with)-330(spirit)-330(and)-330(grace,)-350(will)-331(be)]TJ 0 -13.549 Td[(better)-433(received)-433(by)-433(persons)-433(not)-433(preoccupied)-433(with)-433(those)-433(of)-433(the)]TJ 0 -13.549 Td[(ancients....)-736(But,)-453(if)-412(you)-412(have)-413(that)-412(intention,)-452(you)-412(should)-413(make)]TJ 0 -13.549 Td[(of)-400(it)-401(a)-400(great)-801(volume;)-476(explain)-400(it)-401(all)-400(so)-400(fully)-401(and)-400(so)-401(distinctly)]TJ/F16 7.97 Tf 291.024 0 Td[([106])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(that)-355(those)-355(gentlemen)-355(who)-355(cannot)-355(study)-355(without)-355(yawning;)-408(who)]TJ 0 -13.55 Td[(cannot)-271(distress)-272(their)-271(imaginations)-271(enough)-272(to)-271(grasp)-271(a)-272(proposition)]TJ 0 -13.549 Td[(in)-309(geometry,)-324(nor)-309(turn)-309(the)-310(leaves)-309(of)-309(a)-309(book)-309(to)-309(look)-309(at)-309(the)-310(letters)]TJ +ET +1 0 0 1 46.771 73.974 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -76.564 cm +BT +/F16 5.978 Tf 52.998 69.951 Td[(8)]TJ/F54 8.966 Tf 5.729 -3.809 Td[(R)]TJ/F16 8.966 Tf 7.971 0 Td[(uvres)-250(de)-250(Desargues,)-250(t.)-250(II,)-250(132.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1598 0 obj << +/Type /Page +/Contents 1599 0 R +/Resources 1597 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1589 0 obj << +/D [1598 0 R /XYZ 46.771 529.134 null] +>> endobj +1600 0 obj << +/D [1598 0 R /XYZ 46.771 529.134 null] +>> endobj +1601 0 obj << +/D [1598 0 R /XYZ 223.309 491.077 null] +>> endobj +1602 0 obj << +/D [1598 0 R /XYZ 106.047 138.798 null] +>> endobj +1597 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F54 1604 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1605 0 obj +<< /S /GoTo /D (index192) >> +endobj +1608 0 obj +() +endobj +1609 0 obj +<< /S /GoTo /D (index193) >> +endobj +1612 0 obj +() +endobj +1615 0 obj << +/Length 4456 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(132)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(in)-260(a)-261(figure,)-262(shall)-261(find)-260(nothing)-260(in)-260(yo)-1(ur)-260(discourse)-260(more)-260(difficult)-261(to)]TJ 0 -13.549 Td[(understand)-245(than)-246(the)-245(description)-245(of)-246(an)-245(enchanted)-246(palace)-245(in)-245(a)-246(fairy)]TJ 0 -13.549 Td[(story.")-244(The)-244(point)-244(of)-244(these)-243(remarks)-244(is)-244(apparent)-244(when)-244(we)-244(note)-244(that)]TJ 0 -13.549 Td[(Desargues)-244(introduced)-245(some)-244(seventy)-245(new)-244(terms)-244(in)-245(his)-244(little)-245(book,)]TJ 0 -13.55 Td[(of)-298(which)-298(only)-298(one,)]TJ/F20 10.909 Tf 86.758 0 Td[(involution)]TJ/F16 10.909 Tf 44.247 0 Td[(,)-310(has)-298(survived.)-394(Curiously)-298(enough,)]TJ -131.005 -13.549 Td[(this)-394(is)-395(the)-394(one)-394(term)-395(singled)-394(out)-394(for)-395(the)-394(sharpest)-394(criticism)-395(and)]TJ 0 -13.549 Td[(ridicule)-319(by)-319(his)-320(reviewer,)-336(De)-319(Beaugrand.)]TJ/F16 7.97 Tf 178.161 3.959 Td[(9)]TJ/F16 10.909 Tf 9.475 -3.959 Td[(That)-319(Descartes)-319(k)-1(new)]TJ -187.636 -13.549 Td[(the)-322(character)-322(of)-322(Desargues's)-321(audience)-322(better)-322(than)-322(he)-322(did)-322(is)-322(also)]TJ 0 -13.549 Td[(evidenced)-273(by)-272(the)-273(fact)-272(that)-273(De)-273(Beaugrand)-272(exhausted)-273(his)-273(patience)]TJ 0 -13.55 Td[(in)-250(reading)-250(the)-250(first)-250(ten)-250(pages)-250(of)-250(the)-250(book.)]TJ/F39 10.909 Tf 0 -54.314 Td[(171.)-604(Lack)-368(of)-368(appreciation)-368(of)-368(Desargues.)]TJ/F16 10.909 Tf 199.522 0 Td[(Desargues's)-368(meth-)]TJ -199.522 -13.55 Td[(ods,)-281(entirely)-274(different)-275(from)-275(the)-274(analytic)-275(methods)-274(just)-275(then)-275(being)]TJ 0 -13.549 Td[(developed)-485(by)-485(Descartes)-485(and)-485(Fermat,)-544(seem)-485(to)-485(have)-486(been)-485(lit-)]TJ 0 -13.549 Td[(tle)-408(understood.)-725("Between)-408(you)-408(and)-408(me,")-408(wrote)-408(Descartes)]TJ/F16 7.97 Tf 259.222 3.959 Td[(10)]TJ/F16 10.909 Tf 12.921 -3.959 Td[(to)]TJ -272.143 -13.549 Td[(Mersenne,)-496("I)-446(can)-447(hardly)-447(form)-446(an)-447(idea)-447(of)-447(what)-446(he)-447(may)-447(have)]TJ 0 -13.549 Td[(written)-415(concerning)-415(conics.")-415(Desargues)-415(seems)-415(to)-416(have)-415(boasted)]TJ 0 -13.549 Td[(that)-389(he)-388(owed)-389(nothing)-389(to)-388(any)-389(man,)-423(and)-389(that)-389(all)-388(his)-389(results)-389(had)]TJ 0 -13.55 Td[(come)-260(from)-260(his)-260(own)-260(mind.)-279(His)-260(favorite)-260(pupil,)-263(De)-259(la)-260(Hire,)-263(did)-260(not)]TJ 0 -13.549 Td[(realize)-338(the)-337(extraordinary)-338(simplicity)-338(and)-338(generality)-337(of)-338(his)-338(work.)]TJ 0 -13.549 Td[(It)-330(is)-329(a)-330(remarkable)-329(fact)-330(that)-330(the)-329(only)-330(one)-329(of)-330(all)-329(his)-330(associates)-330(to)]TJ 0 -13.549 Td[(understand)-236(and)-235(appreciate)-236(the)-235(methods)-236(of)-235(Desargues)-236(should)-235(be)-236(a)]TJ 0 -13.549 Td[(lad)-250(of)-250(sixteen)-250(years!)]TJ/F16 7.97 Tf -72.755 0 Td[([107])]TJ/F39 10.909 Tf 72.755 -54.315 Td[(172.)-357(Pascal)-285(and)-286(his)-285(theorem.)]TJ/F16 10.909 Tf 138.332 0 Td[(One)-286(does)-285(not)-286(have)-285(to)-286(believe)-285(all)]TJ -138.332 -13.549 Td[(the)-339(marvelous)-338(stories)-339(of)-338(Pascal's)-339(admiring)-338(sisters)-339(to)-338(credit)-339(him)]TJ 0 -13.55 Td[(with)-305(wonderful)-305(precocity.)-415(We)-305(have)-305(the)-306(fact)-305(that)-305(in)-305(1640,)-319(when)]TJ 0 -13.549 Td[(he)-265(was)-265(sixteen)-265(years)-265(old,)-269(he)-265(published)-265(a)-266(little)-265(placard,)-268(or)-266(poster,)]TJ +ET +1 0 0 1 93.543 85.094 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -87.684 cm +BT +/F16 5.978 Tf 99.77 81.071 Td[(9)]TJ/F54 8.966 Tf 5.729 -3.809 Td[(R)]TJ/F16 8.966 Tf 7.971 0 Td[(uvres)-250(de)-250(Desargues,)-250(t.)-250(II,)-250(370.)]TJ/F16 5.978 Tf -16.689 -7.311 Td[(10)]TJ/F54 8.966 Tf 8.718 -3.809 Td[(R)]TJ/F16 8.966 Tf 7.971 0 Td[(uvres)-250(de)-250(Descartes,)-250(t.)-250(II,)-250(499.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1614 0 obj << +/Type /Page +/Contents 1615 0 R +/Resources 1613 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1606 0 obj << +/D [1614 0 R /XYZ 93.543 370.597 null] +>> endobj +1616 0 obj << +/D [1614 0 R /XYZ 93.543 353.448 null] +>> endobj +1617 0 obj << +/D [1614 0 R /XYZ 93.543 190.498 null] +>> endobj +1610 0 obj << +/D [1614 0 R /XYZ 93.543 167.241 null] +>> endobj +1618 0 obj << +/D [1614 0 R /XYZ 93.543 150.093 null] +>> endobj +1613 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R /F54 1604 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1619 0 obj +<< /S /GoTo /D (index194) >> +endobj +1622 0 obj +() +endobj +1625 0 obj << +/Length 5204 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(173.)-250(Pascal's)-250(essay)-16685(133)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(entitled)-308("Essay)-309(pour)-308(les)-308(conique,")]TJ/F16 7.97 Tf 149.913 3.959 Td[(11)]TJ/F16 10.909 Tf 11.83 -3.959 Td[(in)-308(which)-309(his)-308(great)-308(theorem)]TJ -161.743 -13.549 Td[(appears)-237(for)-237(the)-237(first)-237(time.)-245(His)-237(manner)-237(of)-237(putting)-237(it)-237(may)-237(be)-237(a)-237(little)]TJ 0 -13.549 Td[(puzzling)-346(to)-347(one)-346(who)-347(has)-346(only)-347(seen)-346(it)-346(in)-347(the)-346(form)-347(given)-346(in)-347(this)]TJ 0 -13.549 Td[(book,)-304(and)-294(it)-294(may)-293(be)-294(worth)-293(while)-294(for)-293(the)-294(student)-293(to)-294(compare)-294(the)]TJ 0 -13.55 Td[(two)-276(methods)-276(of)-276(stating)-276(it.)-328(It)-276(is)-276(given)-276(as)-276(follows:)]TJ/F20 10.909 Tf 214.293 0 Td[("If)-276(in)-276(the)-276(plane)]TJ -214.293 -13.549 Td[(of)-320(M,)-319(S,)-320(Q)-319(we)-320(draw)-320(through)-319(M)-320(the)-320(two)-319(lines)-320(MK)-319(and)-320(MV,)-320(and)]TJ 0 -13.549 Td[(through)-347(the)-348(point)-347(S)-347(the)-348(two)-347(lines)-347(SK)-348(and)-347(SV,)-347(and)-348(let)-347(K)-347(be)-348(the)]TJ 0 -13.549 Td[(intersection)-283(of)-282(MK)-283(and)-283(SK;)-283(V)-282(the)-283(intersection)-283(of)-282(MV)-283(and)-283(SV;)-283(A)]TJ 0 -13.549 Td[(the)-334(intersection)-333(of)-334(MA)-334(and)-333(SA)-334(\050A)-333(is)-334(the)-334(intersection)-333(of)-334(SV)-334(and)]TJ 0 -13.55 Td[(MK\051,)-316(and)]TJ/F43 10.909 Tf 45.987 0 Td[(\274)]TJ/F20 10.909 Tf 9.046 0 Td[(the)-316(intersection)-316(of)-317(MV)-316(and)-316(SK;)-316(and)-316(if)-317(through)-316(two)]TJ -55.033 -13.549 Td[(of)-288(the)-288(four)-288(points)-289(A,)-288(K,)]TJ/F43 10.909 Tf 104.933 0 Td[(\274)]TJ/F20 10.909 Tf 5.596 0 Td[(,)-298(V,)-288(which)-288(are)-288(not)-288(in)-288(the)-289(same)-288(straight)]TJ -110.529 -13.549 Td[(line)-295(with)-295(M)-296(and)-295(S,)-295(such)-295(as)-295(K)-296(and)-295(V,)-295(we)-295(pass)-295(the)-296(circumference)]TJ 0 -13.549 Td[(of)-292(a)-292(circle)-292(cutting)-292(the)-292(lines)-291(MV,)-292(MP,)-292(SV,)-292(SK)-292(in)-292(the)-292(points)-292(O,)-292(P,)]TJ 0 -13.549 Td[(Q,)-328(N;)-327(I)-327(say)-328(that)-327(the)-328(lines)-327(MS,)-328(NO,)-327(PQ)-328(are)-327(of)-328(the)-327(same)-328(order.")]TJ/F16 10.909 Tf 0 -13.55 Td[(\050By)-391("lines)-392(of)-391(the)-391(same)-391(order")-392(Pascal)-391(means)-391(lines)-391(which)-392(meet)]TJ 0 -13.549 Td[(in)-306(the)-306(same)-306(point)-306(or)-306(are)-306(parallel.\051)-418(By)-306(projecting)-307(the)-306(figure)-306(thus)]TJ 0 -13.549 Td[(described)-294(upon)-293(another)-294(plane)-293(he)-294(is)-294(able)-293(to)-294(state)-293(his)-294(theorem)-294(for)]TJ 0 -13.549 Td[(the)-250(case)-250(where)-250(the)-250(circle)-250(is)-250(replaced)-250(by)-250(any)-250(conic)-250(section.)]TJ/F39 10.909 Tf 0 -54.418 Td[(173.)]TJ/F16 10.909 Tf 23.693 0 Td[(It)-307(must)-308(be)-307(understood)-307(that)-307(the)-308("Essay")-307(was)-307(only)-307(a)-308(r\351sum\351)]TJ -23.693 -13.549 Td[(of)-400(a)-399(more)-400(extended)-400(treatise)-400(on)-399(conics)-400(which,)-437(owing)-400(partly)-400(to)]TJ 0 -13.549 Td[(Pascal's)-461(extreme)-461(youth,)-514(partly)-461(to)-461(the)-461(difficulty)-461(of)-461(publishing)]TJ 0 -13.549 Td[(scientific)-448(works)-448(in)-448(those)-896(days,)-497(and)-448(also)-448(to)-448(his)-448(later)-448(morbid)]TJ/F16 7.97 Tf 291.024 0 Td[([108])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(interest)-446(in)-446(religious)-446(matters,)-495(was)-446(never)-446(published.)-837(Leibniz)]TJ/F16 7.97 Tf 272.162 3.958 Td[(12)]TJ/F16 10.909 Tf -272.162 -17.508 Td[(examined)-235(a)-236(copy)-235(of)-235(the)-236(complete)-235(work,)-238(and)-236(has)-235(reported)-235(that)-236(the)]TJ 0 -13.549 Td[(great)-238(theorem)-238(on)-238(the)-238(mystic)-238(hexagram)-238(was)-238(made)-238(the)-238(basis)-239(of)-238(the)]TJ 0 -13.549 Td[(whole)-347(theory,)-371(and)-347(that)-347(Pascal)-347(had)-347(deduced)-347(some)-347(four)-347(hundred)]TJ 0 -13.549 Td[(corollaries)-406(from)-405(it.)-717(This)-406(would)-405(indicate)-406(that)-406(here)-405(was)-406(a)-406(man)]TJ 0 -13.549 Td[(able)-383(to)-383(take)-383(the)-383(unconnected)-383(materials)-383(of)-383(projective)-383(geometry)]TJ 0 -13.55 Td[(and)-295(shape)-295(them)-296(into)-295(some)-295(such)-295(symmetrical)-295(edifice)-295(as)-295(we)-296(have)]TJ +ET +1 0 0 1 46.771 85.094 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -87.684 cm +BT +/F16 5.978 Tf 50.009 81.071 Td[(11)]TJ/F54 8.966 Tf 8.718 -3.809 Td[(R)]TJ/F16 8.966 Tf 7.971 0 Td[(uvres)-250(de)-250(Pascal,)-250(par)-250(Brunsehvig)-250(et)-251(Boutroux,)-250(t.)-250(I,)-250(252.)]TJ/F16 5.978 Tf -16.689 -7.311 Td[(12)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Chasles,)-250(Histoire)-250(de)-250(la)-250(G\351om\351trie,)-250(7)-1(0.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1624 0 obj << +/Type /Page +/Contents 1625 0 R +/Resources 1623 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1620 0 obj << +/D [1624 0 R /XYZ 46.771 262.158 null] +>> endobj +1626 0 obj << +/D [1624 0 R /XYZ 46.771 244.964 null] +>> endobj +1627 0 obj << +/D [1624 0 R /XYZ 164.487 192.774 null] +>> endobj +1623 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F43 1089 0 R /F39 92 0 R /F54 1604 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1628 0 obj +<< /S /GoTo /D (index195) >> +endobj +1631 0 obj +() +endobj +1632 0 obj +<< /S /GoTo /D (index196) >> +endobj +1635 0 obj +() +endobj +1638 0 obj << +/Length 4475 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(134)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(to-day.)-248(Unfortunately)-245(for)-245(science,)-246(Pascal's)-245(early)-245(death)-245(prevented)]TJ 0 -13.549 Td[(the)-250(further)-250(development)-250(of)-250(the)-250(subject)-250(at)-250(his)-250(hands.)]TJ/F39 10.909 Tf 0 -53.184 Td[(174.)]TJ/F16 10.909 Tf 22.178 0 Td[(In)-261(the)-261("Essay")-261(Pascal)-261(gives)-261(full)-261(credit)-261(to)-261(Desargues,)-264(saying)]TJ -22.178 -13.549 Td[(of)-335(one)-336(of)-335(the)-336(other)-335(propositions,)-357("We)-335(prove)-336(this)-335(property)-336(also,)]TJ 0 -13.549 Td[(the)-269(original)-269(discoverer)-270(of)-269(which)-269(is)-269(M.)-269(Desargues,)-274(of)-270(Lyons,)-274(one)]TJ 0 -13.549 Td[(of)-320(the)-320(greatest)-320(minds)-320(of)-320(this)-319(age)-320(...)-460(and)-320(I)-320(wish)-320(to)-320(acknowledge)]TJ 0 -13.55 Td[(that)-491(I)-491(owe)-491(to)-492(him)-491(the)-491(little)-491(which)-491(I)-491(have)-491(discovered.")-492(This)]TJ 0 -13.549 Td[(acknowledgment)-317(led)-316(Descartes)-317(to)-317(believe)-316(that)-317(Pascal's)-317(theorem)]TJ 0 -13.549 Td[(should)-313(also)-313(be)-313(credited)-313(to)-313(Desargues.)-439(But)-313(in)-313(the)-313(scientific)-313(club)]TJ 0 -13.549 Td[(which)-405(the)-405(young)-405(Pascal)-405(attended)-405(in)-405(company)-405(with)-405(his)-405(father,)]TJ 0 -13.549 Td[(who)-220(was)-219(also)-220(a)-220(scientist)-219(of)-220(some)-220(reputation,)-226(the)-219(theorem)-220(went)-220(by)]TJ 0 -13.55 Td[(the)-242(name)-242(of)-242('la)-242(Pascalia,')-243(and)-242(Descartes's)-242(remarks)-242(do)-242(not)-242(seem)-242(to)]TJ 0 -13.549 Td[(have)-318(been)-319(taken)-318(seriously,)-336(which)-318(indeed)-319(is)-318(not)-319(to)-318(be)-319(wondered)]TJ 0 -13.549 Td[(at,)-366(seeing)-342(that)-343(he)-343(was)-342(in)-343(the)-343(habit)-342(of)-343(giving)-343(scant)-342(credit)-343(to)-343(the)]TJ 0 -13.549 Td[(work)-250(of)-250(other)-250(scientific)-250(investigators)-250(than)-250(himself.)]TJ/F39 10.909 Tf 0 -53.184 Td[(175.)-540(De)-347(la)-346(Hire)-347(and)-346(his)-347(work.)]TJ/F16 10.909 Tf 150.085 0 Td[(De)-347(la)-346(Hire)-347(added)-346(little)-347(to)-347(the)]TJ -150.085 -13.549 Td[(development)-182(of)-182(the)-182(subject,)-196(but)-182(he)-182(did)-182(put)-182(into)-182(print)-182(much)-183(of)-182(what)]TJ 0 -13.549 Td[(Desargues)-263(had)-262(already)-263(worked)-525(out,)-266(not)-262(fully)-263(realizing,)-266(perhaps,)]TJ/F16 7.97 Tf -72.755 0 Td[([109])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(how)-313(much)-313(was)-313(his)-313(own)-313(and)-313(how)-313(much)-313(he)-313(owed)-313(to)-314(his)-313(teacher.)]TJ 0 -13.55 Td[(Writing)-245(in)-244(1679,)-246(he)-245(says,)]TJ/F16 7.97 Tf 109.468 3.959 Td[(13)]TJ/F16 10.909 Tf 11.149 -3.959 Td[("I)-245(have)-244(just)-245(read)-244(for)-245(the)-245(first)-244(time)-245(M.)]TJ -120.617 -13.549 Td[(Desargues's)-348(little)-349(treatise,)-372(and)-349(have)-348(made)-348(a)-349(copy)-348(of)-348(it)-348(in)-349(order)]TJ 0 -13.549 Td[(to)-358(have)-358(a)-357(more)-358(perfect)-358(knowledge)-358(of)-358(it.")-357(It)-358(was)-358(this)-358(copy)-358(that)]TJ 0 -13.549 Td[(saved)-224(the)-223(work)-224(of)-223(his)-224(master)-224(from)-223(oblivion.)-241(De)-224(la)-223(Hire)-224(should)-224(be)]TJ 0 -13.549 Td[(credited,)-277(among)-272(other)-271(things,)-277(with)-272(the)-271(invention)-272(of)-271(a)-272(method)-272(by)]TJ 0 -13.55 Td[(which)-253(figures)-253(in)-253(the)-254(plane)-253(may)-253(be)-253(transformed)-253(into)-253(others)-253(of)-254(the)]TJ 0 -13.549 Td[(same)-288(order.)-362(His)-288(method)-287(is)-288(extremely)-288(interesting,)-296(and)-288(will)-288(serve)]TJ 0 -13.549 Td[(as)-331(an)-331(exercise)-331(for)-331(the)-331(student)-331(in)-331(synthetic)-331(pro)-1(jective)-331(geometry.)]TJ +ET +1 0 0 1 93.543 73.974 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -76.564 cm +BT +/F16 5.978 Tf 96.781 69.951 Td[(13)]TJ/F54 8.966 Tf 8.718 -3.809 Td[(R)]TJ/F16 8.966 Tf 7.971 0 Td[(uvres)-250(de)-250(Desargues,)-250(t.)-250(I,)-250(231.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1637 0 obj << +/Type /Page +/Contents 1638 0 R +/Resources 1636 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1583 0 R +>> endobj +1629 0 obj << +/D [1637 0 R /XYZ 93.543 479.493 null] +>> endobj +1639 0 obj << +/D [1637 0 R /XYZ 93.543 462.847 null] +>> endobj +1633 0 obj << +/D [1637 0 R /XYZ 93.543 263.719 null] +>> endobj +1640 0 obj << +/D [1637 0 R /XYZ 93.543 247.073 null] +>> endobj +1641 0 obj << +/D [1637 0 R /XYZ 231.012 208.57 null] +>> endobj +1636 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F54 1604 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1642 0 obj +<< /S /GoTo /D (index197) >> +endobj +1645 0 obj +() +endobj +1648 0 obj << +/Length 5145 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(176.)-250(Descartes)-250(and)-250(his)-250(influence)-11256(135)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(It)-321(is)-321(as)-321(follows:)]TJ/F20 10.909 Tf 73.571 0 Td[(Draw)-321(two)-321(parallel)-321(lines,)-339(a)-321(and)-321(b,)-339(and)-321(select)-321(a)]TJ -73.571 -13.549 Td[(point)-258(P)-257(in)-258(their)-257(plane.)-273(Through)-257(any)-258(point)-257(M)-258(of)-257(the)-258(plane)-257(draw)-258(a)]TJ 0 -13.549 Td[(line)-308(meeting)-307(a)-308(in)-308(A)-307(and)-308(b)-308(in)-308(B.)-307(Draw)-308(a)-308(line)-307(through)-308(B)-308(parallel)]TJ 0 -13.549 Td[(to)-426(AP,)-425(and)-425(let)-426(it)-425(meet)-426(MP)-425(in)-426(the)-425(point)-426(M'.)-425(It)-426(may)-425(be)-426(shown)]TJ 0 -13.55 Td[(that)-385(the)-385(point)-385(M')-385(thus)-386(obtained)-385(does)-385(not)-385(depend)-385(at)-385(all)-385(on)-386(the)]TJ 0 -13.549 Td[(particular)-206(ray)-205(MAB)-206(used)-205(in)-206(determining)-205(it,)-215(so)-205(that)-206(we)-205(have)-206(set)-206(up)]TJ 0 -13.549 Td[(a)-218(one-to-one)-218(correspondence)-219(between)-218(the)-218(points)-218(M)-218(and)-218(M')-218(in)-219(the)]TJ 0 -13.549 Td[(plane.)]TJ/F16 10.909 Tf 32.287 0 Td[(The)-329(student)-329(may)-330(show)-329(that)-329(as)]TJ/F20 10.909 Tf 137.294 0 Td[(M)]TJ/F16 10.909 Tf 12.678 0 Td[(describes)-329(a)-329(point-row,)]TJ/F20 10.909 Tf -182.259 -13.549 Td[(M')]TJ/F16 10.909 Tf 13.844 0 Td[(describes)-222(a)-222(point-row)-222(projective)-222(to)-222(it.)-241(As)]TJ/F20 10.909 Tf 178.642 0 Td[(M)]TJ/F16 10.909 Tf 11.508 0 Td[(describes)-222(a)-222(conic,)]TJ/F20 10.909 Tf -203.994 -13.55 Td[(M')]TJ/F16 10.909 Tf 13.954 0 Td[(describes)-232(another)-232(conic.)-244(This)-232(sort)-232(of)-232(correspondence)-232(is)-232(called)]TJ -13.954 -13.549 Td[(a)]TJ/F20 10.909 Tf 9.457 0 Td[(collineation)]TJ/F16 10.909 Tf 52.123 0 Td[(.)-768(It)-423(will)-423(be)-423(found)-423(that)-423(the)-422(points)-423(on)-423(the)-423(line)]TJ/F20 10.909 Tf 213.596 0 Td[(b)]TJ/F16 10.909 Tf -275.176 -13.549 Td[(transform)-228(into)-227(themselves,)-232(as)-228(does)-228(also)-227(the)-228(single)-227(point)]TJ/F20 10.909 Tf 241.471 0 Td[(P)]TJ/F16 10.909 Tf 6.665 0 Td[(.)-228(Points)]TJ -248.136 -13.549 Td[(on)-351(the)-352(line)]TJ/F20 10.909 Tf 52.104 0 Td[(a)]TJ/F16 10.909 Tf 9.288 0 Td[(transform)-351(into)-352(points)-351(on)-352(the)-351(line)-351(at)-352(infinity.)-554(The)]TJ -61.392 -13.549 Td[(student)-313(should)-314(remove)-313(the)-313(metrical)-314(features)-313(of)-313(the)-314(construction)]TJ 0 -13.55 Td[(and)-393(take,)-428(instead)-393(of)-392(two)-393(parallel)-393(lines)]TJ/F20 10.909 Tf 176.71 0 Td[(a)]TJ/F16 10.909 Tf 9.738 0 Td[(and)]TJ/F20 10.909 Tf 20.037 0 Td[(b)]TJ/F16 10.909 Tf 5.454 0 Td[(,)-428(any)-393(two)-393(lines)]TJ -211.939 -13.549 Td[(which)-311(may)-311(meet)-312(in)-311(a)-311(finite)-311(part)-311(of)-311(the)-311(plane.)-867(The)-312(collineation)]TJ/F16 7.97 Tf 291.024 0 Td[([110])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(is)-302(a)-301(special)-302(one)-301(in)-302(that)-301(the)-302(general)-301(one)-302(has)-301(an)-302(invariant)-302(triangle)]TJ 0 -13.549 Td[(instead)-250(of)-250(an)-250(invariant)-250(point)-250(and)-250(line.)]TJ/F39 10.909 Tf 0 -59.107 Td[(176.)-779(Descartes)-426(and)-426(his)-426(influence.)]TJ/F16 10.909 Tf 170.933 0 Td[(The)-426(history)-426(of)-427(synthetic)]TJ -170.933 -13.549 Td[(projective)-354(geometry)-354(has)-354(little)-354(to)-354(do)-354(with)-354(the)-354(work)-354(of)-355(the)-354(great)]TJ 0 -13.549 Td[(philosopher)-348(Descartes,)-373(except)-349(in)-348(an)-348(indirect)-348(way.)-545(The)-349(method)]TJ 0 -13.549 Td[(of)-353(algebraic)-353(analysis)-353(invented)-353(by)-352(him,)-379(and)-353(the)-353(differential)-353(and)]TJ 0 -13.549 Td[(integral)-544(calculus)-544(which)-543(developed)-544(from)-544(it,)-617(attracted)-544(all)-544(the)]TJ 0 -13.549 Td[(interest)-529(of)-528(the)-529(mathematical)-529(world)-529(for)-528(nearly)-529(two)-529(centuries)]TJ 0 -13.55 Td[(after)-243(Desargues,)-245(and)-243(synthetic)-243(geometry)-243(received)-243(scant)-244(attention)]TJ 0 -13.549 Td[(during)-228(the)-228(rest)-228(of)-229(the)-228(seventeenth)-228(century)-228(and)-228(for)-228(the)-228(greater)-229(part)]TJ 0 -13.549 Td[(of)-276(the)-276(eighteenth)-276(century.)-328(It)-276(is)-276(difficult)-276(for)-276(moderns)-277(to)-276(conceive)]TJ 0 -13.549 Td[(of)-240(the)-239(richness)-240(and)-240(variety)-239(of)-240(the)-240(problems)-239(which)-240(confronted)-240(the)]TJ 0 -13.549 Td[(first)-327(workers)-328(in)-327(the)-327(calculus.)-482(To)-328(come)-327(into)-328(the)-327(possession)-327(of)-328(a)]TJ 0 -13.55 Td[(method)-199(which)-199(would)-199(solve)-199(almost)-199(automatically)-199(problems)-199(which)]TJ 0 -13.549 Td[(had)-222(baffled)-222(the)-222(keenest)-222(minds)-222(of)-222(antiquity;)-231(to)-222(be)-222(able)-222(to)-222(derive)-222(in)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1647 0 obj << +/Type /Page +/Contents 1648 0 R +/Resources 1646 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1649 0 obj << +/D [1647 0 R /XYZ 250.802 314.937 null] +>> endobj +1643 0 obj << +/D [1647 0 R /XYZ 46.771 260.084 null] +>> endobj +1650 0 obj << +/D [1647 0 R /XYZ 46.771 240.807 null] +>> endobj +1646 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1652 0 obj +<< /S /GoTo /D (index198) >> +endobj +1655 0 obj +() +endobj +1658 0 obj << +/Length 4768 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(136)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(a)-234(few)-234(moments)-234(results)-234(which)-234(an)-234(Archimedes)-234(had)-234(toiled)-234(long)-234(and)]TJ 0 -13.549 Td[(patiently)-355(to)-355(reach)-355(or)-355(a)-355(Galileo)-355(had)-355(dete)-1(rmined)-355(experimentally;)]TJ 0 -13.549 Td[(such)-291(was)-291(the)-292(happy)-291(experience)-291(of)-291(mathematicians)-291(for)-291(a)-292(century)]TJ 0 -13.549 Td[(and)-343(a)-343(half)-343(after)-343(Descartes,)-366(and)-343(it)-342(is)-343(not)-343(to)-343(be)-343(wondered)-343(at)-343(that)]TJ 0 -13.55 Td[(along)-291(with)-290(this)-291(enthusiastic)-290(pursuit)-291(of)-290(new)-291(theorems)-290(in)-291(analysis)]TJ 0 -13.549 Td[(should)-517(come)-518(a)-517(species)-517(of)-517(contempt)-518(for)-517(the)-517(methods)-517(of)-518(the)]TJ 0 -13.549 Td[(ancients,)-287(so)-280(that)-279(in)-280(his)-279(preface)-280(to)-279(his)-280("M\351chanique)-280(Analytique,")]TJ 0 -13.549 Td[(published)-249(in)-248(1788,)-249(Lagrange)-248(boasts,)-249("One)-249(will)-248(find)-249(no)-248(figures)-249(in)]TJ 0 -13.549 Td[(this)-350(work.")-350(But)-349(at)-350(the)-350(close)-350(of)-349(the)-350(eighteenth)-350(century)-350(the)-350(field)]TJ 0 -13.55 Td[(opened)-401(up)-401(to)-400(research)-401(by)-401(the)-401(invention)-400(of)-401(the)-401(calculus)-401(began)]TJ 0 -13.549 Td[(to)-427(appear)-426(so)-427(thoroughly)-426(e)-1(xplored)-426(that)-427(new)-426(methods)-427(and)-427(new)]TJ 0 -13.549 Td[(objects)-840(of)-420(investigation)-420(began)-420(to)-420(attract)-420(attention.)-761(Lagrange)]TJ/F16 7.97 Tf -72.755 0 Td[([111])]TJ/F16 10.909 Tf 72.755 -13.549 Td[(himself,)-474(in)-429(his)-429(later)-429(years,)-474(turned)-429(in)-429(weariness)-429(from)-429(analysis)]TJ 0 -13.549 Td[(and)-336(mechanics,)-358(and)-337(applied)-336(himself)-336(to)-337(chemistry,)-358(physics,)-358(and)]TJ 0 -13.55 Td[(philosophical)-183(speculations.)-228("This)-184(state)-183(of)-183(m)-1(ind,")-183(says)-183(Darboux,)]TJ/F16 7.97 Tf 272.162 3.959 Td[(14)]TJ/F16 10.909 Tf -272.162 -17.508 Td[("we)-367(find)-368(almost)-367(always)-368(at)-367(certain)-368(moments)-367(in)-367(the)-368(lives)-367(of)-368(the)]TJ 0 -13.549 Td[(greatest)-271(scholars.")-270(At)-271(any)-270(rate,)-276(after)-270(lying)-271(fallow)-271(for)-270(almost)-271(two)]TJ 0 -13.549 Td[(centuries,)-364(the)-340(field)-341(of)-341(pure)-341(geometry)-341(was)-341(attacked)-341(with)-341(almost)]TJ 0 -13.549 Td[(religious)-250(enthusiasm.)]TJ/F39 10.909 Tf 0 -54.449 Td[(177.)-334(Newton)-278(and)-278(Maclaurin.)]TJ/F16 10.909 Tf 137.593 0 Td[(But)-278(in)-278(hastening)-278(on)-278(to)-278(the)-278(epoch)]TJ -137.593 -13.55 Td[(of)-263(Poncelet)-263(and)-263(Steiner)-263(we)-263(should)-263(not)-263(omit)-263(to)-263(mention)-263(the)-263(work)]TJ 0 -13.549 Td[(of)-281(Newton)-282(and)-281(Maclaurin.)-344(Although)-281(their)-281(results)-281(were)-282(obtained)]TJ 0 -13.549 Td[(by)-503(analysis)-503(for)-503(the)-503(most)-503(part,)-566(nevertheless)-503(they)-503(have)-503(given)]TJ 0 -13.549 Td[(us)-402(theorems)-401(whic)-1(h)-401(fall)-402(naturally)-402(into)-401(the)-402(domain)-402(of)-402(synthetic)]TJ 0 -13.549 Td[(projective)-505(geometry.)-1015(Thus)-505(Newton's)-504("or)-1(ganic)-504(method")]TJ/F16 7.97 Tf 257.567 3.958 Td[(15)]TJ/F16 10.909 Tf 13.976 -3.958 Td[(of)]TJ -271.543 -13.55 Td[(generating)-272(conic)-273(sections)-272(is)-272(closely)-272(related)-273(to)-272(the)-272(method)-273(which)]TJ 0 -13.549 Td[(we)-201(have)-201(made)-201(use)-201(of)-201(in)-201(C)-1(hapter)-201(III.)-201(It)-201(is)-201(as)-201(follows:)]TJ/F20 10.909 Tf 222.603 0 Td[(If)-201(two)-201(angles,)]TJ -222.603 -13.549 Td[(AOS)-295(and)-294(AO'S,)-295(of)-294(given)-295(magnitudes)-295(turn)-294(about)-295(their)-295(respective)]TJ 0 -13.549 Td[(vertices,)-316(O)-303(and)-304(O',)-303(in)-303(such)-303(a)-303(way)-303(that)-303(the)-303(point)-303(of)-304(intersection,)]TJ +ET +1 0 0 1 93.543 85.177 cm +0 g 0 G +1 0 0 1 0 2.591 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -87.768 cm +BT +/F16 5.978 Tf 96.781 81.154 Td[(14)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(See)-250(Ball,)-250(History)-250(of)-250(Mathematics,)-250(F)-1(rench)-250(edition,)-250(t.)-250(II,)-250(233.)]TJ/F16 5.978 Tf -8.718 -7.394 Td[(15)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Newton,)-250(Principia,)-250(lib.)-250(i,)-250(lemma)-250(XX)-1(I.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1657 0 obj << +/Type /Page +/Contents 1658 0 R +/Resources 1656 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1659 0 obj << +/D [1657 0 R /XYZ 129.031 369.134 null] +>> endobj +1653 0 obj << +/D [1657 0 R /XYZ 93.543 248.594 null] +>> endobj +1660 0 obj << +/D [1657 0 R /XYZ 93.543 231.386 null] +>> endobj +1656 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1661 0 obj +<< /S /GoTo /D (index199) >> +endobj +1664 0 obj +() +endobj +1665 0 obj +<< /S /GoTo /D (index200) >> +endobj +1668 0 obj +() +endobj +1671 0 obj << +/Length 4307 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(178.)-250(Maclaurin's)-250(construction)-12352(137)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F20 10.909 Tf 46.771 518.175 Td[(S,)-266(of)-265(one)-266(pair)-266(of)-265(arms)-266(always)-265(lies)-266(on)-266(a)-265(straight)-266(line,)-269(the)-266(point)-266(of)]TJ 0 -13.549 Td[(intersection,)-337(A,)-319(of)-320(the)-319(other)-319(pair)-320(of)-319(arms)-319(will)-320(describe)-319(a)-320(conic.)]TJ/F16 10.909 Tf 0 -13.549 Td[(The)-250(proof)-250(of)-250(this)-250(is)-250(left)-250(to)-250(the)-250(student.)]TJ/F39 10.909 Tf 0 -55.521 Td[(178.)]TJ/F16 10.909 Tf 21.627 0 Td[(Another)-197(method)-198(of)-197(generating)-197(a)-198(conic)-197(is)-197(due)-198(to)-197(Maclaurin.)]TJ/F16 7.97 Tf 250.535 3.959 Td[(16)]TJ/F16 10.909 Tf -272.162 -17.508 Td[(The)-278(construction,)-284(which)-278(we)-278(also)-277(leave)-278(for)-278(the)-277(student)-278(to)-278(justify,)]TJ 0 -13.549 Td[(is)-384(as)-383(follows:)]TJ/F20 10.909 Tf 66.139 0 Td[(If)-384(a)-383(triangle)-384(C'PQ)-384(move)-383(in)-384(such)-384(a)-383(way)-384(that)-384(its)]TJ -66.139 -13.549 Td[(sides,)-232(PQ,)-227(QC',)-227(and)-228(C'P,)-227(turn)-454(around)-228(three)-227(fixed)-227(points,)-232(R,)-227(A,)-228(B,)]TJ/F16 7.97 Tf 291.024 0 Td[([112])]TJ/F20 10.909 Tf -291.024 -13.55 Td[(respectively,)-240(while)-237(two)-237(of)-237(its)-238(vertices,)-239(P,)-238(Q,)-237(slide)-237(along)-237(two)-238(fixed)]TJ 0 -13.549 Td[(lines,)-326(CB')-311(and)-310(CA',)-311(respectively,)-326(then)-311(the)-310(remaining)-311(vertex)-311(will)]TJ 0 -13.549 Td[(describe)-250(a)-250(conic.)]TJ/F39 10.909 Tf 0 -55.521 Td[(179.)-1017(Descriptive)-505(geometry)-506(and)-506(the)-505(second)-506(revival.)]TJ/F16 10.909 Tf 263.667 0 Td[(The)]TJ -263.667 -13.549 Td[(second)-395(revival)-395(of)-394(pure)-395(geometry)-395(was)-395(again)-395(to)-394(take)-395(place)-395(at)-395(a)]TJ 0 -13.549 Td[(time)-415(of)-415(great)-415(intellectual)-415(activity.)-744(The)-415(period)-415(at)-415(the)-415(close)-415(of)]TJ 0 -13.549 Td[(the)-420(eighteenth)-421(and)-420(the)-421(beginning)-420(of)-420(the)-421(nineteenth)-420(century)-421(is)]TJ 0 -13.549 Td[(adorned)-291(with)-291(a)-291(glorious)-292(list)-291(of)-291(mighty)-291(names,)-301(among)-291(which)-292(are)]TJ 0 -13.549 Td[(Gauss,)-302(Lagrange,)-303(Legendre,)-302(Laplace,)-303(Monge,)-302(Carnot,)-303(Poncelet,)]TJ 0 -13.55 Td[(Cauchy,)-309(Fourier,)-309(Steiner,)-309(Von)-297(Staudt,)-309(M\366bius,)-309(Abel,)-309(and)-298(many)]TJ 0 -13.549 Td[(others.)-425(The)-309(renaissance)-308(may)-309(be)-308(said)-309(to)-308(date)-309(from)-308(the)-309(invention)]TJ 0 -13.549 Td[(by)-320(Monge)]TJ/F16 7.97 Tf 45.309 3.959 Td[(17)]TJ/F16 10.909 Tf 11.963 -3.959 Td[(of)-320(the)-321(theory)-320(of)]TJ/F20 10.909 Tf 73.356 0 Td[(descriptive)-320(geometry)]TJ/F16 10.909 Tf 91.956 0 Td[(.)-461(Descriptive)]TJ -222.584 -13.549 Td[(geometry)-211(is)-211(concerned)-211(with)-210(the)-211(representation)-211(of)-211(figures)-211(in)-211(space)]TJ 0 -13.549 Td[(of)-510(three)-510(dimensions)-510(by)-509(means)-510(of)-510(space)-510(of)-510(two)-510(dimensions.)]TJ 0 -13.55 Td[(The)-452(method)-452(commonly)-452(used)-452(consists)-452(in)-452(projecting)-452(the)-452(space)]TJ 0 -13.549 Td[(figure)-418(on)-417(two)-417(planes)-418(\050a)-417(vertical)-418(and)-417(a)-418(horizontal)-417(plane)-418(being)]TJ 0 -13.549 Td[(most)-362(convenient\051,)-389(the)-362(projections)-361(being)-362(made)-361(most)-362(simply)-362(for)]TJ 0 -13.549 Td[(metrical)-429(purposes)-430(from)-429(infinity)-429(in)-430(directions)-429(perpendicular)-430(to)]TJ +ET +1 0 0 1 46.771 96.052 cm +0 g 0 G +1 0 0 1 0 2.591 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -98.643 cm +BT +/F16 5.978 Tf 50.009 92.03 Td[(16)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Maclaurin,)-464(Philosophical)-421(Transact)-1(ions)-421(of)-421(the)-421(Royal)-421(Society)-422(of)-421(London,)]TJ -11.956 -10.959 Td[(1735.)]TJ/F16 5.978 Tf 3.238 -7.311 Td[(17)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Monge,)-250(G\351om\351trie)-250(Descriptive.)-250(18)-1(00.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1670 0 obj << +/Type /Page +/Contents 1671 0 R +/Resources 1669 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1662 0 obj << +/D [1670 0 R /XYZ 46.771 464.916 null] +>> endobj +1672 0 obj << +/D [1670 0 R /XYZ 46.771 447.232 null] +>> endobj +1673 0 obj << +/D [1670 0 R /XYZ 177.278 394.909 null] +>> endobj +1666 0 obj << +/D [1670 0 R /XYZ 46.771 330.315 null] +>> endobj +1674 0 obj << +/D [1670 0 R /XYZ 46.771 312.631 null] +>> endobj +1669 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1675 0 obj +<< /S /GoTo /D (index201) >> +endobj +1678 0 obj +() +endobj +1681 0 obj << +/Length 4326 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(138)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(the)-355(two)-355(planes)-354(of)-355(projection.)-565(These)-354(two)-355(planes)-355(are)-355(then)-355(made)]TJ 0 -13.549 Td[(to)-383(coincide)-384(by)-383(revolving)-383(the)-383(horizontal)-384(into)-383(the)-383(vertical)-384(about)]TJ 0 -13.549 Td[(their)-296(common)-296(line.)-387(Such)-296(is)-296(the)-296(method)-296(of)-296(descriptive)-296(geometry)]TJ 0 -13.549 Td[(which)-466(in)-466(the)-467(hands)-466(of)-466(Monge)-466(acquired)-466(wonderful)-467(generality)]TJ 0 -13.55 Td[(and)-338(elegance.)-514(Problems)-338(concerning)-338(fortifications)-338(were)-338(worked)]TJ 0 -13.549 Td[(so)-339(quickly)-339(by)-339(this)-340(method)-339(that)-339(the)-339(commandant)-339(at)-339(the)-340(military)]TJ 0 -13.549 Td[(school)-380(at)-380(M\351zi\350res,)-413(where)-380(Monge)-380(was)-380(a)-380(draftsman)-380(and)-380(pupil,)]TJ 0 -13.549 Td[(viewed)-535(the)-534(resu)-1(lts)-534(with)-535(distrust.)-1104(Monge)-535(afterward)-535(became)]TJ 0 -13.549 Td[(professor)-206(of)-207(mathematics)-206(at)-207(M\351zi\350res)-413(and)-206(gathered)-207(around)-206(him)-207(a)]TJ/F16 7.97 Tf -72.755 0 Td[([113])]TJ/F16 10.909 Tf 72.755 -13.55 Td[(group)-238(of)-238(students)-238(destined)-238(to)-238(have)-238(a)-238(share)-238(in)-238(the)-239(advancement)-238(of)]TJ 0 -13.549 Td[(pure)-271(geometry.)-314(Among)-272(these)-271(were)-271(Hachette,)-277(Brianchon,)-277(Dupin,)]TJ 0 -13.549 Td[(Chasles,)-250(Poncelet,)-250(and)-250(many)-250(others.)]TJ/F39 10.909 Tf 0 -59.106 Td[(180.)-960(Duality,)-546(homology,)-546(continuity,)-546(contingent)-487(relations.)]TJ/F16 10.909 Tf 0 -13.55 Td[(Analytic)-339(geometry)-339(had)-339(left)-339(little)-338(to)-339(do)-339(in)-339(the)-339(way)-339(of)-339(discovery)]TJ 0 -13.549 Td[(of)-313(new)-313(material,)-329(and)-314(the)-313(mathematical)-313(world)-313(was)-313(ready)-313(for)-314(the)]TJ 0 -13.549 Td[(construction)-346(of)-345(the)-345(edifice.)-537(The)-345(activities)-346(of)-345(the)-346(group)-345(of)-346(men)]TJ 0 -13.549 Td[(that)-242(followed)-243(Monge)-242(were)-242(directed)-243(toward)-242(this)-242(end,)-244(and)-242(we)-243(now)]TJ 0 -13.549 Td[(begin)-245(to)-245(hear)-244(of)-245(the)-245(great)-245(unifying)-244(notions)-245(of)-245(duality,)-246(homology,)]TJ 0 -13.55 Td[(continuity,)-393(contingent)-364(relations,)-393(and)-364(the)-364(like.)-593(The)-364(devotees)-365(of)]TJ 0 -13.549 Td[(pure)-214(geometry)-213(were)-214(beginning)-214(to)-214(feel)-213(the)-214(need)-214(of)-213(a)-214(basis)-214(for)-214(their)]TJ 0 -13.549 Td[(science)-354(which)-355(should)-354(be)-354(at)-355(once)-354(as)-354(general)-355(and)-354(as)-354(rigorous)-355(as)]TJ 0 -13.549 Td[(that)-238(of)-238(the)-239(analysts.)-246(Their)-238(dream)-238(was)-238(the)-239(building)-238(up)-238(of)-238(a)-239(system)]TJ 0 -13.549 Td[(of)-328(geometry)-329(which)-328(should)-328(be)-329(independent)-328(of)-329(analysis.)-485(Monge,)]TJ 0 -13.549 Td[(and)-437(after)-437(him)-436(Poncelet,)-484(spent)-437(much)-436(thought)-437(on)-437(the)-437(so-called)]TJ 0 -13.55 Td[("principle)-253(of)-254(continuity,")-253(afterwards)-253(discu)-1(ssed)-253(by)-253(Chasles)-254(under)]TJ 0 -13.549 Td[(the)-222(name)-222(of)-222(the)-222("principle)-222(of)-222(contingent)-222(relations.")-222(To)-222(get)-222(a)-222(clear)]TJ 0 -13.549 Td[(idea)-427(of)-427(this)-426(principle,)-471(consider)-427(a)-427(theorem)-426(in)-427(geometry)-427(in)-427(the)]TJ 0 -13.549 Td[(proof)-315(of)-315(which)-314(certain)-315(auxiliary)-315(elements)-315(are)-314(employed.)-445(These)]TJ 0 -13.549 Td[(elements)-285(do)-285(not)-286(appear)-285(in)-285(the)-285(statement)-285(of)-285(the)-285(theorem)-1(,)-293(and)-286(the)]TJ 0 -13.55 Td[(theorem)-414(might)-415(possibly)-414(be)-414(proved)-414(without)-415(them.)-742(In)-415(drawing)]TJ 0 -13.549 Td[(the)-297(figure)-296(for)-297(the)-297(proof)-296(of)-297(the)-297(theorem,)-308(however,)-308(some)-297(of)-297(these)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1680 0 obj << +/Type /Page +/Contents 1681 0 R +/Resources 1679 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1682 0 obj << +/D [1680 0 R /XYZ 257.487 409.782 null] +>> endobj +1676 0 obj << +/D [1680 0 R /XYZ 93.543 341.369 null] +>> endobj +1683 0 obj << +/D [1680 0 R /XYZ 93.543 322.091 null] +>> endobj +1679 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1684 0 obj +<< /S /GoTo /D (index202) >> +endobj +1687 0 obj +() +endobj +1690 0 obj << +/Length 4718 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(181.)-250(Poncelet)-250(and)-250(Cauchy)-13782(139)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(elements)-434(may)-434(not)-434(appear,)-480(or,)-480(as)-434(the)-434(analyst)-434(would)-435(say,)-480(they)]TJ 0 -13.549 Td[(become)-238(imaginary.)-246("No)-238(matter,")-238(says)-238(the)-238(principle)-239(of)-238(contingent)]TJ 0 -13.549 Td[(relations,)-247("the)-246(theorem)-246(is)-247(true,)-246(an)-1(d)-246(the)-246(proof)-246(is)-246(valid)-246(whether)-247(the)]TJ 0 -13.549 Td[(elements)-250(used)-250(in)-250(the)-250(proof)-250(are)-250(real)-250(or)-250(imaginary.")]TJ/F16 7.97 Tf 291.024 0 Td[([114])]TJ/F39 10.909 Tf -291.024 -54.567 Td[(181.)-437(Poncelet)-312(and)-313(Cauchy.)]TJ/F16 10.909 Tf 130.896 0 Td[(The)-312(efforts)-313(of)-312(Poncelet)-312(to)-313(compel)]TJ -130.896 -13.55 Td[(the)-272(acceptance)-272(of)-271(this)-272(principle)-272(independent)-272(of)-272(analysis)-272(resulted)]TJ 0 -13.549 Td[(in)-396(a)-396(bitter)-396(and)-395(perhaps)-396(fruitless)-396(controversy)-396(between)-396(him)-396(and)]TJ 0 -13.549 Td[(the)-482(great)-482(analyst)-481(Cauchy.)-946(In)-481(his)-482(review)-482(of)-482(Poncelet's)-482(great)]TJ 0 -13.549 Td[(work)-309(on)-309(the)-309(projective)-309(properties)-309(of)-309(figures)]TJ/F16 7.97 Tf 193.513 3.959 Td[(18)]TJ/F16 10.909 Tf 11.838 -3.959 Td[(Cauchy)-309(says,)-324("In)]TJ -205.351 -13.549 Td[(his)-408(preliminary)-408(discourse)-408(the)-408(author)-408(insists)-408(once)-408(more)-408(on)-408(the)]TJ 0 -13.55 Td[(necessity)-265(of)-264(admitting)-265(into)-264(geometry)-265(what)-264(he)-265(calls)-264(the)-265('principle)]TJ 0 -13.549 Td[(of)-316(continuity.')-447(We)-316(have)-315(already)-316(discussed)-316(that)-316(principle)-315(...)-448(and)]TJ 0 -13.549 Td[(we)-341(have)-340(found)-341(that)-340(that)-341(principle)-340(is,)-363(properly)-341(speaking,)-363(only)-341(a)]TJ 0 -13.549 Td[(strong)-411(in)-1(duction,)-451(which)-412(cannot)-411(be)-412(indiscriminately)-411(applied)-412(to)]TJ 0 -13.549 Td[(all)-405(sorts)-404(of)-405(questions)-404(in)-405(geometry,)-443(nor)-405(even)-404(in)-405(analysis.)-714(The)]TJ 0 -13.55 Td[(reasons)-269(which)-269(we)-269(have)-270(given)-269(as)-269(the)-269(basis)-269(of)-269(our)-269(opinion)-269(are)-270(not)]TJ 0 -13.549 Td[(affected)-229(by)-230(the)-229(considerations)-229(which)-229(the)-230(author)-229(has)-229(developed)-230(in)]TJ 0 -13.549 Td[(his)-265(Trait\351)-266(des)-265(Propri\351t\351s)-266(Projectives)-265(des)-266(Figures.")-265(Although)-266(this)]TJ 0 -13.549 Td[(principle)-260(is)-259(constantly)-260(made)-260(use)-260(of)-259(at)-260(the)-260(present)-259(day)-260(in)-260(all)-260(sorts)]TJ 0 -13.549 Td[(of)-389(investigations,)-424(careful)-389(geometricians)-389(are)-389(in)-389(agreement)-389(with)]TJ 0 -13.549 Td[(Cauchy)-320(in)-319(this)-320(matter,)-337(and)-319(use)-320(it)-319(only)-320(as)-319(a)-320(convenient)-320(working)]TJ 0 -13.55 Td[(tool)-234(for)-234(purposes)-233(of)-234(exploration.)-245(The)-234(one-to-one)-234(correspondence)]TJ 0 -13.549 Td[(between)-431(ge)-1(ometric)-431(forms)-431(and)-432(algebraic)-431(analysis)-432(is)-431(subject)-432(to)]TJ 0 -13.549 Td[(many)-346(and)-347(important)-346(exceptions.)-540(The)-346(field)-346(of)-347(analysis)-346(is)-347(much)]TJ 0 -13.549 Td[(more)-367(general)-368(than)-367(the)-367(field)-368(of)-367(geometry,)-397(and)-367(while)-367(there)-368(may)]TJ 0 -13.549 Td[(be)-364(a)-364(clear)-364(notion)-364(in)-365(analysis)-364(to,)-392(correspond)-364(to)-364(every)-365(notion)-364(in)]TJ 0 -13.55 Td[(geometry,)-261(the)-258(opposite)-259(is)-259(not)-258(true.)-276(Thus,)-261(in)-259(analysis)-258(we)-259(can)-259(deal)]TJ 0 -13.549 Td[(with)-229(fo)-1(ur)-229(co\366rdinates)-229(as)-230(well)-229(as)-230(with)-229(three,)-234(but)-229(the)-230(existence)-229(of)-230(a)]TJ 0 -13.549 Td[(space)-289(of)-288(four)-289(dimensions)-577(to)-288(correspond)-289(to)-288(it)-289(does)-288(not)-289(therefore)]TJ/F16 7.97 Tf 291.024 0 Td[([115])]TJ +ET +1 0 0 1 46.771 84.933 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -87.523 cm +BT +/F16 5.978 Tf 50.009 80.91 Td[(18)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Poncelet,)-284(Trait\351)-277(des)-277(Propr)-1(i\351t\351s)-277(Projectives)-277(des)-277(Figures.)-332(1822.)-331(\050See)-277(p.)-332(357,)]TJ -11.956 -10.959 Td[(Vol.)-250(II,)-250(of)-250(the)-250(edition)-250(of)-250(1866)-1(.\051)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1689 0 obj << +/Type /Page +/Contents 1690 0 R +/Resources 1688 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1691 0 obj << +/D [1689 0 R /XYZ 46.771 475.149 null] +>> endobj +1685 0 obj << +/D [1689 0 R /XYZ 46.771 451.78 null] +>> endobj +1692 0 obj << +/D [1689 0 R /XYZ 46.771 434.519 null] +>> endobj +1693 0 obj << +/D [1689 0 R /XYZ 160.553 97.78 null] +>> endobj +1688 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1694 0 obj +<< /S /GoTo /D (index203) >> +endobj +1697 0 obj +() +endobj +1698 0 obj +<< /S /GoTo /D (index204) >> +endobj +1701 0 obj +() +endobj +1704 0 obj << +/Length 4657 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(140)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(follow.)-356(When)-286(the)-285(geometer)-285(speaks)-286(of)-285(the)-285(two)-286(real)-285(or)-286(imaginary)]TJ 0 -13.549 Td[(intersections)-256(of)-255(a)-255(straight)-256(line)-255(with)-256(a)-255(conic,)-257(he)-256(is)-255(really)-256(speaking)]TJ 0 -13.549 Td[(the)-204(language)-204(of)-204(algebra.)]TJ/F20 10.909 Tf 105.868 0 Td[(Apart)-204(from)-204(the)-204(algebra)-204(involved)]TJ/F16 10.909 Tf 138.587 0 Td[(,)-213(it)-204(is)-204(the)]TJ -244.455 -13.549 Td[(height)-311(of)-312(absurdity)-311(to)-311(try)-312(to)-311(distinguish)-312(between)-311(the)-311(two)-312(points)]TJ 0 -13.55 Td[(in)-250(which)-250(a)-250(line)]TJ/F20 10.909 Tf 67.266 0 Td[(fails)-250(to)-250(meet)-250(a)-250(conic!)]TJ/F39 10.909 Tf -67.266 -53.183 Td[(182.)-676(The)-392(work)-393(of)-392(Poncelet.)]TJ/F16 10.909 Tf 140.301 0 Td[(But)-392(Poncelet's)-392(right)-392(to)-392(the)-393(title)]TJ -140.301 -13.55 Td[("The)-363(Fathe)-1(r)-363(of)-363(Modern)-364(Geometry")-363(does)-364(not)-363(stand)-364(or)-363(fall)-364(with)]TJ 0 -13.549 Td[(the)-306(principle)-306(of)-306(contingent)-306(relations.)-418(In)-306(spite)-306(of)-306(the)-306(fa)-1(ct)-306(that)-306(he)]TJ 0 -13.549 Td[(considered)-176(this)-177(principle)-176(the)-177(most)-176(important)-176(of)-177(all)-176(his)-177(discoveries,)]TJ 0 -13.549 Td[(his)-304(reputation)-303(rests)-304(on)-304(more)-303(solid)-304(foundations.)-411(He)-303(was)-304(the)-304(first)]TJ 0 -13.549 Td[(to)-242(study)-241(figures)]TJ/F20 10.909 Tf 70.33 0 Td[(in)-242(homology)]TJ/F16 10.909 Tf 54.149 0 Td[(,)-243(which)-242(is,)-243(in)-242(effect,)-243(the)-242(collineation)]TJ -124.479 -13.55 Td[(described)-359(in)-358(\247)-359(175,)-386(where)-359(corresponding)-358(points)-359(lie)-359(on)-359(straight)]TJ 0 -13.549 Td[(lines)-324(through)-325(a)-324(fixed)-325(point.)-473(He)-324(was)-325(the)-324(first)-325(to)-324(give,)-343(by)-325(means)]TJ 0 -13.549 Td[(of)-300(the)-300(theory)-300(of)-300(poles)-300(and)-300(polars,)-313(a)-300(transformation)-300(by)-300(which)-300(an)]TJ 0 -13.549 Td[(element)-372(is)-372(transformed)-371(into)-372(another)-372(of)-372(a)-371(differe)-1(nt)-371(sort.)-616(Point-)]TJ 0 -13.549 Td[(to-point)-394(transformations)-395(will)-394(sometimes)-395(generalize)-394(a)-395(theorem,)]TJ 0 -13.55 Td[(but)-508(the)-507(transformation)-508(discovered)-508(by)-508(Poncelet)-507(may)-508(throw)-508(a)]TJ 0 -13.549 Td[(theorem)-347(into)-346(one)-347(of)-347(an)-346(entirely)-347(different)-347(aspect.)-540(The)-347(principle)]TJ 0 -13.549 Td[(of)-261(duality,)-264(first)-262(stated)-261(in)-261(definite)-261(form)-262(by)-261(Gergonne,)]TJ/F16 7.97 Tf 227.649 3.959 Td[(19)]TJ/F16 10.909 Tf 11.349 -3.959 Td[(the)-261(editor)]TJ -238.998 -13.549 Td[(of)-466(the)-466(mathematical)-465(journa)-1(l)-465(in)-466(which)-466(Poncelet)-466(published)-466(his)]TJ 0 -13.549 Td[(researches,)-424(was)-389(based)-389(by)-389(Poncelet)-389(on)-389(his)-389(theory)-389(of)-389(poles)-389(and)]TJ 0 -13.549 Td[(polars.)-243(He)-229(also)-229(put)-229(into)-228(definite)-229(form)-229(the)-229(notions)-229(of)-229(the)-229(infinitely)]TJ 0 -13.55 Td[(distant)-250(elements)-250(in)-250(space)-250(as)-250(all)-250(lying)-250(on)-250(a)-250(plane)-250(at)-250(infinity.)]TJ/F39 10.909 Tf 0 -53.183 Td[(183.)-776(The)-426(debt)-425(which)-426(analytic)-425(geometry)-426(owes)-425(to)-426(synthetic)]TJ 0 -13.55 Td[(geometry.)]TJ/F16 10.909 Tf 49.428 0 Td[(The)-261(reaction)-261(of)-261(pure)-261(geometry)-261(on)-522(analytic)-261(geometry)]TJ/F16 7.97 Tf -122.184 0 Td[([116])]TJ/F16 10.909 Tf 72.756 -13.549 Td[(is)-325(clearly)-324(seen)-325(in)-324(the)-325(development)-324(of)-325(the)-324(notion)-325(of)-324(th)-1(e)]TJ/F20 10.909 Tf 246.184 0 Td[(class)]TJ/F16 10.909 Tf 25.359 0 Td[(of)]TJ -271.543 -13.549 Td[(a)-414(curve,)-454(which)-414(is)-413(the)-414(number)-414(of)-413(tangents)-414(that)-413(may)-414(be)-414(drawn)]TJ +ET +1 0 0 1 93.543 73.974 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -76.564 cm +BT +/F16 5.978 Tf 96.781 69.951 Td[(19)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Gergonne,)]TJ/F20 8.966 Tf 39.837 0 Td[(Annales)-250(de)-250(Math\351matiques,)-250(XV)-1(I,)-250(209.)-250(1826.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1703 0 obj << +/Type /Page +/Contents 1704 0 R +/Resources 1702 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1651 0 R +>> endobj +1695 0 obj << +/D [1703 0 R /XYZ 93.543 438.965 null] +>> endobj +1705 0 obj << +/D [1703 0 R /XYZ 93.543 422.32 null] +>> endobj +1699 0 obj << +/D [1703 0 R /XYZ 93.543 155.325 null] +>> endobj +1706 0 obj << +/D [1703 0 R /XYZ 93.543 138.68 null] +>> endobj +1707 0 obj << +/D [1703 0 R /XYZ 292.738 113.725 null] +>> endobj +1702 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1708 0 obj +<< /S /GoTo /D (index205) >> +endobj +1711 0 obj +() +endobj +1712 0 obj +<< /S /GoTo /D (index206) >> +endobj +1715 0 obj +() +endobj +1718 0 obj << +/Length 4690 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(184.)-250(Steiner)-250(and)-250(his)-250(work)-13976(141)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(from)-286(a)-287(point)-286(in)-286(a)-287(plane)-286(to)-286(a)-287(given)-286(curve)-286(lying)-287(in)-286(that)-286(plane.)-359(If)-287(a)]TJ 0 -13.549 Td[(point)-320(moves)-319(along)-319(a)-320(conic,)-337(it)-319(is)-320(easy)-319(to)-320(show)]TJ/F21 10.909 Tf 202.151 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(and)-319(the)-320(student)]TJ -213.06 -13.549 Td[(is)-371(recommended)-371(to)-371(furnish)-371(the)-371(proof)]TJ/F21 10.909 Tf 165.662 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(that)-371(the)-371(polar)-371(line)-371(with)]TJ -176.571 -13.549 Td[(respect)-251(to)-250(a)-251(conic)-250(remains)-251(tangent)-251(to)-250(another)-251(conic.)-251(This)-251(may)-251(be)]TJ 0 -13.55 Td[(expressed)-294(by)-293(the)-294(statement)-293(that)-294(the)-294(conic)-293(is)-294(of)-293(the)-294(second)-294(order)]TJ 0 -13.549 Td[(and)-306(also)-306(of)-306(the)-305(second)-306(class.)-418(It)-306(might)-305(be)-306(thought)-306(that)-306(if)-306(a)-306(point)]TJ 0 -13.549 Td[(moved)-266(a)-1(long)-266(a)-266(cubic)-267(curve,)-270(its)-267(polar)-266(line)-267(with)-266(respect)-267(to)-266(a)-267(conic)]TJ 0 -13.549 Td[(would)-387(remain)-387(tangent)-387(to)-387(another)-387(cubic)-387(curve.)-661(This)-388(is)-387(not)-387(the)]TJ 0 -13.549 Td[(case,)-335(however,)-335(and)-318(the)-318(investigations)-318(of)-318(Poncelet)-318(and)-318(others)-318(to)]TJ 0 -13.55 Td[(determine)-322(the)-322(class)-323(of)-322(a)-322(given)-322(curve)-322(were)-322(afterward)-323(completed)]TJ 0 -13.549 Td[(by)-353(Pl\374cker.)-560(The)-354(notion)-353(of)-354(geometrical)-353(transformation)-353(led)-354(also)]TJ 0 -13.549 Td[(to)-325(the)-324(very)-325(important)-325(developments)-324(in)-325(the)-324(theory)-325(of)-325(invariants,)]TJ 0 -13.549 Td[(which,)-234(geometrically,)-234(are)-230(the)-230(elements)-230(and)-230(configura)-1(tions)-230(which)]TJ 0 -13.549 Td[(are)-291(not)-291(aff)-1(ected)-291(by)-291(the)-291(transformation.)-374(The)-291(anharmonic)-291(ratio)-292(of)]TJ 0 -13.55 Td[(four)-259(points)-259(is)-258(such)-259(an)-259(invariant,)-261(since)-258(it)-259(remains)-259(unaltered)-259(under)]TJ 0 -13.549 Td[(all)-250(projective)-250(transformations.)]TJ/F39 10.909 Tf 0 -66.358 Td[(184.)-245(Steiner)-235(and)-235(his)-234(work.)]TJ/F16 10.909 Tf 123.34 0 Td[(In)-235(the)-235(work)-234(of)-235(Poncelet)-235(and)-235(his)-234(con-)]TJ -123.34 -13.549 Td[(temporaries,)-446(Chasles,)-446(Brianchon,)-446(Hachette,)-446(Dupin,)-446(Gergonne,)]TJ 0 -13.549 Td[(and)-298(others,)-309(the)-298(anharmonic)-297(ratio)-298(enjoyed)-298(a)-297(fundamental)-298(r\364le.)-393(It)]TJ 0 -13.55 Td[(is)-212(made)-211(also)-212(the)-211(basis)-212(of)-212(the)-211(great)-212(work)-211(of)-212(Steiner,)]TJ/F16 7.97 Tf 216.074 3.959 Td[(20)]TJ/F16 10.909 Tf 10.86 -3.959 Td[(who)-212(was)-211(the)]TJ -226.934 -13.549 Td[(first)-274(to)-273(treat)-273(of)-274(the)-273(conic,)-280(not)-273(as)-274(the)-273(projection)-274(of)-273(a)-274(circle,)-279(but)-274(as)]TJ 0 -13.549 Td[(the)-260(locus)-260(of)-260(intersection)-260(of)-260(corresponding)-260(rays)-260(of)-261(two)-260(projective)]TJ 0 -13.549 Td[(pencils.)-612(Steiner)-370(not)-371(only)-370(related)-371(to)-370(each)-371(other,)-801(in)-371(one-to-one)]TJ/F16 7.97 Tf 291.024 0 Td[([117])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(correspondence,)-289(point-rows)-282(and)-281(pencils)-281(and)-282(all)-281(the)-281(other)-282(funda-)]TJ 0 -13.55 Td[(mental)-365(forms,)-394(but)-365(he)-365(set)-365(into)-365(correspondence)-365(even)-365(curves)-365(and)]TJ 0 -13.549 Td[(surfaces)-245(of)-244(higher)-245(degrees.)-248(This)-244(new)-245(and)-244(fertile)-245(conception)-245(gave)]TJ 0 -13.549 Td[(him)-288(an)-289(easy)-288(and)-289(direct)-288(route)-289(into)-288(the)-288(most)-289(abstract)-288(and)-289(difficult)]TJ 0 -13.549 Td[(regions)-285(of)-285(pure)-286(geometry.)-355(Much)-286(of)-285(his)-285(work)-285(was)-285(given)-286(without)]TJ +ET +1 0 0 1 46.771 84.933 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -87.523 cm +BT +/F16 5.978 Tf 50.009 80.91 Td[(20)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Steiner,)-719(Systematische)-625(Ehtwickelung)-625(der)-625(Abh\344ngi)-1(gkeit)-625(geometrischer)]TJ -11.956 -10.959 Td[(Gestalten)-250(von)-250(einander.)-250(1832)-1(.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1717 0 obj << +/Type /Page +/Contents 1718 0 R +/Resources 1716 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +>> endobj +1709 0 obj << +/D [1717 0 R /XYZ 46.771 283.949 null] +>> endobj +1719 0 obj << +/D [1717 0 R /XYZ 46.771 261.448 null] +>> endobj +1720 0 obj << +/D [1717 0 R /XYZ 263.243 167.284 null] +>> endobj +1716 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1722 0 obj +<< /S /GoTo /D (index207) >> +endobj +1725 0 obj +() +endobj +1728 0 obj << +/Length 4268 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(142)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(any)-266(indication)-267(of)-266(the)-267(methods)-266(by)-266(which)-267(he)-266(had)-266(arrived)-267(at)-266(it,)-271(and)]TJ 0 -13.549 Td[(many)-250(of)-250(his)-250(results)-250(have)-250(only)-250(recently)-250(been)-250(verified.)]TJ/F39 10.909 Tf 0 -61.143 Td[(185.)-715(Von)-405(Staudt)-405(and)-404(his)-405(work.)]TJ/F16 10.909 Tf 160.559 0 Td[(To)-405(complete)-405(the)-405(theory)-405(of)]TJ -160.559 -13.549 Td[(geometry)-339(as)-338(we)-339(have)-338(it)-339(to-day)-338(it)-339(only)-338(remained)-339(to)-339(free)-338(it)-339(from)]TJ 0 -13.549 Td[(its)-487(dependence)-487(on)-487(the)-487(semimetrical)-487(basis)-487(of)-487(the)-487(anharmonic)]TJ 0 -13.549 Td[(ratio.)-1049(This)-516(work)-516(was)-516(accomplished)-516(by)-516(Von)-517(Staudt,)]TJ/F16 7.97 Tf 247.02 3.958 Td[(21)]TJ/F16 10.909 Tf 14.825 -3.958 Td[(who)]TJ -261.845 -13.55 Td[(applied)-248(himself)-248(to)-248(the)-248(restatement)-248(of)-248(the)-248(theory)-248(of)-248(geometry)-249(in)-248(a)]TJ 0 -13.549 Td[(form)-292(independent)-293(of)-292(analytic)-292(and)-292(metrical)-293(notions.)-376(The)-293(method)]TJ 0 -13.549 Td[(which)-283(has)-283(been)-283(used)-283(in)-283(Chapter)-283(II)-283(to)-283(develop)-283(the)-283(notion)-283(of)-283(four)]TJ 0 -13.549 Td[(harmonic)-340(points)-340(by)-341(means)-340(of)-340(the)-340(complete)-340(quadrilateral)-340(is)-341(due)]TJ 0 -13.549 Td[(to)-299(Von)-299(Staudt.)-398(His)-299(work)-299(is)-300(characterized)-299(by)-299(a)-299(most)-300(remarkable)]TJ 0 -13.55 Td[(generality,)-269(in)-266(that)-265(he)-265(is)-266(able)-265(to)-265(discuss)-266(real)-265(and)-265(imaginary)-266(forms)]TJ 0 -13.549 Td[(with)-298(equal)-298(ease.)-395(Thus)-298(he)-298(assumes)-298(a)-298(one-to-one)-299(correspondence)]TJ 0 -13.549 Td[(between)-428(the)-429(points)-428(and)-429(lines)-428(of)-429(a)-428(plane,)-473(and)-429(defines)-428(a)-429(conic)]TJ 0 -13.549 Td[(as)-414(the)-415(locus)-414(of)-414(points)-415(which)-414(lie)-415(on)-414(their)-414(corresponding)-415(lines,)]TJ 0 -13.549 Td[(and)-338(a)-338(pencil)-339(of)-338(rays)-338(of)-338(the)-338(second)-339(order)-338(as)-338(the)-338(system)-338(of)-339(lines)]TJ 0 -13.55 Td[(which)-356(pass)-355(through)-356(their)-355(corresponding)-356(points.)-566(The)-356(point-row)]TJ 0 -13.549 Td[(and)-262(pencil)-262(of)-262(the)-262(second)-262(order)-262(may)-262(be)-262(real)-262(or)-262(imaginary,)-265(but)-262(his)]TJ 0 -13.549 Td[(theorems)-291(still)-291(apply.)-372(An)-291(illustration)-291(of)-291(a)-291(correspondence)-291(of)-291(this)]TJ 0 -13.549 Td[(sort,)-351(where)-330(the)-331(conic)-331(is)-330(imaginary,)-351(is)-331(given)-330(in)-331(\247)-331(15)-330(of)-331(the)-331(first)]TJ 0 -13.549 Td[(chapter.)-388(In)-591(defining)-296(conjugate)-296(imaginary)-296(points)-296(on)-295(a)-296(line,)-308(Von)]TJ/F16 7.97 Tf -72.755 0 Td[([118])]TJ/F16 10.909 Tf 72.755 -13.55 Td[(Staudt)-406(made)-406(use)-406(of)-405(an)-406(involution)-406(of)-406(points)-406(having)-406(no)-406(double)]TJ 0 -13.549 Td[(points.)-768(His)-422(methods,)-466(while)-422(elegant)-423(and)-422(powerful,)-466(are)-423(hardly)]TJ 0 -13.549 Td[(adapted)-407(to)-407(an)-408(elementary)-407(course,)-446(but)-408(Reye)]TJ/F16 7.97 Tf 195.824 3.959 Td[(22)]TJ/F16 10.909 Tf 12.911 -3.959 Td[(and)-407(others)-407(have)]TJ -208.735 -13.549 Td[(done)-250(much)-250(toward)-250(simplifying)-250(his)-250(presentation.)]TJ +ET +1 0 0 1 93.543 85.094 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -93.543 -87.684 cm +BT +/F16 5.978 Tf 96.781 81.071 Td[(21)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Von)-250(Staudt,)-250(Geometrie)-250(der)-250(Lage.)-250(1)-1(847.)]TJ/F16 5.978 Tf -8.718 -7.311 Td[(22)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Reye,)-250(Geometrie)-250(der)-250(Lage.)-250(Translat)-1(ed)-250(by)-250(Holgate,)-250(1897.)]TJ +ET +1 0 0 1 93.543 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1727 0 obj << +/Type /Page +/Contents 1728 0 R +/Resources 1726 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +>> endobj +1713 0 obj << +/D [1727 0 R /XYZ 93.543 475.956 null] +>> endobj +1729 0 obj << +/D [1727 0 R /XYZ 93.543 455.773 null] +>> endobj +1730 0 obj << +/D [1727 0 R /XYZ 144.918 199.598 null] +>> endobj +1723 0 obj << +/D [1727 0 R /XYZ 93.543 116.731 null] +>> endobj +1731 0 obj << +/D [1727 0 R /XYZ 93.543 96.547 null] +>> endobj +1726 0 obj << +/Font << /F16 6 0 R /F39 92 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1734 0 obj << +/Length 4919 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(186.)-250(Recent)-250(developments)-13643(143)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F39 10.909 Tf 46.771 518.175 Td[(186.)-463(Recent)-321(developments.)]TJ/F16 10.909 Tf 131.151 0 Td[(It)-321(would)-321(be)-321(only)-321(confusing)-320(to)-321(the)]TJ -131.151 -13.549 Td[(student)-401(to)-400(attempt)-401(to)-401(trace)-400(here)-401(the)-401(later)-400(developments)-401(of)-401(the)]TJ 0 -13.549 Td[(science)-262(of)-263(protective)-262(geometry.)-287(It)-262(is)-262(concerned)-263(for)-262(the)-262(most)-263(part)]TJ 0 -13.549 Td[(with)-415(curves)-415(and)-415(surfaces)-414(of)-415(a)-415(higher)-415(degree)-415(than)-415(the)-415(second.)]TJ 0 -13.55 Td[(Purely)-341(synthetic)-341(methods)-341(have)-341(been)-341(used)-341(with)-342(marked)-341(success)]TJ 0 -13.549 Td[(in)-319(the)-319(study)-318(of)-319(the)-319(straight)-319(line)-319(in)-319(space.)-456(The)-319(struggle)-319(between)]TJ 0 -13.549 Td[(analysis)-251(and)-250(pure)-251(geometry)-250(has)-251(long)-251(since)-250(come)-251(to)-250(an)-251(end.)-252(Each)]TJ 0 -13.549 Td[(has)-212(its)-211(distinct)-211(advantages,)-220(and)-211(the)-212(mathematician)-211(who)-212(cultivates)]TJ 0 -13.549 Td[(one)-306(at)-306(the)-306(expense)-307(of)-306(the)-306(other)-306(will)-306(never)-306(attain)-306(the)-306(results)-307(that)]TJ 0 -13.55 Td[(he)-276(would)-276(attain)-275(if)-276(both)-276(methods)-276(were)-275(equally)-276(ready)-276(to)-276(his)-276(hand.)]TJ 0 -13.549 Td[(Pure)-389(ge)-1(ometry)-389(has)-389(to)-390(its)-389(credit)-390(some)-389(of)-390(the)-389(finest)-390(discoveries)]TJ 0 -13.549 Td[(in)-362(mathematics,)-390(and)-362(need)-361(not)-362(apologize)-362(for)-362(having)-362(been)-362(born.)]TJ 0 -13.549 Td[(The)-354(day)-354(of)-354(its)-354(usefulness)-354(has)-354(not)-354(passed)-354(with)-354(the)-354(invention)-354(of)]TJ 0 -13.549 Td[(abridged)-357(notation)-356(and)-357(of)-356(short)-357(methods)-356(in)-357(analysis.)-569(While)-357(we)]TJ 0 -13.55 Td[(may)-433(be)-433(certain)-433(that)-433(any)-433(geometrical)-433(problem)-433(may)-433(always)-433(be)]TJ 0 -13.549 Td[(stated)-235(in)-235(analytic)-235(form,)-238(it)-234(does)-235(not)-235(follow)-235(that)-235(that)-235(statement)-235(will)]TJ 0 -13.549 Td[(be)-376(simple)-375(or)-376(easily)-375(interpreted.)-627(For)-375(many)-376(mathematicians)-376(the)]TJ 0 -13.549 Td[(geometric)-225(intuitions)-225(are)-226(weak,)-230(and)-225(for)-225(such)-225(the)-225(method)-225(will)-226(have)]TJ 0 -13.549 Td[(little)-237(attraction.)-246(On)-237(the)-236(other)-237(hand,)-240(there)-237(will)-237(always)-237(be)-237(those)-237(for)]TJ 0 -13.55 Td[(whom)-260(the)-260(subject)-260(will)-259(have)-260(a)-260(peculiar)-260(glamor)]TJ/F21 10.909 Tf 199.809 0 Td[(\024)]TJ/F16 10.909 Tf 10.909 0 Td[(who)-260(will)-260(follow)]TJ -210.718 -13.549 Td[(with)-334(delight)-668(the)-334(curious)-334(and)-334(unexpected)-334(relations)-335(between)-334(the)]TJ/F16 7.97 Tf 291.024 0 Td[([119])]TJ/F16 10.909 Tf -291.024 -13.549 Td[(forms)-378(of)-378(space.)-635(There)-378(is)-378(a)-378(corresponding)-378(pleasure,)-411(doubtless,)]TJ 0 -13.549 Td[(for)-431(the)-432(analyst)-431(in)-432(tracing)-431(the)-432(marvelous)-431(connections)-432(between)]TJ 0 -13.549 Td[(the)-384(various)-385(fields)-384(in)-384(which)-384(he)-385(wanders,)-417(and)-385(it)-384(is)-384(as)-384(absurd)-385(to)]TJ 0 -13.55 Td[(shut)-321(one's)-321(eyes)-320(to)-321(the)-321(beauties)-321(in)-320(one)-321(as)-321(it)-321(is)-320(to)-321(ignore)-321(those)-321(in)]TJ 0 -13.549 Td[(the)-393(other.)-680("Let)-394(us)-393(cultivate)-393(geometry,)-430(then,")-393(says)-393(Darboux,)]TJ/F16 7.97 Tf 272.162 3.959 Td[(23)]TJ/F16 10.909 Tf -272.162 -17.508 Td[("without)-292(wishing)-291(in)-292(all)-291(points)-292(to)-292(equal)-291(it)-292(to)-291(its)-292(rival.)-375(Besides,)-302(if)]TJ 0 -13.549 Td[(we)-348(were)-348(tempted)-348(to)-347(neglect)-348(it,)-373(it)-347(would)-348(not)-348(be)-348(long)-348(in)-348(finding)]TJ 0 -13.549 Td[(in)-299(the)-300(applications)-299(of)-300(mathematics,)-312(as)-299(once)-299(it)-300(has)-299(already)-300(done,)]TJ 0 -13.549 Td[(the)-302(means)-302(of)-301(renewing)-302(its)-302(life)-302(and)-302(of)-302(developing)-301(itself)-302(anew.)-406(It)]TJ 0 -13.55 Td[(is)-233(like)-233(the)-234(Giant)-233(Antaeus,)-236(who)-233(renew)-1(ed,)-236(his)-233(strength)-233(by)-234(touching)]TJ 0 -13.549 Td[(the)-250(earth.")]TJ +ET +1 0 0 1 46.771 73.974 cm +0 g 0 G +1 0 0 1 0 2.59 cm +q +[]0 d +0 J +0.398 w +0 0.199 m +112.25 0.199 l +S +Q +1 0 0 1 -46.771 -76.564 cm +BT +/F16 5.978 Tf 50.009 69.951 Td[(23)]TJ/F16 8.966 Tf 8.718 -3.809 Td[(Ball,)-250(loc.)-250(cit.)-250(p.)-250(261.)]TJ +ET +1 0 0 1 46.771 62.854 cm +0 g 0 G +1 0 0 1 0 -24.072 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1733 0 obj << +/Type /Page +/Contents 1734 0 R +/Resources 1732 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +>> endobj +1735 0 obj << +/D [1733 0 R /XYZ 103.761 247.191 null] +>> endobj +1732 0 obj << +/Font << /F16 6 0 R /F39 92 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1736 0 obj +<< /S /GoTo /D (index208) >> +endobj +1739 0 obj +(INDEX) +endobj +1742 0 obj << +/Length 1255 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 18.959 Tf 93.543 479.321 Td[(INDEX)]TJ/F16 10.909 Tf 56.998 -40.333 Td[(\050The)-267(numbers)-267(refer)-268(to)-267(the)-267(paragraphs\051)]TJ -56.998 -15.131 Td[(Abel)-250(\0501802-1829\051,)-250(179)]TJ 0 -28.68 Td[(Analogy,)-250(24)]TJ 0 -28.681 Td[(Analytic)-250(geometry,)-250(21,)-250(118,)-250(119,)-250(120,)-250(146,)-250(176,)-250(180)]TJ 0 -28.68 Td[(Anharmonic)-250(ratio,)-250(46,)-250(161,)-250(184,)-250(185)]TJ 0 -28.681 Td[(Apollonius)-250(\050second)-250(half)-250(of)-250(third)-250(century)-250(B.C.\051,)-250(70)]TJ 0 -28.68 Td[(Archimedes)-250(\050287-212)-250(B.C.\051,)-250(176)]TJ 0 -28.681 Td[(Aristotle)-250(\050384-322)-250(B.C.\051,)-250(169)]TJ 0 -28.68 Td[(Asymptotes,)-250(111,)-250(113,)-250(114,)-250(115,)-250(116,)-250(117,)-250(118,)-250(148)]TJ 0 -28.681 Td[(Axes)-250(of)-250(a)-250(conic,)-250(148)]TJ 0 -28.68 Td[(Axial)-250(pencil,)-250(7,)-250(8,)-250(23,)-250(50,)-250(54)]TJ 0 -28.681 Td[(Axis)-250(of)-250(perspectivity,)-250(8,)-250(47)]TJ 0 -28.68 Td[(Bacon)-250(\0501561-1626\051,)-250(162)]TJ 0 -28.681 Td[(Bisection,)-250(41,)-250(109)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1741 0 obj << +/Type /Page +/Contents 1742 0 R +/Resources 1740 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +/Annots [ 1743 0 R 1744 0 R 1745 0 R 1746 0 R 1747 0 R 1748 0 R 1749 0 R 1750 0 R 1751 0 R 1752 0 R 1753 0 R 1754 0 R 1755 0 R 1756 0 R 1757 0 R 1758 0 R 1759 0 R 1760 0 R 1761 0 R 1762 0 R 1763 0 R 1764 0 R 1765 0 R 1766 0 R 1767 0 R 1768 0 R 1769 0 R 1770 0 R 1771 0 R 1772 0 R 1773 0 R 1774 0 R 1775 0 R ] +>> endobj +1743 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.467 421.926 193.83 431.199] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1744 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [136.569 392.798 147.478 402.518] +/Subtype /Link +/A << /S /GoTo /D (p24) >> +>> endobj +1745 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [180.5 364.118 191.409 373.838] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +1746 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [196.863 364.118 213.227 373.838] +/Subtype /Link +/A << /S /GoTo /D (p118) >> +>> endobj +1747 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [218.681 364.118 235.045 373.838] +/Subtype /Link +/A << /S /GoTo /D (p119) >> +>> endobj +1748 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [262.318 364.118 278.681 373.838] +/Subtype /Link +/A << /S /GoTo /D (p146) >> +>> endobj +1749 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [284.136 364.118 300.499 373.838] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +1750 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [305.954 364.118 322.317 373.838] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1751 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.256 336.299 187.165 345.31] +/Subtype /Link +/A << /S /GoTo /D (p46) >> +>> endobj +1752 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [192.62 336.299 208.983 345.31] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +1753 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [214.438 336.299 230.801 345.31] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1754 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [236.256 336.299 252.619 345.31] +/Subtype /Link +/A << /S /GoTo /D (p185) >> +>> endobj +1755 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [300.794 306.757 311.703 316.477] +/Subtype /Link +/A << /S /GoTo /D (p70) >> +>> endobj +1756 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [220.798 278.524 237.161 287.797] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +1757 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [206.267 249.843 222.63 259.116] +/Subtype /Link +/A << /S /GoTo /D (p169) >> +>> endobj +1758 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [151.121 220.716 167.485 230.588] +/Subtype /Link +/A << /S /GoTo /D (p111) >> +>> endobj +1759 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.94 220.716 189.303 230.588] +/Subtype /Link +/A << /S /GoTo /D (p113) >> +>> endobj +1760 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [194.758 220.716 211.121 230.588] +/Subtype /Link +/A << /S /GoTo /D (p114) >> +>> endobj +1761 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [216.576 220.716 232.939 230.588] +/Subtype /Link +/A << /S /GoTo /D (p115) >> +>> endobj +1762 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [260.212 220.716 276.576 230.588] +/Subtype /Link +/A << /S /GoTo /D (p117) >> +>> endobj +1763 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [282.03 220.716 298.394 230.588] +/Subtype /Link +/A << /S /GoTo /D (p118) >> +>> endobj +1764 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [303.848 220.716 320.212 230.588] +/Subtype /Link +/A << /S /GoTo /D (p148) >> +>> endobj +1765 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [167.158 192.897 183.521 201.755] +/Subtype /Link +/A << /S /GoTo /D (p148) >> +>> endobj +1766 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [152.627 163.365 158.081 173.227] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +1767 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [163.536 163.365 168.99 173.227] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +1768 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [174.445 163.365 185.354 173.227] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +1769 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [190.809 163.365 201.718 173.227] +/Subtype /Link +/A << /S /GoTo /D (p50) >> +>> endobj +1770 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [207.172 163.365 218.081 173.227] +/Subtype /Link +/A << /S /GoTo /D (p54) >> +>> endobj +1771 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [190.503 134.674 195.958 144.394] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +1772 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [201.412 134.674 212.321 144.394] +/Subtype /Link +/A << /S /GoTo /D (p47) >> +>> endobj +1773 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [184.132 106.441 200.496 115.866] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1774 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.212 78.175 151.121 87.033] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +1775 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [156.576 78.175 172.94 87.033] +/Subtype /Link +/A << /S /GoTo /D (p109) >> +>> endobj +1737 0 obj << +/D [1741 0 R /XYZ 93.543 529.134 null] +>> endobj +1740 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1778 0 obj << +/Length 1389 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(INDEX)-21115(145)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(Brianchon)-377(\0501785-1864\051,)-410(84,)-409(85,)-409(86,)-409(88,)-409(89,)-409(90,)-409(95,)-409(105,)-410(113,)]TJ 0 -13.549 Td[(174,)-250(184)]TJ 0 -28.329 Td[(Calculus,)-250(176)]TJ 0 -28.329 Td[(Carnot)-250(\0501796-1832\051,)-250(179)]TJ 0 -28.329 Td[(Cauchy)-250(\0501789-1857\051,)-250(179,)-250(181)]TJ 0 -28.329 Td[(Cavalieri)-250(\0501598-1647\051,)-250(162)]TJ 0 -28.329 Td[(Center)-250(of)-250(a)-250(conic,)-250(107,)-250(112,)-250(148)]TJ 0 -28.329 Td[(Center)-250(of)-250(involution,)-250(141,)-250(142)]TJ 0 -28.329 Td[(Center)-250(of)-250(perspectivity,)-250(8)]TJ 0 -28.329 Td[(Central)-250(conic,)-250(120)]TJ 0 -28.329 Td[(Chasles)-250(\0501793-1880\051,)-250(168,)-250(179,)-250(180,)-250(184)]TJ 0 -28.329 Td[(Circle,)-250(21,)-250(73,)-250(80,)-250(145,)-250(146,)-250(147)]TJ 0 -28.329 Td[(Circular)-250(involution,)-250(147,)-250(149,)-250(150,)-250(151)]TJ 0 -28.329 Td[(Circular)-250(points,)-250(146)]TJ 0 -28.329 Td[(Class)-250(of)-250(a)-250(curve,)-250(183)]TJ 0 -28.329 Td[(Classification)-250(of)-250(conics,)-250(110)]TJ 0 -28.329 Td[(Collineation,)-250(175)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1777 0 obj << +/Type /Page +/Contents 1778 0 R +/Resources 1776 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +/Annots [ 1779 0 R 1780 0 R 1781 0 R 1782 0 R 1783 0 R 1784 0 R 1785 0 R 1786 0 R 1787 0 R 1788 0 R 1789 0 R 1790 0 R 1791 0 R 1792 0 R 1793 0 R 1794 0 R 1795 0 R 1796 0 R 1797 0 R 1798 0 R 1799 0 R 1800 0 R 1801 0 R 1802 0 R 1803 0 R 1804 0 R 1805 0 R 1806 0 R 1807 0 R 1808 0 R 1809 0 R 1810 0 R 1811 0 R 1812 0 R 1813 0 R 1814 0 R 1815 0 R 1816 0 R ] +>> endobj +1779 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.06 516.244 168.969 525.67] +/Subtype /Link +/A << /S /GoTo /D (p84) >> +>> endobj +1780 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.159 516.244 187.068 525.67] +/Subtype /Link +/A << /S /GoTo /D (p85) >> +>> endobj +1781 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [194.259 516.244 205.168 525.67] +/Subtype /Link +/A << /S /GoTo /D (p86) >> +>> endobj +1782 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [230.458 516.244 241.367 525.67] +/Subtype /Link +/A << /S /GoTo /D (p89) >> +>> endobj +1783 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [248.557 516.244 259.466 525.67] +/Subtype /Link +/A << /S /GoTo /D (p90) >> +>> endobj +1784 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [266.657 516.244 277.566 525.67] +/Subtype /Link +/A << /S /GoTo /D (p95) >> +>> endobj +1785 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [284.756 516.244 301.12 525.67] +/Subtype /Link +/A << /S /GoTo /D (p105) >> +>> endobj +1786 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [308.31 516.244 324.674 525.67] +/Subtype /Link +/A << /S /GoTo /D (p113) >> +>> endobj +1787 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 503.11 63.135 511.968] +/Subtype /Link +/A << /S /GoTo /D (p174) >> +>> endobj +1788 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [68.59 503.11 84.953 511.968] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1789 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [90.408 474.781 106.771 483.639] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +1790 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [139.182 446.037 155.546 455.31] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1791 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [142.815 417.261 159.179 427.134] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1792 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [164.633 417.261 180.997 427.134] +/Subtype /Link +/A << /S /GoTo /D (p181) >> +>> endobj +1793 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [149.48 389.379 165.844 398.805] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1794 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [127.051 361.465 143.415 370.323] +/Subtype /Link +/A << /S /GoTo /D (p107) >> +>> endobj +1795 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [148.869 361.465 165.233 370.323] +/Subtype /Link +/A << /S /GoTo /D (p112) >> +>> endobj +1796 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [170.688 361.465 187.051 370.323] +/Subtype /Link +/A << /S /GoTo /D (p148) >> +>> endobj +1797 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.709 333.136 157.073 341.994] +/Subtype /Link +/A << /S /GoTo /D (p141) >> +>> endobj +1798 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [162.528 333.136 178.891 341.994] +/Subtype /Link +/A << /S /GoTo /D (p142) >> +>> endobj +1799 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [152.208 303.945 157.662 313.665] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +1800 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [110.699 276.478 127.062 285.336] +/Subtype /Link +/A << /S /GoTo /D (p120) >> +>> endobj +1801 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [143.426 247.734 159.789 257.007] +/Subtype /Link +/A << /S /GoTo /D (p168) >> +>> endobj +1802 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [165.244 247.734 181.608 257.007] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1803 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [187.062 247.734 203.426 257.007] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1804 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [78.888 219.82 89.797 228.831] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +1805 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [95.251 219.82 106.16 228.831] +/Subtype /Link +/A << /S /GoTo /D (p73) >> +>> endobj +1806 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [111.615 219.82 122.524 228.831] +/Subtype /Link +/A << /S /GoTo /D (p80) >> +>> endobj +1807 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [127.979 219.82 144.342 228.831] +/Subtype /Link +/A << /S /GoTo /D (p145) >> +>> endobj +1808 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [149.797 219.82 166.16 228.831] +/Subtype /Link +/A << /S /GoTo /D (p146) >> +>> endobj +1809 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [171.615 219.82 187.978 228.831] +/Subtype /Link +/A << /S /GoTo /D (p147) >> +>> endobj +1810 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [135.56 191.491 151.924 200.502] +/Subtype /Link +/A << /S /GoTo /D (p147) >> +>> endobj +1811 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [157.378 191.491 173.742 200.502] +/Subtype /Link +/A << /S /GoTo /D (p149) >> +>> endobj +1812 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [179.197 191.491 195.56 200.502] +/Subtype /Link +/A << /S /GoTo /D (p150) >> +>> endobj +1813 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [117.375 162.311 133.739 172.02] +/Subtype /Link +/A << /S /GoTo /D (p146) >> +>> endobj +1814 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [122.208 134.833 138.571 143.691] +/Subtype /Link +/A << /S /GoTo /D (p183) >> +>> endobj +1815 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.64 106.504 171.004 115.362] +/Subtype /Link +/A << /S /GoTo /D (p110) >> +>> endobj +1816 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [106.171 78.175 122.535 87.186] +/Subtype /Link +/A << /S /GoTo /D (p175) >> +>> endobj +1776 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1819 0 obj << +/Length 1460 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(146)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Concentric)-250(pencils,)-250(50)]TJ 0 -27.405 Td[(Cone)-250(of)-250(the)-250(second)-250(order,)-250(59)]TJ 0 -27.405 Td[(Conic,)-250(73,)-250(81)]TJ 0 -27.406 Td[(Conjugate)-250(diameters,)-250(114,)-250(148)]TJ 0 -27.405 Td[(Conjugate)-250(normal,)-250(151)]TJ 0 -27.405 Td[(Conjugate)-250(points)-250(and)-250(lines,)-250(100,)-250(109,)-250(138,)-250(139,)-250(140)]TJ 0 -27.405 Td[(Constants)-250(in)-250(an)-250(equation,)-250(21)]TJ 0 -27.406 Td[(Contingent)-250(relations,)-250(180,)-250(181)]TJ 0 -27.405 Td[(Continuity,)-250(180,)-250(181)]TJ 0 -27.405 Td[(Continuous)-250(correspondence,)-250(9,)-250(10,)-250(21,)-250(49)]TJ 0 -27.405 Td[(Corresponding)-250(elements,)-250(64)]TJ 0 -27.406 Td[(Counting,)-250(1,)-250(4)]TJ 0 -27.405 Td[(Cross)-250(ratio,)-250(46)]TJ 0 -27.405 Td[(Darboux,)-250(176,)-250(186)]TJ 0 -27.405 Td[(De)-250(Beaugrand,)-250(170)]TJ 0 -27.405 Td[(Degenerate)-250(pencil)-250(of)-250(rays)-250(of)-250(the)-250(second)-250(order,)-250(58,)-250(93)]TJ 0 -27.406 Td[(Degenerate)-250(point-row)-250(of)-250(the)-250(second)-250(order,)-250(56,)-250(78)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1818 0 obj << +/Type /Page +/Contents 1819 0 R +/Resources 1817 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1721 0 R +/Annots [ 1820 0 R 1821 0 R 1822 0 R 1823 0 R 1824 0 R 1825 0 R 1826 0 R 1827 0 R 1828 0 R 1829 0 R 1830 0 R 1831 0 R 1832 0 R 1833 0 R 1834 0 R 1835 0 R 1836 0 R 1837 0 R 1838 0 R 1839 0 R 1840 0 R 1841 0 R 1842 0 R 1843 0 R 1844 0 R 1845 0 R 1846 0 R 1847 0 R 1848 0 R 1849 0 R ] +>> endobj +1820 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [180.5 515.808 191.409 525.67] +/Subtype /Link +/A << /S /GoTo /D (p50) >> +>> endobj +1821 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [208.667 489.254 219.576 498.264] +/Subtype /Link +/A << /S /GoTo /D (p59) >> +>> endobj +1822 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [125.06 461.848 135.969 470.706] +/Subtype /Link +/A << /S /GoTo /D (p73) >> +>> endobj +1823 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [141.423 461.848 152.332 470.706] +/Subtype /Link +/A << /S /GoTo /D (p81) >> +>> endobj +1824 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [188.987 433.581 205.35 443.301] +/Subtype /Link +/A << /S /GoTo /D (p114) >> +>> endobj +1825 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [210.805 433.581 227.169 443.301] +/Subtype /Link +/A << /S /GoTo /D (p148) >> +>> endobj +1826 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.478 406.176 193.841 416.049] +/Subtype /Link +/A << /S /GoTo /D (p151) >> +>> endobj +1827 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [215.059 378.771 231.423 388.491] +/Subtype /Link +/A << /S /GoTo /D (p100) >> +>> endobj +1828 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [258.696 378.771 275.059 388.491] +/Subtype /Link +/A << /S /GoTo /D (p138) >> +>> endobj +1829 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [280.514 378.771 296.877 388.491] +/Subtype /Link +/A << /S /GoTo /D (p139) >> +>> endobj +1830 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [302.332 378.771 318.696 388.491] +/Subtype /Link +/A << /S /GoTo /D (p140) >> +>> endobj +1831 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [206.572 351.376 217.481 361.085] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +1832 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [187.787 323.96 204.15 333.68] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1833 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [209.605 323.96 225.969 333.68] +/Subtype /Link +/A << /S /GoTo /D (p181) >> +>> endobj +1834 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [145.678 296.555 162.041 306.275] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1835 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [167.496 296.555 183.86 306.275] +/Subtype /Link +/A << /S /GoTo /D (p181) >> +>> endobj +1836 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [220.492 269.161 225.947 278.87] +/Subtype /Link +/A << /S /GoTo /D (p9) >> +>> endobj +1837 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [231.401 269.161 242.31 278.87] +/Subtype /Link +/A << /S /GoTo /D (p10) >> +>> endobj +1838 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [264.129 269.161 275.038 278.87] +/Subtype /Link +/A << /S /GoTo /D (p49) >> +>> endobj +1839 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [205.35 241.745 216.26 251.464] +/Subtype /Link +/A << /S /GoTo /D (p64) >> +>> endobj +1840 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [139.612 214.339 145.067 224.059] +/Subtype /Link +/A << /S /GoTo /D (p1) >> +>> endobj +1841 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [150.521 214.339 155.976 224.059] +/Subtype /Link +/A << /S /GoTo /D (p4) >> +>> endobj +1842 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [146.572 187.796 157.481 196.654] +/Subtype /Link +/A << /S /GoTo /D (p46) >> +>> endobj +1843 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.169 160.391 153.532 169.249] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +1844 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.987 160.391 175.351 169.249] +/Subtype /Link +/A << /S /GoTo /D (p186) >> +>> endobj +1845 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [161.703 132.124 178.067 141.844] +/Subtype /Link +/A << /S /GoTo /D (p170) >> +>> endobj +1846 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [297.412 104.718 308.321 114.591] +/Subtype /Link +/A << /S /GoTo /D (p58) >> +>> endobj +1847 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [313.776 104.718 324.685 114.591] +/Subtype /Link +/A << /S /GoTo /D (p93) >> +>> endobj +1848 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [281.059 77.313 291.969 87.186] +/Subtype /Link +/A << /S /GoTo /D (p56) >> +>> endobj +1849 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [297.423 77.313 308.332 87.186] +/Subtype /Link +/A << /S /GoTo /D (p78) >> +>> endobj +1817 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1852 0 obj << +/Length 1567 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(INDEX)-21115(147)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(De)-250(la)-250(Hire)-250(\0501640-1718\051,)-250(168,)-250(171,)-250(175)]TJ 0 -28.329 Td[(Desargues)-392(\0501593-1662\051,)-427(25,)-428(26,)-427(40,)-427(121,)-428(125,)-427(162,)-427(163,)-428(164,)]TJ 0 -13.549 Td[(165,)-250(166,)-250(167,)-250(168,)-250(169,)-250(170,)-250(171,)-250(174,)-250(175)]TJ 0 -28.329 Td[(Descartes)-250(\0501596-1650\051,)-250(162,)-250(170,)-250(171,)-250(174,)-250(176)]TJ 0 -28.329 Td[(Descriptive)-250(geometry,)-250(179)]TJ 0 -28.329 Td[(Diameter,)-250(107)]TJ 0 -28.329 Td[(Directrix,)-250(157,)-250(158,)-250(159,)-250(160)]TJ 0 -28.329 Td[(Double)-250(correspondence,)-250(128,)-250(130)]TJ 0 -28.329 Td[(Double)-250(points)-250(of)-250(an)-250(involution,)-250(124)]TJ 0 -28.329 Td[(Double)-250(rays)-250(of)-250(an)-250(involution,)-250(133,)-250(134)]TJ 0 -28.329 Td[(Duality,)-250(94,)-250(104,)-250(161,)-250(180,)-250(182)]TJ 0 -28.329 Td[(Dupin)-250(\0501784-1873\051,)-250(174,)-250(184)]TJ 0 -28.329 Td[(Eccentricity)-250(of)-250(conic,)-250(159)]TJ 0 -28.329 Td[(Ellipse,)-250(110,)-250(111,)-250(162)]TJ 0 -28.329 Td[(Equation)-250(of)-250(conic,)-250(118,)-250(119,)-250(120)]TJ 0 -28.329 Td[(Euclid)-250(\050ca.)-250(300)-250(B.C.\051,)-250(6,)-250(22,)-250(104)]TJ 0 -28.329 Td[(Euler)-250(\0501707-1783\051,)-250(166)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1851 0 obj << +/Type /Page +/Contents 1852 0 R +/Resources 1850 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 1853 0 R 1854 0 R 1855 0 R 1856 0 R 1857 0 R 1858 0 R 1859 0 R 1860 0 R 1861 0 R 1862 0 R 1863 0 R 1864 0 R 1865 0 R 1866 0 R 1867 0 R 1868 0 R 1869 0 R 1870 0 R 1871 0 R 1872 0 R 1873 0 R 1874 0 R 1875 0 R 1876 0 R 1877 0 R 1878 0 R 1879 0 R 1880 0 R 1881 0 R 1882 0 R 1883 0 R 1884 0 R 1885 0 R 1886 0 R 1887 0 R 1888 0 R 1889 0 R 1890 0 R 1891 0 R 1892 0 R 1893 0 R 1894 0 R 1895 0 R 1896 0 R 1897 0 R 1898 0 R 1899 0 R 1900 0 R 1901 0 R ] +>> endobj +1853 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.924 516.244 171.288 525.67] +/Subtype /Link +/A << /S /GoTo /D (p168) >> +>> endobj +1854 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.742 516.244 193.106 525.67] +/Subtype /Link +/A << /S /GoTo /D (p171) >> +>> endobj +1855 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.406 487.468 169.315 497.341] +/Subtype /Link +/A << /S /GoTo /D (p25) >> +>> endobj +1856 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.704 487.468 187.613 497.341] +/Subtype /Link +/A << /S /GoTo /D (p26) >> +>> endobj +1857 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [195.002 487.468 205.911 497.341] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +1858 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [237.053 487.468 253.416 497.341] +/Subtype /Link +/A << /S /GoTo /D (p125) >> +>> endobj +1859 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [260.805 487.468 277.169 497.341] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1860 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [284.558 487.468 300.921 497.341] +/Subtype /Link +/A << /S /GoTo /D (p163) >> +>> endobj +1861 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [308.31 487.468 324.674 497.341] +/Subtype /Link +/A << /S /GoTo /D (p164) >> +>> endobj +1862 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 474.781 63.135 483.791] +/Subtype /Link +/A << /S /GoTo /D (p165) >> +>> endobj +1863 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [68.59 474.781 84.953 483.791] +/Subtype /Link +/A << /S /GoTo /D (p166) >> +>> endobj +1864 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [112.226 474.781 128.589 483.791] +/Subtype /Link +/A << /S /GoTo /D (p168) >> +>> endobj +1865 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [134.044 474.781 150.408 483.791] +/Subtype /Link +/A << /S /GoTo /D (p169) >> +>> endobj +1866 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.862 474.781 172.226 483.791] +/Subtype /Link +/A << /S /GoTo /D (p170) >> +>> endobj +1867 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.68 474.781 194.044 483.791] +/Subtype /Link +/A << /S /GoTo /D (p171) >> +>> endobj +1868 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [199.498 474.781 215.862 483.791] +/Subtype /Link +/A << /S /GoTo /D (p174) >> +>> endobj +1869 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.317 474.781 237.68 483.791] +/Subtype /Link +/A << /S /GoTo /D (p175) >> +>> endobj +1870 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [151.891 446.037 168.255 455.462] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1871 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [173.709 446.037 190.073 455.462] +/Subtype /Link +/A << /S /GoTo /D (p170) >> +>> endobj +1872 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [217.346 446.037 233.709 455.462] +/Subtype /Link +/A << /S /GoTo /D (p174) >> +>> endobj +1873 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [239.164 446.037 255.527 455.462] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +1874 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [146.448 417.261 162.811 426.981] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1875 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [92.819 389.794 109.182 398.652] +/Subtype /Link +/A << /S /GoTo /D (p107) >> +>> endobj +1876 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [91.608 361.465 107.971 370.476] +/Subtype /Link +/A << /S /GoTo /D (p157) >> +>> endobj +1877 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [113.426 361.465 129.789 370.476] +/Subtype /Link +/A << /S /GoTo /D (p158) >> +>> endobj +1878 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [135.244 361.465 151.608 370.476] +/Subtype /Link +/A << /S /GoTo /D (p159) >> +>> endobj +1879 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [157.062 361.465 173.426 370.476] +/Subtype /Link +/A << /S /GoTo /D (p160) >> +>> endobj +1880 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.524 332.285 171.888 341.994] +/Subtype /Link +/A << /S /GoTo /D (p128) >> +>> endobj +1881 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.342 332.285 193.706 341.994] +/Subtype /Link +/A << /S /GoTo /D (p130) >> +>> endobj +1882 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [186.168 303.956 202.531 313.665] +/Subtype /Link +/A << /S /GoTo /D (p124) >> +>> endobj +1883 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.669 275.616 194.033 285.336] +/Subtype /Link +/A << /S /GoTo /D (p133) >> +>> endobj +1884 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [84.953 247.287 95.862 257.007] +/Subtype /Link +/A << /S /GoTo /D (p94) >> +>> endobj +1885 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [101.317 247.287 117.68 257.007] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +1886 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [123.135 247.287 139.499 257.007] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +1887 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [144.953 247.287 161.317 257.007] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1888 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [166.771 247.287 183.135 257.007] +/Subtype /Link +/A << /S /GoTo /D (p182) >> +>> endobj +1889 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [136.76 218.969 153.124 228.678] +/Subtype /Link +/A << /S /GoTo /D (p174) >> +>> endobj +1890 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.579 218.969 174.942 228.678] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1891 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [143.109 190.629 159.473 200.502] +/Subtype /Link +/A << /S /GoTo /D (p159) >> +>> endobj +1892 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [82.531 162.311 98.895 172.02] +/Subtype /Link +/A << /S /GoTo /D (p110) >> +>> endobj +1893 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [104.35 162.311 120.713 172.02] +/Subtype /Link +/A << /S /GoTo /D (p111) >> +>> endobj +1894 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [126.168 162.311 142.531 172.02] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1895 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [129.789 133.982 146.153 143.691] +/Subtype /Link +/A << /S /GoTo /D (p118) >> +>> endobj +1896 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [151.608 133.982 167.971 143.691] +/Subtype /Link +/A << /S /GoTo /D (p119) >> +>> endobj +1897 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [173.426 133.982 189.789 143.691] +/Subtype /Link +/A << /S /GoTo /D (p120) >> +>> endobj +1898 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [144.942 106.089 150.397 115.362] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +1899 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.851 106.089 166.76 115.362] +/Subtype /Link +/A << /S /GoTo /D (p22) >> +>> endobj +1900 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.215 106.089 188.578 115.362] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +1901 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [133.117 77.76 149.48 87.033] +/Subtype /Link +/A << /S /GoTo /D (p166) >> +>> endobj +1850 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1905 0 obj << +/Length 1652 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(148)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Fermat)-250(\0501601-1665\051,)-250(162,)-250(171)]TJ 0 -28.329 Td[(Foci)-356(of)-355(a)-356(conic,)-381(152,)-382(153,)-382(154,)-382(155,)-382(156,)-382(157,)-382(158,)-382(159,)-382(160,)]TJ 0 -13.549 Td[(161,)-250(162)]TJ 0 -28.329 Td[(Fourier)-250(\0501768-1830\051,)-250(179)]TJ 0 -28.329 Td[(Fourth)-250(harmonic,)-250(29)]TJ 0 -28.329 Td[(Fundamental)-250(form,)-250(7,)-250(16,)-250(23,)-250(36,)-250(47,)-250(60,)-250(184)]TJ 0 -28.329 Td[(Galileo)-250(\0501564-1642\051,)-250(162,)-250(169,)-250(170,)-250(176)]TJ 0 -28.329 Td[(Gauss)-250(\0501777-1855\051,)-250(179)]TJ 0 -28.329 Td[(Gergonne)-250(\0501771-1859\051,)-250(182,)-250(184)]TJ 0 -28.329 Td[(Greek)-250(geometry,)-250(161)]TJ 0 -28.329 Td[(Hachette)-250(\0501769-1834\051,)-250(179,)-250(184)]TJ 0 -28.329 Td[(Harmonic)-250(conjugates,)-250(29,)-250(30,)-250(39)]TJ 0 -28.329 Td[(Harmonic)-250(elements,)-250(86,)-250(49,)-250(91,)-250(163,)-250(185)]TJ 0 -28.329 Td[(Harmonic)-250(lines,)-250(33,)-250(34,)-250(35,)-250(66,)-250(67)]TJ 0 -28.329 Td[(Harmonic)-250(planes,)-250(34,)-250(35)]TJ 0 -28.329 Td[(Harmonic)-250(points,)-250(29,)-250(31,)-250(32,)-250(33,)-250(34,)-250(35,)-250(36,)-250(43,)-250(71,)-250(161)]TJ 0 -28.329 Td[(Harmonic)-250(tangents)-250(to)-250(a)-250(conic,)-250(91,)-250(92)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1904 0 obj << +/Type /Page +/Contents 1905 0 R +/Resources 1903 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 1906 0 R 1907 0 R 1908 0 R 1909 0 R 1910 0 R 1911 0 R 1912 0 R 1913 0 R 1914 0 R 1915 0 R 1916 0 R 1917 0 R 1918 0 R 1919 0 R 1920 0 R 1921 0 R 1922 0 R 1923 0 R 1924 0 R 1925 0 R 1926 0 R 1927 0 R 1928 0 R 1929 0 R 1930 0 R 1931 0 R 1932 0 R 1933 0 R 1934 0 R 1935 0 R 1936 0 R 1937 0 R 1938 0 R 1939 0 R 1940 0 R 1941 0 R 1942 0 R 1943 0 R 1944 0 R 1945 0 R 1946 0 R 1947 0 R 1948 0 R 1949 0 R 1950 0 R 1951 0 R 1952 0 R 1953 0 R 1954 0 R 1955 0 R 1956 0 R 1957 0 R 1958 0 R ] +>> endobj +1906 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [187.165 516.244 203.529 525.67] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1907 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [208.983 516.244 225.347 525.67] +/Subtype /Link +/A << /S /GoTo /D (p171) >> +>> endobj +1908 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [169.028 488.33 185.391 497.341] +/Subtype /Link +/A << /S /GoTo /D (p152) >> +>> endobj +1909 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [192.284 488.33 208.648 497.341] +/Subtype /Link +/A << /S /GoTo /D (p153) >> +>> endobj +1910 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [215.541 488.33 231.905 497.341] +/Subtype /Link +/A << /S /GoTo /D (p154) >> +>> endobj +1911 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [238.798 488.33 255.162 497.341] +/Subtype /Link +/A << /S /GoTo /D (p155) >> +>> endobj +1912 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [285.312 488.33 301.675 497.341] +/Subtype /Link +/A << /S /GoTo /D (p157) >> +>> endobj +1913 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [308.569 488.33 324.932 497.341] +/Subtype /Link +/A << /S /GoTo /D (p158) >> +>> endobj +1914 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [331.825 488.33 348.189 497.341] +/Subtype /Link +/A << /S /GoTo /D (p159) >> +>> endobj +1915 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [355.082 488.33 371.446 497.341] +/Subtype /Link +/A << /S /GoTo /D (p160) >> +>> endobj +1916 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [93.543 474.781 109.907 483.639] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +1917 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [115.362 474.781 131.725 483.639] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1918 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [188.376 446.037 204.74 455.31] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1919 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.023 418.123 182.932 426.981] +/Subtype /Link +/A << /S /GoTo /D (p29) >> +>> endobj +1920 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [179.9 389.794 185.354 398.652] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +1921 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [190.809 389.794 201.718 398.652] +/Subtype /Link +/A << /S /GoTo /D (p16) >> +>> endobj +1922 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [207.172 389.794 218.081 398.652] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +1923 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [223.536 389.794 234.445 398.652] +/Subtype /Link +/A << /S /GoTo /D (p36) >> +>> endobj +1924 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [256.263 389.794 267.172 398.652] +/Subtype /Link +/A << /S /GoTo /D (p60) >> +>> endobj +1925 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [272.627 389.794 288.99 398.652] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1926 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [188.376 361.05 204.74 370.476] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1927 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [210.194 361.05 226.558 370.476] +/Subtype /Link +/A << /S /GoTo /D (p169) >> +>> endobj +1928 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [232.012 361.05 248.376 370.476] +/Subtype /Link +/A << /S /GoTo /D (p170) >> +>> endobj +1929 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.921 332.721 199.285 342.147] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1930 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [199.274 303.945 215.638 313.818] +/Subtype /Link +/A << /S /GoTo /D (p182) >> +>> endobj +1931 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.092 303.945 237.456 313.818] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1932 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [169.58 275.616 185.943 285.336] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +1933 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [195.031 247.734 211.394 257.007] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +1934 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [216.849 247.734 233.212 257.007] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +1935 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [192.009 218.958 202.918 228.678] +/Subtype /Link +/A << /S /GoTo /D (p29) >> +>> endobj +1936 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [208.372 218.958 219.281 228.678] +/Subtype /Link +/A << /S /GoTo /D (p30) >> +>> endobj +1937 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [224.736 218.958 235.645 228.678] +/Subtype /Link +/A << /S /GoTo /D (p39) >> +>> endobj +1938 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [184.132 191.491 195.041 200.502] +/Subtype /Link +/A << /S /GoTo /D (p86) >> +>> endobj +1939 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [200.496 191.491 211.405 200.502] +/Subtype /Link +/A << /S /GoTo /D (p49) >> +>> endobj +1940 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [216.86 191.491 227.769 200.502] +/Subtype /Link +/A << /S /GoTo /D (p91) >> +>> endobj +1941 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [255.041 191.491 271.405 200.502] +/Subtype /Link +/A << /S /GoTo /D (p185) >> +>> endobj +1942 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [165.958 163.162 176.867 172.173] +/Subtype /Link +/A << /S /GoTo /D (p33) >> +>> endobj +1943 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.321 163.162 193.23 172.173] +/Subtype /Link +/A << /S /GoTo /D (p34) >> +>> endobj +1944 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [198.685 163.162 209.594 172.173] +/Subtype /Link +/A << /S /GoTo /D (p35) >> +>> endobj +1945 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [215.049 163.162 225.958 172.173] +/Subtype /Link +/A << /S /GoTo /D (p66) >> +>> endobj +1946 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [231.412 163.162 242.321 172.173] +/Subtype /Link +/A << /S /GoTo /D (p67) >> +>> endobj +1947 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [173.223 133.982 184.132 143.844] +/Subtype /Link +/A << /S /GoTo /D (p34) >> +>> endobj +1948 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.587 133.982 200.496 143.844] +/Subtype /Link +/A << /S /GoTo /D (p35) >> +>> endobj +1949 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.023 105.653 182.932 115.515] +/Subtype /Link +/A << /S /GoTo /D (p29) >> +>> endobj +1950 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [188.387 105.653 199.296 115.515] +/Subtype /Link +/A << /S /GoTo /D (p31) >> +>> endobj +1951 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [204.75 105.653 215.659 115.515] +/Subtype /Link +/A << /S /GoTo /D (p32) >> +>> endobj +1952 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.114 105.653 232.023 115.515] +/Subtype /Link +/A << /S /GoTo /D (p33) >> +>> endobj +1953 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [253.841 105.653 264.75 115.515] +/Subtype /Link +/A << /S /GoTo /D (p35) >> +>> endobj +1954 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [270.205 105.653 281.114 115.515] +/Subtype /Link +/A << /S /GoTo /D (p36) >> +>> endobj +1955 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [286.568 105.653 297.477 115.515] +/Subtype /Link +/A << /S /GoTo /D (p43) >> +>> endobj +1956 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [302.932 105.653 313.841 115.515] +/Subtype /Link +/A << /S /GoTo /D (p71) >> +>> endobj +1957 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [319.296 105.653 335.659 115.515] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +1958 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [243.216 77.313 254.125 87.033] +/Subtype /Link +/A << /S /GoTo /D (p92) >> +>> endobj +1903 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +1961 0 obj << +/Length 1713 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(INDEX)-21115(149)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(Harvey)-250(\0501578-1657\051,)-250(169)]TJ 0 -28.329 Td[(Homology,)-250(180,)-250(182)]TJ 0 -28.329 Td[(Huygens)-250(\0501629-1695\051,)-250(162)]TJ 0 -28.329 Td[(Hyperbola,)-250(110,)-250(111,)-250(113,)-250(114,)-250(115,)-250(116,)-250(117,)-250(118,)-250(162)]TJ 0 -28.329 Td[(Imaginary)-250(elements,)-250(146,)-250(180,)-250(181,)-250(182,)-250(185)]TJ 0 -28.329 Td[(Infinitely)-250(distant)-250(elements,)-250(6,)-250(9,)-250(22,)-250(39,)-250(40,)-250(41,)-250(104,)-250(107,)-250(110)]TJ 0 -28.329 Td[(Infinity,)-250(4,)-250(5,)-250(10,)-250(12,)-250(13,)-250(14,)-250(15,)-250(17,)-250(18,)-250(19,)-250(20,)-250(21,)-250(22,)-250(41)]TJ 0 -28.329 Td[(Involution,)-233(37,)-232(123,)-233(124,)-232(125,)-233(126,)-232(127,)-233(128,)-232(129,)-233(130,)-232(131,)-233(132,)]TJ 0 -13.549 Td[(133,)-250(134,)-250(135,)-250(136,)-250(137,)-250(138,)-250(139,)-250(140,)-250(161,)-250(163,)-250(170)]TJ 0 -28.329 Td[(Kepler)-250(\0501571-1630\051,)-250(162)]TJ 0 -28.329 Td[(Lagrange)-250(\0501736-1813\051,)-250(176,)-250(179)]TJ 0 -28.329 Td[(Laplace)-250(\0501749-1827\051,)-250(179)]TJ 0 -28.329 Td[(Legendre)-250(\0501752-1833\051,)-250(179)]TJ 0 -28.329 Td[(Leibniz)-250(\0501646-1716\051,)-250(173)]TJ 0 -28.329 Td[(Linear)-250(construction,)-250(40,)-250(41,)-250(42)]TJ 0 -28.329 Td[(Maclaurin)-250(\0501698-1746\051,)-250(177,)-250(178)]TJ 0 -28.329 Td[(Measurements,)-250(23,)-250(40,)-250(41,)-250(104)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +1960 0 obj << +/Type /Page +/Contents 1961 0 R +/Resources 1959 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 1962 0 R 1963 0 R 1964 0 R 1965 0 R 1966 0 R 1967 0 R 1968 0 R 1969 0 R 1970 0 R 1971 0 R 1972 0 R 1973 0 R 1974 0 R 1975 0 R 1976 0 R 1977 0 R 1978 0 R 1979 0 R 1980 0 R 1981 0 R 1982 0 R 1983 0 R 1984 0 R 1985 0 R 1986 0 R 1987 0 R 1988 0 R 1989 0 R 1990 0 R 1991 0 R 1992 0 R 1993 0 R 1994 0 R 1995 0 R 1996 0 R 1997 0 R 1998 0 R 1999 0 R 2000 0 R 2001 0 R 2002 0 R 2003 0 R 2004 0 R 2005 0 R 2006 0 R 2007 0 R 2008 0 R 2009 0 R 2010 0 R 2011 0 R 2012 0 R 2013 0 R 2014 0 R 2015 0 R 2016 0 R 2017 0 R 2018 0 R 2019 0 R 2020 0 R 2021 0 R 2022 0 R 2023 0 R 2024 0 R 2025 0 R 2026 0 R 2027 0 R 2028 0 R 2029 0 R 2030 0 R 2031 0 R 2032 0 R ] +>> endobj +1962 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [141.593 515.797 157.957 525.67] +/Subtype /Link +/A << /S /GoTo /D (p169) >> +>> endobj +1963 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [98.895 487.468 115.259 497.188] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1964 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [120.713 487.468 137.077 497.188] +/Subtype /Link +/A << /S /GoTo /D (p182) >> +>> endobj +1965 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [148.269 459.139 164.633 469.012] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1966 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [98.273 430.81 114.637 440.683] +/Subtype /Link +/A << /S /GoTo /D (p110) >> +>> endobj +1967 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [120.091 430.81 136.455 440.683] +/Subtype /Link +/A << /S /GoTo /D (p111) >> +>> endobj +1968 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [141.909 430.81 158.273 440.683] +/Subtype /Link +/A << /S /GoTo /D (p113) >> +>> endobj +1969 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [163.728 430.81 180.091 440.683] +/Subtype /Link +/A << /S /GoTo /D (p114) >> +>> endobj +1970 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [185.546 430.81 201.909 440.683] +/Subtype /Link +/A << /S /GoTo /D (p115) >> +>> endobj +1971 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [229.182 430.81 245.546 440.683] +/Subtype /Link +/A << /S /GoTo /D (p117) >> +>> endobj +1972 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [251 430.81 267.364 440.683] +/Subtype /Link +/A << /S /GoTo /D (p118) >> +>> endobj +1973 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [272.818 430.81 289.182 440.683] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +1974 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [138.571 402.481 154.935 412.354] +/Subtype /Link +/A << /S /GoTo /D (p146) >> +>> endobj +1975 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [160.389 402.481 176.753 412.354] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +1976 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.208 402.481 198.571 412.354] +/Subtype /Link +/A << /S /GoTo /D (p181) >> +>> endobj +1977 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [225.844 402.481 242.207 412.354] +/Subtype /Link +/A << /S /GoTo /D (p185) >> +>> endobj +1978 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [166.16 374.152 171.615 383.872] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +1979 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.069 374.152 182.524 383.872] +/Subtype /Link +/A << /S /GoTo /D (p9) >> +>> endobj +1980 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [204.342 374.152 215.251 383.872] +/Subtype /Link +/A << /S /GoTo /D (p39) >> +>> endobj +1981 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [220.706 374.152 231.615 383.872] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +1982 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [237.069 374.152 247.978 383.872] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +1983 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [253.433 374.152 269.796 383.872] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +1984 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [275.251 374.152 291.614 383.872] +/Subtype /Link +/A << /S /GoTo /D (p107) >> +>> endobj +1985 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [297.069 374.152 313.433 383.872] +/Subtype /Link +/A << /S /GoTo /D (p110) >> +>> endobj +1986 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [84.953 345.823 90.408 355.696] +/Subtype /Link +/A << /S /GoTo /D (p4) >> +>> endobj +1987 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [95.862 345.823 101.317 355.696] +/Subtype /Link +/A << /S /GoTo /D (p5) >> +>> endobj +1988 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [106.771 345.823 117.68 355.696] +/Subtype /Link +/A << /S /GoTo /D (p10) >> +>> endobj +1989 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [123.135 345.823 134.044 355.696] +/Subtype /Link +/A << /S /GoTo /D (p12) >> +>> endobj +1990 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [139.498 345.823 150.408 355.696] +/Subtype /Link +/A << /S /GoTo /D (p13) >> +>> endobj +1991 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.862 345.823 166.771 355.696] +/Subtype /Link +/A << /S /GoTo /D (p14) >> +>> endobj +1992 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.226 345.823 183.135 355.696] +/Subtype /Link +/A << /S /GoTo /D (p15) >> +>> endobj +1993 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [204.953 345.823 215.862 355.696] +/Subtype /Link +/A << /S /GoTo /D (p18) >> +>> endobj +1994 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.316 345.823 232.226 355.696] +/Subtype /Link +/A << /S /GoTo /D (p19) >> +>> endobj +1995 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [237.68 345.823 248.589 355.696] +/Subtype /Link +/A << /S /GoTo /D (p20) >> +>> endobj +1996 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [254.044 345.823 264.953 355.696] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +1997 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [270.407 345.823 281.316 355.696] +/Subtype /Link +/A << /S /GoTo /D (p22) >> +>> endobj +1998 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [286.771 345.823 297.68 355.696] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +1999 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [97.493 318.356 108.402 327.367] +/Subtype /Link +/A << /S /GoTo /D (p37) >> +>> endobj +2000 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [113.666 318.356 130.029 327.367] +/Subtype /Link +/A << /S /GoTo /D (p123) >> +>> endobj +2001 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [135.293 318.356 151.657 327.367] +/Subtype /Link +/A << /S /GoTo /D (p124) >> +>> endobj +2002 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [156.92 318.356 173.284 327.367] +/Subtype /Link +/A << /S /GoTo /D (p125) >> +>> endobj +2003 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.547 318.356 194.911 327.367] +/Subtype /Link +/A << /S /GoTo /D (p126) >> +>> endobj +2004 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.802 318.356 238.165 327.367] +/Subtype /Link +/A << /S /GoTo /D (p128) >> +>> endobj +2005 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [243.429 318.356 259.792 327.367] +/Subtype /Link +/A << /S /GoTo /D (p129) >> +>> endobj +2006 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [265.056 318.356 281.42 327.367] +/Subtype /Link +/A << /S /GoTo /D (p130) >> +>> endobj +2007 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [286.683 318.356 303.047 327.367] +/Subtype /Link +/A << /S /GoTo /D (p131) >> +>> endobj +2008 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [308.31 318.356 324.674 327.367] +/Subtype /Link +/A << /S /GoTo /D (p132) >> +>> endobj +2009 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 304.807 63.135 313.818] +/Subtype /Link +/A << /S /GoTo /D (p133) >> +>> endobj +2010 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [90.408 304.807 106.771 313.818] +/Subtype /Link +/A << /S /GoTo /D (p135) >> +>> endobj +2011 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [112.226 304.807 128.589 313.818] +/Subtype /Link +/A << /S /GoTo /D (p136) >> +>> endobj +2012 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [134.044 304.807 150.408 313.818] +/Subtype /Link +/A << /S /GoTo /D (p137) >> +>> endobj +2013 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.862 304.807 172.226 313.818] +/Subtype /Link +/A << /S /GoTo /D (p138) >> +>> endobj +2014 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [177.68 304.807 194.044 313.818] +/Subtype /Link +/A << /S /GoTo /D (p139) >> +>> endobj +2015 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [199.498 304.807 215.862 313.818] +/Subtype /Link +/A << /S /GoTo /D (p140) >> +>> endobj +2016 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [243.135 304.807 259.498 313.818] +/Subtype /Link +/A << /S /GoTo /D (p163) >> +>> endobj +2017 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [264.953 304.807 281.316 313.818] +/Subtype /Link +/A << /S /GoTo /D (p170) >> +>> endobj +2018 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [139.171 275.627 155.535 285.489] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2019 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [150.68 247.287 167.044 257.007] +/Subtype /Link +/A << /S /GoTo /D (p176) >> +>> endobj +2020 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.499 247.287 188.862 257.007] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2021 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [144.015 218.969 160.379 228.678] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2022 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [150.68 190.629 167.044 200.502] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2023 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [142.815 162.747 159.179 172.02] +/Subtype /Link +/A << /S /GoTo /D (p173) >> +>> endobj +2024 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.36 134.833 148.269 143.691] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +2025 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [153.724 134.833 164.633 143.691] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +2026 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [170.088 134.833 180.997 143.691] +/Subtype /Link +/A << /S /GoTo /D (p42) >> +>> endobj +2027 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.324 106.089 170.688 115.362] +/Subtype /Link +/A << /S /GoTo /D (p177) >> +>> endobj +2028 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.142 106.089 192.506 115.362] +/Subtype /Link +/A << /S /GoTo /D (p178) >> +>> endobj +2029 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [115.848 78.175 126.757 87.033] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2030 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [132.211 78.175 143.12 87.033] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +2031 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [148.575 78.175 159.484 87.033] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +2032 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [164.939 78.175 181.302 87.033] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +1959 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2035 0 obj << +/Length 1708 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(150)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Mersenne)-250(\0501588-1648\051,)-250(168,)-250(171)]TJ 0 -28.329 Td[(Metrical)-250(theorems,)-250(40,)-250(104,)-250(106,)-250(107,)-250(141)]TJ 0 -28.329 Td[(Middle)-250(point,)-250(39,)-250(41)]TJ 0 -28.329 Td[(M\366bius)-250(\0501790-1868\051,)-250(179)]TJ 0 -28.329 Td[(Monge)-250(\0501746-1818\051,)-250(179,)-250(180)]TJ 0 -28.329 Td[(Napier)-250(\0501550-1617\051,)-250(162)]TJ 0 -28.329 Td[(Newton)-250(\0501642-1727\051,)-250(177)]TJ 0 -28.329 Td[(Numbers,)-250(4,)-250(21,)-250(43)]TJ 0 -28.329 Td[(Numerical)-250(computations,)-250(43,)-250(44,)-250(46)]TJ 0 -28.329 Td[(One-to-one)-275(correspondence,)-281(1,)-281(2,)-281(3,)-280(4,)-281(5,)-281(6,)-281(7,)-281(9,)-281(10,)-281(11,)-281(24,)-281(36,)]TJ 0 -13.549 Td[(87,)-250(43,)-250(60,)-250(104,)-250(106,)-250(184)]TJ 0 -28.329 Td[(Opposite)-250(sides)-250(of)-250(a)-250(hexagon,)-250(70)]TJ 0 -28.329 Td[(Opposite)-250(sides)-250(of)-250(a)-250(quadrilateral,)-250(28,)-250(29)]TJ 0 -28.329 Td[(Order)-250(of)-250(a)-250(form,)-250(7,)-250(10,)-250(11,)-250(12,)-250(13,)-250(14,)-250(15,)-250(16,)-250(17,)-250(18,)-250(19,)-250(20,)-250(21)]TJ 0 -28.329 Td[(Pappus)-250(\050fourth)-250(century)-250(A.D.\051,)-250(161)]TJ 0 -28.329 Td[(Parabola,)-250(110,)-250(111,)-250(112,)-250(119,)-250(162)]TJ 0 -28.329 Td[(Parallel)-250(lines,)-250(39,)-250(41,)-250(162)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2034 0 obj << +/Type /Page +/Contents 2035 0 R +/Resources 2033 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 2036 0 R 2037 0 R 2038 0 R 2039 0 R 2040 0 R 2041 0 R 2042 0 R 2043 0 R 2044 0 R 2045 0 R 2046 0 R 2047 0 R 2048 0 R 2049 0 R 2050 0 R 2051 0 R 2052 0 R 2053 0 R 2054 0 R 2055 0 R 2056 0 R 2057 0 R 2058 0 R 2059 0 R 2060 0 R 2061 0 R 2062 0 R 2063 0 R 2064 0 R 2065 0 R 2066 0 R 2067 0 R 2068 0 R 2069 0 R 2070 0 R 2071 0 R 2072 0 R 2073 0 R 2074 0 R 2075 0 R 2076 0 R 2077 0 R 2078 0 R 2079 0 R 2080 0 R 2081 0 R 2082 0 R 2083 0 R 2084 0 R 2085 0 R 2086 0 R 2087 0 R 2088 0 R 2089 0 R 2090 0 R 2091 0 R ] +>> endobj +2036 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [199.274 516.244 215.638 525.67] +/Subtype /Link +/A << /S /GoTo /D (p168) >> +>> endobj +2037 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.092 516.244 237.456 525.67] +/Subtype /Link +/A << /S /GoTo /D (p171) >> +>> endobj +2038 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.678 488.33 189.587 497.188] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +2039 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [195.041 488.33 211.405 497.188] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +2040 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [216.86 488.33 233.223 497.188] +/Subtype /Link +/A << /S /GoTo /D (p106) >> +>> endobj +2041 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [260.496 488.33 276.859 497.188] +/Subtype /Link +/A << /S /GoTo /D (p141) >> +>> endobj +2042 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.671 459.15 166.58 468.859] +/Subtype /Link +/A << /S /GoTo /D (p39) >> +>> endobj +2043 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.034 459.15 182.943 468.859] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +2044 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.598 431.257 205.961 440.53] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2045 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [187.165 402.481 203.529 412.201] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2046 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [208.983 402.481 225.347 412.201] +/Subtype /Link +/A << /S /GoTo /D (p180) >> +>> endobj +2047 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [185.943 374.163 202.307 384.025] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2048 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [190.798 346.27 207.161 355.543] +/Subtype /Link +/A << /S /GoTo /D (p177) >> +>> endobj +2049 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [138.991 318.356 144.445 327.214] +/Subtype /Link +/A << /S /GoTo /D (p4) >> +>> endobj +2050 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [149.9 318.356 160.809 327.214] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +2051 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [166.263 318.356 177.172 327.214] +/Subtype /Link +/A << /S /GoTo /D (p43) >> +>> endobj +2052 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [206.561 289.176 217.47 298.885] +/Subtype /Link +/A << /S /GoTo /D (p43) >> +>> endobj +2053 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [222.925 289.176 233.834 298.885] +/Subtype /Link +/A << /S /GoTo /D (p44) >> +>> endobj +2054 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [220.466 260.847 225.921 270.709] +/Subtype /Link +/A << /S /GoTo /D (p1) >> +>> endobj +2055 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [231.712 260.847 237.167 270.709] +/Subtype /Link +/A << /S /GoTo /D (p2) >> +>> endobj +2056 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [254.204 260.847 259.659 270.709] +/Subtype /Link +/A << /S /GoTo /D (p4) >> +>> endobj +2057 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [265.451 260.847 270.905 270.709] +/Subtype /Link +/A << /S /GoTo /D (p5) >> +>> endobj +2058 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [276.697 260.847 282.151 270.709] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +2059 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [287.943 260.847 293.397 270.709] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +2060 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [299.189 260.847 304.643 270.709] +/Subtype /Link +/A << /S /GoTo /D (p9) >> +>> endobj +2061 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [310.435 260.847 321.344 270.709] +/Subtype /Link +/A << /S /GoTo /D (p10) >> +>> endobj +2062 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [327.136 260.847 338.045 270.709] +/Subtype /Link +/A << /S /GoTo /D (p11) >> +>> endobj +2063 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [343.836 260.847 354.745 270.709] +/Subtype /Link +/A << /S /GoTo /D (p24) >> +>> endobj +2064 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [360.537 260.847 371.446 270.709] +/Subtype /Link +/A << /S /GoTo /D (p36) >> +>> endobj +2065 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [109.907 248.149 120.816 257.007] +/Subtype /Link +/A << /S /GoTo /D (p43) >> +>> endobj +2066 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [126.271 248.149 137.18 257.007] +/Subtype /Link +/A << /S /GoTo /D (p60) >> +>> endobj +2067 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [142.634 248.149 158.998 257.007] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +2068 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [164.452 248.149 180.816 257.007] +/Subtype /Link +/A << /S /GoTo /D (p106) >> +>> endobj +2069 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [186.27 248.149 202.634 257.007] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +2070 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [222.009 218.958 232.918 228.678] +/Subtype /Link +/A << /S /GoTo /D (p70) >> +>> endobj +2071 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [256.547 190.64 267.456 200.349] +/Subtype /Link +/A << /S /GoTo /D (p29) >> +>> endobj +2072 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [167.758 163.162 173.212 172.173] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +2073 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.667 163.162 189.576 172.173] +/Subtype /Link +/A << /S /GoTo /D (p10) >> +>> endobj +2074 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [195.03 163.162 205.94 172.173] +/Subtype /Link +/A << /S /GoTo /D (p11) >> +>> endobj +2075 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [211.394 163.162 222.303 172.173] +/Subtype /Link +/A << /S /GoTo /D (p12) >> +>> endobj +2076 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [227.758 163.162 238.667 172.173] +/Subtype /Link +/A << /S /GoTo /D (p13) >> +>> endobj +2077 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [260.485 163.162 271.394 172.173] +/Subtype /Link +/A << /S /GoTo /D (p15) >> +>> endobj +2078 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [276.848 163.162 287.758 172.173] +/Subtype /Link +/A << /S /GoTo /D (p16) >> +>> endobj +2079 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [293.212 163.162 304.121 172.173] +/Subtype /Link +/A << /S /GoTo /D (p17) >> +>> endobj +2080 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [309.576 163.162 320.485 172.173] +/Subtype /Link +/A << /S /GoTo /D (p18) >> +>> endobj +2081 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [325.939 163.162 336.848 172.173] +/Subtype /Link +/A << /S /GoTo /D (p19) >> +>> endobj +2082 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [342.303 163.162 353.212 172.173] +/Subtype /Link +/A << /S /GoTo /D (p20) >> +>> endobj +2083 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [358.666 163.162 369.575 172.173] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +2084 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.169 106.504 153.532 115.362] +/Subtype /Link +/A << /S /GoTo /D (p110) >> +>> endobj +2085 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.987 106.504 175.351 115.362] +/Subtype /Link +/A << /S /GoTo /D (p111) >> +>> endobj +2086 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [180.805 106.504 197.169 115.362] +/Subtype /Link +/A << /S /GoTo /D (p112) >> +>> endobj +2087 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [202.623 106.504 218.987 115.362] +/Subtype /Link +/A << /S /GoTo /D (p119) >> +>> endobj +2088 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [224.441 106.504 240.805 115.362] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2089 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [155.66 78.175 166.569 87.033] +/Subtype /Link +/A << /S /GoTo /D (p39) >> +>> endobj +2090 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.023 78.175 182.932 87.033] +/Subtype /Link +/A << /S /GoTo /D (p41) >> +>> endobj +2091 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [188.387 78.175 204.75 87.033] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2033 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2094 0 obj << +/Length 1828 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(INDEX)-21115(151)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(Pascal)-216(\0501623-1662\051,)-224(69,)-223(70,)-223(74,)-223(75,)-223(76,)-223(77,)-223(78,)-223(95,)-223(105,)-224(125,)-223(162,)]TJ 0 -13.549 Td[(169,)-250(171,)-250(172,)-250(173)]TJ 0 -27.426 Td[(Pencil)-250(of)-250(planes)-250(of)-250(the)-250(second)-250(order,)-250(59)]TJ 0 -27.426 Td[(Pencil)-250(of)-250(rays,)-250(6,)-250(7,)-250(8,)-250(23;)-250(of)-250(the)-250(second)-250(order,)-250(57,)-250(60,)-250(79,)-250(81)]TJ 0 -27.425 Td[(Perspective)-250(position,)-250(6,)-250(8,)-250(35,)-250(37,)-250(51,)-250(53,)-250(71)]TJ 0 -27.426 Td[(Plane)-250(system,)-250(16,)-250(23)]TJ 0 -27.426 Td[(Planes)-250(on)-250(space,)-250(17)]TJ 0 -27.425 Td[(Point)-250(of)-250(contact,)-250(87,)-250(88,)-250(89,)-250(90)]TJ 0 -27.426 Td[(Point)-250(system,)-250(16,)-250(23)]TJ 0 -27.426 Td[(Point-row,)-269(6,)-268(7,)-269(8,)-269(9,)-269(23;)-272(of)-265(the)-265(second)-265(order,)-269(55,)-268(60,)-269(61,)-269(66,)-269(67,)]TJ 0 -13.549 Td[(72)]TJ 0 -27.426 Td[(Points)-250(in)-250(space,)-250(18)]TJ 0 -27.425 Td[(Pole)-250(and)-250(polar,)-250(98,)-250(99,)-250(100,)-250(101,)-250(138,)-250(164,)-250(166)]TJ 0 -27.426 Td[(Poncelet)-250(\0501788-1867\051,)-250(177,)-250(179,)-250(180,)-250(181,)-250(182,)-250(183,)-250(184)]TJ 0 -27.426 Td[(Principal)-250(axis)-250(of)-250(a)-250(conic,)-250(157)]TJ 0 -27.425 Td[(Projection,)-250(161)]TJ 0 -27.426 Td[(Protective)-250(axial)-250(pencils,)-250(59)]TJ 0 -27.426 Td[(Projective)-250(correspondence,)-250(9,)-250(35,)-250(36,)-250(37,)-250(47,)-250(71,)-250(92,)-250(104)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2093 0 obj << +/Type /Page +/Contents 2094 0 R +/Resources 2092 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 2095 0 R 2096 0 R 2097 0 R 2098 0 R 2099 0 R 2100 0 R 2101 0 R 2102 0 R 2103 0 R 2104 0 R 2105 0 R 2106 0 R 2107 0 R 2108 0 R 2109 0 R 2110 0 R 2111 0 R 2112 0 R 2113 0 R 2114 0 R 2115 0 R 2116 0 R 2117 0 R 2118 0 R 2119 0 R 2120 0 R 2121 0 R 2122 0 R 2123 0 R 2124 0 R 2125 0 R 2126 0 R 2127 0 R 2128 0 R 2129 0 R 2130 0 R 2131 0 R 2132 0 R 2133 0 R 2134 0 R 2135 0 R 2136 0 R 2137 0 R 2138 0 R 2139 0 R 2140 0 R 2141 0 R 2142 0 R 2143 0 R 2144 0 R 2145 0 R 2146 0 R 2147 0 R 2148 0 R 2149 0 R 2150 0 R 2151 0 R 2152 0 R 2153 0 R 2154 0 R 2155 0 R 2156 0 R 2157 0 R 2158 0 R 2159 0 R 2160 0 R 2161 0 R 2162 0 R 2163 0 R 2164 0 R 2165 0 R ] +>> endobj +2095 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [136.7 516.244 147.609 525.67] +/Subtype /Link +/A << /S /GoTo /D (p69) >> +>> endobj +2096 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [152.77 516.244 163.679 525.67] +/Subtype /Link +/A << /S /GoTo /D (p70) >> +>> endobj +2097 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [168.84 516.244 179.749 525.67] +/Subtype /Link +/A << /S /GoTo /D (p74) >> +>> endobj +2098 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [184.91 516.244 195.82 525.67] +/Subtype /Link +/A << /S /GoTo /D (p75) >> +>> endobj +2099 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [217.051 516.244 227.96 525.67] +/Subtype /Link +/A << /S /GoTo /D (p77) >> +>> endobj +2100 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [233.121 516.244 244.03 525.67] +/Subtype /Link +/A << /S /GoTo /D (p78) >> +>> endobj +2101 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [249.191 516.244 260.1 525.67] +/Subtype /Link +/A << /S /GoTo /D (p95) >> +>> endobj +2102 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [265.261 516.244 281.625 525.67] +/Subtype /Link +/A << /S /GoTo /D (p105) >> +>> endobj +2103 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [286.786 516.244 303.149 525.67] +/Subtype /Link +/A << /S /GoTo /D (p125) >> +>> endobj +2104 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [308.31 516.244 324.674 525.67] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2105 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [68.59 503.11 84.953 511.968] +/Subtype /Link +/A << /S /GoTo /D (p171) >> +>> endobj +2106 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [90.408 503.11 106.771 511.968] +/Subtype /Link +/A << /S /GoTo /D (p172) >> +>> endobj +2107 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [112.226 503.11 128.589 511.968] +/Subtype /Link +/A << /S /GoTo /D (p173) >> +>> endobj +2108 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [208.553 474.833 219.462 484.695] +/Subtype /Link +/A << /S /GoTo /D (p59) >> +>> endobj +2109 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [112.215 447.396 117.67 457.269] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +2110 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [123.124 447.396 128.579 457.269] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +2111 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [134.033 447.396 139.488 457.269] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +2112 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [144.942 447.396 155.851 457.269] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2113 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [250.978 447.396 261.887 457.269] +/Subtype /Link +/A << /S /GoTo /D (p57) >> +>> endobj +2114 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [267.342 447.396 278.251 457.269] +/Subtype /Link +/A << /S /GoTo /D (p60) >> +>> endobj +2115 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [283.705 447.396 294.615 457.269] +/Subtype /Link +/A << /S /GoTo /D (p79) >> +>> endobj +2116 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [300.069 447.396 310.978 457.269] +/Subtype /Link +/A << /S /GoTo /D (p81) >> +>> endobj +2117 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.404 419.982 145.859 429.843] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +2118 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [151.313 419.982 156.768 429.843] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +2119 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [162.222 419.982 173.131 429.843] +/Subtype /Link +/A << /S /GoTo /D (p35) >> +>> endobj +2120 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.586 419.982 189.495 429.843] +/Subtype /Link +/A << /S /GoTo /D (p37) >> +>> endobj +2121 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [211.313 419.982 222.222 429.843] +/Subtype /Link +/A << /S /GoTo /D (p53) >> +>> endobj +2122 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [227.676 419.982 238.586 429.843] +/Subtype /Link +/A << /S /GoTo /D (p71) >> +>> endobj +2123 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [109.499 392.545 120.408 402.265] +/Subtype /Link +/A << /S /GoTo /D (p16) >> +>> endobj +2124 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [125.862 392.545 136.771 402.265] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2125 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [121.302 365.13 132.211 374.839] +/Subtype /Link +/A << /S /GoTo /D (p17) >> +>> endobj +2126 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [121.313 338.555 132.222 347.413] +/Subtype /Link +/A << /S /GoTo /D (p87) >> +>> endobj +2127 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.677 338.555 148.586 347.413] +/Subtype /Link +/A << /S /GoTo /D (p88) >> +>> endobj +2128 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.04 338.555 164.949 347.413] +/Subtype /Link +/A << /S /GoTo /D (p89) >> +>> endobj +2129 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [170.404 338.555 181.313 347.413] +/Subtype /Link +/A << /S /GoTo /D (p90) >> +>> endobj +2130 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [108.299 310.268 119.208 319.988] +/Subtype /Link +/A << /S /GoTo /D (p16) >> +>> endobj +2131 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [124.662 310.268 135.571 319.988] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2132 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [96.066 283.704 101.521 292.715] +/Subtype /Link +/A << /S /GoTo /D (p6) >> +>> endobj +2133 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [107.18 283.704 112.634 292.715] +/Subtype /Link +/A << /S /GoTo /D (p7) >> +>> endobj +2134 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [118.293 283.704 123.747 292.715] +/Subtype /Link +/A << /S /GoTo /D (p8) >> +>> endobj +2135 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [129.406 283.704 134.86 292.715] +/Subtype /Link +/A << /S /GoTo /D (p9) >> +>> endobj +2136 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.519 283.704 151.428 292.715] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2137 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [247.494 283.704 258.403 292.715] +/Subtype /Link +/A << /S /GoTo /D (p55) >> +>> endobj +2138 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [264.062 283.704 274.971 292.715] +/Subtype /Link +/A << /S /GoTo /D (p60) >> +>> endobj +2139 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [280.629 283.704 291.538 292.715] +/Subtype /Link +/A << /S /GoTo /D (p61) >> +>> endobj +2140 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [297.197 283.704 308.106 292.715] +/Subtype /Link +/A << /S /GoTo /D (p66) >> +>> endobj +2141 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [313.765 283.704 324.674 292.715] +/Subtype /Link +/A << /S /GoTo /D (p67) >> +>> endobj +2142 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 271.573 57.681 279.013] +/Subtype /Link +/A << /S /GoTo /D (p72) >> +>> endobj +2143 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [117.68 241.878 128.589 251.587] +/Subtype /Link +/A << /S /GoTo /D (p18) >> +>> endobj +2144 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [115.248 214.452 126.157 224.161] +/Subtype /Link +/A << /S /GoTo /D (p98) >> +>> endobj +2145 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [131.611 214.452 142.52 224.161] +/Subtype /Link +/A << /S /GoTo /D (p99) >> +>> endobj +2146 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [147.975 214.452 164.338 224.161] +/Subtype /Link +/A << /S /GoTo /D (p100) >> +>> endobj +2147 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [169.793 214.452 186.157 224.161] +/Subtype /Link +/A << /S /GoTo /D (p101) >> +>> endobj +2148 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [213.429 214.452 229.793 224.161] +/Subtype /Link +/A << /S /GoTo /D (p164) >> +>> endobj +2149 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [235.247 214.452 251.611 224.161] +/Subtype /Link +/A << /S /GoTo /D (p166) >> +>> endobj +2150 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [147.059 187.463 163.422 196.736] +/Subtype /Link +/A << /S /GoTo /D (p177) >> +>> endobj +2151 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [168.877 187.463 185.24 196.736] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2152 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [212.513 187.463 228.877 196.736] +/Subtype /Link +/A << /S /GoTo /D (p181) >> +>> endobj +2153 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [234.331 187.463 250.695 196.736] +/Subtype /Link +/A << /S /GoTo /D (p182) >> +>> endobj +2154 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [256.149 187.463 272.513 196.736] +/Subtype /Link +/A << /S /GoTo /D (p183) >> +>> endobj +2155 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [277.967 187.463 294.331 196.736] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +2156 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [157.662 159.601 174.026 169.463] +/Subtype /Link +/A << /S /GoTo /D (p157) >> +>> endobj +2157 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [97.073 132.164 113.437 141.884] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +2158 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.029 104.75 164.938 114.611] +/Subtype /Link +/A << /S /GoTo /D (p59) >> +>> endobj +2159 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [167.644 77.313 173.099 87.186] +/Subtype /Link +/A << /S /GoTo /D (p9) >> +>> endobj +2160 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.553 77.313 189.462 87.186] +/Subtype /Link +/A << /S /GoTo /D (p35) >> +>> endobj +2161 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [211.28 77.313 222.189 87.186] +/Subtype /Link +/A << /S /GoTo /D (p37) >> +>> endobj +2162 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [227.644 77.313 238.553 87.186] +/Subtype /Link +/A << /S /GoTo /D (p47) >> +>> endobj +2163 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [244.007 77.313 254.917 87.186] +/Subtype /Link +/A << /S /GoTo /D (p71) >> +>> endobj +2164 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [260.371 77.313 271.28 87.186] +/Subtype /Link +/A << /S /GoTo /D (p92) >> +>> endobj +2165 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [276.735 77.313 293.098 87.186] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +2092 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2168 0 obj << +/Length 1386 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(152)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(Projective)-250(pencils,)-250(53,)-250(64,)-250(68)]TJ 0 -27.405 Td[(Projective)-250(point-rows,)-250(51,)-250(79)]TJ 0 -27.405 Td[(Projective)-250(properties,)-250(24)]TJ 0 -27.406 Td[(Projective)-250(theorems,)-250(40,)-250(104)]TJ 0 -27.405 Td[(Quadrangle,)-250(26,)-250(27,)-250(28,)-250(29)]TJ 0 -27.405 Td[(Quadric)-250(cone,)-250(59)]TJ 0 -27.405 Td[(Quadrilateral,)-250(88,)-250(95,)-250(96)]TJ 0 -27.406 Td[(Roberval)-250(\0501602-1675\051,)-250(168)]TJ 0 -27.405 Td[(Ruler)-250(construction,)-250(40)]TJ 0 -27.405 Td[(Scheiner,)-250(169)]TJ 0 -27.405 Td[(Self-corresponding)-250(elements,)-250(47,)-250(48,)-250(49,)-250(50,)-250(51)]TJ 0 -27.406 Td[(Self-dual,)-250(105)]TJ 0 -27.405 Td[(Self-polar)-250(triangle,)-250(102)]TJ 0 -27.405 Td[(Separation)-250(of)-250(elements)-250(in)-250(involution,)-250(148)]TJ 0 -27.405 Td[(Separation)-250(of)-250(harmonic)-250(conjugates,)-250(38)]TJ 0 -27.405 Td[(Sequence)-250(of)-250(points,)-250(49)]TJ 0 -27.406 Td[(Sign)-250(of)-250(segment,)-250(44,)-250(45)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2167 0 obj << +/Type /Page +/Contents 2168 0 R +/Resources 2166 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 1902 0 R +/Annots [ 2169 0 R 2170 0 R 2171 0 R 2172 0 R 2173 0 R 2174 0 R 2175 0 R 2176 0 R 2177 0 R 2178 0 R 2179 0 R 2180 0 R 2181 0 R 2182 0 R 2183 0 R 2184 0 R 2185 0 R 2186 0 R 2187 0 R 2188 0 R 2189 0 R 2190 0 R 2191 0 R 2192 0 R 2193 0 R 2194 0 R 2195 0 R 2196 0 R ] +>> endobj +2169 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [176.867 515.797 187.776 525.67] +/Subtype /Link +/A << /S /GoTo /D (p53) >> +>> endobj +2170 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [193.23 515.797 204.14 525.67] +/Subtype /Link +/A << /S /GoTo /D (p64) >> +>> endobj +2171 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [209.594 515.797 220.503 525.67] +/Subtype /Link +/A << /S /GoTo /D (p68) >> +>> endobj +2172 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [193.23 488.392 204.14 498.264] +/Subtype /Link +/A << /S /GoTo /D (p51) >> +>> endobj +2173 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [209.594 488.392 220.503 498.264] +/Subtype /Link +/A << /S /GoTo /D (p79) >> +>> endobj +2174 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.587 460.986 200.496 470.706] +/Subtype /Link +/A << /S /GoTo /D (p24) >> +>> endobj +2175 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [185.954 433.581 196.863 443.301] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +2176 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [202.318 433.581 218.681 443.301] +/Subtype /Link +/A << /S /GoTo /D (p104) >> +>> endobj +2177 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [149.889 406.176 160.798 415.896] +/Subtype /Link +/A << /S /GoTo /D (p26) >> +>> endobj +2178 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [166.252 406.176 177.161 415.896] +/Subtype /Link +/A << /S /GoTo /D (p27) >> +>> endobj +2179 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.616 406.176 193.525 415.896] +/Subtype /Link +/A << /S /GoTo /D (p28) >> +>> endobj +2180 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [198.98 406.176 209.889 415.896] +/Subtype /Link +/A << /S /GoTo /D (p29) >> +>> endobj +2181 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [157.46 379.218 168.369 388.643] +/Subtype /Link +/A << /S /GoTo /D (p59) >> +>> endobj +2182 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [156.554 351.813 167.463 361.238] +/Subtype /Link +/A << /S /GoTo /D (p88) >> +>> endobj +2183 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.918 351.813 183.827 361.238] +/Subtype /Link +/A << /S /GoTo /D (p95) >> +>> endobj +2184 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.281 351.813 200.19 361.238] +/Subtype /Link +/A << /S /GoTo /D (p96) >> +>> endobj +2185 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [196.252 324.408 212.616 333.833] +/Subtype /Link +/A << /S /GoTo /D (p168) >> +>> endobj +2186 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [179.9 297.417 190.809 306.275] +/Subtype /Link +/A << /S /GoTo /D (p40) >> +>> endobj +2187 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.169 270.012 153.532 278.87] +/Subtype /Link +/A << /S /GoTo /D (p169) >> +>> endobj +2188 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [224.125 241.745 235.034 251.617] +/Subtype /Link +/A << /S /GoTo /D (p47) >> +>> endobj +2189 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [256.852 241.745 267.761 251.617] +/Subtype /Link +/A << /S /GoTo /D (p49) >> +>> endobj +2190 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [273.216 241.745 284.125 251.617] +/Subtype /Link +/A << /S /GoTo /D (p50) >> +>> endobj +2191 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [289.579 241.745 300.488 251.617] +/Subtype /Link +/A << /S /GoTo /D (p51) >> +>> endobj +2192 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [138.991 215.201 155.354 224.212] +/Subtype /Link +/A << /S /GoTo /D (p105) >> +>> endobj +2193 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [178.678 186.934 195.041 196.654] +/Subtype /Link +/A << /S /GoTo /D (p102) >> +>> endobj +2194 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.016 104.729 192.925 114.438] +/Subtype /Link +/A << /S /GoTo /D (p49) >> +>> endobj +2195 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [169.907 77.313 180.816 87.186] +/Subtype /Link +/A << /S /GoTo /D (p44) >> +>> endobj +2196 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [186.27 77.313 197.18 87.186] +/Subtype /Link +/A << /S /GoTo /D (p45) >> +>> endobj +2166 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2199 0 obj << +/Length 1371 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(INDEX)-21115(153)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(Similarity,)-250(106)]TJ 0 -27.348 Td[(Skew)-250(lines,)-250(12)]TJ 0 -27.347 Td[(Space)-250(system,)-250(19,)-250(23)]TJ 0 -27.348 Td[(Sphere,)-250(21)]TJ 0 -27.347 Td[(Steiner)-250(\0501796-1863\051,)-250(129,)-250(130,)-250(131,)-250(177,)-250(179,)-250(184)]TJ 0 -27.348 Td[(Steiner's)-250(construction,)-250(129,)-250(130,)-250(131)]TJ 0 -27.348 Td[(Superposed)-250(point-rows,)-250(47,)-250(48,)-250(49)]TJ 0 -27.347 Td[(Surfaces)-250(of)-250(the)-250(second)-250(degree,)-250(166)]TJ 0 -27.348 Td[(System)-250(of)-250(lines)-250(in)-250(space,)-250(20,)-250(23)]TJ 0 -27.347 Td[(Systems)-250(of)-250(conics,)-250(125)]TJ 0 -27.348 Td[(Tangent)-250(line,)-250(61,)-250(80,)-250(81,)-250(87,)-250(88,)-250(89,)-250(90,)-250(91,)-250(92)]TJ 0 -27.348 Td[(Tycho)-250(Brahe)-250(\0501546-1601\051,)-250(162)]TJ 0 -27.347 Td[(Verner,)-250(161)]TJ 0 -27.348 Td[(Vertex)-250(of)-250(conic,)-250(157,)-250(159)]TJ 0 -27.348 Td[(Von)-250(Staudt)-250(\0501798-1867\051,)-250(179,)-250(185)]TJ 0 -27.347 Td[(Wallis)-250(\0501616-1703\051,)-250(162)]TJ +ET +1 0 0 1 46.771 66.142 cm +0 g 0 G +0 g 0 G +1 0 0 1 0 -27.36 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2198 0 obj << +/Type /Page +/Contents 2199 0 R +/Resources 2197 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +/Annots [ 2200 0 R 2201 0 R 2202 0 R 2203 0 R 2204 0 R 2205 0 R 2206 0 R 2207 0 R 2208 0 R 2209 0 R 2210 0 R 2211 0 R 2212 0 R 2213 0 R 2214 0 R 2215 0 R 2216 0 R 2217 0 R 2218 0 R 2219 0 R 2220 0 R 2221 0 R 2222 0 R 2223 0 R 2224 0 R 2225 0 R 2226 0 R 2227 0 R 2228 0 R 2229 0 R 2230 0 R 2231 0 R 2232 0 R 2233 0 R ] +>> endobj +2200 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [95.873 515.797 112.237 525.517] +/Subtype /Link +/A << /S /GoTo /D (p106) >> +>> endobj +2201 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [99.8 489.311 110.71 498.169] +/Subtype /Link +/A << /S /GoTo /D (p12) >> +>> endobj +2202 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [111.31 461.102 122.219 470.822] +/Subtype /Link +/A << /S /GoTo /D (p19) >> +>> endobj +2203 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [127.673 461.102 138.582 470.822] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2204 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [82.521 433.765 93.43 443.474] +/Subtype /Link +/A << /S /GoTo /D (p21) >> +>> endobj +2205 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [140.393 406.854 156.757 416.126] +/Subtype /Link +/A << /S /GoTo /D (p129) >> +>> endobj +2206 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [162.211 406.854 178.575 416.126] +/Subtype /Link +/A << /S /GoTo /D (p130) >> +>> endobj +2207 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [184.029 406.854 200.393 416.126] +/Subtype /Link +/A << /S /GoTo /D (p131) >> +>> endobj +2208 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [227.666 406.854 244.029 416.126] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2209 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [249.484 406.854 265.847 416.126] +/Subtype /Link +/A << /S /GoTo /D (p184) >> +>> endobj +2210 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [146 379.921 162.364 388.779] +/Subtype /Link +/A << /S /GoTo /D (p129) >> +>> endobj +2211 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [167.818 379.921 184.182 388.779] +/Subtype /Link +/A << /S /GoTo /D (p130) >> +>> endobj +2212 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [153.124 351.722 164.033 361.431] +/Subtype /Link +/A << /S /GoTo /D (p47) >> +>> endobj +2213 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [169.488 351.722 180.397 361.431] +/Subtype /Link +/A << /S /GoTo /D (p48) >> +>> endobj +2214 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [185.851 351.722 196.76 361.431] +/Subtype /Link +/A << /S /GoTo /D (p49) >> +>> endobj +2215 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [182.48 324.364 198.844 334.084] +/Subtype /Link +/A << /S /GoTo /D (p166) >> +>> endobj +2216 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [157.673 297.016 168.582 306.736] +/Subtype /Link +/A << /S /GoTo /D (p20) >> +>> endobj +2217 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [174.037 297.016 184.946 306.736] +/Subtype /Link +/A << /S /GoTo /D (p23) >> +>> endobj +2218 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [131.011 269.668 147.375 279.541] +/Subtype /Link +/A << /S /GoTo /D (p125) >> +>> endobj +2219 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [107.066 242.321 117.975 252.041] +/Subtype /Link +/A << /S /GoTo /D (p61) >> +>> endobj +2220 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [123.429 242.321 134.339 252.041] +/Subtype /Link +/A << /S /GoTo /D (p80) >> +>> endobj +2221 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [139.793 242.321 150.702 252.041] +/Subtype /Link +/A << /S /GoTo /D (p81) >> +>> endobj +2222 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [156.157 242.321 167.066 252.041] +/Subtype /Link +/A << /S /GoTo /D (p87) >> +>> endobj +2223 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [172.52 242.321 183.429 252.041] +/Subtype /Link +/A << /S /GoTo /D (p88) >> +>> endobj +2224 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [205.247 242.321 216.157 252.041] +/Subtype /Link +/A << /S /GoTo /D (p90) >> +>> endobj +2225 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [221.611 242.321 232.52 252.041] +/Subtype /Link +/A << /S /GoTo /D (p91) >> +>> endobj +2226 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [237.975 242.321 248.884 252.041] +/Subtype /Link +/A << /S /GoTo /D (p92) >> +>> endobj +2227 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [166.139 214.973 182.502 224.846] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2228 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [82.51 188.487 98.873 197.346] +/Subtype /Link +/A << /S /GoTo /D (p161) >> +>> endobj +2229 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [120.08 161.14 136.444 170.151] +/Subtype /Link +/A << /S /GoTo /D (p157) >> +>> endobj +2230 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [141.899 161.14 158.262 170.151] +/Subtype /Link +/A << /S /GoTo /D (p159) >> +>> endobj +2231 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [158.884 133.378 175.248 142.803] +/Subtype /Link +/A << /S /GoTo /D (p179) >> +>> endobj +2232 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [180.702 133.378 197.066 142.803] +/Subtype /Link +/A << /S /GoTo /D (p185) >> +>> endobj +2233 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [137.971 106.03 154.335 115.303] +/Subtype /Link +/A << /S /GoTo /D (p162) >> +>> endobj +2197 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2237 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2236 0 obj << +/Type /Page +/Contents 2237 0 R +/Resources 2235 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +>> endobj +2235 0 obj << +/ProcSet [ /PDF ] +>> endobj +2240 0 obj << +/Length 409 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -19.8 cm +0 g 0 G +1 0 0 1 -46.771 -529.134 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(***END)-500(OF)-500(THE)-500(PROJECT)-500(GUTENBERG)-500(EBOOK)-500(AN)]TJ 0 -13.549 Td[(ELEMENTARY)-500(COURSE)-500(IN)-500(SYNTHETIC)-500(PROJECTIVE)]TJ 0 -13.549 Td[(GEOMETRY***)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2239 0 obj << +/Type /Page +/Contents 2240 0 R +/Resources 2238 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +>> endobj +2241 0 obj << +/D [2239 0 R /XYZ 46.771 529.134 null] +>> endobj +2238 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2244 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2243 0 obj << +/Type /Page +/Contents 2244 0 R +/Resources 2242 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +>> endobj +2242 0 obj << +/ProcSet [ /PDF ] +>> endobj +2245 0 obj +<< /S /GoTo /D (index209) >> +endobj +2248 0 obj +(Credits) +endobj +2251 0 obj << +/Length 595 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 18.959 Tf 46.771 479.321 Td[(Credits)]TJ/F16 10.909 Tf 0 -37.877 Td[(November)-250(2005)]TJ 43.637 -19.003 Td[(Project)-250(Gutenberg)-250(Edition)]TJ 0 -13.55 Td[(Joshua)-427(Hutchinson,)-472(Cornell)-427(University,)-472(Online)-428(Dis-)]TJ 0 -13.549 Td[(tributed)-250(Proofreading)-250(Team)]TJ -43.637 -19.003 Td[(June)-250(2006)]TJ 43.637 -19.004 Td[(Added)-250(PGHeader/PGFooter.)]TJ 0 -13.549 Td[(Joshua)-250(Hutchinson)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2250 0 obj << +/Type /Page +/Contents 2251 0 R +/Resources 2249 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +>> endobj +2246 0 obj << +/D [2250 0 R /XYZ 46.771 529.134 null] +>> endobj +2249 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2254 0 obj << +/Length 126 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -280.63 -510.152 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2253 0 obj << +/Type /Page +/Contents 2254 0 R +/Resources 2252 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2234 0 R +>> endobj +2252 0 obj << +/ProcSet [ /PDF ] +>> endobj +2255 0 obj +<< /S /GoTo /D (index210) >> +endobj +2258 0 obj +(A Word from Project Gutenberg) +endobj +2261 0 obj << +/Length 3131 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 18.959 Tf 46.771 479.321 Td[(A)-250(Word)-250(from)-250(Project)-250(Gutenberg)]TJ/F16 10.909 Tf 0 -32.422 Td[(This)-250(file)-250(should)-250(be)-250(named)-250(17001-pdf.pdf)-250(or)-250(17001-pdf.zip.)]TJ 11.956 -13.549 Td[(This)-291(and)-291(all)-291(associated)-291(files)-291(of)-291(various)-291(formats)-291(will)-291(be)-291(found)]TJ -11.956 -13.549 Td[(in:)]TJ/F16 9.863 Tf 19.637 -22.64 Td[(http://www.gutenberg.org/dirs/1/7/0/0/17001/)]TJ/F16 10.909 Tf -7.681 -23.368 Td[(Updated)-447(editions)-446(will)-447(replace)-447(the)-447(previous)-446(one)]TJ/F21 10.909 Tf 220.746 0 Td[(\024)]TJ/F16 10.909 Tf 15.782 0 Td[(the)-447(old)]TJ -248.484 -13.549 Td[(editions)-250(will)-250(be)-250(renamed.)]TJ 11.956 -13.549 Td[(Creating)-308(the)-308(works)-308(from)-308(public)-308(domain)-308(print)-308(editions)-308(means)]TJ -11.956 -13.549 Td[(that)-220(no)-220(one)-219(owns)-220(a)-220(United)-220(States)-220(copyright)-219(in)-220(these)-220(works,)-226(so)-220(the)]TJ 0 -13.549 Td[(Foundation)-325(\050and)-324(you!\051)-473(can)-325(copy)-324(and)-325(distribute)-324(it)-325(in)-324(the)-325(United)]TJ 0 -13.55 Td[(States)-163(without)-163(permission)-163(and)-163(without)-163(paying)-164(copyright)-163(royalties.)]TJ 0 -13.549 Td[(Special)-298(rules,)-311(set)-298(forth)-298(in)-298(the)-298(General)-299(Terms)-298(of)-298(Use)-298(part)-298(of)-299(this)]TJ 0 -13.549 Td[(license,)-360(apply)-337(to)-338(copying)-338(and)-337(distributing)-338(Project)-338(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(electronic)-247(works)-246(to)-247(protect)-246(the)-247(Project)-246(Gutenberg)]TJ/F56 10.909 Tf 214.88 0 Td[(")]TJ/F16 10.909 Tf 13.381 0 Td[(concept)-247(and)]TJ -228.261 -13.549 Td[(trademark.)-243(Project)-228(Gutenberg)-228(is)-227(a)-228(registered)-228(trademark,)-233(and)-228(may)]TJ 0 -13.55 Td[(not)-394(be)-394(used)-394(if)-394(you)-393(charge)-394(for)-394(the)-394(eBooks,)-430(unless)-394(you)-394(receive)]TJ 0 -13.549 Td[(specific)-377(permission.)-631(If)-376(you)-377(do)-377(not)-377(charge)-377(anything)-377(for)-377(copies)]TJ 0 -13.549 Td[(of)-468(this)-468(eBook,)-523(complying)-468(with)-468(the)-468(rules)-468(is)-468(very)-468(easy.)-904(You)]TJ 0 -13.549 Td[(may)-329(use)-329(this)-329(eBook)-329(for)-329(nearly)-329(any)-329(purpose)-329(such)-329(as)-329(creation)-329(of)]TJ 0 -13.549 Td[(derivative)-251(works,)-252(reports,)-251(performances)-251(and)-251(research.)-253(They)-252(may)]TJ 0 -13.55 Td[(be)-152(modified)-152(and)-152(printed)-153(and)-152(given)-152(away)]TJ/F21 10.909 Tf 170.977 0 Td[(\024)]TJ/F16 10.909 Tf 12.569 0 Td[(you)-152(may)-152(do)-152(practically)]TJ/F20 10.909 Tf -183.546 -13.549 Td[(anything)]TJ/F16 10.909 Tf 41.786 0 Td[(with)-330(public)-331(domain)-330(eBooks.)-491(Redistribution)-331(is)-330(subject)]TJ -41.786 -13.549 Td[(to)-250(the)-250(trademark)-250(license,)-250(especially)-250(commercial)-250(redistribution.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2260 0 obj << +/Type /Page +/Contents 2261 0 R +/Resources 2259 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2262 0 R ] +>> endobj +2262 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [66.408 395.011 247.235 403.798] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/dirs/1/7/0/0/17001/) >> +>> endobj +2256 0 obj << +/D [2260 0 R /XYZ 46.771 529.134 null] +>> endobj +10 0 obj << +/D [2260 0 R /XYZ 46.771 130.17 null] +>> endobj +2259 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F56 2264 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2266 0 obj +<< /S /GoTo /D (index211) >> +endobj +2269 0 obj +(The Full Project Gutenberg License) +endobj +2272 0 obj << +/Length 3331 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 18.959 Tf 93.543 479.321 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)]TJ/F20 10.909 Tf 0 -31.684 Td[(Please)-250(read)-250(this)-250(before)-250(you)-250(distribute)-250(or)-250(use)-250(this)-250(work.)]TJ/F16 10.909 Tf 11.956 -13.55 Td[(To)-269(protect)-269(the)-268(Project)-269(Gutenberg)]TJ/F56 10.909 Tf 144.428 0 Td[(")]TJ/F16 10.909 Tf 13.623 0 Td[(mission)-269(of)-269(promoting)-269(the)]TJ -170.007 -13.549 Td[(free)-225(distribution)-225(of)-226(electronic)-225(works,)-230(by)-225(using)-225(or)-225(distributing)-226(this)]TJ 0 -13.549 Td[(work)-304(\050or)-304(any)-303(other)-304(work)-304(associated)-304(in)-303(any)-304(way)-304(with)-304(the)-304(phrase)]TJ/F21 10.909 Tf 0 -13.549 Td[(\034)]TJ/F16 10.909 Tf 4.844 0 Td[(Project)-270(Gutenberg)]TJ/F21 10.909 Tf 79.894 0 Td[(\035)]TJ/F16 10.909 Tf 4.844 0 Td[(\051,)-275(you)-269(agree)-270(to)-270(comply)-269(with)-270(all)-270(the)-269(terms)-270(of)]TJ -89.582 -13.549 Td[(the)-268(Full)-269(Project)-268(Gutenberg)]TJ/F56 10.909 Tf 116.649 0 Td[(")]TJ/F16 10.909 Tf 13.617 0 Td[(License)-268(\050available)-269(with)-268(this)-268(file)-268(or)]TJ -130.266 -13.55 Td[(online)-250(at)-250(http://www.gutenberg.org/license\051.)]TJ/F16 15.781 Tf 0 -35.486 Td[(Section)-250(1.)]TJ/F16 13.151 Tf 15.58 -44.421 Td[(General)-255(Terms)-254(of)-255(Use)-255(&)-254(Redistributing)-255(Project)]TJ 45.013 -17.095 Td[(Gutenberg)]TJ/F56 13.151 Tf 55.509 0 Td[(")]TJ/F16 13.151 Tf 16.415 0 Td[(electronic)-268(works)]TJ -132.517 -41.803 Td[(1.A.)]TJ/F16 10.909 Tf 0 -25.902 Td[(By)-330(reading)-331(or)-330(using)-331(any)-330(part)-331(of)-330(this)-331(Project)-330(Gutenberg)]TJ/F56 10.909 Tf 245.138 0 Td[(")]TJ/F16 10.909 Tf 14.296 0 Td[(elec-)]TJ -259.434 -13.549 Td[(tronic)-302(work,)-315(you)-303(indicate)-302(that)-302(you)-302(have)-302(read,)-315(understand,)-316(agree)]TJ 0 -13.549 Td[(to)-198(and)-197(accept)-198(all)-197(the)-198(terms)-198(of)-197(this)-198(license)-197(and)-198(intellectual)-198(property)]TJ 0 -13.55 Td[(\050trademark/copyright\051)-211(agreement.)-237(If)-211(you)-211(do)-211(not)-211(agree)-211(to)-212(abide)-211(by)]TJ 0 -13.549 Td[(all)-270(the)-271(terms)-270(of)-270(this)-271(agreement,)-275(you)-270(must)-271(cease)-270(using)-270(and)-271(return)]TJ 0 -13.549 Td[(or)-262(destroy)-263(all)-262(copies)-262(of)-262(Project)-263(Gutenberg)]TJ/F56 10.909 Tf 183.192 0 Td[(")]TJ/F16 10.909 Tf 13.552 0 Td[(electronic)-262(works)-263(in)]TJ -196.744 -13.549 Td[(your)-380(possession.)-638(If)-379(you)-380(paid)-379(a)-380(fee)-379(for)-380(obtaining)-379(a)-380(copy)-379(of)-380(or)]TJ 0 -13.549 Td[(access)-269(to)-270(a)-269(Project)-270(Gutenberg)]TJ/F56 10.909 Tf 129.903 0 Td[(")]TJ/F16 10.909 Tf 13.63 0 Td[(electronic)-269(wo)-1(rk)-269(and)-269(you)-270(do)-269(not)]TJ -143.533 -13.549 Td[(agree)-206(to)-206(be)-205(bound)-206(by)-206(the)-206(terms)-206(of)-205(this)-206(agreement,)-215(you)-206(may)-206(obtain)]TJ 0 -13.55 Td[(a)-304(refund)-304(from)-304(the)-304(person)-304(or)-304(entity)-304(to)-304(whom)-304(you)-304(paid)-304(the)-304(fee)-304(as)]TJ 0 -13.549 Td[(set)-250(forth)-250(in)-250(paragraph)-250(1.E.8.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2271 0 obj << +/Type /Page +/Contents 2272 0 R +/Resources 2270 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2273 0 R 2274 0 R 2277 0 R ] +>> endobj +2273 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [264.296 377.512 362.159 387.232] +/Subtype /Link +/A << /S /GoTo /D (pglicense) >> +>> endobj +2274 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [134.147 363.963 280.798 373.683] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/license) >> +>> endobj +2277 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.881 63.764 215.638 73.484] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E8) >> +>> endobj +2267 0 obj << +/D [2271 0 R /XYZ 93.543 529.134 null] +>> endobj +2275 0 obj << +/D [2271 0 R /XYZ 93.543 363.963 null] +>> endobj +2276 0 obj << +/D [2271 0 R /XYZ 93.543 254.119 null] +>> endobj +2270 0 obj << +/Font << /F16 6 0 R /F20 29 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2281 0 obj << +/Length 4477 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(161)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 13.151 Tf 46.771 518.175 Td[(1.B.)]TJ/F21 10.909 Tf 0 -27.866 Td[(\034)]TJ/F16 10.909 Tf 4.844 0 Td[(Project)-352(Gutenberg)]TJ/F21 10.909 Tf 80.79 0 Td[(\035)]TJ/F16 10.909 Tf 8.681 0 Td[(is)-352(a)-352(registered)-351(trademark.)-556(It)-351(may)-352(only)-352(be)]TJ -94.315 -13.549 Td[(used)-395(on)-394(or)-395(associated)-394(in)-395(any)-395(way)-394(with)-395(an)-394(electronic)-395(work)-395(by)]TJ 0 -13.549 Td[(people)-347(who)-346(agree)-347(to)-346(be)-347(bound)-347(by)-346(the)-347(terms)-346(of)-347(this)-347(agreement.)]TJ 0 -13.55 Td[(There)-531(are)-531(a)-531(few)-531(things)-530(that)-531(you)-531(can)-531(do)-531(with)-531(most)-531(Project)]TJ 0 -13.549 Td[(Gutenberg)]TJ/F56 10.909 Tf 46.048 0 Td[(")]TJ/F16 10.909 Tf 13.674 0 Td[(electronic)-274(works)-273(even)-274(without)-273(complying)-274(with)-273(the)]TJ -59.722 -13.549 Td[(full)-229(terms)-228(of)-229(this)-228(agreement.)-243(See)-229(paragraph)-229(1.C)-228(below.)-243(There)-229(are)]TJ 0 -13.549 Td[(a)-330(lot)-331(of)-330(things)-330(you)-331(can)-330(do)-331(with)-330(Project)-330(Gutenberg)]TJ/F56 10.909 Tf 223.321 0 Td[(")]TJ/F16 10.909 Tf 14.295 0 Td[(electronic)]TJ -237.616 -13.549 Td[(works)-193(if)-192(you)-193(follow)-192(the)-193(terms)-193(of)-192(this)-193(agreement)-192(and)-193(help)-193(preserve)]TJ 0 -13.55 Td[(free)-284(future)-283(access)-284(to)-283(Project)-284(Gutenberg)]TJ/F56 10.909 Tf 171.772 0 Td[(")]TJ/F16 10.909 Tf 13.784 0 Td[(electronic)-284(works.)-350(See)]TJ -185.556 -13.549 Td[(paragraph)-250(1.E)-250(below.)]TJ/F16 13.151 Tf 0 -43.303 Td[(1.C.)]TJ/F16 10.909 Tf 0 -27.866 Td[(The)-247(Project)-247(Gutenberg)-247(Literary)-247(Archive)-247(Foundation)-248(\050)]TJ/F21 10.909 Tf 233.699 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(the)-247(Foun-)]TJ -238.542 -13.549 Td[(dation)]TJ/F21 10.909 Tf 27.273 0 Td[(\035)]TJ/F16 10.909 Tf 9.058 0 Td[(or)-386(PGLAF\051,)-387(owns)-386(a)-386(compilation)-386(copyright)-387(in)-386(the)-386(col-)]TJ -36.331 -13.549 Td[(lection)-306(of)-305(Project)-306(Gutenberg)]TJ/F56 10.909 Tf 125.734 0 Td[(")]TJ/F16 10.909 Tf 14.024 0 Td[(electronic)-306(works.)-416(Nearly)-306(all)-305(the)]TJ -139.758 -13.549 Td[(individual)-233(works)-232(in)-233(the)-233(collection)-232(are)-233(in)-233(the)-233(public)-232(domain)-233(in)-233(the)]TJ 0 -13.549 Td[(United)-323(States.)-469(If)-322(an)-323(individual)-323(work)-323(is)-323(in)-323(the)-323(public)-323(domain)-323(in)]TJ 0 -13.55 Td[(the)-344(United)-345(States)-344(and)-344(you)-345(are)-344(located)-345(in)-344(the)-344(United)-345(States,)-368(we)]TJ 0 -13.549 Td[(do)-332(not)-331(claim)-332(a)-331(right)-332(to)-332(prevent)-331(you)-332(from)-332(copying,)-352(distributing,)]TJ 0 -13.549 Td[(performing,)-231(displaying)-226(or)-226(creating)-226(derivative)-226(works)-226(based)-226(on)-226(the)]TJ 0 -13.549 Td[(work)-232(as)-231(long)-232(as)-231(all)-232(references)-231(to)-232(Project)-231(Gutenberg)-232(are)-232(removed.)]TJ 0 -13.549 Td[(Of)-188(course,)-200(we)-187(hope)-188(that)-187(you)-188(will)-187(support)-188(the)-187(Project)-188(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.55 Td[(mission)-334(of)-334(promoting)-335(free)-334(access)-334(to)-334(electronic)-334(works)-334(by)-335(freely)]TJ 0 -13.549 Td[(sharing)-212(Project)-211(Gutenberg)]TJ/F56 10.909 Tf 113.685 0 Td[(")]TJ/F16 10.909 Tf 12.999 0 Td[(works)-212(in)-211(compliance)-212(with)-211(the)-212(terms)]TJ -126.684 -13.549 Td[(of)-441(this)-441(agreement)-441(for)-441(keeping)-441(the)-441(Project)-441(Gutenberg)]TJ/F56 10.909 Tf 241.5 0 Td[(")]TJ/F16 10.909 Tf 15.501 0 Td[(name)]TJ -257.001 -13.549 Td[(associated)-262(with)-262(the)-262(work.)-286(You)-262(can)-262(easily)-262(comply)-262(with)-263(the)-262(terms)]TJ 0 -13.549 Td[(of)-283(this)-284(agreement)-283(by)-283(keeping)-284(this)-283(work)-283(in)-284(the)-283(same)-283(format)-284(with)]TJ 0 -13.55 Td[(its)-287(attached)-287(full)-287(Project)-287(Gutenberg)]TJ/F56 10.909 Tf 151.285 0 Td[(")]TJ/F16 10.909 Tf 13.821 0 Td[(License)-287(when)-287(you)-287(share)-287(it)]TJ -165.106 -13.549 Td[(without)-250(charge)-250(with)-250(others.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2280 0 obj << +/Type /Page +/Contents 2281 0 R +/Resources 2279 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2283 0 R 2284 0 R ] +>> endobj +2283 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [236.157 420.185 251.616 429.905] +/Subtype /Link +/A << /S /GoTo /D (pglicense1C) >> +>> endobj +2284 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [93.113 365.988 107.96 375.708] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E) >> +>> endobj +2282 0 obj << +/D [2280 0 R /XYZ 46.771 529.134 null] +>> endobj +2285 0 obj << +/D [2280 0 R /XYZ 46.771 354.098 null] +>> endobj +2286 0 obj << +/D [2280 0 R /XYZ 46.771 66.142 null] +>> endobj +2279 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F56 2264 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2290 0 obj << +/Length 3493 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(162)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 13.151 Tf 93.543 518.175 Td[(1.D.)]TJ/F16 10.909 Tf 0 -29.35 Td[(The)-468(copyright)-467(laws)-468(of)-467(the)-468(place)-467(where)-468(you)-467(are)-468(located)-468(also)]TJ 0 -13.549 Td[(govern)-267(what)-268(you)-267(can)-267(do)-268(with)-267(this)-267(wo)-1(rk.)-302(Copyright)-267(laws)-267(in)-268(most)]TJ 0 -13.549 Td[(countries)-366(are)-366(in)-366(a)-366(constant)-366(state)-366(of)-366(change.)-598(If)-366(you)-367(are)-366(outside)]TJ 0 -13.55 Td[(the)-394(United)-394(States,)-431(check)-394(the)-394(laws)-394(of)-394(your)-394(country)-394(in)-395(addition)]TJ 0 -13.549 Td[(to)-439(the)-440(terms)-439(of)-439(this)-439(agreement)-440(before)-439(downloading,)-487(copying,)]TJ 0 -13.549 Td[(displaying,)-243(performing,)-243(distributing)-241(or)-241(creating)-241(derivative)-241(works)]TJ 0 -13.549 Td[(based)-269(on)-268(this)-268(work)-269(or)-268(any)-269(other)-268(Project)-269(Gutenberg)]TJ/F56 10.909 Tf 221.57 0 Td[(")]TJ/F16 10.909 Tf 13.62 0 Td[(work.)-305(The)]TJ -235.19 -13.549 Td[(Foundation)-344(makes)-343(no)-344(representations)-343(concerning)-344(the)-344(copyright)]TJ 0 -13.55 Td[(status)-250(of)-250(any)-250(work)-250(in)-250(any)-250(country)-250(outside)-250(the)-250(United)-250(States.)]TJ/F16 13.151 Tf 0 -45.973 Td[(1.E.)]TJ/F16 10.909 Tf 0 -29.351 Td[(Unless)-250(you)-250(have)-250(removed)-250(all)-250(references)-250(to)-250(Project)-250(Gutenberg:)]TJ 0 -27.168 Td[(1.E.1.)]TJ 0 -27.168 Td[(The)-259(following)-260(sentence,)-261(with)-260(active)-259(links)-259(to,)-262(or)-259(other)-260(immediate)]TJ 0 -13.549 Td[(access)-465(to)-1(,)-519(the)-465(full)-466(Project)-465(Gutenberg)]TJ/F56 10.909 Tf 170.488 0 Td[(")]TJ/F16 10.909 Tf 15.769 0 Td[(License)-465(must)-466(appear)]TJ -186.257 -13.55 Td[(prominently)-274(whenever)-275(any)-274(copy)-274(of)-275(a)-274(Project)-274(Gutenberg)]TJ/F56 10.909 Tf 244.529 0 Td[(")]TJ/F16 10.909 Tf 13.683 0 Td[(work)]TJ -258.212 -13.549 Td[(\050any)-421(work)-422(on)-421(which)-421(the)-422(phrase)]TJ/F21 10.909 Tf 148.755 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(Project)-421(Gutenberg)]TJ/F21 10.909 Tf 81.549 0 Td[(\035)]TJ/F16 10.909 Tf 9.44 0 Td[(appears,)]TJ -244.587 -13.549 Td[(or)-347(with)-346(which)-347(the)-346(phrase)]TJ/F21 10.909 Tf 115.849 0 Td[(\034)]TJ/F16 10.909 Tf 4.844 0 Td[(Project)-346(Gutenberg)]TJ/F21 10.909 Tf 80.732 0 Td[(\035)]TJ/F16 10.909 Tf 8.624 0 Td[(is)-346(associated\051)-347(is)]TJ -210.049 -13.549 Td[(accessed,)-250(displayed,)-250(performed,)-250(viewed,)-250(copied)-250(or)-250(distributed:)]TJ/F16 9.863 Tf 19.637 -25.35 Td[(This)-432(eBook)-432(is)-432(for)-432(the)-432(use)-433(of)-432(anyone)-432(anywhere)-432(at)-432(no)-432(cost)]TJ 0 -12.822 Td[(and)-345(with)-344(almost)-345(no)-344(restrictions)-345(whatsoever.)-534(You)-344(may)-345(copy)]TJ 0 -12.822 Td[(it,)-437(give)-400(it)-400(away)-400(or)-400(re-use)-400(it)-400(under)-399(the)-400(terms)-400(of)-400(the)-400(Project)]TJ 0 -12.822 Td[(Gutenberg)-476(License)-476(included)-476(with)-475(this)-476(eBook)-476(or)-476(online)-476(at)]TJ 0 -12.821 Td[(http://www.gutenberg.org)]TJ/F16 10.909 Tf -19.637 -40.246 Td[(1.E.2.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2289 0 obj << +/Type /Page +/Contents 2290 0 R +/Resources 2288 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2292 0 R ] +>> endobj +2292 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [113.18 104.237 215.636 113.025] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org) >> +>> endobj +2287 0 obj << +/D [2289 0 R /XYZ 93.543 364.976 null] +>> endobj +2291 0 obj << +/D [2289 0 R /XYZ 93.543 302.729 null] +>> endobj +2293 0 obj << +/D [2289 0 R /XYZ 93.543 91.16 null] +>> endobj +2288 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2296 0 obj << +/Length 3769 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(163)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(If)-295(an)-295(individual)-295(Project)-295(Gutenberg)]TJ/F56 10.909 Tf 151.639 0 Td[(")]TJ/F16 10.909 Tf 13.91 0 Td[(electronic)-295(work)-295(is)-295(derived)]TJ -165.549 -13.549 Td[(from)-228(the)-229(public)-228(domain)-228(\050does)-228(not)-229(contain)-228(a)-228(notice)-228(indicating)-229(that)]TJ 0 -13.549 Td[(it)-184(is)-183(posted)-184(with)-183(permission)-184(of)-183(the)-184(copyright)-184(holder\051,)-196(the)-184(work)-184(can)]TJ 0 -13.549 Td[(be)-256(copied)-256(and)-256(distributed)-256(to)-256(anyone)-256(in)-256(the)-256(United)-256(States)-256(without)]TJ 0 -13.55 Td[(paying)-230(any)-230(fees)-230(or)-230(charges.)-243(If)-230(you)-231(are)-230(redistributing)-230(or)-230(providing)]TJ 0 -13.549 Td[(access)-248(to)-248(a)-248(work)-248(with)-248(the)-248(phrase)]TJ/F21 10.909 Tf 143.745 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(Project)-248(Gutenberg)]TJ/F21 10.909 Tf 79.658 0 Td[(\035)]TJ/F16 10.909 Tf 7.548 0 Td[(associated)]TJ -235.794 -13.549 Td[(with)-410(or)-411(appearing)-410(on)-410(the)-411(work,)-450(you)-411(must)-410(comply)-410(either)-411(with)]TJ 0 -13.549 Td[(the)-424(requireme)-1(nts)-424(of)-424(paragraphs)-425(1.E.1)-424(through)-425(1.E.7)-424(or)-425(obtain)]TJ 0 -13.549 Td[(permission)-281(for)-280(the)-280(use)-281(of)-280(the)-281(work)-280(and)-281(the)-280(Project)-281(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.55 Td[(trademark)-250(as)-250(set)-250(forth)-250(in)-250(paragraphs)-250(1.E.8)-250(or)-250(1.E.9.)]TJ 0 -38.607 Td[(1.E.3.)]TJ 0 -26.259 Td[(If)-344(an)-343(individual)-344(Project)-343(Gutenberg)]TJ/F56 10.909 Tf 153.755 0 Td[(")]TJ/F16 10.909 Tf 14.439 0 Td[(electronic)-344(work)-343(is)-344(posted)]TJ -168.194 -13.549 Td[(with)-551(the)-551(permission)-550(of)-551(the)-551(copyright)-551(holder,)-626(your)-551(use)-551(and)]TJ 0 -13.549 Td[(distribution)-429(must)-429(comply)-429(with)-429(both)-429(paragraphs)-429(1.E.1)-429(through)]TJ 0 -13.549 Td[(1.E.7)-251(and)-250(any)-251(additional)-250(terms)-251(imposed)-250(by)-251(the)-250(copyright)-251(holder.)]TJ 0 -13.549 Td[(Additional)-524(terms)-524(will)-523(b)-1(e)-523(linked)-524(to)-524(the)-524(Project)-524(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.55 Td[(License)-212(for)-211(all)-212(works)-212(posted)-211(with)-212(the)-212(permission)-211(of)-212(the)-212(copyright)]TJ 0 -13.549 Td[(holder)-250(found)-250(at)-250(the)-250(beginning)-250(of)-250(this)-250(work.)]TJ 0 -38.608 Td[(1.E.4.)]TJ 0 -26.258 Td[(Do)-275(not)-275(unlink)-275(or)-274(detach)-275(or)-275(remove)-275(the)-275(full)-275(Project)-275(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(License)-330(terms)-329(from)-330(this)-329(work,)-350(or)-330(any)-329(files)-330(containing)-329(a)-330(part)-330(of)]TJ 0 -13.549 Td[(this)-185(work)-185(or)-185(any)-185(other)-185(work)-185(associated)-185(with)-186(Project)-185(Gutenberg)]TJ/F56 10.909 Tf 267.212 0 Td[(")]TJ/F16 10.909 Tf 10.691 0 Td[(.)]TJ -277.903 -38.608 Td[(1.E.5.)]TJ 0 -26.258 Td[(Do)-457(not)-457(copy,)-508(display,)-509(perform,)-508(distribute)-457(or)-457(redistribute)-457(this)]TJ 0 -13.55 Td[(electronic)-441(work,)-488(or)-441(any)-441(part)-441(of)-441(this)-440(electronic)-441(work,)-489(without)]TJ 0 -13.549 Td[(prominently)-258(displaying)-257(the)-258(sentence)-258(set)-258(forth)-257(in)-258(paragraph)-258(1.E.1)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2295 0 obj << +/Type /Page +/Contents 2296 0 R +/Resources 2294 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2297 0 R 2298 0 R 2300 0 R 2303 0 R ] +>> endobj +2297 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [192.525 420.953 215.554 430.673] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E1) >> +>> endobj +2298 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [206.12 393.854 229.149 403.574] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E8) >> +>> endobj +2300 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [265.755 301.89 288.784 311.61] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E1) >> +>> endobj +2303 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [304.372 63.764 327.401 73.484] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E1) >> +>> endobj +2299 0 obj << +/D [2295 0 R /XYZ 46.771 381.505 null] +>> endobj +2301 0 obj << +/D [2295 0 R /XYZ 46.771 235.344 null] +>> endobj +2302 0 obj << +/D [2295 0 R /XYZ 46.771 143.379 null] +>> endobj +2294 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2306 0 obj << +/Length 3995 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(164)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(with)-394(active)-395(links)-394(or)-395(immediate)-394(access)-395(to)-394(the)-394(full)-395(terms)-394(of)-395(the)]TJ 0 -13.549 Td[(Project)-250(Gutenberg)]TJ/F56 10.909 Tf 79.68 0 Td[(")]TJ/F16 10.909 Tf 13.418 0 Td[(License.)]TJ -93.098 -34.591 Td[(1.E.6.)]TJ 0 -24.07 Td[(You)-475(may)-476(convert)-475(to)-476(and)-475(distribute)-476(this)-475(work)-476(in)-475(any)-476(binary,)]TJ 0 -13.549 Td[(compressed,)-287(marked)-280(up,)-287(nonproprietary)-280(or)-280(proprietary)-279(form,)-288(in-)]TJ 0 -13.549 Td[(cluding)-234(any)-234(word)-234(processing)-233(or)-234(hypertext)-234(form.)-245(However,)-237(if)-234(you)]TJ 0 -13.55 Td[(provide)-318(access)-318(to)-318(or)-317(distribute)-318(copies)-318(of)-318(a)-318(Project)-318(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(work)-462(in)-462(a)-461(format)-462(other)-462(than)]TJ/F21 10.909 Tf 136.26 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(Plain)-462(Vanilla)-462(ASCII)]TJ/F21 10.909 Tf 93.104 0 Td[(\035)]TJ/F16 10.909 Tf 9.88 0 Td[(or)-462(other)]TJ -244.087 -13.549 Td[(format)-284(used)-284(in)-284(the)-284(official)-284(version)-284(posted)-284(on)-284(the)-284(official)-284(Project)]TJ 0 -13.549 Td[(Gutenberg)]TJ/F56 10.909 Tf 46.048 0 Td[(")]TJ/F16 10.909 Tf 13.833 0 Td[(web)-288(site)-288(\050http://www.gutenberg.org\051,)-298(you)-288(must,)-297(at)]TJ -59.881 -13.549 Td[(no)-357(additional)-357(cost,)-384(fee)-356(or)-357(expense)-357(to)-357(the)-357(user,)-384(provide)-357(a)-357(copy,)]TJ 0 -13.55 Td[(a)-380(means)-380(of)-380(exporting)-379(a)-380(copy,)-413(or)-379(a)-380(means)-380(of)-380(obtaining)-380(a)-380(copy)]TJ 0 -13.549 Td[(upon)-313(request,)-328(of)-313(the)-313(work)-313(in)-312(its)-313(original)]TJ/F21 10.909 Tf 181.09 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(Plain)-313(Vanilla)-313(ASCII)]TJ/F21 10.909 Tf 89.853 0 Td[(\035)]TJ/F16 10.909 Tf -275.786 -13.549 Td[(or)-248(other)-247(form.)-250(Any)-247(alternate)-248(format)-248(must)-247(include)-248(the)-248(full)-248(Project)]TJ 0 -13.549 Td[(Gutenberg)]TJ/F56 10.909 Tf 46.048 0 Td[(")]TJ/F16 10.909 Tf 13.418 0 Td[(License)-250(as)-250(specified)-250(in)-250(paragraph)-250(1.E.1.)]TJ -59.466 -34.591 Td[(1.E.7.)]TJ 0 -24.07 Td[(Do)-450(not)-450(charge)-449(a)-450(fee)-450(for)-450(access)-449(to,)-500(viewing,)-500(displaying,)-500(per-)]TJ 0 -13.549 Td[(forming,)-240(copying)-237(or)-237(distributing)-238(any)-237(Project)-237(Gutenberg)]TJ/F56 10.909 Tf 240.689 0 Td[(")]TJ/F16 10.909 Tf 13.279 0 Td[(works)]TJ -253.968 -13.549 Td[(unless)-250(you)-250(comply)-250(with)-250(paragraph)-250(1.E.8)-250(or)-250(1.E.9.)]TJ 0 -34.591 Td[(1.E.8.)]TJ 0 -24.07 Td[(You)-440(may)-440(charge)-440(a)-439(reasonable)-440(fee)-440(for)-440(copies)-440(of)-440(or)-440(providing)]TJ 0 -13.55 Td[(access)-361(to)-361(or)-361(distributing)-361(Project)-361(Gutenberg)]TJ/F56 10.909 Tf 192.388 0 Td[(")]TJ/F16 10.909 Tf 14.628 0 Td[(electronic)-361(works)]TJ -207.016 -13.549 Td[(provided)-250(that)]TJ/F21 10.909 Tf 12.546 -18.615 Td[(")]TJ/F16 10.909 Tf 9.272 0 Td[(You)-320(pay)-320(a)-320(royalty)-320(fee)-320(of)-320(20%)-320(of)-320(the)-320(gross)-320(pro)-1(fits)-320(you)-320(de-)]TJ 0 -13.549 Td[(rive)-288(from)-288(the)-289(use)-288(of)-288(Project)-288(Gutenberg)]TJ/F56 10.909 Tf 170.946 0 Td[(")]TJ/F16 10.909 Tf 13.835 0 Td[(works)-288(calculated)]TJ -184.781 -13.55 Td[(using)-340(the)-340(method)-341(you)-340(already)-340(use)-340(to)-340(calculate)-340(your)-341(appli-)]TJ 0 -13.549 Td[(cable)-370(taxes.)-611(The)-370(fee)-371(is)-370(owed)-370(to)-370(the)-371(owner)-370(of)-370(the)-371(Project)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2305 0 obj << +/Type /Page +/Contents 2306 0 R +/Resources 2304 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2265 0 R +/Annots [ 2308 0 R 2310 0 R ] +>> endobj +2308 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [301.143 294.546 326.899 304.266] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E1) >> +>> endobj +2310 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [246.554 208.786 269.583 218.506] +/Subtype /Link +/A << /S /GoTo /D (pglicense1E8) >> +>> endobj +2307 0 obj << +/D [2305 0 R /XYZ 93.543 491.727 null] +>> endobj +2309 0 obj << +/D [2305 0 R /XYZ 93.543 284.025 null] +>> endobj +2278 0 obj << +/D [2305 0 R /XYZ 93.543 198.265 null] +>> endobj +2304 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2313 0 obj << +/Length 4375 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(165)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 68.59 518.175 Td[(Gutenberg)]TJ/F56 10.909 Tf 46.047 0 Td[(")]TJ/F16 10.909 Tf 13.639 0 Td[(trademark,)-275(but)-271(he)-270(has)-270(agreed)-271(to)-270(donate)-270(royal-)]TJ -59.686 -13.549 Td[(ties)-293(under)-292(this)-293(paragraph)-292(to)-293(the)-292(Project)-293(Gutenberg)-293(Literary)]TJ 0 -13.549 Td[(Archive)-215(Foundation.)-239(Royalty)-215(payments)-215(must)-216(be)-215(paid)-216(within)]TJ 0 -13.549 Td[(60)-318(days)-317(following)-318(each)-317(date)-318(on)-317(which)-318(you)-317(prepare)-318(\050or)-318(are)]TJ 0 -13.55 Td[(legally)-270(required)-270(to)-271(prepare\051)-270(your)-270(periodic)-271(tax)-270(returns.)-311(Roy-)]TJ 0 -13.549 Td[(alty)-256(payments)-256(should)-256(be)-257(clearly)-256(marked)-256(as)-256(such)-256(and)-256(sent)-257(to)]TJ 0 -13.549 Td[(the)-358(Project)-358(Gutenberg)-358(Literary)-358(Archive)-358(Foundation)-358(at)-359(the)]TJ 0 -13.549 Td[(address)-177(specified)-178(in)-177(Section)-177(4,)]TJ/F21 10.909 Tf 131.322 0 Td[(\034)]TJ/F16 10.909 Tf 4.844 0 Td[(Information)-177(about)-178(donations)]TJ -136.166 -13.549 Td[(to)-250(the)-250(Project)-250(Gutenberg)-250(Literary)-250(Archive)-250(Foundation.)]TJ/F21 10.909 Tf 237.839 0 Td[(\035)]TJ -247.112 -13.55 Td[(")]TJ/F16 10.909 Tf 9.273 0 Td[(You)-425(provide)-425(a)-425(full)-424(refund)-425(of)-425(any)-425(money)-425(paid)-425(by)-425(a)-425(user)]TJ 0 -13.549 Td[(who)-339(notifies)-339(you)-340(in)-339(writing)-339(\050or)-339(b)-1(y)-339(e-mail\051)-339(within)-339(30)-340(days)]TJ 0 -13.549 Td[(of)-343(receipt)-343(that)-343(s/he)-343(does)-344(not)-343(agree)-343(to)-343(the)-343(terms)-343(of)-343(the)-344(full)]TJ 0 -13.549 Td[(Project)-235(Gutenberg)]TJ/F56 10.909 Tf 79.514 0 Td[(")]TJ/F16 10.909 Tf 13.252 0 Td[(License.)-245(You)-235(must)-235(require)-234(such)-235(a)-235(user)]TJ -92.766 -13.549 Td[(to)-324(return)-324(or)-323(destroy)-324(all)-324(copies)-324(of)-323(the)-324(works)-324(possessed)-324(in)-324(a)]TJ 0 -13.55 Td[(physical)-322(medium)-321(and)-322(discontinue)-321(all)-322(use)-322(of)-321(and)-322(all)-322(access)]TJ 0 -13.549 Td[(to)-250(other)-250(copies)-250(of)-250(Project)-250(Gutenberg)]TJ/F56 10.909 Tf 158.454 0 Td[(")]TJ/F16 10.909 Tf 13.418 0 Td[(works.)]TJ/F21 10.909 Tf -181.145 -13.549 Td[(")]TJ/F16 10.909 Tf 9.273 0 Td[(You)-427(provide,)-472(in)-427(accordance)-428(with)-427(paragraph)-427(1.F.3,)-472(a)-428(full)]TJ 0 -13.549 Td[(refund)-215(of)-216(any)-215(money)-216(paid)-215(fo)-1(r)-215(a)-215(wo)-1(rk)-215(or)-215(a)-216(replacement)-216(copy,)]TJ 0 -13.549 Td[(if)-245(a)-246(defect)-245(in)-245(the)-246(electronic)-245(work)-245(is)-246(discovered)-245(and)-245(rep)-1(orted)]TJ 0 -13.55 Td[(to)-250(you)-250(within)-250(90)-250(days)-250(of)-250(receipt)-250(of)-250(the)-250(work.)]TJ/F21 10.909 Tf -9.273 -13.549 Td[(")]TJ/F16 10.909 Tf 9.273 0 Td[(You)-278(comply)-279(with)-278(all)-279(other)-278(terms)-279(of)-278(this)-279(agreement)-278(for)-279(free)]TJ 0 -13.549 Td[(distribution)-250(of)-250(Project)-250(Gutenberg)]TJ/F56 10.909 Tf 144.534 0 Td[(")]TJ/F16 10.909 Tf 13.418 0 Td[(works.)]TJ -179.77 -34.9 Td[(1.E.9.)]TJ 0 -24.225 Td[(If)-316(you)-315(wish)-316(to)-316(charge)-315(a)-316(fee)-316(or)-315(distribute)-316(a)-316(Project)-315(Gute)-1(nberg)]TJ/F56 10.909 Tf 269.938 0 Td[(")]TJ/F16 10.909 Tf -269.938 -13.549 Td[(electronic)-233(work)-233(or)-233(group)-234(of)-233(works)-233(on)-233(different)-233(terms)-233(than)-233(are)-234(set)]TJ 0 -13.549 Td[(forth)-346(in)-347(this)-346(agreement,)-371(you)-346(must)-346(obtain)-347(permission)-346(in)-347(writing)]TJ 0 -13.55 Td[(from)-161(both)-160(the)-161(Project)-160(Gutenberg)-161(Literary)-160(Archive)-161(Foundation)-161(and)]TJ 0 -13.549 Td[(Michael)-287(Hart,)-297(the)-287(owner)-287(of)-287(the)-287(Project)-287(Gutenberg)]TJ/F56 10.909 Tf 219.853 0 Td[(")]TJ/F16 10.909 Tf 13.824 0 Td[(trademark.)]TJ -233.677 -13.549 Td[(Contact)-250(the)-250(Foundation)-250(as)-250(set)-250(forth)-250(in)-250(Section)-250(3)-250(below.)]TJ/F16 13.151 Tf 0 -40.629 Td[(1.F.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2312 0 obj << +/Type /Page +/Contents 2313 0 R +/Resources 2311 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +/Annots [ 2314 0 R 2315 0 R 2316 0 R 2318 0 R ] +>> endobj +2314 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [154.977 420.963 327.401 430.705] +/Subtype /Link +/A << /S /GoTo /D (pglicense4) >> +>> endobj +2315 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 407.403 311.273 417.156] +/Subtype /Link +/A << /S /GoTo /D (pglicense4) >> +>> endobj +2316 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [272.441 299.01 294.87 308.73] +/Subtype /Link +/A << /S /GoTo /D (pglicense1F3) >> +>> endobj +2318 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [213.735 106.629 254.644 114.113] +/Subtype /Link +/A << /S /GoTo /D (pglicense3) >> +>> endobj +2317 0 obj << +/D [2312 0 R /XYZ 46.771 220.588 null] +>> endobj +2319 0 obj << +/D [2312 0 R /XYZ 46.771 95.953 null] +>> endobj +2311 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2326 0 obj << +/Length 3796 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(166)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(1.F.1.)]TJ 0 -25.744 Td[(Project)-362(Gutenberg)-363(volunteers)-362(and)-363(employees)-362(expend)-363(consider-)]TJ 0 -13.549 Td[(able)-318(effort)-318(to)-319(identify,)-335(do)-318(copyright)-318(research)-318(on,)-335(transcribe)-319(and)]TJ 0 -13.549 Td[(proofread)-383(public)-383(domain)-383(works)-382(in)-383(creating)-383(the)-383(Project)-383(Guten-)]TJ 0 -13.55 Td[(berg)]TJ/F56 10.909 Tf 19.386 0 Td[(")]TJ/F16 10.909 Tf 15.097 0 Td[(collection.)-712(Despite)-403(these)-404(efforts,)-443(Project)-404(Gutenberg)]TJ/F56 10.909 Tf 235.456 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(electronic)-262(works,)-264(and)-261(the)-262(medium)-261(on)-262(which)-261(they)-262(may)-261(be)-262(stored,)]TJ 0 -13.549 Td[(may)-312(contain)]TJ/F21 10.909 Tf 57.708 0 Td[(\034)]TJ/F16 10.909 Tf 4.844 0 Td[(Defects,)]TJ/F21 10.909 Tf 36.043 0 Td[(\035)]TJ/F16 10.909 Tf 8.247 0 Td[(such)-312(as,)-327(but)-312(not)-312(limited)-312(to,)-328(incomplete,)]TJ -106.842 -13.549 Td[(inaccurate)-395(or)-395(corrupt)-395(data,)-431(transcription)-395(errors,)-431(a)-395(copyright)-395(or)]TJ 0 -13.549 Td[(other)-267(intellectual)-266(property)-267(infringement,)-270(a)-267(defective)-266(or)-267(damaged)]TJ 0 -13.55 Td[(disk)-277(or)-277(other)-277(medium,)-284(a)-277(computer)-277(virus,)-284(or)-277(computer)-277(codes)-277(that)]TJ 0 -13.549 Td[(damage)-250(or)-250(cannot)-250(be)-250(read)-250(by)-250(your)-250(equipment.)]TJ 0 -37.682 Td[(1.F.2.)]TJ 0 -25.744 Td[(LIMITED)-451(WARRANTY,)-451(DISCLAIMER)-451(OF)-451(DAMAGES)]TJ/F21 10.909 Tf 269.721 0 Td[(\024)]TJ/F16 10.909 Tf -269.721 -13.549 Td[(Except)-334(for)-334(the)]TJ/F21 10.909 Tf 67.282 0 Td[(\034)]TJ/F16 10.909 Tf 4.843 0 Td[(Right)-334(of)-334(Replacement)-335(or)-334(Refund)]TJ/F21 10.909 Tf 146.08 0 Td[(\035)]TJ/F16 10.909 Tf 8.489 0 Td[(described)-334(in)]TJ -226.694 -13.549 Td[(paragraph)-328(1.F.3,)-347(the)-328(Project)-327(Gutenberg)-328(Literary)-328(Archive)-328(Foun-)]TJ 0 -13.55 Td[(dation,)-224(the)-218(owner)-218(of)-217(the)-218(Project)-218(Gutenberg)]TJ/F56 10.909 Tf 184.285 0 Td[(")]TJ/F16 10.909 Tf 13.066 0 Td[(trademark,)-224(and)-218(any)]TJ -197.351 -13.549 Td[(other)-361(party)-361(distributing)-361(a)-361(Project)-361(Gutenberg)]TJ/F56 10.909 Tf 196.632 0 Td[(")]TJ/F16 10.909 Tf 14.628 0 Td[(electronic)-361(work)]TJ -211.26 -13.549 Td[(under)-320(this)-319(agreement,)-337(disclaim)-320(all)-319(liability)-320(to)-319(you)-320(for)-320(damages,)]TJ 0 -13.549 Td[(costs)-316(and)-315(expenses,)-333(including)-315(legal)-316(fees.)-447(YOU)-316(AGREE)-316(THAT)]TJ 0 -13.549 Td[(YOU)-394(HAVE)-394(NO)-395(REMEDIES)-394(FOR)-394(NEGLIGENCE,)-395(STRICT)]TJ 0 -13.55 Td[(LIABILITY,)-450(BREACH)-449(OF)-450(WARRANTY)-449(OR)-450(BREACH)-450(OF)]TJ 0 -13.549 Td[(CONTRACT)-234(EXCEPT)-234(THOSE)-234(PROVIDED)-234(IN)-234(PARAGRAPH)]TJ 0 -13.549 Td[(F3.)-299(YOU)-266(AGREE)-266(THAT)-266(THE)-266(FOUNDATION,)-266(THE)-267(TRADE-)]TJ 0 -13.549 Td[(MARK)-367(OWNER,)-366(AND)-367(ANY)-366(DISTRIBUTOR)-367(UNDER)-367(THIS)]TJ 0 -13.549 Td[(AGREEMENT)-376(WILL)-375(NOT)-376(BE)-376(LIABLE)-376(TO)-375(YOU)-376(FOR)-376(AC-)]TJ 0 -13.55 Td[(TUAL,)-210(DIRECT,)-210(INDIRECT,)-210(CONSEQUENTIAL,)-210(PUNITIVE)]TJ 0 -13.549 Td[(OR)-223(INCIDENTAL)-223(DAMAGES)-224(EVEN)-223(IF)-223(YOU)-223(GIVE)-224(NOTICE)]TJ 0 -13.549 Td[(OF)-250(THE)-250(POSSIBILITY)-250(OF)-250(SUCH)-250(DAMAGE.)]TJ 0 -37.682 Td[(1.F.3.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2325 0 obj << +/Type /Page +/Contents 2326 0 R +/Resources 2324 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +/Annots [ 2329 0 R ] +>> endobj +2329 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [93.543 277.585 163.162 287.305] +/Subtype /Link +/A << /S /GoTo /D (pglicense1F3) >> +>> endobj +2327 0 obj << +/D [2325 0 R /XYZ 93.543 529.134 null] +>> endobj +2328 0 obj << +/D [2325 0 R /XYZ 93.543 356.172 null] +>> endobj +2322 0 obj << +/D [2325 0 R /XYZ 93.543 91.744 null] +>> endobj +2324 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2332 0 obj << +/Length 3646 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(167)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(LIMITED)-421(RIGHT)-421(OF)-422(REPLACEMENT)-421(OR)-421(REFUND)]TJ/F21 10.909 Tf 257.859 0 Td[(\024)]TJ/F16 10.909 Tf 15.506 0 Td[(If)]TJ -273.365 -13.549 Td[(you)-434(discover)-434(a)-434(defect)-434(in)-434(this)-434(electronic)-434(work)-434(within)-434(90)-434(days)]TJ 0 -13.549 Td[(of)-335(receiving)-334(it,)-356(you)-335(can)-335(receive)-334(a)-335(refund)-335(of)-334(the)-335(money)-335(\050if)-335(any\051)]TJ 0 -13.549 Td[(you)-369(paid)-369(for)-369(it)-370(by)-369(sending)-369(a)-369(written)-369(explanation)-369(to)-369(the)-370(person)]TJ 0 -13.55 Td[(you)-430(received)-430(the)-431(work)-430(from.)-790(If)-431(you)-430(received)-430(the)-430(work)-430(on)-431(a)]TJ 0 -13.549 Td[(physical)-231(medium,)-236(you)-231(must)-231(return)-232(the)-231(medium)-232(with)-231(your)-232(written)]TJ 0 -13.549 Td[(explanation.)-706(The)-402(person)-402(or)-402(entity)-402(that)-402(provided)-402(you)-402(with)-402(the)]TJ 0 -13.549 Td[(defective)-301(work)-301(may)-301(elect)-300(to)-301(provide)-301(a)-301(replacement)-301(copy)-301(in)-301(lieu)]TJ 0 -13.549 Td[(of)-305(a)-305(refund)-1(.)-415(If)-305(you)-306(received)-305(the)-305(work)-305(electronically,)-319(the)-306(person)]TJ 0 -13.55 Td[(or)-348(entity)-347(providing)-348(it)-347(to)-348(you)-347(may)-348(choose)-347(to)-348(give)-348(you)-347(a)-348(second)]TJ 0 -13.549 Td[(opportunity)-226(to)-226(receive)-225(the)-226(work)-226(electronically)-226(in)-225(lieu)-226(of)-226(a)-226(refund.)]TJ 0 -13.549 Td[(If)-315(the)-315(second)-315(copy)-315(is)-315(also)-315(defective,)-331(you)-315(may)-315(demand)-315(a)-315(refund)]TJ 0 -13.549 Td[(in)-250(writing)-250(without)-250(further)-250(opportunities)-250(to)-250(fix)-250(the)-250(problem.)]TJ 0 -37.467 Td[(1.F.4.)]TJ 0 -25.624 Td[(Except)-258(for)-259(the)-258(limited)-258(right)-258(of)-258(replacement)-259(or)-258(refund)-258(set)-258(forth)-259(in)]TJ 0 -13.549 Td[(paragraph)-225(1.F.3,)-230(this)-225(wo)-1(rk)-225(is)-225(provided)-225(to)-225(you)-225('AS-IS,')-225(WITH)-226(NO)]TJ 0 -13.549 Td[(OTHER)-346(WARRANTIES)-346(OF)-345(ANY)-346(KIND,)-346(EXPRESS)-346(OR)-346(IM-)]TJ 0 -13.549 Td[(PLIED,)-173(INCLUDING)-172(BUT)-172(NOT)-173(LIMITED)-172(TO)-173(WARRANTIES)]TJ 0 -13.55 Td[(OF)-190(MERCHANTIBILITY)-190(OR)-190(FITNESS)-190(FOR)-190(ANY)-191(PURPOSE.)]TJ 0 -37.466 Td[(1.F.5.)]TJ 0 -25.624 Td[(Some)-414(states)-414(do)-415(not)-414(allow)-414(disclaimers)-414(of)-414(certain)-414(implied)-415(war-)]TJ 0 -13.55 Td[(ranties)-220(or)-220(the)-220(exclusion)-220(or)-220(limitation)-220(of)-220(certain)-220(types)-221(of)-220(damages.)]TJ 0 -13.549 Td[(If)-217(any)-217(disclaimer)-218(or)-217(limitation)-217(set)-217(forth)-217(in)-217(this)-217(agreement)-218(violates)]TJ 0 -13.549 Td[(the)-302(law)-303(of)-302(the)-302(state)-302(applicable)-303(to)-302(this)-302(agreement,)-315(the)-303(agreement)]TJ 0 -13.549 Td[(shall)-377(be)-377(interpreted)-377(to)-377(make)-377(the)-377(maximum)-377(disclaimer)-378(or)-377(limi-)]TJ 0 -13.549 Td[(tation)-367(permitted)-366(by)-367(the)-366(applicable)-367(state)-367(law.)-599(The)-367(invalidity)-367(or)]TJ 0 -13.55 Td[(unenforceability)-192(of)-192(any)-192(provision)-192(of)-192(this)-192(agreement)-192(shall)-192(not)-192(void)]TJ 0 -13.549 Td[(the)-250(remaining)-250(provisions.)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2331 0 obj << +/Type /Page +/Contents 2332 0 R +/Resources 2330 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +/Annots [ 2334 0 R ] +>> endobj +2334 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [46.771 276.567 115.271 286.287] +/Subtype /Link +/A << /S /GoTo /D (pglicense1F3) >> +>> endobj +2333 0 obj << +/D [2331 0 R /XYZ 46.771 341.365 null] +>> endobj +2335 0 obj << +/D [2331 0 R /XYZ 46.771 226.313 null] +>> endobj +2336 0 obj << +/D [2331 0 R /XYZ 46.771 66.142 null] +>> endobj +2330 0 obj << +/Font << /F16 6 0 R /F21 35 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2339 0 obj << +/Length 3844 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(168)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 93.543 518.175 Td[(1.F.6.)]TJ 0 -27.876 Td[(INDEMNITY)]TJ/F21 10.909 Tf 65.981 0 Td[(\024)]TJ/F16 10.909 Tf 15.092 0 Td[(You)-383(agree)-384(to)-383(indemnify)-384(and)-383(hold)-383(the)-384(Foun-)]TJ -81.073 -13.55 Td[(dation,)-554(the)-494(trademark)-494(owner,)-554(any)-493(agent)-494(or)-494(employee)-493(of)-494(the)]TJ 0 -13.549 Td[(Foundation,)-494(anyone)-445(providing)-445(copies)-445(of)-445(Project)-446(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(electronic)-436(works)-437(in)-436(accordance)-436(with)-436(this)-437(agreement,)-482(and)-437(any)]TJ 0 -13.549 Td[(volunteers)-266(associated)-266(with)-266(the)-266(production,)-270(promotion)-266(and)-266(distri-)]TJ 0 -13.549 Td[(bution)-307(of)-308(Project)-307(Gutenberg)]TJ/F56 10.909 Tf 123.981 0 Td[(")]TJ/F16 10.909 Tf 14.043 0 Td[(electronic)-307(works,)-322(harmless)-307(from)]TJ -138.024 -13.55 Td[(all)-336(liability,)-358(costs)-336(and)-336(expenses,)-357(including)-336(legal)-336(fees,)-358(that)-336(arise)]TJ 0 -13.549 Td[(directly)-263(or)-263(indirectly)-263(from)-264(any)-263(of)-263(the)-263(following)-263(which)-263(you)-263(do)-264(or)]TJ 0 -13.549 Td[(cause)-189(to)-188(occur:)-219(\050a\051)-189(distribution)-188(of)-189(this)-188(or)-189(any)-188(Project)-189(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ/F16 10.909 Tf -269.939 -13.549 Td[(work,)-413(\050b\051)-381(alteration,)-413(modification,)-414(or)-381(additions)-380(or)-381(deletions)-381(to)]TJ 0 -13.549 Td[(any)-250(Project)-250(Gutenberg)]TJ/F56 10.909 Tf 98.16 0 Td[(")]TJ/F16 10.909 Tf 13.418 0 Td[(work,)-250(and)-250(\050c\051)-250(any)-250(Defect)-250(you)-250(cause.)]TJ/F16 15.781 Tf -111.578 -53.287 Td[(Section)-250(2.)]TJ/F16 13.151 Tf 32.422 -52.048 Td[(Information)-260(about)-259(the)-260(Mission)-260(of)-259(Project)]TJ 73.695 -17.096 Td[(Gutenberg)]TJ/F56 13.151 Tf 55.509 0 Td[(")]TJ/F16 10.909 Tf -161.626 -30.058 Td[(Project)-400(Gutenberg)]TJ/F56 10.909 Tf 81.319 0 Td[(")]TJ/F16 10.909 Tf 15.057 0 Td[(is)-400(synonymous)-400(with)-401(the)-400(free)-400(distribution)]TJ -96.376 -13.55 Td[(of)-408(electronic)-409(works)-408(in)-408(formats)-408(readable)-409(by)-408(the)-408(widest)-409(variety)]TJ 0 -13.549 Td[(of)-514(computers)-513(including)-514(obsolete,)-580(old,)-579(middle-aged)-514(and)-514(new)]TJ 0 -13.549 Td[(computers.)-1070(It)-524(exists)-523(because)-524(of)-523(the)-523(efforts)-524(of)-523(hundreds)-524(of)]TJ 0 -13.549 Td[(volunteers)-250(and)-250(donations)-250(from)-250(people)-250(in)-250(all)-250(walks)-250(of)-250(life.)]TJ 11.956 -14.233 Td[(Volunteers)-162(and)-163(financial)-162(support)-162(to)-163(provide)-162(volunteers)-162(with)-163(the)]TJ -11.956 -13.549 Td[(assistance)-198(they)-199(need,)-209(is)-198(critical)-198(to)-199(reaching)-198(Project)-199(Gutenberg)]TJ/F56 10.909 Tf 263.732 0 Td[(")]TJ/F16 10.909 Tf 10.691 0 Td[('s)]TJ -274.423 -13.549 Td[(goals)-309(and)-308(ensuring)-309(that)-309(the)-308(Project)-309(Gutenberg)]TJ/F56 10.909 Tf 203.204 0 Td[(")]TJ/F16 10.909 Tf 14.059 0 Td[(collection)-309(will)]TJ -217.263 -13.55 Td[(remain)-382(freely)-381(available)-382(for)-381(generations)-382(to)-382(come.)-644(In)-382(2001,)-415(the)]TJ 0 -13.549 Td[(Project)-350(Gutenberg)-351(Literary)-350(Archive)-350(Fou)-1(ndation)-350(was)-350(created)-351(to)]TJ 0 -13.549 Td[(provide)-302(a)-303(secure)-302(and)-302(permanent)-303(future)-302(for)-302(Project)-303(Gutenberg)]TJ/F56 10.909 Tf 269.939 0 Td[(")]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2338 0 obj << +/Type /Page +/Contents 2339 0 R +/Resources 2337 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +>> endobj +2340 0 obj << +/D [2338 0 R /XYZ 93.543 338.785 null] +>> endobj +2337 0 obj << +/Font << /F16 6 0 R /F21 35 0 R /F56 2264 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2343 0 obj << +/Length 3124 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(169)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(and)-301(future)-302(generations.)-403(To)-301(learn)-302(more)-301(about)-301(the)-301(Project)-302(Guten-)]TJ 0 -13.549 Td[(berg)-487(Literary)-487(Archive)-487(Foundation)-487(and)-487(how)-487(your)-488(efforts)-487(and)]TJ 0 -13.549 Td[(donations)-225(can)-225(help,)-229(see)-225(Sections)-225(3)-225(and)-225(4)-224(and)-225(the)-225(Foundation)-225(web)]TJ 0 -13.549 Td[(page)-250(at)-250(http://www.pglaf.org.)]TJ/F16 15.781 Tf 0 -46.043 Td[(Section)-250(3.)]TJ/F16 13.151 Tf 10.376 -44.805 Td[(Information)-253(about)-253(the)-253(Project)-253(Gutenberg)-253(Literary)]TJ 76.986 -17.096 Td[(Archive)-276(Foundation)]TJ/F16 10.909 Tf -87.362 -26.095 Td[(The)-438(Project)-439(Gutenberg)-438(Literary)-438(Archive)-439(Foundation)-438(is)-438(a)-439(non)]TJ 0 -13.549 Td[(profit)-176(501\050c\051\0503\051)-176(educational)-176(corporation)-176(organized)-176(under)-176(the)-176(laws)]TJ 0 -13.549 Td[(of)-303(the)-304(state)-303(of)-304(Mississippi)-303(and)-304(granted)-303(tax)-303(exempt)-304(status)-303(by)-304(the)]TJ 0 -13.549 Td[(Internal)-319(Revenue)-319(Service.)-457(The)-319(Foundation's)-319(EIN)-319(or)-319(federal)-319(tax)]TJ 0 -13.549 Td[(identification)-179(number)-179(is)-178(64-6221541.)-227(Its)-178(501\050c\051\0503\051)-179(letter)-179(is)-179(posted)]TJ 0 -13.55 Td[(at)-549(http://www.gutenberg.org/fundraising/pglaf.)-1149(Contributions)]TJ 0 -13.549 Td[(to)-404(the)-403(Project)-404(Gutenberg)-404(Literary)-403(A)-1(rchive)-403(Foundation)-404(are)-404(tax)]TJ 0 -13.549 Td[(deductible)-306(to)-306(the)-307(full)-306(extent)-306(permitted)-306(by)-306(U.S.)-306(federal)-306(laws)-307(and)]TJ 0 -13.549 Td[(your)-250(state's)-250(laws.)]TJ 11.956 -13.549 Td[(The)-214(Foundation's)-214(principal)-214(office)-213(is)-214(located)-214(at)-214(4557)-214(Melan)-214(Dr.)]TJ -11.956 -13.55 Td[(S.)-297(Fairbanks,)-310(AK,)-297(99712.,)-309(but)-297(its)-298(volunteers)-297(and)-297(employees)-298(are)]TJ 0 -13.549 Td[(scattered)-343(throughout)-343(numerous)-344(locations.)-529(Its)-343(business)-343(office)-344(is)]TJ 0 -13.549 Td[(located)-197(at)-197(809)-197(North)-197(1500)-197(West,)-208(Salt)-197(Lake)-197(City,)-208(UT)-197(84116,)-208(\050801\051)]TJ 0 -13.549 Td[(596-1887,)-225(email)-218(business@pglaf.org.)-239(Email)-219(contact)-218(links)-218(and)-219(up)]TJ 0 -13.549 Td[(to)-227(date)-227(contact)-227(information)-227(can)-227(be)-227(found)-227(at)-227(the)-228(Foundation's)-227(web)]TJ 0 -13.55 Td[(site)-250(and)-250(official)-250(page)-250(at)-250(http://www.pglaf.org)]TJ 11.956 -13.549 Td[(For)-250(additional)-250(contact)-250(information:)]TJ/F16 9.863 Tf 7.681 -22.094 Td[(Dr.)-250(Gregory)-250(B.)-250(Newby)]TJ 0 -12.822 Td[(Chief)-250(Executive)-250(and)-250(Director)]TJ 0 -12.822 Td[(gbnewby@pglaf.org)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2342 0 obj << +/Type /Page +/Contents 2343 0 R +/Resources 2341 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +/Annots [ 2344 0 R 2345 0 R 2346 0 R 2347 0 R 2348 0 R ] +>> endobj +2344 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [189.068 488.709 194.522 498.419] +/Subtype /Link +/A << /S /GoTo /D (pglicense3) >> +>> endobj +2345 0 obj << +/Type /Annot +/BS << /Type /Border /S /U >> /H /I /C [0 1 1] +/Rect [215.179 488.709 220.634 498.419] +/Subtype /Link +/A << /S /GoTo /D (pglicense4) >> +>> endobj +2346 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [80.699 475.149 172.815 484.869] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.pglaf.org) >> +>> endobj +2347 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [60.641 273.365 252.139 283.085] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/fundraising/pglaf) >> +>> endobj +2348 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [151.291 137.873 243.407 147.593] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.pglaf.org) >> +>> endobj +2323 0 obj << +/D [2342 0 R /XYZ 46.771 464.786 null] +>> endobj +2341 0 obj << +/Font << /F16 6 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2351 0 obj << +/Length 3810 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(170)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 15.781 Tf 93.543 518.175 Td[(Section)-250(4.)]TJ/F16 13.151 Tf 26.999 -50.957 Td[(Information)-258(about)-258(Donations)-258(to)-258(the)-258(Project)]TJ 8.106 -17.096 Td[(Gutenberg)-260(Literary)-261(Archive)-260(Foundation)]TJ/F16 10.909 Tf -35.105 -29.451 Td[(Project)-329(Gutenberg)]TJ/F56 10.909 Tf 80.543 0 Td[(")]TJ/F16 10.909 Tf 14.28 0 Td[(depends)-329(upon)-329(and)-329(cannot)-329(survive)-329(without)]TJ -94.823 -13.55 Td[(wide)-217(spread)-217(public)-217(support)-217(and)-217(donations)-217(to)-217(carry)-217(out)-218(its)-217(mission)]TJ 0 -13.549 Td[(of)-334(increasing)-334(the)-334(number)-334(of)-334(public)-334(domain)-334(and)-335(licensed)-334(works)]TJ 0 -13.549 Td[(that)-192(can)-193(be)-192(freely)-193(distributed)-192(in)-192(machine)-193(readable)-192(form)-193(accessible)]TJ 0 -13.549 Td[(by)-261(the)-261(widest)-261(array)-261(of)-261(equipment)-261(including)-261(o)-1(utdated)-261(equipment.)]TJ 0 -13.549 Td[(Many)-303(small)-302(donations)-303(\050$1)-303(to)-302($5,0)-1(00\051)-302(are)-303(particularly)-303(important)]TJ 0 -13.55 Td[(to)-250(maintaining)-250(tax)-250(exempt)-250(status)-250(with)-250(the)-250(IRS.)]TJ 11.956 -14.111 Td[(The)-460(Foundation)-461(is)-460(committed)-461(to)-460(complying)-461(with)-460(the)-461(laws)]TJ -11.956 -13.549 Td[(regulating)-353(charities)-352(and)-353(charitable)-352(donations)-353(in)-352(all)-353(50)-352(states)-353(of)]TJ 0 -13.55 Td[(the)-430(United)-429(States.)-789(Compliance)-430(requirements)-429(are)-430(not)-430(uniform)]TJ 0 -13.549 Td[(and)-389(it)-389(takes)-389(a)-389(considerable)-389(effort,)-424(much)-389(paperwork)-389(an)-1(d)-389(many)]TJ 0 -13.549 Td[(fees)-489(to)-489(meet)-489(and)-489(keep)-489(up)-489(with)-489(these)-489(requirements.)-968(We)-489(do)]TJ 0 -13.549 Td[(not)-396(solicit)-395(donations)-396(in)-396(locations)-396(where)-395(we)-396(have)-396(not)-396(received)]TJ 0 -13.549 Td[(written)-234(confirmation)-233(of)-234(compliance.)-244(To)-234(SEND)-233(DONATIONS)-234(or)]TJ 0 -13.55 Td[(determine)-309(the)-310(status)-309(of)-310(compliance)-309(for)-309(any)-310(particular)-309(state)-310(visit)]TJ 0 -13.549 Td[(http://www.gutenberg.org/fundraising/donate)]TJ 11.956 -14.111 Td[(While)-305(we)-304(cannot)-305(and)-304(do)-305(not)-305(solicit)-304(contributions)-305(from)-305(states)]TJ -11.956 -13.549 Td[(where)-323(we)-323(have)-322(not)-323(met)-323(the)-323(solicitation)-323(requirements,)-341(we)-323(know)]TJ 0 -13.55 Td[(of)-366(no)-365(prohibition)-366(against)-366(accepting)-365(unsolicited)-366(donations)-366(from)]TJ 0 -13.549 Td[(donors)-250(in)-250(such)-250(states)-250(who)-250(approach)-250(us)-250(with)-250(offers)-250(to)-250(donate.)]TJ 11.956 -14.111 Td[(International)-237(donations)-237(are)-237(gratefully)-238(accepted,)-239(but)-237(we)-238(cannot)]TJ -11.956 -13.55 Td[(make)-533(any)-532(statements)-533(concerning)-533(tax)-532(treatment)-533(of)-533(donations)]TJ 0 -13.549 Td[(received)-256(from)-255(outside)-256(the)-255(United)-256(States.)-267(U.S.)-255(laws)-256(alone)-256(swamp)]TJ 0 -13.549 Td[(our)-250(small)-250(staff.)]TJ 11.956 -14.112 Td[(Please)-566(check)-565(the)-566(Project)-565(Gutenberg)-566(Web)-565(pages)-566(for)-566(cur-)]TJ -11.956 -13.549 Td[(rent)-634(donation)-633(methods)-634(and)-633(addresses.)-1401(Donations)-633(are)-634(ac-)]TJ 0 -13.549 Td[(cepted)-509(in)-509(a)-509(number)-509(of)-509(other)-509(ways)-509(including)-509(checks,)-574(online)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2350 0 obj << +/Type /Page +/Contents 2351 0 R +/Resources 2349 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2320 0 R +/Annots [ 2352 0 R ] +>> endobj +2352 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [93.543 214.492 291.707 224.212] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/fundraising/donate) >> +>> endobj +2321 0 obj << +/D [2350 0 R /XYZ 93.543 529.134 null] +>> endobj +2349 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2355 0 obj << +/Length 3291 +>> +stream +1 0 0 1 46.771 548.934 cm +0 g 0 G +1 0 0 1 -46.771 -548.934 cm +BT +/F16 10.909 Tf 46.771 548.934 Td[(The)-250(Full)-250(Project)-250(Gutenberg)-250(License)-9894(171)]TJ +ET +1 0 0 1 327.401 548.934 cm +0 g 0 G +1 0 0 1 -327.401 -548.934 cm +BT +/F16 10.909 Tf 46.771 518.175 Td[(payments)-424(and)-424(credit)-424(card)-424(donations.)-772(To)-424(donate,)-468(please)-424(visit:)]TJ 0 -13.549 Td[(http://www.gutenberg.org/fundraising/donate)]TJ/F16 15.781 Tf 0 -57.032 Td[(Section)-250(5.)]TJ/F16 13.151 Tf 12.158 -55.793 Td[(General)-254(Informat)1(ion)-254(About)-254(Project)-253(Gutenberg)]TJ/F56 13.151 Tf 243.427 0 Td[(")]TJ/F16 13.151 Tf -160.742 -17.096 Td[(electronic)-278(works.)]TJ/F16 10.909 Tf -94.843 -32.139 Td[(Professor)-259(Michael)-259(S.)-259(Hart)-259(is)-259(the)-259(originator)-259(of)-259(the)-259(Project)-259(Guten-)]TJ 0 -13.55 Td[(berg)]TJ/F56 10.909 Tf 19.386 0 Td[(")]TJ/F16 10.909 Tf 15.085 0 Td[(concept)-403(of)-403(a)-403(library)-402(of)-403(electronic)-403(works)-403(that)-403(could)-403(be)]TJ -34.471 -13.549 Td[(freely)-233(shared)-232(with)-233(anyone.)-244(For)-233(thirty)-233(years,)-236(he)-232(produced)-233(and)-233(dis-)]TJ 0 -13.549 Td[(tributed)-274(Project)-274(Gutenberg)]TJ/F56 10.909 Tf 116.868 0 Td[(")]TJ/F16 10.909 Tf 13.679 0 Td[(eBooks)-274(with)-274(only)-274(a)-274(loose)-274(network)]TJ -130.547 -13.549 Td[(of)-250(volunteer)-250(support.)]TJ 11.956 -14.649 Td[(Project)-379(Gutenberg)]TJ/F56 10.909 Tf 81.091 0 Td[(")]TJ/F16 10.909 Tf 14.829 0 Td[(eBooks)-379(are)-380(often)-379(created)-380(from)-379(several)]TJ -107.876 -13.549 Td[(printed)-248(editions,)-248(all)-248(of)-247(which)-248(are)-248(confirmed)-247(as)-248(Public)-248(Domain)-248(in)]TJ 0 -13.549 Td[(the)-303(U.S.)-302(unless)-303(a)-303(copyright)-303(notice)-302(is)-303(included.)-408(Thus,)-316(we)-303(do)-303(not)]TJ 0 -13.55 Td[(necessarily)-216(keep)-217(eBooks)-216(in)-216(compliance)-217(with)-216(any)-216(particular)-217(paper)]TJ 0 -13.549 Td[(edition.)]TJ 11.956 -14.649 Td[(Each)-355(eBook)-356(is)-356(in)-355(a)-356(subdirectory)-355(of)-356(the)-355(same)-356(number)-355(as)-356(the)]TJ -11.956 -13.549 Td[(eBook's)-266(eBook)-266(number,)-269(often)-266(in)-266(several)-266(formats)-266(including)-266(plain)]TJ 0 -13.549 Td[(vanilla)-250(ASCII,)-250(compressed)-250(\050zipped\051,)-250(HTML)-250(and)-250(others.)]TJ 11.956 -14.649 Td[(Corrected)]TJ/F20 10.909 Tf 45.766 0 Td[(editions)]TJ/F16 10.909 Tf 37.301 0 Td[(of)-252(our)-253(eBooks)-252(replace)-252(the)-252(old)-253(file)-252(and)-252(take)]TJ -95.023 -13.549 Td[(over)-286(the)-285(old)-285(filename)-286(and)-285(etext)-286(number.)-356(The)-286(replaced)-285(older)-286(file)]TJ 0 -13.55 Td[(is)-367(renamed.)]TJ/F20 10.909 Tf 58.126 0 Td[(Versions)]TJ/F16 10.909 Tf 42.186 0 Td[(based)-367(on)-367(separate)-367(sources)-367(are)-367(treated)-367(as)]TJ -100.311 -13.549 Td[(new)-250(eBooks)-250(receiving)-250(new)-250(filenames)-250(and)-250(etext)-250(numbers.)]TJ 11.955 -14.649 Td[(Most)-416(people)-416(start)-416(at)-416(our)-416(Web)-416(site)-416(which)-416(has)-416(the)-416(main)-416(PG)]TJ -11.955 -13.549 Td[(search)-250(facility:)]TJ/F16 9.863 Tf 19.636 -28.139 Td[(http://www.gutenberg.org)]TJ +ET +1 0 0 1 46.771 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2354 0 obj << +/Type /Page +/Contents 2355 0 R +/Resources 2353 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2359 0 R +/Annots [ 2356 0 R 2358 0 R ] +>> endobj +2356 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [46.771 502.248 244.935 511.968] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org/fundraising/donate) >> +>> endobj +2358 0 obj << +/Type /Annot + /BS << /Type /Border /S /U >> /H /I /C [1 0.5 0.5] +/Rect [66.408 63.992 168.864 72.78] + /Subtype /Link /A << /Type /Action /S /URI /URI (http://www.gutenberg.org) >> +>> endobj +2357 0 obj << +/D [2354 0 R /XYZ 46.771 486.939 null] +>> endobj +2353 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R /F20 29 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2362 0 obj << +/Length 968 +>> +stream +1 0 0 1 93.543 548.934 cm +0 g 0 G +1 0 0 1 -93.543 -548.934 cm +BT +/F16 10.909 Tf 93.543 548.934 Td[(172)-1449(An)-250(E)-1(lementary)-250(Course)-250(in)-250(Synthetic)-250(Projective)-250(Geometry)]TJ +ET +1 0 0 1 374.173 548.934 cm +0 g 0 G +1 0 0 1 -374.173 -548.934 cm +BT +/F16 10.909 Tf 105.499 518.175 Td[(This)-527(Web)-526(site)-527(includes)-527(information)-526(about)-527(Project)-527(Guten-)]TJ -11.956 -13.549 Td[(berg)]TJ/F56 10.909 Tf 19.386 0 Td[(")]TJ/F16 10.909 Tf 10.691 0 Td[(,)-321(including)-307(how)-306(to)-307(make)-307(donations)-306(to)-307(the)-307(Project)-307(Guten-)]TJ -30.077 -13.549 Td[(berg)-251(Literary)-251(Archive)-250(Foun)-1(dation,)-251(how)-250(to)-251(help)-251(produce)-251(our)-251(new)]TJ 0 -13.549 Td[(eBooks,)-410(and)-378(how)-378(to)-378(subscribe)-378(to)-378(our)-378(email)-378(newsletter)-378(to)-378(hear)]TJ 0 -13.55 Td[(about)-250(new)-250(eBooks.)]TJ +ET +1 0 0 1 93.543 38.782 cm +0 g 0 G +1 0 0 1 280.63 0 cm +0 g 0 G +endstream +endobj +2361 0 obj << +/Type /Page +/Contents 2362 0 R +/Resources 2360 0 R +/MediaBox [0 0 419.528 595.276] +/Parent 2359 0 R +>> endobj +2360 0 obj << +/Font << /F16 6 0 R /F56 2264 0 R >> +/ProcSet [ /PDF /Text ] +>> endobj +2363 0 obj << +/Type /Encoding +/Differences [ 0 /uni2100/uni2101/uni2102/centigrade/uni2104/careof/uni2106/uni2107/uni2108/fahrenheit/uni210a/uni210b/uni210c/uni210d/uni210e/uni210f/uni2110/Ifraktur/uni2112/lsquare/uni2114/uni2115/numero/uni2117/weierstrass/uni2119/uni211a/uni211b/Rfraktur/uni211d/prescription/uni211f/uni2120/telephone/trademark/uni2123/uni2124/uni2125/Omega/uni2127/uni2128/uni2129/uni212a/angstrom/uni212c/uni212d/estimated/uni212f/uni2130/uni2131/uni2132/uni2133/uni2134/aleph/uni2136/uni2137/uni2138/uni2139/uni213a/uni213b/uni213c/uni213d/uni213e/uni213f/uni2140/uni2141/uni2142/uni2143/uni2144/uni2145/uni2146/uni2147/uni2148/uni2149/uni214a/uni214b/uni214c/uni214d/uni214e/uni214f/uni2150/uni2151/uni2152/onethird/twothirds/uni2155/uni2156/uni2157/uni2158/uni2159/uni215a/oneeighth/threeeighths/fiveeighths/seveneighths/uni215f/Oneroman/Tworoman/Threeroman/Fourroman/Fiveroman/Sixroman/Sevenroman/Eightroman/Nineroman/Tenroman/Elevenroman/Twelveroman/uni216c/uni216d/uni216e/uni216f/oneroman/tworoman/threeroman/fourroman/fiveroman/sixroman/sevenroman/eightroman/nineroman/tenroman/elevenroman/twelveroman/uni217c/uni217d/uni217e/uni217f/uni2180/uni2181/uni2182/uni2183/uni2184/uni2185/uni2186/uni2187/uni2188/uni2189/uni218a/uni218b/uni218c/uni218d/uni218e/uni218f/arrowleft/arrowup/arrowright/arrowdown/arrowboth/arrowupdn/arrowupleft/arrowupright/arrowdownright/arrowdownleft/uni219a/uni219b/uni219c/uni219d/uni219e/uni219f/uni21a0/uni21a1/uni21a2/uni21a3/uni21a4/uni21a5/uni21a6/uni21a7/arrowupdownbase/uni21a9/uni21aa/uni21ab/uni21ac/uni21ad/uni21ae/uni21af/uni21b0/uni21b1/uni21b2/uni21b3/uni21b4/carriagereturn/uni21b6/uni21b7/uni21b8/uni21b9/uni21ba/uni21bb/harpoonleftbarbup/uni21bd/uni21be/uni21bf/harpoonrightbarbup/uni21c1/uni21c2/uni21c3/arrowrightoverleft/arrowupleftofdown/arrowleftoverright/uni21c7/uni21c8/uni21c9/uni21ca/uni21cb/uni21cc/arrowleftdblstroke/uni21ce/arrowrightdblstroke/arrowleftdbl/arrowdblup/dblarrowright/arrowdbldown/dblarrowleft/uni21d5/uni21d6/uni21d7/uni21d8/uni21d9/uni21da/uni21db/uni21dc/uni21dd/pageup/pagedown/arrowdashleft/arrowdashup/arrowdashright/arrowdashdown/arrowtableft/arrowtabright/arrowleftwhite/arrowupwhite/arrowrightwhite/arrowdownwhite/capslock/uni21eb/uni21ec/uni21ed/uni21ee/uni21ef/uni21f0/uni21f1/uni21f2/uni21f3/uni21f4/uni21f5/uni21f6/uni21f7/uni21f8/uni21f9/uni21fa/uni21fb/uni21fc/uni21fd/uni21fe/uni21ff] +>> endobj +2264 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2363 0 R +/BaseFont /Times-Roman +>> endobj +2364 0 obj << +/Type /Encoding +/Differences [ 0 /Amacron/amacron/Abreve/abreve/Aogonek/aogonek/Cacute/cacute/Ccircumflex/ccircumflex/Cdotaccent/cdotaccent/Ccaron/ccaron/Dcaron/dcaron/Dslash/dmacron/Emacron/emacron/Ebreve/ebreve/Edotaccent/edotaccent/Eogonek/eogonek/Ecaron/ecaron/Gcircumflex/gcircumflex/Gbreve/gbreve/Gdotaccent/gdotaccent/Gcommaaccent/gcommaaccent/Hcircumflex/hcircumflex/Hbar/hbar/Itilde/itilde/Imacron/imacron/Ibreve/ibreve/Iogonek/iogonek/Idotaccent/dotlessi/IJ/ij/Jcircumflex/jcircumflex/Kcommaaccent/kcommaaccent/kgreenlandic/Lacute/lacute/Lcommaaccent/lcommaaccent/Lcaron/lcaron/Ldotaccent/ldotaccent/Lslash/lslash/Nacute/nacute/Ncommaaccent/ncommaaccent/Ncaron/ncaron/quoterightn/Eng/eng/Omacron/omacron/Obreve/obreve/Ohungarumlaut/ohungarumlaut/OE/oe/Racute/racute/Rcommaaccent/rcommaaccent/Rcaron/rcaron/Sacute/sacute/Scircumflex/scircumflex/Scedilla/scedilla/Scaron/scaron/Tcommaaccent/tcommaaccent/Tcaron/tcaron/Tbar/tbar/Utilde/utilde/Umacron/umacron/Ubreve/ubreve/Uring/uring/Uhungarumlaut/uhungarumlaut/Uogonek/uogonek/Wcircumflex/wcircumflex/Ycircumflex/ycircumflex/Ydieresis/Zacute/zacute/Zdotaccent/zdotaccent/Zcaron/zcaron/slong/bstroke/Bhook/Btopbar/btopbar/Tonesix/tonesix/Oopen/Chook/chook/Dafrican/Dhook/Dtopbar/dtopbar/deltaturned/Ereversed/Schwa/Eopen/Fhook/florin/Ghook/Gammaafrican/hv/Iotaafrican/Istroke/Khook/khook/lbar/lambdastroke/Mturned/Nhookleft/nlegrightlong/Ocenteredtilde/Ohorn/ohorn/Oi/oi/Phook/phook/yr/Tonetwo/tonetwo/Esh/eshreversedloop/tpalatalhook/Thook/thook/Tretroflexhook/Uhorn/uhorn/Upsilonafrican/Vhook/Yhook/yhook/Zstroke/zstroke/Ezh/Ezhreversed/ezhreversed/ezhtail/twostroke/Tonefive/tonefive/glottalinvertedstroke/wynn/clickdental/clicklateral/clickalveolar/clickretroflex/DZcaron/Dzcaron/dzcaron/LJ/Lj/lj/NJ/Nj/nj/Acaron/acaron/Icaron/icaron/Ocaron/ocaron/Ucaron/ucaron/Udieresismacron/udieresismacron/Udieresisacute/udieresisacute/Udieresiscaron/udieresiscaron/Udieresisgrave/udieresisgrave/eturned/Adieresismacron/adieresismacron/Adotmacron/adotmacron/AEmacron/aemacron/Gstroke/gstroke/Gcaron/gcaron/Kcaron/kcaron/Oogonek/oogonek/Oogonekmacron/oogonekmacron/Ezhcaron/ezhcaron/jcaron/DZ/Dz/dz/Gacute/gacute/uni01f6/uni01f7/uni01f8/uni01f9/Aringacute/aringacute/AEacute/aeacute/Ostrokeacute/ostrokeacute] +>> endobj +1604 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2364 0 R +/BaseFont /Times-Roman +>> endobj +2365 0 obj << +/Type /Encoding +/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] +>> endobj +1523 0 obj << +/Length1 773 +/Length2 1212 +/Length3 532 +/Length 2517 +>> +stream +%!PS-AdobeFont-1.1: CMR6 1.0 +%%CreationDate: 1991 Aug 20 16:39:02 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.0) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMR6) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle 0 def +/isFixedPitch false def +end readonly def +/FontName /BOIQMG+CMR6 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 49 /one put +dup 50 /two put +readonly def +/FontBBox{-20 -250 1193 750}readonly def +/UniqueID 5000789 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª*Bg·N³ÀÓ½ƒØ‘l¦ÊKq*Þ²Xú«šææwüsм|QÍFïq˜Õþæv`æšz¹XòšMyåp"÷ƒë»¶Ôôì5OÒÞË©”Y¤ÅðÆë¡P(DTçÜ! +~õÐâOPQùÍìá +÷áOñ\Oóü¤}ÙÍ<zêQ}# íL TRh¤ú<c8ºlñL=ãºòê5)nãØÖIbwáÿ`vþdȨÃAŸ§tG=c"?úAË®`œ=—k“ß´šÜ|Nðsù8Ý©öQöÌ÷•UšD˯„§m˜<ïX#
THltÄ¢Wüp:Ï‘‚Ð¥—¥ö€¶äï”ø¿‘¥ j€m¶NÉf6©ƒ—Ò*t“.·4jœK^éSË<€ªcKü(ª“ŒpKÚÄÑ5QÌþ+'„¾‹õE멯ԛy#{œV1P¼0é‹°n¬u]j¤æˆïâ ª± þ +1Çú™·—ÎT›\E#ÐúÝk™Ò3¬i(-ðÙ¢ÛÐŒà9¦ÙhÕ®;ÑYÐßô-À¥ÆkC— €ÙÝO;šçû°5Îq\²×yv~ëâwSÕ1>½'ã;ïÅPÇ‚‹¼;Ÿß‰~ª”I;—¯êÅë^×§«gÚ¿¤´UÐ5ÿ1&ó:MõŸùgRÏXÜc’O`B±MÂÞä œªvJŽÿëx÷ÿÒvð’‹£&$æšÎ¸wzF˜²ÓM¢qGkŠÈ–fhÔâŠoº•/m)Z¨À›ýkè@p;~Ù9™ëV0ÂÇÍ›¦ƒíE}Aêp+_¨Y:Qèé_ö…i>ñÁþáoÓ¯ÍÑj0ŸÎk?+6,Ÿ•Š‚²Ý‰•"Ý1UÀ·§ð‡nM£/Ó
‚‰&mŸçÓ¿ÒÔÖȶýàè•{Û¾ÅDXÇ–ôÍwç4îö h@$ëß6úÿüo`P«3Dêœ8
7y¥PÅÀmAzqbÔ-#„> +*s÷-KR†ãË{†•²CDywjYË;ÆÓRg|Ê¿A3âÙý‰xÀŸ¸øpq”««©¦Yœ ú³m°¡fI
»Õ5¨q[ —Tæú}(’õW3€ÝÿùÃÚŸt½¾»ß¥qZâ2dùg¼xAÎXåî'dUYxÙöèÞöífÄx„ÃZ˜'¬ê|è\†&Ábÿ)hiÞ0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +1524 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2365 0 R +/FirstChar 49 +/LastChar 50 +/Widths 2366 0 R +/BaseFont /BOIQMG+CMR6 +/FontDescriptor 1522 0 R +>> endobj +1522 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /BOIQMG+CMR6 +/ItalicAngle 0 +/StemV 83 +/XHeight 431 +/FontBBox [-20 -250 1193 750] +/Flags 4 +/CharSet (/one/two) +/FontFile 1523 0 R +>> endobj +2366 0 obj +[611 611 ] +endobj +2367 0 obj << +/Type /Encoding +/Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef] +>> endobj +1520 0 obj << +/Length1 787 +/Length2 744 +/Length3 532 +/Length 2063 +>> +stream +%!PS-AdobeFont-1.1: CMSY9 1.0 +%%CreationDate: 1991 Aug 15 07:22:27 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.0) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMSY9) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle -14.035 def +/isFixedPitch false def +end readonly def +/FontName /ROUMLC+CMSY9 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 0 /minus put +dup 2 /multiply put +readonly def +/FontBBox{-30 -958 1146 777}readonly def +/UniqueID 5000819 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª/ ùÈéÙÀX¸~›id}S5žQ!gt¤ê¡âµŽÃkÑJc;•r´NŒ^ô¢¬µŠ ¦X€5¿.ØSyƒŠ–
þ+'êIÃqV˜œ…â:¿r㚉#,Ùô#ÈždèBZ£¾÷ÞÖ*R’*"7Ù¨ÝyÝçÓò¸—Ç=cîÍÚLIPsFŠ'Ñf>bôaöä +]fvÐ}3òN/¬+ +×lÚתÏ,}Cj$R‚·†£Õ’Àõ säMt°ÔO}sVñßãÙ3.¨6µ·+Þ¸ÿ†Õù¢¯Þlj²ûÚÃòÛ÷+[âp¤#øQG:µL,‹üÌ{oôü +p¹wê<À XœÙ$ʈ¢ZÇèÂ]&ÍŽÔ<+>„ø›‘èt;küÀwl‹…]åZ¸zü©sØ|Ѭ¥bP¿W‹]œ¿#¡þ7.ÆÎ†\¼¡aÇ +MŽ\”¯LêP¢Lõÿ¸}²^€ó”%²Å_ôç_Ê•§;wP9‹0ïàüWD¢ëÇ¿ +,0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +1521 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2367 0 R +/FirstChar 0 +/LastChar 2 +/Widths 2368 0 R +/BaseFont /ROUMLC+CMSY9 +/FontDescriptor 1519 0 R +>> endobj +1519 0 obj << +/Ascent 750 +/CapHeight 683 +/Descent -194 +/FontName /ROUMLC+CMSY9 +/ItalicAngle -14 +/StemV 87 +/XHeight 431 +/FontBBox [-30 -958 1146 777] +/Flags 4 +/CharSet (/minus/multiply) +/FontFile 1520 0 R +>> endobj +2368 0 obj +[799 0 799 ] +endobj +1517 0 obj << +/Length1 887 +/Length2 2042 +/Length3 532 +/Length 3461 +>> +stream +%!PS-AdobeFont-1.1: CMR9 1.0 +%%CreationDate: 1991 Aug 20 16:39:59 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.0) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMR9) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle 0 def +/isFixedPitch false def +end readonly def +/FontName /ZXEVAA+CMR9 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 40 /parenleft put +dup 41 /parenright put +dup 49 /one put +dup 59 /semicolon put +dup 61 /equal put +dup 105 /i put +dup 110 /n put +dup 115 /s put +readonly def +/FontBBox{-39 -250 1036 750}readonly def +/UniqueID 5000792 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª*Bg·N³ÀÓ½ƒØ‘l¦ÊKq*Þ²Xú«šææwüsм|QÍFïq˜Õþæv`æšz¹XòšMyåp"÷ƒë»¶Ôôì5OÒÞË©”Y¤ÅðÆë¡P(DTçÜ! + .UŸm;›·3YZàê`“ù†7z–ñ*¡µ%ÍŸ§AþÕJ2¾ÍU¨hÝcšCpø2,Ë숛§#Ë@üJ© +èsêÞ8,©Ï
ûeð«íýšd»?Ms.š‰"ôA# +pÃ9É–v*³\œXšé K ˆ QF7Áq
“èÝ{N{G„“¹¦0oÛ?¦×8ª±Iû² +åi¢›4®\>v~/¬†"¾Þ×.Í«©!¥ÐB=)Ø\ ÛÕŸ$¡“ˆaiÒ×Ê=ô.OB7e›èó±@U¼mŽäÊ÷7<ÜêÃÅbý o·y›òH‹ŸÀEþ[ƒ³ŸÌR´žu|¡ ¼Z +®½¿~D8¶9xg8àKH¡¡ +â2“:ÖŸ¼†U&1ôvçek +C[´DûÕ÷u7¶½÷íïÙ·1/Àé±ôÓ§§5V^XÓQ›eá¬0â.$媚ZYuÇäÊîZWéiŒ¾"a¯9o7G4µòG»Ï~ïhëtÐ-’S˜Ì)þ÷H¿m`(¥±3µqŒY[°7V~ÀuúÙÒaÃ,ÀžDÕî‡,3€ÆÆ—ø¯,⩸ +äê‚s~å^§ÃHÁ05:*2žÎìºÑÁ±C|U='Š˜+-°Ñ©Eøè‰y
¦¹ÃÒXNXº-ÈdW£ßÜ™ $È7å-v\}"g`kE³á†`ÏŠäÎV}}ág Œ‡ÑU
r@ç'ÝbV‡ ¯hI°r†OSà)¡À#l̦@Çг70AÿMºk?z
0 +|½Q}Øà`p[:³Æòï’©—<#‹—iZXÿ9Q"\ Ãò¹jV^#H
wZÍ…Þ#mUÈÌu•Þ%å‘ß—>VGu|žÅcØÊ0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +1518 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2365 0 R +/FirstChar 40 +/LastChar 115 +/Widths 2369 0 R +/BaseFont /ZXEVAA+CMR9 +/FontDescriptor 1516 0 R +>> endobj +1516 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /ZXEVAA+CMR9 +/ItalicAngle 0 +/StemV 74 +/XHeight 431 +/FontBBox [-39 -250 1036 750] +/Flags 4 +/CharSet (/parenleft/parenright/one/semicolon/equal/i/n/s) +/FontFile 1517 0 R +>> endobj +2369 0 obj +[400 400 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 286 0 799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 286 0 0 0 0 571 0 0 0 0 405 ] +endobj +2370 0 obj << +/Type /Encoding +/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef] +>> endobj +1514 0 obj << +/Length1 874 +/Length2 2332 +/Length3 532 +/Length 3738 +>> +stream +%!PS-AdobeFont-1.1: CMMI9 1.100 +%%CreationDate: 1996 Jul 23 07:53:55 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.100) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMMI9) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle -14.04 def +/isFixedPitch false def +end readonly def +/FontName /WJZJFG+CMMI9 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 58 /period put +dup 61 /slash put +dup 65 /A put +dup 66 /B put +dup 67 /C put +dup 68 /D put +dup 83 /S put +dup 97 /a put +readonly def +/FontBBox{-29 -250 1075 750}readonly def +/UniqueID 5087384 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª)s™§„̾…´™;.ëÞ;Ôr·ÏTeò…ji«–íK/df5à¶A|Ç{S/…ØÇ
)¡šSïcë\^ÈŸÆÂm‰çÙäp·+ïÚ#õßv¾¯Lé17¢íŠ©×Öýó~kÍàÙ˜d#å– +]Ÿ»L•eVèßËúìGo£oÙ¥È\šõþÙÂÝÒkÜ
™9‹ŸMÕ™=ü 0)xfáÍ +1›kÙXž9JS:6ÖõÊ_íOšÉäùüRçXÉôZ’¾Ù5†ùÏÛWs E‘:d"BA†Èˆ.ä“Þ•#Ìþݱ›Á”z¹;Æh¾›*i©hUB9¸Œ +(³Á"ÒKê¬ø#ô`O/ïnms +‡›ä]ÐÔ™nð$zë «ÿ7M™ðmG³o•TúÙ¢ÓÎEw‘ÃpŠÝdB«‚MZ
ÿ°·"®ë‡ô‰X¦ú¦IDUQë÷«q~‹{˜ØÛýsR“~"eEÏÃà|[£9ºüÐò´Bu¦Õõ‚ÀûOD™cÐ/¯Þ3º=w¼©Ñ߇Úü¢â,ĺÍT+(!dǗ½ã¯P¢nf.z«u¥òM,.Y]D花šçÍYXO•³‰>âR[õ*?#ÀþSƒ¥VZ6qoPŒª·„ÊZM'U,ÁÄ5v
Z‰Õ5·Y>u\afa63Ú¦ƒõNÐÂ?²Â% 9+qŸfñ”j | +‹²0žèM“–Œ×§i©¤€ÊK ÜóxŽà8Á€’†Yã°è˜Ì÷HüLiðN©šl>•4ÜŠ^g2Nv©uËRfûE±–Ь)Z +òä´ñúæÐ¯¾û +€÷B±‡›|9àè‡dÅA›½0'°5¦ß¬¿pdú#èëGrÈ"‡û;‰ÊEÎRCcYŒÂ(¿cÞ~@úås,ê߇@ÁÐÐäØy褀L™Ï“OÜ)Øl‰µÑ…”åpÌbÁàyÔe¤ö¶Ôm'¼µ%,Lå‘‘Kàz¢ÕCŸyÊ‘ÆþÙRL<ÏCõÙA…ƒ`‚¡,–Âv[;(Ï)>uåîtBròÙwDE&£×@âH]j<s=y=ˆDh3;¡×´ {~côàMŸ(NBáêê3\êûuW0…Çã'»,ÇtRëFÉÁímÃôxs‰nû¬Bܼ‚Ä3MØ
¿)—ûâî4õÁa'ía›p6ëñ2T÷J3wC¶un ôTã>Oœ±ŽÈå•4ŽK·~mÉY>ÃáS‘ÏÌA3ÙU™hË:œÒ +j·ä}™¡Â¯öOxbÙaIE]ŠõËS&烹P™¬xï€1gï¬WqK'ÿ3t7ÑT5PP˜a#vTš[ê0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +1515 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2370 0 R +/FirstChar 58 +/LastChar 97 +/Widths 2371 0 R +/BaseFont /WJZJFG+CMMI9 +/FontDescriptor 1513 0 R +>> endobj +1513 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /WJZJFG+CMMI9 +/ItalicAngle -14 +/StemV 74 +/XHeight 431 +/FontBBox [-29 -250 1075 750] +/Flags 4 +/CharSet (/period/slash/A/B/C/D/S/a) +/FontFile 1514 0 R +>> endobj +2371 0 obj +[286 0 0 514 0 0 0 771 778 734 848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628 0 0 0 0 0 0 0 0 0 0 0 0 0 545 ] +endobj +1116 0 obj << +/Length1 757 +/Length2 1099 +/Length3 532 +/Length 2388 +>> +stream +%!PS-AdobeFont-1.1: CMR8 1.0 +%%CreationDate: 1991 Aug 20 16:39:40 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.0) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMR8) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle 0 def +/isFixedPitch false def +end readonly def +/FontName /HVSRXP+CMR8 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 50 /two put +readonly def +/FontBBox{-36 -250 1070 750}readonly def +/UniqueID 5000791 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª*Bg·N³ÀÓ½ƒØ‘l¦ÊKq*Þ²Xú«šææwüsм|QÍFïq˜Õþæv`æšz¹XòšMyåp"÷ƒë»¶Ôôì5OÒÞË©”Y¤ÅðÆë¡P(DTçÜ! +ŒÕWÇåת>©~ºÓ–Ñ¿ÏJmdv‡Aíê +[û¿4|ܾ.×V–z¶ÛÄ_¢£1.F¥ýf« |Xÿîĸ9^Rw] +ü×ÛŠ³31S\D¤ËKZÍW`–äP”Š^êÝ3ê ’eÛŽÈ
Í8`2?Òl;ˆÈŠ!eXxh +Dfú@=$»—*I¸BÁ€äÒXÉÔ!ÐWx-b1ƒ£™³ÅòòÝC;
p™À}½âhÐÿíQi¼Ð=H²ðXbØgŒbmÇ£óR,™º–>ù_ŠÑ¸°ÓQ! +äÂÅZØž¶Ar“]< £˜óîîÃQ–jt8ï?îB,mN3v լǵ+í˜Kú6ï t‹Ð{äAJc—Q%ÒrúØ?væÿø60¾RmXsŤ+pú‘Ǹiñ:þUësõ‚ƒ‡“¸Ì)káÜÏPýWË\~Ú; +«ãC¤é½ÏAœ§!8ˆ²Zô⓪ÎÙ¦½ÇŽaÚBLeÌ…÷b¹>ÄHŒñCÿ;*B|^um%µ-&<b
KlùÄJuÛc¢óÝF’>Þ™PÁ^ª~Ýæ’ÕïÐaÙ)&i"4²ƒTïÂ8M†´DóCüKtç/ +|òŠÀÞ(«”ÍX?íÑŒòX%¾ÜgÜU™ä¶ +'gÁU¥…>ö"òΟÅ8´“¾ÍýáxIÂøÐRT¯™! w“”Ó3ÝÁÜÍx äj’lˆ¾{‚6ðØÃØÀðPRaÀšÔØíè-`ˆ>B’ö?:È»Ÿò‰åŒ²2U3èPå(ôt7;8n_Y¶ÈøzøgË M +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +1117 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2365 0 R +/FirstChar 50 +/LastChar 50 +/Widths 2372 0 R +/BaseFont /HVSRXP+CMR8 +/FontDescriptor 1115 0 R +>> endobj +1115 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /HVSRXP+CMR8 +/ItalicAngle 0 +/StemV 76 +/XHeight 431 +/FontBBox [-36 -250 1070 750] +/Flags 4 +/CharSet (/two) +/FontFile 1116 0 R +>> endobj +2372 0 obj +[531 ] +endobj +1088 0 obj << +/Length1 8184 +/Length 8184 +>> +stream + +» + +'9)RK4H +<b@8>kR4%7"9T?/1CVh>@C>
.0+
!'1&7Lh†V-O72YIHpDúŒåa'O@(.J]/[”h8N
Gbt:?`A!h±êþ + + +-L>0-.-‘håïñsJSVK:&
+¥ñAY{‘“‰j@ +'#N‰»n9AE"[°°µ_
+ +» + + + + + + + + + + + + + + + + + #$*UJ7
GydSB2.H%!7BI$0(#$'#!
æ*`P5Gl|lG,]ac1?–œ˜‚a
+'" ,$9JUPDg–hA( 6+-A+@_p_@$+ + + + + + + + + + + + + + + + + + #"*UJ7 ,=“S
++.. + +
+&#×Mc:)CX0 +@jL*5K.g³Š[
9’¤®«ŸC'QLF
%#&.PY^XL7\B%”¡2cYH B dy„|h!-63- + +A + + + + + + + + + + + + + + + +3T7KI<7$6FPX-2?L,-/, ZyIUo=ËH#QY+<fMeª{EM”Œ6rl`I*@hK
2suo\C
+ !…ª¾³˜/‚¿~=WŒ¯ + +ð +þ + + +endobj +1089 0 obj << +/Type /Font +/Subtype /TrueType +/FirstChar 177 +/LastChar 193 +/Widths 2373 0 R +/BaseFont /GenI101U03 +/FontDescriptor 1087 0 R +>> endobj +1087 0 obj << +/Ascent 844 +/CapHeight 0 +/Descent -262 +/FontName /GenI101U03 +/ItalicAngle 7 +/StemV 76 +/XHeight 457 +/FontBBox [-520 -286 1135 1039] +/Flags 4 +/FontFile2 1088 0 R +>> endobj +2373 0 obj +[499 462 451 425 0 0 0 0 0 481 0 513 0 0 0 494 441 ] +endobj +441 0 obj << +/Length1 816 +/Length2 1405 +/Length3 532 +/Length 2753 +>> +stream +%!PS-AdobeFont-1.1: CMR10 1.00B +%%CreationDate: 1992 Feb 19 19:54:52 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.00B) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMR10) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle 0 def +/isFixedPitch false def +end readonly def +/FontName /EJBJDD+CMR10 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 43 /plus put +dup 49 /one put +dup 50 /two put +dup 61 /equal put +readonly def +/FontBBox{-251 -250 1009 969}readonly def +/UniqueID 5000793 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª*Bg·N³ÀÓ½ƒØ‘l¦ÊKq*Þ²Xú«šææwüsм|QÍFïq˜Õþæv`æšz¹XòšMyåp"÷ƒë»¶Ôôì5OÒÞË©”Y¤ÅðÆë¡P(DTçÜ! +"p?”ÿ{u@š]A}¦s +iãújB)ü~ObÄÆ<PéžžµLKÄRr/Ž@ñáBŽy.¯à\ZPÓŒRMüÒMT|¿%ÝocÞ@R§S¶A¢~ä”x„Î5fI?¡ž +*†{aU†q0=殨NEvvæ»´*š$¬¼>°Ê{z;þ¨Oí9ÌûmT[²¼Äž^—d«”UlÔð$ïW›h +Hs(çãùÃ}ˆ²„CEà¼îê +GY¦j>b8°jÁ¶4Z¿ùK^ÓúiÂ%A˜+ü—®öµ +‹µ41Ç´Ó€×!cž +ª'\ŸP¨™ÓOVÑ[Fï|HàùÊ&YÄÄ¥ÑÜkO¿Ç~A|>@:ëÕZ©æÜø½¥'ìÎ{ïuQ•QðÒ™skÙ]Ž™Y|,Ö™Ý]j—œÕv§ŸÃo½¨ìC’`
”r•Î\úÕHè"ÈÞK},à<zÇ
y܆ܜžÄ´ñ%ºÌÛ(ê¿RC“ñ9ð4éøR–¬kC¡w|¹Ð‰§YÁ“D?¹Üƒ˜ÒÚoA¶òR¶µã¶=ÑER³`œª‡C9KÌœØ+¼ÆÒ7yé}v8Ã$j`ý¼>“ˆ€þIóÕbØ„ñ6Ä¡õ…&ô¦9º²±8tÉw’6ß
3Ùþ´&#ïdÓxbÆX‰8l^µ->Š•²\ê|÷á*fdNKfó¡9TLT´ù3
Oó¹ „ÂÊ}wFÝqÛ`*‰F|©á8…jÄ(³c\‘–®4õ µõë +Ê,Òö÷hoEslL*€½à4’>ÐgÑ#ŒÏ’Êg¿$K×i*0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +442 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2365 0 R +/FirstChar 43 +/LastChar 61 +/Widths 2374 0 R +/BaseFont /EJBJDD+CMR10 +/FontDescriptor 440 0 R +>> endobj +440 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /EJBJDD+CMR10 +/ItalicAngle 0 +/StemV 69 +/XHeight 431 +/FontBBox [-251 -250 1009 969] +/Flags 4 +/CharSet (/plus/one/two/equal) +/FontFile 441 0 R +>> endobj +2374 0 obj +[778 0 0 0 0 0 500 500 0 0 0 0 0 0 0 0 0 0 778 ] +endobj +438 0 obj << +/Length1 840 +/Length2 980 +/Length3 532 +/Length 2352 +>> +stream +%!PS-AdobeFont-1.1: CMSY10 1.0 +%%CreationDate: 1991 Aug 15 07:20:57 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.0) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMSY10) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle -14.035 def +/isFixedPitch false def +end readonly def +/FontName /MKVFLR+CMSY10 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 0 /minus put +dup 1 /periodcentered put +dup 6 /plusminus put +dup 102 /braceleft put +readonly def +/FontBBox{-29 -960 1116 775}readonly def +/UniqueID 5000820 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª/ ùÈéÙÀX¸~›id}S5žQ!gt¤ê¡âµŽÃkÑJc;•r´NŒ^ô¢¬µŠ ¦X€5¿.ØSyƒŠ–
þ+'êIÃqV˜œ…â:¿r㚉#,Ùô#ÈždèBZ£¾÷ÞÖ*R’*"7Ù¨ÝyÝçÓò¸—Ç=cîÍÚLIPsFŠ'Ñf>bôaöä +]fvÑÑ+QæAÁÔèâwdüOŒ¿[xìˆ"‡%ñÄS¦xõŠ~{×ÊpÒˆë¡õ|O +¿BÅÝÐÄÇâ/€G¾LÈã3hûÈ+N–g0Þ3²æ¸ËjäU±¯1‡ÿè¥~ø¦akœ·”Dìzq§»=÷U}.K¶˜Y碌ÃÖ»1?ÔÙCùŸ NÌŠ2Muµö–¸hŽë/åí4ÌÖÐG¤ã€m +OaFþÁåÞ‹Åp0¬åz +1É›í²Q ìx%:³.š×~e`ºQ¡}©µ…t-×Åü; ¹CHÌ'ñ”Ùý]Ó0NbÜ’NÊ4Ù +ÊSÿÈo~.,ԼʴàÚQÖòÏåjéÁ›¶¶5«¦´£MôC“R'÷S!©#s2®EØË[R«¿7n*AýÒñ±7±%¾à¢é¥íñ–5#ª9¿hš“ݧÑLÖÉÍäžÜÌ©JrþÜÌæ0ƒî +¸¤ˆ(_¸®Ü\áb'TêMã™N®6U•.-ÿóOFw¥XÂí:ÚFêZ¡¦ŸÔÜFµâÛ®û‹xðƒ²|Aí)Ùÿÿ6íIhJY +©øÄäTjXJV†‰ò7PH“„œÜjóGȱ!'D-=X6³9}Ñ•ÄT'˜2ÀQ³4æˆ1ø‹§'ñ‰<žï1>\ˆen»¶øøž™„0‡T@’_½:.áÅ+†ÈË,ûÚIy<ª¸)Ñ
']ëÒ”ÜR€ÒB@´é +PCö0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +439 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2367 0 R +/FirstChar 0 +/LastChar 102 +/Widths 2375 0 R +/BaseFont /MKVFLR+CMSY10 +/FontDescriptor 437 0 R +>> endobj +437 0 obj << +/Ascent 750 +/CapHeight 683 +/Descent -194 +/FontName /MKVFLR+CMSY10 +/ItalicAngle -14 +/StemV 85 +/XHeight 431 +/FontBBox [-29 -960 1116 775] +/Flags 4 +/CharSet (/minus/periodcentered/plusminus/braceleft) +/FontFile 438 0 R +>> endobj +2375 0 obj +[778 278 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 ] +endobj +435 0 obj << +/Length1 934 +/Length2 3157 +/Length3 532 +/Length 4623 +>> +stream +%!PS-AdobeFont-1.1: CMMI10 1.100 +%%CreationDate: 1996 Jul 23 07:53:57 +% Copyright (C) 1997 American Mathematical Society. All Rights Reserved. +11 dict begin +/FontInfo 7 dict dup begin +/version (1.100) readonly def +/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def +/FullName (CMMI10) readonly def +/FamilyName (Computer Modern) readonly def +/Weight (Medium) readonly def +/ItalicAngle -14.04 def +/isFixedPitch false def +end readonly def +/FontName /VCJWTT+CMMI10 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 59 /comma put +dup 61 /slash put +dup 65 /A put +dup 66 /B put +dup 67 /C put +dup 68 /D put +dup 80 /P put +dup 81 /Q put +dup 97 /a put +dup 98 /b put +dup 120 /x put +dup 121 /y put +readonly def +/FontBBox{-32 -250 1048 750}readonly def +/UniqueID 5087385 def +currentdict end +currentfile eexec +ÙÖoc;„j—¶†©~E£Ðª)s™§„̾…´™;.ëÞ;Ôr·ÏTeò…ji«–íK/df5à¶A|Ç{S/…ØÇ
)¡šSïcë\^ÈŸÆÂm‰çÙäp·+ïÚ#õßv¾¯Lé17¢íŠ©×Öýó~kÍàÙ˜d#å– +]Ÿ»L•eVèßËúìGo£oÙ¥È\šõþÙÂÝÒkÜ
™9‹ŸMÕ™=ü 0)xfáÍ +1›kÙXž9JS:6ÔV ™ +é:ùm— ,MZ+²¸Ç’\Ex +:áØã9pEz–~ÿ„öØGuE¸Ì[Ùn窙ÝÉài9ヽ¤u#=X&>¿¯Àâø@Q-2fT{0lY+Šáú%d¹¢m¬%däÈBag(ÙÇMÃIônǹp‹†Ft%¦ý³£–V/~äØ@´6!tLø¢:nS&I¶l* +] +ñÕŸsõHš¦»Î.ñXãþD‹0m¬”½š®¼›þ{ÁÔNÙ“Ô–@ÅÈÓ Ó—–££Ê›Nô¶’VÖÎÑëuâQm}EceTugÔ©4üª'ËW$¿Šá6vçãˆ
.N…³t°¯SàØ¿Ï¤Û_‹ATƒ«Ê;ÉÊäî¡Ä²¨«¾7ÁÅÓ(ŒúèydQ4ÒXðÃÓ+ÍŒ¡ ºNˆbˆåõr¨äô‚õêý8ÅÇy=6J~ 2dIà=êè
@à$˜cñ—¿—z‡ÐöcÄúæØw’¬¯+{N²£] í8¥‚WBGõ™Ç‘ÃT¿Æ3íÑ€?8'1ä'DÉ2S½â+³k¤û¹hc༺1¾N7…Ã%±'%,Ø#BmÙÏ,ÉÔ~tôx\dÔÛM¾Ã+Ñ“-†Ê¸ IÀÓÉ€º¯ƒþÍßô ¢U`šÑbnoe8ÞÁ>L€×¢ýÕŸ_™`ÿ +nm¡å!n“'&Nö.¢˜g~=fmf|©êÊöªï- ¼¢›B%͇‡6ðÃ`Æ[9Êh^I/άY_õ\¿NÌ£®ß7ºõcŸ.·U$ß—À(þF#Xþ1§rÃük÷6)ŒaÔfÒßÑYé{,ºªËüŸ„Cåç–¬|ïÎQPð\ÀßÕ¥~®+¹ß:N"FüžEò“cüI2(Ñaþ™À·ý®¡pØ!~öÐõÍóïèÞ!‡iÜ¿G‚˜*¡Ï!©\è*Þ‹‘1m$þÛ÷¦a".I:]/W+'£RD#†{èñD´±êB´$àø$Ëùøæó—TBÙÊ%’÷âÎw¢.€U`ü §à©Šé oÔf˜ˆ¡x)\´š‡Iù0M³¿$§trªR«ó„šgP C!;mi¹é‡ÊGÙœ—Ò’R%Õ9mÎm,ß® 5Ígn7p
^ž‰Žuù‘ÇCß7`ò¦‡¬·¼4sÑûÙR»RèÕÇ^ý_c¤ˆHìüÁ¦|¸f·^¯áº‚BNiÈ…¬ºFö®»ÆÚî)"è‘Ea.t·jª€#¯Ò¢êdŠK~Ui´àóý$|hò9°Ú7Æ-Q°Î¼<õ3–=zï%h³»ST]™Ÿ¨°e•£ßmeçò´ ¯\=zZWY~kôÍ¢z÷Ûƒìø»dñ +˜ó;/æ~3
öŸUKÚïê™O;ú[Èw +t¸ +è–jñl^ú«y¹È0ÁÍ®‹âó1£®K1«©\ž)AW:ÜvSd 0¯$Ò +¤dwkÀjŸCŠj¹ðþùc¿?÷)ƒ Ÿ«Á7*>¥ýx·˜?ˆòŸfÇÆÖnßÏù
c¡¶}{…«ä5Q ~€ŽOÓEèÑ@@‘óºc) +Ô&>vÉö +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +endstream +endobj +436 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2370 0 R +/FirstChar 59 +/LastChar 121 +/Widths 2376 0 R +/BaseFont /VCJWTT+CMMI10 +/FontDescriptor 434 0 R +>> endobj +434 0 obj << +/Ascent 694 +/CapHeight 683 +/Descent -194 +/FontName /VCJWTT+CMMI10 +/ItalicAngle -14 +/StemV 72 +/XHeight 431 +/FontBBox [-32 -250 1048 750] +/Flags 4 +/CharSet (/comma/slash/A/B/C/D/P/Q/a/b/x/y) +/FontFile 435 0 R +>> endobj +2376 0 obj +[278 0 500 0 0 0 750 759 715 828 0 0 0 0 0 0 0 0 0 0 0 642 791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 572 490 ] +endobj +354 0 obj << +/Length1 8196 +/Length 8196 +>> +stream + +L§F<mS1=k’V[“&486v4Uk6âÔ,Yˆ\G‡i@&>hšrTvO/
;@DpQ•Ž9o¦mlÇ—Z¦¥ I“: + + +/A + + + + + + + + + + + +
*,)) +7[ƒZ0\J/0S@I~[4 $B3:[q6R‰d8O
/D[:KiCP”Óƒþv`•oM/eSOwY@0$ÂY¼²ŸwF-OoB,_\R?fŽ + +¸ +9 +A‘~\
1 º¿Ÿj (,?m“©¶ZZ®´`
+ + + + + + + + + + + + +9DC +(3 2//89: y*H4i0A +"$0"n+7*MnE [~£irú€H{7
&DPi•ÏŽ
$#<,HMQ¦N[‚T'
, +by +{ûÙü¿ +b + + + +® +endobj +355 0 obj << +/Type /Font +/Subtype /TrueType +/FirstChar 177 +/LastChar 195 +/Widths 2377 0 R +/BaseFont /GenR101U03 +/FontDescriptor 353 0 R +>> endobj +353 0 obj << +/Ascent 858 +/CapHeight 0 +/Descent -275 +/FontName /GenR101U03 +/ItalicAngle 0 +/StemV 72 +/XHeight 454 +/FontBBox [-519 -297 1297 1059] +/Flags 4 +/FontFile2 354 0 R +>> endobj +2377 0 obj +[525 498 475 479 0 0 0 0 0 0 0 0 0 0 0 526 0 0 478 ] +endobj +2378 0 obj << +/Type /Encoding +/Differences [ 0 /uni0000/controlSTX/controlSOT/controlETX/controlEOT/controlENQ/controlACK/controlBEL/controlBS/controlHT/controlLF/controlVT/controlFF/controlCR/controlSO/controlSI/controlDLE/controlDC1/controlDC2/controlDC3/controlDC4/controlNAK/controlSYN/controlETB/controlCAN/controlEM/controlSUB/controlESC/controlFS/controlGS/controlRS/controlUS/spacehackarabic/exclam/quotedbl/numbersign/dollar/percent/ampersand/quotesingle/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/grave/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/verticalbar/braceright/asciitilde/controlDEL/uni0080/uni0081/uni0082/uni0083/uni0084/uni0085/uni0086/uni0087/uni0088/uni0089/uni008a/uni008b/uni008c/uni008d/uni008e/uni008f/uni0090/uni0091/uni0092/uni0093/uni0094/uni0095/uni0096/uni0097/uni0098/uni0099/uni009a/uni009b/uni009c/uni009d/uni009e/uni009f/nonbreakingspace/exclamdown/cent/sterling/currency/yen/brokenbar/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot/softhyphen/registered/overscore/degree/plusminus/twosuperior/threesuperior/acute/mu1/paragraph/periodcentered/cedilla/onesuperior/ordmasculine/guillemotright/onequarter/onehalf/threequarters/questiondown/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis/yacute/thorn/ydieresis] +>> endobj +92 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2378 0 R +/BaseFont /Times-Bold +>> endobj +2379 0 obj << +/Type /Encoding +/Differences [ 0 /uni2000/uni2001/enspace/uni2003/uni2004/uni2005/uni2006/uni2007/uni2008/uni2009/uni200a/zerowidthspace/zerowidthnonjoiner/afii301/afii299/afii300/hyphentwo/uni2011/figuredash/endash/emdash/horizontalbar/dblverticalbar/underscoredbl/quoteleft/quoteright/quotesinglbase/quotereversed/quotedblleft/quotedblright/quotedblbase/uni201f/dagger/daggerdbl/bullet/uni2023/onedotenleader/twodotleader/ellipsis/uni2027/uni2028/uni2029/uni202a/uni202b/afii61573/afii61574/afii61575/uni202f/perthousand/uni2031/minute/second/uni2034/primereversed/uni2036/uni2037/uni2038/guilsinglleft/guilsinglright/referencemark/exclamdbl/uni203d/overline/uni203f/uni2040/uni2041/asterism/uni2043/fraction/uni2045/uni2046/uni2047/uni2048/uni2049/uni204a/uni204b/uni204c/uni204d/uni204e/uni204f/uni2050/uni2051/uni2052/uni2053/uni2054/uni2055/uni2056/uni2057/uni2058/uni2059/uni205a/uni205b/uni205c/uni205d/uni205e/uni205f/uni2060/uni2061/uni2062/uni2063/uni2064/uni2065/uni2066/uni2067/uni2068/uni2069/uni206a/uni206b/uni206c/uni206d/uni206e/uni206f/zerosuperior/uni2071/uni2072/uni2073/foursuperior/fivesuperior/sixsuperior/sevensuperior/eightsuperior/ninesuperior/plussuperior/uni207b/equalsuperior/parenleftsuperior/parenrightsuperior/nsuperior/zeroinferior/oneinferior/twoinferior/threeinferior/fourinferior/fiveinferior/sixinferior/seveninferior/eightinferior/nineinferior/uni208a/uni208b/uni208c/parenleftinferior/parenrightinferior/uni208f/uni2090/uni2091/uni2092/uni2093/uni2094/uni2095/uni2096/uni2097/uni2098/uni2099/uni209a/uni209b/uni209c/uni209d/uni209e/uni209f/uni20a0/colonsign/cruzeiro/franc/lira/uni20a5/uni20a6/peseta/uni20a8/won/sheqelhebrew/dong/euro/uni20ad/uni20ae/uni20af/uni20b0/uni20b1/uni20b2/uni20b3/uni20b4/uni20b5/uni20b6/uni20b7/uni20b8/uni20b9/uni20ba/uni20bb/uni20bc/uni20bd/uni20be/uni20bf/uni20c0/uni20c1/uni20c2/uni20c3/uni20c4/uni20c5/uni20c6/uni20c7/uni20c8/uni20c9/uni20ca/uni20cb/uni20cc/uni20cd/uni20ce/uni20cf/uni20d0/uni20d1/uni20d2/uni20d3/uni20d4/uni20d5/uni20d6/uni20d7/uni20d8/uni20d9/uni20da/uni20db/uni20dc/uni20dd/uni20de/uni20df/uni20e0/uni20e1/uni20e2/uni20e3/uni20e4/uni20e5/uni20e6/uni20e7/uni20e8/uni20e9/uni20ea/uni20eb/uni20ec/uni20ed/uni20ee/uni20ef/uni20f0/uni20f1/uni20f2/uni20f3/uni20f4/uni20f5/uni20f6/uni20f7/uni20f8/uni20f9/uni20fa/uni20fb/uni20fc/uni20fd/uni20fe/uni20ff] +>> endobj +35 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2379 0 R +/BaseFont /Times-Roman +>> endobj +29 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2378 0 R +/BaseFont /Times-Italic +>> endobj +6 0 obj << +/Type /Font +/Subtype /Type1 +/Encoding 2378 0 R +/BaseFont /Times-Roman +>> endobj +9 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [2 0 R 12 0 R 15 0 R 18 0 R 25 0 R 32 0 R] +>> endobj +41 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [38 0 R 43 0 R 50 0 R 53 0 R 56 0 R 59 0 R] +>> endobj +64 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [62 0 R 66 0 R 69 0 R 72 0 R 87 0 R 105 0 R] +>> endobj +119 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [116 0 R 125 0 R 133 0 R 147 0 R 161 0 R 183 0 R] +>> endobj +208 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [203 0 R 222 0 R 234 0 R 243 0 R 247 0 R 264 0 R] +>> endobj +279 0 obj << +/Type /Pages +/Count 6 +/Parent 2380 0 R +/Kids [273 0 R 285 0 R 290 0 R 306 0 R 314 0 R 334 0 R] +>> endobj +358 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [349 0 R 369 0 R 382 0 R 394 0 R 402 0 R 420 0 R] +>> endobj +443 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [431 0 R 453 0 R 459 0 R 463 0 R 475 0 R 485 0 R] +>> endobj +498 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [494 0 R 508 0 R 527 0 R 545 0 R 565 0 R 571 0 R] +>> endobj +577 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [575 0 R 579 0 R 582 0 R 597 0 R 616 0 R 627 0 R] +>> endobj +654 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [648 0 R 661 0 R 675 0 R 684 0 R 695 0 R 705 0 R] +>> endobj +719 0 obj << +/Type /Pages +/Count 6 +/Parent 2381 0 R +/Kids [714 0 R 722 0 R 734 0 R 743 0 R 748 0 R 764 0 R] +>> endobj +778 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [774 0 R 789 0 R 804 0 R 824 0 R 848 0 R 868 0 R] +>> endobj +878 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [875 0 R 880 0 R 883 0 R 886 0 R 889 0 R 892 0 R] +>> endobj +914 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [908 0 R 928 0 R 943 0 R 961 0 R 972 0 R 984 0 R] +>> endobj +992 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [990 0 R 1010 0 R 1030 0 R 1041 0 R 1062 0 R 1070 0 R] +>> endobj +1092 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [1083 0 R 1094 0 R 1103 0 R 1112 0 R 1119 0 R 1122 0 R] +>> endobj +1127 0 obj << +/Type /Pages +/Count 6 +/Parent 2382 0 R +/Kids [1125 0 R 1138 0 R 1146 0 R 1161 0 R 1172 0 R 1185 0 R] +>> endobj +1206 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1200 0 R 1212 0 R 1223 0 R 1241 0 R 1260 0 R 1283 0 R] +>> endobj +1293 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1290 0 R 1295 0 R 1298 0 R 1301 0 R 1304 0 R 1316 0 R] +>> endobj +1333 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1328 0 R 1344 0 R 1350 0 R 1364 0 R 1373 0 R 1387 0 R] +>> endobj +1400 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1398 0 R 1407 0 R 1413 0 R 1426 0 R 1437 0 R 1450 0 R] +>> endobj +1463 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1460 0 R 1470 0 R 1479 0 R 1488 0 R 1493 0 R 1505 0 R] +>> endobj +1525 0 obj << +/Type /Pages +/Count 6 +/Parent 2383 0 R +/Kids [1510 0 R 1527 0 R 1530 0 R 1537 0 R 1550 0 R 1564 0 R] +>> endobj +1583 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [1578 0 R 1593 0 R 1598 0 R 1614 0 R 1624 0 R 1637 0 R] +>> endobj +1651 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [1647 0 R 1657 0 R 1670 0 R 1680 0 R 1689 0 R 1703 0 R] +>> endobj +1721 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [1717 0 R 1727 0 R 1733 0 R 1741 0 R 1777 0 R 1818 0 R] +>> endobj +1902 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [1851 0 R 1904 0 R 1960 0 R 2034 0 R 2093 0 R 2167 0 R] +>> endobj +2234 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [2198 0 R 2236 0 R 2239 0 R 2243 0 R 2250 0 R 2253 0 R] +>> endobj +2265 0 obj << +/Type /Pages +/Count 6 +/Parent 2384 0 R +/Kids [2260 0 R 2271 0 R 2280 0 R 2289 0 R 2295 0 R 2305 0 R] +>> endobj +2320 0 obj << +/Type /Pages +/Count 6 +/Parent 2385 0 R +/Kids [2312 0 R 2325 0 R 2331 0 R 2338 0 R 2342 0 R 2350 0 R] +>> endobj +2359 0 obj << +/Type /Pages +/Count 2 +/Parent 2385 0 R +/Kids [2354 0 R 2361 0 R] +>> endobj +2380 0 obj << +/Type /Pages +/Count 36 +/Parent 2386 0 R +/Kids [9 0 R 41 0 R 64 0 R 119 0 R 208 0 R 279 0 R] +>> endobj +2381 0 obj << +/Type /Pages +/Count 36 +/Parent 2386 0 R +/Kids [358 0 R 443 0 R 498 0 R 577 0 R 654 0 R 719 0 R] +>> endobj +2382 0 obj << +/Type /Pages +/Count 36 +/Parent 2386 0 R +/Kids [778 0 R 878 0 R 914 0 R 992 0 R 1092 0 R 1127 0 R] +>> endobj +2383 0 obj << +/Type /Pages +/Count 36 +/Parent 2386 0 R +/Kids [1206 0 R 1293 0 R 1333 0 R 1400 0 R 1463 0 R 1525 0 R] +>> endobj +2384 0 obj << +/Type /Pages +/Count 36 +/Parent 2386 0 R +/Kids [1583 0 R 1651 0 R 1721 0 R 1902 0 R 2234 0 R 2265 0 R] +>> endobj +2385 0 obj << +/Type /Pages +/Count 8 +/Parent 2386 0 R +/Kids [2320 0 R 2359 0 R] +>> endobj +2386 0 obj << +/Type /Pages +/Count 188 +/Kids [2380 0 R 2381 0 R 2382 0 R 2383 0 R 2384 0 R 2385 0 R] +>> endobj +2387 0 obj << +/Type /Outlines +/First 22 0 R +/Last 2268 0 R +/Count 16 +>> endobj +2268 0 obj << +/Title 2269 0 R +/A 2266 0 R +/Parent 2387 0 R +/Prev 2257 0 R +>> endobj +2257 0 obj << +/Title 2258 0 R +/A 2255 0 R +/Parent 2387 0 R +/Prev 2247 0 R +/Next 2268 0 R +>> endobj +2247 0 obj << +/Title 2248 0 R +/A 2245 0 R +/Parent 2387 0 R +/Prev 1738 0 R +/Next 2257 0 R +>> endobj +1738 0 obj << +/Title 1739 0 R +/A 1736 0 R +/Parent 2387 0 R +/Prev 1497 0 R +/Next 2247 0 R +>> endobj +1724 0 obj << +/Title 1725 0 R +/A 1722 0 R +/Parent 1497 0 R +/Prev 1714 0 R +>> endobj +1714 0 obj << +/Title 1715 0 R +/A 1712 0 R +/Parent 1497 0 R +/Prev 1710 0 R +/Next 1724 0 R +>> endobj +1710 0 obj << +/Title 1711 0 R +/A 1708 0 R +/Parent 1497 0 R +/Prev 1700 0 R +/Next 1714 0 R +>> endobj +1700 0 obj << +/Title 1701 0 R +/A 1698 0 R +/Parent 1497 0 R +/Prev 1696 0 R +/Next 1710 0 R +>> endobj +1696 0 obj << +/Title 1697 0 R +/A 1694 0 R +/Parent 1497 0 R +/Prev 1686 0 R +/Next 1700 0 R +>> endobj +1686 0 obj << +/Title 1687 0 R +/A 1684 0 R +/Parent 1497 0 R +/Prev 1677 0 R +/Next 1696 0 R +>> endobj +1677 0 obj << +/Title 1678 0 R +/A 1675 0 R +/Parent 1497 0 R +/Prev 1667 0 R +/Next 1686 0 R +>> endobj +1667 0 obj << +/Title 1668 0 R +/A 1665 0 R +/Parent 1497 0 R +/Prev 1663 0 R +/Next 1677 0 R +>> endobj +1663 0 obj << +/Title 1664 0 R +/A 1661 0 R +/Parent 1497 0 R +/Prev 1654 0 R +/Next 1667 0 R +>> endobj +1654 0 obj << +/Title 1655 0 R +/A 1652 0 R +/Parent 1497 0 R +/Prev 1644 0 R +/Next 1663 0 R +>> endobj +1644 0 obj << +/Title 1645 0 R +/A 1642 0 R +/Parent 1497 0 R +/Prev 1634 0 R +/Next 1654 0 R +>> endobj +1634 0 obj << +/Title 1635 0 R +/A 1632 0 R +/Parent 1497 0 R +/Prev 1630 0 R +/Next 1644 0 R +>> endobj +1630 0 obj << +/Title 1631 0 R +/A 1628 0 R +/Parent 1497 0 R +/Prev 1621 0 R +/Next 1634 0 R +>> endobj +1621 0 obj << +/Title 1622 0 R +/A 1619 0 R +/Parent 1497 0 R +/Prev 1611 0 R +/Next 1630 0 R +>> endobj +1611 0 obj << +/Title 1612 0 R +/A 1609 0 R +/Parent 1497 0 R +/Prev 1607 0 R +/Next 1621 0 R +>> endobj +1607 0 obj << +/Title 1608 0 R +/A 1605 0 R +/Parent 1497 0 R +/Prev 1590 0 R +/Next 1611 0 R +>> endobj +1590 0 obj << +/Title 1591 0 R +/A 1588 0 R +/Parent 1497 0 R +/Prev 1586 0 R +/Next 1607 0 R +>> endobj +1586 0 obj << +/Title 1587 0 R +/A 1584 0 R +/Parent 1497 0 R +/Prev 1575 0 R +/Next 1590 0 R +>> endobj +1575 0 obj << +/Title 1576 0 R +/A 1573 0 R +/Parent 1497 0 R +/Prev 1571 0 R +/Next 1586 0 R +>> endobj +1571 0 obj << +/Title 1572 0 R +/A 1569 0 R +/Parent 1497 0 R +/Prev 1561 0 R +/Next 1575 0 R +>> endobj +1561 0 obj << +/Title 1562 0 R +/A 1559 0 R +/Parent 1497 0 R +/Prev 1557 0 R +/Next 1571 0 R +>> endobj +1557 0 obj << +/Title 1558 0 R +/A 1555 0 R +/Parent 1497 0 R +/Prev 1547 0 R +/Next 1561 0 R +>> endobj +1547 0 obj << +/Title 1548 0 R +/A 1545 0 R +/Parent 1497 0 R +/Prev 1543 0 R +/Next 1557 0 R +>> endobj +1543 0 obj << +/Title 1544 0 R +/A 1541 0 R +/Parent 1497 0 R +/Prev 1534 0 R +/Next 1547 0 R +>> endobj +1534 0 obj << +/Title 1535 0 R +/A 1532 0 R +/Parent 1497 0 R +/Prev 1501 0 R +/Next 1543 0 R +>> endobj +1501 0 obj << +/Title 1502 0 R +/A 1499 0 R +/Parent 1497 0 R +/Next 1534 0 R +>> endobj +1497 0 obj << +/Title 1498 0 R +/A 1495 0 R +/Parent 2387 0 R +/Prev 1308 0 R +/Next 1738 0 R +/First 1501 0 R +/Last 1724 0 R +/Count -26 +>> endobj +1485 0 obj << +/Title 1486 0 R +/A 1483 0 R +/Parent 1308 0 R +/Prev 1476 0 R +>> endobj +1476 0 obj << +/Title 1477 0 R +/A 1474 0 R +/Parent 1308 0 R +/Prev 1467 0 R +/Next 1485 0 R +>> endobj +1467 0 obj << +/Title 1468 0 R +/A 1465 0 R +/Parent 1308 0 R +/Prev 1457 0 R +/Next 1476 0 R +>> endobj +1457 0 obj << +/Title 1458 0 R +/A 1455 0 R +/Parent 1308 0 R +/Prev 1447 0 R +/Next 1467 0 R +>> endobj +1447 0 obj << +/Title 1448 0 R +/A 1445 0 R +/Parent 1308 0 R +/Prev 1443 0 R +/Next 1457 0 R +>> endobj +1443 0 obj << +/Title 1444 0 R +/A 1441 0 R +/Parent 1308 0 R +/Prev 1433 0 R +/Next 1447 0 R +>> endobj +1433 0 obj << +/Title 1434 0 R +/A 1431 0 R +/Parent 1308 0 R +/Prev 1423 0 R +/Next 1443 0 R +>> endobj +1423 0 obj << +/Title 1424 0 R +/A 1421 0 R +/Parent 1308 0 R +/Prev 1418 0 R +/Next 1433 0 R +>> endobj +1418 0 obj << +/Title 1419 0 R +/A 1416 0 R +/Parent 1308 0 R +/Prev 1404 0 R +/Next 1423 0 R +>> endobj +1404 0 obj << +/Title 1405 0 R +/A 1402 0 R +/Parent 1308 0 R +/Prev 1395 0 R +/Next 1418 0 R +>> endobj +1395 0 obj << +/Title 1396 0 R +/A 1393 0 R +/Parent 1308 0 R +/Prev 1384 0 R +/Next 1404 0 R +>> endobj +1384 0 obj << +/Title 1385 0 R +/A 1382 0 R +/Parent 1308 0 R +/Prev 1380 0 R +/Next 1395 0 R +>> endobj +1380 0 obj << +/Title 1381 0 R +/A 1378 0 R +/Parent 1308 0 R +/Prev 1370 0 R +/Next 1384 0 R +>> endobj +1370 0 obj << +/Title 1371 0 R +/A 1368 0 R +/Parent 1308 0 R +/Prev 1361 0 R +/Next 1380 0 R +>> endobj +1361 0 obj << +/Title 1362 0 R +/A 1359 0 R +/Parent 1308 0 R +/Prev 1356 0 R +/Next 1370 0 R +>> endobj +1356 0 obj << +/Title 1357 0 R +/A 1354 0 R +/Parent 1308 0 R +/Prev 1341 0 R +/Next 1361 0 R +>> endobj +1341 0 obj << +/Title 1342 0 R +/A 1339 0 R +/Parent 1308 0 R +/Prev 1336 0 R +/Next 1356 0 R +>> endobj +1336 0 obj << +/Title 1337 0 R +/A 1334 0 R +/Parent 1308 0 R +/Prev 1325 0 R +/Next 1341 0 R +>> endobj +1325 0 obj << +/Title 1326 0 R +/A 1323 0 R +/Parent 1308 0 R +/Prev 1321 0 R +/Next 1336 0 R +>> endobj +1321 0 obj << +/Title 1322 0 R +/A 1319 0 R +/Parent 1308 0 R +/Prev 1312 0 R +/Next 1325 0 R +>> endobj +1312 0 obj << +/Title 1313 0 R +/A 1310 0 R +/Parent 1308 0 R +/Next 1321 0 R +>> endobj +1308 0 obj << +/Title 1309 0 R +/A 1306 0 R +/Parent 2387 0 R +/Prev 1130 0 R +/Next 1497 0 R +/First 1312 0 R +/Last 1485 0 R +/Count -21 +>> endobj +1280 0 obj << +/Title 1281 0 R +/A 1278 0 R +/Parent 1130 0 R +/Prev 1276 0 R +>> endobj +1276 0 obj << +/Title 1277 0 R +/A 1274 0 R +/Parent 1130 0 R +/Prev 1272 0 R +/Next 1280 0 R +>> endobj +1272 0 obj << +/Title 1273 0 R +/A 1270 0 R +/Parent 1130 0 R +/Prev 1268 0 R +/Next 1276 0 R +>> endobj +1268 0 obj << +/Title 1269 0 R +/A 1266 0 R +/Parent 1130 0 R +/Prev 1257 0 R +/Next 1272 0 R +>> endobj +1257 0 obj << +/Title 1258 0 R +/A 1255 0 R +/Parent 1130 0 R +/Prev 1253 0 R +/Next 1268 0 R +>> endobj +1253 0 obj << +/Title 1254 0 R +/A 1251 0 R +/Parent 1130 0 R +/Prev 1249 0 R +/Next 1257 0 R +>> endobj +1249 0 obj << +/Title 1250 0 R +/A 1247 0 R +/Parent 1130 0 R +/Prev 1238 0 R +/Next 1253 0 R +>> endobj +1238 0 obj << +/Title 1239 0 R +/A 1236 0 R +/Parent 1130 0 R +/Prev 1234 0 R +/Next 1249 0 R +>> endobj +1234 0 obj << +/Title 1235 0 R +/A 1232 0 R +/Parent 1130 0 R +/Prev 1230 0 R +/Next 1238 0 R +>> endobj +1230 0 obj << +/Title 1231 0 R +/A 1228 0 R +/Parent 1130 0 R +/Prev 1220 0 R +/Next 1234 0 R +>> endobj +1220 0 obj << +/Title 1221 0 R +/A 1218 0 R +/Parent 1130 0 R +/Prev 1209 0 R +/Next 1230 0 R +>> endobj +1209 0 obj << +/Title 1210 0 R +/A 1207 0 R +/Parent 1130 0 R +/Prev 1197 0 R +/Next 1220 0 R +>> endobj +1197 0 obj << +/Title 1198 0 R +/A 1195 0 R +/Parent 1130 0 R +/Prev 1192 0 R +/Next 1209 0 R +>> endobj +1192 0 obj << +/Title 1193 0 R +/A 1190 0 R +/Parent 1130 0 R +/Prev 1182 0 R +/Next 1197 0 R +>> endobj +1182 0 obj << +/Title 1183 0 R +/A 1180 0 R +/Parent 1130 0 R +/Prev 1178 0 R +/Next 1192 0 R +>> endobj +1178 0 obj << +/Title 1179 0 R +/A 1176 0 R +/Parent 1130 0 R +/Prev 1169 0 R +/Next 1182 0 R +>> endobj +1169 0 obj << +/Title 1170 0 R +/A 1167 0 R +/Parent 1130 0 R +/Prev 1158 0 R +/Next 1178 0 R +>> endobj +1158 0 obj << +/Title 1159 0 R +/A 1156 0 R +/Parent 1130 0 R +/Prev 1153 0 R +/Next 1169 0 R +>> endobj +1153 0 obj << +/Title 1154 0 R +/A 1151 0 R +/Parent 1130 0 R +/Prev 1143 0 R +/Next 1158 0 R +>> endobj +1143 0 obj << +/Title 1144 0 R +/A 1141 0 R +/Parent 1130 0 R +/Prev 1134 0 R +/Next 1153 0 R +>> endobj +1134 0 obj << +/Title 1135 0 R +/A 1132 0 R +/Parent 1130 0 R +/Next 1143 0 R +>> endobj +1130 0 obj << +/Title 1131 0 R +/A 1128 0 R +/Parent 2387 0 R +/Prev 995 0 R +/Next 1308 0 R +/First 1134 0 R +/Last 1280 0 R +/Count -21 +>> endobj +1109 0 obj << +/Title 1110 0 R +/A 1107 0 R +/Parent 995 0 R +/Prev 1099 0 R +>> endobj +1099 0 obj << +/Title 1100 0 R +/A 1097 0 R +/Parent 995 0 R +/Prev 1079 0 R +/Next 1109 0 R +>> endobj +1079 0 obj << +/Title 1080 0 R +/A 1077 0 R +/Parent 995 0 R +/Prev 1075 0 R +/Next 1099 0 R +>> endobj +1075 0 obj << +/Title 1076 0 R +/A 1073 0 R +/Parent 995 0 R +/Prev 1059 0 R +/Next 1079 0 R +>> endobj +1059 0 obj << +/Title 1060 0 R +/A 1057 0 R +/Parent 995 0 R +/Prev 1054 0 R +/Next 1075 0 R +>> endobj +1054 0 obj << +/Title 1055 0 R +/A 1052 0 R +/Parent 995 0 R +/Prev 1050 0 R +/Next 1059 0 R +>> endobj +1050 0 obj << +/Title 1051 0 R +/A 1048 0 R +/Parent 995 0 R +/Prev 1046 0 R +/Next 1054 0 R +>> endobj +1046 0 obj << +/Title 1047 0 R +/A 1044 0 R +/Parent 995 0 R +/Prev 1038 0 R +/Next 1050 0 R +>> endobj +1038 0 obj << +/Title 1039 0 R +/A 1036 0 R +/Parent 995 0 R +/Prev 1026 0 R +/Next 1046 0 R +>> endobj +1026 0 obj << +/Title 1027 0 R +/A 1024 0 R +/Parent 995 0 R +/Prev 1022 0 R +/Next 1038 0 R +>> endobj +1022 0 obj << +/Title 1023 0 R +/A 1020 0 R +/Parent 995 0 R +/Prev 1018 0 R +/Next 1026 0 R +>> endobj +1018 0 obj << +/Title 1019 0 R +/A 1016 0 R +/Parent 995 0 R +/Prev 1007 0 R +/Next 1022 0 R +>> endobj +1007 0 obj << +/Title 1008 0 R +/A 1005 0 R +/Parent 995 0 R +/Prev 1003 0 R +/Next 1018 0 R +>> endobj +1003 0 obj << +/Title 1004 0 R +/A 1001 0 R +/Parent 995 0 R +/Prev 999 0 R +/Next 1007 0 R +>> endobj +999 0 obj << +/Title 1000 0 R +/A 997 0 R +/Parent 995 0 R +/Next 1003 0 R +>> endobj +995 0 obj << +/Title 996 0 R +/A 993 0 R +/Parent 2387 0 R +/Prev 896 0 R +/Next 1130 0 R +/First 999 0 R +/Last 1109 0 R +/Count -15 +>> endobj +981 0 obj << +/Title 982 0 R +/A 979 0 R +/Parent 896 0 R +/Prev 977 0 R +>> endobj +977 0 obj << +/Title 978 0 R +/A 975 0 R +/Parent 896 0 R +/Prev 969 0 R +/Next 981 0 R +>> endobj +969 0 obj << +/Title 970 0 R +/A 967 0 R +/Parent 896 0 R +/Prev 958 0 R +/Next 977 0 R +>> endobj +958 0 obj << +/Title 959 0 R +/A 956 0 R +/Parent 896 0 R +/Prev 954 0 R +/Next 969 0 R +>> endobj +954 0 obj << +/Title 955 0 R +/A 952 0 R +/Parent 896 0 R +/Prev 950 0 R +/Next 958 0 R +>> endobj +950 0 obj << +/Title 951 0 R +/A 948 0 R +/Parent 896 0 R +/Prev 940 0 R +/Next 954 0 R +>> endobj +940 0 obj << +/Title 941 0 R +/A 938 0 R +/Parent 896 0 R +/Prev 935 0 R +/Next 950 0 R +>> endobj +935 0 obj << +/Title 936 0 R +/A 933 0 R +/Parent 896 0 R +/Prev 925 0 R +/Next 940 0 R +>> endobj +925 0 obj << +/Title 926 0 R +/A 923 0 R +/Parent 896 0 R +/Prev 921 0 R +/Next 935 0 R +>> endobj +921 0 obj << +/Title 922 0 R +/A 919 0 R +/Parent 896 0 R +/Prev 917 0 R +/Next 925 0 R +>> endobj +917 0 obj << +/Title 918 0 R +/A 915 0 R +/Parent 896 0 R +/Prev 905 0 R +/Next 921 0 R +>> endobj +905 0 obj << +/Title 906 0 R +/A 903 0 R +/Parent 896 0 R +/Prev 900 0 R +/Next 917 0 R +>> endobj +900 0 obj << +/Title 901 0 R +/A 898 0 R +/Parent 896 0 R +/Next 905 0 R +>> endobj +896 0 obj << +/Title 897 0 R +/A 894 0 R +/Parent 2387 0 R +/Prev 752 0 R +/Next 995 0 R +/First 900 0 R +/Last 981 0 R +/Count -13 +>> endobj +865 0 obj << +/Title 866 0 R +/A 863 0 R +/Parent 752 0 R +/Prev 861 0 R +>> endobj +861 0 obj << +/Title 862 0 R +/A 859 0 R +/Parent 752 0 R +/Prev 857 0 R +/Next 865 0 R +>> endobj +857 0 obj << +/Title 858 0 R +/A 855 0 R +/Parent 752 0 R +/Prev 845 0 R +/Next 861 0 R +>> endobj +845 0 obj << +/Title 846 0 R +/A 843 0 R +/Parent 752 0 R +/Prev 841 0 R +/Next 857 0 R +>> endobj +841 0 obj << +/Title 842 0 R +/A 839 0 R +/Parent 752 0 R +/Prev 837 0 R +/Next 845 0 R +>> endobj +837 0 obj << +/Title 838 0 R +/A 835 0 R +/Parent 752 0 R +/Prev 833 0 R +/Next 841 0 R +>> endobj +833 0 obj << +/Title 834 0 R +/A 831 0 R +/Parent 752 0 R +/Prev 821 0 R +/Next 837 0 R +>> endobj +821 0 obj << +/Title 822 0 R +/A 819 0 R +/Parent 752 0 R +/Prev 816 0 R +/Next 833 0 R +>> endobj +816 0 obj << +/Title 817 0 R +/A 814 0 R +/Parent 752 0 R +/Prev 811 0 R +/Next 821 0 R +>> endobj +811 0 obj << +/Title 812 0 R +/A 809 0 R +/Parent 752 0 R +/Prev 801 0 R +/Next 816 0 R +>> endobj +801 0 obj << +/Title 802 0 R +/A 799 0 R +/Parent 752 0 R +/Prev 796 0 R +/Next 811 0 R +>> endobj +796 0 obj << +/Title 797 0 R +/A 794 0 R +/Parent 752 0 R +/Prev 785 0 R +/Next 801 0 R +>> endobj +785 0 obj << +/Title 786 0 R +/A 783 0 R +/Parent 752 0 R +/Prev 781 0 R +/Next 796 0 R +>> endobj +781 0 obj << +/Title 782 0 R +/A 779 0 R +/Parent 752 0 R +/Prev 771 0 R +/Next 785 0 R +>> endobj +771 0 obj << +/Title 772 0 R +/A 769 0 R +/Parent 752 0 R +/Prev 761 0 R +/Next 781 0 R +>> endobj +761 0 obj << +/Title 762 0 R +/A 759 0 R +/Parent 752 0 R +/Prev 756 0 R +/Next 771 0 R +>> endobj +756 0 obj << +/Title 757 0 R +/A 754 0 R +/Parent 752 0 R +/Next 761 0 R +>> endobj +752 0 obj << +/Title 753 0 R +/A 750 0 R +/Parent 2387 0 R +/Prev 586 0 R +/Next 896 0 R +/First 756 0 R +/Last 865 0 R +/Count -17 +>> endobj +740 0 obj << +/Title 741 0 R +/A 738 0 R +/Parent 586 0 R +/Prev 731 0 R +>> endobj +731 0 obj << +/Title 732 0 R +/A 729 0 R +/Parent 586 0 R +/Prev 726 0 R +/Next 740 0 R +>> endobj +726 0 obj << +/Title 727 0 R +/A 724 0 R +/Parent 586 0 R +/Prev 709 0 R +/Next 731 0 R +>> endobj +709 0 obj << +/Title 710 0 R +/A 707 0 R +/Parent 586 0 R +/Prev 702 0 R +/Next 726 0 R +>> endobj +702 0 obj << +/Title 703 0 R +/A 700 0 R +/Parent 586 0 R +/Prev 692 0 R +/Next 709 0 R +>> endobj +692 0 obj << +/Title 693 0 R +/A 690 0 R +/Parent 586 0 R +/Prev 681 0 R +/Next 702 0 R +>> endobj +681 0 obj << +/Title 682 0 R +/A 679 0 R +/Parent 586 0 R +/Prev 672 0 R +/Next 692 0 R +>> endobj +672 0 obj << +/Title 673 0 R +/A 670 0 R +/Parent 586 0 R +/Prev 668 0 R +/Next 681 0 R +>> endobj +668 0 obj << +/Title 669 0 R +/A 666 0 R +/Parent 586 0 R +/Prev 658 0 R +/Next 672 0 R +>> endobj +658 0 obj << +/Title 659 0 R +/A 656 0 R +/Parent 586 0 R +/Prev 645 0 R +/Next 668 0 R +>> endobj +645 0 obj << +/Title 646 0 R +/A 643 0 R +/Parent 586 0 R +/Prev 641 0 R +/Next 658 0 R +>> endobj +641 0 obj << +/Title 642 0 R +/A 639 0 R +/Parent 586 0 R +/Prev 637 0 R +/Next 645 0 R +>> endobj +637 0 obj << +/Title 638 0 R +/A 635 0 R +/Parent 586 0 R +/Prev 633 0 R +/Next 641 0 R +>> endobj +633 0 obj << +/Title 634 0 R +/A 631 0 R +/Parent 586 0 R +/Prev 624 0 R +/Next 637 0 R +>> endobj +624 0 obj << +/Title 625 0 R +/A 622 0 R +/Parent 586 0 R +/Prev 612 0 R +/Next 633 0 R +>> endobj +612 0 obj << +/Title 613 0 R +/A 610 0 R +/Parent 586 0 R +/Prev 608 0 R +/Next 624 0 R +>> endobj +608 0 obj << +/Title 609 0 R +/A 606 0 R +/Parent 586 0 R +/Prev 604 0 R +/Next 612 0 R +>> endobj +604 0 obj << +/Title 605 0 R +/A 602 0 R +/Parent 586 0 R +/Prev 594 0 R +/Next 608 0 R +>> endobj +594 0 obj << +/Title 595 0 R +/A 592 0 R +/Parent 586 0 R +/Prev 590 0 R +/Next 604 0 R +>> endobj +590 0 obj << +/Title 591 0 R +/A 588 0 R +/Parent 586 0 R +/Next 594 0 R +>> endobj +586 0 obj << +/Title 587 0 R +/A 584 0 R +/Parent 2387 0 R +/Prev 467 0 R +/Next 752 0 R +/First 590 0 R +/Last 740 0 R +/Count -20 +>> endobj +562 0 obj << +/Title 563 0 R +/A 560 0 R +/Parent 467 0 R +/Prev 558 0 R +>> endobj +558 0 obj << +/Title 559 0 R +/A 556 0 R +/Parent 467 0 R +/Prev 554 0 R +/Next 562 0 R +>> endobj +554 0 obj << +/Title 555 0 R +/A 552 0 R +/Parent 467 0 R +/Prev 542 0 R +/Next 558 0 R +>> endobj +542 0 obj << +/Title 543 0 R +/A 540 0 R +/Parent 467 0 R +/Prev 538 0 R +/Next 554 0 R +>> endobj +538 0 obj << +/Title 539 0 R +/A 536 0 R +/Parent 467 0 R +/Prev 534 0 R +/Next 542 0 R +>> endobj +534 0 obj << +/Title 535 0 R +/A 532 0 R +/Parent 467 0 R +/Prev 524 0 R +/Next 538 0 R +>> endobj +524 0 obj << +/Title 525 0 R +/A 522 0 R +/Parent 467 0 R +/Prev 520 0 R +/Next 534 0 R +>> endobj +520 0 obj << +/Title 521 0 R +/A 518 0 R +/Parent 467 0 R +/Prev 515 0 R +/Next 524 0 R +>> endobj +515 0 obj << +/Title 516 0 R +/A 513 0 R +/Parent 467 0 R +/Prev 505 0 R +/Next 520 0 R +>> endobj +505 0 obj << +/Title 506 0 R +/A 503 0 R +/Parent 467 0 R +/Prev 501 0 R +/Next 515 0 R +>> endobj +501 0 obj << +/Title 502 0 R +/A 499 0 R +/Parent 467 0 R +/Prev 491 0 R +/Next 505 0 R +>> endobj +491 0 obj << +/Title 492 0 R +/A 489 0 R +/Parent 467 0 R +/Prev 482 0 R +/Next 501 0 R +>> endobj +482 0 obj << +/Title 483 0 R +/A 480 0 R +/Parent 467 0 R +/Prev 471 0 R +/Next 491 0 R +>> endobj +471 0 obj << +/Title 472 0 R +/A 469 0 R +/Parent 467 0 R +/Next 482 0 R +>> endobj +467 0 obj << +/Title 468 0 R +/A 465 0 R +/Parent 2387 0 R +/Prev 253 0 R +/Next 586 0 R +/First 471 0 R +/Last 562 0 R +/Count -14 +>> endobj +450 0 obj << +/Title 451 0 R +/A 448 0 R +/Parent 253 0 R +/Prev 446 0 R +>> endobj +446 0 obj << +/Title 447 0 R +/A 444 0 R +/Parent 253 0 R +/Prev 428 0 R +/Next 450 0 R +>> endobj +428 0 obj << +/Title 429 0 R +/A 426 0 R +/Parent 253 0 R +/Prev 417 0 R +/Next 446 0 R +>> endobj +417 0 obj << +/Title 418 0 R +/A 415 0 R +/Parent 253 0 R +/Prev 412 0 R +/Next 428 0 R +>> endobj +412 0 obj << +/Title 413 0 R +/A 410 0 R +/Parent 253 0 R +/Prev 408 0 R +/Next 417 0 R +>> endobj +408 0 obj << +/Title 409 0 R +/A 406 0 R +/Parent 253 0 R +/Prev 399 0 R +/Next 412 0 R +>> endobj +399 0 obj << +/Title 400 0 R +/A 397 0 R +/Parent 253 0 R +/Prev 391 0 R +/Next 408 0 R +>> endobj +391 0 obj << +/Title 392 0 R +/A 389 0 R +/Parent 253 0 R +/Prev 379 0 R +/Next 399 0 R +>> endobj +379 0 obj << +/Title 380 0 R +/A 377 0 R +/Parent 253 0 R +/Prev 375 0 R +/Next 391 0 R +>> endobj +375 0 obj << +/Title 376 0 R +/A 373 0 R +/Parent 253 0 R +/Prev 366 0 R +/Next 379 0 R +>> endobj +366 0 obj << +/Title 367 0 R +/A 364 0 R +/Parent 253 0 R +/Prev 361 0 R +/Next 375 0 R +>> endobj +361 0 obj << +/Title 362 0 R +/A 359 0 R +/Parent 253 0 R +/Prev 346 0 R +/Next 366 0 R +>> endobj +346 0 obj << +/Title 347 0 R +/A 344 0 R +/Parent 253 0 R +/Prev 342 0 R +/Next 361 0 R +>> endobj +342 0 obj << +/Title 343 0 R +/A 340 0 R +/Parent 253 0 R +/Prev 331 0 R +/Next 346 0 R +>> endobj +331 0 obj << +/Title 332 0 R +/A 329 0 R +/Parent 253 0 R +/Prev 327 0 R +/Next 342 0 R +>> endobj +327 0 obj << +/Title 328 0 R +/A 325 0 R +/Parent 253 0 R +/Prev 323 0 R +/Next 331 0 R +>> endobj +323 0 obj << +/Title 324 0 R +/A 321 0 R +/Parent 253 0 R +/Prev 319 0 R +/Next 327 0 R +>> endobj +319 0 obj << +/Title 320 0 R +/A 317 0 R +/Parent 253 0 R +/Prev 303 0 R +/Next 323 0 R +>> endobj +303 0 obj << +/Title 304 0 R +/A 301 0 R +/Parent 253 0 R +/Prev 299 0 R +/Next 319 0 R +>> endobj +299 0 obj << +/Title 300 0 R +/A 297 0 R +/Parent 253 0 R +/Prev 295 0 R +/Next 303 0 R +>> endobj +295 0 obj << +/Title 296 0 R +/A 293 0 R +/Parent 253 0 R +/Prev 282 0 R +/Next 299 0 R +>> endobj +282 0 obj << +/Title 283 0 R +/A 280 0 R +/Parent 253 0 R +/Prev 269 0 R +/Next 295 0 R +>> endobj +269 0 obj << +/Title 270 0 R +/A 267 0 R +/Parent 253 0 R +/Prev 261 0 R +/Next 282 0 R +>> endobj +261 0 obj << +/Title 262 0 R +/A 259 0 R +/Parent 253 0 R +/Prev 257 0 R +/Next 269 0 R +>> endobj +257 0 obj << +/Title 258 0 R +/A 255 0 R +/Parent 253 0 R +/Next 261 0 R +>> endobj +253 0 obj << +/Title 254 0 R +/A 251 0 R +/Parent 2387 0 R +/Prev 76 0 R +/Next 467 0 R +/First 257 0 R +/Last 450 0 R +/Count -25 +>> endobj +240 0 obj << +/Title 241 0 R +/A 238 0 R +/Parent 76 0 R +/Prev 231 0 R +>> endobj +231 0 obj << +/Title 232 0 R +/A 229 0 R +/Parent 76 0 R +/Prev 219 0 R +/Next 240 0 R +>> endobj +219 0 obj << +/Title 220 0 R +/A 217 0 R +/Parent 76 0 R +/Prev 215 0 R +/Next 231 0 R +>> endobj +215 0 obj << +/Title 216 0 R +/A 213 0 R +/Parent 76 0 R +/Prev 211 0 R +/Next 219 0 R +>> endobj +211 0 obj << +/Title 212 0 R +/A 209 0 R +/Parent 76 0 R +/Prev 200 0 R +/Next 215 0 R +>> endobj +200 0 obj << +/Title 201 0 R +/A 198 0 R +/Parent 76 0 R +/Prev 196 0 R +/Next 211 0 R +>> endobj +196 0 obj << +/Title 197 0 R +/A 194 0 R +/Parent 76 0 R +/Prev 192 0 R +/Next 200 0 R +>> endobj +192 0 obj << +/Title 193 0 R +/A 190 0 R +/Parent 76 0 R +/Prev 180 0 R +/Next 196 0 R +>> endobj +180 0 obj << +/Title 181 0 R +/A 178 0 R +/Parent 76 0 R +/Prev 176 0 R +/Next 192 0 R +>> endobj +176 0 obj << +/Title 177 0 R +/A 174 0 R +/Parent 76 0 R +/Prev 172 0 R +/Next 180 0 R +>> endobj +172 0 obj << +/Title 173 0 R +/A 170 0 R +/Parent 76 0 R +/Prev 168 0 R +/Next 176 0 R +>> endobj +168 0 obj << +/Title 169 0 R +/A 166 0 R +/Parent 76 0 R +/Prev 158 0 R +/Next 172 0 R +>> endobj +158 0 obj << +/Title 159 0 R +/A 156 0 R +/Parent 76 0 R +/Prev 154 0 R +/Next 168 0 R +>> endobj +154 0 obj << +/Title 155 0 R +/A 152 0 R +/Parent 76 0 R +/Prev 144 0 R +/Next 158 0 R +>> endobj +144 0 obj << +/Title 145 0 R +/A 142 0 R +/Parent 76 0 R +/Prev 140 0 R +/Next 154 0 R +>> endobj +140 0 obj << +/Title 141 0 R +/A 138 0 R +/Parent 76 0 R +/Prev 130 0 R +/Next 144 0 R +>> endobj +130 0 obj << +/Title 131 0 R +/A 128 0 R +/Parent 76 0 R +/Prev 122 0 R +/Next 140 0 R +>> endobj +122 0 obj << +/Title 123 0 R +/A 120 0 R +/Parent 76 0 R +/Prev 113 0 R +/Next 130 0 R +>> endobj +113 0 obj << +/Title 114 0 R +/A 111 0 R +/Parent 76 0 R +/Prev 100 0 R +/Next 122 0 R +>> endobj +100 0 obj << +/Title 101 0 R +/A 98 0 R +/Parent 76 0 R +/Prev 96 0 R +/Next 113 0 R +>> endobj +96 0 obj << +/Title 97 0 R +/A 94 0 R +/Parent 76 0 R +/Prev 84 0 R +/Next 100 0 R +>> endobj +84 0 obj << +/Title 85 0 R +/A 82 0 R +/Parent 76 0 R +/Prev 80 0 R +/Next 96 0 R +>> endobj +80 0 obj << +/Title 81 0 R +/A 78 0 R +/Parent 76 0 R +/Next 84 0 R +>> endobj +76 0 obj << +/Title 77 0 R +/A 74 0 R +/Parent 2387 0 R +/Prev 47 0 R +/Next 253 0 R +/First 80 0 R +/Last 240 0 R +/Count -23 +>> endobj +47 0 obj << +/Title 48 0 R +/A 45 0 R +/Parent 2387 0 R +/Prev 22 0 R +/Next 76 0 R +>> endobj +22 0 obj << +/Title 23 0 R +/A 20 0 R +/Parent 2387 0 R +/Next 47 0 R +>> endobj +2388 0 obj << +/Names [(Pg1) 89 0 R (Pg10) 226 0 R (Pg100) 1512 0 R (Pg101) 1539 0 R (Pg102) 1553 0 R (Pg103) 1567 0 R (Pg104) 1580 0 R (Pg105) 1595 0 R (Pg106) 1601 0 R (Pg107) 1602 0 R (Pg108) 1617 0 R (Pg109) 1627 0 R (Pg11) 236 0 R (Pg110) 1641 0 R (Pg111) 1649 0 R (Pg112) 1659 0 R (Pg113) 1673 0 R (Pg114) 1682 0 R (Pg115) 1691 0 R (Pg116) 1693 0 R (Pg117) 1707 0 R (Pg118) 1720 0 R (Pg119) 1730 0 R (Pg12) 245 0 R (Pg120) 1735 0 R (Pg13) 249 0 R (Pg14) 250 0 R (Pg15) 276 0 R (Pg16) 278 0 R (Pg17) 292 0 R (Pg18) 309 0 R (Pg19) 316 0 R (Pg2) 93 0 R (Pg20) 338 0 R (Pg21) 356 0 R (Pg22) 384 0 R (Pg23) 386 0 R (Pg24) 404 0 R (Pg25) 422 0 R (Pg26) 433 0 R (Pg27) 456 0 R (Pg28) 461 0 R (Pg29) 477 0 R (Pg3) 109 0 R (Pg30) 487 0 R (Pg31) 496 0 R (Pg32) 510 0 R (Pg33) 529 0 R (Pg34) 549 0 R (Pg35) 568 0 R (Pg36) 573 0 R (Pg37) 599 0 R (Pg38) 618 0 R (Pg39) 629 0 R (Pg4) 118 0 R (Pg40) 650 0 R (Pg41) 664 0 R (Pg42) 677 0 R (Pg43) 687 0 R (Pg44) 698 0 R (Pg45) 718 0 R (Pg46) 737 0 R (Pg47) 746 0 R (Pg48) 766 0 R (Pg49) 776 0 R (Pg5) 136 0 R (Pg50) 793 0 R (Pg51) 806 0 R (Pg52) 827 0 R (Pg53) 850 0 R (Pg54) 871 0 R (Pg55) 877 0 R (Pg56) 910 0 R (Pg57) 913 0 R (Pg58) 946 0 R (Pg59) 965 0 R (Pg6) 150 0 R (Pg60) 974 0 R (Pg61) 988 0 R (Pg62) 1012 0 R (Pg63) 1032 0 R (Pg64) 1064 0 R (Pg65) 1068 0 R (Pg66) 1086 0 R (Pg67) 1091 0 R (Pg68) 1096 0 R (Pg69) 1106 0 R (Pg7) 163 0 R (Pg70) 1114 0 R (Pg71) 1140 0 R (Pg72) 1149 0 R (Pg73) 1164 0 R (Pg74) 1174 0 R (Pg75) 1188 0 R (Pg76) 1204 0 R (Pg77) 1214 0 R (Pg78) 1225 0 R (Pg79) 1227 0 R (Pg8) 185 0 R (Pg80) 1244 0 R (Pg81) 1263 0 R (Pg82) 1287 0 R (Pg83) 1292 0 R (Pg84) 1318 0 R (Pg85) 1331 0 R (Pg86) 1347 0 R (Pg87) 1353 0 R (Pg88) 1367 0 R (Pg89) 1377 0 R (Pg9) 205 0 R (Pg90) 1390 0 R (Pg91) 1410 0 R (Pg92) 1415 0 R (Pg93) 1429 0 R (Pg94) 1439 0 R (Pg95) 1472 0 R (Pg96) 1490 0 R (Pg97) 1491 0 R (Pg98) 1507 0 R (Pgiii) 27 0 R (Pgiv) 30 0 R (Pgv) 36 0 R (Pgvi) 40 0 R (index1) 21 0 R (index10) 129 0 R (index100) 832 0 R (index101) 836 0 R (index102) 840 0 R (index103) 844 0 R (index104) 856 0 R (index105) 860 0 R (index106) 864 0 R (index107) 895 0 R (index108) 899 0 R (index109) 904 0 R (index11) 139 0 R (index110) 916 0 R (index111) 920 0 R (index112) 924 0 R (index113) 934 0 R (index114) 939 0 R (index115) 949 0 R (index116) 953 0 R (index117) 957 0 R (index118) 968 0 R (index119) 976 0 R (index12) 143 0 R (index120) 980 0 R (index121) 994 0 R (index122) 998 0 R (index123) 1002 0 R (index124) 1006 0 R (index125) 1017 0 R (index126) 1021 0 R (index127) 1025 0 R (index128) 1037 0 R (index129) 1045 0 R (index13) 153 0 R (index130) 1049 0 R (index131) 1053 0 R (index132) 1058 0 R (index133) 1074 0 R (index134) 1078 0 R (index135) 1098 0 R (index136) 1108 0 R (index137) 1129 0 R (index138) 1133 0 R (index139) 1142 0 R (index14) 157 0 R (index140) 1152 0 R (index141) 1157 0 R (index142) 1168 0 R (index143) 1177 0 R (index144) 1181 0 R (index145) 1191 0 R (index146) 1196 0 R (index147) 1208 0 R (index148) 1219 0 R (index149) 1229 0 R (index15) 167 0 R (index150) 1233 0 R (index151) 1237 0 R (index152) 1248 0 R (index153) 1252 0 R (index154) 1256 0 R (index155) 1267 0 R (index156) 1271 0 R (index157) 1275 0 R (index158) 1279 0 R (index159) 1307 0 R (index16) 171 0 R (index160) 1311 0 R (index161) 1320 0 R (index162) 1324 0 R (index163) 1335 0 R (index164) 1340 0 R (index165) 1355 0 R (index166) 1360 0 R (index167) 1369 0 R (index168) 1379 0 R (index169) 1383 0 R (index17) 175 0 R (index170) 1394 0 R (index171) 1403 0 R (index172) 1417 0 R (index173) 1422 0 R (index174) 1432 0 R (index175) 1442 0 R (index176) 1446 0 R (index177) 1456 0 R (index178) 1466 0 R (index179) 1475 0 R (index18) 179 0 R (index180) 1484 0 R (index181) 1496 0 R (index182) 1500 0 R (index183) 1533 0 R (index184) 1542 0 R (index185) 1546 0 R (index186) 1556 0 R (index187) 1560 0 R (index188) 1570 0 R (index189) 1574 0 R (index19) 191 0 R (index190) 1585 0 R (index191) 1589 0 R (index192) 1606 0 R (index193) 1610 0 R (index194) 1620 0 R (index195) 1629 0 R (index196) 1633 0 R (index197) 1643 0 R (index198) 1653 0 R (index199) 1662 0 R (index2) 46 0 R (index20) 195 0 R (index200) 1666 0 R (index201) 1676 0 R (index202) 1685 0 R (index203) 1695 0 R (index204) 1699 0 R (index205) 1709 0 R (index206) 1713 0 R (index207) 1723 0 R (index208) 1737 0 R (index209) 2246 0 R (index21) 199 0 R (index210) 2256 0 R (index211) 2267 0 R (index22) 210 0 R (index23) 214 0 R (index24) 218 0 R (index25) 230 0 R (index26) 239 0 R (index27) 252 0 R (index28) 256 0 R (index29) 260 0 R (index3) 75 0 R (index30) 268 0 R (index31) 281 0 R (index32) 294 0 R (index33) 298 0 R (index34) 302 0 R (index35) 318 0 R (index36) 322 0 R (index37) 326 0 R (index38) 330 0 R (index39) 341 0 R (index4) 79 0 R (index40) 345 0 R (index41) 360 0 R (index42) 365 0 R (index43) 374 0 R (index44) 378 0 R (index45) 390 0 R (index46) 398 0 R (index47) 407 0 R (index48) 411 0 R (index49) 416 0 R (index5) 83 0 R (index50) 427 0 R (index51) 445 0 R (index52) 449 0 R (index53) 466 0 R (index54) 470 0 R (index55) 481 0 R (index56) 490 0 R (index57) 500 0 R (index58) 504 0 R (index59) 514 0 R (index6) 95 0 R (index60) 519 0 R (index61) 523 0 R (index62) 533 0 R (index63) 537 0 R (index64) 541 0 R (index65) 553 0 R (index66) 557 0 R (index67) 561 0 R (index68) 585 0 R (index69) 589 0 R (index7) 99 0 R (index70) 593 0 R (index71) 603 0 R (index72) 607 0 R (index73) 611 0 R (index74) 623 0 R (index75) 632 0 R (index76) 636 0 R (index77) 640 0 R (index78) 644 0 R (index79) 657 0 R (index8) 112 0 R (index80) 667 0 R (index81) 671 0 R (index82) 680 0 R (index83) 691 0 R (index84) 701 0 R (index85) 708 0 R (index86) 725 0 R (index87) 730 0 R (index88) 739 0 R (index89) 751 0 R (index9) 121 0 R (index90) 755 0 R (index91) 760 0 R (index92) 770 0 R (index93) 780 0 R (index94) 784 0 R (index95) 795 0 R (index96) 800 0 R (index97) 810 0 R (index98) 815 0 R (index99) 820 0 R (p1) 90 0 R (p10) 164 0 R (p100) 945 0 R (p101) 947 0 R (p102) 963 0 R (p103) 964 0 R (p104) 966 0 R (p105) 986 0 R (p106) 987 0 R (p107) 1013 0 R (p108) 1014 0 R (p109) 1015 0 R (p11) 165 0 R (p110) 1033 0 R (p111) 1034 0 R (p112) 1035 0 R (p113) 1043 0 R (p114) 1065 0 R (p115) 1066 0 R (p116) 1067 0 R (p117) 1072 0 R (p118) 1085 0 R (p119) 1090 0 R (p12) 186 0 R (p120) 1105 0 R (p121) 1148 0 R (p122) 1150 0 R (p123) 1163 0 R (p124) 1165 0 R (p125) 1175 0 R (p126) 1187 0 R (p127) 1202 0 R (p128) 1203 0 R (p129) 1205 0 R (p13) 187 0 R (p130) 1215 0 R (p131) 1226 0 R (p132) 1243 0 R (p133) 1245 0 R (p134) 1246 0 R (p135) 1262 0 R (p136) 1264 0 R (p137) 1265 0 R (p138) 1285 0 R (p139) 1286 0 R (p14) 188 0 R (p140) 1288 0 R (p141) 1330 0 R (p142) 1332 0 R (p143) 1346 0 R (p144) 1348 0 R (p145) 1352 0 R (p146) 1366 0 R (p147) 1375 0 R (p148) 1376 0 R (p149) 1389 0 R (p15) 189 0 R (p150) 1391 0 R (p151) 1409 0 R (p152) 1411 0 R (p153) 1428 0 R (p154) 1430 0 R (p155) 1440 0 R (p156) 1452 0 R (p157) 1453 0 R (p158) 1462 0 R (p159) 1481 0 R (p16) 206 0 R (p160) 1482 0 R (p161) 1508 0 R (p162) 1540 0 R (p163) 1552 0 R (p164) 1554 0 R (p165) 1566 0 R (p166) 1568 0 R (p167) 1581 0 R (p168) 1582 0 R (p169) 1596 0 R (p17) 207 0 R (p170) 1600 0 R (p171) 1616 0 R (p172) 1618 0 R (p173) 1626 0 R (p174) 1639 0 R (p175) 1640 0 R (p176) 1650 0 R (p177) 1660 0 R (p178) 1672 0 R (p179) 1674 0 R (p18) 224 0 R (p180) 1683 0 R (p181) 1692 0 R (p182) 1705 0 R (p183) 1706 0 R (p184) 1719 0 R (p185) 1729 0 R (p186) 1731 0 R (p19) 225 0 R (p2) 107 0 R (p20) 227 0 R (p21) 228 0 R (p22) 237 0 R (p23) 266 0 R (p24) 275 0 R (p25) 277 0 R (p26) 287 0 R (p27) 308 0 R (p28) 310 0 R (p29) 311 0 R (p3) 108 0 R (p30) 336 0 R (p31) 337 0 R (p32) 339 0 R (p33) 351 0 R (p34) 352 0 R (p35) 357 0 R (p36) 371 0 R (p37) 372 0 R (p38) 385 0 R (p39) 387 0 R (p4) 110 0 R (p40) 396 0 R (p41) 405 0 R (p42) 423 0 R (p43) 424 0 R (p44) 425 0 R (p45) 455 0 R (p46) 457 0 R (p47) 478 0 R (p48) 488 0 R (p49) 497 0 R (p5) 127 0 R (p50) 511 0 R (p51) 512 0 R (p52) 530 0 R (p53) 531 0 R (p54) 547 0 R (p55) 548 0 R (p56) 550 0 R (p57) 551 0 R (p58) 567 0 R (p59) 569 0 R (p6) 135 0 R (p60) 600 0 R (p61) 601 0 R (p62) 619 0 R (p63) 620 0 R (p64) 621 0 R (p65) 630 0 R (p66) 651 0 R (p67) 652 0 R (p68) 653 0 R (p69) 663 0 R (p7) 137 0 R (p70) 665 0 R (p71) 678 0 R (p72) 686 0 R (p73) 688 0 R (p74) 697 0 R (p75) 716 0 R (p76) 717 0 R (p77) 736 0 R (p78) 745 0 R (p79) 767 0 R (p8) 149 0 R (p80) 768 0 R (p81) 777 0 R (p82) 791 0 R (p83) 792 0 R (p84) 807 0 R (p85) 808 0 R (p86) 826 0 R (p87) 828 0 R (p88) 829 0 R (p89) 851 0 R (p9) 151 0 R (p90) 852 0 R (p91) 853 0 R (p92) 870 0 R (p93) 872 0 R (p94) 873 0 R (p95) 911 0 R (p96) 912 0 R (p97) 930 0 R (p98) 931 0 R (p99) 932 0 R (pgfooter) 2241 0 R (pgheader) 4 0 R (pglicense) 10 0 R (pglicense1) 2275 0 R (pglicense1A) 2276 0 R (pglicense1B) 2282 0 R (pglicense1C) 2285 0 R (pglicense1D) 2286 0 R (pglicense1E) 2287 0 R (pglicense1E1) 2291 0 R (pglicense1E2) 2293 0 R (pglicense1E3) 2299 0 R (pglicense1E4) 2301 0 R (pglicense1E5) 2302 0 R (pglicense1E6) 2307 0 R (pglicense1E7) 2309 0 R (pglicense1E8) 2278 0 R (pglicense1E9) 2317 0 R (pglicense1F) 2319 0 R (pglicense1F1) 2327 0 R (pglicense1F2) 2328 0 R (pglicense1F3) 2322 0 R (pglicense1F4) 2333 0 R (pglicense1F5) 2335 0 R (pglicense1F6) 2336 0 R (pglicense2) 2340 0 R (pglicense3) 2323 0 R (pglicense4) 2321 0 R (pglicense5) 2357 0 R] +/Limits [(Pg1) (pglicense5)] +>> endobj +2389 0 obj << +/Kids [2388 0 R] +>> endobj +2390 0 obj << +/Dests 2389 0 R +>> endobj +2391 0 obj << +/Type /Catalog +/Pages 2386 0 R +/Outlines 2387 0 R +/Names 2390 0 R +/PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b) +>> endobj +2392 0 obj << +/Producer (pdfTeX-1.10b) + /Author (Lehmer, Derrick Norman) /Title (An Elementary Course in Synthetic Projective Geometry) +/Creator (TeX) +/CreationDate (D:20060707110400) +>> endobj +xref +0 2393 +0000000005 65535 f +0000002141 00000 n +0000001565 00000 n +0000000009 00000 n +0000002084 00000 n +0000000028 00000 f +0036710341 00000 n +0000001701 00000 n +0000001870 00000 n +0036710432 00000 n +0036594596 00000 n +0000002508 00000 n +0000002393 00000 n +0000002209 00000 n +0000003161 00000 n +0000003046 00000 n +0000002548 00000 n +0000003529 00000 n +0000003414 00000 n +0000003230 00000 n +0000003569 00000 n +0000007857 00000 n +0036735270 00000 n +0000003612 00000 n +0000008034 00000 n +0000007742 00000 n +0000003638 00000 n +0000007916 00000 n +0000000034 00000 f +0036710248 00000 n +0000007975 00000 n +0000013463 00000 n +0000013290 00000 n +0000008115 00000 n +0000000091 00000 f +0036710156 00000 n +0000013405 00000 n +0000017497 00000 n +0000017322 00000 n +0000013556 00000 n +0000017438 00000 n +0036710541 00000 n +0000017866 00000 n +0000017750 00000 n +0000017566 00000 n +0000017906 00000 n +0000028286 00000 n +0036735181 00000 n +0000017949 00000 n +0000028345 00000 n +0000028170 00000 n +0000017976 00000 n +0000039880 00000 n +0000039764 00000 n +0000028414 00000 n +0000052045 00000 n +0000051929 00000 n +0000039949 00000 n +0000064566 00000 n +0000064450 00000 n +0000052114 00000 n +0000075810 00000 n +0000075694 00000 n +0000064635 00000 n +0036710652 00000 n +0000087572 00000 n +0000087456 00000 n +0000075879 00000 n +0000098481 00000 n +0000098365 00000 n +0000087641 00000 n +0000098850 00000 n +0000098734 00000 n +0000098550 00000 n +0000098890 00000 n +0000102405 00000 n +0036735052 00000 n +0000098933 00000 n +0000098989 00000 n +0000102464 00000 n +0036734978 00000 n +0000099032 00000 n +0000099051 00000 n +0000102642 00000 n +0036734891 00000 n +0000099094 00000 n +0000102700 00000 n +0000102230 00000 n +0000099113 00000 n +0000102346 00000 n +0000102523 00000 n +0000001603 00000 f +0036707700 00000 n +0000102582 00000 n +0000102793 00000 n +0000106949 00000 n +0036734803 00000 n +0000102836 00000 n +0000102855 00000 n +0000107130 00000 n +0036734713 00000 n +0000102898 00000 n +0000112367 00000 n +0000464270 00000 n +0000107252 00000 n +0000106769 00000 n +0000102918 00000 n +0000106888 00000 n +0000107009 00000 n +0000107069 00000 n +0000107190 00000 n +0000107334 00000 n +0000943946 00000 n +0036734621 00000 n +0000107378 00000 n +0000461639 00000 n +0000112247 00000 n +0000107398 00000 n +0000461579 00000 n +0036710764 00000 n +0000461757 00000 n +0000949760 00000 n +0036734529 00000 n +0000461801 00000 n +0000944068 00000 n +0000464150 00000 n +0000461821 00000 n +0000944007 00000 n +0000944198 00000 n +0000949942 00000 n +0036734437 00000 n +0000944243 00000 n +0000950063 00000 n +0000949640 00000 n +0000944263 00000 n +0000949821 00000 n +0000949880 00000 n +0000950003 00000 n +0000950169 00000 n +0000955243 00000 n +0036734345 00000 n +0000950214 00000 n +0000950234 00000 n +0000955427 00000 n +0036734253 00000 n +0000950279 00000 n +0000955549 00000 n +0000955123 00000 n +0000950299 00000 n +0000955304 00000 n +0000955365 00000 n +0000955488 00000 n +0000955643 00000 n +0000960645 00000 n +0036734161 00000 n +0000955688 00000 n +0000955708 00000 n +0000960767 00000 n +0036734069 00000 n +0000955753 00000 n +0000960888 00000 n +0000960463 00000 n +0000955773 00000 n +0000960583 00000 n +0000960706 00000 n +0000960828 00000 n +0000960982 00000 n +0000965274 00000 n +0036733977 00000 n +0000961027 00000 n +0000961047 00000 n +0000965396 00000 n +0036733885 00000 n +0000961092 00000 n +0000961112 00000 n +0000965518 00000 n +0036733793 00000 n +0000961157 00000 n +0000961177 00000 n +0000965639 00000 n +0036733701 00000 n +0000961222 00000 n +0000965759 00000 n +0000965092 00000 n +0000961242 00000 n +0000965212 00000 n +0000965335 00000 n +0000965457 00000 n +0000965578 00000 n +0000965699 00000 n +0000965865 00000 n +0000971325 00000 n +0036733609 00000 n +0000965910 00000 n +0000965930 00000 n +0000971447 00000 n +0036733517 00000 n +0000965975 00000 n +0000965995 00000 n +0000971569 00000 n +0036733425 00000 n +0000966040 00000 n +0000971629 00000 n +0000971144 00000 n +0000966060 00000 n +0000971264 00000 n +0000971386 00000 n +0000971508 00000 n +0036710882 00000 n +0000971723 00000 n +0000976219 00000 n +0036733333 00000 n +0000971768 00000 n +0000971788 00000 n +0000976401 00000 n +0036733241 00000 n +0000971833 00000 n +0000971853 00000 n +0000976523 00000 n +0036733149 00000 n +0000971898 00000 n +0000976645 00000 n +0000976038 00000 n +0000971918 00000 n +0000976158 00000 n +0000976280 00000 n +0000976340 00000 n +0000976462 00000 n +0000976584 00000 n +0000976739 00000 n +0000981800 00000 n +0036733057 00000 n +0000976784 00000 n +0000981922 00000 n +0000981620 00000 n +0000976804 00000 n +0000981740 00000 n +0000981861 00000 n +0000982028 00000 n +0000986457 00000 n +0036732979 00000 n +0000982073 00000 n +0000986518 00000 n +0000986275 00000 n +0000982101 00000 n +0000986395 00000 n +0000989368 00000 n +0000989126 00000 n +0000986588 00000 n +0000989246 00000 n +0000989307 00000 n +0000989450 00000 n +0000992556 00000 n +0036732846 00000 n +0000989495 00000 n +0000989608 00000 n +0000992617 00000 n +0036732767 00000 n +0000989653 00000 n +0000989673 00000 n +0000992739 00000 n +0036732674 00000 n +0000989718 00000 n +0000992799 00000 n +0000992436 00000 n +0000989738 00000 n +0000992678 00000 n +0000992881 00000 n +0000997969 00000 n +0036732581 00000 n +0000992926 00000 n +0001002211 00000 n +0000998151 00000 n +0000997726 00000 n +0000992946 00000 n +0000997846 00000 n +0000997907 00000 n +0000998030 00000 n +0000998091 00000 n +0036711000 00000 n +0000998245 00000 n +0001576927 00000 n +0036732488 00000 n +0000998290 00000 n +0001577047 00000 n +0001002091 00000 n +0000998310 00000 n +0001576987 00000 n +0001580154 00000 n +0003138524 00000 n +0001580034 00000 n +0001577165 00000 n +0003138462 00000 n +0003138654 00000 n +0003145620 00000 n +0036732395 00000 n +0003138699 00000 n +0003138719 00000 n +0003145804 00000 n +0036732302 00000 n +0003138764 00000 n +0003138784 00000 n +0003145926 00000 n +0036732209 00000 n +0003138829 00000 n +0003146045 00000 n +0003145500 00000 n +0003138849 00000 n +0003145681 00000 n +0003145742 00000 n +0003145865 00000 n +0003145985 00000 n +0003151222 00000 n +0004076236 00000 n +0003151102 00000 n +0003146139 00000 n +0004076176 00000 n +0004076366 00000 n +0004084285 00000 n +0036732116 00000 n +0004076411 00000 n +0004076431 00000 n +0004084407 00000 n +0036732023 00000 n +0004076476 00000 n +0004076496 00000 n +0004084591 00000 n +0036731930 00000 n +0004076541 00000 n +0004076561 00000 n +0004091796 00000 n +0036731837 00000 n +0004076606 00000 n +0004084713 00000 n +0004084165 00000 n +0004076626 00000 n +0004084346 00000 n +0004084468 00000 n +0004084529 00000 n +0004084652 00000 n +0004084807 00000 n +0004091918 00000 n +0036731744 00000 n +0004084852 00000 n +0004084872 00000 n +0004092102 00000 n +0036731651 00000 n +0004084917 00000 n +0004092223 00000 n +0004091676 00000 n +0004084937 00000 n +0004091857 00000 n +0004091979 00000 n +0036705479 00000 n +0036697064 00000 n +0036705333 00000 n +0004092040 00000 n +0004092163 00000 n +0036711118 00000 n +0004092330 00000 n +0004961754 00000 n +0036731558 00000 n +0004092375 00000 n +0004095114 00000 n +0004092395 00000 n +0004961876 00000 n +0036731465 00000 n +0004092440 00000 n +0004961996 00000 n +0004094994 00000 n +0004092460 00000 n +0004961815 00000 n +0004961936 00000 n +0004962126 00000 n +0004970090 00000 n +0036731372 00000 n +0004962171 00000 n +0004962191 00000 n +0004970273 00000 n +0036731279 00000 n +0004962236 00000 n +0004970394 00000 n +0004969908 00000 n +0004962256 00000 n +0004970028 00000 n +0004970151 00000 n +0004970212 00000 n +0004970333 00000 n +0004973398 00000 n +0004970488 00000 n +0005283073 00000 n +0036731186 00000 n +0004970533 00000 n +0005283193 00000 n +0004973278 00000 n +0004970553 00000 n +0005283133 00000 n +0005283311 00000 n +0005288225 00000 n +0036731093 00000 n +0005283356 00000 n +0005288346 00000 n +0005288043 00000 n +0005283376 00000 n +0005288163 00000 n +0005288285 00000 n +0005288440 00000 n +0005293909 00000 n +0036731000 00000 n +0005288485 00000 n +0005288505 00000 n +0005294030 00000 n +0036730907 00000 n +0005288550 00000 n +0005298814 00000 n +0005288570 00000 n +0005294151 00000 n +0036730814 00000 n +0005288615 00000 n +0005294271 00000 n +0005293728 00000 n +0005288635 00000 n +0005293848 00000 n +0005293970 00000 n +0005294091 00000 n +0005294211 00000 n +0005294365 00000 n +0005848567 00000 n +0036730721 00000 n +0005294410 00000 n +0005843288 00000 n +0005298694 00000 n +0005294430 00000 n +0005843227 00000 n +0036696663 00000 n +0036691777 00000 n +0036696499 00000 n +0036691303 00000 n +0036688690 00000 n +0036691140 00000 n +0036688408 00000 n +0036685394 00000 n +0036688246 00000 n +0036711236 00000 n +0005843457 00000 n +0005848750 00000 n +0036730628 00000 n +0005843502 00000 n +0005843522 00000 n +0005855871 00000 n +0036730549 00000 n +0005843567 00000 n +0005848870 00000 n +0005848447 00000 n +0005843595 00000 n +0005848628 00000 n +0005848689 00000 n +0005848809 00000 n +0005855993 00000 n +0005855751 00000 n +0005848990 00000 n +0005855932 00000 n +0005857007 00000 n +0005856887 00000 n +0005856087 00000 n +0005857089 00000 n +0005861009 00000 n +0036730415 00000 n +0005857134 00000 n +0005857225 00000 n +0005861070 00000 n +0036730336 00000 n +0005857270 00000 n +0005863663 00000 n +0005861192 00000 n +0005860828 00000 n +0005857290 00000 n +0005860948 00000 n +0005861131 00000 n +0006837679 00000 n +0005861286 00000 n +0006801312 00000 n +0036730243 00000 n +0005861331 00000 n +0006801432 00000 n +0005863543 00000 n +0005861351 00000 n +0006801250 00000 n +0006801372 00000 n +0006801550 00000 n +0006807629 00000 n +0036730150 00000 n +0006801595 00000 n +0006807751 00000 n +0006807447 00000 n +0006801615 00000 n +0006807567 00000 n +0006807690 00000 n +0036711354 00000 n +0006807845 00000 n +0006814075 00000 n +0036730057 00000 n +0006807890 00000 n +0006807910 00000 n +0006814195 00000 n +0036729964 00000 n +0006807955 00000 n +0006814313 00000 n +0006813894 00000 n +0006807975 00000 n +0006814014 00000 n +0006814136 00000 n +0006814253 00000 n +0006814407 00000 n +0006819671 00000 n +0036729871 00000 n +0006814452 00000 n +0007419202 00000 n +0006814472 00000 n +0006819793 00000 n +0036729778 00000 n +0006814517 00000 n +0006814537 00000 n +0006819915 00000 n +0036729685 00000 n +0006814582 00000 n +0006819975 00000 n +0006819489 00000 n +0006814602 00000 n +0006819609 00000 n +0006819732 00000 n +0006819854 00000 n +0006820069 00000 n +0006824323 00000 n +0036729592 00000 n +0006820114 00000 n +0006820134 00000 n +0006824507 00000 n +0036729499 00000 n +0006820179 00000 n +0006820199 00000 n +0006824628 00000 n +0036729406 00000 n +0006820244 00000 n +0006824750 00000 n +0006824142 00000 n +0006820264 00000 n +0006824262 00000 n +0006824384 00000 n +0006824445 00000 n +0006824568 00000 n +0006824689 00000 n +0006824844 00000 n +0006830011 00000 n +0036729313 00000 n +0006824889 00000 n +0006824909 00000 n +0006830195 00000 n +0036729220 00000 n +0006824954 00000 n +0006824974 00000 n +0006835808 00000 n +0036729141 00000 n +0006825019 00000 n +0006830316 00000 n +0006829891 00000 n +0006825047 00000 n +0006830072 00000 n +0006830133 00000 n +0006830256 00000 n +0006835930 00000 n +0006835688 00000 n +0006830410 00000 n +0006835869 00000 n +0006836764 00000 n +0006836644 00000 n +0006836024 00000 n +0036711472 00000 n +0007418323 00000 n +0006837559 00000 n +0006836834 00000 n +0007782958 00000 n +0007419082 00000 n +0007418430 00000 n +0007783065 00000 n +0007787196 00000 n +0036729007 00000 n +0007783110 00000 n +0007783173 00000 n +0007787257 00000 n +0036728928 00000 n +0007783218 00000 n +0007783238 00000 n +0007787379 00000 n +0036728835 00000 n +0007783283 00000 n +0007787500 00000 n +0007787015 00000 n +0007783303 00000 n +0007787135 00000 n +0007787318 00000 n +0007787440 00000 n +0007787594 00000 n +0007792976 00000 n +0036728742 00000 n +0007787639 00000 n +0007787659 00000 n +0007793098 00000 n +0036728649 00000 n +0007787704 00000 n +0007787724 00000 n +0007793220 00000 n +0036728556 00000 n +0007787769 00000 n +0007799540 00000 n +0007793342 00000 n +0007792795 00000 n +0007787789 00000 n +0007792915 00000 n +0007793037 00000 n +0007793159 00000 n +0007793281 00000 n +0007793436 00000 n +0008867845 00000 n +0036728463 00000 n +0007793481 00000 n +0008867967 00000 n +0007799420 00000 n +0007793501 00000 n +0008867783 00000 n +0008867906 00000 n +0008868098 00000 n +0008874098 00000 n +0036728370 00000 n +0008868143 00000 n +0008868163 00000 n +0008874218 00000 n +0036728277 00000 n +0008868208 00000 n +0008868228 00000 n +0008874340 00000 n +0036728184 00000 n +0008868273 00000 n +0008868293 00000 n +0008874462 00000 n +0036728091 00000 n +0008868338 00000 n +0008874522 00000 n +0008873917 00000 n +0008868358 00000 n +0008874037 00000 n +0008874158 00000 n +0008874279 00000 n +0008874401 00000 n +0036711590 00000 n +0008876943 00000 n +0008874616 00000 n +0010076969 00000 n +0036727998 00000 n +0008874661 00000 n +0010077089 00000 n +0008876823 00000 n +0008874681 00000 n +0010076847 00000 n +0010076908 00000 n +0010077029 00000 n +0010077220 00000 n +0010083491 00000 n +0036727905 00000 n +0010077265 00000 n +0010077285 00000 n +0010088983 00000 n +0036727812 00000 n +0010077330 00000 n +0010083613 00000 n +0010083309 00000 n +0010077350 00000 n +0010083429 00000 n +0010083552 00000 n +0010083720 00000 n +0010089166 00000 n +0036727719 00000 n +0010083765 00000 n +0010089288 00000 n +0010088863 00000 n +0010083785 00000 n +0010089043 00000 n +0010089104 00000 n +0010089227 00000 n +0010091318 00000 n +0010089395 00000 n +0010377842 00000 n +0036727626 00000 n +0010089440 00000 n +0010378024 00000 n +0010091198 00000 n +0010089460 00000 n +0010377903 00000 n +0010377964 00000 n +0010380334 00000 n +0010378143 00000 n +0010917983 00000 n +0036727533 00000 n +0010378188 00000 n +0010869097 00000 n +0010380214 00000 n +0010378208 00000 n +0010869216 00000 n +0010918105 00000 n +0036727440 00000 n +0010869261 00000 n +0010872498 00000 n +0010920640 00000 n +0010918288 00000 n +0010872378 00000 n +0010869281 00000 n +0010918044 00000 n +0010918166 00000 n +0010918227 00000 n +0036711708 00000 n +0010917918 00000 n +0011628412 00000 n +0010920520 00000 n +0010918427 00000 n +0011628531 00000 n +0012766727 00000 n +0036727347 00000 n +0011628576 00000 n +0011631905 00000 n +0011628596 00000 n +0012766910 00000 n +0036727254 00000 n +0011628641 00000 n +0012766970 00000 n +0011631785 00000 n +0011628661 00000 n +0012766788 00000 n +0012766849 00000 n +0012767101 00000 n +0012772767 00000 n +0036727175 00000 n +0012767146 00000 n +0012772889 00000 n +0012772586 00000 n +0012767174 00000 n +0012772706 00000 n +0012772828 00000 n +0012774894 00000 n +0012774774 00000 n +0012772983 00000 n +0012774976 00000 n +0012778263 00000 n +0036727041 00000 n +0012775021 00000 n +0012775088 00000 n +0012778385 00000 n +0036726962 00000 n +0012775133 00000 n +0012784334 00000 n +0012775153 00000 n +0012778507 00000 n +0036726869 00000 n +0012775198 00000 n +0012778628 00000 n +0012778143 00000 n +0012775218 00000 n +0012778324 00000 n +0012778446 00000 n +0012778567 00000 n +0012778722 00000 n +0013180552 00000 n +0036726776 00000 n +0012778767 00000 n +0013180672 00000 n +0012784214 00000 n +0012778787 00000 n +0013180490 00000 n +0013180612 00000 n +0036711826 00000 n +0013180791 00000 n +0013185772 00000 n +0036726683 00000 n +0013180836 00000 n +0013180856 00000 n +0013185894 00000 n +0036726590 00000 n +0013180901 00000 n +0013213156 00000 n +0013186078 00000 n +0013185652 00000 n +0013180921 00000 n +0013185833 00000 n +0013185955 00000 n +0013186016 00000 n +0013186172 00000 n +0013194459 00000 n +0036726497 00000 n +0013186217 00000 n +0013871260 00000 n +0013186237 00000 n +0013194581 00000 n +0036726404 00000 n +0013186282 00000 n +0013194703 00000 n +0013194277 00000 n +0013186302 00000 n +0013194397 00000 n +0013194520 00000 n +0013194642 00000 n +0013194797 00000 n +0013199013 00000 n +0036726311 00000 n +0013194842 00000 n +0014831788 00000 n +0013194862 00000 n +0013199197 00000 n +0036726218 00000 n +0013194907 00000 n +0015523082 00000 n +0013194927 00000 n +0013199319 00000 n +0036726125 00000 n +0013194972 00000 n +0013199440 00000 n +0013198893 00000 n +0013194992 00000 n +0013199074 00000 n +0013199135 00000 n +0013199258 00000 n +0013199380 00000 n +0016301932 00000 n +0013199534 00000 n +0013203302 00000 n +0036726032 00000 n +0013199580 00000 n +0013199600 00000 n +0013203422 00000 n +0036725939 00000 n +0013199646 00000 n +0013199666 00000 n +0013203544 00000 n +0036725846 00000 n +0013199712 00000 n +0013199732 00000 n +0013207775 00000 n +0036725753 00000 n +0013199778 00000 n +0013203666 00000 n +0013203121 00000 n +0013199798 00000 n +0013203241 00000 n +0013203363 00000 n +0013203483 00000 n +0013203605 00000 n +0016825929 00000 n +0013203760 00000 n +0013207958 00000 n +0036725660 00000 n +0013203806 00000 n +0013203826 00000 n +0013208080 00000 n +0036725567 00000 n +0013203872 00000 n +0013203892 00000 n +0013208202 00000 n +0036725488 00000 n +0013203938 00000 n +0013208262 00000 n +0013207655 00000 n +0013203966 00000 n +0013207836 00000 n +0013207897 00000 n +0013208019 00000 n +0013208141 00000 n +0013212227 00000 n +0013212046 00000 n +0013208356 00000 n +0013212166 00000 n +0036711944 00000 n +0013870015 00000 n +0013213036 00000 n +0013212309 00000 n +0015522112 00000 n +0013871140 00000 n +0013870122 00000 n +0016301054 00000 n +0015522962 00000 n +0015522233 00000 n +0016824970 00000 n +0016301812 00000 n +0016301161 00000 n +0017569329 00000 n +0016825809 00000 n +0016825077 00000 n +0017569436 00000 n +0017573886 00000 n +0036725354 00000 n +0017569482 00000 n +0017569531 00000 n +0017574008 00000 n +0036725275 00000 n +0017569577 00000 n +0017578394 00000 n +0017569597 00000 n +0017574130 00000 n +0036725182 00000 n +0017569643 00000 n +0017574312 00000 n +0017573766 00000 n +0017569663 00000 n +0017573947 00000 n +0017574069 00000 n +0017574191 00000 n +0017574252 00000 n +0036712062 00000 n +0017574406 00000 n +0018528485 00000 n +0036725089 00000 n +0017574452 00000 n +0017574472 00000 n +0018528607 00000 n +0036724996 00000 n +0017574518 00000 n +0017574538 00000 n +0018528729 00000 n +0036724903 00000 n +0017574584 00000 n +0018528849 00000 n +0017578274 00000 n +0017574604 00000 n +0018528546 00000 n +0018528668 00000 n +0018528789 00000 n +0018528980 00000 n +0018740326 00000 n +0036724810 00000 n +0018529026 00000 n +0018531988 00000 n +0018529046 00000 n +0018740509 00000 n +0036724717 00000 n +0018529092 00000 n +0018740629 00000 n +0018531868 00000 n +0018529112 00000 n +0018740387 00000 n +0018740448 00000 n +0018740569 00000 n +0018740760 00000 n +0018747251 00000 n +0036724624 00000 n +0018740806 00000 n +0018740826 00000 n +0018747372 00000 n +0036724531 00000 n +0018740872 00000 n +0018740892 00000 n +0018747554 00000 n +0036724438 00000 n +0018740938 00000 n +0018747674 00000 n +0018747131 00000 n +0018740958 00000 n +0018747311 00000 n +0018747433 00000 n +0018747493 00000 n +0018747614 00000 n +0018747768 00000 n +0018752831 00000 n +0036724345 00000 n +0018747814 00000 n +0018752891 00000 n +0018752649 00000 n +0018747834 00000 n +0018752769 00000 n +0018752997 00000 n +0018756876 00000 n +0036724252 00000 n +0018753043 00000 n +0018753063 00000 n +0018756998 00000 n +0036724173 00000 n +0018753109 00000 n +0018757120 00000 n +0018756695 00000 n +0018753137 00000 n +0018756815 00000 n +0018756937 00000 n +0018757059 00000 n +0018760196 00000 n +0018760076 00000 n +0018757214 00000 n +0036712180 00000 n +0018760278 00000 n +0018763036 00000 n +0036724037 00000 n +0018760324 00000 n +0018760399 00000 n +0018763161 00000 n +0036723956 00000 n +0018760445 00000 n +0018760466 00000 n +0018763286 00000 n +0036723859 00000 n +0018760513 00000 n +0018760534 00000 n +0018763412 00000 n +0036723761 00000 n +0018760581 00000 n +0018763536 00000 n +0018762913 00000 n +0018760602 00000 n +0018763098 00000 n +0018763223 00000 n +0018763349 00000 n +0018763474 00000 n +0018763631 00000 n +0018768053 00000 n +0036723663 00000 n +0018763678 00000 n +0018763699 00000 n +0018768179 00000 n +0036723565 00000 n +0018763746 00000 n +0018763767 00000 n +0018768301 00000 n +0036723467 00000 n +0018763814 00000 n +0018770868 00000 n +0018768427 00000 n +0018767867 00000 n +0018763835 00000 n +0018767990 00000 n +0018768116 00000 n +0018768240 00000 n +0018768364 00000 n +0018768522 00000 n +0019383262 00000 n +0036723369 00000 n +0018768569 00000 n +0019383388 00000 n +0018770745 00000 n +0018768590 00000 n +0019383325 00000 n +0019383533 00000 n +0019389446 00000 n +0036723271 00000 n +0019383580 00000 n +0019383601 00000 n +0019389572 00000 n +0036723173 00000 n +0019383648 00000 n +0019383669 00000 n +0019389698 00000 n +0036723075 00000 n +0019383716 00000 n +0019393547 00000 n +0019383737 00000 n +0020402208 00000 n +0036722977 00000 n +0019383784 00000 n +0019389886 00000 n +0019389259 00000 n +0019383805 00000 n +0019389382 00000 n +0019389509 00000 n +0019389635 00000 n +0019389761 00000 n +0019389824 00000 n +0020402334 00000 n +0019393424 00000 n +0019389993 00000 n +0020402271 00000 n +0020402467 00000 n +0020409530 00000 n +0036722879 00000 n +0020402514 00000 n +0020402535 00000 n +0020409717 00000 n +0036722781 00000 n +0020402582 00000 n +0020432873 00000 n +0020409906 00000 n +0020409406 00000 n +0020402603 00000 n +0020409593 00000 n +0020409655 00000 n +0036685139 00000 n +0036676733 00000 n +0036684991 00000 n +0020409780 00000 n +0020409843 00000 n +0036712303 00000 n +0020415936 00000 n +0020415749 00000 n +0020410028 00000 n +0020415873 00000 n +0020416019 00000 n +0020421209 00000 n +0036722683 00000 n +0020416066 00000 n +0021924964 00000 n +0020421398 00000 n +0020421085 00000 n +0020416087 00000 n +0020421272 00000 n +0020421335 00000 n +0020421493 00000 n +0020428181 00000 n +0036722600 00000 n +0020421540 00000 n +0020428243 00000 n +0020427994 00000 n +0020421569 00000 n +0020428118 00000 n +0036676508 00000 n +0036673857 00000 n +0036676345 00000 n +0020431936 00000 n +0020431812 00000 n +0020428379 00000 n +0021924078 00000 n +0020432749 00000 n +0020432019 00000 n +0022777121 00000 n +0021924840 00000 n +0021924187 00000 n +0036712428 00000 n +0022777230 00000 n +0023921512 00000 n +0036722460 00000 n +0022777277 00000 n +0022777323 00000 n +0023921575 00000 n +0036722376 00000 n +0022777370 00000 n +0022778220 00000 n +0023921638 00000 n +0022778096 00000 n +0022777391 00000 n +0023921449 00000 n +0023921747 00000 n +0023928829 00000 n +0036722277 00000 n +0023921794 00000 n +0023928955 00000 n +0023928578 00000 n +0023921815 00000 n +0023928702 00000 n +0023928765 00000 n +0023928892 00000 n +0023929050 00000 n +0025064696 00000 n +0036722178 00000 n +0023929097 00000 n +0023931652 00000 n +0023929118 00000 n +0025064885 00000 n +0036722079 00000 n +0023929165 00000 n +0025065009 00000 n +0023931528 00000 n +0023929186 00000 n +0025064759 00000 n +0025064822 00000 n +0025064947 00000 n +0025077107 00000 n +0025065142 00000 n +0025072830 00000 n +0036721980 00000 n +0025065189 00000 n +0025072955 00000 n +0025072643 00000 n +0025065210 00000 n +0025072767 00000 n +0025072892 00000 n +0025073050 00000 n +0026211657 00000 n +0036721881 00000 n +0025073097 00000 n +0025073118 00000 n +0026211847 00000 n +0036721782 00000 n +0025073165 00000 n +0026211909 00000 n +0025076983 00000 n +0025073186 00000 n +0026211720 00000 n +0026211783 00000 n +0026259113 00000 n +0026212042 00000 n +0026217005 00000 n +0036721683 00000 n +0026212089 00000 n +0026893265 00000 n +0026212110 00000 n +0026217195 00000 n +0036721584 00000 n +0026212157 00000 n +0026217318 00000 n +0026216818 00000 n +0026212178 00000 n +0026216942 00000 n +0026217068 00000 n +0026217131 00000 n +0026217257 00000 n +0036712553 00000 n +0026217413 00000 n +0026226084 00000 n +0036721485 00000 n +0026217460 00000 n +0026226210 00000 n +0026225896 00000 n +0026217481 00000 n +0026226020 00000 n +0026226147 00000 n +0028000122 00000 n +0029763909 00000 n +0026226319 00000 n +0026232555 00000 n +0036721386 00000 n +0026226366 00000 n +0026232744 00000 n +0026232367 00000 n +0026226387 00000 n +0026232491 00000 n +0026232618 00000 n +0026232680 00000 n +0026232866 00000 n +0026237726 00000 n +0036721287 00000 n +0026232913 00000 n +0026232934 00000 n +0026237915 00000 n +0036721188 00000 n +0026232981 00000 n +0026233002 00000 n +0026238041 00000 n +0036721089 00000 n +0026233049 00000 n +0026238165 00000 n +0026237602 00000 n +0026233070 00000 n +0026237789 00000 n +0026237852 00000 n +0026237978 00000 n +0026238103 00000 n +0026238260 00000 n +0026242613 00000 n +0036720990 00000 n +0026238307 00000 n +0026238328 00000 n +0026242802 00000 n +0036720891 00000 n +0026238375 00000 n +0026238396 00000 n +0026242928 00000 n +0036720792 00000 n +0026238443 00000 n +0026243052 00000 n +0026242489 00000 n +0026238464 00000 n +0026242676 00000 n +0026242739 00000 n +0026242865 00000 n +0026242990 00000 n +0026243147 00000 n +0026248139 00000 n +0036720693 00000 n +0026243194 00000 n +0026243215 00000 n +0026248265 00000 n +0036720594 00000 n +0026243262 00000 n +0026243283 00000 n +0026248455 00000 n +0036720495 00000 n +0026243330 00000 n +0026243351 00000 n +0026254054 00000 n +0036720411 00000 n +0026243398 00000 n +0026248581 00000 n +0026248015 00000 n +0026243427 00000 n +0026248202 00000 n +0026248328 00000 n +0026248391 00000 n +0026248518 00000 n +0026254180 00000 n +0026253930 00000 n +0026248676 00000 n +0026254117 00000 n +0036712678 00000 n +0026258253 00000 n +0026258129 00000 n +0026254263 00000 n +0026891934 00000 n +0026258989 00000 n +0026258336 00000 n +0029763007 00000 n +0026893141 00000 n +0026892043 00000 n +0030141550 00000 n +0029763785 00000 n +0029763131 00000 n +0030141659 00000 n +0031162942 00000 n +0036720270 00000 n +0030141706 00000 n +0030141774 00000 n +0031163005 00000 n +0036720186 00000 n +0030141821 00000 n +0030142722 00000 n +0031163068 00000 n +0030142598 00000 n +0030141842 00000 n +0031162879 00000 n +0031163177 00000 n +0031168762 00000 n +0036720087 00000 n +0031163224 00000 n +0031163245 00000 n +0031174722 00000 n +0036719988 00000 n +0031163292 00000 n +0031168887 00000 n +0031168512 00000 n +0031163313 00000 n +0031168636 00000 n +0031168699 00000 n +0031168825 00000 n +0036712803 00000 n +0031168982 00000 n +0031174911 00000 n +0036719889 00000 n +0031169029 00000 n +0031180083 00000 n +0031169050 00000 n +0031579927 00000 n +0036719790 00000 n +0031169097 00000 n +0031175036 00000 n +0031174598 00000 n +0031169118 00000 n +0031174785 00000 n +0031174847 00000 n +0031174974 00000 n +0031580116 00000 n +0031179959 00000 n +0031175131 00000 n +0031579990 00000 n +0031580053 00000 n +0031580249 00000 n +0031894582 00000 n +0036719691 00000 n +0031580296 00000 n +0031584141 00000 n +0031580317 00000 n +0031900490 00000 n +0036719592 00000 n +0031580364 00000 n +0031894769 00000 n +0031584017 00000 n +0031580385 00000 n +0031894643 00000 n +0031894706 00000 n +0031894902 00000 n +0031900616 00000 n +0036719493 00000 n +0031894949 00000 n +0031900806 00000 n +0031900366 00000 n +0031894970 00000 n +0031900553 00000 n +0031900679 00000 n +0031900742 00000 n +0031900901 00000 n +0031905703 00000 n +0036719394 00000 n +0031900948 00000 n +0031900969 00000 n +0031905890 00000 n +0036719295 00000 n +0031901016 00000 n +0031906015 00000 n +0031905579 00000 n +0031901037 00000 n +0031905765 00000 n +0031905827 00000 n +0031905953 00000 n +0031908769 00000 n +0031906110 00000 n +0032629310 00000 n +0036719196 00000 n +0031906157 00000 n +0032629372 00000 n +0031908645 00000 n +0031906178 00000 n +0036712928 00000 n +0032640077 00000 n +0032629505 00000 n +0032636319 00000 n +0036719097 00000 n +0032629552 00000 n +0032636442 00000 n +0032636068 00000 n +0032629573 00000 n +0032636192 00000 n +0032636255 00000 n +0032636380 00000 n +0033057442 00000 n +0032639953 00000 n +0032636537 00000 n +0033057378 00000 n +0033057575 00000 n +0033062849 00000 n +0036718998 00000 n +0033057622 00000 n +0033065933 00000 n +0033057643 00000 n +0033063039 00000 n +0036718899 00000 n +0033057690 00000 n +0033063165 00000 n +0033062725 00000 n +0033057711 00000 n +0033062912 00000 n +0033062975 00000 n +0033063102 00000 n +0033063260 00000 n +0033371028 00000 n +0036718800 00000 n +0033063307 00000 n +0033374342 00000 n +0033371154 00000 n +0033065809 00000 n +0033063328 00000 n +0033370965 00000 n +0033371091 00000 n +0033371287 00000 n +0033804993 00000 n +0036718701 00000 n +0033371334 00000 n +0033371355 00000 n +0033805119 00000 n +0036718602 00000 n +0033371402 00000 n +0033805245 00000 n +0033374218 00000 n +0033371423 00000 n +0033805056 00000 n +0033805182 00000 n +0033806765 00000 n +0033805378 00000 n +0034577154 00000 n +0036718503 00000 n +0033805425 00000 n +0034577278 00000 n +0033806641 00000 n +0033805446 00000 n +0034577216 00000 n +0036713053 00000 n +0034582352 00000 n +0034577387 00000 n +0035699920 00000 n +0036718404 00000 n +0034577434 00000 n +0034948045 00000 n +0034582228 00000 n +0034577455 00000 n +0034947981 00000 n +0034950195 00000 n +0034948178 00000 n +0035700046 00000 n +0036718305 00000 n +0034948225 00000 n +0035700172 00000 n +0034950071 00000 n +0034948246 00000 n +0035699983 00000 n +0035700109 00000 n +0035700305 00000 n +0035706271 00000 n +0036718221 00000 n +0035700352 00000 n +0035706397 00000 n +0035706083 00000 n +0035700381 00000 n +0035706207 00000 n +0035706334 00000 n +0035709768 00000 n +0035709644 00000 n +0035706480 00000 n +0035709851 00000 n +0035714401 00000 n +0036718080 00000 n +0035709898 00000 n +0035709978 00000 n +0035714527 00000 n +0036717996 00000 n +0035710025 00000 n +0035723962 00000 n +0035714653 00000 n +0035714277 00000 n +0035710046 00000 n +0035714464 00000 n +0035714590 00000 n +0035721301 00000 n +0035721114 00000 n +0035714748 00000 n +0035721238 00000 n +0036673516 00000 n +0036669514 00000 n +0036673352 00000 n +0036668086 00000 n +0036664361 00000 n +0036667922 00000 n +0036664116 00000 n +0036661792 00000 n +0036663954 00000 n +0036659901 00000 n +0036657121 00000 n +0036659738 00000 n +0036713178 00000 n +0036384941 00000 n +0035723838 00000 n +0035721440 00000 n +0036391814 00000 n +0036391690 00000 n +0036385087 00000 n +0036391939 00000 n +0036398666 00000 n +0036717897 00000 n +0036391986 00000 n +0036398791 00000 n +0036398478 00000 n +0036392007 00000 n +0036398602 00000 n +0036398729 00000 n +0036398940 00000 n +0036404292 00000 n +0036717798 00000 n +0036398987 00000 n +0036399008 00000 n +0036404481 00000 n +0036717699 00000 n +0036399055 00000 n +0036404607 00000 n +0036404168 00000 n +0036399076 00000 n +0036404355 00000 n +0036404418 00000 n +0036404544 00000 n +0036404702 00000 n +0036409891 00000 n +0036717600 00000 n +0036404749 00000 n +0036404770 00000 n +0036410081 00000 n +0036717501 00000 n +0036404817 00000 n +0036410206 00000 n +0036409767 00000 n +0036404838 00000 n +0036409954 00000 n +0036410017 00000 n +0036410143 00000 n +0036410301 00000 n +0036414869 00000 n +0036717402 00000 n +0036410348 00000 n +0036410369 00000 n +0036414995 00000 n +0036717303 00000 n +0036410416 00000 n +0036415121 00000 n +0036414682 00000 n +0036410437 00000 n +0036414806 00000 n +0036414932 00000 n +0036415058 00000 n +0036713303 00000 n +0036415204 00000 n +0036419953 00000 n +0036717204 00000 n +0036415251 00000 n +0036415272 00000 n +0036425469 00000 n +0036717105 00000 n +0036415319 00000 n +0036420079 00000 n +0036419766 00000 n +0036415340 00000 n +0036419890 00000 n +0036420016 00000 n +0036425723 00000 n +0036425345 00000 n +0036420162 00000 n +0036425532 00000 n +0036425595 00000 n +0036425659 00000 n +0000002263 00000 f +0036656080 00000 n +0036425820 00000 n +0036430596 00000 n +0036717006 00000 n +0036425867 00000 n +0036425888 00000 n +0036430785 00000 n +0036716907 00000 n +0036425935 00000 n +0036430911 00000 n +0036430472 00000 n +0036425956 00000 n +0036430659 00000 n +0036430722 00000 n +0036430848 00000 n +0036431020 00000 n +0036436476 00000 n +0036716808 00000 n +0036431067 00000 n +0036436666 00000 n +0036436352 00000 n +0036431088 00000 n +0036436539 00000 n +0036436602 00000 n +0036436789 00000 n +0036441584 00000 n +0036716709 00000 n +0036436836 00000 n +0036436857 00000 n +0036441710 00000 n +0036716610 00000 n +0036436904 00000 n +0036441899 00000 n +0036441460 00000 n +0036436925 00000 n +0036441647 00000 n +0036441773 00000 n +0036441836 00000 n +0036441996 00000 n +0036447457 00000 n +0036716511 00000 n +0036442043 00000 n +0036447583 00000 n +0036447269 00000 n +0036442064 00000 n +0036447393 00000 n +0036447520 00000 n +0036713428 00000 n +0036447678 00000 n +0036452762 00000 n +0036716412 00000 n +0036447725 00000 n +0036452888 00000 n +0036452574 00000 n +0036447746 00000 n +0036452698 00000 n +0036452825 00000 n +0036452983 00000 n +0036457610 00000 n +0036716313 00000 n +0036453030 00000 n +0036453051 00000 n +0036457800 00000 n +0036716214 00000 n +0036453098 00000 n +0036457926 00000 n +0036457486 00000 n +0036453119 00000 n +0036457673 00000 n +0036457736 00000 n +0036457863 00000 n +0036458021 00000 n +0036462663 00000 n +0036716115 00000 n +0036458068 00000 n +0036462789 00000 n +0036462475 00000 n +0036458089 00000 n +0036462599 00000 n +0036462726 00000 n +0036462872 00000 n +0036467905 00000 n +0036716016 00000 n +0036462919 00000 n +0036468092 00000 n +0036467718 00000 n +0036462940 00000 n +0036467842 00000 n +0036467967 00000 n +0036468030 00000 n +0036468175 00000 n +0036473152 00000 n +0036715917 00000 n +0036468222 00000 n +0036468243 00000 n +0036473277 00000 n +0036715818 00000 n +0036468290 00000 n +0036473466 00000 n +0036473028 00000 n +0036468311 00000 n +0036473215 00000 n +0036473340 00000 n +0036473402 00000 n +0036473561 00000 n +0036478571 00000 n +0036715719 00000 n +0036473608 00000 n +0036473629 00000 n +0036483376 00000 n +0036715620 00000 n +0036473676 00000 n +0036478761 00000 n +0036478447 00000 n +0036473697 00000 n +0036478634 00000 n +0036478697 00000 n +0036713553 00000 n +0036478856 00000 n +0036483566 00000 n +0036715536 00000 n +0036478903 00000 n +0036483691 00000 n +0036483252 00000 n +0036478924 00000 n +0036483439 00000 n +0036483502 00000 n +0036483629 00000 n +0036488941 00000 n +0036488753 00000 n +0036483774 00000 n +0036488877 00000 n +0036489036 00000 n +0036496336 00000 n +0036715437 00000 n +0036489083 00000 n +0036496399 00000 n +0036490424 00000 n +0036489109 00000 n +0036490857 00000 n +0036491023 00000 n +0036491189 00000 n +0036491353 00000 n +0036491520 00000 n +0036491687 00000 n +0036491854 00000 n +0036492021 00000 n +0036492188 00000 n +0036492353 00000 n +0036492518 00000 n +0036492684 00000 n +0036492850 00000 n +0036493016 00000 n +0036493183 00000 n +0036493349 00000 n +0036493516 00000 n +0036493682 00000 n +0036493849 00000 n +0036494016 00000 n +0036494183 00000 n +0036494349 00000 n +0036494516 00000 n +0036494683 00000 n +0036494848 00000 n +0036495012 00000 n +0036495178 00000 n +0036495344 00000 n +0036495510 00000 n +0036495675 00000 n +0036495841 00000 n +0036496008 00000 n +0036496172 00000 n +0036504694 00000 n +0036497919 00000 n +0036496470 00000 n +0036498397 00000 n +0036498561 00000 n +0036498726 00000 n +0036498891 00000 n +0036499056 00000 n +0036499221 00000 n +0036499386 00000 n +0036499551 00000 n +0036499716 00000 n +0036499880 00000 n +0036500043 00000 n +0036500209 00000 n +0036500375 00000 n +0036500542 00000 n +0036500709 00000 n +0036500875 00000 n +0036501042 00000 n +0036501209 00000 n +0036501376 00000 n +0036501543 00000 n +0036501710 00000 n +0036501875 00000 n +0036502042 00000 n +0036502209 00000 n +0036502376 00000 n +0036502543 00000 n +0036502706 00000 n +0036502869 00000 n +0036503034 00000 n +0036503200 00000 n +0036503365 00000 n +0036503531 00000 n +0036503697 00000 n +0036503864 00000 n +0036504030 00000 n +0036504196 00000 n +0036504363 00000 n +0036504529 00000 n +0036511661 00000 n +0036506285 00000 n +0036504765 00000 n +0036506691 00000 n +0036506854 00000 n +0036507020 00000 n +0036507185 00000 n +0036507351 00000 n +0036507517 00000 n +0036507684 00000 n +0036507851 00000 n +0036508018 00000 n +0036508185 00000 n +0036508352 00000 n +0036508519 00000 n +0036508685 00000 n +0036508849 00000 n +0036509014 00000 n +0036509181 00000 n +0036509347 00000 n +0036509511 00000 n +0036509675 00000 n +0036509840 00000 n +0036510004 00000 n +0036510169 00000 n +0036510334 00000 n +0036510500 00000 n +0036510667 00000 n +0036510834 00000 n +0036511001 00000 n +0036511167 00000 n +0036511333 00000 n +0036511497 00000 n +0036522085 00000 n +0036513359 00000 n +0036511732 00000 n +0036513936 00000 n +0036514102 00000 n +0036514268 00000 n +0036514434 00000 n +0036514600 00000 n +0036514766 00000 n +0036514933 00000 n +0036515100 00000 n +0036515267 00000 n +0036515433 00000 n +0036515598 00000 n +0036515762 00000 n +0036515929 00000 n +0036516096 00000 n +0036516263 00000 n +0036516429 00000 n +0036516596 00000 n +0036516762 00000 n +0036516929 00000 n +0036517096 00000 n +0036517263 00000 n +0036517430 00000 n +0036517597 00000 n +0036517763 00000 n +0036517929 00000 n +0036518096 00000 n +0036518263 00000 n +0036518430 00000 n +0036518597 00000 n +0036518764 00000 n +0036518931 00000 n +0036519098 00000 n +0036519262 00000 n +0036519428 00000 n +0036519595 00000 n +0036519762 00000 n +0036519929 00000 n +0036520095 00000 n +0036520262 00000 n +0036520429 00000 n +0036520593 00000 n +0036520758 00000 n +0036520924 00000 n +0036521091 00000 n +0036521258 00000 n +0036521425 00000 n +0036521590 00000 n +0036521755 00000 n +0036521922 00000 n +0036713678 00000 n +0036533276 00000 n +0036523868 00000 n +0036522156 00000 n +0036524481 00000 n +0036524647 00000 n +0036524813 00000 n +0036524979 00000 n +0036525145 00000 n +0036525311 00000 n +0036525477 00000 n +0036525643 00000 n +0036525809 00000 n +0036525975 00000 n +0036526141 00000 n +0036526307 00000 n +0036526474 00000 n +0036526639 00000 n +0036526805 00000 n +0036526968 00000 n +0036527134 00000 n +0036527300 00000 n +0036527466 00000 n +0036527632 00000 n +0036527798 00000 n +0036527963 00000 n +0036528129 00000 n +0036528295 00000 n +0036528462 00000 n +0036528629 00000 n +0036528796 00000 n +0036528962 00000 n +0036529129 00000 n +0036529296 00000 n +0036529462 00000 n +0036529628 00000 n +0036529794 00000 n +0036529960 00000 n +0036530126 00000 n +0036530291 00000 n +0036530458 00000 n +0036530624 00000 n +0036530789 00000 n +0036530955 00000 n +0036531121 00000 n +0036531287 00000 n +0036531453 00000 n +0036531619 00000 n +0036531785 00000 n +0036531951 00000 n +0036532116 00000 n +0036532282 00000 n +0036532447 00000 n +0036532613 00000 n +0036532779 00000 n +0036532945 00000 n +0036533112 00000 n +0036547680 00000 n +0036535120 00000 n +0036533347 00000 n +0036535895 00000 n +0036536061 00000 n +0036536227 00000 n +0036536394 00000 n +0036536561 00000 n +0036536726 00000 n +0036536892 00000 n +0036537058 00000 n +0036537224 00000 n +0036537390 00000 n +0036537556 00000 n +0036537718 00000 n +0036537884 00000 n +0036538051 00000 n +0036538218 00000 n +0036538385 00000 n +0036538552 00000 n +0036538716 00000 n +0036538881 00000 n +0036539047 00000 n +0036539213 00000 n +0036539379 00000 n +0036539546 00000 n +0036539713 00000 n +0036539880 00000 n +0036540043 00000 n +0036540207 00000 n +0036540372 00000 n +0036540538 00000 n +0036540704 00000 n +0036540870 00000 n +0036541036 00000 n +0036541202 00000 n +0036541368 00000 n +0036541533 00000 n +0036541699 00000 n +0036541865 00000 n +0036542030 00000 n +0036542195 00000 n +0036542362 00000 n +0036542529 00000 n +0036542695 00000 n +0036542862 00000 n +0036543029 00000 n +0036543196 00000 n +0036543362 00000 n +0036543529 00000 n +0036543695 00000 n +0036543860 00000 n +0036544026 00000 n +0036544193 00000 n +0036544360 00000 n +0036544527 00000 n +0036544693 00000 n +0036544860 00000 n +0036545027 00000 n +0036545194 00000 n +0036545361 00000 n +0036545527 00000 n +0036545694 00000 n +0036545861 00000 n +0036546027 00000 n +0036546193 00000 n +0036546358 00000 n +0036546524 00000 n +0036546690 00000 n +0036546857 00000 n +0036547024 00000 n +0036547188 00000 n +0036547351 00000 n +0036547515 00000 n +0036559437 00000 n +0036549519 00000 n +0036547751 00000 n +0036550159 00000 n +0036550325 00000 n +0036550491 00000 n +0036550656 00000 n +0036550822 00000 n +0036550987 00000 n +0036551153 00000 n +0036551317 00000 n +0036551482 00000 n +0036551648 00000 n +0036551815 00000 n +0036551982 00000 n +0036552149 00000 n +0036552315 00000 n +0036552480 00000 n +0036552644 00000 n +0036552810 00000 n +0036552975 00000 n +0036553141 00000 n +0036553306 00000 n +0036553471 00000 n +0036553636 00000 n +0036553801 00000 n +0036553966 00000 n +0036554131 00000 n +0036554296 00000 n +0036554462 00000 n +0036554628 00000 n +0036554794 00000 n +0036554960 00000 n +0036555126 00000 n +0036555291 00000 n +0036555458 00000 n +0036555625 00000 n +0036555791 00000 n +0036555957 00000 n +0036556122 00000 n +0036556287 00000 n +0036556453 00000 n +0036556617 00000 n +0036556783 00000 n +0036556949 00000 n +0036557115 00000 n +0036557281 00000 n +0036557447 00000 n +0036557613 00000 n +0036557779 00000 n +0036557945 00000 n +0036558111 00000 n +0036558278 00000 n +0036558445 00000 n +0036558612 00000 n +0036558779 00000 n +0036558946 00000 n +0036559109 00000 n +0036559273 00000 n +0036573909 00000 n +0036561396 00000 n +0036559508 00000 n +0036562171 00000 n +0036562334 00000 n +0036562498 00000 n +0036562662 00000 n +0036562825 00000 n +0036562989 00000 n +0036563153 00000 n +0036563316 00000 n +0036563482 00000 n +0036563648 00000 n +0036563813 00000 n +0036563976 00000 n +0036564141 00000 n +0036564307 00000 n +0036564473 00000 n +0036564637 00000 n +0036564802 00000 n +0036564967 00000 n +0036565133 00000 n +0036565299 00000 n +0036565465 00000 n +0036565631 00000 n +0036565797 00000 n +0036565962 00000 n +0036566127 00000 n +0036566293 00000 n +0036566459 00000 n +0036566625 00000 n +0036566791 00000 n +0036566957 00000 n +0036567123 00000 n +0036567288 00000 n +0036567454 00000 n +0036567620 00000 n +0036567785 00000 n +0036567951 00000 n +0036568117 00000 n +0036568283 00000 n +0036568447 00000 n +0036568611 00000 n +0036568776 00000 n +0036568940 00000 n +0036569106 00000 n +0036569272 00000 n +0036569438 00000 n +0036569604 00000 n +0036569770 00000 n +0036569936 00000 n +0036570100 00000 n +0036570265 00000 n +0036570431 00000 n +0036570596 00000 n +0036570763 00000 n +0036570930 00000 n +0036571097 00000 n +0036571264 00000 n +0036571431 00000 n +0036571597 00000 n +0036571764 00000 n +0036571931 00000 n +0036572098 00000 n +0036572265 00000 n +0036572432 00000 n +0036572598 00000 n +0036572763 00000 n +0036572926 00000 n +0036573090 00000 n +0036573253 00000 n +0036573417 00000 n +0036573581 00000 n +0036573744 00000 n +0036580448 00000 n +0036575426 00000 n +0036573980 00000 n +0036575814 00000 n +0036575979 00000 n +0036576142 00000 n +0036576307 00000 n +0036576471 00000 n +0036576637 00000 n +0036576803 00000 n +0036576969 00000 n +0036577136 00000 n +0036577302 00000 n +0036577468 00000 n +0036577634 00000 n +0036577799 00000 n +0036577964 00000 n +0036578130 00000 n +0036578296 00000 n +0036578461 00000 n +0036578628 00000 n +0036578792 00000 n +0036578958 00000 n +0036579124 00000 n +0036579290 00000 n +0036579456 00000 n +0036579622 00000 n +0036579789 00000 n +0036579956 00000 n +0036580122 00000 n +0036580286 00000 n +0036588029 00000 n +0036581950 00000 n +0036580519 00000 n +0036582392 00000 n +0036582558 00000 n +0036582720 00000 n +0036582885 00000 n +0036583051 00000 n +0036583214 00000 n +0036583381 00000 n +0036583548 00000 n +0036583715 00000 n +0036583882 00000 n +0036584049 00000 n +0036584212 00000 n +0036584379 00000 n +0036584545 00000 n +0036584711 00000 n +0036584876 00000 n +0036585042 00000 n +0036585208 00000 n +0036585374 00000 n +0036585541 00000 n +0036585707 00000 n +0036585873 00000 n +0036586039 00000 n +0036586205 00000 n +0036586370 00000 n +0036586536 00000 n +0036586701 00000 n +0036586867 00000 n +0036587034 00000 n +0036587198 00000 n +0036587363 00000 n +0036587529 00000 n +0036587696 00000 n +0036587863 00000 n +0036713803 00000 n +0036588410 00000 n +0036588286 00000 n +0036588100 00000 n +0036589108 00000 n +0036588921 00000 n +0036588452 00000 n +0036589045 00000 n +0036589489 00000 n +0036589365 00000 n +0036589179 00000 n +0036589531 00000 n +0036590385 00000 n +0036715338 00000 n +0036589578 00000 n +0036590448 00000 n +0036590261 00000 n +0036589606 00000 n +0036590829 00000 n +0036590705 00000 n +0036590519 00000 n +0036590871 00000 n +0036594533 00000 n +0036715239 00000 n +0036590918 00000 n +0036594656 00000 n +0036594159 00000 n +0036590968 00000 n +0036594304 00000 n +0000000000 00000 f +0036653703 00000 n +0036713928 00000 n +0036594765 00000 n +0036598984 00000 n +0036715155 00000 n +0036594812 00000 n +0036599173 00000 n +0036598258 00000 n +0036594867 00000 n +0036598421 00000 n +0036598593 00000 n +0036599047 00000 n +0036599110 00000 n +0036598811 00000 n +0036618462 00000 n +0036604507 00000 n +0036603819 00000 n +0036599282 00000 n +0036604319 00000 n +0036603973 00000 n +0036604147 00000 n +0036604382 00000 n +0036604445 00000 n +0036608511 00000 n +0036608698 00000 n +0036608157 00000 n +0036604604 00000 n +0036608574 00000 n +0036608302 00000 n +0036608637 00000 n +0036613680 00000 n +0036612624 00000 n +0036608795 00000 n +0036612796 00000 n +0036612971 00000 n +0036613491 00000 n +0036613145 00000 n +0036613554 00000 n +0036613617 00000 n +0036613318 00000 n +0036618525 00000 n +0036617832 00000 n +0036613777 00000 n +0036618336 00000 n +0036617986 00000 n +0036618399 00000 n +0036618161 00000 n +0036624044 00000 n +0036623057 00000 n +0036618622 00000 n +0036623229 00000 n +0036623402 00000 n +0036623574 00000 n +0036623919 00000 n +0036623746 00000 n +0036623982 00000 n +0036714053 00000 n +0036645811 00000 n +0036628442 00000 n +0036641434 00000 n +0036628504 00000 n +0036627997 00000 n +0036624141 00000 n +0036628316 00000 n +0036628379 00000 n +0036628142 00000 n +0036632814 00000 n +0036632307 00000 n +0036628601 00000 n +0036632626 00000 n +0036632452 00000 n +0036632689 00000 n +0036632752 00000 n +0036636988 00000 n +0036636801 00000 n +0036632897 00000 n +0036636925 00000 n +0036641497 00000 n +0036640269 00000 n +0036637085 00000 n +0036640450 00000 n +0036640623 00000 n +0036640796 00000 n +0036641001 00000 n +0036641228 00000 n +0036645874 00000 n +0036645438 00000 n +0036641568 00000 n +0036645583 00000 n +0036649961 00000 n +0036649310 00000 n +0036645959 00000 n +0036649464 00000 n +0036649898 00000 n +0036649692 00000 n +0036714178 00000 n +0036651210 00000 n +0036651086 00000 n +0036650058 00000 n +0036651295 00000 n +0036653797 00000 n +0036656174 00000 n +0036660105 00000 n +0036660134 00000 n +0036664330 00000 n +0036668329 00000 n +0036668518 00000 n +0036673740 00000 n +0036676708 00000 n +0036685323 00000 n +0036688623 00000 n +0036691542 00000 n +0036696893 00000 n +0036705661 00000 n +0036705732 00000 n +0036707791 00000 n +0036714267 00000 n +0036714383 00000 n +0036714503 00000 n +0036714625 00000 n +0036714751 00000 n +0036714877 00000 n +0036714966 00000 n +0036715076 00000 n +0036735346 00000 n +0036744725 00000 n +0036744766 00000 n +0036744806 00000 n +0036744953 00000 n +trailer +<< +/Size 2393 +/Root 2391 0 R +/Info 2392 0 R +>> +startxref +36745148 +%%EOF diff --git a/old/17001-pdf.zip b/old/17001-pdf.zip Binary files differnew file mode 100644 index 0000000..aa26f9a --- /dev/null +++ b/old/17001-pdf.zip diff --git a/old/17001-tei.zip b/old/17001-tei.zip Binary files differnew file mode 100644 index 0000000..1abbd8d --- /dev/null +++ b/old/17001-tei.zip diff --git a/old/17001-tei/17001-tei.tei b/old/17001-tei/17001-tei.tei new file mode 100644 index 0000000..cf923aa --- /dev/null +++ b/old/17001-tei/17001-tei.tei @@ -0,0 +1,6132 @@ +<?xml version="1.0" encoding="utf-8" ?> + +<!-- +The Project Gutenberg EBook of An Elementary Course in Synthetic +Projective Geometry by Lehmer, Derrick Norman + + + +This eBook is for the use of anyone anywhere at no cost and with almost no +restrictions whatsoever. You may copy it, give it away or re-use it under +the terms of the Project Gutenberg License included with this eBook or +online at http://www.gutenberg.org/license + + + +Title: An Elementary Course in Synthetic Projective Geometry + +Author: Lehmer, Derrick Norman + +Release Date: November 4, 2005 [Ebook #17001] + +Language: American + +Character set encoding: UTF-8 +--> + +<!DOCTYPE TEI.2 SYSTEM "http://www.gutenberg.org/tei/marcello/0.4/dtd/pgtei.dtd"> + +<TEI.2 lang="en-us"> +<teiHeader> + <fileDesc> + <titleStmt> + <title>An Elementary Course in Synthetic Projective Geometry</title> + <author>Lehmer, Derrick Norman</author> + </titleStmt> + <editionStmt> + <edition n="1">Edition 1</edition> + </editionStmt> + <publicationStmt> + <publisher>Project Gutenberg</publisher> + <date value="2005-11-4">November 4, 2005</date> + <idno type="etext-no">17001</idno> + <idno type="DPid">projectID3fa113afbb55e</idno> + <availability> + <p>This eBook is for the use of anyone anywhere at no cost and + with almost no restrictions whatsoever. You may copy it, give it + away or re-use it under the terms of the Project Gutenberg + License online at www.gutenberg.org/license</p> + </availability> + </publicationStmt> + + <sourceDesc> + <bibl> + <title>An Elementary Course in Synthetic Projective Geometry</title> + <author>Lehmer, Derrick Norman</author> + <imprint> + <pubPlace>Boston</pubPlace> + <publisher>Ginn and Company</publisher> + <date>1917</date> + </imprint> + </bibl> + </sourceDesc> + </fileDesc> + + <encodingDesc> + <classDecl> + <taxonomy id="lc"> + <bibl> + <title>Library of Congress Classification</title> + </bibl> + </taxonomy> + </classDecl> + </encodingDesc> + <profileDesc> + <langUsage> + <language id="en-us">United States English</language> + </langUsage> + <textClass> + <classCode scheme="lc"> + *** <!-- LoC Class (PR, PQ, ...) --> + </classCode> + <keywords> + <list> + <!-- <item></item> any keywords for PG search engine --> + </list> + </keywords> + </textClass> + </profileDesc> + <revisionDesc> + <change> + <date value="2005-11">November 2005</date> + <respStmt> + <name>Joshua Hutchinson, </name> + <name>Cornell University, </name> + <name>Online Distributed Proofreading Team</name> + </respStmt> + <item>Project Gutenberg Edition</item> + </change> + <change> + <date value="2006-6">June 2006</date> + <respStmt> + <name>Joshua Hutchinson</name> + </respStmt> + <item>Added PGHeader/PGFooter.</item> + </change> + </revisionDesc> +</teiHeader> + +<pgExtensions> + <pgStyleSheet> + figure { text-align: center; page-float: 'htb' } + .w95 { } + @media pdf { + .w95 { width: 95% } + } + </pgStyleSheet> +</pgExtensions> + +<text> +<front> + +<div> +<divGen type="pgheader" /> +</div> + +<div> +<divGen type="encodingDesc" /> +</div> + +<div rend="page-break-before: right"> +<divGen type="titlepage" /> +</div> + +<div rend="page-break-before: right"> +<index index="toc" /><index index="pdf" /> +<pb n="iii" /><anchor id="Pgiii" /> +<head>Preface</head> + +<p>The following course is intended to give, in as simple +a way as possible, the essentials of synthetic projective +geometry. While, in the main, the theory is developed +along the well-beaten track laid out by the great masters +of the subject, it is believed that there has been a slight +smoothing of the road in some places. Especially will +this be observed in the chapter on Involution. The +author has never felt satisfied with the usual treatment +of that subject by means of circles and anharmonic +ratios. A purely projective notion ought not to be based +on metrical foundations. Metrical developments should +be made there, as elsewhere in the theory, by the +introduction of infinitely distant elements.</p> + +<p>The author has departed from the century-old custom +of writing in parallel columns each theorem and its +dual. He has not found that it conduces to sharpness +of vision to try to focus his eyes on two things at once. +Those who prefer the usual method of procedure can, +of course, develop the two sets of theorems side by side; +the author has not found this the better plan in actual +teaching.</p> + +<p>As regards nomenclature, the author has followed +the lead of the earlier writers in English, and has called +the system of lines in a plane which all pass through a +point a <hi rend="font-style: italic">pencil of rays</hi> instead of a <hi rend="font-style: italic">bundle of rays</hi>, as later +writers seem inclined to do. For a point considered +<pb n="iv" /><anchor id="Pgiv" /> +as made up of all the lines and planes through it he +has ventured to use the term <hi rend="font-style: italic">point system</hi>, as being +the natural dualization of the usual term <hi rend="font-style: italic">plane system</hi>. +He has also rejected the term <hi rend="font-style: italic">foci of an involution</hi>, and +has not used the customary terms for classifying involutions—<hi rend="font-style: italic">hyperbolic +involution</hi>, <hi rend="font-style: italic">elliptic involution</hi> and +<hi rend="font-style: italic">parabolic involution</hi>. He has found that all these terms +are very confusing to the student, who inevitably tries +to connect them in some way with the conic sections.</p> + +<p>Enough examples have been provided to give the +student a clear grasp of the theory. Many are of sufficient +generality to serve as a basis for individual investigation +on the part of the student. Thus, the third +example at the end of the first chapter will be found +to be very fruitful in interesting results. A correspondence +is there indicated between lines in space and +circles through a fixed point in space. If the student +will trace a few of the consequences of that correspondence, +and determine what configurations of circles +correspond to intersecting lines, to lines in a plane, to +lines of a plane pencil, to lines cutting three skew lines, +etc., he will have acquired no little practice in picturing +to himself figures in space.</p> + +<p>The writer has not followed the usual practice of +inserting historical notes at the foot of the page, and +has tried instead, in the last chapter, to give a consecutive +account of the history of pure geometry, or, at +least, of as much of it as the student will be able to +appreciate who has mastered the course as given in the +preceding chapters. One is not apt to get a very wide +view of the history of a subject by reading a hundred +<pb n="v" /><anchor id="Pgv" /> +biographical footnotes, arranged in no sort of sequence. +The writer, moreover, feels that the proper time to +learn the history of a subject is after the student has +some general ideas of the subject itself.</p> + +<p>The course is not intended to furnish an illustration +of how a subject may be developed, from the smallest +possible number of fundamental assumptions. The +author is aware of the importance of work of this sort, +but he does not believe it is possible at the present +time to write a book along such lines which shall be of +much use for elementary students. For the purposes of +this course the student should have a thorough grounding +in ordinary elementary geometry so far as to include +the study of the circle and of similar triangles. No solid +geometry is needed beyond the little used in the proof +of Desargues' theorem (25), and, except in certain +metrical developments of the general theory, there will +be no call for a knowledge of trigonometry or analytical +geometry. Naturally the student who is equipped with +these subjects as well as with the calculus will be a +little more mature, and may be expected to follow the +course all the more easily. The author has had no +difficulty, however, in presenting it to students in the +freshman class at the University of California.</p> + +<p>The subject of synthetic projective geometry is, in +the opinion of the writer, destined shortly to force its +way down into the secondary schools; and if this little +book helps to accelerate the movement, he will feel +amply repaid for the task of working the materials into +a form available for such schools as well as for the +lower classes in the university.</p> + +<pb n="vi" /><anchor id="Pgvi" /> + +<p>The material for the course has been drawn from +many sources. The author is chiefly indebted to the +classical works of Reye, Cremona, Steiner, Poncelet, and +Von Staudt. Acknowledgments and thanks are also +due to Professor Walter C. Eells, of the U.S. Naval +Academy at Annapolis, for his searching examination +and keen criticism of the manuscript; also to Professor +Herbert Ellsworth Slaught, of The University of Chicago, +for his many valuable suggestions, and to Professor +B. M. Woods and Dr. H. N. Wright, of the University +of California, who have tried out the methods of +presentation, in their own classes.</p> + +<p rend="text-align: right">D. N. LEHMER</p> + +<p><hi rend="font-variant: small-caps">Berkeley, California</hi></p> + +</div> + +<div rend="page-break-before: right"> + <index index="toc" /><index index="pdf" /> + <head>Contents</head> + <divGen type="toc" /> +</div> + +</front> + +<body> +<div rend="page-break-before: right"> +<pb n="1" /><anchor id="Pg1" /> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER I - ONE-TO-ONE CORRESPONDENCE</head> +<p></p> + +<div> +<index index="toc" level1="1. Definition of one-to-one correspondence" /><index index="pdf" /> + +<head></head><p><anchor id="p1" /><hi rend="font-weight: bold">1. Definition of one-to-one correspondence.</hi> +Given any two sets of individuals, if it is possible to set up such +a correspondence between the two sets that to any +individual in one set corresponds one and only one +individual in the other, then the two sets are said to +be in <hi rend="font-style: italic">one-to-one correspondence</hi> with each other. This +notion, simple as it is, is of fundamental importance +in all branches of science. The process of counting is +nothing but a setting up of a one-to-one correspondence +between the objects to be counted and certain +words, 'one,' 'two,' 'three,' etc., in the mind. Many +savage peoples have discovered no better method of +counting than by setting up a one-to-one correspondence +between the objects to be counted and their fingers. +The scientist who busies himself with naming and +classifying the objects of nature is only setting up a +one-to-one correspondence between the objects and certain +words which serve, not as a means of counting the +<pb n="2" /><anchor id="Pg2" /> +objects, but of listing them in a convenient way. Thus +he may be able to marshal and array his material in +such a way as to bring to light relations that may +exist between the objects themselves. Indeed, the whole +notion of language springs from this idea of one-to-one +correspondence.</p></div> + +<div> +<index index="toc" level1="2. Consequences of one-to-one correspondence" /><index index="pdf" /> +<head></head><p><anchor id="p2" /><hi rend="font-weight: bold">2. Consequences of one-to-one correspondence.</hi> +The most useful and interesting problem that may arise in +connection with any one-to-one correspondence is to +determine just what relations existing between the +individuals of one assemblage may be carried over to +another assemblage in one-to-one correspondence with +it. It is a favorite error to assume that whatever holds +for one set must also hold for the other. Magicians are +apt to assign magic properties to many of the words +and symbols which they are in the habit of using, and +scientists are constantly confusing objective things with +the subjective formulas for them. After the physicist +has set up correspondences between physical facts and +mathematical formulas, the "interpretation" of these +formulas is his most important and difficult task.</p></div> + +<div> +<index index="toc" level1="3. Applications in mathematics" /><index index="pdf" /> +<head></head><p><anchor id="p3" /><hi rend="font-weight: bold">3.</hi> In mathematics, effort is constantly being made +to set up one-to-one correspondences between simple +notions and more complicated ones, or between the well-explored +fields of research and fields less known. Thus, +by means of the mechanism employed in analytic geometry, +algebraic theorems are made to yield geometric +ones, and vice versa. In geometry we get at the properties +of the conic sections by means of the properties +of the straight line, and cubic surfaces are studied by +means of the plane.</p> + +<pb n="3" /><anchor id="Pg3" /> +</div> + +<div> +<index index="toc" level1="4. One-to-one correspondence and enumeration" /><index index="pdf" /> +<head></head> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image01.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 1</head> +<figDesc>Figure 1</figDesc> +</figure></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image02.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 2</head> +<figDesc>Figure 2</figDesc> +</figure></p> + +<p><anchor id="p4" /><hi rend="font-weight: bold">4. One-to-one correspondence and enumeration.</hi> If a +one-to-one correspondence has been set up between the +objects of one set and the objects of another set, then +the inference may usually be drawn that they have the +same number of elements. If, however, there is an +infinite number of individuals in +each of the two sets, the notion +of counting is necessarily ruled +out. It may be possible, nevertheless, +to set up a one-to-one +correspondence between the elements +of two sets even when the +number is infinite. Thus, it is easy to set up such a +correspondence between the points of a line an inch +long and the points of a line two inches long. For let +the lines (Fig. 1) be <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">A'B'</hi>. Join <hi rend="font-style: italic">AA'</hi> and <hi rend="font-style: italic">BB'</hi>, +and let these joining lines meet in <hi rend="font-style: italic">S</hi>. For every point <hi rend="font-style: italic">C</hi> +on <hi rend="font-style: italic">AB</hi> a point <hi rend="font-style: italic">C'</hi> may be found +on <hi rend="font-style: italic">A'B'</hi> by joining <hi rend="font-style: italic">C</hi> to <hi rend="font-style: italic">S</hi> and +noting the point <hi rend="font-style: italic">C'</hi> where <hi rend="font-style: italic">CS</hi> +meets <hi rend="font-style: italic">A'B'</hi>. Similarly, a point <hi rend="font-style: italic">C</hi> +may be found on <hi rend="font-style: italic">AB</hi> for any +point <hi rend="font-style: italic">C'</hi> on <hi rend="font-style: italic">A'B'</hi>. The correspondence +is clearly one-to-one, +but it would be absurd to infer +from this that there were just +as many points on <hi rend="font-style: italic">AB</hi> as on <hi rend="font-style: italic">A'B'</hi>. In fact, it would +be just as reasonable to infer that there were twice as +many points on <hi rend="font-style: italic">A'B'</hi> as on <hi rend="font-style: italic">AB</hi>. For if we bend <hi rend="font-style: italic">A'B'</hi> +into a circle with center at <hi rend="font-style: italic">S</hi> (Fig. 2), we see that for +every point <hi rend="font-style: italic">C</hi> on <hi rend="font-style: italic">AB</hi> there are two points on <hi rend="font-style: italic">A'B'</hi>. Thus +<pb n="4" /><anchor id="Pg4" /> +it is seen that the notion of one-to-one correspondence +is more extensive than the notion of counting, and +includes the notion of counting only when applied to +finite assemblages.</p></div> + +<div> +<index index="toc" level1="5. Correspondence between a part and the whole" /><index index="pdf" /> +<head></head><p><anchor id="p5" /><hi rend="font-weight: bold">5. Correspondence between a part and the whole of an +infinite assemblage.</hi> In the discussion of the last paragraph +the remarkable fact was brought to light that it +is sometimes possible to set the elements of an assemblage +into one-to-one correspondence with a part of +those elements. A moment's reflection will convince +one that this is never possible when there is a finite +number of elements in the assemblage.—Indeed, we +may take this property as our definition of an infinite +assemblage, and say that an infinite assemblage is one +that may be put into one-to-one correspondence with +part of itself. This has the advantage of being a positive +definition, as opposed to the usual negative definition of +an infinite assemblage as one that cannot be counted.</p></div> + +<div> +<index index="toc" level1="6. Infinitely distant point" /><index index="pdf" /> +<head></head><p><anchor id="p6" /><hi rend="font-weight: bold">6. Infinitely distant point.</hi> We have illustrated above +a simple method of setting the points of two lines into +one-to-one correspondence. The same illustration will +serve also to show how it is possible to set the points +on a line into one-to-one correspondence with the lines +through a point. Thus, for any point <hi rend="font-style: italic">C</hi> on the line <hi rend="font-style: italic">AB</hi> +there is a line <hi rend="font-style: italic">SC</hi> through <hi rend="font-style: italic">S</hi>. We must assume the line +<hi rend="font-style: italic">AB</hi> extended indefinitely in both directions, however, if +we are to have a point on it for every line through <hi rend="font-style: italic">S</hi>; +and even with this extension there is one line through +<hi rend="font-style: italic">S</hi>, according to Euclid's postulate, which does not meet +the line <hi rend="font-style: italic">AB</hi> and which therefore has no point on +<hi rend="font-style: italic">AB</hi> to correspond to it. In order to smooth out this +<pb n="5" /><anchor id="Pg5" />discrepancy we are accustomed to assume the existence +of an <hi rend="font-style: italic">infinitely distant</hi> point on the line <hi rend="font-style: italic">AB</hi> and to assign +this point as the corresponding point of the exceptional +line of <hi rend="font-style: italic">S</hi>. With this understanding, then, we may say +that we have set the lines through a point and the +points on a line into one-to-one correspondence. This +correspondence is of such fundamental importance in +the study of projective geometry that a special name is +given to it. Calling the totality of points on a line a +<hi rend="font-style: italic">point-row</hi>, and the totality of lines through a point a +<hi rend="font-style: italic">pencil of rays</hi>, we say that the point-row and the pencil +related as above are in <hi rend="font-style: italic">perspective position</hi>, or that they +are <hi rend="font-style: italic">perspectively related</hi>.</p></div> + +<div> +<index index="toc" level1="7. Axial pencil; fundamental forms" /><index index="pdf" /> +<head></head><p><anchor id="p7" /><hi rend="font-weight: bold">7. Axial pencil; fundamental forms.</hi> A similar correspondence +may be set up between the points on a +line and the planes through another line which does not +meet the first. Such a system of planes is called an +<hi rend="font-style: italic">axial pencil</hi>, and the three assemblages—the point-row, +the pencil of rays, and the axial pencil—are called +<hi rend="font-style: italic">fundamental forms</hi>. The fact that they may all be set +into one-to-one correspondence with each other is expressed +by saying that they are of the same order. It is +usual also to speak of them as of the first order. We +shall see presently that there are other assemblages +which cannot be put into this sort of one-to-one correspondence +with the points on a line, and that they +will very reasonably be said to be of a higher order.</p></div> + +<div> +<index index="toc" level1="8. Perspective position" /><index index="pdf" /> +<head></head><p><anchor id="p8" /><hi rend="font-weight: bold">8. Perspective position.</hi> We have said that a point-row +and a pencil of rays are in perspective position if +each ray of the pencil goes through the point of the +point-row which corresponds to it. Two pencils of rays +<pb n="6" /><anchor id="Pg6" /> +are also said to be in perspective position if corresponding +rays meet on a straight line which is called the +axis of perspectivity. Also, two point-rows are said to +be in perspective position if corresponding points lie on +straight lines through a point which is called the center +of perspectivity. A point-row and an axial pencil are +in perspective position if each plane of the pencil goes +through the point on the point-row which corresponds +to it, and an axial pencil and a pencil of rays are in +perspective position if each ray lies in the plane which +corresponds to it; and, finally, two axial pencils are +perspectively related if corresponding planes meet in +a plane.</p></div> + +<div> +<index index="toc" level1="9. Projective relation" /><index index="pdf" /> +<head></head><p><anchor id="p9" /><hi rend="font-weight: bold">9. Projective relation.</hi> It is easy to imagine a more +general correspondence between the points of two point-rows +than the one just described. If we take two +perspective pencils, <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">S</hi>, then a point-row <hi rend="font-style: italic">a</hi> perspective +to <hi rend="font-style: italic">A</hi> will be in one-to-one correspondence with +a point-row <hi rend="font-style: italic">b</hi> perspective to <hi rend="font-style: italic">B</hi>, but corresponding points +will not, in general, lie on lines which all pass through +a point. Two such point-rows are said to be <hi rend="font-style: italic">projectively +related</hi>, or simply projective to each other. Similarly, +two pencils of rays, or of planes, are projectively related +to each other if they are perspective to two perspective +point-rows. This idea will be generalized later on. It is +important to note that between the elements of two +projective fundamental forms there is a one-to-one correspondence, +and also that this correspondence is in +general <hi rend="font-style: italic">continuous</hi>; that is, by taking two elements of +one form sufficiently close to each other, the two corresponding +elements in the other form may be made to +<pb n="7" /><anchor id="Pg7" /> +approach each other arbitrarily close. In the case of +point-rows this continuity is subject to exception in the +neighborhood of the point "at infinity."</p></div> + +<div> +<index index="toc" level1="10. Infinity-to-one correspondence" /><index index="pdf" /> +<head></head><p><anchor id="p10" /><hi rend="font-weight: bold">10. Infinity-to-one correspondence.</hi> It might be inferred +that any infinite assemblage could be put into one-to-one +correspondence with any other. Such is not the case, +however, if the correspondence is to be continuous, +between the points on a line and the points on a plane. +Consider two lines which lie in different planes, and +take <hi rend="font-style: italic">m</hi> points on one and <hi rend="font-style: italic">n</hi> points on the other. The +number of lines joining the <hi rend="font-style: italic">m</hi> points of one to the +<hi rend="font-style: italic">n</hi> points jof the other is clearly <hi rend="font-style: italic">mn</hi>. If we symbolize +the totality of points on a line by [infinity], then a reasonable +symbol for the totality of lines drawn to cut two lines +would be [infinity]<hi rend="vertical-align: super">2</hi>. Clearly, for every point on one line there +are [infinity] lines cutting across the other, so that the correspondence +might be called [infinity]-to-one. Thus the assemblage +of lines cutting across two lines is of higher +order than the assemblage of points on a line; and as +we have called the point-row an assemblage of the first +order, the system of lines cutting across two lines ought +to be called of the second order.</p></div> + +<div> +<index index="toc" level1="11. Infinitudes of different orders" /><index index="pdf" /> +<head></head><p><anchor id="p11" /><hi rend="font-weight: bold">11. Infinitudes of different orders.</hi> Now it is easy to +set up a one-to-one correspondence between the points +in a plane and the system of lines cutting across two +lines which lie in different planes. In fact, each line of +the system of lines meets the plane in one point, and +each point in the plane determines one and only one line +cutting across the two given lines—namely, the line of +intersection of the two planes determined by the given +point with each of the given lines. The assemblage +<pb n="8" /><anchor id="Pg8" /> +of points in the plane is thus of the same order as +that of the lines cutting across two lines which lie in +different planes, and ought therefore to be spoken of +as of the second order. We express all these results +as follows:</p></div> + +<div> +<index index="toc" level1="12. Points in a plane" /><index index="pdf" /> +<head></head><p><anchor id="p12" /><hi rend="font-weight: bold">12.</hi> If the infinitude of points on a line is taken as +the infinitude of the first order, then the infinitude of +lines in a pencil of rays and the infinitude of planes in +an axial pencil are also of the first order, while the +infinitude of lines cutting across two "skew" lines, as +well as the infinitude of points in a plane, are of the +second order.</p></div> + +<div> +<index index="toc" level1="13. Lines through a point" /><index index="pdf" /> +<head></head><p><anchor id="p13" /><hi rend="font-weight: bold">13.</hi> If we join each of the points of a plane to a point +not in that plane, we set up a one-to-one correspondence +between the points in a plane and the lines through +a point in space. <hi rend="font-style: italic">Thus the infinitude of lines through a +point in space is of the second order.</hi></p></div> + +<div> +<index index="toc" level1="14. Planes through a point" /><index index="pdf" /> +<head></head><p><anchor id="p14" /><hi rend="font-weight: bold">14.</hi> If to each line through a point in space we make +correspond that plane at right angles to it and passing +through the same point, we see that <hi rend="font-style: italic">the infinitude of +planes through a point in space is of the second order.</hi></p></div> + +<div> +<index index="toc" level1="15. Lines in a plane" /><index index="pdf" /> +<head></head><p><anchor id="p15" /><hi rend="font-weight: bold">15.</hi> If to each plane through a point in space we +make correspond the line in which it intersects a given +plane, we see that <hi rend="font-style: italic">the infinitude of lines in a plane is of +the second order.</hi> This may also be seen by setting up +a one-to-one correspondence between the points on a +plane and the lines of that plane. Thus, take a point <hi rend="font-style: italic">S</hi> +not in the plane. Join any point <hi rend="font-style: italic">M</hi> of the plane to <hi rend="font-style: italic">S</hi>. +Through <hi rend="font-style: italic">S</hi> draw a plane at right angles to <hi rend="font-style: italic">MS</hi>. This +meets the given plane in a line <hi rend="font-style: italic">m</hi> which may be taken as +corresponding to the point <hi rend="font-style: italic">M</hi>. Another very important +<pb n="9" /><anchor id="Pg9" /> +method of setting up a one-to-one correspondence between +lines and points in a plane will be given later, and +many weighty consequences will be derived from it.</p></div> + +<div> +<index index="toc" level1="16. Plane system and point system" /><index index="pdf" /> +<head></head><p><anchor id="p16" /><hi rend="font-weight: bold">16. Plane system and point system.</hi> The plane, considered +as made up of the points and lines in it, is called +a <hi rend="font-style: italic">plane system</hi> and is a fundamental form of the second +order. The point, considered as made up of all the lines +and planes passing through it, is called a <hi rend="font-style: italic">point system</hi> +and is also a fundamental form of the second order.</p></div> + +<div> +<index index="toc" level1="17. Planes in space" /><index index="pdf" /> +<head></head><p><anchor id="p17" /><hi rend="font-weight: bold">17.</hi> If now we take three lines in space all lying in +different planes, and select <hi rend="font-style: italic">l</hi> points on the first, <hi rend="font-style: italic">m</hi> points +on the second, and <hi rend="font-style: italic">n</hi> points on the third, then the total +number of planes passing through one of the selected +points on each line will be <hi rend="font-style: italic">lmn</hi>. It is reasonable, therefore, +to symbolize the totality of planes that are determined +by the [infinity] points on each of the three lines by +[infinity]<hi rend="vertical-align: super">3</hi>, and to call it an infinitude of the <hi rend="font-style: italic">third</hi> order. But +it is easily seen that every plane in space is included in +this totality, so that <hi rend="font-style: italic">the totality of planes in space is an +infinitude of the third order.</hi></p></div> + +<div> +<index index="toc" level1="18. Points of space" /><index index="pdf" /> +<head></head><p><anchor id="p18" /><hi rend="font-weight: bold">18.</hi> Consider now the planes perpendicular to these +three lines. Every set of three planes so drawn will +determine a point in space, and, conversely, through +every point in space may be drawn one and only one +set of three planes at right angles to the three given +lines. It follows, therefore, that <hi rend="font-style: italic">the totality of points +in space is an infinitude of the third order.</hi></p></div> + +<div> +<index index="toc" level1="19. Space system" /><index index="pdf" /> +<head></head><p><anchor id="p19" /><hi rend="font-weight: bold">19. Space system.</hi> Space of three dimensions, considered +as made up of all its planes and points, is then +a fundamental form of the <hi rend="font-style: italic">third</hi> order, which we shall +call a <hi rend="font-style: italic">space system.</hi></p> + +<pb n="10" /><anchor id="Pg10" /></div> + +<div> +<index index="toc" level1="20. Lines in space" /><index index="pdf" /> +<head></head><p><anchor id="p20" /><hi rend="font-weight: bold">20. Lines in space.</hi> If we join the twofold infinity +of points in one plane with the twofold infinity of +points in another plane, we get a totality of lines of +space which is of the fourth order of infinity. <hi rend="font-style: italic">The +totality of lines in space gives, then, a fundamental form +of the fourth order.</hi></p></div> + +<div> +<index index="toc" level1="21. Correspondence between points and numbers" /><index index="pdf" /> +<head></head><p><anchor id="p21" /><hi rend="font-weight: bold">21. Correspondence between points and numbers.</hi> In +the theory of analytic geometry a one-to-one correspondence +is assumed to exist between points on a +line and numbers. In order to justify this assumption +a very extended definition of number must be made +use of. A one-to-one correspondence is then set up between +points in the plane and pairs of numbers, and +also between points in space and sets of three numbers. +A single constant will serve to define the position of +a point on a line; two, a point in the plane; three, a +point in space; etc. In the same theory a one-to-one +correspondence is set up between loci in the plane and +equations in two variables; between surfaces in space +and equations in three variables; etc. The equation of +a line in a plane involves two constants, either of which +may take an infinite number of values. From this it +follows that there is an infinity of lines in the plane +which is of the second order if the infinity of points on +a line is assumed to be of the first. In the same way +a circle is determined by three conditions; a sphere by +four; etc. We might then expect to be able to set up +a one-to-one correspondence between circles in a plane +and points, or planes in space, or between spheres and +lines in space. Such, indeed, is the case, and it is +often possible to infer theorems concerning spheres +<pb n="11" /><anchor id="Pg11" /> +from theorems concerning lines, and vice versa. It is +possibilities such as these that, give to the theory of +one-to-one correspondence its great importance for the +mathematician. It must not be forgotten, however, that +we are considering only <hi rend="font-style: italic">continuous</hi> correspondences. It +is perfectly possible to set, up a one-to-one correspondence +between the points of a line and the points of a +plane, or, indeed, between the points of a line and the +points of a space of any finite number of dimensions, if +the correspondence is not restricted to be continuous.</p></div> + +<div> +<index index="toc" level1="22. Elements at infinity" /><index index="pdf" /> +<head></head><p><anchor id="p22" /><hi rend="font-weight: bold">22. Elements at infinity.</hi> A final word is necessary +in order to explain a phrase which is in constant use in +the study of projective geometry. We have spoken of +the "point at infinity" on a straight line—a fictitious +point only used to bridge over the exceptional case +when we are setting up a one-to-one correspondence +between the points of a line and the lines through a +point. We speak of it as "a point" and not as "points," +because in the geometry studied by Euclid we assume +only one line through a point parallel to a given line. +In the same sense we speak of all the points at infinity +in a plane as lying on a line, "the line at infinity," +because the straight line is the simplest locus we can +imagine which has only one point in common with any +line in the plane. Likewise we speak of the "plane at +infinity," because that seems the most convenient way +of imagining the points at infinity in space. It must not +be inferred that these conceptions have any essential +connection with physical facts, or that other means of +picturing to ourselves the infinitely distant configurations +are not possible. In other branches of mathematics, +<pb n="12" /><anchor id="Pg12" /> +notably in the theory of functions of a complex variable, +quite different assumptions are made and quite +different conceptions of the elements at infinity are used. +As we can know nothing experimentally about such +things, we are at liberty to make any assumptions we +please, so long as they are consistent and serve some +useful purpose.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Since there is a threefold infinity of points in space, +there must be a sixfold infinity of pairs of points in space. +Each pair of points determines a line. Why, then, is there +not a sixfold infinity of lines in space?</p> + +<p>2. If there is a fourfold infinity of lines in space, why +is it that there is not a fourfold infinity of planes through +a point, seeing that each line in space determines a plane +through that point?</p> + +<p>3. Show that there is a fourfold infinity of circles in +space that pass through a fixed point. (Set up a one-to-one +correspondence between the axes of the circles and lines +in space.)</p> + +<p>4. Find the order of infinity of all the lines of space +that cut across a given line; across two given lines; across +three given lines; across four given lines.</p> + +<p>5. Find the order of infinity of all the spheres in space +that pass through a given point; through two given points; +through three given points; through four given points.</p> + +<p>6. Find the order of infinity of all the circles on a +sphere; of all the circles on a sphere that pass through a +fixed point; through two fixed points; through three fixed +points; of all the circles in space; of all the circles that +cut across a given line.</p> + +<pb n="13" /><anchor id="Pg13" /> + +<p>7. Find the order of infinity of all lines tangent to a +sphere; of all planes tangent to a sphere; of lines and +planes tangent to a sphere and passing through a fixed point.</p> + +<p>8. Set up a one-to-one correspondence between the series +of numbers <hi rend="font-style: italic">1</hi>, <hi rend="font-style: italic">2</hi>, <hi rend="font-style: italic">3</hi>, <hi rend="font-style: italic">4</hi>, ... and the series of even numbers +<hi rend="font-style: italic">2</hi>, <hi rend="font-style: italic">4</hi>, <hi rend="font-style: italic">6</hi>, <hi rend="font-style: italic">8</hi> .... Are we justified in saying that there are just +as many even numbers as there are numbers altogether?</p> + +<p>9. Is the axiom "The whole is greater than one of its +parts" applicable to infinite assemblages?</p> + +<p>10. Make out a classified list of all the infinitudes of the +first, second, third, and fourth orders mentioned in this +chapter.</p> + +</div> +</div> + +<pb n="14" /><anchor id="Pg14" /> +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE +CORRESPONDENCE WITH EACH OTHER</head> + +<div> +<index index="toc" level1="23. Seven fundamental forms" /><index index="pdf" /> +<head></head><p><anchor id="p23" /><hi rend="font-weight: bold">23. Seven fundamental forms.</hi> In the preceding chapter +we have called attention to seven fundamental forms: +the point-row, the pencil of rays, the axial pencil, the +plane system, the point system, the space system, and +the system of lines in space. These fundamental forms +are the material which we intend to use in building up +a general theory which will be found to include ordinary +geometry as a special case. We shall be concerned, not +with measurement of angles and areas or line segments +as in the study of Euclid, but in combining and +comparing these fundamental forms and in "generating" +new forms by means of them. In problems of construction +we shall make no use of measurement, either +of angles or of segments, and except in certain special +applications of the general theory we shall not find it +necessary to require more of ourselves than the ability +to draw the line joining two points, or to find the point +of intersections of two lines, or the line of intersection +of two planes, or, in general, the common elements of +two fundamental forms.</p></div> + +<div> +<index index="toc" level1="24. Projective properties" /><index index="pdf" /> +<head></head><p><anchor id="p24" /><hi rend="font-weight: bold">24. Projective properties.</hi> Our chief interest in this +chapter will be the discovery of relations between +the elements of one form which hold between the +<pb n="15" /><anchor id="Pg15" /> +corresponding elements of any other form in one-to-one +correspondence with it. We have already called attention +to the danger of assuming that whatever relations +hold between the elements of one assemblage must also +hold between the corresponding elements of any assemblage +in one-to-one correspondence with it. This false +assumption is the basis of the so-called "proof by +analogy" so much in vogue among speculative theorists. +When it appears that certain relations existing between +the points of a given point-row do not necessitate the +same relations between the corresponding elements of +another in one-to-one correspondence with it, we should +view with suspicion any application of the "proof by +analogy" in realms of thought where accurate judgments +are not so easily made. For example, if in a +given point-row <hi rend="font-style: italic">u</hi> three points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">C</hi>, are taken +such that <hi rend="font-style: italic">B</hi> is the middle point of the segment <hi rend="font-style: italic">AC</hi>, +it does not follow that the three points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi> +in a point-row perspective to <hi rend="font-style: italic">u</hi> will be so related. +Relations between the elements of any form which do +go over unaltered to the corresponding elements of +a form projectively related to it are called <hi rend="font-style: italic">projective +relations.</hi> Relations involving measurement of lines or +of angles are not projective.</p></div> + +<div> +<index index="toc" level1="25. Desargues's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p25" /><hi rend="font-weight: bold">25. Desargues's theorem.</hi> We consider first the following +beautiful theorem, due to Desargues and called +by his name.</p> + +<p><hi rend="font-style: italic">If two triangles, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi> and <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, are so situated +that the lines <hi rend="font-style: italic">AA'</hi>, <hi rend="font-style: italic">BB'</hi>, and <hi rend="font-style: italic">CC'</hi> all meet in a point, then +the pairs of sides <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">A'B'</hi>, <hi rend="font-style: italic">BC</hi> and <hi rend="font-style: italic">B'C'</hi>, <hi rend="font-style: italic">CA</hi> and +<hi rend="font-style: italic">C'A'</hi> all meet on a straight line, and conversely.</hi></p> + +<pb n="16" /><anchor id="Pg16" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image03.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 3</head> +<figDesc>Figure 3</figDesc> +</figure></p> + +<p>Let the lines <hi rend="font-style: italic">AA'</hi>, <hi rend="font-style: italic">BB'</hi>, and <hi rend="font-style: italic">CC'</hi> meet in the point <hi rend="font-style: italic">M</hi> +(Fig. 3). Conceive of the figure as in space, so that +<hi rend="font-style: italic">M</hi> is the vertex of a trihedral angle of which the given +triangles are plane sections. The lines <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">A'B'</hi> are +in the same plane and must meet when produced, their +point of intersection +being clearly a point +in the plane of each +triangle and therefore +in the line of +intersection of these +two planes. Call this +point <hi rend="font-style: italic">P</hi>. By similar +reasoning the point +<hi rend="font-style: italic">Q</hi> of intersection of +the lines <hi rend="font-style: italic">BC</hi> and +<hi rend="font-style: italic">B'C'</hi> must lie on this same line as well as the point <hi rend="font-style: italic">R</hi> +of intersection of <hi rend="font-style: italic">CA</hi> and <hi rend="font-style: italic">C'A'</hi>. Therefore the points +<hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi>, and <hi rend="font-style: italic">R</hi> all lie on the same line <hi rend="font-style: italic">m</hi>. If now we consider +the figure a plane figure, the points <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi>, and <hi rend="font-style: italic">R</hi> +still all lie on a straight line, which proves the theorem. +The converse is established in the same manner.</p></div> + +<div> +<index index="toc" level1="26. Fundamental theorem concerning two complete +quadrangles" /><index index="pdf" /> +<head></head><p><anchor id="p26" /><hi rend="font-weight: bold">26. Fundamental theorem concerning two complete +quadrangles.</hi> This theorem throws into our hands the +following fundamental theorem concerning two complete +quadrangles, a <hi rend="font-style: italic">complete quadrangle</hi> being defined +as the figure obtained by joining any four given points +by straight lines in the six possible ways.</p> + +<p><hi rend="font-style: italic">Given two complete quadrangles, <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> and +<hi rend="font-style: italic">K'</hi>, <hi rend="font-style: italic">L'</hi>, <hi rend="font-style: italic">M'</hi>, <hi rend="font-style: italic">N'</hi>, so related that <hi rend="font-style: italic">KL</hi>, <hi rend="font-style: italic">K'L'</hi>, <hi rend="font-style: italic">MN</hi>, <hi rend="font-style: italic">M'N'</hi> all +meet in a point <hi rend="font-style: italic">A</hi>; <hi rend="font-style: italic">LM</hi>, <hi rend="font-style: italic">L'M'</hi>, <hi rend="font-style: italic">NK</hi>, <hi rend="font-style: italic">N'K'</hi> all meet in a +<pb n="17" /><anchor id="Pg17" /> +point <hi rend="font-style: italic">Q</hi>; and <hi rend="font-style: italic">LN</hi>, <hi rend="font-style: italic">L'N'</hi> meet in a point <hi rend="font-style: italic">B</hi> on the line +<hi rend="font-style: italic">AC</hi>; then the lines <hi rend="font-style: italic">KM</hi> and <hi rend="font-style: italic">K'M'</hi> also meet in a point <hi rend="font-style: italic">D</hi> +on the line <hi rend="font-style: italic">AC</hi>.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image04.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 4</head> +<figDesc>Figure 4</figDesc> +</figure></p> + +<p>For, by the converse of the last theorem, <hi rend="font-style: italic">KK'</hi>, <hi rend="font-style: italic">LL'</hi>, +and <hi rend="font-style: italic">NN'</hi> all meet in a point <hi rend="font-style: italic">S</hi> (Fig. 4). Also <hi rend="font-style: italic">LL'</hi>, <hi rend="font-style: italic">MM'</hi>, +and <hi rend="font-style: italic">NN'</hi> meet in a point, and therefore in the same +point <hi rend="font-style: italic">S</hi>. Thus <hi rend="font-style: italic">KK'</hi>, <hi rend="font-style: italic">LL'</hi>, and <hi rend="font-style: italic">MM'</hi> meet in a point, +and so, by Desargues's theorem itself, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">D</hi> are +on a straight line.</p></div> + +<div> +<index index="toc" level1="27. Importance of the theorem" /><index index="pdf" /> +<head></head><p><anchor id="p27" /><hi rend="font-weight: bold">27. Importance of the theorem.</hi> The importance of +this theorem lies in the fact that, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">C</hi> being +given, an indefinite number of quadrangles <hi rend="font-style: italic">K'</hi>, <hi rend="font-style: italic">L'</hi>, <hi rend="font-style: italic">M'</hi>, <hi rend="font-style: italic">N'</hi> +my be found such that <hi rend="font-style: italic">K'L'</hi> and <hi rend="font-style: italic">M'N'</hi> meet in <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">K'N'</hi> +and <hi rend="font-style: italic">L'M'</hi> in <hi rend="font-style: italic">C</hi>, with <hi rend="font-style: italic">L'N'</hi> passing through <hi rend="font-style: italic">B</hi>. Indeed, +the lines <hi rend="font-style: italic">AK'</hi> and <hi rend="font-style: italic">AM'</hi> may be drawn arbitrarily +through <hi rend="font-style: italic">A</hi>, and any line through <hi rend="font-style: italic">B</hi> may be used to +determine <hi rend="font-style: italic">L'</hi> and <hi rend="font-style: italic">N'</hi>. By joining these two points to +<hi rend="font-style: italic">C</hi> the points <hi rend="font-style: italic">K'</hi> and <hi rend="font-style: italic">M'</hi> are determined. Then the line +<pb n="18" /><anchor id="Pg18" /> +joining <hi rend="font-style: italic">K'</hi> and <hi rend="font-style: italic">M'</hi>, found in this way, must pass +through the point <hi rend="font-style: italic">D</hi> already determined by the quadrangle +<hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi>. <hi rend="font-style: italic">The three points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, given in +order, serve thus to determine a fourth point <hi rend="font-style: italic">D</hi>.</hi></p></div> + +<div> +<index index="toc" level1="28. Restatement of the theorem" /><index index="pdf" /> +<head></head><p><anchor id="p28" /><hi rend="font-weight: bold">28.</hi> In a complete quadrangle the line joining any +two points is called the <hi rend="font-style: italic">opposite side</hi> to the line joining +the other two points. The result of the preceding +paragraph may then be stated as follows:</p> + +<p>Given three points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, in a straight line, if a +pair of opposite sides of a complete quadrangle pass +through <hi rend="font-style: italic">A</hi>, and another pair through <hi rend="font-style: italic">C</hi>, and one of the +remaining two sides goes through <hi rend="font-style: italic">B</hi>, then the other of +the remaining two sides will go through a fixed point +which does not depend on the quadrangle employed.</p></div> + +<div> +<index index="toc" level1="29. Four harmonic points" /><index index="pdf" /> +<head></head><p><anchor id="p29" /><hi rend="font-weight: bold">29. Four harmonic points.</hi> Four points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, +related as in the preceding theorem are called <hi rend="font-style: italic">four +harmonic points</hi>. The point <hi rend="font-style: italic">D</hi> is called the <hi rend="font-style: italic">fourth harmonic +of <hi rend="font-style: italic">B</hi> with respect to <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi></hi>. Since <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> play +exactly the same rôle in the above construction, <hi rend="font-style: italic"><hi rend="font-style: italic">B</hi> is +also the fourth harmonic of <hi rend="font-style: italic">D</hi> with respect to <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi></hi>. +<hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are called <hi rend="font-style: italic">harmonic conjugates with respect to +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi></hi>. We proceed to show that <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi> are also +harmonic conjugates with respect to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi>—that is, +that it is possible to find a quadrangle of which two +opposite sides shall pass through <hi rend="font-style: italic">B</hi>, two through <hi rend="font-style: italic">D</hi>, +and of the remaining pair, one through <hi rend="font-style: italic">A</hi> and the other +through <hi rend="font-style: italic">C</hi>.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image05.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 5</head> +<figDesc>Figure 5</figDesc> +</figure></p> + +<p>Let <hi rend="font-style: italic">O</hi> be the intersection of <hi rend="font-style: italic">KM</hi> and <hi rend="font-style: italic">LN</hi> (Fig. 5). +Join <hi rend="font-style: italic">O</hi> to <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>. The joining lines cut out on the +sides of the quadrangle four points, <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">R</hi>, <hi rend="font-style: italic">S</hi>. Consider +the quadrangle <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">O</hi>. One pair of opposite sides +<pb n="19" /><anchor id="Pg19" /> +passes through <hi rend="font-style: italic">A</hi>, one through <hi rend="font-style: italic">C</hi>, and one remaining side +through <hi rend="font-style: italic">D</hi>; therefore the other remaining side must +pass through <hi rend="font-style: italic">B</hi>. Similarly, <hi rend="font-style: italic">RS</hi> passes through <hi rend="font-style: italic">B</hi> and +<hi rend="font-style: italic">PS</hi> and <hi rend="font-style: italic">QR</hi> pass +through <hi rend="font-style: italic">D</hi>. The +quadrangle <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi>, +<hi rend="font-style: italic">R</hi>, <hi rend="font-style: italic">S</hi> therefore +has two opposite +sides through <hi rend="font-style: italic">B</hi>, +two through <hi rend="font-style: italic">D</hi>, +and the remaining +pair through +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>. <hi rend="font-style: italic">A</hi> and +<hi rend="font-style: italic">C</hi> are thus harmonic conjugates with respect to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi>. +We may sum up the discussion, therefore, as follows:</p></div> + +<div> +<index index="toc" level1="30. Harmonic conjugates" /><index index="pdf" /> +<head></head><p><anchor id="p30" /><hi rend="font-weight: bold">30.</hi> If <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi> are harmonic conjugates with respect +to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi>, then <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are harmonic conjugates with +respect to <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>.</p></div> + +<div> +<index index="toc" level1="31. Importance of the notion of four harmonic points" /><index index="pdf" /> +<head></head><p><anchor id="p31" /><hi rend="font-weight: bold">31. Importance of the notion.</hi> The importance of the +notion of four harmonic points lies in the fact that it +is a relation which is carried over from four points in +a point-row <hi rend="font-style: italic">u</hi> to the four points that correspond to +them in any point-row <hi rend="font-style: italic">u'</hi> perspective to <hi rend="font-style: italic">u</hi>.</p> + +<p>To prove this statement we construct a quadrangle +<hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> such that <hi rend="font-style: italic">KL</hi> and <hi rend="font-style: italic">MN</hi> pass through <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">KN</hi> +and <hi rend="font-style: italic">LM</hi> through <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">LN</hi> through <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">KM</hi> through <hi rend="font-style: italic">D</hi>. +Take now any point <hi rend="font-style: italic">S</hi> not in the plane of the quadrangle +and construct the planes determined by <hi rend="font-style: italic">S</hi> and +all the seven lines of the figure. Cut across this set of +planes by another plane not passing through <hi rend="font-style: italic">S</hi>. This +plane cuts out on the set of seven planes another +<pb n="20" /><anchor id="Pg20" /> +quadrangle which determines four new harmonic points, +<hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, <hi rend="font-style: italic">D'</hi>, on the lines joining <hi rend="font-style: italic">S</hi> to <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>. But +<hi rend="font-style: italic">S</hi> may be taken as any point, since the original quadrangle +may be taken in any plane through <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>; +and, further, the points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, <hi rend="font-style: italic">D'</hi> are the intersection +of <hi rend="font-style: italic">SA</hi>, <hi rend="font-style: italic">SB</hi>, <hi rend="font-style: italic">SC</hi>, <hi rend="font-style: italic">SD</hi> by any line. We have, then, the +remarkable theorem:</p></div> + +<div> +<index index="toc" level1="32. Projective invariance of four harmonic points" /><index index="pdf" /> +<head></head><p><anchor id="p32" /><hi rend="font-weight: bold">32.</hi> <hi rend="font-style: italic">If any point is joined to four harmonic points, and +the four lines thus obtained are cut by any fifth, the four +points of intersection are again harmonic.</hi></p></div> + +<div> +<index index="toc" level1="33. Four harmonic lines" /><index index="pdf" /> +<head></head><p><anchor id="p33" /><hi rend="font-weight: bold">33. Four harmonic lines.</hi> We are now able to extend +the notion of harmonic elements to pencils of rays, and +indeed to axial pencils. For if we define <hi rend="font-style: italic">four harmonic +rays</hi> as four rays which pass through a point and which +pass one through each of four harmonic points, we have +the theorem</p> + +<p><hi rend="font-style: italic">Four harmonic lines are cut by any transversal in four +harmonic points.</hi></p></div> + +<div> +<index index="toc" level1="34. Four harmonic planes" /><index index="pdf" /> +<head></head><p><anchor id="p34" /><hi rend="font-weight: bold">34. Four harmonic planes.</hi> We also define <hi rend="font-style: italic">four harmonic +planes</hi> as four planes through a line which pass +one through each of four harmonic points, and we may +show that</p> + +<p><hi rend="font-style: italic">Four harmonic planes are cut by any plane not passing +through their common line in four harmonic lines, and also +by any line in four harmonic points.</hi></p> + +<p>For let the planes α, β, γ, δ, which all pass through +the line <hi rend="font-style: italic">g</hi>, pass also through the four harmonic points +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, so that α passes through <hi rend="font-style: italic">A</hi>, etc. Then it is +clear that any plane Ï€ through <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> will cut out +four harmonic lines from the four planes, for they are +<pb n="21" /><anchor id="Pg21" /> +lines through the intersection <hi rend="font-style: italic">P</hi> of <hi rend="font-style: italic">g</hi> with the plane +Ï€, and they pass through the given harmonic points +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>. Any other plane σ cuts <hi rend="font-style: italic">g</hi> in a point <hi rend="font-style: italic">S</hi> and +cuts α, β, γ, δ in four lines that meet Ï€ +in four points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, <hi rend="font-style: italic">D'</hi> lying on <hi rend="font-style: italic">PA</hi>, <hi rend="font-style: italic">PB</hi>, <hi rend="font-style: italic">PC</hi>, and <hi rend="font-style: italic">PD</hi> respectively, +and are thus four harmonic hues. Further, any +ray cuts α, β, γ, δ in four harmonic points, since any +plane through the ray gives four harmonic lines of +intersection.</p></div> + +<div> +<index index="toc" level1="35. Summary of results" /><index index="pdf" /> +<head></head><p><anchor id="p35" /><hi rend="font-weight: bold">35.</hi> These results may be put together as follows:</p> + +<p><hi rend="font-style: italic">Given any two assemblages of points, rays, or planes, +perspectively related to each other, four harmonic elements +of one must correspond to four elements of the other which +are likewise harmonic.</hi></p> + +<p>If, now, two forms are perspectively related to a third, +any four harmonic elements of one must correspond to +four harmonic elements in the other. We take this as +our definition of projective correspondence, and say:</p></div> + +<div> +<index index="toc" level1="36. Definition of projectivity" /><index index="pdf" /> +<head></head><p><anchor id="p36" /><hi rend="font-weight: bold">36. Definition of projectivity.</hi> <hi rend="font-style: italic">Two fundamental forms +are protectively related to each other when a one-to-one correspondence +exists between the elements of the two and when +four harmonic elements of one correspond to four harmonic +elements of the other.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image06.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 6</head> +<figDesc>Figure 6</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="37. Correspondence between harmonic conjugates" /><index index="pdf" /> +<head></head><p><anchor id="p37" /><hi rend="font-weight: bold">37. Correspondence between harmonic conjugates.</hi> Given +four harmonic points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>; if we fix <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>, +then <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> vary together in a way that should be +thoroughly understood. To get a clear conception of +their relative motion we may fix the points <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi> of +the quadrangle <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> (Fig. 6). Then, as <hi rend="font-style: italic">B</hi> describes +the point-row <hi rend="font-style: italic">AC</hi>, the point <hi rend="font-style: italic">N</hi> describes the point-row +<pb n="22" /><anchor id="Pg22" /> +<hi rend="font-style: italic">AM</hi> perspective to it. Projecting <hi rend="font-style: italic">N</hi> again from <hi rend="font-style: italic">C</hi>, we +get a point-row <hi rend="font-style: italic">K</hi> on <hi rend="font-style: italic">AL</hi> perspective to the point-row +<hi rend="font-style: italic">N</hi> and thus projective to the point-row <hi rend="font-style: italic">B</hi>. Project the +point-row <hi rend="font-style: italic">K</hi> from <hi rend="font-style: italic">M</hi> and we get a point-row <hi rend="font-style: italic">D</hi> on +<hi rend="font-style: italic">AC</hi> again, which is projective to the point-row <hi rend="font-style: italic">B</hi>. For +every point <hi rend="font-style: italic">B</hi> we have thus one and only one point +<hi rend="font-style: italic">D</hi>, and conversely. +In other words, we +have set up a one-to-one +correspondence +between the +points of a single +point-row, which is +also a projective +correspondence because +four harmonic +points <hi rend="font-style: italic">B</hi> correspond to four harmonic points <hi rend="font-style: italic">D</hi>. +We may note also that the correspondence is here characterized +by a feature which does not always appear in +projective correspondences: namely, the same process +that carries one from <hi rend="font-style: italic">B</hi> to <hi rend="font-style: italic">D</hi> will carry one back from +<hi rend="font-style: italic">D</hi> to <hi rend="font-style: italic">B</hi> again. This special property will receive further +study in the chapter on Involution.</p></div> + +<div> +<index index="toc" level1="38. Separation of harmonic conjugates" /><index index="pdf" /> +<head></head><p><anchor id="p38" /><hi rend="font-weight: bold">38.</hi> It is seen that as <hi rend="font-style: italic">B</hi> approaches <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">D</hi> also approaches +<hi rend="font-style: italic">A</hi>. As <hi rend="font-style: italic">B</hi> moves from <hi rend="font-style: italic">A</hi> toward <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> moves +from <hi rend="font-style: italic">A</hi> in the opposite direction, passing through the +point at infinity on the line <hi rend="font-style: italic">AC</hi>, and returns on the +other side to meet <hi rend="font-style: italic">B</hi> at <hi rend="font-style: italic">C</hi> again. In other words, as <hi rend="font-style: italic">B</hi> +traverses <hi rend="font-style: italic">AC</hi>, <hi rend="font-style: italic">D</hi> traverses the rest of the line from <hi rend="font-style: italic">A</hi> to +<hi rend="font-style: italic">C</hi> through infinity. In all positions of <hi rend="font-style: italic">B</hi>, except at <hi rend="font-style: italic">A</hi> or +<hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are separated from each other by <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>.</p> + +<pb n="23" /><anchor id="Pg23" /></div> + +<div> +<index index="toc" level1="39. Harmonic conjugate of the point at infinity" /><index index="pdf" /> +<head></head><p><anchor id="p39" /><hi rend="font-weight: bold">39. Harmonic conjugate of the point at infinity.</hi> It is +natural to inquire what position of <hi rend="font-style: italic">B</hi> corresponds to the +infinitely distant position of <hi rend="font-style: italic">D</hi>. We have proved (§ 27) +that the particular quadrangle <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> employed is +of no consequence. We shall therefore avail ourselves of +one that lends itself most readily to +the solution of the problem. We +choose the point <hi rend="font-style: italic">L</hi> so that the triangle +<hi rend="font-style: italic">ALC</hi> is isosceles (Fig. 7). Since +<hi rend="font-style: italic">D</hi> is supposed to be at infinity, the +line <hi rend="font-style: italic">KM</hi> is parallel to <hi rend="font-style: italic">AC</hi>. Therefore +the triangles <hi rend="font-style: italic">KAC</hi> and <hi rend="font-style: italic">MAC</hi> +are equal, and the triangle <hi rend="font-style: italic">ANC</hi> is also isosceles. The +triangles <hi rend="font-style: italic">CNL</hi> and <hi rend="font-style: italic">ANL</hi> are therefore equal, and the line +<hi rend="font-style: italic">LB</hi> bisects the angle <hi rend="font-style: italic">ALC</hi>. <hi rend="font-style: italic">B</hi> is therefore the middle +point of <hi rend="font-style: italic">AC</hi>, and we have the theorem</p> + +<p><hi rend="font-style: italic">The harmonic conjugate of the middle point of <hi rend="font-style: italic">AC</hi> is at +infinity.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image07.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 7</head> +<figDesc>Figure 7</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="40. Projective theorems and metrical theorems. Linear +construction" /><index index="pdf" /> +<head></head><p><anchor id="p40" /><hi rend="font-weight: bold">40. Projective theorems and metrical theorems. Linear +construction.</hi> This theorem is the connecting link between +the general protective theorems which we have +been considering so far and the metrical theorems of +ordinary geometry. Up to this point we have said nothing +about measurements, either of line segments or of +angles. Desargues's theorem and the theory of harmonic +elements which depends on it have nothing to do with +magnitudes at all. Not until the notion of an infinitely +distant point is brought in is any mention made of +distances or directions. We have been able to make +all of our constructions up to this point by means of +the straightedge, or ungraduated ruler. A construction +<pb n="24" /><anchor id="Pg24" /> +made with such an instrument we shall call a <hi rend="font-style: italic">linear</hi> +construction. It requires merely that we be able to +draw the line joining two points or find the point of +intersection of two lines.</p></div> + +<div> +<index index="toc" level1="41. Parallels and mid-points" /><index index="pdf" /> +<head></head><p><anchor id="p41" /><hi rend="font-weight: bold">41. Parallels and mid-points.</hi> It might be thought +that drawing a line through a given point parallel to +a given line was only a special case of drawing a line +joining two points. Indeed, it consists only in drawing +a line through the given point and through the +"infinitely distant point" on the given line. It must +be remembered, however, that the expression "infinitely +distant point" must not be taken literally. When we +say that two parallel lines meet "at infinity," we really +mean that they do not meet at all, and the only reason +for using the expression is to avoid tedious statement +of exceptions and restrictions to our theorems. We +ought therefore to consider the drawing of a line parallel +to a given line as a different accomplishment from +the drawing of the line joining two given points. It is +a remarkable consequence of the last theorem that a +parallel to a given line and the mid-point of a given +segment are equivalent data. For the construction is +reversible, and if we are given the middle point of a +given segment, we can construct <hi rend="font-style: italic">linearly</hi> a line parallel to +that segment. Thus, given that <hi rend="font-style: italic">B</hi> is the middle point of +<hi rend="font-style: italic">AC</hi>, we may draw any two lines through <hi rend="font-style: italic">A</hi>, and any line +through <hi rend="font-style: italic">B</hi> cutting them in points <hi rend="font-style: italic">N</hi> and <hi rend="font-style: italic">L</hi>. Join <hi rend="font-style: italic">N</hi> and +<hi rend="font-style: italic">L</hi> to <hi rend="font-style: italic">C</hi> and get the points <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi> on the two lines +through <hi rend="font-style: italic">A</hi>. Then <hi rend="font-style: italic">KM</hi> is parallel to <hi rend="font-style: italic">AC</hi>. <hi rend="font-style: italic">The bisection of +a given segment and the drawing of a line parallel to the +segment are equivalent data when linear construction is used.</hi></p> + +<pb n="25" /><anchor id="Pg25" /></div> + +<div> +<index index="toc" level1="42. Division of segment into equal parts" /><index index="pdf" /> +<head></head><p><anchor id="p42" /><hi rend="font-weight: bold">42.</hi> It is not difficult to give a linear construction +for the problem to divide a given segment into <hi rend="font-style: italic">n</hi> equal +parts, given only a parallel to the segment. This is +simple enough when <hi rend="font-style: italic">n</hi> is a power of <hi rend="font-style: italic">2</hi>. For any other +number, such as <hi rend="font-style: italic">29</hi>, divide any segment on the line +parallel to <hi rend="font-style: italic">AC</hi> into <hi rend="font-style: italic">32</hi> equal parts, by a repetition of +the process just described. Take <hi rend="font-style: italic">29</hi> of these, and join +the first to <hi rend="font-style: italic">A</hi> and the last to <hi rend="font-style: italic">C</hi>. Let these joining lines +meet in <hi rend="font-style: italic">S</hi>. Join <hi rend="font-style: italic">S</hi> to all the other points. Other +problems, of a similar sort, are given at the end of +the chapter.</p></div> + +<div> +<index index="toc" level1="43. Numerical relations" /><index index="pdf" /> +<head></head><p><anchor id="p43" /><hi rend="font-weight: bold">43. Numerical relations.</hi> Since three points, given in +order, are sufficient to determine a fourth, as explained +above, it ought to be possible to reproduce the process +numerically in view of the one-to-one correspondence +which exists between points on a line and numbers; a +correspondence which, to be sure, we have not established +here, but which is discussed in any treatise +on the theory of point sets. We proceed to discover +what relation between four numbers corresponds to the +harmonic relation between +four points.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image08.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 8</head> +<figDesc>Figure 8</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="44. Algebraic formula connecting four harmonic points" /><index index="pdf" /> +<head></head><p><anchor id="p44" /><hi rend="font-weight: bold">44.</hi> Let <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> be four +harmonic points (Fig. 8), and +let <hi rend="font-style: italic">SA</hi>, <hi rend="font-style: italic">SB</hi>, <hi rend="font-style: italic">SC</hi>, <hi rend="font-style: italic">SD</hi> be four +harmonic lines. Assume a +line drawn through <hi rend="font-style: italic">B</hi> parallel +to <hi rend="font-style: italic">SD</hi>, meeting <hi rend="font-style: italic">SA</hi> in <hi rend="font-style: italic">A'</hi> and +<hi rend="font-style: italic">SC</hi> in <hi rend="font-style: italic">C'</hi>. Then <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, and the infinitely distant +point on <hi rend="font-style: italic">A'C'</hi> are four harmonic points, and therefore +<hi rend="font-style: italic">B</hi> is the middle point of the segment <hi rend="font-style: italic">A'C'</hi>. Then, since +<pb n="26" /><anchor id="Pg26" /> +the triangle <hi rend="font-style: italic">DAS</hi> is similar to the triangle <hi rend="font-style: italic">BAA'</hi>, we +may write the proportion</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AB : AD = BA' : SD.</hi> +</p> + +<p>Also, from the similar triangles <hi rend="font-style: italic">DSC</hi> and <hi rend="font-style: italic">BCC'</hi>, we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">CD : CB = SD : B'C.</hi> +</p> + +<p>From these two proportions we have, remembering that +<hi rend="font-style: italic">BA' = BC'</hi>,</p> + +<p rend="text-align: center"> +<formula notation="tex">\[ +\frac{AB \cdot CD}{AD \cdot CB} = -1, +\]</formula> +</p> + +<p>the minus sign being given to the ratio on account of the +fact that <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi> are always separated from <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi>, +so that one or three of the segments <hi rend="font-style: italic">AB</hi>, <hi rend="font-style: italic">CD</hi>, <hi rend="font-style: italic">AD</hi>, <hi rend="font-style: italic">CB</hi> +must be negative.</p></div> + +<div> +<index index="toc" level1="45. Further formulae" /><index index="pdf" /> +<head></head><p><anchor id="p45" /><hi rend="font-weight: bold">45.</hi> Writing the last equation in the form</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">CB : AB = -CD : AD,</hi> +</p> + +<p>and using the fundamental relation connecting three +points on a line,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">PR + RQ = PQ,</hi> +</p> + +<p>which holds for all positions of the three points if +account be taken of the sign of the segments, the last +proportion may be written</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">(CB - BA) : AB = -(CA - DA) : AD,</hi> +</p> + +<p>or</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">(AB - AC) : AB = (AC - AD) : AD;</hi> +</p> + +<p>so that <hi rend="font-style: italic">AB</hi>, <hi rend="font-style: italic">AC</hi>, and <hi rend="font-style: italic">AD</hi> are three quantities in hamonic +progression, since the difference between the first +and second is to the first as the difference between the +second and third is to the third. Also, from this last +proportion comes the familiar relation</p> + +<p rend="text-align: center"> +<formula notation="tex">\[ +\frac{2}{AC} = \frac{1}{AB} + \frac{1}{AD}, +\]</formula> +</p> + +<p>which is convenient for the computation of the distance +<hi rend="font-style: italic">AD</hi> when <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">AC</hi> are given numerically.</p> + +<pb n="27" /><anchor id="Pg27" /></div> + +<div> +<index index="toc" level1="46. Anharmonic ratio" /><index index="pdf" /> +<head></head><p><anchor id="p46" /><hi rend="font-weight: bold">46. Anharmonic ratio.</hi> The corresponding relations +between the trigonometric functions of the angles determined +by four harmonic lines are not difficult to obtain, +but as we shall not need them in building up the +theory of projective geometry, we will not discuss them +here. Students who have a slight acquaintance with +trigonometry may read in a later chapter (§ 161) a +development of the theory of a more general relation, +called the <hi rend="font-style: italic">anharmonic ratio</hi>, or <hi rend="font-style: italic">cross ratio</hi>, which connects +any four points on a line.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p><hi rend="font-weight: bold">1</hi>. Draw through a given point a line which shall pass +through the inaccessible point of intersection of two given +lines. The following construction may be made to depend +upon Desargues's theorem: Through the given point <hi rend="font-style: italic">P</hi> draw +any two rays cutting the two lines in the points <hi rend="font-style: italic">AB'</hi> and +<hi rend="font-style: italic">A'B</hi>, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, lying on one of the given lines and <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, on the +other. Join <hi rend="font-style: italic">AA'</hi> and <hi rend="font-style: italic">BB'</hi>, and find their point of intersection +<hi rend="font-style: italic">S</hi>. Through <hi rend="font-style: italic">S</hi> draw any other ray, cutting the given +lines in <hi rend="font-style: italic">CC'</hi>. Join <hi rend="font-style: italic">BC'</hi> and <hi rend="font-style: italic">B'C</hi>, and obtain their point +of intersection <hi rend="font-style: italic">Q</hi>. <hi rend="font-style: italic">PQ</hi> is the desired line. Justify this +construction.</p> + +<p><hi rend="font-weight: bold">2.</hi> To draw through a given point <hi rend="font-style: italic">P</hi> a line which shall +meet two given lines in points <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi>, equally distant from +<hi rend="font-style: italic">P</hi>. Justify the following construction: Join <hi rend="font-style: italic">P</hi> to the point +<hi rend="font-style: italic">S</hi> of intersection of the two given lines. Construct the +fourth harmonic of <hi rend="font-style: italic">PS</hi> with respect to the two given lines. +Draw through <hi rend="font-style: italic">P</hi> a line parallel to this line. This is the +required line.</p> + +<p><hi rend="font-weight: bold">3.</hi> Given a parallelogram in the same plane with a given +segment <hi rend="font-style: italic">AC</hi>, to construct linearly the middle point of <hi rend="font-style: italic">AC</hi>.</p> + +<pb n="28" /><anchor id="Pg28" /> + +<p><hi rend="font-weight: bold">4.</hi> Given four harmonic lines, of which one pair are at +right angles to each other, show that the other pair make +equal angles with them. This is a theorem of which frequent +use will be made.</p> + +<p><hi rend="font-weight: bold">5.</hi> Given the middle point of a line segment, to draw a +line parallel to the segment and passing through a given +point.</p> + +<p><hi rend="font-weight: bold">6.</hi> A line is drawn cutting the sides of a triangle <hi rend="font-style: italic">ABC</hi> in +the points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi> the point <hi rend="font-style: italic">A'</hi> lying on the side <hi rend="font-style: italic">BC</hi>, etc. +The harmonic conjugate of <hi rend="font-style: italic">A'</hi> with respect to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">C</hi> is +then constructed and called <hi rend="font-style: italic">A"</hi>. Similarly, <hi rend="font-style: italic">B"</hi> and <hi rend="font-style: italic">C"</hi> are +constructed. Show that <hi rend="font-style: italic">A"B"C"</hi> lie on a straight line. Find +other sets of three points on a line in the figure. Find also +sets of three lines through a point.</p> +</div> +</div> + +<div rend="page-break-before: always"> +<pb n="29" /><anchor id="Pg29" /> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED +FUNDAMENTAL FORMS</head> + +<div> +<index index="toc" level1="47. Superposed fundamental forms. Self-corresponding +elements" /><index index="pdf" /> +<head></head> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image09.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 9</head> +<figDesc>Figure 9</figDesc> +</figure></p> + +<p><anchor id="p47" /><hi rend="font-weight: bold">47. Superposed fundamental forms. Self-corresponding +elements.</hi> We have seen (§ 37) that two projective +point-rows may be superposed upon the same straight +line. This happens, for example, when two pencils +which are projective to each other are cut across by +a straight line. It is also possible for two projective +pencils to have the same center. This happens, for +example, when two projective point-rows are projected +to the same point. Similarly, two projective axial pencils +may have the same axis. We examine now the +possibility of two forms related in this way, having +an element or elements that correspond to themselves. +We have seen, indeed, that if <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are harmonic +conjugates with respect to <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>, then the point-row +described by <hi rend="font-style: italic">B</hi> is projective to the point-row described +by <hi rend="font-style: italic">D</hi>, and that <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi> are self-corresponding +points. Consider more generally the case of two pencils +perspective to each other with axis of perspectivity <hi rend="font-style: italic">u'</hi> +(Fig. 9). Cut across them by a line <hi rend="font-style: italic">u</hi>. We get thus +two projective point-rows superposed on the same line +<hi rend="font-style: italic">u</hi>, and a moment's reflection serves to show that the +point <hi rend="font-style: italic">N</hi> of intersection <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> corresponds to itself +in the two point-rows. Also, the point <hi rend="font-style: italic">M</hi>, where <hi rend="font-style: italic">u</hi> +<pb n="30" /><anchor id="Pg30" /> +intersects the line joining the centers of the two pencils, +is seen to correspond to itself. It is thus possible +for two projective point-rows, +superposed upon +the same line, to have two +self-corresponding points. +Clearly <hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">N</hi> may +fall together if the line +joining the centers of the +pencils happens to pass +through the point of intersection +of the lines <hi rend="font-style: italic">u</hi> +and <hi rend="font-style: italic">u'</hi>.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image10.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 10</head> +<figDesc>Figure 10</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="48. Special case" /><index index="pdf" /> +<head></head><p><anchor id="p48" /><hi rend="font-weight: bold">48.</hi> We may also give an illustration of a case +where two superposed projective point-rows have no +self-corresponding points at all. Thus we may take +two lines revolving about a fixed +point <hi rend="font-style: italic">S</hi> and always making the +same angle a with each other +(Fig. 10). They will cut out on +any line <hi rend="font-style: italic">u</hi> in the plane two point-rows +which are easily seen to be +projective. For, given any four +rays <hi rend="font-style: italic">SP</hi> which are harmonic, the +four corresponding rays <hi rend="font-style: italic">SP'</hi> must +also be harmonic, since they make +the same angles with each other. +Four harmonic points <hi rend="font-style: italic">P</hi> correspond, +therefore, to four harmonic points <hi rend="font-style: italic">P'</hi>. It is clear, +however, that no point <hi rend="font-style: italic">P</hi> can coincide with its corresponding +point <hi rend="font-style: italic">P'</hi>, for in that case the lines <hi rend="font-style: italic">PS</hi> and +<pb n="31" /><anchor id="Pg31" /> +<hi rend="font-style: italic">P'S</hi> would coincide, which is impossible if the angle +between them is to be constant.</p></div> + +<div> +<index index="toc" level1="49. Fundamental theorem. Postulate of continuity" /><index index="pdf" /> +<head></head><p><anchor id="p49" /><hi rend="font-weight: bold">49. Fundamental theorem. Postulate of continuity.</hi> +We have thus shown that two projective point-rows, +superposed one on the other, may have two points, one +point, or no point at all corresponding to themselves. +We proceed to show that</p> + +<p><hi rend="font-style: italic">If two projective point-rows, superposed upon the same +straight line, have more than two self-corresponding points, +they must have an infinite number, and every point corresponds +to itself; that is, the two point-rows are not +essentially distinct.</hi></p> + +<p>If three points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">C</hi>, are self-corresponding, +then the harmonic conjugate <hi rend="font-style: italic">D</hi> of <hi rend="font-style: italic">B</hi> with respect to <hi rend="font-style: italic">A</hi> +and <hi rend="font-style: italic">C</hi> must also correspond to itself. For four harmonic +points must always correspond to four harmonic points. +In the same way the harmonic conjugate of <hi rend="font-style: italic">D</hi> with +respect to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">C</hi> must correspond to itself. Combining +new points with old in this way, we may obtain as many +self-corresponding points as we wish. We show further +that every point on the line is the limiting point of a +finite or infinite sequence of self-corresponding points. +Thus, let a point <hi rend="font-style: italic">P</hi> lie between <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi>. Construct +now <hi rend="font-style: italic">D</hi>, the fourth harmonic of <hi rend="font-style: italic">C</hi> with respect to <hi rend="font-style: italic">A</hi> and +<hi rend="font-style: italic">B</hi>. <hi rend="font-style: italic">D</hi> may coincide with <hi rend="font-style: italic">P</hi>, in which case the sequence +is closed; otherwise <hi rend="font-style: italic">P</hi> lies in the stretch <hi rend="font-style: italic">AD</hi> or in the +stretch <hi rend="font-style: italic">DB</hi>. If it lies in the stretch <hi rend="font-style: italic">DB</hi>, construct the +fourth harmonic of <hi rend="font-style: italic">C</hi> with respect to <hi rend="font-style: italic">D</hi> and <hi rend="font-style: italic">B</hi>. This +point <hi rend="font-style: italic">D'</hi> may coincide with <hi rend="font-style: italic">P</hi>, in which case, as before, +the sequence is closed. If <hi rend="font-style: italic">P</hi> lies in the stretch <hi rend="font-style: italic">DD'</hi>, +we construct the fourth harmonic of <hi rend="font-style: italic">C</hi> with respect +<pb n="32" /><anchor id="Pg32" /> +to <hi rend="font-style: italic">DD'</hi>, etc. In each step the region in which <hi rend="font-style: italic">P</hi> lies is +diminished, and the process may be continued until two +self-corresponding points are obtained on either side of +<hi rend="font-style: italic">P</hi>, and at distances from it arbitrarily small.</p> + +<p>We now assume, explicitly, the fundamental postulate +that the correspondence is <hi rend="font-style: italic">continuous</hi>, that is, that <hi rend="font-style: italic">the +distance between two points in one point-row may be made +arbitrarily small by sufficiently diminishing the distance +between the corresponding points in the other.</hi> Suppose +now that <hi rend="font-style: italic">P</hi> is not a self-corresponding point, but corresponds +to a point <hi rend="font-style: italic">P'</hi> at a fixed distance <hi rend="font-style: italic">d</hi> from <hi rend="font-style: italic">P</hi>. +As noted above, we can find self-corresponding points +arbitrarily close to <hi rend="font-style: italic">P</hi>, and it appears, then, that we can +take a point <hi rend="font-style: italic">D</hi> as close to <hi rend="font-style: italic">P</hi> as we wish, and yet the +distance between the corresponding points <hi rend="font-style: italic">D'</hi> and <hi rend="font-style: italic">P'</hi> +approaches <hi rend="font-style: italic">d</hi> as a limit, and not zero, which contradicts +the postulate of continuity.</p></div> + +<div> +<index index="toc" level1="50. Extension of theorem to pencils of rays and planes" /><index index="pdf" /> +<head></head><p><anchor id="p50" /><hi rend="font-weight: bold">50.</hi> It follows also that two projective pencils which +have the same center may have no more than two self-corresponding +rays, unless the pencils are identical. For +if we cut across them by a line, we obtain two projective +point-rows superposed on the same straight line, +which may have no more than two self-corresponding +points. The same considerations apply to two projective +axial pencils which have the same axis.</p></div> + +<div> +<index index="toc" level1="51. Projective point-rows having a self-corresponding +point in common" /><index index="pdf" /> +<head></head><p><anchor id="p51" /><hi rend="font-weight: bold">51. Projective point-rows having a self-corresponding +point in common.</hi> Consider now two projective point-rows +lying on different lines in the same plane. Their +common point may or may not be a self-corresponding +point. If the two point-rows are perspectively related, +then their common point is evidently a self-corresponding +<pb n="33" /><anchor id="Pg33" /> +point. The converse is also true, and we have the very +important theorem:</p></div> + +<div> +<index index="toc" level1="52. Point-rows in perspective position" /><index index="pdf" /> +<head></head><p><anchor id="p52" /><hi rend="font-weight: bold">52.</hi> <hi rend="font-style: italic">If in two protective point-rows, the point of intersection +corresponds to itself, then the point-rows are in +perspective position.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image11.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 11</head> +<figDesc>Figure 11</figDesc> +</figure></p> + +<p>Let the two point-rows be <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> (Fig. 11). Let +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">B'</hi>, be corresponding points, and let +also the point <hi rend="font-style: italic">M</hi> of intersection of <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> correspond +to itself. Let <hi rend="font-style: italic">AA'</hi> and <hi rend="font-style: italic">BB'</hi> meet in the point <hi rend="font-style: italic">S</hi>. Take +<hi rend="font-style: italic">S</hi> as the center of two pencils, +one perspective to <hi rend="font-style: italic">u</hi> and the other +perspective to <hi rend="font-style: italic">u'</hi>. In these two +pencils <hi rend="font-style: italic">SA</hi> coincides with its corresponding +ray <hi rend="font-style: italic">SA'</hi>, <hi rend="font-style: italic">SB</hi> with its +corresponding ray <hi rend="font-style: italic">SB'</hi>, and <hi rend="font-style: italic">SM</hi> +with its corresponding ray <hi rend="font-style: italic">SM'</hi>. +The two pencils are thus identical, by the preceding +theorem, and any ray <hi rend="font-style: italic">SD</hi> must coincide with its corresponding +ray <hi rend="font-style: italic">SD'</hi>. Corresponding points of <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, +therefore, all lie on lines through the point <hi rend="font-style: italic">S</hi>.</p></div> + +<div> +<index index="toc" level1="53. Pencils in perspective position" /><index index="pdf" /> +<head></head><p><anchor id="p53" /><hi rend="font-weight: bold">53.</hi> An entirely similar discussion shows that</p> + +<p><hi rend="font-style: italic">If in two projective pencils the line joining their centers +is a self-corresponding ray, then the two pencils are +perspectively related.</hi></p></div> + +<div> +<index index="toc" level1="54. Axial pencils in perspective position" /><index index="pdf" /> +<head></head><p><anchor id="p54" /><hi rend="font-weight: bold">54.</hi> A similar theorem may be stated for two axial +pencils of which the axes intersect. Very frequent use +will be made of these fundamental theorems.</p></div> + +<div> +<index index="toc" level1="55. Point-row of the second order" /><index index="pdf" /> +<head></head><p><anchor id="p55" /><hi rend="font-weight: bold">55. Point-row of the second order.</hi> The question naturally +arises, What is the locus of points of intersection +of corresponding rays of two projective pencils +<pb n="34" /><anchor id="Pg34" /> +which are not in perspective position? This locus, +which will be discussed in detail in subsequent chapters, +is easily seen to have at most two points in common +with any line in the plane, and on account of this +fundamental property will be called a <hi rend="font-style: italic">point-row of the +second order</hi>. For any line <hi rend="font-style: italic">u</hi> in the plane of the two +pencils will be cut by them in two projective point-rows +which have at most two self-corresponding points. +Such a self-corresponding point is clearly a point of +intersection of corresponding rays of the two pencils.</p></div> + +<div> +<index index="toc" level1="56. Degeneration of locus" /><index index="pdf" /> +<head></head><p><anchor id="p56" /><hi rend="font-weight: bold">56.</hi> This locus degenerates in the case of two perspective +pencils to a pair of straight lines, one of which +is the axis of perspectivity and the other the common +ray, any point of which may be considered as the point +of intersection of corresponding rays of the two pencils.</p></div> + +<div> +<index index="toc" level1="57. Pencils of rays of the second order" /><index index="pdf" /> +<head></head><p><anchor id="p57" /><hi rend="font-weight: bold">57. Pencils of rays of the second order.</hi> Similar investigations +may be made concerning the system of lines +joining corresponding points of two projective point-rows. +If we project the point-rows to any point in the +plane, we obtain two projective pencils having the same +center. At most two pairs of self-corresponding rays +may present themselves. Such a ray is clearly a line +joining two corresponding points in the two point-rows. +The result may be stated as follows: <hi rend="font-style: italic">The system of rays +joining corresponding points in two protective point-rows +has at most two rays in common with any pencil in the +plane.</hi> For that reason the system of rays is called <hi rend="font-style: italic">a +pencil of rays of the second order.</hi></p></div> + +<div> +<index index="toc" level1="58. Degenerate case" /><index index="pdf" /> +<head></head><p><anchor id="p58" /><hi rend="font-weight: bold">58.</hi> In the case of two perspective point-rows this +system of rays degenerates into two pencils of rays of +the first order, one of which has its center at the center +<pb n="35" /><anchor id="Pg35" /> +of perspectivity of the two point-rows, and the other at +the intersection of the two point-rows, any ray through +which may be considered as joining two corresponding +points of the two point-rows.</p></div> + +<div> +<index index="toc" level1="59. Cone of the second order" /><index index="pdf" /> +<head></head><p><anchor id="p59" /><hi rend="font-weight: bold">59. Cone of the second order.</hi> The corresponding +theorems in space may easily be obtained by joining +the points and lines considered in the plane theorems +to a point <hi rend="font-style: italic">S</hi> in space. Two projective pencils give rise +to two projective axial pencils with axes intersecting. +Corresponding planes meet in lines which all pass +through <hi rend="font-style: italic">S</hi> and through the points on a point-row of +the second order generated by the two pencils of rays. +They are thus generating lines of a <hi rend="font-style: italic">cone of the second +order</hi>, or <hi rend="font-style: italic">quadric cone</hi>, so called because every plane in +space not passing through <hi rend="font-style: italic">S</hi> cuts it in a point-row of +the second order, and every line also cuts it in at most +two points. If, again, we project two point-rows to a +point <hi rend="font-style: italic">S</hi> in space, we obtain two pencils of rays with a +common center but lying in different planes. Corresponding +lines of these pencils determine planes which +are the projections to <hi rend="font-style: italic">S</hi> of the lines which join the corresponding +points of the two point-rows. At most two +such planes may pass through any ray through <hi rend="font-style: italic">S</hi>. It +is called <hi rend="font-style: italic">a pencil of planes of the second order</hi>.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p><hi rend="font-weight: bold">1. </hi> A man <hi rend="font-style: italic">A</hi> moves along a straight road <hi rend="font-style: italic">u</hi>, and another +man <hi rend="font-style: italic">B</hi> moves along the same road and walks so as always +to keep sight of <hi rend="font-style: italic">A</hi> in a small mirror <hi rend="font-style: italic">M</hi> at the side of the +road. How many times will they come together, <hi rend="font-style: italic">A</hi> moving +always in the same direction along the road?</p> + +<pb n="36" /><anchor id="Pg36" /> + +<p>2. How many times would the two men in the first problem +see each other in two mirrors <hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">N</hi> as they walk +along the road as before? (The planes of the two mirrors +are not necessarily parallel to <hi rend="font-style: italic">u</hi>.)</p> + +<p>3. As A moves along <hi rend="font-style: italic">u</hi>, trace the path of B so that the +two men may always see each other in the two mirrors.</p> + +<p>4. Two boys walk along two paths <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> each holding +a string which they keep stretched tightly between them. +They both move at constant but different rates of speed, +letting out the string or drawing it in as they walk. How +many times will the line of the string pass over any given +point in the plane of the paths?</p> + +<p>5. Trace the lines of the string when the two boys move +at the same rate of speed in the two paths but do not start +at the same time from the point where the two paths +intersect.</p> + +<p>6. A ship is sailing on a straight course and keeps a gun +trained on a point on the shore. Show that a line at right +angles to the direction of the gun at its muzzle will pass +through any point in the plane twice or not at all. (Consider +the point-row at infinity cut out by a line through the +point on the shore at right angles to the direction of +the gun.)</p> + +<p>7. Two lines <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> revolve about two points <hi rend="font-style: italic">U</hi> and <hi rend="font-style: italic">U'</hi> +respectively in the same plane. They go in the same direction +and at the same rate of speed, but one has an angle a +the start of the other. Show that they generate a point-row +of the second order.</p> + +<p>8. Discuss the question given in the last problem when +the two lines revolve in opposite directions. Can you +recognize the locus?</p> +</div> +</div> + +<div rend="page-break-before: always"> +<pb n="37" /><anchor id="Pg37" /> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER IV - POINT-ROWS OF THE SECOND ORDER</head> + +<div> +<index index="toc" level1="60. Point-row of the second order defined" /><index index="pdf" /> +<head></head><p><anchor id="p60" /><hi rend="font-weight: bold">60. Point-row of the second order defined.</hi> We have +seen that two fundamental forms in one-to-one correspondence +may sometimes generate a form of higher +order. Thus, two point-rows (§ 55) generate a system of +rays of the second order, and two pencils of rays (§ 57), +a system of points of the second order. As a system of +points is more familiar to most students of geometry +than a system of lines, we study first the point-row of +the second order.</p></div> + +<div> +<index index="toc" level1="61. Tangent line" /><index index="pdf" /> +<head></head><p><anchor id="p61" /><hi rend="font-weight: bold">61. Tangent line.</hi> We have shown in the last chapter +(§ 55) that the locus of intersection of corresponding +rays of two projective pencils is a point-row of the +second order; that is, it has at most two points in common +with any line in the plane. It is clear, first of all, +that the centers of the pencils are points of the locus; +for to the line <hi rend="font-style: italic">SS'</hi>, considered as a ray of <hi rend="font-style: italic">S</hi>, must +correspond some ray of <hi rend="font-style: italic">S'</hi> which meets it in <hi rend="font-style: italic">S'</hi>. <hi rend="font-style: italic">S'</hi>, +and by the same argument <hi rend="font-style: italic">S</hi>, is then a point where +corresponding rays meet. Any ray through <hi rend="font-style: italic">S</hi> will meet +it in one point besides <hi rend="font-style: italic">S</hi>, namely, the point <hi rend="font-style: italic">P</hi> where +it meets its corresponding ray. Now, by choosing the +ray through <hi rend="font-style: italic">S</hi> sufficiently close to the ray <hi rend="font-style: italic">SS'</hi>, the point +<hi rend="font-style: italic">P</hi> may be made to approach arbitrarily close to <hi rend="font-style: italic">S'</hi>, and +the ray <hi rend="font-style: italic">S'P</hi> may be made to differ in position from the +<pb n="38" /><anchor id="Pg38" /> +tangent line at <hi rend="font-style: italic">S'</hi> by as little as we please. We have, +then, the important theorem</p> + +<p><hi rend="font-style: italic">The ray at <hi rend="font-style: italic">S'</hi> which corresponds to the common ray <hi rend="font-style: italic">SS'</hi> +is tangent to the locus at <hi rend="font-style: italic">S'</hi>.</hi></p> + +<p>In the same manner the tangent at <hi rend="font-style: italic">S</hi> may be +constructed.</p></div> + +<div> +<index index="toc" level1="62. Determination of the locus" /><index index="pdf" /> +<head></head><p><anchor id="p62" /><hi rend="font-weight: bold">62. Determination of the locus.</hi> We now show that +<hi rend="font-style: italic">it is possible to assign arbitrarily the position of three +points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">C</hi>, on the locus (besides the points <hi rend="font-style: italic">S</hi> +and <hi rend="font-style: italic">S'</hi>); but, these three points being chosen, the locus is +completely determined.</hi></p></div> + +<div> +<index index="toc" level1="63. Restatement of the problem" /><index index="pdf" /> +<head></head><p><anchor id="p63" /><hi rend="font-weight: bold">63.</hi> This statement is equivalent to the following:</p> + +<p><hi rend="font-style: italic">Given three pairs of corresponding rays in two projective +pencils, it is possible to find a ray of one which corresponds +to any ray of the other.</hi></p></div> + +<div> +<index index="toc" level1="64. Solution of the fundamental problem" /><index index="pdf" /> +<head></head><p><anchor id="p64" /><hi rend="font-weight: bold">64.</hi> We proceed, then, to the solution of the fundamental</p> + +<p><hi rend="font-variant: small-caps">Problem</hi>: <hi rend="font-style: italic">Given three pairs of rays, <hi rend="font-style: italic">aa'</hi>, <hi rend="font-style: italic">bb'</hi>, and <hi rend="font-style: italic">cc'</hi>, +of two protective pencils, <hi rend="font-style: italic">S</hi> and <hi rend="font-style: italic">S'</hi>, to find the ray <hi rend="font-style: italic">d'</hi> of <hi rend="font-style: italic">S'</hi> +which corresponds to any ray <hi rend="font-style: italic">d</hi> of <hi rend="font-style: italic">S</hi>.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image12.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 12</head> +<figDesc>Figure 12</figDesc> +</figure></p> + +<p>Call <hi rend="font-style: italic">A</hi> the intersection of <hi rend="font-style: italic">aa'</hi>, <hi rend="font-style: italic">B</hi> the intersection of <hi rend="font-style: italic">bb'</hi>, +and <hi rend="font-style: italic">C</hi> the intersection of <hi rend="font-style: italic">cc'</hi> (Fig. 12). Join <hi rend="font-style: italic">AB</hi> by the +line <hi rend="font-style: italic">u</hi>, and <hi rend="font-style: italic">AC</hi> by the line <hi rend="font-style: italic">u'</hi>. Consider <hi rend="font-style: italic">u</hi> as a point-row +perspective to <hi rend="font-style: italic">S</hi>, and <hi rend="font-style: italic">u'</hi> as a point-row perspective +to <hi rend="font-style: italic">S'</hi>. <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> are projectively related to each other, +since <hi rend="font-style: italic">S</hi> and <hi rend="font-style: italic">S'</hi> are, by hypothesis, so related. But their +point of intersection <hi rend="font-style: italic">A</hi> is a self-corresponding point, since +<hi rend="font-style: italic">a</hi> and <hi rend="font-style: italic">a'</hi> were supposed to be corresponding rays. It follows +(§ 52) that <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> are in perspective position, +and that lines through corresponding points all pass +<pb n="39" /><anchor id="Pg39" /> +through a point <hi rend="font-style: italic">M</hi>, the center of perspectivity, the +position of which will be determined by any two such +lines. But the intersection of <hi rend="font-style: italic">a</hi> with <hi rend="font-style: italic">u</hi> and the intersection +of <hi rend="font-style: italic">c'</hi> with <hi rend="font-style: italic">u'</hi> are corresponding points on <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, +and the line joining them is clearly <hi rend="font-style: italic">c</hi> itself. Similarly, +<hi rend="font-style: italic">b'</hi> joins two corresponding points on <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, and so the +center <hi rend="font-style: italic">M</hi> of perspectivity of <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> is the intersection +of <hi rend="font-style: italic">c</hi> and <hi rend="font-style: italic">b'</hi>. To find <hi rend="font-style: italic">d'</hi> in <hi rend="font-style: italic">S'</hi> corresponding to a given +line <hi rend="font-style: italic">d</hi> of <hi rend="font-style: italic">S</hi> we note the point <hi rend="font-style: italic">L</hi> where <hi rend="font-style: italic">d</hi> meets <hi rend="font-style: italic">u</hi>. Join +<hi rend="font-style: italic">L</hi> to <hi rend="font-style: italic">M</hi> and get the point <hi rend="font-style: italic">N</hi> where this line meets <hi rend="font-style: italic">u'</hi>. +<hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi> are corresponding points on <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, and <hi rend="font-style: italic">d'</hi> +must therefore pass through <hi rend="font-style: italic">N</hi>. The intersection <hi rend="font-style: italic">P</hi> of +<hi rend="font-style: italic">d</hi> and <hi rend="font-style: italic">d'</hi> is thus another point on the locus. In the same +manner any number of other points may be obtained.</p></div> + +<div> +<index index="toc" level1="65. Different constructions for the figure" /><index index="pdf" /> +<head></head><p><anchor id="p65" /><hi rend="font-weight: bold">65.</hi> The lines <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> might have been drawn in +any direction through <hi rend="font-style: italic">A</hi> (avoiding, of course, the line +<hi rend="font-style: italic">a</hi> for <hi rend="font-style: italic">u</hi> and the line <hi rend="font-style: italic">a'</hi> for <hi rend="font-style: italic">u'</hi>), and the center of perspectivity +<hi rend="font-style: italic">M</hi> would be easily obtainable; but the above +construction furnishes a simple and instructive figure. +An equally simple one is obtained by taking <hi rend="font-style: italic">a'</hi> for <hi rend="font-style: italic">u</hi> +and <hi rend="font-style: italic">a</hi> for <hi rend="font-style: italic">u'</hi>.</p> + +<pb n="40" /><anchor id="Pg40" /></div> + +<div> +<index index="toc" level1="66. Lines joining four points of the locus to a fifth" /><index index="pdf" /> +<head></head><p><anchor id="p66" /><hi rend="font-weight: bold">66. Lines joining four points of the locus to a fifth.</hi> +Suppose that the points <hi rend="font-style: italic">S</hi>, <hi rend="font-style: italic">S'</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, and <hi rend="font-style: italic">D</hi> are fixed, +and that four points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">A<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">A<hi rend="vertical-align: sub">2</hi></hi>, and <hi rend="font-style: italic">A<hi rend="vertical-align: sub">3</hi></hi>, are taken on the +locus at the intersection with it of any four harmonic +rays through <hi rend="font-style: italic">B</hi>. These four harmonic rays give four +harmonic points, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">L<hi rend="vertical-align: sub">1</hi></hi> etc., on the fixed ray <hi rend="font-style: italic">SD</hi>. These, +in turn, project through the fixed point <hi rend="font-style: italic">M</hi> into four +harmonic points, <hi rend="font-style: italic">N</hi>, <hi rend="font-style: italic">N<hi rend="vertical-align: sub">1</hi></hi> etc., on the fixed line <hi rend="font-style: italic">DS'</hi>. +These last four harmonic points give four harmonic +rays <hi rend="font-style: italic">CA</hi>, <hi rend="font-style: italic">CA<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">CA<hi rend="vertical-align: sub">2</hi></hi>, <hi rend="font-style: italic">CA<hi rend="vertical-align: sub">3</hi></hi>. Therefore the four points <hi rend="font-style: italic">A</hi> +which project to <hi rend="font-style: italic">B</hi> in four harmonic rays also project +to <hi rend="font-style: italic">C</hi> in four harmonic rays. But <hi rend="font-style: italic">C</hi> may be any +point on the locus, and so we have the very important +theorem,</p> + +<p><hi rend="font-style: italic">Four points which are on the locus, and which project +to a fifth point of the locus in four harmonic rays, project +to any point of the locus in four harmonic rays.</hi></p></div> + +<div> +<index index="toc" level1="67. Restatement of the theorem" /><index index="pdf" /> +<head></head><p><anchor id="p67" /><hi rend="font-weight: bold">67.</hi> The theorem may also be stated thus:</p> + +<p><hi rend="font-style: italic">The locus of points from which, four given points are +seen along four harmonic rays is a point-row of the second +order through them.</hi></p></div> + +<div> +<index index="toc" level1="68. Further important theorem" /><index index="pdf" /> +<head></head><p><anchor id="p68" /><hi rend="font-weight: bold">68.</hi> A further theorem of prime importance also +follows:</p> + +<p><hi rend="font-style: italic">Any two points on the locus may be taken as the centers +of two projective pencils which will generate the locus.</hi></p></div> + +<div> +<index index="toc" level1="69. Pascal's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p69" /><hi rend="font-weight: bold">69. Pascal's theorem.</hi> The points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, <hi rend="font-style: italic">S</hi>, and +<hi rend="font-style: italic">S'</hi> may thus be considered as chosen arbitrarily on the +locus, and the following remarkable theorem follows +at once.</p> + +<pb n="41" /><anchor id="Pg41" /> + +<p><hi rend="font-style: italic">Given six points, 1, 2, 3, 4, 5, 6, on the point-row of +the second order, if we call</hi></p> + +<p rend="text-align: center"><hi rend="font-style: italic">L the intersection of 12 with 45,</hi></p> +<p rend="text-align: center"><hi rend="font-style: italic">M the intersection of 23 with 56,</hi></p> +<p rend="text-align: center"><hi rend="font-style: italic">N the intersection of 34 with 61,</hi></p> + +<p><hi rend="font-style: italic">then <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, and <hi rend="font-style: italic">N</hi> are on a straight line.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image13.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 13</head> +<figDesc>Figure 13</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="70. Permutation of points in Pascal's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p70" /><hi rend="font-weight: bold">70.</hi> To get the notation to correspond to the figure, we +may take (Fig. 13) <hi rend="font-style: italic">A = 1</hi>, <hi rend="font-style: italic">B = 2</hi>, <hi rend="font-style: italic">S' = 3</hi>, <hi rend="font-style: italic">D = 4</hi>, <hi rend="font-style: italic">S = 5</hi>, and +<hi rend="font-style: italic">C = 6</hi>. If we make <hi rend="font-style: italic">A = 1</hi>, <hi rend="font-style: italic">C=2</hi>, <hi rend="font-style: italic">S=3</hi>, <hi rend="font-style: italic">D = 4</hi>, <hi rend="font-style: italic">S'=5</hi>, and. +<hi rend="font-style: italic">B = 6</hi>, the points <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi> are interchanged, but the line +is left unchanged. +It is clear that one +point may be named +arbitrarily and the +other five named in +<hi rend="font-style: italic">5! = 120</hi> different +ways, but since, as +we have seen, two +different assignments +of names give the +same line, it follows +that there cannot be +more than 60 different +lines <hi rend="font-style: italic">LMN</hi> obtained in this way from a given set of +six points. As a matter of fact, the number obtained in +this way is in general <hi rend="font-style: italic">60</hi>. The above theorem, which +is of cardinal importance in the theory of the point-row +of the second order, is due to Pascal and was discovered +by him at the age of sixteen. It is, no doubt, the most +important contribution to the theory of these loci since +<pb n="42" /><anchor id="Pg42" /> +the days of Apollonius. If the six points be called the +vertices of a hexagon inscribed in the curve, then the +sides 12 and 45 may be appropriately called a pair of +opposite sides. Pascal's theorem, then, may be stated +as follows:</p> + +<p><hi rend="font-style: italic">The three pairs of opposite sides of a hexagon inscribed in +a point-row of the second order meet in three points on a line.</hi></p></div> + +<div> +<index index="toc" level1="71. Harmonic points on a point-row of the second order" /><index index="pdf" /> +<head></head><p><anchor id="p71" /><hi rend="font-weight: bold">71. Harmonic points on a point-row of the second order.</hi> +Before proceeding to develop the consequences of this +theorem, we note another result of the utmost importance +for the higher developments of pure geometry, +which follows from the fact that if four points on the +locus project to a fifth in four harmonic rays, they will +project to any point of the locus in four harmonic rays. +It is natural to speak of four such points as four harmonic +points on the locus, and to use this notion to +define projective correspondence between point-rows of +the second order, or between a point-row of the second +order and any fundamental form of the first order. +Thus, in particular, the point-row of the second order, +σ, is said to be <hi rend="font-style: italic">perspectively related</hi> to the pencil <hi rend="font-style: italic">S</hi> when +every ray on <hi rend="font-style: italic">S</hi> goes through the point on σ which +corresponds to it.</p></div> + +<div> +<index index="toc" level1="72. Determination of the locus" /><index index="pdf" /> +<head></head><p><anchor id="p72" /><hi rend="font-weight: bold">72. Determination of the locus.</hi> It is now clear that +five points, arbitrarily chosen in the plane, are sufficient +to determine a point-row of the second order through +them. Two of the points may be taken as centers of +two projective pencils, and the three others will determine +three pairs of corresponding rays of the pencils, +and therefore all pairs. If four points of the locus are +<pb n="43" /><anchor id="Pg43" /> +given, together with the tangent at one of them, the +locus is likewise completely determined. For if the point +at which the tangent is given be taken as the center <hi rend="font-style: italic">S</hi> +of one pencil, and any other of the points for <hi rend="font-style: italic">S'</hi>, then, +besides the two pairs of corresponding rays determined +by the remaining two points, we have one more pair, +consisting of the tangent at <hi rend="font-style: italic">S</hi> and the ray <hi rend="font-style: italic">SS'</hi>. Similarly, +the curve is determined by three points and the +tangents at two of them.</p></div> + +<div> +<index index="toc" level1="73. Circles and conics as point-rows of the second order" /><index index="pdf" /> +<head></head><p><anchor id="p73" /><hi rend="font-weight: bold">73. Circles and conics as point-rows of the second order.</hi> +It is not difficult to see that a circle is a point-row of +the second order. Indeed, take any point <hi rend="font-style: italic">S</hi> on the circle +and draw four harmonic rays through it. They will cut +the circle in four points, which will project to any other +point of the curve in four harmonic rays; for, by the +theorem concerning the angles inscribed in a circle, the +angles involved in the second set of four lines are +the same as those in the first set. If, moreover, we project +the figure to any point in space, we shall get a cone, +standing on a circular base, generated by two projective +axial pencils which are the projections of the pencils +at <hi rend="font-style: italic">S</hi> and <hi rend="font-style: italic">S'</hi>. Cut across, now, by any plane, and we get +a conic section which is thus exhibited as the locus of +intersection of two projective pencils. It thus appears +that a conic section is a point-row of the second order. +It will later appear that a point-row of the second order +is a conic section. In the future, therefore, we shall +refer to a point-row of the second order as a conic.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image14.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 14</head> +<figDesc>Figure 14</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="74. Conic through five points" /><index index="pdf" /> +<head></head><p><anchor id="p74" /><hi rend="font-weight: bold">74. Conic through five points.</hi> Pascal's theorem furnishes +an elegant solution of the problem of drawing a +conic through five given points. To construct a sixth +<pb n="44" /><anchor id="Pg44" /> +point on the conic, draw through the point numbered 1 +an arbitrary line (Fig. 14), and let the desired point +6 be the second point of intersection +of this line with the conic. The point +<hi rend="font-style: italic">L = 12-45</hi> is obtainable at once; also +the point <hi rend="font-style: italic">N = 34-61</hi>. But <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi> +determine Pascal's line, and the intersection +of 23 with 56 must be on +this line. Intersect, then, the line <hi rend="font-style: italic">LN</hi> +with 23 and obtain the point <hi rend="font-style: italic">M</hi>. Join +<hi rend="font-style: italic">M</hi> to 5 and intersect with 61 for the desired point 6.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image15.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 15</head> +<figDesc>Figure 15</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="75. Tangent to a conic" /><index index="pdf" /> +<head></head><p><anchor id="p75" /><hi rend="font-weight: bold">75. Tangent to a conic.</hi> If two points of Pascal's hexagon +approach coincidence, then the line joining them +approaches as a limiting position the tangent line at that +point. Pascal's theorem thus affords a ready method of +drawing the tangent line to a conic +at a given point. If the conic is determined +by the points 1, 2, 3, 4, 5 +(Fig. 15), and it is desired to draw +the tangent at the point 1, we may +call that point 1, 6. The points +<hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi> are obtained as usual, +and the intersection of 34 with <hi rend="font-style: italic">LM</hi> +gives <hi rend="font-style: italic">N</hi>. Join <hi rend="font-style: italic">N</hi> to the point 1 for +the desired tangent at that point.</p></div> + +<div> +<index index="toc" level1="76. Inscribed quadrangle" /><index index="pdf" /> +<head></head><p><anchor id="p76" /><hi rend="font-weight: bold">76. Inscribed quadrangle.</hi> Two pairs of vertices may +coalesce, giving an inscribed quadrangle. Pascal's theorem +gives for this case the very important theorem</p> + +<p><hi rend="font-style: italic">Two pairs of opposite sides of any quadrangle inscribed +in a conic meet on a straight line, upon which line also +intersect the two pairs of tangents at the opposite vertices.</hi></p> + +<pb n="45" /><anchor id="Pg45" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image16.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 16</head> +<figDesc>Figure 16</figDesc> +</figure></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image17.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 17</head> +<figDesc>Figure 17</figDesc> +</figure></p> + +<p>For let the vertices be <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, and <hi rend="font-style: italic">D</hi>, and call the +vertex <hi rend="font-style: italic">A</hi> the point 1, 6; <hi rend="font-style: italic">B</hi>, the point 2; <hi rend="font-style: italic">C</hi>, the point +3, 4; and <hi rend="font-style: italic">D</hi>, the point 5 (Fig. 16). Pascal's theorem then +indicates that +<hi rend="font-style: italic">L = AB-CD</hi>, +<hi rend="font-style: italic">M = AD-BC</hi>, +and <hi rend="font-style: italic">N</hi>, which +is the intersection +of the +tangents at <hi rend="font-style: italic">A</hi> +and <hi rend="font-style: italic">C</hi>, are all +on a straight +line <hi rend="font-style: italic">u</hi>. But +if we were to +call <hi rend="font-style: italic">A</hi> the point 2, <hi rend="font-style: italic">B</hi> the point 6, 1, <hi rend="font-style: italic">C</hi> the point 5, and +<hi rend="font-style: italic">D</hi> the point 4, 3, then the intersection <hi rend="font-style: italic">P</hi> of the tangents +at <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are also on this same +line <hi rend="font-style: italic">u</hi>. Thus <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi>, and <hi rend="font-style: italic">P</hi> are +four points on a straight line. +The consequences of this theorem +are so numerous and important +that we shall devote a separate +chapter to them.</p></div> + +<div> +<index index="toc" level1="77. Inscribed triangle" /><index index="pdf" /> +<head></head><p><anchor id="p77" /><hi rend="font-weight: bold">77. Inscribed triangle.</hi> Finally, +three of the vertices of the hexagon +may coalesce, giving a triangle +inscribed in a conic. Pascal's +theorem then reads as follows (Fig. 17) for this case:</p> + +<p><hi rend="font-style: italic">The three tangents at the vertices of a triangle inscribed +in a conic meet the opposite sides in three points on a +straight line.</hi></p> + +<pb n="46" /><anchor id="Pg46" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image18.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 18</head> +<figDesc>Figure 18</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="78. Degenerate conic" /><index index="pdf" /> +<head></head><p><anchor id="p78" /><hi rend="font-weight: bold">78. Degenerate conic.</hi> If we apply Pascal's theorem +to a degenerate conic made up of a pair of straight +lines, we get the +following theorem +(Fig. 18):</p> + +<p><hi rend="font-style: italic">If three points, +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, are +chosen on one +line, and three +points, <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, +<hi rend="font-style: italic">C'</hi>, are chosen on +another, then the +three points <hi rend="font-style: italic">L = AB'-A'B</hi>, <hi rend="font-style: italic">M = BC'-B'C</hi>, <hi rend="font-style: italic">N = CA'-C'A</hi> +are all on a straight line.</hi></p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. In Fig. 12, select different lines <hi rend="font-style: italic">u</hi> and trace the locus +of the center of perspectivity <hi rend="font-style: italic">M</hi> of the lines <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>.</p> + +<p>2. Given four points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, in the plane, construct +a fifth point <hi rend="font-style: italic">P</hi> such that the lines <hi rend="font-style: italic">PA</hi>, <hi rend="font-style: italic">PB</hi>, <hi rend="font-style: italic">PC</hi>, <hi rend="font-style: italic">PD</hi> shall be +four harmonic lines.</p> + +<p><hi rend="font-style: italic">Suggestion.</hi> Draw a line <hi rend="font-style: italic">a</hi> through the point <hi rend="font-style: italic">A</hi> such that the four +lines <hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">AB</hi>, <hi rend="font-style: italic">AC</hi>, <hi rend="font-style: italic">AD</hi> are harmonic. Construct now a conic through +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, and <hi rend="font-style: italic">D</hi> having <hi rend="font-style: italic">a</hi> for a tangent at <hi rend="font-style: italic">A</hi>.</p> + +<p>3. Where are all the points <hi rend="font-style: italic">P</hi>, as determined in the +preceding question, to be found?</p> + +<p>4. Select any five points in the plane and draw the tangent +to the conic through them at each of the five points.</p> + +<p>5. Given four points on the conic, and the tangent at one of +them, to construct the conic. ("To construct the conic" means +here to construct as many other points as may be desired.)</p> + +<pb n="47" /><anchor id="Pg47" /> + +<p>6. Given three points on the conic, and the tangent at +two of them, to construct the conic.</p> + +<p>7. Given five points, two of which are at infinity in +different directions, to construct the conic. (In this, and +in the following examples, the student is supposed to be +able to draw a line parallel to a given line.)</p> + +<p>8. Given four points on a conic (two of which are at infinity +and two in the finite part of the plane), together with +the tangent at one of the finite points, to construct the conic.</p> + +<p>9. The tangents to a curve at its infinitely distant points +are called its <hi rend="font-style: italic">asymptotes</hi> if they pass through a finite part +of the plane. Given the asymptotes and a finite point of a +conic, to construct the conic.</p> + +<p>10. Given an asymptote and three finite points on the +conic, to determine the conic.</p> + +<p>11. Given four points, one of which is at infinity, and +given also that the line at infinity is a tangent line, to +construct the conic.</p> +</div> +</div> + +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<pb n="48" /><anchor id="Pg48" /> +<head>CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER</head> + +<div> +<index index="toc" level1="79. Pencil of rays of the second order defined" /><index index="pdf" /> +<head></head><p><anchor id="p79" /><hi rend="font-weight: bold">79. Pencil of rays of the second order defined.</hi> If the +corresponding points of two projective point-rows be +joined by straight lines, a system of lines is obtained +which is called a pencil of rays of the second order. +This name arises from the fact, easily shown (§ 57), that +at most two lines of the system may pass through any +arbitrary point in the plane. For if through any point +there should pass three lines of the system, then this +point might be taken as the center of two projective +pencils, one projecting one point-row and the other projecting +the other. Since, now, these pencils have three +rays of one coincident with the corresponding rays of +the other, the two are identical and the two point-rows +are in perspective position, which was not supposed.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image19.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 19</head> +<figDesc>Figure 19</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="80. Tangents to a circle" /><index index="pdf" /> +<head></head><p><anchor id="p80" /><hi rend="font-weight: bold">80. Tangents to a circle.</hi> To get a clear notion of this +system of lines, we may first show that the tangents +to a circle form a system of this kind. For take any +two tangents, <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, to a circle, and let <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi> +be the points of contact (Fig. 19). Let now <hi rend="font-style: italic">t</hi> be any +third tangent with point of contact at <hi rend="font-style: italic">C</hi> and meeting <hi rend="font-style: italic">u</hi> +and <hi rend="font-style: italic">u'</hi> in <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi> respectively. Join <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">P'</hi>, and +<hi rend="font-style: italic">C</hi> to <hi rend="font-style: italic">O</hi>, the center of the circle. Tangents from any +point to a circle are equal, and therefore the triangles +<hi rend="font-style: italic">POA</hi> and <hi rend="font-style: italic">POC</hi> are equal, as also are the triangles <hi rend="font-style: italic">P'OB</hi> +<pb n="49" /><anchor id="Pg49" /> +and <hi rend="font-style: italic">P'OC</hi>. Therefore the angle <hi rend="font-style: italic">POP'</hi> is constant, being +equal to half the constant angle <hi rend="font-style: italic">AOC + COB</hi>. This +being true, if we take any four harmonic points, <hi rend="font-style: italic">P<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">P<hi rend="vertical-align: sub">2</hi></hi>, +<hi rend="font-style: italic">P<hi rend="vertical-align: sub">3</hi></hi>, <hi rend="font-style: italic">P<hi rend="vertical-align: sub">4</hi></hi>, on the line <hi rend="font-style: italic">u</hi>, they will project to <hi rend="font-style: italic">O</hi> in four +harmonic lines, and the tangents +to the circle from these four +points will meet <hi rend="font-style: italic">u'</hi> in four harmonic +points, <hi rend="font-style: italic">P'<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">P'<hi rend="vertical-align: sub">2</hi></hi>, <hi rend="font-style: italic">P'<hi rend="vertical-align: sub">3</hi></hi>, <hi rend="font-style: italic">P'<hi rend="vertical-align: sub">4</hi></hi>, because +the lines from these points +to <hi rend="font-style: italic">O</hi> inclose the same angles as +the lines from the points <hi rend="font-style: italic">P<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">P<hi rend="vertical-align: sub">2</hi></hi>, +<hi rend="font-style: italic">P<hi rend="vertical-align: sub">3</hi></hi>, <hi rend="font-style: italic">P<hi rend="vertical-align: sub">4</hi></hi> on <hi rend="font-style: italic">u</hi>. The point-row on <hi rend="font-style: italic">u</hi> is therefore projective +to the point-row on <hi rend="font-style: italic">u'</hi>. Thus the tangents to a circle +are seen to join corresponding points on two projective +point-rows, and so, according to the definition, form a +pencil of rays of the second order.</p></div> + +<div> +<index index="toc" level1="81. Tangents to a conic" /><index index="pdf" /> +<head></head><p><anchor id="p81" /><hi rend="font-weight: bold">81. Tangents to a conic.</hi> If now this figure be projected +to a point outside the plane of the circle, and +any section of the resulting cone be made by a plane, +we can easily see that the system of rays tangent to any +conic section is a pencil of rays of the second order. +The converse is also true, as we shall see later, and a +pencil of rays of the second order is also a set of lines +tangent to a conic section.</p></div> + +<div> +<index index="toc" level1="82. Generating point-rows lines of the system" /><index index="pdf" /> +<head></head><p><anchor id="p82" /><hi rend="font-weight: bold">82.</hi> The point-rows <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> are, themselves, lines of +the system, for to the common point of the two point-rows, +considered as a point of <hi rend="font-style: italic">u</hi>, must correspond some +point of <hi rend="font-style: italic">u'</hi>, and the line joining these two corresponding +points is clearly <hi rend="font-style: italic">u'</hi> itself. Similarly for the line <hi rend="font-style: italic">u</hi>.</p></div> + +<div> +<index index="toc" level1="83. Determination of the pencil" /><index index="pdf" /> +<head></head><p><anchor id="p83" /><hi rend="font-weight: bold">83. Determination of the pencil.</hi> We now show that +<hi rend="font-style: italic">it is possible to assign arbitrarily three lines, <hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">b</hi>, and <hi rend="font-style: italic">c</hi>, of +<pb n="50" /><anchor id="Pg50" /> +the system (besides the lines <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>); but if these three +lines are chosen, the system is completely determined.</hi></p> + +<p>This statement is equivalent to the following:</p> + +<p><hi rend="font-style: italic">Given three pairs of corresponding points in two projective +point-rows, it is possible to find a point in one +which corresponds to any point of the other.</hi></p> + +<p>We proceed, then, to the solution of the fundamental</p> + +<p><hi rend="font-variant: small-caps">Problem.</hi> <hi rend="font-style: italic">Given three pairs of points, <hi rend="font-style: italic">AA'</hi>, <hi rend="font-style: italic">BB'</hi>, and +<hi rend="font-style: italic">CC'</hi>, of two projective point-rows <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi>, to find the point +<hi rend="font-style: italic">D'</hi> of <hi rend="font-style: italic">u'</hi> which corresponds to any given point <hi rend="font-style: italic">D</hi> of <hi rend="font-style: italic">u</hi>.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image20.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 20</head> +<figDesc>Figure 20</figDesc> +</figure></p> + +<p>On the line <hi rend="font-style: italic">a</hi>, joining <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, take two points, <hi rend="font-style: italic">S</hi> +and <hi rend="font-style: italic">S'</hi>, as centers of pencils perspective to <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> +respectively (Fig. 20). The figure +will be much simplified if we take +<hi rend="font-style: italic">S</hi> on <hi rend="font-style: italic">BB'</hi> and <hi rend="font-style: italic">S'</hi> on <hi rend="font-style: italic">CC'</hi>. <hi rend="font-style: italic">SA</hi> and +<hi rend="font-style: italic">S'A'</hi> are corresponding rays of <hi rend="font-style: italic">S</hi> +and <hi rend="font-style: italic">S'</hi>, and the two pencils are +therefore in perspective position. +It is not difficult to see that the +axis of perspectivity <hi rend="font-style: italic">m</hi> is the line +joining <hi rend="font-style: italic">B'</hi> and <hi rend="font-style: italic">C</hi>. Given any point +<hi rend="font-style: italic">D</hi> on <hi rend="font-style: italic">u</hi>, to find the corresponding +point <hi rend="font-style: italic">D'</hi> on <hi rend="font-style: italic">u'</hi> we proceed as +follows: Join <hi rend="font-style: italic">D</hi> to <hi rend="font-style: italic">S</hi> and note +where the joining line meets <hi rend="font-style: italic">m</hi>. Join this point to <hi rend="font-style: italic">S'</hi>. +This last line meets <hi rend="font-style: italic">u'</hi> in the desired point <hi rend="font-style: italic">D'</hi>.</p> + +<p>We have now in this figure six lines of the system, +<hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">b</hi>, <hi rend="font-style: italic">c</hi>, <hi rend="font-style: italic">d</hi>, <hi rend="font-style: italic">u</hi>, and <hi rend="font-style: italic">u'</hi>. Fix now the position of <hi rend="font-style: italic">u</hi>, <hi rend="font-style: italic">u'</hi>, <hi rend="font-style: italic">b</hi>, <hi rend="font-style: italic">c</hi>, and +<hi rend="font-style: italic">d</hi>, and take four lines of the system, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">2</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">3</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">4</hi></hi>, which +meet <hi rend="font-style: italic">b</hi> in four harmonic points. These points project to +<pb n="51" /><anchor id="Pg51" /> +<hi rend="font-style: italic">D</hi>, giving four harmonic points on <hi rend="font-style: italic">m</hi>. These again project +to <hi rend="font-style: italic">D'</hi>, giving four harmonic points on <hi rend="font-style: italic">c</hi>. It is thus clear +that the rays <hi rend="font-style: italic">a<hi rend="vertical-align: sub">1</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">2</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">3</hi></hi>, <hi rend="font-style: italic">a<hi rend="vertical-align: sub">4</hi></hi> cut out two projective point-rows +on any two lines of the system. Thus <hi rend="font-style: italic">u</hi> and <hi rend="font-style: italic">u'</hi> are +not special rays, and any two rays of the system will +serve as the point-rows to generate the system of lines.</p></div> + +<div> +<index index="toc" level1="84. Brianchon's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p84" /><hi rend="font-weight: bold">84. Brianchon's theorem.</hi> From the figure also appears +a fundamental theorem due to Brianchon:</p> + +<p><hi rend="font-style: italic">If <hi rend="font-style: italic">1</hi>, <hi rend="font-style: italic">2</hi>, <hi rend="font-style: italic">3</hi>, <hi rend="font-style: italic">4</hi>, <hi rend="font-style: italic">5</hi>, <hi rend="font-style: italic">6</hi> are any six rays of a pencil of the +second order, then the lines <hi rend="font-style: italic">l = (12, 45)</hi>, <hi rend="font-style: italic">m = (23, 56)</hi>, +<hi rend="font-style: italic">n = (34, 61)</hi> all pass through a point.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image21.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 21</head> +<figDesc>Figure 21</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="85. Permutations of lines in Brianchon's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p85" /><hi rend="font-weight: bold">85.</hi> To make the notation fit the figure (Fig. 21), make +<hi rend="font-style: italic">a=1</hi>, <hi rend="font-style: italic">b = 2</hi>, <hi rend="font-style: italic">u' = 3</hi>, <hi rend="font-style: italic">d = 4</hi>, <hi rend="font-style: italic">u = 5</hi>, <hi rend="font-style: italic">c = 6</hi>; or, interchanging +two of the lines, <hi rend="font-style: italic">a = 1</hi>, +<hi rend="font-style: italic">c = 2</hi>, <hi rend="font-style: italic">u = 3</hi>, <hi rend="font-style: italic">d = 4</hi>, <hi rend="font-style: italic">u' = 5</hi>, +<hi rend="font-style: italic">b = 6</hi>. Thus, by different +namings of the +lines, it appears that +not more than 60 different +<hi rend="font-style: italic">Brianchon points</hi> +are possible. If we +call 12 and 45 opposite +vertices of a circumscribed +hexagon, +then Brianchon's theorem may be stated as follows:</p> + +<p><hi rend="font-style: italic">The three lines joining the three pairs of opposite vertices +of a hexagon circumscribed about a conic meet in a point.</hi></p></div> + +<div> +<index index="toc" level1="86. Construction of the penvil by Brianchon's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p86" /><hi rend="font-weight: bold">86. Construction of the pencil by Brianchon's theorem.</hi> +Brianchon's theorem furnishes a ready method of determining +a sixth line of the pencil of rays of the second +<pb n="52" /><anchor id="Pg52" /> +order when five are given. Thus, select a point in line +1 and suppose that line 6 is to pass through it. Then +<hi rend="font-style: italic">l = (12, 45)</hi>, <hi rend="font-style: italic">n = (34, 61)</hi>, and the line <hi rend="font-style: italic">m = (23, 56)</hi> must +pass through <hi rend="font-style: italic">(l, n)</hi>. Then <hi rend="font-style: italic">(23, ln)</hi> meets 5 in a point of +the required sixth line.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image22.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 22</head> +<figDesc>Figure 22</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="87. Point of contact +of a tangent to a conic" /><index index="pdf" /> +<head></head><p><anchor id="p87" /><hi rend="font-weight: bold">87. Point of contact +of a tangent to a conic.</hi> +If the line 2 approach +as a limiting position the +line 1, then the intersection +<hi rend="font-style: italic">(1, 2)</hi> approaches +as a limiting position +the point of contact of +1 with the conic. This suggests an easy way to construct +the point of contact of any tangent with the conic. +Thus (Fig. 22), given the lines 1, 2, 3, 4, 5 to construct +the point of contact of <hi rend="font-style: italic">1=6</hi>. +Draw <hi rend="font-style: italic">l = (12,45)</hi>, <hi rend="font-style: italic">m =(23,56)</hi>; +then <hi rend="font-style: italic">(34, lm)</hi> meets 1 in the +required point of contact <hi rend="font-style: italic">T</hi>.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image23.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 23</head> +<figDesc>Figure 23</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="88. Circumscribed quadrilateral" /><index index="pdf" /> +<head></head><p><anchor id="p88" /><hi rend="font-weight: bold">88. Circumscribed quadrilateral.</hi> +If two pairs of lines in +Brianchon's hexagon coalesce, +we have a theorem concerning +a quadrilateral circumscribed +about a conic. It is +easily found to be (Fig. 23)</p> + +<p><hi rend="font-style: italic">The four lines joining the two opposite pairs of vertices +and the two opposite points of contact of a quadrilateral +circumscribed about a conic all meet in a point.</hi> The +consequences of this theorem will be deduced later.</p> + +<pb n="53" /><anchor id="Pg53" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image24.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 24</head> +<figDesc>Figure 24</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="89. Circumscribed triangle" /><index index="pdf" /> +<head></head><p><anchor id="p89" /><hi rend="font-weight: bold">89. Circumscribed triangle.</hi> The hexagon may further +degenerate into a triangle, giving the theorem (Fig. 24) +<hi rend="font-style: italic">The lines joining the vertices to +the points of contact of the opposite +sides of a triangle circumscribed +about a conic all meet in a point.</hi></p></div> + +<div> +<index index="toc" level1="90. Use of Brianchon's theorem" /><index index="pdf" /> +<head></head><p><anchor id="p90" /><hi rend="font-weight: bold">90.</hi> Brianchon's theorem may +also be used to solve the following +problems:</p> + +<p><hi rend="font-style: italic">Given four tangents and the point +of contact on any one of them, to construct other tangents to +a conic. Given three tangents and the points of contact of +any two of them, to construct other tangents to a conic.</hi></p></div> + +<div> +<index index="toc" level1="91. Harmonic tangents" /><index index="pdf" /> +<head></head><p><anchor id="p91" /><hi rend="font-weight: bold">91. Harmonic tangents.</hi> We have seen that a variable +tangent cuts out on any two fixed tangents projective +point-rows. It follows that if four tangents cut a fifth +in four harmonic points, they must cut every tangent in +four harmonic points. It is possible, therefore, to make +the following definition:</p> + +<p><hi rend="font-style: italic">Four tangents to a conic are said to be harmonic when +they meet every other tangent in four harmonic points.</hi></p></div> + +<div> +<index index="toc" level1="92. Projectivity and perspectivity" /><index index="pdf" /> +<head></head><p><anchor id="p92" /><hi rend="font-weight: bold">92. Projectivity and perspectivity.</hi> This definition suggests +the possibility of defining a projective correspondence +between the elements of a pencil of rays of the +second order and the elements of any form heretofore +discussed. In particular, the points on a tangent are +said to be <hi rend="font-style: italic">perspectively related</hi> to the tangents of a conic +when each point lies on the tangent which corresponds +to it. These notions are of importance in the higher +developments of the subject.</p> + +<pb n="54" /><anchor id="Pg54" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image25.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 25</head> +<figDesc>Figure 25</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="93. Degenerate case" /><index index="pdf" /> +<head></head><p><anchor id="p93" /><hi rend="font-weight: bold">93.</hi> Brianchon's theorem may also be applied to a +degenerate conic made up of two points and the lines +through them. Thus(Fig. 25),</p> + +<p><hi rend="font-style: italic">If <hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">b</hi>, <hi rend="font-style: italic">c</hi> are three lines +through a point <hi rend="font-style: italic">S</hi>, and <hi rend="font-style: italic">a'</hi>, <hi rend="font-style: italic">b'</hi>, +<hi rend="font-style: italic">c'</hi> are three lines through another +point <hi rend="font-style: italic">S'</hi>, then the lines +<hi rend="font-style: italic">l = (ab', a'b)</hi>, <hi rend="font-style: italic">m = (bc', b'c)</hi>, +and <hi rend="font-style: italic">n = (ca', c'a)</hi> all meet in +a point.</hi></p></div> + +<div> +<index index="toc" level1="94. Law of duality" /><index index="pdf" /> +<head></head><p><anchor id="p94" /><hi rend="font-weight: bold">94. Law of duality.</hi> The +observant student will not +have failed to note the remarkable +similarity between the theorems of this chapter +and those of the preceding. He will have noted +that points have replaced lines and lines have replaced +points; that points on a curve have been replaced by +tangents to a curve; that pencils have been replaced +by point-rows, and that a conic considered as made up +of a succession of points has been replaced by a conic +considered as generated by a moving tangent line. The +theory upon which this wonderful <hi rend="font-style: italic">law of duality</hi> is based +will be developed in the next chapter.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Given four lines in the plane, to construct another +which shall meet them in four harmonic points.</p> + +<p>2. Where are all such lines found?</p> + +<p>3. Given any five lines in the plane, construct on each +the point of contact with the conic tangent to them all.</p> + +<pb n="55" /><anchor id="Pg55" /> + +<p>4. Given four lines and the point of contact on one, to +construct the conic. ("To construct the conic" means here +to draw as many other tangents as may be desired.)</p> + +<p>5. Given three lines and the point of contact on two of +them, to construct the conic.</p> + +<p>6. Given four lines and the line at infinity, to construct +the conic.</p> + +<p>7. Given three lines and the line at infinity, together +with the point of contact at infinity, to construct the conic.</p> + +<p>8. Given three lines, two of which are asymptotes, to +construct the conic.</p> + +<p>9. Given five tangents to a conic, to draw a tangent +which shall be parallel to any one of them.</p> + +<p>10. The lines <hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">b</hi>, <hi rend="font-style: italic">c</hi> are drawn parallel to each other. +The lines <hi rend="font-style: italic">a'</hi>, <hi rend="font-style: italic">b'</hi>, <hi rend="font-style: italic">c'</hi> are also drawn parallel to each other. +Show why the lines (<hi rend="font-style: italic">ab'</hi>, <hi rend="font-style: italic">a'b</hi>), (<hi rend="font-style: italic">bc'</hi>, <hi rend="font-style: italic">b'c</hi>), (<hi rend="font-style: italic">ca'</hi>, <hi rend="font-style: italic">c'a</hi>) meet in a +point. (In problems 6 to 10 inclusive, parallel lines are to +be drawn.)</p> +</div> +</div> + +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<pb n="56" /><anchor id="Pg56" /> +<head>CHAPTER VI - POLES AND POLARS</head> + +<div> +<index index="toc" level1="95. Inscribed and circumscribed quadrilaterals" /><index index="pdf" /> +<head></head><p><anchor id="p95" /><hi rend="font-weight: bold">95. Inscribed and circumscribed quadrilaterals.</hi> The +following theorems have been noted as special cases of +Pascal's and Brianchon's theorems:</p> + +<p><hi rend="font-style: italic">If a quadrilateral be inscribed in a conic, two pairs of +opposite sides and the tangents at opposite vertices intersect +in four points, all of which lie on a straight line.</hi></p> + +<p><hi rend="font-style: italic">If a quadrilateral be circumscribed about a conic, the +lines joining two pairs of opposite vertices and the lines +joining two opposite points of contact are four lines which +meet in a point.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image26.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 26</head> +<figDesc>Figure 26</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="96. Definition of the polar line of a point" /><index index="pdf" /> +<head></head><p><anchor id="p96" /><hi rend="font-weight: bold">96. Definition of the polar line of a point.</hi> Consider +the quadrilateral <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> inscribed in the conic +(Fig. 26). It +determines the +four harmonic +points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, +<hi rend="font-style: italic">D</hi> which project +from <hi rend="font-style: italic">N</hi> in to +the four harmonic +points <hi rend="font-style: italic">M</hi>, +<hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">O</hi>. Now +the tangents at <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi> meet in <hi rend="font-style: italic">P</hi>, a point on the +line <hi rend="font-style: italic">AB</hi>. The line <hi rend="font-style: italic">AB</hi> is thus determined entirely by +<pb n="57" /><anchor id="Pg57" /> +the point <hi rend="font-style: italic">O</hi>. For if we draw any line through it, meeting +the conic in <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi>, and construct the harmonic +conjugate <hi rend="font-style: italic">B</hi> of <hi rend="font-style: italic">O</hi> with respect to <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi>, and also +the two tangents at <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi> which meet in the point +<hi rend="font-style: italic">P</hi>, then <hi rend="font-style: italic">BP</hi> is the line in question. It thus appears +that the line <hi rend="font-style: italic">LON</hi> may be any line whatever through <hi rend="font-style: italic">O</hi>; +and since <hi rend="font-style: italic">D</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">O</hi>, <hi rend="font-style: italic">N</hi> are four harmonic points, we +may describe the line <hi rend="font-style: italic">AB</hi> as the locus of points which +are harmonic conjugates of <hi rend="font-style: italic">O</hi> with respect to the two +points where any line through <hi rend="font-style: italic">O</hi> meets the curve.</p></div> + +<div> +<index index="toc" level1="97. Further defining properties" /><index index="pdf" /> +<head></head><p><anchor id="p97" /><hi rend="font-weight: bold">97.</hi> Furthermore, since the tangents at <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi> meet +on this same line, it appears as the locus of intersections +of pairs of tangents drawn at the extremities of chords +through <hi rend="font-style: italic">O</hi>.</p></div> + +<div> +<index index="toc" level1="98. Definition of the pole of a line" /><index index="pdf" /> +<head></head><p><anchor id="p98" /><hi rend="font-weight: bold">98.</hi> This important line, which is completely determined +by the point <hi rend="font-style: italic">O</hi>, is called the <hi rend="font-style: italic">polar</hi> of <hi rend="font-style: italic">O</hi> with +respect to the conic; and the point <hi rend="font-style: italic">O</hi> is called the <hi rend="font-style: italic">pole</hi> +of the line with respect to the conic.</p></div> + +<div> +<index index="toc" level1="99. Fundamental theorem of poles and polars" /><index index="pdf" /> +<head></head><p><anchor id="p99" /><hi rend="font-weight: bold">99.</hi> If a point <hi rend="font-style: italic">B</hi> is on the polar of <hi rend="font-style: italic">O</hi>, then it is harmonically +conjugate to <hi rend="font-style: italic">O</hi> with respect to the two intersections +<hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi> of the line <hi rend="font-style: italic">BC</hi> with the conic. But +for the same reason <hi rend="font-style: italic">O</hi> is on the polar of <hi rend="font-style: italic">B</hi>. We have, +then, the fundamental theorem</p> + +<p><hi rend="font-style: italic">If one point lies on the polar of a second, then the +second lies on the polar of the first.</hi></p></div> + +<div> +<index index="toc" level1="100. Conjugate points and lines" /><index index="pdf" /> +<head></head><p><anchor id="p100" /><hi rend="font-weight: bold">100. Conjugate points and lines.</hi> Such a pair of points +are said to be <hi rend="font-style: italic">conjugate</hi> with respect to the conic. Similarly, +lines are said to be <hi rend="font-style: italic">conjugate</hi> to each other with +respect to the conic if one, and consequently each, +passes through the pole of the other.</p> + +<pb n="58" /><anchor id="Pg58" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image27.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 27</head> +<figDesc>Figure 27</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="101. Construction of the polar line of a given point" /><index index="pdf" /> +<head></head><p><anchor id="p101" /><hi rend="font-weight: bold">101. Construction of the polar line of a given point.</hi> +Given a point <hi rend="font-style: italic">P</hi>, if it is within the conic (that is, if no +tangents may be drawn from <hi rend="font-style: italic">P</hi> to the +conic), we may construct its polar line +by drawing through it any two chords +and joining the two points of intersection +of the two pairs of tangents +at their extremities. If the point <hi rend="font-style: italic">P</hi> is +outside the conic, we may draw the two tangents and +construct the chord of contact (Fig. 27).</p></div> + +<div> +<index index="toc" level1="102. Self-polar triangle" /><index index="pdf" /> +<head></head><p><anchor id="p102" /><hi rend="font-weight: bold">102. Self-polar triangle.</hi> In Fig. 26 it is not difficult +to see that <hi rend="font-style: italic">AOC</hi> is a <hi rend="font-style: italic">self-polar</hi> triangle, that is, each +vertex is the pole of the opposite side. For <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">O</hi>, <hi rend="font-style: italic">K</hi> +are four harmonic points, and they project to <hi rend="font-style: italic">C</hi> in four +harmonic rays. The line <hi rend="font-style: italic">CO</hi>, therefore, meets the line +<hi rend="font-style: italic">AMN</hi> in a point on the polar of <hi rend="font-style: italic">A</hi>, being separated from +<hi rend="font-style: italic">A</hi> harmonically by the points <hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">N</hi>. Similarly, the +line <hi rend="font-style: italic">CO</hi> meets <hi rend="font-style: italic">KL</hi> in a point on the polar of <hi rend="font-style: italic">A</hi>, and +therefore <hi rend="font-style: italic">CO</hi> is the polar of <hi rend="font-style: italic">A</hi>. Similarly, <hi rend="font-style: italic">OA</hi> is the +polar of <hi rend="font-style: italic">C</hi>, and therefore <hi rend="font-style: italic">O</hi> is the pole of <hi rend="font-style: italic">AC</hi>.</p></div> + +<div> +<index index="toc" level1="103. Pole and polar projectively related" /><index index="pdf" /> +<head></head><p><anchor id="p103" /><hi rend="font-weight: bold">103. Pole and polar projectively related.</hi> Another very +important theorem comes directly from Fig. 26.</p> + +<p><hi rend="font-style: italic">As a point <hi rend="font-style: italic">A</hi> moves along a straight line its polar with +respect to a conic revolves about a fixed point and describes +a pencil projective to the point-row described by <hi rend="font-style: italic">A</hi>.</hi></p> + +<p>For, fix the points <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi> and let the point <hi rend="font-style: italic">A</hi> move +along the line <hi rend="font-style: italic">AQ</hi>; then the point-row <hi rend="font-style: italic">A</hi> is projective +to the pencil <hi rend="font-style: italic">LK</hi>, and since <hi rend="font-style: italic">K</hi> moves along the conic, +the pencil <hi rend="font-style: italic">LK</hi> is projective to the pencil <hi rend="font-style: italic">NK</hi>, which in +turn is projective to the point-row <hi rend="font-style: italic">C</hi>, which, finally, is +projective to the pencil <hi rend="font-style: italic">OC</hi>, which is the polar of <hi rend="font-style: italic">A</hi>.</p> + +<pb n="59" /><anchor id="Pg59" /></div> + +<div> +<index index="toc" level1="104. Duality" /><index index="pdf" /> +<head></head><p><anchor id="p104" /><hi rend="font-weight: bold">104. Duality.</hi> We have, then, in the pole and polar +relation a device for setting up a one-to-one correspondence +between the points and lines of the plane—a correspondence +which may be called projective, because to +four harmonic points or lines correspond always four +harmonic lines or points. To every figure made up of +points and lines will correspond a figure made up of +lines and points. To a point-row of the second order, +which is a conic considered as a point-locus, corresponds +a pencil of rays of the second order, which is a conic +considered as a line-locus. The name 'duality' is used +to describe this sort of correspondence. It is important +to note that the dual relation is subject to the same +exceptions as the one-to-one correspondence is, and +must not be appealed to in cases where the one-to-one +correspondence breaks down. We have seen that there +is in Euclidean geometry one and only one ray in a +pencil which has no point in a point-row perspective to +it for a corresponding point; namely, the line parallel +to the line of the point-row. Any theorem, therefore, +that involves explicitly the point at infinity is not to +be translated into a theorem concerning lines. Further, +in the pencil the angle between two lines has nothing +to correspond to it in a point-row perspective to the +pencil. Any theorem, therefore, that mentions angles is +not translatable into another theorem by means of the +law of duality. Now we have seen that the notion of +the infinitely distant point on a line involves the notion +of dividing a segment into any number of equal parts—in +other words, of <hi rend="font-style: italic">measuring</hi>. If, therefore, we call any +theorem that has to do with the line at infinity or with +<pb n="60" /><anchor id="Pg60" /> +the measurement of angles a <hi rend="font-style: italic">metrical</hi> theorem, and any +other kind a <hi rend="font-style: italic">projective</hi> theorem, we may put the case +as follows:</p> + +<p><hi rend="font-style: italic">Any projective theorem involves another theorem, dual to +it, obtainable by interchanging everywhere the words 'point' +and 'line.'</hi></p></div> + +<div> +<index index="toc" level1="105. Self-dual theorems" /><index index="pdf" /> +<head></head><p><anchor id="p105" /><hi rend="font-weight: bold">105. Self-dual theorems.</hi> The theorems of this chapter +will be found, upon examination, to be <hi rend="font-style: italic">self-dual</hi>; +that is, no new theorem results from applying the +process indicated in the preceding paragraph. It is +therefore useless to look for new results from the theorem +on the circumscribed quadrilateral derived from +Brianchon's, which is itself clearly the dual of Pascal's +theorem, and in fact was first discovered by dualization +of Pascal's.</p></div> + +<div> +<index index="toc" level1="106. Other correspondences" /><index index="pdf" /> +<head></head><p><anchor id="p106" /><hi rend="font-weight: bold">106.</hi> It should not be inferred from the above discussion +that one-to-one correspondences may not be devised +that will control certain of the so-called metrical relations. +A very important one may be easily found that +leaves angles unaltered. The relation called <hi rend="font-style: italic">similarity</hi> +leaves ratios between corresponding segments unaltered. +The above statements apply only to the particular one-to-one +correspondence considered.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Given a quadrilateral, construct the quadrangle polar +to it with respect to a given conic.</p> + +<p>2. A point moves along a straight line. Show that its +polar lines with respect to two given conics generate a +point-row of the second order.</p> + +<pb n="61" /><anchor id="Pg61" /> + +<p>3. Given five points, draw the polar of a point with respect +to the conic passing through them, without drawing +the conic itself.</p> + +<p>4. Given five lines, draw the polar of a point with respect +to the conic tangent to them, without drawing the +conic itself.</p> + +<p>5. Dualize problems 3 and 4.</p> + +<p>6. Given four points on the conic, and the tangent at one +of them, draw the polar of a given point without drawing +the conic. Dualize.</p> + +<p>7. A point moves on a conic. Show that its polar line +with respect to another conic describes a pencil of rays of +the second order.</p> + +<p><hi rend="font-style: italic">Suggestion.</hi> Replace the given conic by a pair of protective pencils.</p> + +<p>8. Show that the poles of the tangents of one conic with +respect to another lie on a conic.</p> + +<p>9. The polar of a point <hi rend="font-style: italic">A</hi> with respect to one conic is <hi rend="font-style: italic">a</hi>, +and the pole of <hi rend="font-style: italic">a</hi> with respect to another conic is <hi rend="font-style: italic">A'</hi>. Show +that as <hi rend="font-style: italic">A</hi> travels along a line, <hi rend="font-style: italic">A'</hi> also travels along another +line. In general, if <hi rend="font-style: italic">A</hi> describes a curve of degree <hi rend="font-style: italic">n</hi>, show +that <hi rend="font-style: italic">A'</hi> describes another curve of the same degree <hi rend="font-style: italic">n</hi>. (The +degree of a curve is the greatest number of points that it +may have in common with any line in the plane.)</p> +</div> +</div> + +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<pb n="62" /><anchor id="Pg62" /> + +<head>CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS</head> + +<div> +<index index="toc" level1="107. Diameters. Center" /><index index="pdf" /> +<head></head><p><anchor id="p107" /><hi rend="font-weight: bold">107. Diameters. Center.</hi> After what has been said in +the last chapter one would naturally expect to get at +the metrical properties of the conic sections by the +introduction of the infinite elements in the plane. Entering +into the theory of poles and polars with these +elements, we have the following definitions:</p> + +<p>The polar line of an infinitely distant point is called +a <hi rend="font-style: italic">diameter</hi>, and the pole of the infinitely distant line is +called the <hi rend="font-style: italic">center</hi>, of the conic.</p></div> + +<div> +<index index="toc" level1="108. Various theorems" /><index index="pdf" /> +<head></head><p><anchor id="p108" /><hi rend="font-weight: bold">108.</hi> From the harmonic properties of poles and polars,</p> + +<p><hi rend="font-style: italic">The center bisects all chords through it (§ 39).</hi></p> + +<p><hi rend="font-style: italic">Every diameter passes through the center.</hi></p> + +<p><hi rend="font-style: italic">All chords through the same point at infinity (that is, +each of a set of parallel chords) are bisected by the diameter +which is the polar of that infinitely distant point.</hi></p></div> + +<div> +<index index="toc" level1="109. Conjugate diameters" /><index index="pdf" /> +<head></head><p><anchor id="p109" /><hi rend="font-weight: bold">109. Conjugate diameters.</hi> We have already defined +conjugate lines as lines which pass each through the +pole of the other (§ 100).</p> + +<p><hi rend="font-style: italic">Any diameter bisects all chords parallel to its conjugate.</hi></p> + +<p><hi rend="font-style: italic">The tangents at the extremities of any diameter are +parallel, and parallel to the conjugate diameter.</hi></p> + +<p><hi rend="font-style: italic">Diameters parallel to the sides of a circumscribed parallelogram +are conjugate.</hi></p> + +<p>All these theorems are easy exercises for the student.</p> + +<pb n="63" /><anchor id="Pg63" /></div> + +<div> +<index index="toc" level1="110. Classification of conics" /><index index="pdf" /> +<head></head><p><anchor id="p110" /><hi rend="font-weight: bold">110. Classification of conics.</hi> Conics are classified according +to their relation to the infinitely distant line. +If a conic has two points in common with the line at +infinity, it is called a <hi rend="font-style: italic">hyperbola</hi>; if it has no point in +common with the infinitely distant line, it is called an +<hi rend="font-style: italic">ellipse</hi>; if it is tangent to the line at infinity, it is called +a <hi rend="font-style: italic">parabola</hi>.</p></div> + +<div> +<index index="toc" level1="111. Asymptotes" /><index index="pdf" /> +<head></head><p><anchor id="p111" /><hi rend="font-weight: bold">111.</hi> <hi rend="font-style: italic">In a hyperbola the center is outside the curve</hi> +(§ 101), since the two tangents to the curve at the points +where it meets the line at infinity determine by their +intersection the center. As previously noted, these two +tangents are called the <hi rend="font-style: italic">asymptotes</hi> of the curve. The +ellipse and the parabola have no asymptotes.</p></div> + +<div> +<index index="toc" level1="112. Various theorems" /><index index="pdf" /> +<head></head><p><anchor id="p112" /><hi rend="font-weight: bold">112.</hi> <hi rend="font-style: italic">The center of the parabola is at infinity, and therefore +all its diameters are parallel,</hi> for the pole of a tangent +line is the point of contact.</p> + +<p><hi rend="font-style: italic">The locus of the middle points of a series of parallel +chords in a parabola is a diameter, and the direction of +the line of centers is the same for all series of parallel +chords.</hi></p> + +<p><hi rend="font-style: italic">The center of an ellipse is within the curve.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image28.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 28</head> +<figDesc>Figure 28</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="113. Theorems concerning asymptotes" /><index index="pdf" /> +<head></head><p><anchor id="p113" /><hi rend="font-weight: bold">113. Theorems concerning asymptotes.</hi> We derived as +a consequence of the theorem of Brianchon (§ 89) the +proposition that if a triangle be circumscribed about +a conic, the lines joining the vertices to the points +of contact of the opposite sides all meet in a point. +Take, now, for two of the tangents the asymptotes of +a hyperbola, and let any third tangent cut them in <hi rend="font-style: italic">A</hi> +and <hi rend="font-style: italic">B</hi> (Fig. 28). If, then, <hi rend="font-style: italic">O</hi> is the intersection of the +asymptotes,—and therefore the center of the curve,— +<pb n="64" /><anchor id="Pg64" /> +then the triangle <hi rend="font-style: italic">OAB</hi> is circumscribed about the curve. +By the theorem just quoted, the line through <hi rend="font-style: italic">A</hi> parallel +to <hi rend="font-style: italic">OB</hi>, the line through <hi rend="font-style: italic">B</hi> parallel to <hi rend="font-style: italic">OA</hi>, and the +line <hi rend="font-style: italic">OP</hi> through the point of +contact of the tangent <hi rend="font-style: italic">AB</hi> +all meet in a point <hi rend="font-style: italic">C</hi>. But +<hi rend="font-style: italic">OACB</hi> is a parallelogram, and +<hi rend="font-style: italic">PA = PB</hi>. Therefore</p> + +<p><hi rend="font-style: italic">The asymptotes cut off on +each tangent a segment which is +bisected by the point of contact.</hi></p></div> + +<div> +<index index="toc" level1="114. Asymptotes and conjugate diameters" /><index index="pdf" /> +<head></head><p><anchor id="p114" /><hi rend="font-weight: bold">114.</hi> If we draw a line <hi rend="font-style: italic">OQ</hi> +parallel to <hi rend="font-style: italic">AB</hi>, then <hi rend="font-style: italic">OP</hi> and <hi rend="font-style: italic">OQ</hi> are conjugate diameters, +since <hi rend="font-style: italic">OQ</hi> is parallel to the tangent at the point +where <hi rend="font-style: italic">OP</hi> meets the curve. Then, since <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">B</hi>, and +the point at infinity on <hi rend="font-style: italic">AB</hi> are four harmonic points, +we have the theorem</p> + +<p><hi rend="font-style: italic">Conjugate diameters of the hyperbola are harmonic +conjugates with respect to the asymptotes.</hi></p></div> + +<div> +<index index="toc" level1="115. Segments cut off on a chord by hyperbola and its asymptotes" /><index index="pdf" /> +<head></head><p><anchor id="p115" /><hi rend="font-weight: bold">115.</hi> The chord <hi rend="font-style: italic">A"B"</hi>, parallel to the diameter <hi rend="font-style: italic">OQ</hi>, is +bisected at <hi rend="font-style: italic">P'</hi> by the conjugate diameter <hi rend="font-style: italic">OP</hi>. If the +chord <hi rend="font-style: italic">A"B"</hi> meet the asymptotes in <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, then <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">P'</hi>, <hi rend="font-style: italic">B'</hi>, +and the point at infinity are four harmonic points, and +therefore <hi rend="font-style: italic">P'</hi> is the middle point of <hi rend="font-style: italic">A'B'</hi>. Therefore +<hi rend="font-style: italic">A'A" = B'B"</hi> and we have the theorem</p> + +<p><hi rend="font-style: italic">The segments cut off on any chord between the hyperbola +and its asymptotes are equal.</hi></p></div> + +<div> +<index index="toc" level1="116. Application of the theorem" /><index index="pdf" /> +<head></head><p><anchor id="p116" /><hi rend="font-weight: bold">116.</hi> This theorem furnishes a ready means of constructing +the hyperbola by points when a point on the +curve and the two asymptotes are given.</p> + +<pb n="65" /><anchor id="Pg65" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image29.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 29</head> +<figDesc>Figure 29</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="117. Triangle formed by the two asymptotes and a tangent" /><index index="pdf" /> +<head></head><p><anchor id="p117" /><hi rend="font-weight: bold">117.</hi> For the circumscribed quadrilateral, Brianchon's +theorem gave (§ 88) <hi rend="font-style: italic">The lines joining opposite vertices +and the lines joining opposite points of contact are four +lines meeting in a point.</hi> Take now for two of the +tangents the asymptotes, and let <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">CD</hi> be any +other two (Fig. 29). +If <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">D</hi> are opposite +vertices, and +also <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">C</hi>, then +<hi rend="font-style: italic">AC</hi> and <hi rend="font-style: italic">BD</hi> are parallel, +and parallel to +<hi rend="font-style: italic">PQ</hi>, the line joining +the points of contact +of <hi rend="font-style: italic">AB</hi> and <hi rend="font-style: italic">CD</hi>, +for these are three of +the four lines of the +theorem just quoted. The fourth is the line at infinity +which joins the point of contact of the asymptotes. It +is thus seen that the triangles <hi rend="font-style: italic">ABC</hi> and <hi rend="font-style: italic">ADC</hi> are +equivalent, and therefore the triangles <hi rend="font-style: italic">AOB</hi> and <hi rend="font-style: italic">COD</hi> +are also. The tangent AB may be fixed, and the tangent +<hi rend="font-style: italic">CD</hi> chosen arbitrarily; therefore</p> + +<p><hi rend="font-style: italic">The triangle formed by any tangent to the hyperbola +and the two asymptotes is of constant area.</hi></p></div> + +<div> +<index index="toc" level1="118. Equation of hyperbola referred to the asymptotes" /><index index="pdf" /> +<head></head><p><anchor id="p118" /><hi rend="font-weight: bold">118. Equation of hyperbola referred to the asymptotes.</hi> +Draw through the point of contact <hi rend="font-style: italic">P</hi> of the tangent +<hi rend="font-style: italic">AB</hi> two lines, one parallel to one asymptote and the +other parallel to the other. One of these lines meets +<hi rend="font-style: italic">OB</hi> at a distance <hi rend="font-style: italic">y</hi> from <hi rend="font-style: italic">O</hi>, and the other meets <hi rend="font-style: italic">OA</hi> at +a distance <hi rend="font-style: italic">x</hi> from <hi rend="font-style: italic">O</hi>. Then, since <hi rend="font-style: italic">P</hi> is the middle point +<pb n="66" /><anchor id="Pg66" /> +of <hi rend="font-style: italic">AB</hi>, <hi rend="font-style: italic">x</hi> is one half of <hi rend="font-style: italic">OA</hi> and <hi rend="font-style: italic">y</hi> is one half of <hi rend="font-style: italic">OB</hi>. +The area of the parallelogram whose adjacent sides are +<hi rend="font-style: italic">x</hi> and <hi rend="font-style: italic">y</hi> is one half the area of the triangle <hi rend="font-style: italic">AOB</hi>, and +therefore, by the preceding paragraph, is constant. This +area is equal to <hi rend="font-style: italic">xy · <hi rend="font-style: normal">sin</hi> α</hi>, where α is the constant angle +between the asymptotes. It follows that the product <hi rend="font-style: italic">xy</hi> +is constant, and since <hi rend="font-style: italic">x</hi> and <hi rend="font-style: italic">y</hi> are the oblique coördinates +of the point <hi rend="font-style: italic">P</hi>, the asymptotes being the axes +of reference, we have</p> + +<p><hi rend="font-style: italic">The equation of the hyperbola, referred to the asymptotes +as axes, is <hi rend="font-style: italic">xy =</hi> constant.</hi></p> + +<p>This identifies the curve with the hyperbola as defined +and discussed in works on analytic geometry.</p></div> + +<div> +<index index="toc" level1="119. Equation of parabola" /><index index="pdf" /> +<head></head> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image30.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 30</head> +<figDesc>Figure 30</figDesc> +</figure></p> + +<p><anchor id="p119" /><hi rend="font-weight: bold">119. Equation of +parabola.</hi> We have +defined the parabola +as a conic which is +tangent to the line +at infinity (§ 110). +Draw now two tangents +to the curve +(Fig. 30), meeting in +<hi rend="font-style: italic">A</hi>, the points of contact +being <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">C</hi>. +These two tangents, +together with the +line at infinity, form +a triangle circumscribed +about the +conic. Draw through <hi rend="font-style: italic">B</hi> a parallel to <hi rend="font-style: italic">AC</hi>, and through +<hi rend="font-style: italic">C</hi> a parallel to <hi rend="font-style: italic">AB</hi>. If these meet in <hi rend="font-style: italic">D</hi>, then <hi rend="font-style: italic">AD</hi> is a +<pb n="67" /><anchor id="Pg67" /> +diameter. Let <hi rend="font-style: italic">AD</hi> meet the curve in <hi rend="font-style: italic">P</hi>, and the chord +<hi rend="font-style: italic">BC</hi> in <hi rend="font-style: italic">Q</hi>. <hi rend="font-style: italic">P</hi> is then the middle point of <hi rend="font-style: italic">AQ</hi>. Also, <hi rend="font-style: italic">Q</hi> +is the middle point of the chord <hi rend="font-style: italic">BC</hi>, and therefore the +diameter <hi rend="font-style: italic">AD</hi> bisects all chords parallel to <hi rend="font-style: italic">BC</hi>. In particular, +<hi rend="font-style: italic">AD</hi> passes through <hi rend="font-style: italic">P</hi>, the point of contact of +the tangent drawn parallel to <hi rend="font-style: italic">BC</hi>.</p> + +<p>Draw now another tangent, meeting <hi rend="font-style: italic">AB</hi> in <hi rend="font-style: italic">B'</hi> and <hi rend="font-style: italic">AC</hi> +in <hi rend="font-style: italic">C'</hi>. Then these three, with the line at infinity, make +a circumscribed quadrilateral. But, by Brianchon's theorem +applied to a quadrilateral (§ 88), it appears that a +parallel to <hi rend="font-style: italic">AC</hi> through <hi rend="font-style: italic">B'</hi>, a parallel to <hi rend="font-style: italic">AB</hi> through <hi rend="font-style: italic">C'</hi>, +and the line <hi rend="font-style: italic">BC</hi> meet in a point <hi rend="font-style: italic">D'</hi>. Also, from the similar +triangles <hi rend="font-style: italic">BB'D'</hi> and <hi rend="font-style: italic">BAC</hi> we have, for all positions of the +tangent line <hi rend="font-style: italic">B'C</hi>,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">B'D' : BB' = AC : AB,</hi> +</p> + +<p>or, since <hi rend="font-style: italic">B'D' = AC'</hi>,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AC': BB' = AC:AB =</hi> constant. +</p> + +<p>If another tangent meet <hi rend="font-style: italic">AB</hi> in <hi rend="font-style: italic">B"</hi> and <hi rend="font-style: italic">AC</hi> in <hi rend="font-style: italic">C"</hi>, we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic"> +AC' : BB' = AC" : BB", +</hi></p> + +<p>and by subtraction we get</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">C'C" : B'B" =</hi> constant; +</p> + +<p>whence</p> + +<p><hi rend="font-style: italic">The segments cut off on any two tangents to a parabola +by a variable tangent are proportional.</hi></p> + +<p>If now we take the tangent <hi rend="font-style: italic">B'C'</hi> as axis of ordinates, +and the diameter through the point of contact <hi rend="font-style: italic">O</hi> as axis +of abscissas, calling the coordinates of <hi rend="font-style: italic">B(x, y)</hi> and of +<hi rend="font-style: italic">C(x', y')</hi>, then, from the similar triangles <hi rend="font-style: italic">BMD'</hi> and +we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">y : y' = BD' : D'C = BB' : AB'.</hi> +</p> + +<p>Also</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">y : y' = B'D' : C'C = AC' : C'C.</hi> +</p> + +<pb n="68" /><anchor id="Pg68" /> + +<p>If now a line is drawn through <hi rend="font-style: italic">A</hi> parallel to a diameter, +meeting the axis of ordinates in <hi rend="font-style: italic">K</hi>, we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AK : OQ' = AC' : CC' = y : y',</hi> +</p> + +<p>and</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OM : AK = BB' : AB' = y : y',</hi> +</p> + +<p>and, by multiplication,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OM : OQ' = y<hi rend="vertical-align: super">2</hi> : y'<hi rend="vertical-align: super">2</hi>,</hi> +</p> + +<p>or</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">x : x' = y<hi rend="vertical-align: super">2</hi> : y'<hi rend="vertical-align: super">2</hi>;</hi> +</p> + +<p>whence</p> + +<p><hi rend="font-style: italic">The abscissas of two points on a parabola are to each +other as the squares of the corresponding coördinates, a +diameter and the tangent to the curve at the extremity of +the diameter being the axes of reference.</hi></p> + +<p>The last equation may be written</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">y<hi rend="vertical-align: super">2</hi> = 2px,</hi> +</p> + +<p>where <hi rend="font-style: italic">2p</hi> stands for <hi rend="font-style: italic">y'<hi rend="vertical-align: super">2</hi> : x'</hi>.</p> + +<p>The parabola is thus identified with the curve of the +same name studied in treatises on analytic geometry.</p></div> + +<div> +<index index="toc" level1="120. Equation of central conics referred to conjugate +diameters" /><index index="pdf" /> +<head></head><p><anchor id="p120" /><hi rend="font-weight: bold">120. Equation of central conics referred to conjugate +diameters.</hi> Consider now a <hi rend="font-style: italic">central conic</hi>, that is, one +which is not a parabola and the center of which is +therefore at a finite distance. Draw any four tangents +to it, two of which are parallel (Fig. 31). Let the +parallel tangents meet one of the other tangents in <hi rend="font-style: italic">A</hi> +and <hi rend="font-style: italic">B</hi> and the other in <hi rend="font-style: italic">C</hi> and <hi rend="font-style: italic">D</hi>, and let <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">Q</hi> be +the points of contact of the parallel tangents <hi rend="font-style: italic">R</hi> and <hi rend="font-style: italic">S</hi> +of the others. Then <hi rend="font-style: italic">AC</hi>, <hi rend="font-style: italic">BD</hi>, <hi rend="font-style: italic">PQ</hi>, and <hi rend="font-style: italic">RS</hi> all meet in +a point <hi rend="font-style: italic">W</hi> (§ 88). From the figure,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">PW : WQ = AP : QC = PD : BQ,</hi> +</p> + +<p>or</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AP · BQ = PD · QC.</hi> +</p> + +<pb n="69" /><anchor id="Pg69" /> + +<p>If now <hi rend="font-style: italic">DC</hi> is a fixed tangent and <hi rend="font-style: italic">AB</hi> a variable one, +we have from this equation</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AP · BQ = <hi rend="font-style: normal">constant.</hi></hi> +</p> + +<p>This constant will be positive or negative according as +<hi rend="font-style: italic">PA</hi> and <hi rend="font-style: italic">BQ</hi> are measured in the same or in opposite +directions. Accordingly we write</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AP · BQ = ± b<hi rend="vertical-align: super">2</hi>.</hi> +</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image31.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 31</head> +<figDesc>Figure 31</figDesc> +</figure></p> + +<p>Since <hi rend="font-style: italic">AD</hi> and <hi rend="font-style: italic">BC</hi> are parallel tangents, <hi rend="font-style: italic">PQ</hi> is a diameter +and the conjugate diameter is parallel to <hi rend="font-style: italic">AD</hi>. The +middle point of <hi rend="font-style: italic">PQ</hi> is the +center of the conic. We take +now for the axis of abscissas +the diameter <hi rend="font-style: italic">PQ</hi>, and the +conjugate diameter for the +axis of ordinates. Join <hi rend="font-style: italic">A</hi> to +<hi rend="font-style: italic">Q</hi> and <hi rend="font-style: italic">B</hi> to <hi rend="font-style: italic">P</hi> and draw a +line through <hi rend="font-style: italic">S</hi> parallel to +the axis of ordinates. These +three lines all meet in a point +<hi rend="font-style: italic">N</hi>, because <hi rend="font-style: italic">AP</hi>, <hi rend="font-style: italic">BQ</hi>, and <hi rend="font-style: italic">AB</hi> +form a triangle circumscribed +to the conic. Let <hi rend="font-style: italic">NS</hi> meet +<hi rend="font-style: italic">PQ</hi> in <hi rend="font-style: italic">M</hi>. Then, from the properties of the circumscribed +triangle (§ 89), <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi>, <hi rend="font-style: italic">S</hi>, and the point at infinity +on <hi rend="font-style: italic">NS</hi> are four harmonic points, and therefore <hi rend="font-style: italic">N</hi> is the +middle point of <hi rend="font-style: italic">MS</hi>. If the coördinates of <hi rend="font-style: italic">S</hi> are <hi rend="font-style: italic">(x, y)</hi>, +so that <hi rend="font-style: italic">OM</hi> is <hi rend="font-style: italic">x</hi> and <hi rend="font-style: italic">MS</hi> is <hi rend="font-style: italic">y</hi>, then <hi rend="font-style: italic">MN = y/2</hi>. Now +from the similar triangles <hi rend="font-style: italic">PMN</hi> and <hi rend="font-style: italic">PQB</hi> we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">BQ : PQ = NM : PM,</hi> +</p> + +<pb n="70" /><anchor id="Pg70" /> + +<p>and from the similar triangles <hi rend="font-style: italic">PQA</hi> and <hi rend="font-style: italic">MQN</hi>,</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">AP : PQ = MN : MQ,</hi> +</p> + +<p>whence, multiplying, we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">±b<hi rend="vertical-align: super">2</hi>/4 a<hi rend="vertical-align: super">2</hi> = y<hi rend="vertical-align: super">2</hi>/4 (a + x)(a - x),</hi> +</p> + +<p>where</p> + +<p rend="text-align: center"> +<formula notation="tex"> +\[ +a=\frac{PQ}{2}, +\] +</formula> +</p> + +<p>or, simplifying,</p> + +<p rend="text-align: center"> +<formula notation="tex"> +\[ +x^2/a^2 + y^2/\pm b^2 = 1, +\] +</formula> +</p> + +<p>which is the equation of an ellipse when <hi rend="font-style: italic">b<hi rend="vertical-align: super">2</hi></hi> has a positive +sign, and of a hyperbola when <hi rend="font-style: italic">b<hi rend="vertical-align: super">2</hi></hi> has a negative +sign. We have thus identified point-rows of the second +order with the curves given by equations of the second +degree.</p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Draw a chord of a given conic which shall be bisected +by a given point <hi rend="font-style: italic">P</hi>.</p> + +<p>2. Show that all chords of a given conic that are bisected +by a given chord are tangent to a parabola.</p> + +<p>3. Construct a parabola, given two tangents with their +points of contact.</p> + +<p>4. Construct a parabola, given three points and the direction +of the diameters.</p> + +<p>5. A line <hi rend="font-style: italic">u'</hi> is drawn through the pole <hi rend="font-style: italic">U</hi> of a line <hi rend="font-style: italic">u</hi> and +at right angles to <hi rend="font-style: italic">u</hi>. The line <hi rend="font-style: italic">u</hi> revolves about a point <hi rend="font-style: italic">P</hi>. +Show that the line <hi rend="font-style: italic">u'</hi> is tangent to a parabola. (The lines <hi rend="font-style: italic">u</hi> +and <hi rend="font-style: italic">u'</hi> are called normal conjugates.)</p> + +<p>6. Given a circle and its center <hi rend="font-style: italic">O</hi>, to draw a line through +a given point <hi rend="font-style: italic">P</hi> parallel to a given line <hi rend="font-style: italic">q</hi>. Prove the following +construction: Let <hi rend="font-style: italic">p</hi> be the polar of <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi> the pole of +<hi rend="font-style: italic">q</hi>, and <hi rend="font-style: italic">A</hi> the intersection of <hi rend="font-style: italic">p</hi> with <hi rend="font-style: italic">OQ</hi>. The polar of <hi rend="font-style: italic">A</hi> is +the desired line.</p> +</div> +</div> + +<div rend="page-break-before: always"> +<pb n="71" /><anchor id="Pg71" /> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER VIII - INVOLUTION</head> + +<div> +<index index="toc" level1="121. Fundamental theorem" /><index index="pdf" /> +<head></head> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image32.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 32</head> +<figDesc>Figure 32</figDesc> +</figure></p> + +<p><anchor id="p121" /><hi rend="font-weight: bold">121. Fundamental theorem.</hi> The important theorem +concerning two complete quadrangles (§ 26), upon which +the theory of four harmonic points was based, can easily +be extended to +the case where +the four lines +<hi rend="font-style: italic">KL</hi>, <hi rend="font-style: italic">K'L'</hi>, <hi rend="font-style: italic">MN</hi>, +<hi rend="font-style: italic">M'N'</hi> do not +all meet in the +same point <hi rend="font-style: italic">A</hi>, +and the more +general theorem +that results +may also +be made the basis of a theory no less important, which has +to do with six points on a line. The theorem is as follows:</p> + +<p><hi rend="font-style: italic">Given two complete quadrangles, <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi> and +<hi rend="font-style: italic">K'</hi>, <hi rend="font-style: italic">L'</hi>, <hi rend="font-style: italic">M'</hi>, <hi rend="font-style: italic">N'</hi>, so related that <hi rend="font-style: italic">KL</hi> and <hi rend="font-style: italic">K'L'</hi> meet in <hi rend="font-style: italic">A</hi>, +<hi rend="font-style: italic">MN</hi> and <hi rend="font-style: italic">M'N'</hi> in <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">KN</hi> and <hi rend="font-style: italic">K'N'</hi> in <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">LM</hi> and <hi rend="font-style: italic">L'M'</hi> +in <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">LN</hi> and <hi rend="font-style: italic">L'N'</hi> in <hi rend="font-style: italic">C</hi>, and <hi rend="font-style: italic">KM</hi> and <hi rend="font-style: italic">K'M'</hi> in <hi rend="font-style: italic">C'</hi>, then, +if <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">B'</hi>, and <hi rend="font-style: italic">C</hi> are in a straight line, the point <hi rend="font-style: italic">C'</hi> +also lies on that straight line.</hi></p> + +<p>The theorem follows from Desargues's theorem +(Fig. 32). It is seen that <hi rend="font-style: italic">KK'</hi>, <hi rend="font-style: italic">LL'</hi>, <hi rend="font-style: italic">MM'</hi>, <hi rend="font-style: italic">NN'</hi> all +<pb n="72" /><anchor id="Pg72" /> +meet in a point, and thus, from the same theorem, applied +to the triangles <hi rend="font-style: italic">KLM</hi> and <hi rend="font-style: italic">K'L'M'</hi>, the point <hi rend="font-style: italic">C'</hi> is on +the same line with <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B'</hi>. As in the simpler case, it +is seen that there is an indefinite number of quadrangles +which may be drawn, two sides of which go through +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, two through <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">B'</hi>, and one through <hi rend="font-style: italic">C</hi>. +The sixth side must then go through <hi rend="font-style: italic">C'</hi>. Therefore,</p></div> + +<div> +<index index="toc" level1="122. Linear construction" /><index index="pdf" /> +<head></head><p><anchor id="p122" /><hi rend="font-weight: bold">122.</hi> <hi rend="font-style: italic">Two pairs of points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">A'</hi> and <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">B'</hi>, being given, +then the point <hi rend="font-style: italic">C'</hi> corresponding to any given point <hi rend="font-style: italic">C</hi> is +uniquely determined.</hi></p> + +<p>The construction of this sixth point is easily accomplished. +Draw through <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi> any two lines, and +cut across them by any line through <hi rend="font-style: italic">C</hi> in the points +<hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">N</hi>. Join <hi rend="font-style: italic">N</hi> to <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">L</hi> to <hi rend="font-style: italic">B'</hi>, thus determining +the points <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi> on the two lines through <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, +The line <hi rend="font-style: italic">KM</hi> determines the desired point <hi rend="font-style: italic">C'</hi>. Manifestly, +starting from <hi rend="font-style: italic">C'</hi>, we come in this way always to the +same point <hi rend="font-style: italic">C</hi>. The particular quadrangle employed is +of no consequence. Moreover, since one pair of opposite +sides in a complete quadrangle is not distinguishable +in any way from any other, the same set of six points +will be obtained by starting from the pairs <hi rend="font-style: italic">AA'</hi> and +<hi rend="font-style: italic">CC'</hi>, or from the pairs <hi rend="font-style: italic">BB'</hi> and <hi rend="font-style: italic">CC'</hi>.</p></div> + +<div> +<index index="toc" level1="123. Definition of involution of points on a line" /><index index="pdf" /> +<head></head><p><anchor id="p123" /><hi rend="font-weight: bold">123. Definition of involution of points on a line.</hi></p> + +<p><hi rend="font-style: italic">Three pairs of points on a line are said to be in involution +if through each pair may be drawn a pair of opposite +sides of a complete quadrangle. If two pairs are fixed and +one of the third pair describes the line, then the other also +describes the line, and the points of the line are said to be +paired in the involution determined by the two fixed pairs.</hi></p> + +<pb n="73" /><anchor id="Pg73" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image33.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 33</head> +<figDesc>Figure 33</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="124. Double-points in an involution" /><index index="pdf" /> +<head></head><p><anchor id="p124" /><hi rend="font-weight: bold">124. Double-points in an involution.</hi> The points <hi rend="font-style: italic">C</hi> and +<hi rend="font-style: italic">C'</hi> describe projective point-rows, as may be seen by fixing +the points <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi>. The self-corresponding points, of +which there are two or none, are called the <hi rend="font-style: italic">double-points</hi> in +the involution. It is not difficult to see that the double-points +in the involution are harmonic conjugates with +respect to corresponding points in the involution. For, +fixing as before the points <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi>, let the intersection +of the lines <hi rend="font-style: italic">CL</hi> and <hi rend="font-style: italic">C'M</hi> be <hi rend="font-style: italic">P</hi> (Fig. 33). The locus of <hi rend="font-style: italic">P</hi> is +a conic which goes through the double-points, because the +point-rows <hi rend="font-style: italic">C</hi> and +<hi rend="font-style: italic">C'</hi> are projective, +and therefore so +are the pencils +<hi rend="font-style: italic">LC</hi> and <hi rend="font-style: italic">MC'</hi> +which generate +the locus of <hi rend="font-style: italic">P</hi>. +Also, when <hi rend="font-style: italic">C</hi> +and <hi rend="font-style: italic">C'</hi> fall together, +the point +<hi rend="font-style: italic">P</hi> coincides with +them. Further, the tangents at <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi> to this conic +described by <hi rend="font-style: italic">P</hi> are the lines <hi rend="font-style: italic">LB</hi> and <hi rend="font-style: italic">MB</hi>. For in the +pencil at <hi rend="font-style: italic">L</hi> the ray <hi rend="font-style: italic">LM</hi> common to the two pencils which +generate the conic is the ray <hi rend="font-style: italic">LB'</hi> and corresponds to the +ray <hi rend="font-style: italic">MB</hi> of <hi rend="font-style: italic">M</hi>, which is therefore the tangent line to the +conic at <hi rend="font-style: italic">M</hi>. Similarly for the tangent <hi rend="font-style: italic">LB</hi> at <hi rend="font-style: italic">L</hi>. <hi rend="font-style: italic">LM</hi> is +therefore the polar of <hi rend="font-style: italic">B</hi> with respect to this conic, and +<hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">B'</hi> are therefore harmonic conjugates with respect +to the double-points. The same discussion applies to any +other pair of corresponding points in the involution.</p> + +<pb n="74" /><anchor id="Pg74" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image34.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 34</head> +<figDesc>Figure 34</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="125. Desargues's theorem concerning conics through +four points" /><index index="pdf" /> +<head></head><p><anchor id="p125" /><hi rend="font-weight: bold">125. Desargues's theorem concerning conics through +four points.</hi> Let <hi rend="font-style: italic">DD'</hi> be any pair of points in the involution +determined as above, and consider the conic +passing through the five points <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N</hi>, <hi rend="font-style: italic">D</hi>. We +shall use Pascal's theorem to show that this conic also +passes through <hi rend="font-style: italic">D'</hi>. The point <hi rend="font-style: italic">D'</hi> is determined as follows: +Fix <hi rend="font-style: italic">L</hi> and <hi rend="font-style: italic">M</hi> as before (Fig. 34) and join <hi rend="font-style: italic">D</hi> to <hi rend="font-style: italic">L</hi>, +giving on <hi rend="font-style: italic">MN</hi> +the point <hi rend="font-style: italic">N'</hi>. +Join <hi rend="font-style: italic">N'</hi> to <hi rend="font-style: italic">B</hi>, +giving on <hi rend="font-style: italic">LK</hi> +the point <hi rend="font-style: italic">K'</hi>. +Then <hi rend="font-style: italic">MK'</hi> determines +the +point <hi rend="font-style: italic">D'</hi> on +the line <hi rend="font-style: italic">AA'</hi>, +given by the +complete quadrangle +<hi rend="font-style: italic">K'</hi>, <hi rend="font-style: italic">L</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">N'</hi>. Consider the following six points, +numbering them in order: <hi rend="font-style: italic">D = 1</hi>, <hi rend="font-style: italic">D' = 2</hi>, <hi rend="font-style: italic">M = 3</hi>, <hi rend="font-style: italic">N = 4</hi>, +<hi rend="font-style: italic">K = 5</hi>, and <hi rend="font-style: italic">L = 6</hi>. We have the following intersections: +<hi rend="font-style: italic">B = (12-45)</hi>, <hi rend="font-style: italic">K' = (23-56)</hi>, <hi rend="font-style: italic">N' = (34-61)</hi>; and since by +construction <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">N</hi>, and <hi rend="font-style: italic">K'</hi> are on a straight line, it follows +from the converse of Pascal's theorem, which is +easily established, that the six points are on a conic. +We have, then, the beautiful theorem due to Desargues:</p> + +<p><hi rend="font-style: italic">The system of conics through four points meets any line +in the plane in pairs of points in involution.</hi></p></div> + +<div> +<index index="toc" level1="126. Degenerate conics of the system" /><index index="pdf" /> +<head></head><p><anchor id="p126" /><hi rend="font-weight: bold">126.</hi> It appears also that the six points in involution +determined by the quadrangle through the four fixed +<pb n="75" /><anchor id="Pg75" /> +points belong also to the same involution with the +points cut out by the system of conics, as indeed we +might infer from the fact that the three pairs of opposite +sides of the quadrangle may be considered as +degenerate conics of the system.</p></div> + +<div> +<index index="toc" level1="127. Conics through four points touching a given line" /><index index="pdf" /> +<head></head><p><anchor id="p127" /><hi rend="font-weight: bold">127. Conics through four points touching a given line.</hi> +It is further evident that the involution determined on +a line by the system of conics will have a double-point +where a conic of the system is tangent to the line. We +may therefore infer the theorem</p> + +<p><hi rend="font-style: italic">Through four fixed points in the plane two conics or +none may be drawn tangent to any given line.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image35.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 35</head> +<figDesc>Figure 35</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="128. Double correspondence" /><index index="pdf" /> +<head></head><p><anchor id="p128" /><hi rend="font-weight: bold">128. Double correspondence.</hi> We have seen that corresponding +points in an involution form two projective +point-rows superposed on the same straight line. Two +projective point-rows superposed +on the same straight line are, however, +not necessarily in involution, +as a simple example will show. +Take two lines, <hi rend="font-style: italic">a</hi> and <hi rend="font-style: italic">a'</hi>, which +both revolve about a fixed point <hi rend="font-style: italic">S</hi> +and which always make the same +angle with each other (Fig. 35). +These lines cut out on any line +in the plane which does not pass +through <hi rend="font-style: italic">S</hi> two projective point-rows, +which are not, however, in +involution unless the angle between the lines is a right +angles. For a point <hi rend="font-style: italic">P</hi> may correspond to a point <hi rend="font-style: italic">P'</hi>, +which in turn will correspond to some other point +<pb n="76" /><anchor id="Pg76" /> +than <hi rend="font-style: italic">P</hi>. The peculiarity of point-rows in involution +is that any point will correspond to the same point, +in whichever point-row it is considered as belonging. +In this case, if a point <hi rend="font-style: italic">P</hi> corresponds to a point <hi rend="font-style: italic">P'</hi>, then +the point <hi rend="font-style: italic">P'</hi> corresponds back again to the point <hi rend="font-style: italic">P</hi>. +The points <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi> are then said to <hi rend="font-style: italic">correspond doubly</hi>. +This notion is worthy of further study.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image36.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 36</head> +<figDesc>Figure 36</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="129. Steiner's construction" /><index index="pdf" /> +<head></head><p><anchor id="p129" /><hi rend="font-weight: bold">129. Steiner's construction.</hi> It will be observed that +the solution of the fundamental problem given in § 83, +<hi rend="font-style: italic">Given three pairs of points of two protective point-rows, to +construct other pairs</hi>, cannot be carried out if the two +point-rows lie on the same straight line. Of course the +method may be easily altered to cover that case also, +but it is worth while to give another solution of the +problem, due to Steiner, which will also give further +information regarding the theory of involution, and +which may, indeed, be used as a foundation for that +theory. Let the two point-rows <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, ... and <hi rend="font-style: italic">A'</hi>, +<hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, <hi rend="font-style: italic">D'</hi>, ... be superposed on the line <hi rend="font-style: italic">u</hi>. Project +them both to a point <hi rend="font-style: italic">S</hi> and pass any conic <hi rend="font-style: italic">κ</hi> through <hi rend="font-style: italic">S</hi>. +We thus obtain two projective pencils, <hi rend="font-style: italic">a</hi>, <hi rend="font-style: italic">b</hi>, <hi rend="font-style: italic">c</hi>, <hi rend="font-style: italic">d</hi>, ... and +<pb n="77" /><anchor id="Pg77" /> +<hi rend="font-style: italic">a'</hi>, <hi rend="font-style: italic">b'</hi>, <hi rend="font-style: italic">c'</hi>, <hi rend="font-style: italic">d'</hi>, ... at <hi rend="font-style: italic">S</hi>, which meet the conic in the points +<hi rend="font-style: italic">α</hi>, <hi rend="font-style: italic">β</hi>, <hi rend="font-style: italic">γ</hi>, <hi rend="font-style: italic">δ</hi>, ... and +<hi rend="font-style: italic">α'</hi>, <hi rend="font-style: italic">β'</hi>, <hi rend="font-style: italic">γ'</hi>, <hi rend="font-style: italic">δ'</hi>, ... (Fig. 36). Take now +<hi rend="font-style: italic">γ</hi> as the center of a pencil projecting the points <hi rend="font-style: italic">α'</hi>, <hi rend="font-style: italic">β'</hi>, +<hi rend="font-style: italic">δ'</hi>, ..., and take <hi rend="font-style: italic">γ'</hi> as the center of a pencil projecting +the points <hi rend="font-style: italic">α</hi>, <hi rend="font-style: italic">β</hi>, <hi rend="font-style: italic">δ</hi>, .... These two pencils are projective +to each other, and since they have a self-correspondin +ray in common, they are in perspective position and +corresponding rays meet on the line joining <hi rend="font-style: italic">(γα', γ'α)</hi> +to <hi rend="font-style: italic">(γβ', γ'β)</hi>. The correspondence between points in +the two point-rows on <hi rend="font-style: italic">u</hi> is now easily traced.</p></div> + +<div> +<index index="toc" level1="130. Application of Steiner's construction to double +correspondence" /><index index="pdf" /> +<head></head><p><anchor id="p130" /><hi rend="font-weight: bold">130. Application of Steiner's construction to double +correspondence.</hi> Steiner's construction throws into our +hands an important theorem concerning double correspondence: +<hi rend="font-style: italic">If two projective point-rows, superposed on +the same line, have one pair of points which correspond +to each other doubly, then all pairs correspond to each +other doubly, and the line is paired in involution.</hi> To +make this appear, let us call the point <hi rend="font-style: italic">A</hi> on <hi rend="font-style: italic">u</hi> by two +names, <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">P'</hi>, according as it is thought of as +belonging to the one or to the other of the two point-rows. +If this point is one of a pair which correspond to +each other doubly, then the points <hi rend="font-style: italic">A'</hi> and <hi rend="font-style: italic">P</hi> must coincide +(Fig. 37). Take now any point <hi rend="font-style: italic">C</hi>, which we will +also call <hi rend="font-style: italic">R'</hi>. We must show that the corresponding +point <hi rend="font-style: italic">C'</hi> must also coincide with the point <hi rend="font-style: italic">B</hi>. Join all +the points to <hi rend="font-style: italic">S</hi>, as before, and it appears that the points +α and <hi rend="font-style: italic">Ï€'</hi> coincide, as also do the points <hi rend="font-style: italic">α'Ï€</hi> and <hi rend="font-style: italic">γÏ'</hi>. +By the above construction the line <hi rend="font-style: italic">γ'Ï</hi> must meet <hi rend="font-style: italic">γÏ'</hi> +on the line joining <hi rend="font-style: italic">(γα', γ'α)</hi> with +<hi rend="font-style: italic">(γπ', γ'Ï€)</hi>. But these +four points form a quadrangle inscribed in the conic, +and we know by § 95 that the tangents at the opposite +<pb n="78" /><anchor id="Pg78" /> +vertices <hi rend="font-style: italic">γ</hi> and <hi rend="font-style: italic">γ'</hi> meet on the line <hi rend="font-style: italic">v</hi>. The line <hi rend="font-style: italic">γ'Ï</hi> +is thus a tangent to the conic, and <hi rend="font-style: italic">C'</hi> and <hi rend="font-style: italic">R</hi> are +the same point. That two projective point-rows superposed +on the same line are also in involution when +one pair, and therefore all pairs, correspond doubly +may be shown by taking <hi rend="font-style: italic">S</hi> at one vertex of a complete +quadrangle which has two pairs of opposite sides going +through two pairs of points. The details we leave to +the student.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image37.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 37</head> +<figDesc>Figure 37</figDesc> +</figure></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image38.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 38</head> +<figDesc>Figure 38</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="131. Involution of points on a point-row of the second order." /><index index="pdf" /> +<head></head><p><anchor id="p131" /><hi rend="font-weight: bold">131. Involution of points on a point-row of the second +order.</hi> It is important to note also, in Steiner's construction, +that we have obtained two point-rows of the +second order superposed on the same conic, and have +paired the points of one with the points of the other +in such a way that the correspondence is double. We +may then extend the notion of involution to point-rows +of the second order and say that <hi rend="font-style: italic">the points of a conic +are paired in involution when they are corresponding +<pb n="79" /><anchor id="Pg79" /> +points of two projective point-rows superposed on the conic, +and when they correspond to each other doubly.</hi> With this +definition we may prove the theorem: <hi rend="font-style: italic">The lines joining +corresponding points of a point-row of the second order in +involution all pass through a fixed point <hi rend="font-style: italic">U</hi>, and the line +joining any two points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi> meets the line joining the +two corresponding points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi> in the +points of a line <hi rend="font-style: italic">u</hi>, which is the polar +of <hi rend="font-style: italic">U</hi> with respect to the conic.</hi> For +take <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi> as the centers of two +pencils, the first perspective to the +point-row <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi> and the second +perspective to the point-row <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>. +Then, since the common ray of the +two pencils corresponds to itself, they are in perspective +position, and their axis of perspectivity <hi rend="font-style: italic">u</hi> (Fig. 38) +is the line which joins the point <hi rend="font-style: italic">(AB', A'B)</hi> to the +point <hi rend="font-style: italic">(AC', A'C)</hi>. It is then immediately clear, from +the theory of poles and polars, that <hi rend="font-style: italic">BB'</hi> and <hi rend="font-style: italic">CC'</hi> pass +through the pole <hi rend="font-style: italic">U</hi> of the line <hi rend="font-style: italic">u</hi>.</p></div> + +<div> +<index index="toc" level1="132. Involution of rays" /><index index="pdf" /> +<head></head><p><anchor id="p132" /><hi rend="font-weight: bold">132. Involution of rays.</hi> The whole theory thus far +developed may be dualized, and a theory of lines in +involution may be built up, starting with the complete +quadrilateral. Thus,</p> + +<p><hi rend="font-style: italic">The three pairs of rays which may be drawn from a +point through the three pairs of opposite vertices of a +complete quadrilateral are said to be in involution. If the +pairs <hi rend="font-style: italic">aa'</hi> and <hi rend="font-style: italic">bb'</hi> are fixed, and the line <hi rend="font-style: italic">c</hi> describes a pencil, +the corresponding line <hi rend="font-style: italic">c'</hi> also describes a pencil, and the +rays of the pencil are said to be paired in the involution +determined by <hi rend="font-style: italic">aa'</hi> and <hi rend="font-style: italic">bb'</hi>.</hi></p> + +<pb n="80" /><anchor id="Pg80" /></div> + +<div> +<index index="toc" level1="133. Double rays" /><index index="pdf" /> +<head></head><p><anchor id="p133" /><hi rend="font-weight: bold">133. Double rays.</hi> The self-corresponding rays, of +which there are two or none, are called <hi rend="font-style: italic">double rays</hi> of +the involution. Corresponding rays of the involution +are harmonic conjugates with respect to the double +rays. To the theorem of Desargues (§ 125) which has +to do with the system of conics through four points +we have the dual:</p> + +<p><hi rend="font-style: italic">The tangents from a fixed point to a system of conics tangent +to four fixed lines form a pencil of rays in involution.</hi></p></div> + +<div> +<index index="toc" level1="134. Conic through a fixed point touching four lines" /><index index="pdf" /> +<head></head><p><anchor id="p134" /><hi rend="font-weight: bold">134.</hi> If a conic of the system should go through the +fixed point, it is clear that the two tangents would coincide +and indicate a double ray of the involution. The +theorem, therefore, follows:</p> + +<p><hi rend="font-style: italic">Two conics or none may be drawn through a fixed point +to be tangent to four fixed lines.</hi></p></div> + +<div> +<index index="toc" level1="135. Double correspondence" /><index index="pdf" /> +<head></head><p><anchor id="p135" /><hi rend="font-weight: bold">135. Double correspondence.</hi> It further appears that +two projective pencils of rays which have the same +center are in involution if two pairs of rays correspond +to each other doubly. From this it is clear that we +might have deemed six rays in involution as six rays +which pass through a point and also through six points +in involution. While this would have been entirely in +accord with the treatment which was given the corresponding +problem in the theory of harmonic points and +lines, it is more satisfactory, from an aesthetic point of +view, to build the theory of lines in involution on its own +base. The student can show, by methods entirely analogous +to those used in the second chapter, that involution +is a projective property; that is, six rays in involution are +cut by any transversal in six points in involution.</p> + +<pb n="81" /><anchor id="Pg81" /></div> + +<div> +<index index="toc" level1="136. Pencils of rays of the second order in involution" /><index index="pdf" /> +<head></head><p><anchor id="p136" /><hi rend="font-weight: bold">136. Pencils of rays of the second order in involution.</hi> +We may also extend the notion of involution to pencils +of rays of the second order. Thus, <hi rend="font-style: italic">the tangents to a +conic are in involution when they are corresponding rays +of two protective pencils of the second order superposed +upon the same conic, and when they correspond to each +other doubly.</hi> We have then the theorem:</p></div> + +<div> +<index index="toc" level1="137. Theorem concerning pencils of the second +order in involution" /><index index="pdf" /> +<head></head><p><anchor id="p137" /><hi rend="font-weight: bold">137.</hi> <hi rend="font-style: italic">The intersections of corresponding rays of a pencil +of the second order in involution are all on a straight +line <hi rend="font-style: italic">u</hi>, and the intersection of any two tangents <hi rend="font-style: italic">ab</hi>, when +joined to the intersection of the corresponding tangents <hi rend="font-style: italic">a'b'</hi>, +gives a line which passes through a fixed point <hi rend="font-style: italic">U</hi>, the pole +of the line <hi rend="font-style: italic">u</hi> with respect to the conic.</hi></p></div> + +<div> +<index index="toc" level1="138. Involution of rays determined by a conic" /><index index="pdf" /> +<head></head><p><anchor id="p138" /><hi rend="font-weight: bold">138. Involution of rays determined by a conic.</hi> We +have seen in the theory of poles and polars (§ 103) +that if a point <hi rend="font-style: italic">P</hi> moves along a line <hi rend="font-style: italic">m</hi>, then the polar +of <hi rend="font-style: italic">P</hi> revolves about a point. This pencil cuts out on <hi rend="font-style: italic">m</hi> +another point-row <hi rend="font-style: italic">P'</hi>, projective also to <hi rend="font-style: italic">P</hi>. Since the +polar of <hi rend="font-style: italic">P</hi> passes through <hi rend="font-style: italic">P'</hi>, the polar of <hi rend="font-style: italic">P'</hi> also passes +through <hi rend="font-style: italic">P</hi>, so that the correspondence between <hi rend="font-style: italic">P</hi> and +<hi rend="font-style: italic">P'</hi> is double. The two point-rows are therefore in involution, +and the double points, if any exist, are the points +where the line <hi rend="font-style: italic">m</hi> meets the conic. A similar involution +of rays may be found at any point in the plane, corresponding +rays passing each through the pole of the other. +We have called such points and rays <hi rend="font-style: italic">conjugate</hi> with +respect to the conic (§ 100). We may then state the +following important theorem:</p></div> + +<div> +<index index="toc" level1="139. Statement of theorem" /><index index="pdf" /> +<head></head><p><anchor id="p139" /><hi rend="font-weight: bold">139.</hi> <hi rend="font-style: italic">A conic determines on every line in its plane an +involution of points, corresponding points in the involution +<pb n="82" /><anchor id="Pg82" /> +being conjugate with respect to the conic. The double points, +if any exist, are the points where the line meets the conic.</hi></p></div> + +<div> +<index index="toc" level1="140. Dual of the theorem" /><index index="pdf" /> +<head></head><p><anchor id="p140" /><hi rend="font-weight: bold">140.</hi> The dual theorem reads: <hi rend="font-style: italic">A conic determines at +every point in the plane an involution of rays, corresponding +rays being conjugate with respect to the conic. The +double rays, if any exist, are the tangents from the point +to the conic.</hi></p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Two lines are drawn through a point on a conic so +as always to make right angles with each other. Show that +the lines joining the points where they meet the conic again +all pass through a fixed point.</p> + +<p>2. Two lines are drawn through a fixed point on a conic +so as always to make equal angles with the tangent at that +point. Show that the lines joining the two points where the +lines meet the conic again all pass through a fixed point.</p> + +<p>3. Four lines divide the plane into a certain number of +regions. Determine for each region whether two conics or +none may be drawn to pass through points of it and also +to be tangent to the four lines.</p> + +<p>4. If a variable quadrangle move in such a way as +always to remain inscribed in a fixed conic, while three of +its sides turn each around one of three fixed collinear points, +then the fourth will also turn around a fourth fixed point +collinear with the other three.</p> + +<p>5. State and prove the dual of problem 4.</p> + +<p>6. Extend problem 4 as follows: If a variable polygon of +an even number of sides move in such a way as always to +remain inscribed in a fixed conic, while all its sides but one +pass through as many fixed collinear points, then the last side +will also pass through a fixed point collinear with the others.</p> + +<pb n="83" /><anchor id="Pg83" /> + +<p>7. If a triangle <hi rend="font-style: italic">QRS</hi> be inscribed in a conic, and if a +transversal <hi rend="font-style: italic">s</hi> meet two of its sides in <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, the third +side and the tangent at the opposite vertex in <hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">B'</hi>, and +the conic itself in <hi rend="font-style: italic">C</hi> and <hi rend="font-style: italic">C'</hi>, then <hi rend="font-style: italic">AA'</hi>, <hi rend="font-style: italic">BB'</hi>, <hi rend="font-style: italic">CC'</hi> are three +pairs of points in an involution.</p> + +<p>8. Use the last exercise to solve the problem: Given five +points, <hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">R</hi>, <hi rend="font-style: italic">S</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">C'</hi>, on a conic, to draw the tangent at any +one of them.</p> + +<p>9. State and prove the dual of problem 7 and use it to +prove the dual of problem 8.</p> + +<p>10. If a transversal cut two tangents to a conic in <hi rend="font-style: italic">B</hi> and +<hi rend="font-style: italic">B'</hi>, their chord of contact in <hi rend="font-style: italic">A</hi>, and the conic itself in <hi rend="font-style: italic">P</hi> +and <hi rend="font-style: italic">P'</hi>, then the point <hi rend="font-style: italic">A</hi> is a double point of the involution +determined by <hi rend="font-style: italic">BB'</hi> and <hi rend="font-style: italic">PP'</hi>.</p> + +<p>11. State and prove the dual of problem 10.</p> + +<p>12. If a variable conic pass through two given points, +<hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi>, and if it be tangent to two given lines, the chord +of contact of these two tangents will always pass through +a fixed point on <hi rend="font-style: italic">PP'</hi>.</p> + +<p>13. Use the last theorem to solve the problem: Given +four points, <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">P'</hi>, <hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">S</hi>, on a conic, and the tangent at one of +them, <hi rend="font-style: italic">Q</hi>, to draw the tangent at any one of the other points, <hi rend="font-style: italic">S</hi>.</p> + +<p>14. Apply the theorem of problem 9 to the case of a +hyperbola where the two tangents are the asymptotes. Show +in this way that if a hyperbola and its asymptotes be cut +by a transversal, the segments intercepted by the curve and +by the asymptotes respectively have the same middle point.</p> + +<p>15. In a triangle circumscribed about a conic, any side is +divided harmonically by its point of contact and the point +where it meets the chord joining the points of contact of the +other two sides.</p> +</div> +</div> + + +<div rend="page-break-before: always"> +<pb n="84" /><anchor id="Pg84" /> +<index index="toc" /><index index="pdf" /> +<head>CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS</head> + +<div> +<index index="toc" level1="141. Introduction of infinite point; center of involution" /><index index="pdf" /> +<head></head> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image39.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 39</head> +<figDesc>Figure 39</figDesc> +</figure></p> + +<p><anchor id="p141" /><hi rend="font-weight: bold">141. Introduction of infinite point; center of involution.</hi> +We connect the projective theory of involution with the +metrical, as usual, by the introduction of the elements at +infinity. In an involution of points on a line the point +which corresponds to the infinitely distant point is called +the <hi rend="font-style: italic">center</hi> of the involution. Since corresponding points +in the involution have been shown to be harmonic conjugates +with respect to the double points, the center is +midway between the double points when they exist. To +construct the center (Fig. 39) we draw as usual through +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi> any two rays and cut them by a line parallel +to <hi rend="font-style: italic">AA'</hi> in the points <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">M</hi>. Join these points to +<hi rend="font-style: italic">B</hi> and <hi rend="font-style: italic">B'</hi>, thus determining on <hi rend="font-style: italic">AK</hi> and <hi rend="font-style: italic">AN</hi> the points <hi rend="font-style: italic">L</hi> +and <hi rend="font-style: italic">N</hi>. <hi rend="font-style: italic">LN</hi> meets <hi rend="font-style: italic">AA'</hi> in the center <hi rend="font-style: italic">O</hi> of the involution.</p> + +<pb n="85" /><anchor id="Pg85" /></div> + +<div> +<index index="toc" level1="142. Fundamental metrical theorem" /><index index="pdf" /> +<head></head><p><anchor id="p142" /><hi rend="font-weight: bold">142. Fundamental metrical theorem.</hi> From the figure +we see that the triangles <hi rend="font-style: italic">OLB'</hi> and <hi rend="font-style: italic">PLM</hi> are similar, <hi rend="font-style: italic">P</hi> +being the intersection of KM and LN. Also the triangles +<hi rend="font-style: italic">KPN</hi> and <hi rend="font-style: italic">BON</hi> are similar. We thus have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OB : PK = ON : PN</hi> +</p> + +<p>and</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OB' : PM = OL : PL;</hi> +</p> + +<p>whence</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OB · OB' : PK · PM = ON · OL : PN · PL.</hi> +</p> + +<p>In the same way, from the similar triangles <hi rend="font-style: italic">OAL</hi> and +<hi rend="font-style: italic">PKL</hi>, and also <hi rend="font-style: italic">OA'N</hi> and <hi rend="font-style: italic">PMN</hi>, we obtain</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OA · OA' : PK · PM = ON · OL : PN · PL,</hi> +</p> + +<p>and this, with the preceding, gives at once the fundamental +theorem, which is sometimes taken also as the +definition of involution:</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">OA · OA' = OB · OB' = <hi rend="font-style: normal">constant</hi>,</hi> +</p> + +<p>or, in words,</p> + +<p><hi rend="font-style: italic">The product of the distances from the center to two corresponding +points in an involution of points is constant.</hi></p></div> + +<div> +<index index="toc" level1="143. Existence of double points" /><index index="pdf" /> +<head></head><p><anchor id="p143" /><hi rend="font-weight: bold">143. Existence of double points.</hi> Clearly, according as +the constant is positive or negative the involution will +or will not have double points. The constant is the +square root of the distance from the center to the +double points. If <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi> lie both on the same side +of the center, the product <hi rend="font-style: italic">OA · OA'</hi> is positive; and if +they lie on opposite sides, it is negative. Take the case +where they both lie on the same side of the center, and +take also the pair of corresponding points <hi rend="font-style: italic">BB'</hi>. Then, +since <hi rend="font-style: italic">OA · OA' = OB · OB'</hi>, it cannot happen that <hi rend="font-style: italic">B</hi> and +<hi rend="font-style: italic">B'</hi> are separated from each other by <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>. This is +evident enough if the points are on opposite sides of +the center. If the pairs are on the same side of the +<pb n="86" /><anchor id="Pg86" /> +center, and <hi rend="font-style: italic">B</hi> lies between <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi>, so that <hi rend="font-style: italic">OB</hi> is +greater, say, than <hi rend="font-style: italic">OA</hi>, but less than <hi rend="font-style: italic">OA'</hi>, then, by the +equation <hi rend="font-style: italic">OA · OA' = OB · OB'</hi>, we must have <hi rend="font-style: italic">OB'</hi> also +less than <hi rend="font-style: italic">OA'</hi> and greater than <hi rend="font-style: italic">OA</hi>. A similar discussion +may be made for the case where <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">A'</hi> lie on +opposite sides of <hi rend="font-style: italic">O</hi>. The results may be stated as +follows, without any reference to the center:</p> + +<p><hi rend="font-style: italic">Given two pairs of points in an involution of points, if +the points of one pair are separated from each other by +the points of the other pair, then the involution has no +double points. If the points of one pair are not separated +from each other by the points of the other pair, then the +involution has two double points.</hi></p></div> + +<div> +<index index="toc" level1="144. Existence of double rays" /><index index="pdf" /> +<head></head><p><anchor id="p144" /><hi rend="font-weight: bold">144.</hi> An entirely similar criterion decides whether an +involution of rays has or has not double rays, or whether +an involution of planes has or has not double planes.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image40.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 40</head> +<figDesc>Figure 40</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="145. Construction of an involution by means of circles" /><index index="pdf" /> +<head></head><p><anchor id="p145" /><hi rend="font-weight: bold">145. Construction of +an involution by means of circles.</hi> The equation just derived, <hi +rend="font-style: italic">OA · OA' = OB · OB'</hi>, indicates another +simple way in which points of an involution of points may be +constructed. Through <hi rend="font-style: italic">A</hi> and <hi +rend="font-style: italic">A'</hi> draw any circle, and draw also any +circle through <hi rend="font-style: italic">B</hi> and <hi +rend="font-style: italic">B'</hi> to cut the first in the two points <hi +rend="font-style: italic">G</hi> and <hi rend="font-style: +italic">G'</hi> (Fig. 40). Then any circle through <hi rend="font-style: +italic">G</hi> and <hi rend="font-style: italic">G'</hi> will meet the +line in pairs of points in the involution determined by <hi +rend="font-style: italic">AA'</hi> and <hi rend="font-style: +italic">BB'</hi>. For if such a circle meets the line in the points <hi +rend="font-style: italic">CC'</hi>, then, by the theorem in the geometry +of the circle which says that <hi rend="font-style: italic">if any chord +is +<pb n="87" /><anchor id="Pg87" /> +drawn through a fixed point within a circle, the product of its segments +is constant in whatever direction the chord is drawn, and if a secant +line be drawn from a fixed point without a circle, the product of the +secant and its external segment is constant in whatever direction the +secant line is drawn</hi>, we have <hi rend="font-style: italic">OC · +OC' = OG · OG' =</hi> constant. So that for all such points +<hi rend="font-style: italic">OA · OA' = OB · OB' = OC · +OC'</hi>. Further, the line <hi rend="font-style: italic">GG'</hi> +meets <hi rend="font-style: italic">AA'</hi> in the center of the +involution. To find the double points, if they exist, we draw a tangent +from <hi rend="font-style: italic">O</hi> to any of the circles through +<hi rend="font-style: italic">GG'</hi>. Let <hi rend="font-style: +italic">T</hi> be the point of contact. Then lay off on the line <hi +rend="font-style: italic">OA</hi> a line <hi rend="font-style: +italic">OF</hi> equal to <hi rend="font-style: italic">OT</hi>. Then, +since by the above theorem of elementary geometry +<hi rend="font-style: italic">OA · OA' = OT<hi rend="vertical-align: super">2</hi> = OF<hi rend="vertical-align: super">2</hi></hi>, we have one double +point <hi rend="font-style: italic">F</hi>. The other is at an equal +distance on the other side of <hi rend="font-style: italic">O</hi>. This +simple and effective method of constructing an involution of points is +often taken as the basis for the theory of involution. In projective +geometry, however, the circle, which is not a figure that remains +unaltered by projection, and is essentially a metrical notion, ought not +to be used to build up the purely projective part of the theory.</p></div> + +<div> +<index index="toc" level1="146. Circular points" /><index index="pdf" /> +<head></head><p><anchor id="p146" /><hi rend="font-weight: bold">146.</hi> It ought to be mentioned that the theory of +analytic geometry indicates that the circle is a special +conic section that happens to pass through two particular +imaginary points on the line at infinity, called the +<hi rend="font-style: italic">circular points</hi> and usually denoted by <hi rend="font-style: italic">I</hi> and <hi rend="font-style: italic">J</hi>. The +above method of obtaining a point-row in involution is, +then, nothing but a special case of the general theorem +of the last chapter (§ 125), which asserted that a system +of conics through four points will cut any line in the +plane in a point-row in involution.</p> + +<pb n="88" /><anchor id="Pg88" /> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image41.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 41</head> +<figDesc>Figure 41</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="147. Pairs in an involution of rays which are at right +angles. Circular involution" /><index index="pdf" /> +<head></head><p><anchor id="p147" /><hi rend="font-weight: bold">147. Pairs in an involution of rays which are at right +angles. Circular involution.</hi> In an involution of rays +there is no one ray which may be distinguished from +all the others as the point at infinity is distinguished +from all other points on a line. There is one pair of +rays, however, which does differ from all the others in +that for this particular pair the angle is a right angle. +This is most easily shown by using the construction +that employs circles, as indicated above. The centers of +all the circles through <hi rend="font-style: italic">G</hi> and <hi rend="font-style: italic">G'</hi> lie on the perpendicular +bisector of the line <hi rend="font-style: italic">GG'</hi>. Let +this line meet the line <hi rend="font-style: italic">AA'</hi> +in the point <hi rend="font-style: italic">C</hi> (Fig. 41), and +draw the circle with center <hi rend="font-style: italic">C</hi> +which goes through <hi rend="font-style: italic">G</hi> and <hi rend="font-style: italic">G'</hi>. +This circle cuts out two points +<hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">M'</hi> in the involution. The rays <hi rend="font-style: italic">GM</hi> and <hi rend="font-style: italic">GM'</hi> are +clearly at right angles, being inscribed in a semicircle. +If, therefore, the involution of points is projected to +<hi rend="font-style: italic">G</hi>, we have found two corresponding rays which are +at right angles to each other. Given now any involution +of rays with center <hi rend="font-style: italic">G</hi>, we may cut across it +by a straight line and proceed to find the two points +<hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">M'</hi>. Clearly there will be only one such pair +unless the perpendicular bisector of <hi rend="font-style: italic">GG'</hi> coincides with +the line <hi rend="font-style: italic">AA'</hi>. In this case every ray is at right angles +to its corresponding ray, and the involution is called +<hi rend="font-style: italic">circular</hi>.</p></div> + +<div> +<index index="toc" level1="148. Axes of conics" /><index index="pdf" /> +<head></head><p><anchor id="p148" /><hi rend="font-weight: bold">148. Axes of conics.</hi> At the close of the last chapter +(§ 140) we gave the theorem: <hi rend="font-style: italic">A conic determines at every +point in its plane an involution of rays, corresponding rays +<pb n="89" /><anchor id="Pg89" /> +being conjugate with respect to the conic. The double rays, +if any exist, are the tangents from the point to the conic.</hi> +In particular, taking the point as the center of the +conic, we find that conjugate diameters form a system +of rays in involution, of which the asymptotes, if there +are any, are the double rays. Also, conjugate diameters +are harmonic conjugates with respect to the asymptotes. +By the theorem of the last paragraph, there are two +conjugate diameters which are at right angles to each +other. These are called axes. In the case of the parabola, +where the center is at infinity, and on the curve, +there are, properly speaking, no conjugate diameters. +While the line at infinity might be considered as conjugate +to all the other diameters, it is not possible to +assign to it any particular direction, and so it cannot be +used for the purpose of defining an axis of a parabola. +There is one diameter, however, which is at right angles +to its conjugate system of chords, and this one is called +the <hi rend="font-style: italic">axis</hi> of the parabola. The circle also furnishes an +exception in that every diameter is an axis. The involution +in this case is circular, every ray being at right +angles to its conjugate ray at the center.</p></div> + +<div> +<index index="toc" level1="149. Points at which the involution determined by +a conic is circular" /><index index="pdf" /> +<head></head><p><anchor id="p149" /><hi rend="font-weight: bold">149. Points at which the involution determined by +a conic is circular.</hi> It is an important problem to discover +whether for any conic other than the circle it is +possible to find any point in the plane where the involution +determined as above by the conic is circular. +We shall proceed to the curious problem of proving the +existence of such points and of determining their number +and situation. We shall then develop the important +properties of such points.</p> + +<pb n="90" /><anchor id="Pg90" /></div> + +<div> +<index index="toc" level1="150. Properties of such a point" /><index index="pdf" /> +<head></head><p><anchor id="p150" /><hi rend="font-weight: bold">150.</hi> It is clear, in the first place, that such a point +cannot be on the outside of the conic, else the involution +would have double rays and such rays would have +to be at right angles to themselves. In the second +place, if two such points exist, the line joining them +must be a diameter and, indeed, an axis. For if <hi rend="font-style: italic">F</hi> +and <hi rend="font-style: italic">F'</hi> were two such points, then, since the conjugate +ray at <hi rend="font-style: italic">F</hi> to the line <hi rend="font-style: italic">FF'</hi> must be at right angles to it, +and also since the conjugate ray at <hi rend="font-style: italic">F'</hi> to the line <hi rend="font-style: italic">FF'</hi> +must be at right angles to it, the pole of <hi rend="font-style: italic">FF'</hi> must +be at infinity in a direction at right angles to <hi rend="font-style: italic">FF'</hi>. +The line <hi rend="font-style: italic">FF'</hi> is then a diameter, and since it is at +right angles to its conjugate diameter, it must be an +axis. From this it follows also that the points we are +seeking must all lie on one of the two axes, else we +should have a diameter which does not go through +the intersection of all axes—the center of the conic. +At least one axis, therefore, must be free from any +such points.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image42.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 42</head> +<figDesc>Figure 42</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="151. Position of such a point" /><index index="pdf" /> +<head></head><p><anchor id="p151" /><hi rend="font-weight: bold">151.</hi> Let now <hi rend="font-style: italic">P</hi> be a point on one of the axes (Fig. 42), +and draw any ray through it, such as <hi rend="font-style: italic">q</hi>. As <hi rend="font-style: italic">q</hi> revolves +about <hi rend="font-style: italic">P</hi>, its pole <hi rend="font-style: italic">Q</hi> moves along a line at right angles +to the axis on which <hi rend="font-style: italic">P</hi> lies, describing a point-row <hi rend="font-style: italic">p</hi> +projective to the pencil of rays <hi rend="font-style: italic">q</hi>. The point at infinity +in a direction at right angles to <hi rend="font-style: italic">q</hi> also describes a point-row +projective to <hi rend="font-style: italic">q</hi>. The line joining corresponding +points of these two point-rows is always a conjugate +line to <hi rend="font-style: italic">q</hi> and at right angles to <hi rend="font-style: italic">q</hi>, or, as we may call it, +a <hi rend="font-style: italic">conjugate normal</hi> to <hi rend="font-style: italic">q</hi>. These conjugate normals to <hi rend="font-style: italic">q</hi>, +joining as they do corresponding points in two projective +point-rows, form a pencil of rays of the second +<pb n="91" /><anchor id="Pg91" /> +order. But since the point at infinity on the point-row +<hi rend="font-style: italic">Q</hi> corresponds to the point at infinity in a direction +at right angles to <hi rend="font-style: italic">q</hi>, these point-rows are in perspective +position and the normal conjugates of all the lines +through <hi rend="font-style: italic">P</hi> meet in a point. This point lies on the +same axis with <hi rend="font-style: italic">P</hi>, as is seen by taking <hi rend="font-style: italic">q</hi> at right angles +to the axis on which <hi rend="font-style: italic">P</hi> lies. The center of this pencil +may be called <hi rend="font-style: italic">P'</hi>, and thus we have paired the point <hi rend="font-style: italic">P</hi> +with the point <hi rend="font-style: italic">P'</hi>. By moving the point <hi rend="font-style: italic">P</hi> along the +axis, and by keeping the +ray <hi rend="font-style: italic">q</hi> parallel to a fixed +direction, we may see that +the point-row <hi rend="font-style: italic">P</hi> and the +point-row <hi rend="font-style: italic">P'</hi> are projective. +Also the correspondence is +double, and by starting +from the point <hi rend="font-style: italic">P'</hi> we arrive +at the point <hi rend="font-style: italic">P</hi>. Therefore +the point-rows <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi> are +in involution, and if only +the involution has double points, we shall have found +in them the points we are seeking. For it is clear that +the rays through <hi rend="font-style: italic">P</hi> and the corresponding rays through +<hi rend="font-style: italic">P'</hi> are conjugate normals; and if <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi> coincide, we +shall have a point where all rays are at right angles +to their conjugates. We shall now show that the involution +thus obtained on one of the two axes must have +double points.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image43.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 43</head> +<figDesc>Figure 43</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="152. Discovery of the foci of the conic" /><index index="pdf" /> +<head></head><p><anchor id="p152" /><hi rend="font-weight: bold">152. Discovery of the foci of the conic.</hi> We know +that on one axis no such points as we are seeking can +lie (§ 150). The involution of points <hi rend="font-style: italic">PP'</hi> on this axis +<pb n="92" /><anchor id="Pg92" /> +can therefore have no double points. Nevertheless, let +<hi rend="font-style: italic">PP'</hi> and <hi rend="font-style: italic">RR'</hi> be two pairs of corresponding points on +this axis (Fig. 43). Then we know that <hi rend="font-style: italic">P</hi> and <hi rend="font-style: italic">P'</hi> are +separated from each other by <hi rend="font-style: italic">R</hi> and <hi rend="font-style: italic">R'</hi> (§ 143). Draw +a circle on <hi rend="font-style: italic">PP'</hi> as a diameter, and one on <hi rend="font-style: italic">RR'</hi> as a +diameter. These must intersect in +two points, <hi rend="font-style: italic">F</hi> and <hi rend="font-style: italic">F'</hi>, and since the +center of the conic is the center +of the involution <hi rend="font-style: italic">PP'</hi>, <hi rend="font-style: italic">RR'</hi>, as is +easily seen, it follows that <hi rend="font-style: italic">F</hi> and <hi rend="font-style: italic">F'</hi> +are on the other axis of the conic. +Moreover, <hi rend="font-style: italic">FR</hi> and <hi rend="font-style: italic">FR'</hi> are conjugate +normal rays, since <hi rend="font-style: italic">RFR'</hi> is +inscribed in a semicircle, and the +two rays go one through <hi rend="font-style: italic">R</hi> and the other through <hi rend="font-style: italic">R'</hi>. +The involution of points <hi rend="font-style: italic">PP'</hi>, <hi rend="font-style: italic">RR'</hi> therefore projects +to the two points <hi rend="font-style: italic">F</hi> and <hi rend="font-style: italic">F'</hi> in two pencils of rays in +involution which have for corresponding rays conjugate +normals to the conic. We may, then, say:</p> + +<p><hi rend="font-style: italic">There are two and only two points of the plane where +the involution determined by the conic is circular. These +two points lie on one of the axes, at equal distances from +the center, on the inside of the conic. These points are +called the foci of the conic.</hi></p></div> + +<div> +<index index="toc" level1="153. The circle and the parabola" /><index index="pdf" /> +<head></head><p><anchor id="p153" /><hi rend="font-weight: bold">153. The circle and the parabola.</hi> The above discussion +applies only to the central conics, apart from +the circle. In the circle the two foci fall together at the +center. In the case of the parabola, that part of the +investigation which proves the existence of two foci on +one of the axes will not hold, as we have but one +<pb n="93" /><anchor id="Pg93" /> +axis. It is seen, however, that as <hi rend="font-style: italic">P</hi> moves to infinity, +carrying the line <hi rend="font-style: italic">q</hi> with it, <hi rend="font-style: italic">q</hi> becomes the line at infinity, +which for the parabola is a tangent line. Its pole +<hi rend="font-style: italic">Q</hi> is thus at infinity and also the point <hi rend="font-style: italic">P'</hi>, so that <hi rend="font-style: italic">P</hi> +and <hi rend="font-style: italic">P'</hi> fall together at infinity, and therefore one focus +of the parabola is at infinity. There must therefore be +another, so that</p> + +<p><hi rend="font-style: italic">A parabola has one and only one focus in the finite +part of the plane.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image44.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 44</head> +<figDesc>Figure 44</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="154. Focal properties of conics" /><index index="pdf" /> +<head></head><p><anchor id="p154" /><hi rend="font-weight: bold">154. Focal properties of conics.</hi> We proceed to develop +some theorems which will exhibit the importance +of these points in the theory of the conic section. +Draw a tangent to the conic, and also the normal +at the point of contact <hi rend="font-style: italic">P</hi>. These +two lines are clearly conjugate +normals. The two points <hi rend="font-style: italic">T</hi> and +<hi rend="font-style: italic">N</hi>, therefore, where they meet the +axis which contains the foci, are +corresponding points in the involution +considered above, and are +therefore harmonic conjugates with respect to the foci +(Fig. 44); and if we join them to the point <hi rend="font-style: italic">P</hi>, we +shall obtain four harmonic lines. But two of them +are at right angles to each other, and so the others +make equal angles with them (Problem 4, Chapter II). +Therefore</p> + +<p><hi rend="font-style: italic">The lines joining a point on the conic to the foci make +equal angles with the tangent.</hi></p> + +<p>It follows that rays from a source of light at one +focus are reflected by an ellipse to the other.</p> + +<pb n="94" /><anchor id="Pg94" /></div> + +<div> +<index index="toc" level1="155. Case of the parabola" /><index index="pdf" /> +<head></head><p><anchor id="p155" /><hi rend="font-weight: bold">155.</hi> In the case of the parabola, where one of the +foci must be considered to be at infinity in the direction +of the diameter, we have</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image45.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 45</head> +<figDesc>Figure 45</figDesc> +</figure></p> + +<p><hi rend="font-style: italic">A diameter makes the same +angle with the tangent at its +extremity as that tangent does +with the line from its point of +contact to the focus (Fig. 45).</hi></p></div> + +<div> +<index index="toc" level1="156. Parabolic reflector" /><index index="pdf" /> +<head></head><p><anchor id="p156" /><hi rend="font-weight: bold">156.</hi> This last theorem is the basis for the construction +of the parabolic reflector. A ray of light from the +focus is reflected from such a reflector in a direction +parallel to the axis of the reflector.</p></div> + +<div> +<index index="toc" level1="157. Directrix. Principal axis. Vertex" /><index index="pdf" /> +<head></head><p><anchor id="p157" /><hi rend="font-weight: bold">157. Directrix. Principal axis. Vertex.</hi> The polar of +the focus with respect to the conic is called the <hi rend="font-style: italic">directrix</hi>. +The axis which contains the foci is called the <hi rend="font-style: italic">principal +axis</hi>, and the intersection of the axis with the curve is +called the <hi rend="font-style: italic">vertex</hi> of the curve. The directrix is at right +angles to the principal axis. In a parabola the vertex +is equally distant from the focus and the directrix, +these three points and the point at infinity on the axis +being four harmonic points. In the ellipse the vertex is +nearer to the focus than it is to the directrix, for the +same reason, and in the hyperbola it is farther from +the focus than it is from the directrix.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image46.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 46</head> +<figDesc>Figure 46</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="158. Another definition of a conic" /><index index="pdf" /> +<head></head><p><anchor id="p158" /><hi rend="font-weight: bold">158. Another definition of a conic.</hi> Let <hi rend="font-style: italic">P</hi> be any point +on the directrix through which a line is drawn meeting +the conic in the points <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi> (Fig. 46). Let the tangents +at <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi> meet in <hi rend="font-style: italic">T</hi>, and call the focus <hi rend="font-style: italic">F</hi>. Then +<hi rend="font-style: italic">TF</hi> and <hi rend="font-style: italic">PF</hi> are conjugate lines, and as they pass through +a focus they must be at right angles to each other. Let +<pb n="95" /><anchor id="Pg95" /> +<hi rend="font-style: italic">TF</hi> meet <hi rend="font-style: italic">AB</hi> in <hi rend="font-style: italic">C</hi>. Then <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">B</hi> are four harmonic +points. Project these four points parallel to <hi rend="font-style: italic">TF</hi> upon +the directrix, and we then get +the four harmonic points <hi rend="font-style: italic">P</hi>, +<hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">N</hi>. Since, now, <hi rend="font-style: italic">TFP</hi> is +a right angle, the angles <hi rend="font-style: italic">MFQ</hi> +and <hi rend="font-style: italic">NFQ</hi> are equal, as well +as the angles <hi rend="font-style: italic">AFC</hi> and <hi rend="font-style: italic">BFC</hi>. +Therefore the triangles <hi rend="font-style: italic">MAF</hi> +and <hi rend="font-style: italic">NFB</hi> are similar, and +<hi rend="font-style: italic">FA : FM = FB : BN</hi>. Dropping +perpendiculars <hi rend="font-style: italic">AA</hi> and <hi rend="font-style: italic">BB'</hi> +upon the directrix, this becomes +<hi rend="font-style: italic">FA : AA' = FB : BB'</hi>. We +have thus the property often taken as the definition +of a conic:</p> + +<p><hi rend="font-style: italic">The ratio of the distances from a point on the conic to +the focus and the directrix is constant.</hi></p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image47.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 47</head> +<figDesc>Figure 47</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="159. Eccentricity" /><index index="pdf" /> +<head></head><p><anchor id="p159" /><hi rend="font-weight: bold">159. Eccentricity.</hi> By taking the point at the vertex +of the conic, we note that this ratio is less than unity +for the ellipse, greater than unity for the hyperbola, +and equal to unity for the parabola. This ratio is called the +<hi rend="font-style: italic">eccentricity</hi>.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image48.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 48</head> +<figDesc>Figure 48</figDesc> +</figure></p></div> + +<div> +<index index="toc" level1="160. Sum or difference of focal +distances" /><index index="pdf" /> +<head></head><p><anchor id="p160" /><hi rend="font-weight: bold">160. Sum or difference of focal +distances.</hi> The ellipse and the +hyperbola have two foci and +two directrices. The eccentricity, of course, is the same +for one focus as for the other, since the curve is symmetrical +with respect to both. If the distances from +<pb n="96" /><anchor id="Pg96" /> +a point on a conic to the two foci are <hi rend="font-style: italic">r</hi> and <hi rend="font-style: italic">r'</hi>, and +the distances from the same point to the corresponding +directrices are <hi rend="font-style: italic">d</hi> and <hi rend="font-style: italic">d'</hi> +(Fig. 47), we have <hi rend="font-style: italic">r : d = r' : d'</hi>; +<hi rend="font-style: italic">(r ± r') : (d ± d')</hi>. In the +ellipse <hi rend="font-style: italic">(d + d')</hi> is constant, +being the distance between +the directrices. In the hyperbola +this distance is <hi rend="font-style: italic">(d - d')</hi>. +It follows (Fig. 48) that</p> + +<p><hi rend="font-style: italic">In the ellipse the sum of the +focal distances of any point +on the curve is constant, and +in the hyperbola the difference between the focal distances +is constant.</hi></p> +</div> + +<div> +<index index="toc" /><index index="pdf" /> +<head>PROBLEMS</head> + +<p>1. Construct the axis of a parabola, given four tangents.</p> + +<p>2. Given two conjugate lines at right angles to each +other, and let them meet the axis which has no foci on it +in the points <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi>. The circle on <hi rend="font-style: italic">AB</hi> as diameter will +pass through the foci of the conic.</p> + +<p>3. Given the axes of a conic in position, and also a +tangent with its point of contact, to construct the foci and +determine the length of the axes.</p> + +<p>4. Given the tangent at the vertex of a parabola, and +two other tangents, to find the focus.</p> + +<p>5. The locus of the center of a circle touching two given +circles is a conic with the centers of the given circles for +its foci.</p> + +<p>6. Given the axis of a parabola and a tangent, with its +point of contact, to find the focus.</p> + +<pb n="97" /><anchor id="Pg97" /> + +<p>7. The locus of the center of a circle which touches a +given line and a given circle consists of two parabolas.</p> + +<p>8. Let <hi rend="font-style: italic">F</hi> and <hi rend="font-style: italic">F'</hi> be the foci of an ellipse, and <hi rend="font-style: italic">P</hi> any +point on it. Produce <hi rend="font-style: italic">PF</hi> to <hi rend="font-style: italic">G</hi>, making <hi rend="font-style: italic">PG</hi> equal to <hi rend="font-style: italic">PF'</hi>. +Find the locus of <hi rend="font-style: italic">G</hi>.</p> + +<p>9. If the points <hi rend="font-style: italic">G</hi> of a circle be folded over upon a +point <hi rend="font-style: italic">F</hi>, the creases will all be tangent to a conic. If <hi rend="font-style: italic">F</hi> is +within the circle, the conic will be an ellipse; if <hi rend="font-style: italic">F</hi> is without +the circle, the conic will be a hyperbola.</p> + +<p>10. If the points <hi rend="font-style: italic">G</hi> in the last example be taken on a +straight line, the locus is a parabola.</p> + +<p>11. Find the foci and the length of the principal axis of +the conics in problems 9 and 10.</p> + +<p>12. In problem 10 a correspondence is set up between +straight lines and parabolas. As there is a fourfold infinity +of parabolas in the plane, and only a twofold infinity of +straight lines, there must be some restriction on the parabolas +obtained by this method. Find and explain this +restriction.</p> + +<p>13. State and explain the similar problem for problem 9.</p> + +<p>14. The last four problems are a study of the consequences +of the following transformation: A point <hi rend="font-style: italic">O</hi> is fixed +in the plane. Then to any point <hi rend="font-style: italic">P</hi> is made to correspond +the line <hi rend="font-style: italic">p</hi> at right angles to <hi rend="font-style: italic">OP</hi> and bisecting it. In this +correspondence, what happens to <hi rend="font-style: italic">p</hi> when <hi rend="font-style: italic">P</hi> moves along a +straight line? What corresponds to the theorem that two +lines have only one point in common? What to the theorem +that the angle sum of a triangle is two right angles? Etc.</p> + +</div> +</div> + +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<pb n="98" /><anchor id="Pg98" /> +<head>CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY</head> + +<div> +<index index="toc" level1="161. Ancient results" /><index index="pdf" /> +<head></head><p><anchor id="p161" /><hi rend="font-weight: bold">161. Ancient results.</hi> The theory of synthetic projective +geometry as we have built it up in this course is +less than a century old. This is not to say that many of +the theorems and principles involved were not discovered +much earlier, but isolated theorems do not make a +theory, any more than a pile of bricks makes a building. +The materials for our building have been contributed +by many different workmen from the days of Euclid +down to the present time. Thus, the notion of four +harmonic points was familiar to the ancients, who considered +it from the metrical point of view as the division +of a line internally and externally in the same ratio<note place="foot"><p>The +more general notion of <hi rend="font-style: italic">anharmonic ratio</hi>, which includes +the harmonic ratio as a special case, was also known to the ancients. +While we have not found it necessary to make use of the anharmonic +ratio in building up our theory, it is so frequently met with in treatises +on geometry that some account of it should be given.</p> + +<p>Consider any four points, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>, on a line, and join them to +any point <hi rend="font-style: italic">S</hi> not on that line. Then the triangles <hi rend="font-style: italic">ASB</hi>, <hi rend="font-style: italic">GSD</hi>, <hi rend="font-style: italic">ASD</hi>, +<hi rend="font-style: italic">CSB</hi>, having all the same altitude, are to each other as their bases. +Also, since the area of any triangle is one half the product of any two +of its sides by the sine of the angle included between them, we have</p> + +<p rend="text-align: center"><formula notation="tex">\[ +\frac{AB \times CD}{AD \times CB} = \frac{AS \times BS \sin ASB \times CS +\times DS \sin CSD}{AS \times DS \sin ASD \times CS \times BS \sin CSB} = +\frac{\sin ASB \times \sin CSD}{\sin ASD \times \sin CSB} +\]</formula></p> + +<p>Now the fraction on the right would be unchanged if instead of the +points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> we should take any other four points <hi rend="font-style: italic">A'</hi>, <hi rend="font-style: italic">B'</hi>, <hi rend="font-style: italic">C'</hi>, <hi rend="font-style: italic">D'</hi> +lying on any other line cutting across <hi rend="font-style: italic">SA</hi>, <hi rend="font-style: italic">SB</hi>, <hi rend="font-style: italic">SC</hi>, <hi rend="font-style: italic">SD</hi>. In other +words, <hi rend="font-style: italic">the fraction on the left is unaltered in value if the points +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> are replaced by any other four points perspective to them.</hi> +Again, the fraction on the left is unchanged if some other point were +taken instead of <hi rend="font-style: italic">S</hi>. In other words, <hi rend="font-style: italic">the fraction on the right is +unaltered if we replace the four lines <hi rend="font-style: italic">SA</hi>, <hi rend="font-style: italic">SB</hi>, <hi rend="font-style: italic">SC</hi>, <hi rend="font-style: italic">SD</hi> by any other four +lines perspective to them.</hi> The fraction on the left is called the <hi rend="font-style: italic">anharmonic +ratio</hi> of the four points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi>; the fraction on the right +is called the <hi rend="font-style: italic">anharmonic ratio</hi> of the four lines <hi rend="font-style: italic">SA</hi>, <hi rend="font-style: italic">SB</hi>, <hi rend="font-style: italic">SC</hi>, <hi rend="font-style: italic">SD</hi>. The +anharmonic ratio of four points is sometimes written (<hi rend="font-style: italic">ABCD</hi>), so that</p> + +<p rend="text-align: center"> +<formula notation="tex"> +\[ +\frac{AB \times CD}{AD \times CB} = (ABCD). +\] +</formula> +</p> + +<p>If we take the points in different order, the value of the anharmonic +ratio will not necessarily remain the same. The twenty-four different +ways of writing them will, however, give not more than six different +values for the anharmonic ratio, for by writing out the fractions +which define them we can find that <hi rend="font-style: italic">(ABCD) = (BADC) = (CDAB) = (DCBA)</hi>. +If we write <hi rend="font-style: italic">(ABCD) = a</hi>, it is not difficult to show that +the six values are</p> + +<p rend="text-align: center"> +<formula notation="tex"> +\[ +a; 1/a; 1-a; 1/(1-a); (a-1)/a; a/(a-1). +\] +</formula> +</p> + +<p>The proof of this we leave to the student.</p> + +<p>If <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> are four harmonic points (see Fig. 6, p. *22), and a quadrilateral +<hi rend="font-style: italic">KLMN</hi> is constructed such that <hi rend="font-style: italic">KL</hi> and <hi rend="font-style: italic">MN</hi> pass through +<hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">KN</hi> and <hi rend="font-style: italic">LM</hi> through <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">LN</hi> through <hi rend="font-style: italic">B</hi>, and <hi rend="font-style: italic">KM</hi> through <hi rend="font-style: italic">D</hi>, then, +projecting <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">C</hi>, <hi rend="font-style: italic">D</hi> from <hi rend="font-style: italic">L</hi> upon <hi rend="font-style: italic">KM</hi>, we have <hi rend="font-style: italic">(ABCD) = (KOMD)</hi>, +where <hi rend="font-style: italic">O</hi> is the intersection of <hi rend="font-style: italic">KM</hi> with <hi rend="font-style: italic">LN</hi>. But, projecting again +the points <hi rend="font-style: italic">K</hi>, <hi rend="font-style: italic">O</hi>, <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">D</hi> from <hi rend="font-style: italic">N</hi> back upon the line <hi rend="font-style: italic">AB</hi>, we have +<hi rend="font-style: italic">(KOMD) = (CBAD)</hi>. From this we have</p> + +<p rend="text-align: center"> +<hi rend="font-style: italic">(ABCD) = (CBAD),</hi> +</p> + +<p>or</p> + +<p rend="text-align: center"> +<formula notation="tex"> +\[ +a=a/(a-1); +\] +</formula> +</p> + +<p>whence <hi rend="font-style: italic">a = 0</hi> or <hi +rend="font-style: italic">a = 2</hi>. But it is easy to see that <hi +rend="font-style: italic">a = 0</hi> implies that two of the four points +coincide. For four harmonic points, therefore, the six values of the +anharmonic ratio reduce to three, namely, 2, <formula +notation="tex">$\frac{1}{2}$</formula>, and -1. Incidentally we see that +if an interchange of any two points in an anharmonic ratio does not +change its value, then the four points are harmonic.</p> + +<p rend="text-align: center"> +<figure rend="w95" url="images/image49.png"> +<head><hi rend="font-variant: small-caps">Fig.</hi> 49</head> +<figDesc>Figure 49</figDesc> +</figure></p> + +<p>Many theorems of projective geometry are succinctly stated in +terms of anharmonic ratios. Thus, the <hi rend="font-style: italic">anharmonic ratio of any four +elements of a form is equal to the anharmonic ratio of the corresponding +four elements in any form projectively related to it. The anharmonic +ratio of the lines joining any four fixed points on a conic to a variable +fifthpoint on the conic is constant. The +locus of points from which four points +in a plane are seen along four rays of +constant anharmonic ratio is a conic +through the four points.</hi> We leave these +theorems for the student, who may +also justify the following solution of +the problem: <hi rend="font-style: italic">Given three points and +a certain anharmonic ratio, to find a +fourth point which shall have with the +given three the given anharmonic ratio.</hi> +Let <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, <hi rend="font-style: italic">D</hi> be the three given points +(Fig. 49). On any convenient line +through <hi rend="font-style: italic">A</hi> take two points <hi rend="font-style: italic">B'</hi> and <hi rend="font-style: italic">D'</hi> +such that <hi rend="font-style: italic">AB'/AD'</hi> is equal to the +given anharmonic ratio. Join <hi rend="font-style: italic">BB'</hi> and <hi rend="font-style: italic">DD'</hi> and let the two lines +meet in <hi rend="font-style: italic">S</hi>. Draw through <hi rend="font-style: italic">S</hi> a parallel to <hi rend="font-style: italic">AB'</hi>. This line will meet +<hi rend="font-style: italic">AB</hi> in the required point <hi rend="font-style: italic">C</hi>.</p></note> +the involution of six points cut out by any transversal +which intersects the sides of a complete quadrilateral +<pb n="100" /><anchor id="Pg100" /> +as studied by Pappus<note place="foot"><p> +Pappus, Mathematicae Collectiones, vii, 129.</p></note>; +but these notions were not +made the foundation for any general theory. Taken by +themselves, they are of small consequence; it is their +relation to other theorems and sets of theorems that +gives them their importance. The ancients were doubtless +familiar with the theorem, <hi rend="font-style: italic">Two lines determine a +point, and two points determine a line</hi>, but they had +no glimpse of the wonderful law of duality, of which +this theorem is a simple example. The principle of +projection, by which many properties of the conic sections +may be inferred from corresponding properties +of the circle which forms the base of the cone from +which they are cut—a principle so natural to modern +mathematicians—seems not to have occurred to the +Greeks. The ellipse, the hyperbola, and the parabola +<pb n="101" /><anchor id="Pg101" /> +were to them entirely different curves, to be treated +separately with methods appropriate to each. Thus the +focus of the ellipse was discovered some five hundred +years before the focus of the parabola! It was not till +1522 that Verner<note place="foot"><p>J. Verneri, Libellus super vigintiduobus elementis conicis, etc. 1522.</p></note> +of Nürnberg undertook to demonstrate +the properties of the conic sections by means of +the circle.</p></div> + +<div> +<index index="toc" level1="162. Unifying principles" /><index index="pdf" /> +<head></head><p><anchor id="p162" /><hi rend="font-weight: bold">162. Unifying principles.</hi> In the early years of the +seventeenth century—that wonderful epoch in the +history of the world which produced a Galileo, a Kepler, +a Tycho Brahe, a Descartes, a Desargues, a Pascal, +a Cavalieri, a Wallis, a Fermat, a Huygens, a Bacon, +a Napier, and a goodly array of lesser lights, to say +nothing of a Rembrandt or of a Shakespeare—there +began to appear certain unifying principles connecting +the great mass of material dug out by the ancients. +Thus, in 1604 the great astronomer Kepler<note place="foot"><p>Kepler, Ad Vitellionem paralipomena quibus astronomiae pars +optica traditur. 1604.</p></note> introduced +the notion that parallel lines should be considered as +meeting at an infinite distance, and that a parabola is at +once the limiting case of an ellipse and of a hyperbola. +He also attributes to the parabola a "blind focus" +(<hi rend="font-style: italic">caecus focus</hi>) at infinity on the axis.</p></div> + +<div> +<index index="toc" level1="163. Desargues" /><index index="pdf" /> +<head></head><p><anchor id="p163" /><hi rend="font-weight: bold">163. Desargues.</hi> In 1639 Desargues,<note place="foot"><p>Desargues, Bruillon-project d'une atteinte aux événements des +rencontres d'un cône avec un plan. 1639. Edited and analyzed by +Poudra, 1864.</p></note> an architect of +Lyons, published a little treatise on the conic sections, +in which appears the theorem upon which we have +founded the theory of four harmonic points (§ 25). +<pb n="102" /><anchor id="Pg102" /> +Desargues, however, does not make use of it for that +purpose. Four harmonic points are for him a special +case of six points in involution when two of the three +pairs coincide giving double points. His development +of the theory of involution is also different from the +purely geometric one which we have adopted, and is +based on the theorem (§ 142) that the product of the +distances of two conjugate points from the center is +constant. He also proves the projective character of +an involution of points by showing that when six lines +pass through a point and through six points in involution, +then any transversal must meet them in six points +which are also in involution.</p></div> + +<div> +<index index="toc" level1="164. Poles and polars" /><index index="pdf" /> +<head></head><p><anchor id="p164" /><hi rend="font-weight: bold">164. Poles and polars.</hi> In this little treatise is also +contained the theory of poles and polars. The polar +line is called a <hi rend="font-style: italic">traversal</hi>.<note place="foot"><p>The term 'pole' was first introduced, in the sense in which we +have used it, in 1810, by a French mathematician named Servois +(Gergonne, <hi rend="font-style: italic">Annales des Mathéématiques</hi>, I, 337), and the corresponding +term 'polar' by the editor, Gergonne, of this same journal three years +later.</p></note> The harmonic properties of +poles and polars are given, but Desargues seems not +to have arrived at the metrical properties which result +when the infinite elements of the plane are introduced. +Thus he says, "When the <hi rend="font-style: italic">traversal</hi> is at an infinite +distance, all is unimaginable."</p></div> + +<div> +<index index="toc" level1="165. Desargues's theorem concerning conics through +four points" /><index index="pdf" /> +<head></head><p><anchor id="p165" /><hi rend="font-weight: bold">165. Desargues's theorem concerning conics through +four points.</hi> We find in this little book the beautiful +theorem concerning a quadrilateral inscribed in a conic +section, which is given by his name in § 138. The +theorem is not given in terms of a system of conics +through four points, for Desargues had no conception of +<pb n="103" /><anchor id="Pg103" /> +any such system. He states the theorem, in effect, as +follows: <hi rend="font-style: italic">Given a simple quadrilateral inscribed in a conic +section, every transversal meets the conic and the four sides +of the quadrilateral in six points which are in involution.</hi></p></div> + +<div> +<index index="toc" level1="166. Extension of the theory of poles and polars to +space" /><index index="pdf" /> +<head></head><p><anchor id="p166" /><hi rend="font-weight: bold">166. Extension of the theory of poles and polars to +space.</hi> As an illustration of his remarkable powers of +generalization, we may note that Desargues extended +the notion of poles and polars to space of three dimensions +for the sphere and for certain other surfaces of +the second degree. This is a matter which has not +been touched on in this book, but the notion is not +difficult to grasp. If we draw through any point <hi rend="font-style: italic">P</hi> in +space a line to cut a sphere in two points, <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">S</hi>, and +then construct the fourth harmonic of <hi rend="font-style: italic">P</hi> with respect to +<hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">B</hi>, the locus of this fourth harmonic, for various +lines through <hi rend="font-style: italic">P</hi>, is a plane called the <hi rend="font-style: italic">polar plane</hi> of <hi rend="font-style: italic">P</hi> +with respect to the sphere. With this definition and theorem +one can easily find dual relations between points +and planes in space analogous to those between points and +lines in a plane. Desargues closes his discussion of this +matter with the remark, "Similar properties may be +found for those other solids which are related to the +sphere in the same way that the conic section is to the +circle." It should not be inferred from this remark, +however, that he was acquainted with all the different +varieties of surfaces of the second order. The ancients +were well acquainted with the surfaces obtained by +revolving an ellipse or a parabola about an axis. Even +the hyperboloid of two sheets, obtained by revolving the +hyperbola about its major axis, was known to them, +but probably not the hyperboloid of one sheet, which +<pb n="104" /><anchor id="Pg104" /> +results from revolving a hyperbola about the other +axis. All the other solids of the second degree were +probably unknown until their discovery by Euler.<note place="foot"><p> +Euler, Introductio in analysin infinitorum, Appendix, cap. V. +1748.</p></note></p></div> + +<div> +<index index="toc" level1="167. Desargues's method of describing a conic" /><index index="pdf" /> +<head></head><p><anchor id="p167" /><hi rend="font-weight: bold">167.</hi> Desargues had no conception of the conic section +of the locus of intersection of corresponding rays of two +projective pencils of rays. He seems to have tried to +describe the curve by means of a pair of compasses, +moving one leg back and forth along a straight line +instead of holding it fixed as in drawing a circle. He +does not attempt to define the law of the movement +necessary to obtain a conic by this means.</p></div> + +<div> +<index index="toc" level1="168. Reception of Desargues's work" /><index index="pdf" /> +<head></head><p><anchor id="p168" /><hi rend="font-weight: bold">168. Reception of Desargues's work.</hi> Strange to say, +Desargues's immortal work was heaped with the most violent +abuse and held up to ridicule and scorn! "Incredible +errors! Enormous mistakes and falsities! Really it +is impossible for anyone who is familiar with the science +concerning which he wishes to retail his thoughts, to +keep from laughing!" Such were the comments of reviewers +and critics. Nor were his detractors altogether +ignorant and uninstructed men. In spite of the devotion +of his pupils and in spite of the admiration and friendship +of men like Descartes, Fermat, Mersenne, and +Roberval, his book disappeared so completely that two +centuries after the date of its publication, when the +French geometer Chasles wrote his history of geometry, +there was no means of estimating the value of the work +done by Desargues. Six years later, however, in 1845, +Chasles found a manuscript copy of the "Bruillon-project," +made by Desargues's pupil, De la Hire.</p> + +<pb n="105" /><anchor id="Pg105" /></div> + +<div> +<index index="toc" level1="169. Conservatism in Desargues's time" /><index index="pdf" /> +<head></head><p><anchor id="p169" /><hi rend="font-weight: bold">169. Conservatism in Desargues's time.</hi> It is not necessary +to suppose that this effacement of Desargues's work +for two centuries was due to the savage attacks of his +critics. All this was in accordance with the fashion of +the time, and no man escaped bitter denunciation who +attempted to improve on the methods of the ancients. +Those were days when men refused to believe that a +heavy body falls at the same rate as a lighter one, even +when Galileo made them see it with their own eyes +at the foot of the tower of Pisa. Could they not turn +to the exact page and line of Aristotle which declared +that the heavier body must fall the faster! "I have +read Aristotle's writings from end to end, many times," +wrote a Jesuit provincial to the mathematician and +astronomer, Christoph Scheiner, at Ingolstadt, whose +telescope seemed to reveal certain mysterious spots on +the sun, "and I can assure you I have nowhere found +anything similar to what you describe. Go, my son, and +tranquilize yourself; be assured that what you take for +spots on the sun are the faults of your glasses, or of +your eyes." The dead hand of Aristotle barred the +advance in every department of research. Physicians +would have nothing to do with Harvey's discoveries +about the circulation of the blood. "Nature is accused +of tolerating a vacuum!" exclaimed a priest when Pascal +began his experiments on the Puy-de-Dome to show +that the column of mercury in a glass tube varied in +height with the pressure of the atmosphere.</p></div> + +<div> +<index index="toc" level1="170. Desargues's style of writing" /><index index="pdf" /> +<head></head><p><anchor id="p170" /><hi rend="font-weight: bold">170. Desargues's style of writing.</hi> Nevertheless, authority +counted for less at this time in Paris than it did in +Italy, and the tragedy enacted in Rome when Galileo +<pb n="106" /><anchor id="Pg106" /> +was forced to deny his inmost convictions at the bidding +of a brutal Inquisition could not have been staged +in France. Moreover, in the little company of scientists +of which Desargues was a member the utmost liberty +of thought and expression was maintained. One very +good reason for the disappearance of the work of Desargues +is to be found in his style of writing. He failed +to heed the very good advice given him in a letter from +his warm admirer Descartes.<note place="foot"><p> +Å’uvres de Desargues, t. II, 132.</p></note> "You may have two designs, +both very good and very laudable, but which do +not require the same method of procedure: The one is +to write for the learned, and show them some new properties +of the conic sections which they do not already +know; and the other is to write for the curious unlearned, +and to do it so that this matter which until +now has been understood by only a very few, and which +is nevertheless very useful for perspective, for painting, +architecture, etc., shall become common and easy to +all who wish to study them in your book. If you have +the first idea, then it seems to me that it is necessary +to avoid using new terms; for the learned are already +accustomed to using those of Apollonius, and will not +readily change them for others, though better, and thus +yours will serve only to render your demonstrations +more difficult, and to turn away your readers from your +book. If you have the second plan in mind, it is certain +that your terms, which are French, and conceived +with spirit and grace, will be better received by persons +not preoccupied with those of the ancients.... But, if +you have that intention, you should make of it a great +<pb n="107" /><anchor id="Pg107" /> +volume; explain it all so fully and so distinctly that +those gentlemen who cannot study without yawning; +who cannot distress their imaginations enough to grasp +a proposition in geometry, nor turn the leaves of a book +to look at the letters in a figure, shall find nothing in +your discourse more difficult to understand than the +description of an enchanted palace in a fairy story." +The point of these remarks is apparent when we note +that Desargues introduced some seventy new terms in +his little book, of which only one, <hi rend="font-style: italic">involution</hi>, has survived. +Curiously enough, this is the one term singled +out for the sharpest criticism and ridicule by his reviewer, +De Beaugrand.<note place="foot"><p> +Å’uvres de Desargues, t. II, 370.</p></note> That Descartes knew the character +of Desargues's audience better than he did is also +evidenced by the fact that De Beaugrand exhausted his +patience in reading the first ten pages of the book.</p></div> + +<div> +<index index="toc" level1="171. Lack of appreciation of Desargues" /><index index="pdf" /> +<head></head><p><anchor id="p171" /><hi rend="font-weight: bold">171. Lack of appreciation of Desargues.</hi> Desargues's +methods, entirely different from the analytic methods +just then being developed by Descartes and Fermat, +seem to have been little understood. "Between you +and me," wrote Descartes<note place="foot"><p> +Å’uvres de Descartes, t. II, 499.</p></note> to Mersenne, "I can hardly +form an idea of what he may have written concerning +conics." Desargues seems to have boasted that he owed +nothing to any man, and that all his results had come +from his own mind. His favorite pupil, De la Hire, did +not realize the extraordinary simplicity and generality +of his work. It is a remarkable fact that the only one +of all his associates to understand and appreciate the +methods of Desargues should be a lad of sixteen years!</p> + +<pb n="108" /><anchor id="Pg108" /></div> + +<div> +<index index="toc" level1="172. Pascal and his theorem" /><index index="pdf" /> +<head></head><p><anchor id="p172" /><hi rend="font-weight: bold">172. Pascal and his theorem.</hi> One does not have to +believe all the marvelous stories of Pascal's admiring +sisters to credit him with wonderful precocity. We have +the fact that in 1640, when he was sixteen years old, +he published a little placard, or poster, entitled "Essay +pour les conique,"<note place="foot"><p> +Å’uvres de Pascal, par Brunsehvig et Boutroux, t. I, 252. +</p></note> in which his great theorem appears +for the first time. His manner of putting it may be a +little puzzling to one who has only seen it in the form +given in this book, and it may be worth while for the +student to compare the two methods of stating it. It is +given as follows: <hi rend="font-style: italic">"If in the plane of <hi rend="font-style: italic">M</hi>, <hi rend="font-style: italic">S</hi>, <hi rend="font-style: italic">Q</hi> we draw +through <hi rend="font-style: italic">M</hi> the two lines <hi rend="font-style: italic">MK</hi> and <hi rend="font-style: italic">MV</hi>, and through the +point <hi rend="font-style: italic">S</hi> the two lines <hi rend="font-style: italic">SK</hi> and <hi rend="font-style: italic">SV</hi>, and let <hi rend="font-style: italic">K</hi> be the intersection +of <hi rend="font-style: italic">MK</hi> and <hi rend="font-style: italic">SK</hi>; <hi rend="font-style: italic">V</hi> the intersection of <hi rend="font-style: italic">MV</hi> and +<hi rend="font-style: italic">SV</hi>; <hi rend="font-style: italic">A</hi> the intersection of <hi rend="font-style: italic">MA</hi> and <hi rend="font-style: italic">SA</hi> (<hi rend="font-style: italic">A</hi> is the intersection +of <hi rend="font-style: italic">SV</hi> and <hi rend="font-style: italic">MK</hi>), and <hi rend="font-style: italic">μ</hi> the intersection of <hi rend="font-style: italic">MV</hi> +and <hi rend="font-style: italic">SK</hi>; and if through two of the four points <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">K</hi>, +<hi rend="font-style: italic">μ</hi>, <hi rend="font-style: italic">V</hi>, which are not in the same straight line with <hi rend="font-style: italic">M</hi> and +<hi rend="font-style: italic">S</hi>, such as <hi rend="font-style: italic">K</hi> and <hi rend="font-style: italic">V</hi>, we pass the circumference of a circle +cutting the lines <hi rend="font-style: italic">MV</hi>, <hi rend="font-style: italic">MP</hi>, <hi rend="font-style: italic">SV</hi>, <hi rend="font-style: italic">SK</hi> in the points <hi rend="font-style: italic">O</hi>, <hi rend="font-style: italic">P</hi>, +<hi rend="font-style: italic">Q</hi>, <hi rend="font-style: italic">N</hi>; I say that the lines <hi rend="font-style: italic">MS</hi>, <hi rend="font-style: italic">NO</hi>, <hi rend="font-style: italic">PQ</hi> are of the same +order."</hi> (By "lines of the same order" Pascal means +lines which meet in the same point or are parallel.) By +projecting the figure thus described upon another plane +he is able to state his theorem for the case where the +circle is replaced by any conic section.</p></div> + +<div> +<index index="toc" level1="173. Pascal's essay" /><index index="pdf" /> +<head></head><p><anchor id="p173" /><hi rend="font-weight: bold">173.</hi> It must be understood that the "Essay" was +only a résumé of a more extended treatise on conics +which, owing partly to Pascal's extreme youth, partly +to the difficulty of publishing scientific works in those +<pb n="109" /><anchor id="Pg109" /> +days, and also to his later morbid interest in religious +matters, was never published. Leibniz<note place="foot"><p> +Chasles, Histoire de la Géométrie, 70.</p></note> examined a copy +of the complete work, and has reported that the great +theorem on the mystic hexagram was made the basis of +the whole theory, and that Pascal had deduced some four +hundred corollaries from it. This would indicate that +here was a man able to take the unconnected materials +of projective geometry and shape them into some such +symmetrical edifice as we have to-day. Unfortunately +for science, Pascal's early death prevented the further +development of the subject at his hands.</p></div> + +<div> +<index index="toc" level1="174. Pascal's originality" /><index index="pdf" /> +<head></head><p><anchor id="p174" /><hi rend="font-weight: bold">174.</hi> In the "Essay" Pascal gives full credit to +Desargues, saying of one of the other propositions, +"We prove this property also, the original discoverer of +which is M. Desargues, of Lyons, one of the greatest +minds of this age ... and I wish to acknowledge that +I owe to him the little which I have discovered." This +acknowledgment led Descartes to believe that Pascal's +theorem should also be credited to Desargues. But in +the scientific club which the young Pascal attended +in company with his father, who was also a scientist +of some reputation, the theorem went by the name of +'la Pascalia,' and Descartes's remarks do not seem to +have been taken seriously, which indeed is not to be +wondered at, seeing that he was in the habit of giving +scant credit to the work of other scientific investigators +than himself.</p></div> + +<div> +<index index="toc" level1="175. De la Hire and his work" /><index index="pdf" /> +<head></head><p><anchor id="p175" /><hi rend="font-weight: bold">175. De la Hire and his work.</hi> De la Hire added +little to the development of the subject, but he did put +into print much of what Desargues had already worked +<pb n="110" /><anchor id="Pg110" /> +out, not fully realizing, perhaps, how much was his +own and how much he owed to his teacher. Writing in +1679, he says,<note place="foot"><p> +Å’uvres de Desargues, t. I, 231.</p></note> "I have just read for the first time +M. Desargues's little treatise, and have made a copy +of it in order to have a more perfect knowledge of it." +It was this copy that saved the work of his master +from oblivion. De la Hire should be credited, among +other things, with the invention of a method by which +figures in the plane may be transformed into others +of the same order. His method is extremely interesting, +and will serve as an exercise for the student in +synthetic projective geometry. It is as follows: <hi rend="font-style: italic">Draw +two parallel lines, <hi rend="font-style: italic">a</hi> and <hi rend="font-style: italic">b</hi>, and select a point <hi rend="font-style: italic">P</hi> in their +plane. Through any point <hi rend="font-style: italic">M</hi> of the plane draw a line +meeting <hi rend="font-style: italic">a</hi> in <hi rend="font-style: italic">A</hi> and <hi rend="font-style: italic">b</hi> in <hi rend="font-style: italic">B</hi>. Draw a line through <hi rend="font-style: italic">B</hi> +parallel to <hi rend="font-style: italic">AP</hi>, and let it meet <hi rend="font-style: italic">MP</hi> in the point <hi rend="font-style: italic">M'</hi>. It +may be shown that the point <hi rend="font-style: italic">M'</hi> thus obtained does not +depend at all on the particular ray <hi rend="font-style: italic">MAB</hi> used in determining +it, so that we have set up a one-to-one correspondence +between the points <hi rend="font-style: italic">M</hi> and <hi rend="font-style: italic">M'</hi> in the plane.</hi> The student +may show that as <hi rend="font-style: italic">M</hi> describes a point-row, <hi rend="font-style: italic">M'</hi> describes +a point-row projective to it. As <hi rend="font-style: italic">M</hi> describes a conic, +<hi rend="font-style: italic">M'</hi> describes another conic. This sort of correspondence +is called a <hi rend="font-style: italic">collineation</hi>. It will be found that the +points on the line <hi rend="font-style: italic">b</hi> transform into themselves, as does +also the single point <hi rend="font-style: italic">P</hi>. Points on the line <hi rend="font-style: italic">a</hi> transform +into points on the line at infinity. The student +should remove the metrical features of the construction +and take, instead of two parallel lines <hi rend="font-style: italic">a</hi> and <hi rend="font-style: italic">b</hi>, any +two lines which may meet in a finite part of the plane. +<pb n="111" /><anchor id="Pg111" /> +The collineation is a special one in that the general +one has an invariant triangle instead of an invariant +point and line.</p></div> + +<div> +<index index="toc" level1="176. Descartes and his influence" /><index index="pdf" /> +<head></head><p><anchor id="p176" /><hi rend="font-weight: bold">176. Descartes and his influence.</hi> The history of synthetic +projective geometry has little to do with the work +of the great philosopher Descartes, except in an indirect +way. The method of algebraic analysis invented by +him, and the differential and integral calculus which +developed from it, attracted all the interest of the +mathematical world for nearly two centuries after +Desargues, and synthetic geometry received scant attention +during the rest of the seventeenth century and for +the greater part of the eighteenth century. It is difficult +for moderns to conceive of the richness and variety of +the problems which confronted the first workers in the +calculus. To come into the possession of a method +which would solve almost automatically problems which +had baffled the keenest minds of antiquity; to be able +to derive in a few moments results which an Archimedes +had toiled long and patiently to reach or a Galileo had +determined experimentally; such was the happy experience +of mathematicians for a century and a half after +Descartes, and it is not to be wondered at that along +with this enthusiastic pursuit of new theorems in analysis +should come a species of contempt for the methods +of the ancients, so that in his preface to his "Méchanique +Analytique," published in 1788, Lagrange boasts, "One +will find no figures in this work." But at the close of +the eighteenth century the field opened up to research +by the invention of the calculus began to appear so +thoroughly explored that new methods and new objects +<pb n="112" /><anchor id="Pg112" /> +of investigation began to attract attention. Lagrange +himself, in his later years, turned in weariness from +analysis and mechanics, and applied himself to chemistry, +physics, and philosophical speculations. "This state of +mind," says Darboux,<note place="foot"><p> +See Ball, History of Mathematics, French edition, t. II, 233. +</p></note> "we find almost always at certain +moments in the lives of the greatest scholars." At any +rate, after lying fallow for almost two centuries, the +field of pure geometry was attacked with almost religious +enthusiasm.</p></div> + +<div> +<index index="toc" level1="177. Newton and Maclaurin" /><index index="pdf" /> +<head></head><p><anchor id="p177" /><hi rend="font-weight: bold">177. Newton and Maclaurin.</hi> But in hastening on +to the epoch of Poncelet and Steiner we should not +omit to mention the work of Newton and Maclaurin. +Although their results were obtained by analysis for the +most part, nevertheless they have given us theorems +which fall naturally into the domain of synthetic projective +geometry. Thus Newton's "organic method"<note place="foot"><p> +Newton, Principia, lib. i, lemma XXI.</p></note> +of generating conic sections is closely related to the +method which we have made use of in Chapter III. +It is as follows: <hi rend="font-style: italic">If two angles, <hi rend="font-style: italic">AOS</hi> and <hi rend="font-style: italic">AO'S</hi>, of given +magnitudes turn about their respective vertices, <hi rend="font-style: italic">O</hi> and <hi rend="font-style: italic">O'</hi>, +in such a way that the point of intersection, <hi rend="font-style: italic">S</hi>, of one pair +of arms always lies on a straight line, the point of intersection, +<hi rend="font-style: italic">A</hi>, of the other pair of arms will describe a conic.</hi> +The proof of this is left to the student.</p></div> + +<div> +<index index="toc" level1="178. Maclaurin's construction" /><index index="pdf" /> +<head></head><p><anchor id="p178" /><hi rend="font-weight: bold">178.</hi> Another method of generating a conic is due to +Maclaurin.<note place="foot"><p> +Maclaurin, Philosophical Transactions of the Royal Society of +London, 1735.</p></note> The construction, which we also leave for +the student to justify, is as follows: <hi rend="font-style: italic">If a triangle <hi rend="font-style: italic">C'PQ</hi> +move in such a way that its sides, <hi rend="font-style: italic">PQ</hi>, <hi rend="font-style: italic">QC'</hi>, and <hi rend="font-style: italic">C'P</hi>, turn +<pb n="113" /><anchor id="Pg113" /> +around three fixed points, <hi rend="font-style: italic">R</hi>, <hi rend="font-style: italic">A</hi>, <hi rend="font-style: italic">B</hi>, respectively, while two of +its vertices, <hi rend="font-style: italic">P</hi>, <hi rend="font-style: italic">Q</hi>, slide along two fixed lines, <hi rend="font-style: italic">CB'</hi> and <hi rend="font-style: italic">CA'</hi>, +respectively, then the remaining vertex will describe a conic.</hi></p></div> + +<div> +<index index="toc" level1="179. Descriptive geometry and the second revival" /><index index="pdf" /> +<head></head><p><anchor id="p179" /><hi rend="font-weight: bold">179. Descriptive geometry and the second revival.</hi> +The second revival of pure geometry was again to take +place at a time of great intellectual activity. The period +at the close of the eighteenth and the beginning of +the nineteenth century is adorned with a glorious list +of mighty names, among which are Gauss, Lagrange, +Legendre, Laplace, Monge, Carnot, Poncelet, Cauchy, +Fourier, Steiner, Von Staudt, Möbius, Abel, and many +others. The renaissance may be said to date from the invention +by Monge<note place="foot"><p> +Monge, Géométrie Descriptive. 1800.</p></note> of the theory of <hi rend="font-style: italic">descriptive geometry</hi>. +Descriptive geometry is concerned with the representation +of figures in space of three dimensions by means +of space of two dimensions. The method commonly +used consists in projecting the space figure on two +planes (a vertical and a horizontal plane being most +convenient), the projections being made most simply +for metrical purposes from infinity in directions perpendicular +to the two planes of projection. These two +planes are then made to coincide by revolving the horizontal +into the vertical about their common line. Such +is the method of descriptive geometry which in the +hands of Monge acquired wonderful generality and elegance. +Problems concerning fortifications were worked +so quickly by this method that the commandant at the +military school at Mézières, where Monge was a draftsman +and pupil, viewed the results with distrust. Monge +afterward became professor of mathematics at Mézières +<pb n="114" /><anchor id="Pg114" /> +and gathered around him a group of students destined +to have a share in the advancement of pure geometry. +Among these were Hachette, Brianchon, Dupin, Chasles, +Poncelet, and many others.</p></div> + +<div> +<index index="toc" level1="180. Duality, homology, continuity, contingent relations" /><index index="pdf" /> +<head></head><p><anchor id="p180" /><hi rend="font-weight: bold">180. Duality, homology, continuity, contingent relations.</hi> +Analytic geometry had left little to do in the +way of discovery of new material, and the mathematical +world was ready for the construction of the edifice. +The activities of the group of men that followed Monge +were directed toward this end, and we now begin to +hear of the great unifying notions of duality, homology, +continuity, contingent relations, and the like. The +devotees of pure geometry were beginning to feel the +need of a basis for their science which should be at +once as general and as rigorous as that of the analysts. +Their dream was the building up of a system of geometry +which should be independent of analysis. Monge, +and after him Poncelet, spent much thought on the so-called +"principle of continuity," afterwards discussed +by Chasles under the name of the "principle of contingent +relations." To get a clear idea of this principle, +consider a theorem in geometry in the proof of which +certain auxiliary elements are employed. These elements +do not appear in the statement of the theorem, +and the theorem might possibly be proved without them. +In drawing the figure for the proof of the theorem, +however, some of these elements may not appear, or, +as the analyst would say, they become imaginary. "No +matter," says the principle of contingent relations, "the +theorem is true, and the proof is valid whether the +elements used in the proof are real or imaginary."</p> + +<pb n="115" /><anchor id="Pg115" /></div> + +<div> +<index index="toc" level1="181. Poncelet and Cauchy" /><index index="pdf" /> +<head></head><p><anchor id="p181" /><hi rend="font-weight: bold">181. Poncelet and Cauchy.</hi> The efforts of Poncelet +to compel the acceptance of this principle independent +of analysis resulted in a bitter and perhaps fruitless +controversy between him and the great analyst Cauchy. +In his review of Poncelet's great work on the projective +properties of figures<note place="foot"><p> +Poncelet, Traité des Propriétés Projectives des Figures. 1822. +(See p. 357, Vol. II, of the edition of 1866.)</p></note> +Cauchy says, "In his preliminary +discourse the author insists once more on the +necessity of admitting into geometry what he calls the +'principle of continuity.' We have already discussed +that principle ... and we have found that that principle +is, properly speaking, only a strong induction, +which cannot be indiscriminately applied to all sorts of +questions in geometry, nor even in analysis. The reasons +which we have given as the basis of our opinion +are not affected by the considerations which the author +has developed in his Traité des Propriétés Projectives +des Figures." Although this principle is constantly made +use of at the present day in all sorts of investigations, +careful geometricians are in agreement with Cauchy +in this matter, and use it only as a convenient working +tool for purposes of exploration. The one-to-one +correspondence between geometric forms and algebraic +analysis is subject to many and important exceptions. +The field of analysis is much more general than the +field of geometry, and while there may be a clear +notion in analysis to, correspond to every notion in +geometry, the opposite is not true. Thus, in analysis +we can deal with four coördinates as well as with +three, but the existence of a space of four dimensions +<pb n="116" /><anchor id="Pg116" /> +to correspond to it does not therefore follow. When +the geometer speaks of the two real or imaginary intersections +of a straight line with a conic, he is really +speaking the language of algebra. <hi rend="font-style: italic">Apart from the +algebra involved</hi>, it is the height of absurdity to try to +distinguish between the two points in which a line +<hi rend="font-style: italic">fails to meet a conic!</hi></p></div> + +<div> +<index index="toc" level1="182. The work of Poncelet" /><index index="pdf" /> +<head></head><p><anchor id="p182" /><hi rend="font-weight: bold">182. The work of Poncelet.</hi> But Poncelet's right to +the title "The Father of Modern Geometry" does not +stand or fall with the principle of contingent relations. +In spite of the fact that he considered this principle +the most important of all his discoveries, his reputation +rests on more solid foundations. He was the first to +study figures <hi rend="font-style: italic">in homology</hi>, which is, in effect, the collineation +described in § 175, where corresponding points +lie on straight lines through a fixed point. He was the +first to give, by means of the theory of poles and polars, +a transformation by which an element is transformed +into another of a different sort. Point-to-point transformations +will sometimes generalize a theorem, but +the transformation discovered by Poncelet may throw a +theorem into one of an entirely different aspect. The +principle of duality, first stated in definite form by +Gergonne,<note place="foot"><p> +Gergonne, <hi rend="font-style: italic">Annales de Mathématiques, XVI, 209. 1826.</hi></p></note> +the editor of the mathematical journal in +which Poncelet published his researches, was based by +Poncelet on his theory of poles and polars. He also put +into definite form the notions of the infinitely distant +elements in space as all lying on a plane at infinity.</p></div> + +<div> +<index index="toc" level1="183. The debt which analytic geometry owes to synthetic +geometry" /><index index="pdf" /> +<head></head><p><anchor id="p183" /><hi rend="font-weight: bold">183. The debt which analytic geometry owes to synthetic +geometry.</hi> The reaction of pure geometry on +<pb n="117" /><anchor id="Pg117" /> +analytic geometry is clearly seen in the development of +the notion of the <hi rend="font-style: italic">class</hi> of a curve, which is the number +of tangents that may be drawn from a point in a plane +to a given curve lying in that plane. If a point moves +along a conic, it is easy to show—and the student +is recommended to furnish the proof—that the polar +line with respect to a conic remains tangent to another +conic. This may be expressed by the statement that the +conic is of the second order and also of the second class. +It might be thought that if a point moved along a +cubic curve, its polar line with respect to a conic would +remain tangent to another cubic curve. This is not the +case, however, and the investigations of Poncelet and +others to determine the class of a given curve were +afterward completed by Plücker. The notion of geometrical +transformation led also to the very important +developments in the theory of invariants, which, geometrically, +are the elements and configurations which +are not affected by the transformation. The anharmonic +ratio of four points is such an invariant, since it remains +unaltered under all projective transformations.</p></div> + +<div> +<index index="toc" level1="184. Steiner and his work" /><index index="pdf" /> +<head></head><p><anchor id="p184" /><hi rend="font-weight: bold">184. Steiner and his work.</hi> In the work of Poncelet +and his contemporaries, Chasles, Brianchon, Hachette, +Dupin, Gergonne, and others, the anharmonic ratio enjoyed +a fundamental rôle. It is made also the basis of +the great work of Steiner,<note place="foot"><p> +Steiner, Systematische Ehtwickelung der Abhängigkeit geometrischer +Gestalten von einander. 1832.</p></note> +who was the first to treat +of the conic, not as the projection of a circle, but as the +locus of intersection of corresponding rays of two projective +pencils. Steiner not only related to each other, +<pb n="118" /><anchor id="Pg118" /> +in one-to-one correspondence, point-rows and pencils +and all the other fundamental forms, but he set into +correspondence even curves and surfaces of higher degrees. +This new and fertile conception gave him an +easy and direct route into the most abstract and difficult +regions of pure geometry. Much of his work was +given without any indication of the methods by which +he had arrived at it, and many of his results have only +recently been verified.</p></div> + +<div> +<index index="toc" level1="185. Von Staudt and his work" /><index index="pdf" /> +<head></head><p><anchor id="p185" /><hi rend="font-weight: bold">185. Von Staudt and his work.</hi> To complete the theory +of geometry as we have it to-day it only remained +to free it from its dependence on the semimetrical basis +of the anharmonic ratio. This work was accomplished by +Von Staudt,<note place="foot"><p> +Von Staudt, Geometrie der Lage. 1847.</p></note> +who applied himself to the restatement +of the theory of geometry in a form independent of +analytic and metrical notions. The method which has +been used in Chapter II to develop the notion of four +harmonic points by means of the complete quadrilateral +is due to Von Staudt. His work is characterized by a +most remarkable generality, in that he is able to discuss +real and imaginary forms with equal ease. Thus he +assumes a one-to-one correspondence between the points +and lines of a plane, and defines a conic as the locus +of points which lie on their corresponding lines, and a +pencil of rays of the second order as the system of lines +which pass through their corresponding points. The +point-row and pencil of the second order may be real +or imaginary, but his theorems still apply. An illustration +of a correspondence of this sort, where the conic +is imaginary, is given in § 15 of the first chapter. In +<pb n="119" /><anchor id="Pg119" /> +defining conjugate imaginary points on a line, Von +Staudt made use of an involution of points having no +double points. His methods, while elegant and powerful, +are hardly adapted to an elementary course, but +Reye<note place="foot"><p> +Reye, Geometrie der Lage. Translated by Holgate, 1897.</p></note> +and others have done much toward simplifying +his presentation.</p></div> + +<div> +<index index="toc" level1="186. Recent developments" /><index index="pdf" /> +<head></head><p><anchor id="p186" /><hi rend="font-weight: bold">186. Recent developments.</hi> It would be only confusing +to the student to attempt to trace here the later +developments of the science of protective geometry. It +is concerned for the most part with curves and surfaces +of a higher degree than the second. Purely synthetic +methods have been used with marked success in the +study of the straight line in space. The struggle between +analysis and pure geometry has long since come +to an end. Each has its distinct advantages, and the +mathematician who cultivates one at the expense of the +other will never attain the results that he would attain +if both methods were equally ready to his hand. Pure +geometry has to its credit some of the finest discoveries +in mathematics, and need not apologize for having +been born. The day of its usefulness has not passed +with the invention of abridged notation and of short +methods in analysis. While we may be certain that any +geometrical problem may always be stated in analytic +form, it does not follow that that statement will be +simple or easily interpreted. For many mathematicians +the geometric intuitions are weak, and for such the +method will have little attraction. On the other hand, +there will always be those for whom the subject will +have a peculiar glamor—who will follow with delight +<pb n="120" /><anchor id="Pg120" /> +the curious and unexpected relations between the forms +of space. There is a corresponding pleasure, doubtless, +for the analyst in tracing the marvelous connections +between the various fields in which he wanders, and it +is as absurd to shut one's eyes to the beauties in one +as it is to ignore those in the other. "Let us cultivate +geometry, then," says Darboux,<note place="foot"><p> +Ball, loc. cit. p. 261.</p></note> +"without wishing in +all points to equal it to its rival. Besides, if we were +tempted to neglect it, it would not be long in finding +in the applications of mathematics, as once it has already +done, the means of renewing its life and of +developing itself anew. It is like the Giant Antaeus, +who renewed, his strength by touching the earth."</p> +</div> +</div> + + +<div rend="page-break-before: always"> +<index index="toc" /><index index="pdf" /> +<head>INDEX</head> + +<p rend="text-align: center">(The numbers refer to the paragraphs)</p> + +<p rend="text-indent: 0">Abel (1802-1829), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Analogy, <ref target="p24">24</ref><lb /></p> + +<p rend="text-indent: 0">Analytic geometry, <ref target="p21">21</ref>, <ref target="p118">118</ref>, <ref target="p119">119</ref>, +120, <ref target="p146">146</ref>, <ref target="p176">176</ref>, <ref target="p180">180</ref><lb /></p> + +<p rend="text-indent: 0">Anharmonic ratio, <ref target="p46">46</ref>, <ref target="p161">161</ref>, <ref target="p184">184</ref>, <ref target="p185">185</ref><lb /></p> + +<p rend="text-indent: 0">Apollonius (second half of third +century B.C.), <ref target="p70">70</ref><lb /></p> + +<p rend="text-indent: 0">Archimedes (287-212 B.C.), <ref target="p176">176</ref><lb /></p> + +<p rend="text-indent: 0">Aristotle (384-322 B.C.), <ref target="p169">169</ref><lb /></p> + +<p rend="text-indent: 0">Asymptotes, <ref target="p111">111</ref>, <ref target="p113">113</ref>, <ref target="p114">114</ref>, <ref target="p115">115</ref>, +116, <ref target="p117">117</ref>, <ref target="p118">118</ref>, <ref target="p148">148</ref><lb /></p> + +<p rend="text-indent: 0">Axes of a conic, <ref target="p148">148</ref><lb /></p> + +<p rend="text-indent: 0">Axial pencil, <ref target="p7">7</ref>, <ref target="p8">8</ref>, <ref target="p23">23</ref>, <ref target="p50">50</ref>, <ref target="p54">54</ref><lb /></p> + +<p rend="text-indent: 0">Axis of perspectivity, <ref target="p8">8</ref>, <ref target="p47">47</ref><lb /></p> + +<p rend="text-indent: 0">Bacon (1561-1626), <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Bisection, <ref target="p41">41</ref>, <ref target="p109">109</ref><lb /></p> + +<p rend="text-indent: 0">Brianchon (1785-1864), <ref target="p84">84</ref>, <ref target="p85">85</ref>, <ref target="p86">86</ref>, +88, <ref target="p89">89</ref>, <ref target="p90">90</ref>, <ref target="p95">95</ref>, <ref target="p105">105</ref>, <ref target="p113">113</ref>, <ref target="p174">174</ref>, <ref target="p184">184</ref> <lb /></p> + +<p rend="text-indent: 0">Calculus, <ref target="p176">176</ref><lb /></p> + +<p rend="text-indent: 0">Carnot (1796-1832), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Cauchy (1789-1857), <ref target="p179">179</ref>, <ref target="p181">181</ref><lb /></p> + +<p rend="text-indent: 0">Cavalieri (1598-1647), <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Center of a conic, <ref target="p107">107</ref>, <ref target="p112">112</ref>, <ref target="p148">148</ref><lb /></p> + +<p rend="text-indent: 0">Center of involution, <ref target="p141">141</ref>, <ref target="p142">142</ref><lb /></p> + +<p rend="text-indent: 0">Center of perspectivity, <ref target="p8">8</ref><lb /></p> + +<p rend="text-indent: 0">Central conic, <ref target="p120">120</ref><lb /></p> + +<p rend="text-indent: 0">Chasles (1793-1880), <ref target="p168">168</ref>, <ref target="p179">179</ref>, <ref target="p180">180</ref>, +184<lb /></p> + +<p rend="text-indent: 0">Circle, <ref target="p21">21</ref>, <ref target="p73">73</ref>, <ref target="p80">80</ref>, <ref target="p145">145</ref>, <ref target="p146">146</ref>, <ref target="p147">147</ref><lb /></p> + +<p rend="text-indent: 0">Circular involution, <ref target="p147">147</ref>, <ref target="p149">149</ref>, <ref target="p150">150</ref>, +151<lb /></p> + +<p rend="text-indent: 0">Circular points, <ref target="p146">146</ref><lb /></p> + +<p rend="text-indent: 0">Class of a curve, <ref target="p183">183</ref><lb /></p> + +<p rend="text-indent: 0">Classification of conics, <ref target="p110">110</ref><lb /></p> + +<p rend="text-indent: 0">Collineation, <ref target="p175">175</ref><lb /></p> + +<p rend="text-indent: 0">Concentric pencils, <ref target="p50">50</ref><lb /></p> + +<p rend="text-indent: 0">Cone of the second order, <ref target="p59">59</ref><lb /></p> + +<p rend="text-indent: 0">Conic, <ref target="p73">73</ref>, <ref target="p81">81</ref><lb /></p> + +<p rend="text-indent: 0">Conjugate diameters, <ref target="p114">114</ref>, <ref target="p148">148</ref><lb /></p> + +<p rend="text-indent: 0">Conjugate normal, <ref target="p151">151</ref><lb /></p> + +<p rend="text-indent: 0">Conjugate points and lines, <ref target="p100">100</ref>, +109, <ref target="p138">138</ref>, <ref target="p139">139</ref>, <ref target="p140">140</ref><lb /></p> + +<p rend="text-indent: 0">Constants in an equation, <ref target="p21">21</ref><lb /></p> + +<p rend="text-indent: 0">Contingent relations, <ref target="p180">180</ref>, <ref target="p181">181</ref><lb /></p> + +<p rend="text-indent: 0">Continuity, <ref target="p180">180</ref>, <ref target="p181">181</ref><lb /></p> + +<p rend="text-indent: 0">Continuous correspondence, <ref target="p9">9</ref>, <ref target="p10">10</ref>, +21, <ref target="p49">49</ref><lb /></p> + +<p rend="text-indent: 0">Corresponding elements, <ref target="p64">64</ref><lb /></p> + +<p rend="text-indent: 0">Counting, <ref target="p1">1</ref>, <ref target="p4">4</ref><lb /></p> + +<p rend="text-indent: 0">Cross ratio, <ref target="p46">46</ref><lb /></p> + +<p rend="text-indent: 0">Darboux, <ref target="p176">176</ref>, <ref target="p186">186</ref><lb /></p> + +<p rend="text-indent: 0">De Beaugrand, <ref target="p170">170</ref><lb /></p> + +<p rend="text-indent: 0">Degenerate pencil of rays of the +second order, <ref target="p58">58</ref>, <ref target="p93">93</ref><lb /></p> + +<p rend="text-indent: 0">Degenerate point-row of the +second order, <ref target="p56">56</ref>, <ref target="p78">78</ref><lb /></p> + +<p rend="text-indent: 0">De la Hire (1640-1718), <ref target="p168">168</ref>, <ref target="p171">171</ref>, +175<lb /></p> + +<p rend="text-indent: 0">Desargues (1593-1662), <ref target="p25">25</ref>, <ref target="p26">26</ref>, <ref target="p40">40</ref>, +121, <ref target="p125">125</ref>, <ref target="p162">162</ref>, <ref target="p163">163</ref>, <ref target="p164">164</ref>, <ref target="p165">165</ref>, <ref target="p166">166</ref>, +167, <ref target="p168">168</ref>, <ref target="p169">169</ref>, <ref target="p170">170</ref>, <ref target="p171">171</ref>, <ref target="p174">174</ref>, <ref target="p175">175</ref><lb /></p> + +<p rend="text-indent: 0">Descartes (1596-1650), <ref target="p162">162</ref>, <ref target="p170">170</ref>, +171, <ref target="p174">174</ref>, <ref target="p176">176</ref><lb /></p> + +<p rend="text-indent: 0">Descriptive geometry, <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Diameter, <ref target="p107">107</ref><lb /></p> + +<p rend="text-indent: 0">Directrix, <ref target="p157">157</ref>, <ref target="p158">158</ref>, <ref target="p159">159</ref>, <ref target="p160">160</ref><lb /></p> + +<p rend="text-indent: 0">Double correspondence, <ref target="p128">128</ref>, <ref target="p130">130</ref><lb /></p> + +<p rend="text-indent: 0">Double points of an involution, <ref target="p124">124</ref><lb /></p> + +<p rend="text-indent: 0">Double rays of an involution, <ref target="p133">133</ref>, +134<lb /></p> + +<p rend="text-indent: 0">Duality, <ref target="p94">94</ref>, <ref target="p104">104</ref>, <ref target="p161">161</ref>, <ref target="p180">180</ref>, <ref target="p182">182</ref><lb /></p> + +<p rend="text-indent: 0">Dupin (1784-1873), <ref target="p174">174</ref>, <ref target="p184">184</ref> <lb /></p> + +<p rend="text-indent: 0">Eccentricity of conic, <ref target="p159">159</ref><lb /></p> + +<p rend="text-indent: 0">Ellipse, <ref target="p110">110</ref>, <ref target="p111">111</ref>, <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Equation of conic, <ref target="p118">118</ref>, <ref target="p119">119</ref>, <ref target="p120">120</ref><lb /></p> + +<p rend="text-indent: 0">Euclid (ca. 300 B.C.), <ref target="p6">6</ref>, <ref target="p22">22</ref>, <ref target="p104">104</ref><lb /></p> + +<p rend="text-indent: 0">Euler (1707-1783), <ref target="p166">166</ref> <lb /></p> + +<p rend="text-indent: 0">Fermat (1601-1665), <ref target="p162">162</ref>, <ref target="p171">171</ref><lb /></p> + +<p rend="text-indent: 0">Foci of a conic, <ref target="p152">152</ref>, <ref target="p153">153</ref>, <ref target="p154">154</ref>, <ref target="p155">155</ref>, +156, <ref target="p157">157</ref>, <ref target="p158">158</ref>, <ref target="p159">159</ref>, <ref target="p160">160</ref>, <ref target="p161">161</ref>, <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Fourier (1768-1830), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Fourth harmonic, <ref target="p29">29</ref><lb /></p> + +<p rend="text-indent: 0">Fundamental form, <ref target="p7">7</ref>, <ref target="p16">16</ref>, <ref target="p23">23</ref>, <ref target="p36">36</ref>, +47, <ref target="p60">60</ref>, <ref target="p184">184</ref> <lb /></p> + +<p rend="text-indent: 0">Galileo (1564-1642), <ref target="p162">162</ref>, <ref target="p169">169</ref>, <ref target="p170">170</ref>, +176<lb /></p> + +<p rend="text-indent: 0">Gauss (1777-1855), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Gergonne (1771-1859), <ref target="p182">182</ref>, <ref target="p184">184</ref><lb /></p> + +<p rend="text-indent: 0">Greek geometry, <ref target="p161">161</ref> <lb /></p> + +<p rend="text-indent: 0">Hachette (1769-1834), <ref target="p179">179</ref>, <ref target="p184">184</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic conjugates, <ref target="p29">29</ref>, <ref target="p30">30</ref>, <ref target="p39">39</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic elements, <ref target="p86">86</ref>, <ref target="p49">49</ref>, <ref target="p91">91</ref>, +163, <ref target="p185">185</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic lines, <ref target="p33">33</ref>, <ref target="p34">34</ref>, <ref target="p35">35</ref>, <ref target="p66">66</ref>, <ref target="p67">67</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic planes, <ref target="p34">34</ref>, <ref target="p35">35</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic points, <ref target="p29">29</ref>, <ref target="p31">31</ref>, <ref target="p32">32</ref>, <ref target="p33">33</ref>, +34, <ref target="p35">35</ref>, <ref target="p36">36</ref>, <ref target="p43">43</ref>, <ref target="p71">71</ref>, <ref target="p161">161</ref><lb /></p> + +<p rend="text-indent: 0">Harmonic tangents to a conic, +91, <ref target="p92">92</ref><lb /></p> + +<p rend="text-indent: 0">Harvey (1578-1657), <ref target="p169">169</ref><lb /></p> + +<p rend="text-indent: 0">Homology, <ref target="p180">180</ref>, <ref target="p182">182</ref><lb /></p> + +<p rend="text-indent: 0">Huygens (1629-1695), <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Hyperbola, <ref target="p110">110</ref>, <ref target="p111">111</ref>, <ref target="p113">113</ref>, <ref target="p114">114</ref>, <ref target="p115">115</ref>, +116, <ref target="p117">117</ref>, <ref target="p118">118</ref>, <ref target="p162">162</ref> <lb /></p> + +<p rend="text-indent: 0">Imaginary elements, <ref target="p146">146</ref>, <ref target="p180">180</ref>, <ref target="p181">181</ref>, +182, <ref target="p185">185</ref><lb /></p> + +<p rend="text-indent: 0">Infinitely distant elements, <ref target="p6">6</ref>, <ref target="p9">9</ref>, +22, <ref target="p39">39</ref>, <ref target="p40">40</ref>, <ref target="p41">41</ref>, <ref target="p104">104</ref>, <ref target="p107">107</ref>, <ref target="p110">110</ref><lb /></p> + +<p rend="text-indent: 0">Infinity, <ref target="p4">4</ref>, <ref target="p5">5</ref>, <ref target="p10">10</ref>, <ref target="p12">12</ref>, <ref target="p13">13</ref>, <ref target="p14">14</ref>, <ref target="p15">15</ref>, +17, <ref target="p18">18</ref>, <ref target="p19">19</ref>, <ref target="p20">20</ref>, <ref target="p21">21</ref>, <ref target="p22">22</ref>, <ref target="p41">41</ref><lb /></p> + +<p rend="text-indent: 0">Involution, <ref target="p37">37</ref>, <ref target="p123">123</ref>, <ref target="p124">124</ref>, <ref target="p125">125</ref>, <ref target="p126">126</ref>, +127, <ref target="p128">128</ref>, <ref target="p129">129</ref>, <ref target="p130">130</ref>, <ref target="p131">131</ref>, <ref target="p132">132</ref>, <ref target="p133">133</ref>, +134, <ref target="p135">135</ref>, <ref target="p136">136</ref>, <ref target="p137">137</ref>, <ref target="p138">138</ref>, <ref target="p139">139</ref>, <ref target="p140">140</ref>, +161, <ref target="p163">163</ref>, <ref target="p170">170</ref> <lb /></p> + +<p rend="text-indent: 0">Kepler (1571-1630), <ref target="p162">162</ref> <lb /></p> + +<p rend="text-indent: 0">Lagrange (1736-1813), <ref target="p176">176</ref>, <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Laplace (1749-1827), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Legendre (1752-1833), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Leibniz (1646-1716), <ref target="p173">173</ref><lb /></p> + +<p rend="text-indent: 0">Linear construction, <ref target="p40">40</ref>, <ref target="p41">41</ref>, <ref target="p42">42</ref> <lb /></p> + +<p rend="text-indent: 0">Maclaurin (1698-1746), <ref target="p177">177</ref>, <ref target="p178">178</ref><lb /></p> + +<p rend="text-indent: 0">Measurements, <ref target="p23">23</ref>, <ref target="p40">40</ref>, <ref target="p41">41</ref>, <ref target="p104">104</ref><lb /></p> + +<p rend="text-indent: 0">Mersenne (1588-1648), <ref target="p168">168</ref>, <ref target="p171">171</ref><lb /></p> + +<p rend="text-indent: 0">Metrical theorems, <ref target="p40">40</ref>, <ref target="p104">104</ref>, <ref target="p106">106</ref>, +107, <ref target="p141">141</ref><lb /></p> + +<p rend="text-indent: 0">Middle point, <ref target="p39">39</ref>, <ref target="p41">41</ref><lb /></p> + +<p rend="text-indent: 0">Möbius (1790-1868), <ref target="p179">179</ref><lb /></p> + +<p rend="text-indent: 0">Monge (1746-1818), <ref target="p179">179</ref>, <ref target="p180">180</ref> <lb /></p> + +<p rend="text-indent: 0">Napier (1550-1617), <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Newton (1642-1727), <ref target="p177">177</ref><lb /></p> + +<p rend="text-indent: 0">Numbers, <ref target="p4">4</ref>, <ref target="p21">21</ref>, <ref target="p43">43</ref><lb /></p> + +<p rend="text-indent: 0">Numerical computations, <ref target="p43">43</ref>, <ref target="p44">44</ref>, +46 <lb /></p> + +<p rend="text-indent: 0">One-to-one correspondence, <ref target="p1">1</ref>, <ref target="p2">2</ref>, +3, <ref target="p4">4</ref>, <ref target="p5">5</ref>, <ref target="p6">6</ref>, <ref target="p7">7</ref>, <ref target="p9">9</ref>, <ref target="p10">10</ref>, <ref target="p11">11</ref>, <ref target="p24">24</ref>, <ref target="p36">36</ref>, +87, <ref target="p43">43</ref>, <ref target="p60">60</ref>, <ref target="p104">104</ref>, <ref target="p106">106</ref>, <ref target="p184">184</ref><lb /></p> + +<p rend="text-indent: 0">Opposite sides of a hexagon, <ref target="p70">70</ref><lb /></p> + +<p rend="text-indent: 0">Opposite sides of a quadrilateral, +28, <ref target="p29">29</ref><lb /></p> + +<p rend="text-indent: 0">Order of a form, <ref target="p7">7</ref>, <ref target="p10">10</ref>, <ref target="p11">11</ref>, <ref target="p12">12</ref>, <ref target="p13">13</ref>, +14, <ref target="p15">15</ref>, <ref target="p16">16</ref>, <ref target="p17">17</ref>, <ref target="p18">18</ref>, <ref target="p19">19</ref>, <ref target="p20">20</ref>, <ref target="p21">21</ref> <lb /></p> + +<p rend="text-indent: 0">Pappus (fourth century A.D.), +161<lb /></p> + +<p rend="text-indent: 0">Parabola, <ref target="p110">110</ref>, <ref target="p111">111</ref>, <ref target="p112">112</ref>, <ref target="p119">119</ref>, <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Parallel lines, <ref target="p39">39</ref>, <ref target="p41">41</ref>, <ref target="p162">162</ref><lb /></p> + +<p rend="text-indent: 0">Pascal (1623-1662), <ref target="p69">69</ref>, <ref target="p70">70</ref>, <ref target="p74">74</ref>, <ref target="p75">75</ref>, +76, <ref target="p77">77</ref>, <ref target="p78">78</ref>, <ref target="p95">95</ref>, <ref target="p105">105</ref>, <ref target="p125">125</ref>, <ref target="p162">162</ref>, +169, <ref target="p171">171</ref>, <ref target="p172">172</ref>, <ref target="p173">173</ref><lb /></p> + +<p rend="text-indent: 0">Pencil of planes of the second +order, <ref target="p59">59</ref><lb /></p> + +<p rend="text-indent: 0">Pencil of rays, <ref target="p6">6</ref>, <ref target="p7">7</ref>, <ref target="p8">8</ref>, <ref target="p23">23</ref>; + of the second order, <ref target="p57">57</ref>, <ref target="p60">60</ref>, <ref target="p79">79</ref>, <ref target="p81">81</ref><lb /></p> + +<p rend="text-indent: 0">Perspective position, <ref target="p6">6</ref>, <ref target="p8">8</ref>, <ref target="p35">35</ref>, <ref target="p37">37</ref>, +51, <ref target="p53">53</ref>, <ref target="p71">71</ref><lb /></p> + +<p rend="text-indent: 0">Plane system, <ref target="p16">16</ref>, <ref target="p23">23</ref><lb /></p> + +<p rend="text-indent: 0">Planes on space, <ref target="p17">17</ref><lb /></p> + +<p rend="text-indent: 0">Point of contact, <ref target="p87">87</ref>, <ref target="p88">88</ref>, <ref target="p89">89</ref>, <ref target="p90">90</ref><lb /></p> + +<p rend="text-indent: 0">Point system, <ref target="p16">16</ref>, <ref target="p23">23</ref><lb /></p> + +<p rend="text-indent: 0">Point-row, <ref target="p6">6</ref>, <ref target="p7">7</ref>, <ref target="p8">8</ref>, <ref target="p9">9</ref>, <ref target="p23">23</ref>; + of the second order, <ref target="p55">55</ref>, <ref target="p60">60</ref>, <ref target="p61">61</ref>, <ref target="p66">66</ref>, + <ref target="p67">67</ref>, <ref target="p72">72</ref><lb /></p> + +<p rend="text-indent: 0">Points in space, <ref target="p18">18</ref><lb /></p> + +<p rend="text-indent: 0">Pole and polar, <ref target="p98">98</ref>, <ref target="p99">99</ref>, <ref target="p100">100</ref>, <ref target="p101">101</ref>, +138, <ref target="p164">164</ref>, <ref target="p166">166</ref><lb /></p> + +<p rend="text-indent: 0">Poncelet (1788-1867), <ref target="p177">177</ref>, <ref target="p179">179</ref>, +180, <ref target="p181">181</ref>, <ref target="p182">182</ref>, <ref target="p183">183</ref>, <ref target="p184">184</ref><lb /></p> + +<p rend="text-indent: 0">Principal axis of a conic, <ref target="p157">157</ref><lb /></p> + +<p rend="text-indent: 0">Projection, <ref target="p161">161</ref><lb /></p> + +<p rend="text-indent: 0">Protective axial pencils, <ref target="p59">59</ref><lb /></p> + +<p rend="text-indent: 0">Projective correspondence, <ref target="p9">9</ref>, <ref target="p35">35</ref>, +36, <ref target="p37">37</ref>, <ref target="p47">47</ref>, <ref target="p71">71</ref>, <ref target="p92">92</ref>, <ref target="p104">104</ref><lb /></p> + +<p rend="text-indent: 0">Projective pencils, <ref target="p53">53</ref>, <ref target="p64">64</ref>, <ref target="p68">68</ref><lb /></p> + +<p rend="text-indent: 0">Projective point-rows, <ref target="p51">51</ref>, <ref target="p79">79</ref><lb /></p> + +<p rend="text-indent: 0">Projective properties, <ref target="p24">24</ref><lb /></p> + +<p rend="text-indent: 0">Projective theorems, <ref target="p40">40</ref>, <ref target="p104">104</ref> <lb /></p> + +<p rend="text-indent: 0">Quadrangle, <ref target="p26">26</ref>, <ref target="p27">27</ref>, <ref target="p28">28</ref>, <ref target="p29">29</ref><lb /></p> + +<p rend="text-indent: 0">Quadric cone, <ref target="p59">59</ref><lb /></p> + +<p rend="text-indent: 0">Quadrilateral, <ref target="p88">88</ref>, <ref target="p95">95</ref>, <ref target="p96">96</ref> <lb /></p> + +<p rend="text-indent: 0">Roberval (1602-1675), <ref target="p168">168</ref><lb /></p> + +<p rend="text-indent: 0">Ruler construction, <ref target="p40">40</ref> <lb /></p> + +<p rend="text-indent: 0">Scheiner, <ref target="p169">169</ref><lb /></p> + +<p rend="text-indent: 0">Self-corresponding elements, <ref target="p47">47</ref>, +48, <ref target="p49">49</ref>, <ref target="p50">50</ref>, <ref target="p51">51</ref><lb /></p> + +<p rend="text-indent: 0">Self-dual, <ref target="p105">105</ref><lb /></p> + +<p rend="text-indent: 0">Self-polar triangle, <ref target="p102">102</ref><lb /></p> + +<p rend="text-indent: 0">Separation of elements in involution, +148<lb /></p> + +<p rend="text-indent: 0">Separation of harmonic conjugates, +38<lb /></p> + +<p rend="text-indent: 0">Sequence of points, <ref target="p49">49</ref><lb /></p> + +<p rend="text-indent: 0">Sign of segment, <ref target="p44">44</ref>, <ref target="p45">45</ref><lb /></p> + +<p rend="text-indent: 0">Similarity, <ref target="p106">106</ref><lb /></p> + +<p rend="text-indent: 0">Skew lines, <ref target="p12">12</ref><lb /></p> + +<p rend="text-indent: 0">Space system, <ref target="p19">19</ref>, <ref target="p23">23</ref><lb /></p> + +<p rend="text-indent: 0">Sphere, <ref target="p21">21</ref><lb /></p> + +<p rend="text-indent: 0">Steiner (1796-1863), <ref target="p129">129</ref>, <ref target="p130">130</ref>, <ref target="p131">131</ref>, +177, <ref target="p179">179</ref>, <ref target="p184">184</ref><lb /></p> + +<p rend="text-indent: 0">Steiner's construction, <ref target="p129">129</ref>, <ref target="p130">130</ref>, +131<lb /></p> + +<p rend="text-indent: 0">Superposed point-rows, <ref target="p47">47</ref>, <ref target="p48">48</ref>, <ref target="p49">49</ref><lb /></p> + +<p rend="text-indent: 0">Surfaces of the second degree, <ref target="p166">166</ref><lb /></p> + +<p rend="text-indent: 0">System of lines in space, <ref target="p20">20</ref>, <ref target="p23">23</ref><lb /></p> + +<p rend="text-indent: 0">Systems of conics, <ref target="p125">125</ref> <lb /></p> + +<p rend="text-indent: 0">Tangent line, <ref target="p61">61</ref>, <ref target="p80">80</ref>, <ref target="p81">81</ref>, <ref target="p87">87</ref>, <ref target="p88">88</ref>, +89, <ref target="p90">90</ref>, <ref target="p91">91</ref>, <ref target="p92">92</ref><lb /></p> + +<p rend="text-indent: 0">Tycho Brahe (1546-1601), <ref target="p162">162</ref> <lb /></p> + +<p rend="text-indent: 0">Verner, <ref target="p161">161</ref><lb /></p> + +<p rend="text-indent: 0">Vertex of conic, <ref target="p157">157</ref>, <ref target="p159">159</ref><lb /></p> + +<p rend="text-indent: 0">Von Staudt (1798-1867), <ref target="p179">179</ref>, <ref target="p185">185</ref> <lb /></p> + +<p rend="text-indent: 0">Wallis (1616-1703), <ref target="p162">162</ref><lb /></p> + +</div> + +</body> + +<back rend="page-break-before: right"> +<div> +<pgIf output="pdf"> + <then> + <div> + <divGen type="pgfooter" rend="page-break-before: right" /> + </div> + </then> + <else> + <div> + <head>Footnotes</head> + <divGen type="footnotes" /> + </div> + + <div> + <divGen type="pgfooter" rend="page-break-before: right" /> + </div> + </else> +</pgIf> +</div> +</back> + + </text> +</TEI.2> + +<!-- +A WORD FROM PROJECT GUTENBERG + + +This file should be named 17001-0.txt or 17001-0.zip. + +This and all associated files of various formats will be found in: + + + http://www.gutenberg.org/dirs/1/7/0/0/17001/ + + +Updated editions will replace the previous one — the old editions will be +renamed. + +Creating the works from public domain print editions means that no one +owns a United States copyright in these works, so the Foundation (and +you!) can copy and distribute it in the United States without permission +and without paying copyright royalties. Special rules, set forth in the +General Terms of Use part of this license, apply to copying and +distributing Project Gutenbergâ„¢ electronic works to protect the Project +Gutenbergâ„¢ concept and trademark. Project Gutenberg is a registered +trademark, and may not be used if you charge for the eBooks, unless you +receive specific permission. If you do not charge anything for copies of +this eBook, complying with the rules is very easy. You may use this eBook +for nearly any purpose such as creation of derivative works, reports, +performances and research. They may be modified and printed and given away +— you may do practically _anything_ with public domain eBooks. +Redistribution is subject to the trademark license, especially commercial +redistribution. + + +THE FULL PROJECT GUTENBERG LICENSE + + +_Please read this before you distribute or use this work._ + +To protect the Project Gutenbergâ„¢ mission of promoting the free +distribution of electronic works, by using or distributing this work (or +any other work associated in any way with the phrase “Project Gutenbergâ€), +you agree to comply with all the terms of the Full Project Gutenbergâ„¢ +License (available with this file or online at +http://www.gutenberg.org/license). + + +Section 1. + + +General Terms of Use & Redistributing Project Gutenbergâ„¢ electronic works + + +1.A. + + +By reading or using any part of this Project Gutenbergâ„¢ electronic work, +you indicate that you have read, understand, agree to and accept all the +terms of this license and intellectual property (trademark/copyright) +agreement. If you do not agree to abide by all the terms of this +agreement, you must cease using and return or destroy all copies of +Project Gutenbergâ„¢ electronic works in your possession. If you paid a fee +for obtaining a copy of or access to a Project Gutenbergâ„¢ electronic work +and you do not agree to be bound by the terms of this agreement, you may +obtain a refund from the person or entity to whom you paid the fee as set +forth in paragraph 1.E.8. + + +1.B. + + +“Project Gutenberg†is a registered trademark. It may only be used on or +associated in any way with an electronic work by people who agree to be +bound by the terms of this agreement. There are a few things that you can +do with most Project Gutenbergâ„¢ electronic works even without complying +with the full terms of this agreement. See paragraph 1.C below. There are +a lot of things you can do with Project Gutenbergâ„¢ electronic works if you +follow the terms of this agreement and help preserve free future access to +Project Gutenbergâ„¢ electronic works. See paragraph 1.E below. + + +1.C. + + +The Project Gutenberg Literary Archive Foundation (“the Foundation†or +PGLAF), owns a compilation copyright in the collection of Project +Gutenbergâ„¢ electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an individual +work is in the public domain in the United States and you are located in +the United States, we do not claim a right to prevent you from copying, +distributing, performing, displaying or creating derivative works based on +the work as long as all references to Project Gutenberg are removed. Of +course, we hope that you will support the Project Gutenbergâ„¢ mission of +promoting free access to electronic works by freely sharing Project +Gutenbergâ„¢ works in compliance with the terms of this agreement for +keeping the Project Gutenbergâ„¢ name associated with the work. You can +easily comply with the terms of this agreement by keeping this work in the +same format with its attached full Project Gutenbergâ„¢ License when you +share it without charge with others. + + +1.D. + + +The copyright laws of the place where you are located also govern what you +can do with this work. Copyright laws in most countries are in a constant +state of change. If you are outside the United States, check the laws of +your country in addition to the terms of this agreement before +downloading, copying, displaying, performing, distributing or creating +derivative works based on this work or any other Project Gutenbergâ„¢ work. +The Foundation makes no representations concerning the copyright status of +any work in any country outside the United States. + + +1.E. + + +Unless you have removed all references to Project Gutenberg: + + +1.E.1. + + +The following sentence, with active links to, or other immediate access +to, the full Project Gutenbergâ„¢ License must appear prominently whenever +any copy of a Project Gutenbergâ„¢ work (any work on which the phrase +“Project Gutenberg†appears, or with which the phrase “Project Gutenberg†+is associated) is accessed, displayed, performed, viewed, copied or +distributed: + + + This eBook is for the use of anyone anywhere at no cost and with + almost no restrictions whatsoever. You may copy it, give it away + or re-use it under the terms of the Project Gutenberg License + included with this eBook or online at http://www.gutenberg.org + + +1.E.2. + + +If an individual Project Gutenbergâ„¢ electronic work is derived from the +public domain (does not contain a notice indicating that it is posted with +permission of the copyright holder), the work can be copied and +distributed to anyone in the United States without paying any fees or +charges. If you are redistributing or providing access to a work with the +phrase “Project Gutenberg†associated with or appearing on the work, you +must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 +or obtain permission for the use of the work and the Project Gutenbergâ„¢ +trademark as set forth in paragraphs 1.E.8 or 1.E.9. + + +1.E.3. + + +If an individual Project Gutenbergâ„¢ electronic work is posted with the +permission of the copyright holder, your use and distribution must comply +with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed +by the copyright holder. Additional terms will be linked to the Project +Gutenbergâ„¢ License for all works posted with the permission of the +copyright holder found at the beginning of this work. + + +1.E.4. + + +Do not unlink or detach or remove the full Project Gutenbergâ„¢ License +terms from this work, or any files containing a part of this work or any +other work associated with Project Gutenbergâ„¢. + + +1.E.5. + + +Do not copy, display, perform, distribute or redistribute this electronic +work, or any part of this electronic work, without prominently displaying +the sentence set forth in paragraph 1.E.1 with active links or immediate +access to the full terms of the Project Gutenbergâ„¢ License. + + +1.E.6. + + +You may convert to and distribute this work in any binary, compressed, +marked up, nonproprietary or proprietary form, including any word +processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenbergâ„¢ work in a format other than +“Plain Vanilla ASCII†or other format used in the official version posted +on the official Project Gutenbergâ„¢ web site (http://www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original “Plain Vanilla ASCII†or other form. +Any alternate format must include the full Project Gutenbergâ„¢ License as +specified in paragraph 1.E.1. + + +1.E.7. + + +Do not charge a fee for access to, viewing, displaying, performing, +copying or distributing any Project Gutenbergâ„¢ works unless you comply +with paragraph 1.E.8 or 1.E.9. + + +1.E.8. + + +You may charge a reasonable fee for copies of or providing access to or +distributing Project Gutenbergâ„¢ electronic works provided that + + - You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenbergâ„¢ works calculated using the method you + already use to calculate your applicable taxes. The fee is owed to + the owner of the Project Gutenbergâ„¢ trademark, but he has agreed to + donate royalties under this paragraph to the Project Gutenberg + Literary Archive Foundation. Royalty payments must be paid within 60 + days following each date on which you prepare (or are legally + required to prepare) your periodic tax returns. Royalty payments + should be clearly marked as such and sent to the Project Gutenberg + Literary Archive Foundation at the address specified in Section 4, + “Information about donations to the Project Gutenberg Literary + Archive Foundation.†+ + - You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenbergâ„¢ License. + You must require such a user to return or destroy all copies of the + works possessed in a physical medium and discontinue all use of and + all access to other copies of Project Gutenbergâ„¢ works. + + - You provide, in accordance with paragraph 1.F.3, a full refund of + any money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days of + receipt of the work. + + - You comply with all other terms of this agreement for free + distribution of Project Gutenbergâ„¢ works. + + +1.E.9. + + +If you wish to charge a fee or distribute a Project Gutenbergâ„¢ electronic +work or group of works on different terms than are set forth in this +agreement, you must obtain permission in writing from both the Project +Gutenberg Literary Archive Foundation and Michael Hart, the owner of the +Project Gutenbergâ„¢ trademark. Contact the Foundation as set forth in +Section 3 below. + + +1.F. + + +1.F.1. + + +Project Gutenberg volunteers and employees expend considerable effort to +identify, do copyright research on, transcribe and proofread public domain +works in creating the Project Gutenbergâ„¢ collection. Despite these +efforts, Project Gutenbergâ„¢ electronic works, and the medium on which they +may be stored, may contain “Defects,†such as, but not limited to, +incomplete, inaccurate or corrupt data, transcription errors, a copyright +or other intellectual property infringement, a defective or damaged disk +or other medium, a computer virus, or computer codes that damage or cannot +be read by your equipment. + + +1.F.2. + + +LIMITED WARRANTY, DISCLAIMER OF DAMAGES — Except for the “Right of +Replacement or Refund†described in paragraph 1.F.3, the Project Gutenberg +Literary Archive Foundation, the owner of the Project Gutenbergâ„¢ +trademark, and any other party distributing a Project Gutenbergâ„¢ +electronic work under this agreement, disclaim all liability to you for +damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE +NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH +OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE +FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT +WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, +PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY +OF SUCH DAMAGE. + + +1.F.3. + + +LIMITED RIGHT OF REPLACEMENT OR REFUND — If you discover a defect in this +electronic work within 90 days of receiving it, you can receive a refund +of the money (if any) you paid for it by sending a written explanation to +the person you received the work from. If you received the work on a +physical medium, you must return the medium with your written explanation. +The person or entity that provided you with the defective work may elect +to provide a replacement copy in lieu of a refund. If you received the +work electronically, the person or entity providing it to you may choose +to give you a second opportunity to receive the work electronically in +lieu of a refund. If the second copy is also defective, you may demand a +refund in writing without further opportunities to fix the problem. + + +1.F.4. + + +Except for the limited right of replacement or refund set forth in +paragraph 1.F.3, this work is provided to you ’AS-IS,’ WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + + +1.F.5. + + +Some states do not allow disclaimers of certain implied warranties or the +exclusion or limitation of certain types of damages. If any disclaimer or +limitation set forth in this agreement violates the law of the state +applicable to this agreement, the agreement shall be interpreted to make +the maximum disclaimer or limitation permitted by the applicable state +law. The invalidity or unenforceability of any provision of this agreement +shall not void the remaining provisions. + + +1.F.6. + + +INDEMNITY — You agree to indemnify and hold the Foundation, the trademark +owner, any agent or employee of the Foundation, anyone providing copies of +Project Gutenbergâ„¢ electronic works in accordance with this agreement, and +any volunteers associated with the production, promotion and distribution +of Project Gutenbergâ„¢ electronic works, harmless from all liability, costs +and expenses, including legal fees, that arise directly or indirectly from +any of the following which you do or cause to occur: (a) distribution of +this or any Project Gutenbergâ„¢ work, (b) alteration, modification, or +additions or deletions to any Project Gutenbergâ„¢ work, and (c) any Defect +you cause. + + +Section 2. + + + Information about the Mission of Project Gutenbergâ„¢ + + +Project Gutenbergâ„¢ is synonymous with the free distribution of electronic +works in formats readable by the widest variety of computers including +obsolete, old, middle-aged and new computers. It exists because of the +efforts of hundreds of volunteers and donations from people in all walks +of life. + +Volunteers and financial support to provide volunteers with the assistance +they need, is critical to reaching Project Gutenberg™’s goals and ensuring +that the Project Gutenbergâ„¢ collection will remain freely available for +generations to come. In 2001, the Project Gutenberg Literary Archive +Foundation was created to provide a secure and permanent future for +Project Gutenbergâ„¢ and future generations. To learn more about the Project +Gutenberg Literary Archive Foundation and how your efforts and donations +can help, see Sections 3 and 4 and the Foundation web page at +http://www.pglaf.org. + + +Section 3. + + + Information about the Project Gutenberg Literary Archive Foundation + + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the state of +Mississippi and granted tax exempt status by the Internal Revenue Service. +The Foundation’s EIN or federal tax identification number is 64-6221541. +Its 501(c)(3) letter is posted at +http://www.gutenberg.org/fundraising/pglaf. Contributions to the Project +Gutenberg Literary Archive Foundation are tax deductible to the full +extent permitted by U.S. federal laws and your state’s laws. + +The Foundation’s principal office is located at 4557 Melan Dr. +S. Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at 809 North +1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact information +can be found at the Foundation’s web site and official page at +http://www.pglaf.org + +For additional contact information: + + + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. + + + Information about Donations to the Project Gutenberg Literary Archive + Foundation + + +Project Gutenbergâ„¢ depends upon and cannot survive without wide spread +public support and donations to carry out its mission of increasing the +number of public domain and licensed works that can be freely distributed +in machine readable form accessible by the widest array of equipment +including outdated equipment. Many small donations ($1 to $5,000) are +particularly important to maintaining tax exempt status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United States. +Compliance requirements are not uniform and it takes a considerable +effort, much paperwork and many fees to meet and keep up with these +requirements. We do not solicit donations in locations where we have not +received written confirmation of compliance. To SEND DONATIONS or +determine the status of compliance for any particular state visit +http://www.gutenberg.org/fundraising/donate + +While we cannot and do not solicit contributions from states where we have +not met the solicitation requirements, we know of no prohibition against +accepting unsolicited donations from donors in such states who approach us +with offers to donate. + +International donations are gratefully accepted, but we cannot make any +statements concerning tax treatment of donations received from outside the +United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation methods +and addresses. Donations are accepted in a number of other ways including +checks, online payments and credit card donations. To donate, please +visit: http://www.gutenberg.org/fundraising/donate + + +Section 5. + + + General Information About Project Gutenbergâ„¢ electronic works. + + +Professor Michael S. Hart is the originator of the Project Gutenbergâ„¢ +concept of a library of electronic works that could be freely shared with +anyone. For thirty years, he produced and distributed Project Gutenbergâ„¢ +eBooks with only a loose network of volunteer support. + +Project Gutenbergâ„¢ eBooks are often created from several printed editions, +all of which are confirmed as Public Domain in the U.S. unless a copyright +notice is included. Thus, we do not necessarily keep eBooks in compliance +with any particular paper edition. + +Each eBook is in a subdirectory of the same number as the eBook’s eBook +number, often in several formats including plain vanilla ASCII, compressed +(zipped), HTML and others. + +Corrected _editions_ of our eBooks replace the old file and take over the +old filename and etext number. The replaced older file is renamed. +_Versions_ based on separate sources are treated as new eBooks receiving +new filenames and etext numbers. + +Most people start at our Web site which has the main PG search facility: + + + http://www.gutenberg.org + + +This Web site includes information about Project Gutenbergâ„¢, including how +to make donations to the Project Gutenberg Literary Archive Foundation, +how to help produce our new eBooks, and how to subscribe to our email +newsletter to hear about new eBooks. +--> diff --git a/old/17001-tei/formulas/1.png b/old/17001-tei/formulas/1.png Binary files differnew file mode 100644 index 0000000..6e5e39a --- /dev/null +++ b/old/17001-tei/formulas/1.png diff --git a/old/17001-tei/formulas/2.png b/old/17001-tei/formulas/2.png Binary files differnew file mode 100644 index 0000000..4cc48f7 --- /dev/null +++ b/old/17001-tei/formulas/2.png diff --git a/old/17001-tei/formulas/3.png b/old/17001-tei/formulas/3.png Binary files differnew file mode 100644 index 0000000..1c0a04f --- /dev/null +++ b/old/17001-tei/formulas/3.png diff --git a/old/17001-tei/formulas/4.png b/old/17001-tei/formulas/4.png Binary files differnew file mode 100644 index 0000000..84b28ca --- /dev/null +++ b/old/17001-tei/formulas/4.png diff --git a/old/17001-tei/formulas/5.png b/old/17001-tei/formulas/5.png Binary files differnew file mode 100644 index 0000000..962b437 --- /dev/null +++ b/old/17001-tei/formulas/5.png diff --git a/old/17001-tei/formulas/6.png b/old/17001-tei/formulas/6.png Binary files differnew file mode 100644 index 0000000..2c2980b --- /dev/null +++ b/old/17001-tei/formulas/6.png diff --git a/old/17001-tei/formulas/7.png b/old/17001-tei/formulas/7.png Binary files differnew file mode 100644 index 0000000..d6b6cc0 --- /dev/null +++ b/old/17001-tei/formulas/7.png diff --git a/old/17001-tei/formulas/8.png b/old/17001-tei/formulas/8.png Binary files differnew file mode 100644 index 0000000..5aa4758 --- /dev/null +++ b/old/17001-tei/formulas/8.png diff --git a/old/17001-tei/formulas/9.png b/old/17001-tei/formulas/9.png Binary files differnew file mode 100644 index 0000000..aa7b351 --- /dev/null +++ b/old/17001-tei/formulas/9.png diff --git a/old/17001-tei/images/image01.png b/old/17001-tei/images/image01.png Binary files differnew file mode 100644 index 0000000..59f4203 --- /dev/null +++ b/old/17001-tei/images/image01.png diff --git a/old/17001-tei/images/image02.png b/old/17001-tei/images/image02.png Binary files differnew file mode 100644 index 0000000..9bd4626 --- /dev/null +++ b/old/17001-tei/images/image02.png diff --git a/old/17001-tei/images/image03.png b/old/17001-tei/images/image03.png Binary files differnew file mode 100644 index 0000000..8fd5e13 --- /dev/null +++ b/old/17001-tei/images/image03.png diff --git a/old/17001-tei/images/image04.png b/old/17001-tei/images/image04.png Binary files differnew file mode 100644 index 0000000..f47964b --- /dev/null +++ b/old/17001-tei/images/image04.png diff --git a/old/17001-tei/images/image05.png b/old/17001-tei/images/image05.png Binary files differnew file mode 100644 index 0000000..2660229 --- /dev/null +++ b/old/17001-tei/images/image05.png diff --git a/old/17001-tei/images/image06.png b/old/17001-tei/images/image06.png Binary files differnew file mode 100644 index 0000000..1be9f90 --- /dev/null +++ b/old/17001-tei/images/image06.png diff --git a/old/17001-tei/images/image07.png b/old/17001-tei/images/image07.png Binary files differnew file mode 100644 index 0000000..a9ae82a --- /dev/null +++ b/old/17001-tei/images/image07.png diff --git a/old/17001-tei/images/image08.png b/old/17001-tei/images/image08.png Binary files differnew file mode 100644 index 0000000..22e1108 --- /dev/null +++ b/old/17001-tei/images/image08.png diff --git a/old/17001-tei/images/image09.png b/old/17001-tei/images/image09.png Binary files differnew file mode 100644 index 0000000..52026e2 --- /dev/null +++ b/old/17001-tei/images/image09.png diff --git a/old/17001-tei/images/image10.png b/old/17001-tei/images/image10.png Binary files differnew file mode 100644 index 0000000..74589d3 --- /dev/null +++ b/old/17001-tei/images/image10.png diff --git a/old/17001-tei/images/image11.png b/old/17001-tei/images/image11.png Binary files differnew file mode 100644 index 0000000..b43dcca --- /dev/null +++ b/old/17001-tei/images/image11.png diff --git a/old/17001-tei/images/image12.png b/old/17001-tei/images/image12.png Binary files differnew file mode 100644 index 0000000..a3b1a0b --- /dev/null +++ b/old/17001-tei/images/image12.png diff --git a/old/17001-tei/images/image13.png b/old/17001-tei/images/image13.png Binary files differnew file mode 100644 index 0000000..3009fee --- /dev/null +++ b/old/17001-tei/images/image13.png diff --git a/old/17001-tei/images/image14.png b/old/17001-tei/images/image14.png Binary files differnew file mode 100644 index 0000000..8deae24 --- /dev/null +++ b/old/17001-tei/images/image14.png diff --git a/old/17001-tei/images/image15.png b/old/17001-tei/images/image15.png Binary files differnew file mode 100644 index 0000000..82e7da7 --- /dev/null +++ b/old/17001-tei/images/image15.png diff --git a/old/17001-tei/images/image16.png b/old/17001-tei/images/image16.png Binary files differnew file mode 100644 index 0000000..029cc88 --- /dev/null +++ b/old/17001-tei/images/image16.png diff --git a/old/17001-tei/images/image17.png b/old/17001-tei/images/image17.png Binary files differnew file mode 100644 index 0000000..2f3d95e --- /dev/null +++ b/old/17001-tei/images/image17.png diff --git a/old/17001-tei/images/image18.png b/old/17001-tei/images/image18.png Binary files differnew file mode 100644 index 0000000..3adfe77 --- /dev/null +++ b/old/17001-tei/images/image18.png diff --git a/old/17001-tei/images/image19.png b/old/17001-tei/images/image19.png Binary files differnew file mode 100644 index 0000000..ca10753 --- /dev/null +++ b/old/17001-tei/images/image19.png diff --git a/old/17001-tei/images/image20.png b/old/17001-tei/images/image20.png Binary files differnew file mode 100644 index 0000000..0ce800a --- /dev/null +++ b/old/17001-tei/images/image20.png diff --git a/old/17001-tei/images/image21.png b/old/17001-tei/images/image21.png Binary files differnew file mode 100644 index 0000000..218c768 --- /dev/null +++ b/old/17001-tei/images/image21.png diff --git a/old/17001-tei/images/image22.png b/old/17001-tei/images/image22.png Binary files differnew file mode 100644 index 0000000..2b14e25 --- /dev/null +++ b/old/17001-tei/images/image22.png diff --git a/old/17001-tei/images/image23.png b/old/17001-tei/images/image23.png Binary files differnew file mode 100644 index 0000000..6f37018 --- /dev/null +++ b/old/17001-tei/images/image23.png diff --git a/old/17001-tei/images/image24.png b/old/17001-tei/images/image24.png Binary files differnew file mode 100644 index 0000000..df0eba0 --- /dev/null +++ b/old/17001-tei/images/image24.png diff --git a/old/17001-tei/images/image25.png b/old/17001-tei/images/image25.png Binary files differnew file mode 100644 index 0000000..409b0cd --- /dev/null +++ b/old/17001-tei/images/image25.png diff --git a/old/17001-tei/images/image26.png b/old/17001-tei/images/image26.png Binary files differnew file mode 100644 index 0000000..2796fdb --- /dev/null +++ b/old/17001-tei/images/image26.png diff --git a/old/17001-tei/images/image27.png b/old/17001-tei/images/image27.png Binary files differnew file mode 100644 index 0000000..f8bdbca --- /dev/null +++ b/old/17001-tei/images/image27.png diff --git a/old/17001-tei/images/image28.png b/old/17001-tei/images/image28.png Binary files differnew file mode 100644 index 0000000..90ed57f --- /dev/null +++ b/old/17001-tei/images/image28.png diff --git a/old/17001-tei/images/image29.png b/old/17001-tei/images/image29.png Binary files differnew file mode 100644 index 0000000..84cba64 --- /dev/null +++ b/old/17001-tei/images/image29.png diff --git a/old/17001-tei/images/image30.png b/old/17001-tei/images/image30.png Binary files differnew file mode 100644 index 0000000..f6c3b83 --- /dev/null +++ b/old/17001-tei/images/image30.png diff --git a/old/17001-tei/images/image31.png b/old/17001-tei/images/image31.png Binary files differnew file mode 100644 index 0000000..4840236 --- /dev/null +++ b/old/17001-tei/images/image31.png diff --git a/old/17001-tei/images/image32.png b/old/17001-tei/images/image32.png Binary files differnew file mode 100644 index 0000000..f1659dd --- /dev/null +++ b/old/17001-tei/images/image32.png diff --git a/old/17001-tei/images/image33.png b/old/17001-tei/images/image33.png Binary files differnew file mode 100644 index 0000000..0ca3db0 --- /dev/null +++ b/old/17001-tei/images/image33.png diff --git a/old/17001-tei/images/image34.png b/old/17001-tei/images/image34.png Binary files differnew file mode 100644 index 0000000..9eefdbd --- /dev/null +++ b/old/17001-tei/images/image34.png diff --git a/old/17001-tei/images/image35.png b/old/17001-tei/images/image35.png Binary files differnew file mode 100644 index 0000000..98cc213 --- /dev/null +++ b/old/17001-tei/images/image35.png diff --git a/old/17001-tei/images/image36.png b/old/17001-tei/images/image36.png Binary files differnew file mode 100644 index 0000000..db52f0f --- /dev/null +++ b/old/17001-tei/images/image36.png diff --git a/old/17001-tei/images/image37.png b/old/17001-tei/images/image37.png Binary files differnew file mode 100644 index 0000000..55c5d70 --- /dev/null +++ b/old/17001-tei/images/image37.png diff --git a/old/17001-tei/images/image38.png b/old/17001-tei/images/image38.png Binary files differnew file mode 100644 index 0000000..f8162e4 --- /dev/null +++ b/old/17001-tei/images/image38.png diff --git a/old/17001-tei/images/image39.png b/old/17001-tei/images/image39.png Binary files differnew file mode 100644 index 0000000..937a74d --- /dev/null +++ b/old/17001-tei/images/image39.png diff --git a/old/17001-tei/images/image40.png b/old/17001-tei/images/image40.png Binary files differnew file mode 100644 index 0000000..d2bced0 --- /dev/null +++ b/old/17001-tei/images/image40.png diff --git a/old/17001-tei/images/image41.png b/old/17001-tei/images/image41.png Binary files differnew file mode 100644 index 0000000..d0db400 --- /dev/null +++ b/old/17001-tei/images/image41.png diff --git a/old/17001-tei/images/image42.png b/old/17001-tei/images/image42.png Binary files differnew file mode 100644 index 0000000..8b321a2 --- /dev/null +++ b/old/17001-tei/images/image42.png diff --git a/old/17001-tei/images/image43.png b/old/17001-tei/images/image43.png Binary files differnew file mode 100644 index 0000000..59c478e --- /dev/null +++ b/old/17001-tei/images/image43.png diff --git a/old/17001-tei/images/image44.png b/old/17001-tei/images/image44.png Binary files differnew file mode 100644 index 0000000..b54584c --- /dev/null +++ b/old/17001-tei/images/image44.png diff --git a/old/17001-tei/images/image45.png b/old/17001-tei/images/image45.png Binary files differnew file mode 100644 index 0000000..1c14126 --- /dev/null +++ b/old/17001-tei/images/image45.png diff --git a/old/17001-tei/images/image46.png b/old/17001-tei/images/image46.png Binary files differnew file mode 100644 index 0000000..4997672 --- /dev/null +++ b/old/17001-tei/images/image46.png diff --git a/old/17001-tei/images/image47.png b/old/17001-tei/images/image47.png Binary files differnew file mode 100644 index 0000000..94a1118 --- /dev/null +++ b/old/17001-tei/images/image47.png diff --git a/old/17001-tei/images/image48.png b/old/17001-tei/images/image48.png Binary files differnew file mode 100644 index 0000000..9c16cbf --- /dev/null +++ b/old/17001-tei/images/image48.png diff --git a/old/17001-tei/images/image49.png b/old/17001-tei/images/image49.png Binary files differnew file mode 100644 index 0000000..fb33b0e --- /dev/null +++ b/old/17001-tei/images/image49.png diff --git a/old/17001.txt b/old/17001.txt new file mode 100644 index 0000000..f953b62 --- /dev/null +++ b/old/17001.txt @@ -0,0 +1,5185 @@ +The Project Gutenberg EBook of An Elementary Course in Synthetic +Projective Geometry by Lehmer, Derrick Norman + + + +This eBook is for the use of anyone anywhere at no cost and with almost no +restrictions whatsoever. You may copy it, give it away or re-use it under +the terms of the Project Gutenberg License included with this eBook or +online at http://www.gutenberg.org/license + + + +Title: An Elementary Course in Synthetic Projective Geometry + +Author: Lehmer, Derrick Norman + +Release Date: November 4, 2005 [Ebook #17001] + +Language: English + +Character set encoding: US-ASCII + + +***START OF THE PROJECT GUTENBERG EBOOK AN ELEMENTARY COURSE IN SYNTHETIC PROJECTIVE GEOMETRY*** + + + + + +An Elementary Course in Synthetic Projective Geometry + + +by Lehmer, Derrick Norman + + + + +Edition 1, (November 4, 2005) + + + + + +PREFACE + + +The following course is intended to give, in as simple a way as possible, +the essentials of synthetic projective geometry. While, in the main, the +theory is developed along the well-beaten track laid out by the great +masters of the subject, it is believed that there has been a slight +smoothing of the road in some places. Especially will this be observed in +the chapter on Involution. The author has never felt satisfied with the +usual treatment of that subject by means of circles and anharmonic ratios. +A purely projective notion ought not to be based on metrical foundations. +Metrical developments should be made there, as elsewhere in the theory, by +the introduction of infinitely distant elements. + +The author has departed from the century-old custom of writing in parallel +columns each theorem and its dual. He has not found that it conduces to +sharpness of vision to try to focus his eyes on two things at once. Those +who prefer the usual method of procedure can, of course, develop the two +sets of theorems side by side; the author has not found this the better +plan in actual teaching. + +As regards nomenclature, the author has followed the lead of the earlier +writers in English, and has called the system of lines in a plane which +all pass through a point a _pencil of rays_ instead of a _bundle of rays_, +as later writers seem inclined to do. For a point considered as made up of +all the lines and planes through it he has ventured to use the term _point +system_, as being the natural dualization of the usual term _plane +system_. He has also rejected the term _foci of an involution_, and has +not used the customary terms for classifying involutions--_hyperbolic +involution_, _elliptic involution_ and _parabolic involution_. He has +found that all these terms are very confusing to the student, who +inevitably tries to connect them in some way with the conic sections. + +Enough examples have been provided to give the student a clear grasp of +the theory. Many are of sufficient generality to serve as a basis for +individual investigation on the part of the student. Thus, the third +example at the end of the first chapter will be found to be very fruitful +in interesting results. A correspondence is there indicated between lines +in space and circles through a fixed point in space. If the student will +trace a few of the consequences of that correspondence, and determine what +configurations of circles correspond to intersecting lines, to lines in a +plane, to lines of a plane pencil, to lines cutting three skew lines, +etc., he will have acquired no little practice in picturing to himself +figures in space. + +The writer has not followed the usual practice of inserting historical +notes at the foot of the page, and has tried instead, in the last chapter, +to give a consecutive account of the history of pure geometry, or, at +least, of as much of it as the student will be able to appreciate who has +mastered the course as given in the preceding chapters. One is not apt to +get a very wide view of the history of a subject by reading a hundred +biographical footnotes, arranged in no sort of sequence. The writer, +moreover, feels that the proper time to learn the history of a subject is +after the student has some general ideas of the subject itself. + +The course is not intended to furnish an illustration of how a subject may +be developed, from the smallest possible number of fundamental +assumptions. The author is aware of the importance of work of this sort, +but he does not believe it is possible at the present time to write a book +along such lines which shall be of much use for elementary students. For +the purposes of this course the student should have a thorough grounding +in ordinary elementary geometry so far as to include the study of the +circle and of similar triangles. No solid geometry is needed beyond the +little used in the proof of Desargues' theorem (25), and, except in +certain metrical developments of the general theory, there will be no call +for a knowledge of trigonometry or analytical geometry. Naturally the +student who is equipped with these subjects as well as with the calculus +will be a little more mature, and may be expected to follow the course all +the more easily. The author has had no difficulty, however, in presenting +it to students in the freshman class at the University of California. + +The subject of synthetic projective geometry is, in the opinion of the +writer, destined shortly to force its way down into the secondary schools; +and if this little book helps to accelerate the movement, he will feel +amply repaid for the task of working the materials into a form available +for such schools as well as for the lower classes in the university. + +The material for the course has been drawn from many sources. The author +is chiefly indebted to the classical works of Reye, Cremona, Steiner, +Poncelet, and Von Staudt. Acknowledgments and thanks are also due to +Professor Walter C. Eells, of the U.S. Naval Academy at Annapolis, for his +searching examination and keen criticism of the manuscript; also to +Professor Herbert Ellsworth Slaught, of The University of Chicago, for his +many valuable suggestions, and to Professor B. M. Woods and Dr. H. N. +Wright, of the University of California, who have tried out the methods of +presentation, in their own classes. + + D. N. LEHMER + +BERKELEY, CALIFORNIA + + + + + +CONTENTS + + +Preface +Contents +CHAPTER I - ONE-TO-ONE CORRESPONDENCE + 1. Definition of one-to-one correspondence + 2. Consequences of one-to-one correspondence + 3. Applications in mathematics + 4. One-to-one correspondence and enumeration + 5. Correspondence between a part and the whole + 6. Infinitely distant point + 7. Axial pencil; fundamental forms + 8. Perspective position + 9. Projective relation + 10. Infinity-to-one correspondence + 11. Infinitudes of different orders + 12. Points in a plane + 13. Lines through a point + 14. Planes through a point + 15. Lines in a plane + 16. Plane system and point system + 17. Planes in space + 18. Points of space + 19. Space system + 20. Lines in space + 21. Correspondence between points and numbers + 22. Elements at infinity + PROBLEMS +CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE +CORRESPONDENCE WITH EACH OTHER + 23. Seven fundamental forms + 24. Projective properties + 25. Desargues's theorem + 26. Fundamental theorem concerning two complete quadrangles + 27. Importance of the theorem + 28. Restatement of the theorem + 29. Four harmonic points + 30. Harmonic conjugates + 31. Importance of the notion of four harmonic points + 32. Projective invariance of four harmonic points + 33. Four harmonic lines + 34. Four harmonic planes + 35. Summary of results + 36. Definition of projectivity + 37. Correspondence between harmonic conjugates + 38. Separation of harmonic conjugates + 39. Harmonic conjugate of the point at infinity + 40. Projective theorems and metrical theorems. Linear construction + 41. Parallels and mid-points + 42. Division of segment into equal parts + 43. Numerical relations + 44. Algebraic formula connecting four harmonic points + 45. Further formulae + 46. Anharmonic ratio + PROBLEMS +CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED FUNDAMENTAL FORMS + 47. Superposed fundamental forms. Self-corresponding elements + 48. Special case + 49. Fundamental theorem. Postulate of continuity + 50. Extension of theorem to pencils of rays and planes + 51. Projective point-rows having a self-corresponding point in common + 52. Point-rows in perspective position + 53. Pencils in perspective position + 54. Axial pencils in perspective position + 55. Point-row of the second order + 56. Degeneration of locus + 57. Pencils of rays of the second order + 58. Degenerate case + 59. Cone of the second order + PROBLEMS +CHAPTER IV - POINT-ROWS OF THE SECOND ORDER + 60. Point-row of the second order defined + 61. Tangent line + 62. Determination of the locus + 63. Restatement of the problem + 64. Solution of the fundamental problem + 65. Different constructions for the figure + 66. Lines joining four points of the locus to a fifth + 67. Restatement of the theorem + 68. Further important theorem + 69. Pascal's theorem + 70. Permutation of points in Pascal's theorem + 71. Harmonic points on a point-row of the second order + 72. Determination of the locus + 73. Circles and conics as point-rows of the second order + 74. Conic through five points + 75. Tangent to a conic + 76. Inscribed quadrangle + 77. Inscribed triangle + 78. Degenerate conic + PROBLEMS +CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER + 79. Pencil of rays of the second order defined + 80. Tangents to a circle + 81. Tangents to a conic + 82. Generating point-rows lines of the system + 83. Determination of the pencil + 84. Brianchon's theorem + 85. Permutations of lines in Brianchon's theorem + 86. Construction of the penvil by Brianchon's theorem + 87. Point of contact of a tangent to a conic + 88. Circumscribed quadrilateral + 89. Circumscribed triangle + 90. Use of Brianchon's theorem + 91. Harmonic tangents + 92. Projectivity and perspectivity + 93. Degenerate case + 94. Law of duality + PROBLEMS +CHAPTER VI - POLES AND POLARS + 95. Inscribed and circumscribed quadrilaterals + 96. Definition of the polar line of a point + 97. Further defining properties + 98. Definition of the pole of a line + 99. Fundamental theorem of poles and polars + 100. Conjugate points and lines + 101. Construction of the polar line of a given point + 102. Self-polar triangle + 103. Pole and polar projectively related + 104. Duality + 105. Self-dual theorems + 106. Other correspondences + PROBLEMS +CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS + 107. Diameters. Center + 108. Various theorems + 109. Conjugate diameters + 110. Classification of conics + 111. Asymptotes + 112. Various theorems + 113. Theorems concerning asymptotes + 114. Asymptotes and conjugate diameters + 115. Segments cut off on a chord by hyperbola and its asymptotes + 116. Application of the theorem + 117. Triangle formed by the two asymptotes and a tangent + 118. Equation of hyperbola referred to the asymptotes + 119. Equation of parabola + 120. Equation of central conics referred to conjugate diameters + PROBLEMS +CHAPTER VIII - INVOLUTION + 121. Fundamental theorem + 122. Linear construction + 123. Definition of involution of points on a line + 124. Double-points in an involution + 125. Desargues's theorem concerning conics through four points + 126. Degenerate conics of the system + 127. Conics through four points touching a given line + 128. Double correspondence + 129. Steiner's construction + 130. Application of Steiner's construction to double correspondence + 131. Involution of points on a point-row of the second order. + 132. Involution of rays + 133. Double rays + 134. Conic through a fixed point touching four lines + 135. Double correspondence + 136. Pencils of rays of the second order in involution + 137. Theorem concerning pencils of the second order in involution + 138. Involution of rays determined by a conic + 139. Statement of theorem + 140. Dual of the theorem + PROBLEMS +CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS + 141. Introduction of infinite point; center of involution + 142. Fundamental metrical theorem + 143. Existence of double points + 144. Existence of double rays + 145. Construction of an involution by means of circles + 146. Circular points + 147. Pairs in an involution of rays which are at right angles. Circular + involution + 148. Axes of conics + 149. Points at which the involution determined by a conic is circular + 150. Properties of such a point + 151. Position of such a point + 152. Discovery of the foci of the conic + 153. The circle and the parabola + 154. Focal properties of conics + 155. Case of the parabola + 156. Parabolic reflector + 157. Directrix. Principal axis. Vertex + 158. Another definition of a conic + 159. Eccentricity + 160. Sum or difference of focal distances + PROBLEMS +CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY + 161. Ancient results + 162. Unifying principles + 163. Desargues + 164. Poles and polars + 165. Desargues's theorem concerning conics through four points + 166. Extension of the theory of poles and polars to space + 167. Desargues's method of describing a conic + 168. Reception of Desargues's work + 169. Conservatism in Desargues's time + 170. Desargues's style of writing + 171. Lack of appreciation of Desargues + 172. Pascal and his theorem + 173. Pascal's essay + 174. Pascal's originality + 175. De la Hire and his work + 176. Descartes and his influence + 177. Newton and Maclaurin + 178. Maclaurin's construction + 179. Descriptive geometry and the second revival + 180. Duality, homology, continuity, contingent relations + 181. Poncelet and Cauchy + 182. The work of Poncelet + 183. The debt which analytic geometry owes to synthetic geometry + 184. Steiner and his work + 185. Von Staudt and his work + 186. Recent developments +INDEX + + + + + + +CHAPTER I - ONE-TO-ONE CORRESPONDENCE + + + + +*1. Definition of one-to-one correspondence.* Given any two sets of +individuals, if it is possible to set up such a correspondence between the +two sets that to any individual in one set corresponds one and only one +individual in the other, then the two sets are said to be in _one-to-one +correspondence_ with each other. This notion, simple as it is, is of +fundamental importance in all branches of science. The process of counting +is nothing but a setting up of a one-to-one correspondence between the +objects to be counted and certain words, 'one,' 'two,' 'three,' etc., in +the mind. Many savage peoples have discovered no better method of counting +than by setting up a one-to-one correspondence between the objects to be +counted and their fingers. The scientist who busies himself with naming +and classifying the objects of nature is only setting up a one-to-one +correspondence between the objects and certain words which serve, not as a +means of counting the objects, but of listing them in a convenient way. +Thus he may be able to marshal and array his material in such a way as to +bring to light relations that may exist between the objects themselves. +Indeed, the whole notion of language springs from this idea of one-to-one +correspondence. + + + + +*2. Consequences of one-to-one correspondence.* The most useful and +interesting problem that may arise in connection with any one-to-one +correspondence is to determine just what relations existing between the +individuals of one assemblage may be carried over to another assemblage in +one-to-one correspondence with it. It is a favorite error to assume that +whatever holds for one set must also hold for the other. Magicians are apt +to assign magic properties to many of the words and symbols which they are +in the habit of using, and scientists are constantly confusing objective +things with the subjective formulas for them. After the physicist has set +up correspondences between physical facts and mathematical formulas, the +"interpretation" of these formulas is his most important and difficult +task. + + + + +*3.* In mathematics, effort is constantly being made to set up one-to-one +correspondences between simple notions and more complicated ones, or +between the well-explored fields of research and fields less known. Thus, +by means of the mechanism employed in analytic geometry, algebraic +theorems are made to yield geometric ones, and vice versa. In geometry we +get at the properties of the conic sections by means of the properties of +the straight line, and cubic surfaces are studied by means of the plane. + + + + + [Figure 1] + + FIG. 1 + + + [Figure 2] + + FIG. 2 + + +*4. One-to-one correspondence and enumeration.* If a one-to-one +correspondence has been set up between the objects of one set and the +objects of another set, then the inference may usually be drawn that they +have the same number of elements. If, however, there is an infinite number +of individuals in each of the two sets, the notion of counting is +necessarily ruled out. It may be possible, nevertheless, to set up a +one-to-one correspondence between the elements of two sets even when the +number is infinite. Thus, it is easy to set up such a correspondence +between the points of a line an inch long and the points of a line two +inches long. For let the lines (Fig. 1) be _AB_ and _A'B'_. Join _AA'_ and +_BB'_, and let these joining lines meet in _S_. For every point _C_ on +_AB_ a point _C'_ may be found on _A'B'_ by joining _C_ to _S_ and noting +the point _C'_ where _CS_ meets _A'B'_. Similarly, a point _C_ may be +found on _AB_ for any point _C'_ on _A'B'_. The correspondence is clearly +one-to-one, but it would be absurd to infer from this that there were just +as many points on _AB_ as on _A'B'_. In fact, it would be just as +reasonable to infer that there were twice as many points on _A'B'_ as on +_AB_. For if we bend _A'B'_ into a circle with center at _S_ (Fig. 2), we +see that for every point _C_ on _AB_ there are two points on _A'B'_. Thus +it is seen that the notion of one-to-one correspondence is more extensive +than the notion of counting, and includes the notion of counting only when +applied to finite assemblages. + + + + +*5. Correspondence between a part and the whole of an infinite +assemblage.* In the discussion of the last paragraph the remarkable fact +was brought to light that it is sometimes possible to set the elements of +an assemblage into one-to-one correspondence with a part of those +elements. A moment's reflection will convince one that this is never +possible when there is a finite number of elements in the +assemblage.--Indeed, we may take this property as our definition of an +infinite assemblage, and say that an infinite assemblage is one that may +be put into one-to-one correspondence with part of itself. This has the +advantage of being a positive definition, as opposed to the usual negative +definition of an infinite assemblage as one that cannot be counted. + + + + +*6. Infinitely distant point.* We have illustrated above a simple method +of setting the points of two lines into one-to-one correspondence. The +same illustration will serve also to show how it is possible to set the +points on a line into one-to-one correspondence with the lines through a +point. Thus, for any point _C_ on the line _AB_ there is a line _SC_ +through _S_. We must assume the line _AB_ extended indefinitely in both +directions, however, if we are to have a point on it for every line +through _S_; and even with this extension there is one line through _S_, +according to Euclid's postulate, which does not meet the line _AB_ and +which therefore has no point on _AB_ to correspond to it. In order to +smooth out this discrepancy we are accustomed to assume the existence of +an _infinitely distant_ point on the line _AB_ and to assign this point +as the corresponding point of the exceptional line of _S_. With this +understanding, then, we may say that we have set the lines through a point +and the points on a line into one-to-one correspondence. This +correspondence is of such fundamental importance in the study of +projective geometry that a special name is given to it. Calling the +totality of points on a line a _point-row_, and the totality of lines +through a point a _pencil of rays_, we say that the point-row and the +pencil related as above are in _perspective position_, or that they are +_perspectively related_. + + + + +*7. Axial pencil; fundamental forms.* A similar correspondence may be set +up between the points on a line and the planes through another line which +does not meet the first. Such a system of planes is called an _axial +pencil_, and the three assemblages--the point-row, the pencil of rays, and +the axial pencil--are called _fundamental forms_. The fact that they may +all be set into one-to-one correspondence with each other is expressed by +saying that they are of the same order. It is usual also to speak of them +as of the first order. We shall see presently that there are other +assemblages which cannot be put into this sort of one-to-one +correspondence with the points on a line, and that they will very +reasonably be said to be of a higher order. + + + + +*8. Perspective position.* We have said that a point-row and a pencil of +rays are in perspective position if each ray of the pencil goes through +the point of the point-row which corresponds to it. Two pencils of rays +are also said to be in perspective position if corresponding rays meet on +a straight line which is called the axis of perspectivity. Also, two +point-rows are said to be in perspective position if corresponding points +lie on straight lines through a point which is called the center of +perspectivity. A point-row and an axial pencil are in perspective position +if each plane of the pencil goes through the point on the point-row which +corresponds to it, and an axial pencil and a pencil of rays are in +perspective position if each ray lies in the plane which corresponds to +it; and, finally, two axial pencils are perspectively related if +corresponding planes meet in a plane. + + + + +*9. Projective relation.* It is easy to imagine a more general +correspondence between the points of two point-rows than the one just +described. If we take two perspective pencils, _A_ and _S_, then a +point-row _a_ perspective to _A_ will be in one-to-one correspondence with +a point-row _b_ perspective to _B_, but corresponding points will not, in +general, lie on lines which all pass through a point. Two such point-rows +are said to be _projectively related_, or simply projective to each other. +Similarly, two pencils of rays, or of planes, are projectively related to +each other if they are perspective to two perspective point-rows. This +idea will be generalized later on. It is important to note that between +the elements of two projective fundamental forms there is a one-to-one +correspondence, and also that this correspondence is in general +_continuous_; that is, by taking two elements of one form sufficiently +close to each other, the two corresponding elements in the other form may +be made to approach each other arbitrarily close. In the case of +point-rows this continuity is subject to exception in the neighborhood of +the point "at infinity." + + + + +*10. Infinity-to-one correspondence.* It might be inferred that any +infinite assemblage could be put into one-to-one correspondence with any +other. Such is not the case, however, if the correspondence is to be +continuous, between the points on a line and the points on a plane. +Consider two lines which lie in different planes, and take _m_ points on +one and _n_ points on the other. The number of lines joining the _m_ +points of one to the _n_ points jof the other is clearly _mn_. If we +symbolize the totality of points on a line by [infinity], then a +reasonable symbol for the totality of lines drawn to cut two lines would +be [infinity]2. Clearly, for every point on one line there are [infinity] +lines cutting across the other, so that the correspondence might be called +[infinity]-to-one. Thus the assemblage of lines cutting across two lines +is of higher order than the assemblage of points on a line; and as we have +called the point-row an assemblage of the first order, the system of lines +cutting across two lines ought to be called of the second order. + + + + +*11. Infinitudes of different orders.* Now it is easy to set up a +one-to-one correspondence between the points in a plane and the system of +lines cutting across two lines which lie in different planes. In fact, +each line of the system of lines meets the plane in one point, and each +point in the plane determines one and only one line cutting across the two +given lines--namely, the line of intersection of the two planes determined +by the given point with each of the given lines. The assemblage of points +in the plane is thus of the same order as that of the lines cutting across +two lines which lie in different planes, and ought therefore to be spoken +of as of the second order. We express all these results as follows: + + + + +*12.* If the infinitude of points on a line is taken as the infinitude of +the first order, then the infinitude of lines in a pencil of rays and the +infinitude of planes in an axial pencil are also of the first order, while +the infinitude of lines cutting across two "skew" lines, as well as the +infinitude of points in a plane, are of the second order. + + + + +*13.* If we join each of the points of a plane to a point not in that +plane, we set up a one-to-one correspondence between the points in a plane +and the lines through a point in space. _Thus the infinitude of lines +through a point in space is of the second order._ + + + + +*14.* If to each line through a point in space we make correspond that +plane at right angles to it and passing through the same point, we see +that _the infinitude of planes through a point in space is of the second +order._ + + + + +*15.* If to each plane through a point in space we make correspond the +line in which it intersects a given plane, we see that _the infinitude of +lines in a plane is of the second order._ This may also be seen by setting +up a one-to-one correspondence between the points on a plane and the lines +of that plane. Thus, take a point _S_ not in the plane. Join any point _M_ +of the plane to _S_. Through _S_ draw a plane at right angles to _MS_. +This meets the given plane in a line _m_ which may be taken as +corresponding to the point _M_. Another very important method of setting +up a one-to-one correspondence between lines and points in a plane will be +given later, and many weighty consequences will be derived from it. + + + + +*16. Plane system and point system.* The plane, considered as made up of +the points and lines in it, is called a _plane system_ and is a +fundamental form of the second order. The point, considered as made up of +all the lines and planes passing through it, is called a _point system_ +and is also a fundamental form of the second order. + + + + +*17.* If now we take three lines in space all lying in different planes, +and select _l_ points on the first, _m_ points on the second, and _n_ +points on the third, then the total number of planes passing through one +of the selected points on each line will be _lmn_. It is reasonable, +therefore, to symbolize the totality of planes that are determined by the +[infinity] points on each of the three lines by [infinity]3, and to call +it an infinitude of the _third_ order. But it is easily seen that every +plane in space is included in this totality, so that _the totality of +planes in space is an infinitude of the third order._ + + + + +*18.* Consider now the planes perpendicular to these three lines. Every +set of three planes so drawn will determine a point in space, and, +conversely, through every point in space may be drawn one and only one set +of three planes at right angles to the three given lines. It follows, +therefore, that _the totality of points in space is an infinitude of the +third order._ + + + + +*19. Space system.* Space of three dimensions, considered as made up of +all its planes and points, is then a fundamental form of the _third_ +order, which we shall call a _space system._ + + + + +*20. Lines in space.* If we join the twofold infinity of points in one +plane with the twofold infinity of points in another plane, we get a +totality of lines of space which is of the fourth order of infinity. _The +totality of lines in space gives, then, a fundamental form of the fourth +order._ + + + + +*21. Correspondence between points and numbers.* In the theory of +analytic geometry a one-to-one correspondence is assumed to exist between +points on a line and numbers. In order to justify this assumption a very +extended definition of number must be made use of. A one-to-one +correspondence is then set up between points in the plane and pairs of +numbers, and also between points in space and sets of three numbers. A +single constant will serve to define the position of a point on a line; +two, a point in the plane; three, a point in space; etc. In the same +theory a one-to-one correspondence is set up between loci in the plane and +equations in two variables; between surfaces in space and equations in +three variables; etc. The equation of a line in a plane involves two +constants, either of which may take an infinite number of values. From +this it follows that there is an infinity of lines in the plane which is +of the second order if the infinity of points on a line is assumed to be +of the first. In the same way a circle is determined by three conditions; +a sphere by four; etc. We might then expect to be able to set up a +one-to-one correspondence between circles in a plane and points, or planes +in space, or between spheres and lines in space. Such, indeed, is the +case, and it is often possible to infer theorems concerning spheres from +theorems concerning lines, and vice versa. It is possibilities such as +these that, give to the theory of one-to-one correspondence its great +importance for the mathematician. It must not be forgotten, however, that +we are considering only _continuous_ correspondences. It is perfectly +possible to set, up a one-to-one correspondence between the points of a +line and the points of a plane, or, indeed, between the points of a line +and the points of a space of any finite number of dimensions, if the +correspondence is not restricted to be continuous. + + + + +*22. Elements at infinity.* A final word is necessary in order to explain +a phrase which is in constant use in the study of projective geometry. We +have spoken of the "point at infinity" on a straight line--a fictitious +point only used to bridge over the exceptional case when we are setting up +a one-to-one correspondence between the points of a line and the lines +through a point. We speak of it as "a point" and not as "points," because +in the geometry studied by Euclid we assume only one line through a point +parallel to a given line. In the same sense we speak of all the points at +infinity in a plane as lying on a line, "the line at infinity," because +the straight line is the simplest locus we can imagine which has only one +point in common with any line in the plane. Likewise we speak of the +"plane at infinity," because that seems the most convenient way of +imagining the points at infinity in space. It must not be inferred that +these conceptions have any essential connection with physical facts, or +that other means of picturing to ourselves the infinitely distant +configurations are not possible. In other branches of mathematics, notably +in the theory of functions of a complex variable, quite different +assumptions are made and quite different conceptions of the elements at +infinity are used. As we can know nothing experimentally about such +things, we are at liberty to make any assumptions we please, so long as +they are consistent and serve some useful purpose. + + + + +PROBLEMS + + +1. Since there is a threefold infinity of points in space, there must be a +sixfold infinity of pairs of points in space. Each pair of points +determines a line. Why, then, is there not a sixfold infinity of lines in +space? + +2. If there is a fourfold infinity of lines in space, why is it that there +is not a fourfold infinity of planes through a point, seeing that each +line in space determines a plane through that point? + +3. Show that there is a fourfold infinity of circles in space that pass +through a fixed point. (Set up a one-to-one correspondence between the +axes of the circles and lines in space.) + +4. Find the order of infinity of all the lines of space that cut across a +given line; across two given lines; across three given lines; across four +given lines. + +5. Find the order of infinity of all the spheres in space that pass +through a given point; through two given points; through three given +points; through four given points. + +6. Find the order of infinity of all the circles on a sphere; of all the +circles on a sphere that pass through a fixed point; through two fixed +points; through three fixed points; of all the circles in space; of all +the circles that cut across a given line. + +7. Find the order of infinity of all lines tangent to a sphere; of all +planes tangent to a sphere; of lines and planes tangent to a sphere and +passing through a fixed point. + +8. Set up a one-to-one correspondence between the series of numbers _1_, +_2_, _3_, _4_, ... and the series of even numbers _2_, _4_, _6_, _8_ .... +Are we justified in saying that there are just as many even numbers as +there are numbers altogether? + +9. Is the axiom "The whole is greater than one of its parts" applicable to +infinite assemblages? + +10. Make out a classified list of all the infinitudes of the first, +second, third, and fourth orders mentioned in this chapter. + + + + + +CHAPTER II - RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-TO-ONE +CORRESPONDENCE WITH EACH OTHER + + + + +*23. Seven fundamental forms.* In the preceding chapter we have called +attention to seven fundamental forms: the point-row, the pencil of rays, +the axial pencil, the plane system, the point system, the space system, +and the system of lines in space. These fundamental forms are the material +which we intend to use in building up a general theory which will be found +to include ordinary geometry as a special case. We shall be concerned, not +with measurement of angles and areas or line segments as in the study of +Euclid, but in combining and comparing these fundamental forms and in +"generating" new forms by means of them. In problems of construction we +shall make no use of measurement, either of angles or of segments, and +except in certain special applications of the general theory we shall not +find it necessary to require more of ourselves than the ability to draw +the line joining two points, or to find the point of intersections of two +lines, or the line of intersection of two planes, or, in general, the +common elements of two fundamental forms. + + + + +*24. Projective properties.* Our chief interest in this chapter will be +the discovery of relations between the elements of one form which hold +between the corresponding elements of any other form in one-to-one +correspondence with it. We have already called attention to the danger of +assuming that whatever relations hold between the elements of one +assemblage must also hold between the corresponding elements of any +assemblage in one-to-one correspondence with it. This false assumption is +the basis of the so-called "proof by analogy" so much in vogue among +speculative theorists. When it appears that certain relations existing +between the points of a given point-row do not necessitate the same +relations between the corresponding elements of another in one-to-one +correspondence with it, we should view with suspicion any application of +the "proof by analogy" in realms of thought where accurate judgments are +not so easily made. For example, if in a given point-row _u_ three points, +_A_, _B_, and _C_, are taken such that _B_ is the middle point of the +segment _AC_, it does not follow that the three points _A'_, _B'_, _C'_ in +a point-row perspective to _u_ will be so related. Relations between the +elements of any form which do go over unaltered to the corresponding +elements of a form projectively related to it are called _projective +relations._ Relations involving measurement of lines or of angles are not +projective. + + + + +*25. Desargues's theorem.* We consider first the following beautiful +theorem, due to Desargues and called by his name. + +_If two triangles, __A__, __B__, __C__ and __A'__, __B'__, __C'__, are so +situated that the lines __AA'__, __BB'__, and __CC'__ all meet in a point, +then the pairs of sides __AB__ and __A'B'__, __BC__ and __B'C'__, __CA__ +and __C'A'__ all meet on a straight line, and conversely._ + + [Figure 3] + + FIG. 3 + + +Let the lines _AA'_, _BB'_, and _CC'_ meet in the point _M_ (Fig. 3). +Conceive of the figure as in space, so that _M_ is the vertex of a +trihedral angle of which the given triangles are plane sections. The lines +_AB_ and _A'B'_ are in the same plane and must meet when produced, their +point of intersection being clearly a point in the plane of each triangle +and therefore in the line of intersection of these two planes. Call this +point _P_. By similar reasoning the point _Q_ of intersection of the lines +_BC_ and _B'C'_ must lie on this same line as well as the point _R_ of +intersection of _CA_ and _C'A'_. Therefore the points _P_, _Q_, and _R_ +all lie on the same line _m_. If now we consider the figure a plane +figure, the points _P_, _Q_, and _R_ still all lie on a straight line, +which proves the theorem. The converse is established in the same manner. + + + + +*26. Fundamental theorem concerning two complete quadrangles.* This +theorem throws into our hands the following fundamental theorem concerning +two complete quadrangles, a _complete quadrangle_ being defined as the +figure obtained by joining any four given points by straight lines in the +six possible ways. + +_Given two complete quadrangles, __K__, __L__, __M__, __N__ and __K'__, +__L'__, __M'__, __N'__, so related that __KL__, __K'L'__, __MN__, __M'N'__ +all meet in a point __A__; __LM__, __L'M'__, __NK__, __N'K'__ all meet in +a __ point __Q__; and __LN__, __L'N'__ meet in a point __B__ on the line +__AC__; then the lines __KM__ and __K'M'__ also meet in a point __D__ on +the line __AC__._ + + [Figure 4] + + FIG. 4 + + +For, by the converse of the last theorem, _KK'_, _LL'_, and _NN'_ all meet +in a point _S_ (Fig. 4). Also _LL'_, _MM'_, and _NN'_ meet in a point, and +therefore in the same point _S_. Thus _KK'_, _LL'_, and _MM'_ meet in a +point, and so, by Desargues's theorem itself, _A_, _B_, and _D_ are on a +straight line. + + + + +*27. Importance of the theorem.* The importance of this theorem lies in +the fact that, _A_, _B_, and _C_ being given, an indefinite number of +quadrangles _K'_, _L'_, _M'_, _N'_ my be found such that _K'L'_ and _M'N'_ +meet in _A_, _K'N'_ and _L'M'_ in _C_, with _L'N'_ passing through _B_. +Indeed, the lines _AK'_ and _AM'_ may be drawn arbitrarily through _A_, +and any line through _B_ may be used to determine _L'_ and _N'_. By +joining these two points to _C_ the points _K'_ and _M'_ are determined. +Then the line joining _K'_ and _M'_, found in this way, must pass through +the point _D_ already determined by the quadrangle _K_, _L_, _M_, _N_. +_The three points __A__, __B__, __C__, given in order, serve thus to +determine a fourth point __D__._ + + + + +*28.* In a complete quadrangle the line joining any two points is called +the _opposite side_ to the line joining the other two points. The result +of the preceding paragraph may then be stated as follows: + +Given three points, _A_, _B_, _C_, in a straight line, if a pair of +opposite sides of a complete quadrangle pass through _A_, and another pair +through _C_, and one of the remaining two sides goes through _B_, then the +other of the remaining two sides will go through a fixed point which does +not depend on the quadrangle employed. + + + + +*29. Four harmonic points.* Four points, _A_, _B_, _C_, _D_, related as +in the preceding theorem are called _four harmonic points_. The point _D_ +is called the _fourth harmonic of __B__ with respect to __A__ and __C_. +Since _B_ and _D_ play exactly the same role in the above construction, +_B__ is also the fourth harmonic of __D__ with respect to __A__ and __C_. +_B_ and _D_ are called _harmonic conjugates with respect to __A__ and +__C_. We proceed to show that _A_ and _C_ are also harmonic conjugates +with respect to _B_ and _D_--that is, that it is possible to find a +quadrangle of which two opposite sides shall pass through _B_, two through +_D_, and of the remaining pair, one through _A_ and the other through _C_. + + [Figure 5] + + FIG. 5 + + +Let _O_ be the intersection of _KM_ and _LN_ (Fig. 5). Join _O_ to _A_ and +_C_. The joining lines cut out on the sides of the quadrangle four points, +_P_, _Q_, _R_, _S_. Consider the quadrangle _P_, _K_, _Q_, _O_. One pair +of opposite sides passes through _A_, one through _C_, and one remaining +side through _D_; therefore the other remaining side must pass through +_B_. Similarly, _RS_ passes through _B_ and _PS_ and _QR_ pass through +_D_. The quadrangle _P_, _Q_, _R_, _S_ therefore has two opposite sides +through _B_, two through _D_, and the remaining pair through _A_ and _C_. +_A_ and _C_ are thus harmonic conjugates with respect to _B_ and _D_. We +may sum up the discussion, therefore, as follows: + + + + +*30.* If _A_ and _C_ are harmonic conjugates with respect to _B_ and _D_, +then _B_ and _D_ are harmonic conjugates with respect to _A_ and _C_. + + + + +*31. Importance of the notion.* The importance of the notion of four +harmonic points lies in the fact that it is a relation which is carried +over from four points in a point-row _u_ to the four points that +correspond to them in any point-row _u'_ perspective to _u_. + +To prove this statement we construct a quadrangle _K_, _L_, _M_, _N_ such +that _KL_ and _MN_ pass through _A_, _KN_ and _LM_ through _C_, _LN_ +through _B_, and _KM_ through _D_. Take now any point _S_ not in the plane +of the quadrangle and construct the planes determined by _S_ and all the +seven lines of the figure. Cut across this set of planes by another plane +not passing through _S_. This plane cuts out on the set of seven planes +another quadrangle which determines four new harmonic points, _A'_, _B'_, +_C'_, _D'_, on the lines joining _S_ to _A_, _B_, _C_, _D_. But _S_ may be +taken as any point, since the original quadrangle may be taken in any +plane through _A_, _B_, _C_, _D_; and, further, the points _A'_, _B'_, +_C'_, _D'_ are the intersection of _SA_, _SB_, _SC_, _SD_ by any line. We +have, then, the remarkable theorem: + + + + +*32.* _If any point is joined to four harmonic points, and the four lines +thus obtained are cut by any fifth, the four points of intersection are +again harmonic._ + + + + +*33. Four harmonic lines.* We are now able to extend the notion of +harmonic elements to pencils of rays, and indeed to axial pencils. For if +we define _four harmonic rays_ as four rays which pass through a point and +which pass one through each of four harmonic points, we have the theorem + +_Four harmonic lines are cut by any transversal in four harmonic points._ + + + + +*34. Four harmonic planes.* We also define _four harmonic planes_ as four +planes through a line which pass one through each of four harmonic points, +and we may show that + +_Four harmonic planes are cut by any plane not passing through their +common line in four harmonic lines, and also by any line in four harmonic +points._ + +For let the planes {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, {~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~}, which all pass through the line _g_, pass +also through the four harmonic points _A_, _B_, _C_, _D_, so that {~GREEK SMALL LETTER ALPHA~} passes +through _A_, etc. Then it is clear that any plane {~GREEK SMALL LETTER PI~} through _A_, _B_, _C_, +_D_ will cut out four harmonic lines from the four planes, for they are +lines through the intersection _P_ of _g_ with the plane {~GREEK SMALL LETTER PI~}, and they pass +through the given harmonic points _A_, _B_, _C_, _D_. Any other plane {~GREEK SMALL LETTER SIGMA~} +cuts _g_ in a point _S_ and cuts {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, {~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~} in four lines that meet {~GREEK SMALL LETTER PI~} in +four points _A'_, _B'_, _C'_, _D'_ lying on _PA_, _PB_, _PC_, and _PD_ +respectively, and are thus four harmonic hues. Further, any ray cuts {~GREEK SMALL LETTER ALPHA~}, {~GREEK SMALL LETTER BETA~}, +{~GREEK SMALL LETTER GAMMA~}, {~GREEK SMALL LETTER DELTA~} in four harmonic points, since any plane through the ray gives four +harmonic lines of intersection. + + + + +*35.* These results may be put together as follows: + +_Given any two assemblages of points, rays, or planes, perspectively +related to each other, four harmonic elements of one must correspond to +four elements of the other which are likewise harmonic._ + +If, now, two forms are perspectively related to a third, any four harmonic +elements of one must correspond to four harmonic elements in the other. We +take this as our definition of projective correspondence, and say: + + + + +*36. Definition of projectivity.* _Two fundamental forms are protectively +related to each other when a one-to-one correspondence exists between the +elements of the two and when four harmonic elements of one correspond to +four harmonic elements of the other._ + + [Figure 6] + + FIG. 6 + + + + +*37. Correspondence between harmonic conjugates.* Given four harmonic +points, _A_, _B_, _C_, _D_; if we fix _A_ and _C_, then _B_ and _D_ vary +together in a way that should be thoroughly understood. To get a clear +conception of their relative motion we may fix the points _L_ and _M_ of +the quadrangle _K_, _L_, _M_, _N_ (Fig. 6). Then, as _B_ describes the +point-row _AC_, the point _N_ describes the point-row _AM_ perspective to +it. Projecting _N_ again from _C_, we get a point-row _K_ on _AL_ +perspective to the point-row _N_ and thus projective to the point-row _B_. +Project the point-row _K_ from _M_ and we get a point-row _D_ on _AC_ +again, which is projective to the point-row _B_. For every point _B_ we +have thus one and only one point _D_, and conversely. In other words, we +have set up a one-to-one correspondence between the points of a single +point-row, which is also a projective correspondence because four harmonic +points _B_ correspond to four harmonic points _D_. We may note also that +the correspondence is here characterized by a feature which does not +always appear in projective correspondences: namely, the same process that +carries one from _B_ to _D_ will carry one back from _D_ to _B_ again. +This special property will receive further study in the chapter on +Involution. + + + + +*38.* It is seen that as _B_ approaches _A_, _D_ also approaches _A_. As +_B_ moves from _A_ toward _C_, _D_ moves from _A_ in the opposite +direction, passing through the point at infinity on the line _AC_, and +returns on the other side to meet _B_ at _C_ again. In other words, as _B_ +traverses _AC_, _D_ traverses the rest of the line from _A_ to _C_ through +infinity. In all positions of _B_, except at _A_ or _C_, _B_ and _D_ are +separated from each other by _A_ and _C_. + + + + +*39. Harmonic conjugate of the point at infinity.* It is natural to +inquire what position of _B_ corresponds to the infinitely distant +position of _D_. We have proved (§ 27) that the particular quadrangle _K_, +_L_, _M_, _N_ employed is of no consequence. We shall therefore avail +ourselves of one that lends itself most readily to the solution of the +problem. We choose the point _L_ so that the triangle _ALC_ is isosceles +(Fig. 7). Since _D_ is supposed to be at infinity, the line _KM_ is +parallel to _AC_. Therefore the triangles _KAC_ and _MAC_ are equal, and +the triangle _ANC_ is also isosceles. The triangles _CNL_ and _ANL_ are +therefore equal, and the line _LB_ bisects the angle _ALC_. _B_ is +therefore the middle point of _AC_, and we have the theorem + +_The harmonic conjugate of the middle point of __AC__ is at infinity._ + + [Figure 7] + + FIG. 7 + + + + +*40. Projective theorems and metrical theorems. Linear construction.* This +theorem is the connecting link between the general protective theorems +which we have been considering so far and the metrical theorems of +ordinary geometry. Up to this point we have said nothing about +measurements, either of line segments or of angles. Desargues's theorem +and the theory of harmonic elements which depends on it have nothing to do +with magnitudes at all. Not until the notion of an infinitely distant +point is brought in is any mention made of distances or directions. We +have been able to make all of our constructions up to this point by means +of the straightedge, or ungraduated ruler. A construction made with such +an instrument we shall call a _linear_ construction. It requires merely +that we be able to draw the line joining two points or find the point of +intersection of two lines. + + + + +*41. Parallels and mid-points.* It might be thought that drawing a line +through a given point parallel to a given line was only a special case of +drawing a line joining two points. Indeed, it consists only in drawing a +line through the given point and through the "infinitely distant point" on +the given line. It must be remembered, however, that the expression +"infinitely distant point" must not be taken literally. When we say that +two parallel lines meet "at infinity," we really mean that they do not +meet at all, and the only reason for using the expression is to avoid +tedious statement of exceptions and restrictions to our theorems. We ought +therefore to consider the drawing of a line parallel to a given line as a +different accomplishment from the drawing of the line joining two given +points. It is a remarkable consequence of the last theorem that a parallel +to a given line and the mid-point of a given segment are equivalent data. +For the construction is reversible, and if we are given the middle point +of a given segment, we can construct _linearly_ a line parallel to that +segment. Thus, given that _B_ is the middle point of _AC_, we may draw any +two lines through _A_, and any line through _B_ cutting them in points _N_ +and _L_. Join _N_ and _L_ to _C_ and get the points _K_ and _M_ on the two +lines through _A_. Then _KM_ is parallel to _AC_. _The bisection of a +given segment and the drawing of a line parallel to the segment are +equivalent data when linear construction is used._ + + + + +*42.* It is not difficult to give a linear construction for the problem +to divide a given segment into _n_ equal parts, given only a parallel to +the segment. This is simple enough when _n_ is a power of _2_. For any +other number, such as _29_, divide any segment on the line parallel to +_AC_ into _32_ equal parts, by a repetition of the process just described. +Take _29_ of these, and join the first to _A_ and the last to _C_. Let +these joining lines meet in _S_. Join _S_ to all the other points. Other +problems, of a similar sort, are given at the end of the chapter. + + + + +*43. Numerical relations.* Since three points, given in order, are +sufficient to determine a fourth, as explained above, it ought to be +possible to reproduce the process numerically in view of the one-to-one +correspondence which exists between points on a line and numbers; a +correspondence which, to be sure, we have not established here, but which +is discussed in any treatise on the theory of point sets. We proceed to +discover what relation between four numbers corresponds to the harmonic +relation between four points. + + [Figure 8] + + FIG. 8 + + + + +*44.* Let _A_, _B_, _C_, _D_ be four harmonic points (Fig. 8), and let +_SA_, _SB_, _SC_, _SD_ be four harmonic lines. Assume a line drawn through +_B_ parallel to _SD_, meeting _SA_ in _A'_ and _SC_ in _C'_. Then _A'_, +_B'_, _C'_, and the infinitely distant point on _A'C'_ are four harmonic +points, and therefore _B_ is the middle point of the segment _A'C'_. Then, +since the triangle _DAS_ is similar to the triangle _BAA'_, we may write +the proportion + + _AB : AD = BA' : SD._ + +Also, from the similar triangles _DSC_ and _BCC'_, we have + + _CD : CB = SD : B'C._ + +From these two proportions we have, remembering that _BA' = BC'_, + + [formula] + +the minus sign being given to the ratio on account of the fact that _A_ +and _C_ are always separated from _B_ and _D_, so that one or three of the +segments _AB_, _CD_, _AD_, _CB_ must be negative. + + + + +*45.* Writing the last equation in the form + + _CB : AB = -CD : AD,_ + +and using the fundamental relation connecting three points on a line, + + _PR + RQ = PQ,_ + +which holds for all positions of the three points if account be taken of +the sign of the segments, the last proportion may be written + + _(CB - BA) : AB = -(CA - DA) : AD,_ + +or + + _(AB - AC) : AB = (AC - AD) : AD;_ + +so that _AB_, _AC_, and _AD_ are three quantities in hamonic progression, +since the difference between the first and second is to the first as the +difference between the second and third is to the third. Also, from this +last proportion comes the familiar relation + + [formula] + +which is convenient for the computation of the distance _AD_ when _AB_ and +_AC_ are given numerically. + + + + +*46. Anharmonic ratio.* The corresponding relations between the +trigonometric functions of the angles determined by four harmonic lines +are not difficult to obtain, but as we shall not need them in building up +the theory of projective geometry, we will not discuss them here. Students +who have a slight acquaintance with trigonometry may read in a later +chapter (§ 161) a development of the theory of a more general relation, +called the _anharmonic ratio_, or _cross ratio_, which connects any four +points on a line. + + + + +PROBLEMS + + +*1*. Draw through a given point a line which shall pass through the +inaccessible point of intersection of two given lines. The following +construction may be made to depend upon Desargues's theorem: Through the +given point _P_ draw any two rays cutting the two lines in the points +_AB'_ and _A'B_, _A_, _B_, lying on one of the given lines and _A'_, _B'_, +on the other. Join _AA'_ and _BB'_, and find their point of intersection +_S_. Through _S_ draw any other ray, cutting the given lines in _CC'_. +Join _BC'_ and _B'C_, and obtain their point of intersection _Q_. _PQ_ is +the desired line. Justify this construction. + +*2.* To draw through a given point _P_ a line which shall meet two given +lines in points _A_ and _B_, equally distant from _P_. Justify the +following construction: Join _P_ to the point _S_ of intersection of the +two given lines. Construct the fourth harmonic of _PS_ with respect to the +two given lines. Draw through _P_ a line parallel to this line. This is +the required line. + +*3.* Given a parallelogram in the same plane with a given segment _AC_, +to construct linearly the middle point of _AC_. + +*4.* Given four harmonic lines, of which one pair are at right angles to +each other, show that the other pair make equal angles with them. This is +a theorem of which frequent use will be made. + +*5.* Given the middle point of a line segment, to draw a line parallel to +the segment and passing through a given point. + +*6.* A line is drawn cutting the sides of a triangle _ABC_ in the points +_A'_, _B'_, _C'_ the point _A'_ lying on the side _BC_, etc. The harmonic +conjugate of _A'_ with respect to _B_ and _C_ is then constructed and +called _A"_. Similarly, _B"_ and _C"_ are constructed. Show that _A"B"C"_ +lie on a straight line. Find other sets of three points on a line in the +figure. Find also sets of three lines through a point. + + + + + +CHAPTER III - COMBINATION OF TWO PROJECTIVELY RELATED FUNDAMENTAL FORMS + + + + + [Figure 9] + + FIG. 9 + + +*47. Superposed fundamental forms. Self-corresponding elements.* We have +seen (§ 37) that two projective point-rows may be superposed upon the same +straight line. This happens, for example, when two pencils which are +projective to each other are cut across by a straight line. It is also +possible for two projective pencils to have the same center. This happens, +for example, when two projective point-rows are projected to the same +point. Similarly, two projective axial pencils may have the same axis. We +examine now the possibility of two forms related in this way, having an +element or elements that correspond to themselves. We have seen, indeed, +that if _B_ and _D_ are harmonic conjugates with respect to _A_ and _C_, +then the point-row described by _B_ is projective to the point-row +described by _D_, and that _A_ and _C_ are self-corresponding points. +Consider more generally the case of two pencils perspective to each other +with axis of perspectivity _u'_ (Fig. 9). Cut across them by a line _u_. +We get thus two projective point-rows superposed on the same line _u_, and +a moment's reflection serves to show that the point _N_ of intersection +_u_ and _u'_ corresponds to itself in the two point-rows. Also, the point +_M_, where _u_ intersects the line joining the centers of the two pencils, +is seen to correspond to itself. It is thus possible for two projective +point-rows, superposed upon the same line, to have two self-corresponding +points. Clearly _M_ and _N_ may fall together if the line joining the +centers of the pencils happens to pass through the point of intersection +of the lines _u_ and _u'_. + + [Figure 10] + + FIG. 10 + + + + +*48.* We may also give an illustration of a case where two superposed +projective point-rows have no self-corresponding points at all. Thus we +may take two lines revolving about a fixed point _S_ and always making the +same angle a with each other (Fig. 10). They will cut out on any line _u_ +in the plane two point-rows which are easily seen to be projective. For, +given any four rays _SP_ which are harmonic, the four corresponding rays +_SP'_ must also be harmonic, since they make the same angles with each +other. Four harmonic points _P_ correspond, therefore, to four harmonic +points _P'_. It is clear, however, that no point _P_ can coincide with its +corresponding point _P'_, for in that case the lines _PS_ and _P'S_ would +coincide, which is impossible if the angle between them is to be constant. + + + + +*49. Fundamental theorem. Postulate of continuity.* We have thus shown +that two projective point-rows, superposed one on the other, may have two +points, one point, or no point at all corresponding to themselves. We +proceed to show that + +_If two projective point-rows, superposed upon the same straight line, +have more than two self-corresponding points, they must have an infinite +number, and every point corresponds to itself; that is, the two point-rows +are not essentially distinct._ + +If three points, _A_, _B_, and _C_, are self-corresponding, then the +harmonic conjugate _D_ of _B_ with respect to _A_ and _C_ must also +correspond to itself. For four harmonic points must always correspond to +four harmonic points. In the same way the harmonic conjugate of _D_ with +respect to _B_ and _C_ must correspond to itself. Combining new points +with old in this way, we may obtain as many self-corresponding points as +we wish. We show further that every point on the line is the limiting +point of a finite or infinite sequence of self-corresponding points. Thus, +let a point _P_ lie between _A_ and _B_. Construct now _D_, the fourth +harmonic of _C_ with respect to _A_ and _B_. _D_ may coincide with _P_, in +which case the sequence is closed; otherwise _P_ lies in the stretch _AD_ +or in the stretch _DB_. If it lies in the stretch _DB_, construct the +fourth harmonic of _C_ with respect to _D_ and _B_. This point _D'_ may +coincide with _P_, in which case, as before, the sequence is closed. If +_P_ lies in the stretch _DD'_, we construct the fourth harmonic of _C_ +with respect to _DD'_, etc. In each step the region in which _P_ lies is +diminished, and the process may be continued until two self-corresponding +points are obtained on either side of _P_, and at distances from it +arbitrarily small. + +We now assume, explicitly, the fundamental postulate that the +correspondence is _continuous_, that is, that _the distance between two +points in one point-row may be made arbitrarily small by sufficiently +diminishing the distance between the corresponding points in the other._ +Suppose now that _P_ is not a self-corresponding point, but corresponds to +a point _P'_ at a fixed distance _d_ from _P_. As noted above, we can find +self-corresponding points arbitrarily close to _P_, and it appears, then, +that we can take a point _D_ as close to _P_ as we wish, and yet the +distance between the corresponding points _D'_ and _P'_ approaches _d_ as +a limit, and not zero, which contradicts the postulate of continuity. + + + + +*50.* It follows also that two projective pencils which have the same +center may have no more than two self-corresponding rays, unless the +pencils are identical. For if we cut across them by a line, we obtain two +projective point-rows superposed on the same straight line, which may have +no more than two self-corresponding points. The same considerations apply +to two projective axial pencils which have the same axis. + + + + +*51. Projective point-rows having a self-corresponding point in common.* +Consider now two projective point-rows lying on different lines in the +same plane. Their common point may or may not be a self-corresponding +point. If the two point-rows are perspectively related, then their common +point is evidently a self-corresponding point. The converse is also true, +and we have the very important theorem: + + + + +*52.* _If in two protective point-rows, the point of intersection +corresponds to itself, then the point-rows are in perspective position._ + + [Figure 11] + + FIG. 11 + + +Let the two point-rows be _u_ and _u'_ (Fig. 11). Let _A_ and _A'_, _B_ +and _B'_, be corresponding points, and let also the point _M_ of +intersection of _u_ and _u'_ correspond to itself. Let _AA'_ and _BB'_ +meet in the point _S_. Take _S_ as the center of two pencils, one +perspective to _u_ and the other perspective to _u'_. In these two pencils +_SA_ coincides with its corresponding ray _SA'_, _SB_ with its +corresponding ray _SB'_, and _SM_ with its corresponding ray _SM'_. The +two pencils are thus identical, by the preceding theorem, and any ray _SD_ +must coincide with its corresponding ray _SD'_. Corresponding points of +_u_ and _u'_, therefore, all lie on lines through the point _S_. + + + + +*53.* An entirely similar discussion shows that + +_If in two projective pencils the line joining their centers is a +self-corresponding ray, then the two pencils are perspectively related._ + + + + +*54.* A similar theorem may be stated for two axial pencils of which the +axes intersect. Very frequent use will be made of these fundamental +theorems. + + + + +*55. Point-row of the second order.* The question naturally arises, What +is the locus of points of intersection of corresponding rays of two +projective pencils which are not in perspective position? This locus, +which will be discussed in detail in subsequent chapters, is easily seen +to have at most two points in common with any line in the plane, and on +account of this fundamental property will be called a _point-row of the +second order_. For any line _u_ in the plane of the two pencils will be +cut by them in two projective point-rows which have at most two +self-corresponding points. Such a self-corresponding point is clearly a +point of intersection of corresponding rays of the two pencils. + + + + +*56.* This locus degenerates in the case of two perspective pencils to a +pair of straight lines, one of which is the axis of perspectivity and the +other the common ray, any point of which may be considered as the point of +intersection of corresponding rays of the two pencils. + + + + +*57. Pencils of rays of the second order.* Similar investigations may be +made concerning the system of lines joining corresponding points of two +projective point-rows. If we project the point-rows to any point in the +plane, we obtain two projective pencils having the same center. At most +two pairs of self-corresponding rays may present themselves. Such a ray is +clearly a line joining two corresponding points in the two point-rows. The +result may be stated as follows: _The system of rays joining corresponding +points in two protective point-rows has at most two rays in common with +any pencil in the plane._ For that reason the system of rays is called _a +pencil of rays of the second order._ + + + + +*58.* In the case of two perspective point-rows this system of rays +degenerates into two pencils of rays of the first order, one of which has +its center at the center of perspectivity of the two point-rows, and the +other at the intersection of the two point-rows, any ray through which may +be considered as joining two corresponding points of the two point-rows. + + + + +*59. Cone of the second order.* The corresponding theorems in space may +easily be obtained by joining the points and lines considered in the plane +theorems to a point _S_ in space. Two projective pencils give rise to two +projective axial pencils with axes intersecting. Corresponding planes meet +in lines which all pass through _S_ and through the points on a point-row +of the second order generated by the two pencils of rays. They are thus +generating lines of a _cone of the second order_, or _quadric cone_, so +called because every plane in space not passing through _S_ cuts it in a +point-row of the second order, and every line also cuts it in at most two +points. If, again, we project two point-rows to a point _S_ in space, we +obtain two pencils of rays with a common center but lying in different +planes. Corresponding lines of these pencils determine planes which are +the projections to _S_ of the lines which join the corresponding points of +the two point-rows. At most two such planes may pass through any ray +through _S_. It is called _a pencil of planes of the second order_. + + + + +PROBLEMS + + +*1. * A man _A_ moves along a straight road _u_, and another man _B_ moves +along the same road and walks so as always to keep sight of _A_ in a small +mirror _M_ at the side of the road. How many times will they come +together, _A_ moving always in the same direction along the road? + +2. How many times would the two men in the first problem see each other in +two mirrors _M_ and _N_ as they walk along the road as before? (The planes +of the two mirrors are not necessarily parallel to _u_.) + +3. As A moves along _u_, trace the path of B so that the two men may +always see each other in the two mirrors. + +4. Two boys walk along two paths _u_ and _u'_ each holding a string which +they keep stretched tightly between them. They both move at constant but +different rates of speed, letting out the string or drawing it in as they +walk. How many times will the line of the string pass over any given point +in the plane of the paths? + +5. Trace the lines of the string when the two boys move at the same rate +of speed in the two paths but do not start at the same time from the point +where the two paths intersect. + +6. A ship is sailing on a straight course and keeps a gun trained on a +point on the shore. Show that a line at right angles to the direction of +the gun at its muzzle will pass through any point in the plane twice or +not at all. (Consider the point-row at infinity cut out by a line through +the point on the shore at right angles to the direction of the gun.) + +7. Two lines _u_ and _u'_ revolve about two points _U_ and _U'_ +respectively in the same plane. They go in the same direction and at the +same rate of speed, but one has an angle a the start of the other. Show +that they generate a point-row of the second order. + +8. Discuss the question given in the last problem when the two lines +revolve in opposite directions. Can you recognize the locus? + + + + + +CHAPTER IV - POINT-ROWS OF THE SECOND ORDER + + + + +*60. Point-row of the second order defined.* We have seen that two +fundamental forms in one-to-one correspondence may sometimes generate a +form of higher order. Thus, two point-rows (§ 55) generate a system of +rays of the second order, and two pencils of rays (§ 57), a system of +points of the second order. As a system of points is more familiar to most +students of geometry than a system of lines, we study first the point-row +of the second order. + + + + +*61. Tangent line.* We have shown in the last chapter (§ 55) that the +locus of intersection of corresponding rays of two projective pencils is a +point-row of the second order; that is, it has at most two points in +common with any line in the plane. It is clear, first of all, that the +centers of the pencils are points of the locus; for to the line _SS'_, +considered as a ray of _S_, must correspond some ray of _S'_ which meets +it in _S'_. _S'_, and by the same argument _S_, is then a point where +corresponding rays meet. Any ray through _S_ will meet it in one point +besides _S_, namely, the point _P_ where it meets its corresponding ray. +Now, by choosing the ray through _S_ sufficiently close to the ray _SS'_, +the point _P_ may be made to approach arbitrarily close to _S'_, and the +ray _S'P_ may be made to differ in position from the tangent line at _S'_ +by as little as we please. We have, then, the important theorem + +_The ray at __S'__ which corresponds to the common ray __SS'__ is tangent +to the locus at __S'__._ + +In the same manner the tangent at _S_ may be constructed. + + + + +*62. Determination of the locus.* We now show that _it is possible to +assign arbitrarily the position of three points, __A__, __B__, and __C__, +on the locus (besides the points __S__ and __S'__); but, these three +points being chosen, the locus is completely determined._ + + + + +*63.* This statement is equivalent to the following: + +_Given three pairs of corresponding rays in two projective pencils, it is +possible to find a ray of one which corresponds to any ray of the other._ + + + + +*64.* We proceed, then, to the solution of the fundamental + +PROBLEM: _Given three pairs of rays, __aa'__, __bb'__, and __cc'__, of two +protective pencils, __S__ and __S'__, to find the ray __d'__ of __S'__ +which corresponds to any ray __d__ of __S__._ + + [Figure 12] + + FIG. 12 + + +Call _A_ the intersection of _aa'_, _B_ the intersection of _bb'_, and _C_ +the intersection of _cc'_ (Fig. 12). Join _AB_ by the line _u_, and _AC_ +by the line _u'_. Consider _u_ as a point-row perspective to _S_, and _u'_ +as a point-row perspective to _S'_. _u_ and _u'_ are projectively related +to each other, since _S_ and _S'_ are, by hypothesis, so related. But +their point of intersection _A_ is a self-corresponding point, since _a_ +and _a'_ were supposed to be corresponding rays. It follows (§ 52) that +_u_ and _u'_ are in perspective position, and that lines through +corresponding points all pass through a point _M_, the center of +perspectivity, the position of which will be determined by any two such +lines. But the intersection of _a_ with _u_ and the intersection of _c'_ +with _u'_ are corresponding points on _u_ and _u'_, and the line joining +them is clearly _c_ itself. Similarly, _b'_ joins two corresponding points +on _u_ and _u'_, and so the center _M_ of perspectivity of _u_ and _u'_ is +the intersection of _c_ and _b'_. To find _d'_ in _S'_ corresponding to a +given line _d_ of _S_ we note the point _L_ where _d_ meets _u_. Join _L_ +to _M_ and get the point _N_ where this line meets _u'_. _L_ and _N_ are +corresponding points on _u_ and _u'_, and _d'_ must therefore pass through +_N_. The intersection _P_ of _d_ and _d'_ is thus another point on the +locus. In the same manner any number of other points may be obtained. + + + + +*65.* The lines _u_ and _u'_ might have been drawn in any direction +through _A_ (avoiding, of course, the line _a_ for _u_ and the line _a'_ +for _u'_), and the center of perspectivity _M_ would be easily obtainable; +but the above construction furnishes a simple and instructive figure. An +equally simple one is obtained by taking _a'_ for _u_ and _a_ for _u'_. + + + + +*66. Lines joining four points of the locus to a fifth.* Suppose that the +points _S_, _S'_, _B_, _C_, and _D_ are fixed, and that four points, _A_, +_A__1_, _A__2_, and _A__3_, are taken on the locus at the intersection +with it of any four harmonic rays through _B_. These four harmonic rays +give four harmonic points, _L_, _L__1_ etc., on the fixed ray _SD_. These, +in turn, project through the fixed point _M_ into four harmonic points, +_N_, _N__1_ etc., on the fixed line _DS'_. These last four harmonic points +give four harmonic rays _CA_, _CA__1_, _CA__2_, _CA__3_. Therefore the +four points _A_ which project to _B_ in four harmonic rays also project to +_C_ in four harmonic rays. But _C_ may be any point on the locus, and so +we have the very important theorem, + +_Four points which are on the locus, and which project to a fifth point of +the locus in four harmonic rays, project to any point of the locus in four +harmonic rays._ + + + + +*67.* The theorem may also be stated thus: + +_The locus of points from which, four given points are seen along four +harmonic rays is a point-row of the second order through them._ + + + + +*68.* A further theorem of prime importance also follows: + +_Any two points on the locus may be taken as the centers of two projective +pencils which will generate the locus._ + + + + +*69. Pascal's theorem.* The points _A_, _B_, _C_, _D_, _S_, and _S'_ may +thus be considered as chosen arbitrarily on the locus, and the following +remarkable theorem follows at once. + +_Given six points, 1, 2, 3, 4, 5, 6, on the point-row of the second order, +if we call_ + + _L the intersection of 12 with 45,_ + + _M the intersection of 23 with 56,_ + + _N the intersection of 34 with 61,_ + +_then __L__, __M__, and __N__ are on a straight line._ + + [Figure 13] + + FIG. 13 + + + + +*70.* To get the notation to correspond to the figure, we may take (Fig. +13) _A = 1_, _B = 2_, _S' = 3_, _D = 4_, _S = 5_, and _C = 6_. If we make +_A = 1_, _C=2_, _S=3_, _D = 4_, _S'=5_, and. _B = 6_, the points _L_ and +_N_ are interchanged, but the line is left unchanged. It is clear that one +point may be named arbitrarily and the other five named in _5! = 120_ +different ways, but since, as we have seen, two different assignments of +names give the same line, it follows that there cannot be more than 60 +different lines _LMN_ obtained in this way from a given set of six points. +As a matter of fact, the number obtained in this way is in general _60_. +The above theorem, which is of cardinal importance in the theory of the +point-row of the second order, is due to Pascal and was discovered by him +at the age of sixteen. It is, no doubt, the most important contribution to +the theory of these loci since the days of Apollonius. If the six points +be called the vertices of a hexagon inscribed in the curve, then the sides +12 and 45 may be appropriately called a pair of opposite sides. Pascal's +theorem, then, may be stated as follows: + +_The three pairs of opposite sides of a hexagon inscribed in a point-row +of the second order meet in three points on a line._ + + + + +*71. Harmonic points on a point-row of the second order.* Before +proceeding to develop the consequences of this theorem, we note another +result of the utmost importance for the higher developments of pure +geometry, which follows from the fact that if four points on the locus +project to a fifth in four harmonic rays, they will project to any point +of the locus in four harmonic rays. It is natural to speak of four such +points as four harmonic points on the locus, and to use this notion to +define projective correspondence between point-rows of the second order, +or between a point-row of the second order and any fundamental form of the +first order. Thus, in particular, the point-row of the second order, {~GREEK SMALL LETTER SIGMA~}, is +said to be _perspectively related_ to the pencil _S_ when every ray on _S_ +goes through the point on {~GREEK SMALL LETTER SIGMA~} which corresponds to it. + + + + +*72. Determination of the locus.* It is now clear that five points, +arbitrarily chosen in the plane, are sufficient to determine a point-row +of the second order through them. Two of the points may be taken as +centers of two projective pencils, and the three others will determine +three pairs of corresponding rays of the pencils, and therefore all pairs. +If four points of the locus are given, together with the tangent at one of +them, the locus is likewise completely determined. For if the point at +which the tangent is given be taken as the center _S_ of one pencil, and +any other of the points for _S'_, then, besides the two pairs of +corresponding rays determined by the remaining two points, we have one +more pair, consisting of the tangent at _S_ and the ray _SS'_. Similarly, +the curve is determined by three points and the tangents at two of them. + + + + +*73. Circles and conics as point-rows of the second order.* It is not +difficult to see that a circle is a point-row of the second order. Indeed, +take any point _S_ on the circle and draw four harmonic rays through it. +They will cut the circle in four points, which will project to any other +point of the curve in four harmonic rays; for, by the theorem concerning +the angles inscribed in a circle, the angles involved in the second set of +four lines are the same as those in the first set. If, moreover, we +project the figure to any point in space, we shall get a cone, standing on +a circular base, generated by two projective axial pencils which are the +projections of the pencils at _S_ and _S'_. Cut across, now, by any plane, +and we get a conic section which is thus exhibited as the locus of +intersection of two projective pencils. It thus appears that a conic +section is a point-row of the second order. It will later appear that a +point-row of the second order is a conic section. In the future, +therefore, we shall refer to a point-row of the second order as a conic. + + [Figure 14] + + FIG. 14 + + + + +*74. Conic through five points.* Pascal's theorem furnishes an elegant +solution of the problem of drawing a conic through five given points. To +construct a sixth point on the conic, draw through the point numbered 1 an +arbitrary line (Fig. 14), and let the desired point 6 be the second point +of intersection of this line with the conic. The point _L = 12-45_ is +obtainable at once; also the point _N = 34-61_. But _L_ and _N_ determine +Pascal's line, and the intersection of 23 with 56 must be on this line. +Intersect, then, the line _LN_ with 23 and obtain the point _M_. Join _M_ +to 5 and intersect with 61 for the desired point 6. + + [Figure 15] + + FIG. 15 + + + + +*75. Tangent to a conic.* If two points of Pascal's hexagon approach +coincidence, then the line joining them approaches as a limiting position +the tangent line at that point. Pascal's theorem thus affords a ready +method of drawing the tangent line to a conic at a given point. If the +conic is determined by the points 1, 2, 3, 4, 5 (Fig. 15), and it is +desired to draw the tangent at the point 1, we may call that point 1, 6. +The points _L_ and _M_ are obtained as usual, and the intersection of 34 +with _LM_ gives _N_. Join _N_ to the point 1 for the desired tangent at +that point. + + + + +*76. Inscribed quadrangle.* Two pairs of vertices may coalesce, giving an +inscribed quadrangle. Pascal's theorem gives for this case the very +important theorem + +_Two pairs of opposite sides of any quadrangle inscribed in a conic meet +on a straight line, upon which line also intersect the two pairs of +tangents at the opposite vertices._ + + [Figure 16] + + FIG. 16 + + + [Figure 17] + + FIG. 17 + + +For let the vertices be _A_, _B_, _C_, and _D_, and call the vertex _A_ +the point 1, 6; _B_, the point 2; _C_, the point 3, 4; and _D_, the point +5 (Fig. 16). Pascal's theorem then indicates that _L = AB-CD_, _M = +AD-BC_, and _N_, which is the intersection of the tangents at _A_ and _C_, +are all on a straight line _u_. But if we were to call _A_ the point 2, +_B_ the point 6, 1, _C_ the point 5, and _D_ the point 4, 3, then the +intersection _P_ of the tangents at _B_ and _D_ are also on this same line +_u_. Thus _L_, _M_, _N_, and _P_ are four points on a straight line. The +consequences of this theorem are so numerous and important that we shall +devote a separate chapter to them. + + + + +*77. Inscribed triangle.* Finally, three of the vertices of the hexagon +may coalesce, giving a triangle inscribed in a conic. Pascal's theorem +then reads as follows (Fig. 17) for this case: + +_The three tangents at the vertices of a triangle inscribed in a conic +meet the opposite sides in three points on a straight line._ + + [Figure 18] + + FIG. 18 + + + + +*78. Degenerate conic.* If we apply Pascal's theorem to a degenerate +conic made up of a pair of straight lines, we get the following theorem +(Fig. 18): + +_If three points, __A__, __B__, __C__, are chosen on one line, and three +points, __A'__, __B'__, __C'__, are chosen on another, then the three +points __L = AB'-A'B__, __M = BC'-B'C__, __N = CA'-C'A__ are all on a +straight line._ + + + + +PROBLEMS + + +1. In Fig. 12, select different lines _u_ and trace the locus of the +center of perspectivity _M_ of the lines _u_ and _u'_. + +2. Given four points, _A_, _B_, _C_, _D_, in the plane, construct a fifth +point _P_ such that the lines _PA_, _PB_, _PC_, _PD_ shall be four +harmonic lines. + +_Suggestion._ Draw a line _a_ through the point _A_ such that the four +lines _a_, _AB_, _AC_, _AD_ are harmonic. Construct now a conic through +_A_, _B_, _C_, and _D_ having _a_ for a tangent at _A_. + +3. Where are all the points _P_, as determined in the preceding question, +to be found? + +4. Select any five points in the plane and draw the tangent to the conic +through them at each of the five points. + +5. Given four points on the conic, and the tangent at one of them, to +construct the conic. ("To construct the conic" means here to construct as +many other points as may be desired.) + +6. Given three points on the conic, and the tangent at two of them, to +construct the conic. + +7. Given five points, two of which are at infinity in different +directions, to construct the conic. (In this, and in the following +examples, the student is supposed to be able to draw a line parallel to a +given line.) + +8. Given four points on a conic (two of which are at infinity and two in +the finite part of the plane), together with the tangent at one of the +finite points, to construct the conic. + +9. The tangents to a curve at its infinitely distant points are called +its _asymptotes_ if they pass through a finite part of the plane. Given +the asymptotes and a finite point of a conic, to construct the conic. + +10. Given an asymptote and three finite points on the conic, to determine +the conic. + +11. Given four points, one of which is at infinity, and given also that +the line at infinity is a tangent line, to construct the conic. + + + + + +CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER + + + + +*79. Pencil of rays of the second order defined.* If the corresponding +points of two projective point-rows be joined by straight lines, a system +of lines is obtained which is called a pencil of rays of the second order. +This name arises from the fact, easily shown (§ 57), that at most two +lines of the system may pass through any arbitrary point in the plane. For +if through any point there should pass three lines of the system, then +this point might be taken as the center of two projective pencils, one +projecting one point-row and the other projecting the other. Since, now, +these pencils have three rays of one coincident with the corresponding +rays of the other, the two are identical and the two point-rows are in +perspective position, which was not supposed. + + [Figure 19] + + FIG. 19 + + + + +*80. Tangents to a circle.* To get a clear notion of this system of +lines, we may first show that the tangents to a circle form a system of +this kind. For take any two tangents, _u_ and _u'_, to a circle, and let +_A_ and _B_ be the points of contact (Fig. 19). Let now _t_ be any third +tangent with point of contact at _C_ and meeting _u_ and _u'_ in _P_ and +_P'_ respectively. Join _A_, _B_, _P_, _P'_, and _C_ to _O_, the center of +the circle. Tangents from any point to a circle are equal, and therefore +the triangles _POA_ and _POC_ are equal, as also are the triangles _P'OB_ +and _P'OC_. Therefore the angle _POP'_ is constant, being equal to half +the constant angle _AOC + COB_. This being true, if we take any four +harmonic points, _P__1_, _P__2_, _P__3_, _P__4_, on the line _u_, they +will project to _O_ in four harmonic lines, and the tangents to the circle +from these four points will meet _u'_ in four harmonic points, _P'__1_, +_P'__2_, _P'__3_, _P'__4_, because the lines from these points to _O_ +inclose the same angles as the lines from the points _P__1_, _P__2_, +_P__3_, _P__4_ on _u_. The point-row on _u_ is therefore projective to the +point-row on _u'_. Thus the tangents to a circle are seen to join +corresponding points on two projective point-rows, and so, according to +the definition, form a pencil of rays of the second order. + + + + +*81. Tangents to a conic.* If now this figure be projected to a point +outside the plane of the circle, and any section of the resulting cone be +made by a plane, we can easily see that the system of rays tangent to any +conic section is a pencil of rays of the second order. The converse is +also true, as we shall see later, and a pencil of rays of the second order +is also a set of lines tangent to a conic section. + + + + +*82.* The point-rows _u_ and _u'_ are, themselves, lines of the system, +for to the common point of the two point-rows, considered as a point of +_u_, must correspond some point of _u'_, and the line joining these two +corresponding points is clearly _u'_ itself. Similarly for the line _u_. + + + + +*83. Determination of the pencil.* We now show that _it is possible to +assign arbitrarily three lines, __a__, __b__, and __c__, of __ the system +(besides the lines __u__ and __u'__); but if these three lines are chosen, +the system is completely determined._ + +This statement is equivalent to the following: + +_Given three pairs of corresponding points in two projective point-rows, +it is possible to find a point in one which corresponds to any point of +the other._ + +We proceed, then, to the solution of the fundamental + +PROBLEM. _Given three pairs of points, __AA'__, __BB'__, and __CC'__, of +two projective point-rows __u__ and __u'__, to find the point __D'__ of +__u'__ which corresponds to any given point __D__ of __u__._ + + [Figure 20] + + FIG. 20 + + +On the line _a_, joining _A_ and _A'_, take two points, _S_ and _S'_, as +centers of pencils perspective to _u_ and _u'_ respectively (Fig. 20). The +figure will be much simplified if we take _S_ on _BB'_ and _S'_ on _CC'_. +_SA_ and _S'A'_ are corresponding rays of _S_ and _S'_, and the two +pencils are therefore in perspective position. It is not difficult to see +that the axis of perspectivity _m_ is the line joining _B'_ and _C_. Given +any point _D_ on _u_, to find the corresponding point _D'_ on _u'_ we +proceed as follows: Join _D_ to _S_ and note where the joining line meets +_m_. Join this point to _S'_. This last line meets _u'_ in the desired +point _D'_. + +We have now in this figure six lines of the system, _a_, _b_, _c_, _d_, +_u_, and _u'_. Fix now the position of _u_, _u'_, _b_, _c_, and _d_, and +take four lines of the system, _a__1_, _a__2_, _a__3_, _a__4_, which meet +_b_ in four harmonic points. These points project to _D_, giving four +harmonic points on _m_. These again project to _D'_, giving four harmonic +points on _c_. It is thus clear that the rays _a__1_, _a__2_, _a__3_, +_a__4_ cut out two projective point-rows on any two lines of the system. +Thus _u_ and _u'_ are not special rays, and any two rays of the system +will serve as the point-rows to generate the system of lines. + + + + +*84. Brianchon's theorem.* From the figure also appears a fundamental +theorem due to Brianchon: + +_If __1__, __2__, __3__, __4__, __5__, __6__ are any six rays of a pencil +of the second order, then the lines __l = (12, 45)__, __m = (23, 56)__, +__n = (34, 61)__ all pass through a point._ + + [Figure 21] + + FIG. 21 + + + + +*85.* To make the notation fit the figure (Fig. 21), make _a=1_, _b = 2_, +_u' = 3_, _d = 4_, _u = 5_, _c = 6_; or, interchanging two of the lines, +_a = 1_, _c = 2_, _u = 3_, _d = 4_, _u' = 5_, _b = 6_. Thus, by different +namings of the lines, it appears that not more than 60 different +_Brianchon points_ are possible. If we call 12 and 45 opposite vertices of +a circumscribed hexagon, then Brianchon's theorem may be stated as +follows: + +_The three lines joining the three pairs of opposite vertices of a hexagon +circumscribed about a conic meet in a point._ + + + + +*86. Construction of the pencil by Brianchon's theorem.* Brianchon's +theorem furnishes a ready method of determining a sixth line of the pencil +of rays of the second order when five are given. Thus, select a point in +line 1 and suppose that line 6 is to pass through it. Then _l = (12, 45)_, +_n = (34, 61)_, and the line _m = (23, 56)_ must pass through _(l, n)_. +Then _(23, ln)_ meets 5 in a point of the required sixth line. + + [Figure 22] + + FIG. 22 + + + + +*87. Point of contact of a tangent to a conic.* If the line 2 approach as +a limiting position the line 1, then the intersection _(1, 2)_ approaches +as a limiting position the point of contact of 1 with the conic. This +suggests an easy way to construct the point of contact of any tangent with +the conic. Thus (Fig. 22), given the lines 1, 2, 3, 4, 5 to construct the +point of contact of _1=6_. Draw _l = (12,45)_, _m =(23,56)_; then _(34, +lm)_ meets 1 in the required point of contact _T_. + + [Figure 23] + + FIG. 23 + + + + +*88. Circumscribed quadrilateral.* If two pairs of lines in Brianchon's +hexagon coalesce, we have a theorem concerning a quadrilateral +circumscribed about a conic. It is easily found to be (Fig. 23) + +_The four lines joining the two opposite pairs of vertices and the two +opposite points of contact of a quadrilateral circumscribed about a conic +all meet in a point._ The consequences of this theorem will be deduced +later. + + [Figure 24] + + FIG. 24 + + + + +*89. Circumscribed triangle.* The hexagon may further degenerate into a +triangle, giving the theorem (Fig. 24) _The lines joining the vertices to +the points of contact of the opposite sides of a triangle circumscribed +about a conic all meet in a point._ + + + + +*90.* Brianchon's theorem may also be used to solve the following +problems: + +_Given four tangents and the point of contact on any one of them, to +construct other tangents to a conic. Given three tangents and the points +of contact of any two of them, to construct other tangents to a conic._ + + + + +*91. Harmonic tangents.* We have seen that a variable tangent cuts out on +any two fixed tangents projective point-rows. It follows that if four +tangents cut a fifth in four harmonic points, they must cut every tangent +in four harmonic points. It is possible, therefore, to make the following +definition: + +_Four tangents to a conic are said to be harmonic when they meet every +other tangent in four harmonic points._ + + + + +*92. Projectivity and perspectivity.* This definition suggests the +possibility of defining a projective correspondence between the elements +of a pencil of rays of the second order and the elements of any form +heretofore discussed. In particular, the points on a tangent are said to +be _perspectively related_ to the tangents of a conic when each point lies +on the tangent which corresponds to it. These notions are of importance in +the higher developments of the subject. + + [Figure 25] + + FIG. 25 + + + + +*93.* Brianchon's theorem may also be applied to a degenerate conic made +up of two points and the lines through them. Thus(Fig. 25), + +_If __a__, __b__, __c__ are three lines through a point __S__, and __a'__, +__b'__, __c'__ are three lines through another point __S'__, then the +lines __l = (ab', a'b)__, __m = (bc', b'c)__, and __n = (ca', c'a)__ all +meet in a point._ + + + + +*94. Law of duality.* The observant student will not have failed to note +the remarkable similarity between the theorems of this chapter and those +of the preceding. He will have noted that points have replaced lines and +lines have replaced points; that points on a curve have been replaced by +tangents to a curve; that pencils have been replaced by point-rows, and +that a conic considered as made up of a succession of points has been +replaced by a conic considered as generated by a moving tangent line. The +theory upon which this wonderful _law of duality_ is based will be +developed in the next chapter. + + + + +PROBLEMS + + +1. Given four lines in the plane, to construct another which shall meet +them in four harmonic points. + +2. Where are all such lines found? + +3. Given any five lines in the plane, construct on each the point of +contact with the conic tangent to them all. + +4. Given four lines and the point of contact on one, to construct the +conic. ("To construct the conic" means here to draw as many other tangents +as may be desired.) + +5. Given three lines and the point of contact on two of them, to construct +the conic. + +6. Given four lines and the line at infinity, to construct the conic. + +7. Given three lines and the line at infinity, together with the point of +contact at infinity, to construct the conic. + +8. Given three lines, two of which are asymptotes, to construct the conic. + +9. Given five tangents to a conic, to draw a tangent which shall be +parallel to any one of them. + +10. The lines _a_, _b_, _c_ are drawn parallel to each other. The lines +_a'_, _b'_, _c'_ are also drawn parallel to each other. Show why the lines +(_ab'_, _a'b_), (_bc'_, _b'c_), (_ca'_, _c'a_) meet in a point. (In +problems 6 to 10 inclusive, parallel lines are to be drawn.) + + + + + +CHAPTER VI - POLES AND POLARS + + + + +*95. Inscribed and circumscribed quadrilaterals.* The following theorems +have been noted as special cases of Pascal's and Brianchon's theorems: + +_If a quadrilateral be inscribed in a conic, two pairs of opposite sides +and the tangents at opposite vertices intersect in four points, all of +which lie on a straight line._ + +_If a quadrilateral be circumscribed about a conic, the lines joining two +pairs of opposite vertices and the lines joining two opposite points of +contact are four lines which meet in a point._ + + [Figure 26] + + FIG. 26 + + + + +*96. Definition of the polar line of a point.* Consider the quadrilateral +_K_, _L_, _M_, _N_ inscribed in the conic (Fig. 26). It determines the +four harmonic points _A_, _B_, _C_, _D_ which project from _N_ in to the +four harmonic points _M_, _B_, _K_, _O_. Now the tangents at _K_ and _M_ +meet in _P_, a point on the line _AB_. The line _AB_ is thus determined +entirely by the point _O_. For if we draw any line through it, meeting the +conic in _K_ and _M_, and construct the harmonic conjugate _B_ of _O_ with +respect to _K_ and _M_, and also the two tangents at _K_ and _M_ which +meet in the point _P_, then _BP_ is the line in question. It thus appears +that the line _LON_ may be any line whatever through _O_; and since _D_, +_L_, _O_, _N_ are four harmonic points, we may describe the line _AB_ as +the locus of points which are harmonic conjugates of _O_ with respect to +the two points where any line through _O_ meets the curve. + + + + +*97.* Furthermore, since the tangents at _L_ and _N_ meet on this same +line, it appears as the locus of intersections of pairs of tangents drawn +at the extremities of chords through _O_. + + + + +*98.* This important line, which is completely determined by the point +_O_, is called the _polar_ of _O_ with respect to the conic; and the point +_O_ is called the _pole_ of the line with respect to the conic. + + + + +*99.* If a point _B_ is on the polar of _O_, then it is harmonically +conjugate to _O_ with respect to the two intersections _K_ and _M_ of the +line _BC_ with the conic. But for the same reason _O_ is on the polar of +_B_. We have, then, the fundamental theorem + +_If one point lies on the polar of a second, then the second lies on the +polar of the first._ + + + + +*100. Conjugate points and lines.* Such a pair of points are said to be +_conjugate_ with respect to the conic. Similarly, lines are said to be +_conjugate_ to each other with respect to the conic if one, and +consequently each, passes through the pole of the other. + + [Figure 27] + + FIG. 27 + + + + +*101. Construction of the polar line of a given point.* Given a point _P_, +if it is within the conic (that is, if no tangents may be drawn from _P_ +to the conic), we may construct its polar line by drawing through it any +two chords and joining the two points of intersection of the two pairs of +tangents at their extremities. If the point _P_ is outside the conic, we +may draw the two tangents and construct the chord of contact (Fig. 27). + + + + +*102. Self-polar triangle.* In Fig. 26 it is not difficult to see that +_AOC_ is a _self-polar_ triangle, that is, each vertex is the pole of the +opposite side. For _B_, _M_, _O_, _K_ are four harmonic points, and they +project to _C_ in four harmonic rays. The line _CO_, therefore, meets the +line _AMN_ in a point on the polar of _A_, being separated from _A_ +harmonically by the points _M_ and _N_. Similarly, the line _CO_ meets +_KL_ in a point on the polar of _A_, and therefore _CO_ is the polar of +_A_. Similarly, _OA_ is the polar of _C_, and therefore _O_ is the pole of +_AC_. + + + + +*103. Pole and polar projectively related.* Another very important +theorem comes directly from Fig. 26. + +_As a point __A__ moves along a straight line its polar with respect to a +conic revolves about a fixed point and describes a pencil projective to +the point-row described by __A__._ + +For, fix the points _L_ and _N_ and let the point _A_ move along the line +_AQ_; then the point-row _A_ is projective to the pencil _LK_, and since +_K_ moves along the conic, the pencil _LK_ is projective to the pencil +_NK_, which in turn is projective to the point-row _C_, which, finally, is +projective to the pencil _OC_, which is the polar of _A_. + + + + +*104. Duality.* We have, then, in the pole and polar relation a device +for setting up a one-to-one correspondence between the points and lines of +the plane--a correspondence which may be called projective, because to four +harmonic points or lines correspond always four harmonic lines or points. +To every figure made up of points and lines will correspond a figure made +up of lines and points. To a point-row of the second order, which is a +conic considered as a point-locus, corresponds a pencil of rays of the +second order, which is a conic considered as a line-locus. The name +'duality' is used to describe this sort of correspondence. It is important +to note that the dual relation is subject to the same exceptions as the +one-to-one correspondence is, and must not be appealed to in cases where +the one-to-one correspondence breaks down. We have seen that there is in +Euclidean geometry one and only one ray in a pencil which has no point in +a point-row perspective to it for a corresponding point; namely, the line +parallel to the line of the point-row. Any theorem, therefore, that +involves explicitly the point at infinity is not to be translated into a +theorem concerning lines. Further, in the pencil the angle between two +lines has nothing to correspond to it in a point-row perspective to the +pencil. Any theorem, therefore, that mentions angles is not translatable +into another theorem by means of the law of duality. Now we have seen that +the notion of the infinitely distant point on a line involves the notion +of dividing a segment into any number of equal parts--in other words, of +_measuring_. If, therefore, we call any theorem that has to do with the +line at infinity or with the measurement of angles a _metrical_ theorem, +and any other kind a _projective_ theorem, we may put the case as follows: + +_Any projective theorem involves another theorem, dual to it, obtainable +by interchanging everywhere the words 'point' and 'line.'_ + + + + +*105. Self-dual theorems.* The theorems of this chapter will be found, +upon examination, to be _self-dual_; that is, no new theorem results from +applying the process indicated in the preceding paragraph. It is therefore +useless to look for new results from the theorem on the circumscribed +quadrilateral derived from Brianchon's, which is itself clearly the dual +of Pascal's theorem, and in fact was first discovered by dualization of +Pascal's. + + + + +*106.* It should not be inferred from the above discussion that +one-to-one correspondences may not be devised that will control certain of +the so-called metrical relations. A very important one may be easily found +that leaves angles unaltered. The relation called _similarity_ leaves +ratios between corresponding segments unaltered. The above statements +apply only to the particular one-to-one correspondence considered. + + + + +PROBLEMS + + +1. Given a quadrilateral, construct the quadrangle polar to it with +respect to a given conic. + +2. A point moves along a straight line. Show that its polar lines with +respect to two given conics generate a point-row of the second order. + +3. Given five points, draw the polar of a point with respect to the conic +passing through them, without drawing the conic itself. + +4. Given five lines, draw the polar of a point with respect to the conic +tangent to them, without drawing the conic itself. + +5. Dualize problems 3 and 4. + +6. Given four points on the conic, and the tangent at one of them, draw +the polar of a given point without drawing the conic. Dualize. + +7. A point moves on a conic. Show that its polar line with respect to +another conic describes a pencil of rays of the second order. + +_Suggestion._ Replace the given conic by a pair of protective pencils. + +8. Show that the poles of the tangents of one conic with respect to +another lie on a conic. + +9. The polar of a point _A_ with respect to one conic is _a_, and the pole +of _a_ with respect to another conic is _A'_. Show that as _A_ travels +along a line, _A'_ also travels along another line. In general, if _A_ +describes a curve of degree _n_, show that _A'_ describes another curve of +the same degree _n_. (The degree of a curve is the greatest number of +points that it may have in common with any line in the plane.) + + + + + +CHAPTER VII - METRICAL PROPERTIES OF THE CONIC SECTIONS + + + + +*107. Diameters. Center.* After what has been said in the last chapter +one would naturally expect to get at the metrical properties of the conic +sections by the introduction of the infinite elements in the plane. +Entering into the theory of poles and polars with these elements, we have +the following definitions: + +The polar line of an infinitely distant point is called a _diameter_, and +the pole of the infinitely distant line is called the _center_, of the +conic. + + + + +*108.* From the harmonic properties of poles and polars, + +_The center bisects all chords through it (§ 39)._ + +_Every diameter passes through the center._ + +_All chords through the same point at infinity (that is, each of a set of +parallel chords) are bisected by the diameter which is the polar of that +infinitely distant point._ + + + + +*109. Conjugate diameters.* We have already defined conjugate lines as +lines which pass each through the pole of the other (§ 100). + +_Any diameter bisects all chords parallel to its conjugate._ + +_The tangents at the extremities of any diameter are parallel, and +parallel to the conjugate diameter._ + +_Diameters parallel to the sides of a circumscribed parallelogram are +conjugate._ + +All these theorems are easy exercises for the student. + + + + +*110. Classification of conics.* Conics are classified according to their +relation to the infinitely distant line. If a conic has two points in +common with the line at infinity, it is called a _hyperbola_; if it has no +point in common with the infinitely distant line, it is called an +_ellipse_; if it is tangent to the line at infinity, it is called a +_parabola_. + + + + +*111.* _In a hyperbola the center is outside the curve_ (§ 101), since the +two tangents to the curve at the points where it meets the line at +infinity determine by their intersection the center. As previously noted, +these two tangents are called the _asymptotes_ of the curve. The ellipse +and the parabola have no asymptotes. + + + + +*112.* _The center of the parabola is at infinity, and therefore all its +diameters are parallel,_ for the pole of a tangent line is the point of +contact. + +_The locus of the middle points of a series of parallel chords in a +parabola is a diameter, and the direction of the line of centers is the +same for all series of parallel chords._ + +_The center of an ellipse is within the curve._ + + [Figure 28] + + FIG. 28 + + + + +*113. Theorems concerning asymptotes.* We derived as a consequence of the +theorem of Brianchon (§ 89) the proposition that if a triangle be +circumscribed about a conic, the lines joining the vertices to the points +of contact of the opposite sides all meet in a point. Take, now, for two +of the tangents the asymptotes of a hyperbola, and let any third tangent +cut them in _A_ and _B_ (Fig. 28). If, then, _O_ is the intersection of +the asymptotes,--and therefore the center of the curve,-- then the triangle +_OAB_ is circumscribed about the curve. By the theorem just quoted, the +line through _A_ parallel to _OB_, the line through _B_ parallel to _OA_, +and the line _OP_ through the point of contact of the tangent _AB_ all +meet in a point _C_. But _OACB_ is a parallelogram, and _PA = PB_. +Therefore + +_The asymptotes cut off on each tangent a segment which is bisected by the +point of contact._ + + + + +*114.* If we draw a line _OQ_ parallel to _AB_, then _OP_ and _OQ_ are +conjugate diameters, since _OQ_ is parallel to the tangent at the point +where _OP_ meets the curve. Then, since _A_, _P_, _B_, and the point at +infinity on _AB_ are four harmonic points, we have the theorem + +_Conjugate diameters of the hyperbola are harmonic conjugates with respect +to the asymptotes._ + + + + +*115.* The chord _A"B"_, parallel to the diameter _OQ_, is bisected at +_P'_ by the conjugate diameter _OP_. If the chord _A"B"_ meet the +asymptotes in _A'_, _B'_, then _A'_, _P'_, _B'_, and the point at infinity +are four harmonic points, and therefore _P'_ is the middle point of +_A'B'_. Therefore _A'A" = B'B"_ and we have the theorem + +_The segments cut off on any chord between the hyperbola and its +asymptotes are equal._ + + + + +*116.* This theorem furnishes a ready means of constructing the hyperbola +by points when a point on the curve and the two asymptotes are given. + + [Figure 29] + + FIG. 29 + + + + +*117.* For the circumscribed quadrilateral, Brianchon's theorem gave (§ +88) _The lines joining opposite vertices and the lines joining opposite +points of contact are four lines meeting in a point._ Take now for two of +the tangents the asymptotes, and let _AB_ and _CD_ be any other two (Fig. +29). If _B_ and _D_ are opposite vertices, and also _A_ and _C_, then _AC_ +and _BD_ are parallel, and parallel to _PQ_, the line joining the points +of contact of _AB_ and _CD_, for these are three of the four lines of the +theorem just quoted. The fourth is the line at infinity which joins the +point of contact of the asymptotes. It is thus seen that the triangles +_ABC_ and _ADC_ are equivalent, and therefore the triangles _AOB_ and +_COD_ are also. The tangent AB may be fixed, and the tangent _CD_ chosen +arbitrarily; therefore + +_The triangle formed by any tangent to the hyperbola and the two +asymptotes is of constant area._ + + + + +*118. Equation of hyperbola referred to the asymptotes.* Draw through the +point of contact _P_ of the tangent _AB_ two lines, one parallel to one +asymptote and the other parallel to the other. One of these lines meets +_OB_ at a distance _y_ from _O_, and the other meets _OA_ at a distance +_x_ from _O_. Then, since _P_ is the middle point of _AB_, _x_ is one half +of _OA_ and _y_ is one half of _OB_. The area of the parallelogram whose +adjacent sides are _x_ and _y_ is one half the area of the triangle _AOB_, +and therefore, by the preceding paragraph, is constant. This area is equal +to _xy . __sin__ {~GREEK SMALL LETTER ALPHA~}_, where {~GREEK SMALL LETTER ALPHA~} is the constant angle between the asymptotes. +It follows that the product _xy_ is constant, and since _x_ and _y_ are +the oblique cooerdinates of the point _P_, the asymptotes being the axes of +reference, we have + +_The equation of the hyperbola, referred to the asymptotes as axes, is +__xy =__ constant._ + +This identifies the curve with the hyperbola as defined and discussed in +works on analytic geometry. + + + + + [Figure 30] + + FIG. 30 + + +*119. Equation of parabola.* We have defined the parabola as a conic which +is tangent to the line at infinity (§ 110). Draw now two tangents to the +curve (Fig. 30), meeting in _A_, the points of contact being _B_ and _C_. +These two tangents, together with the line at infinity, form a triangle +circumscribed about the conic. Draw through _B_ a parallel to _AC_, and +through _C_ a parallel to _AB_. If these meet in _D_, then _AD_ is a +diameter. Let _AD_ meet the curve in _P_, and the chord _BC_ in _Q_. _P_ +is then the middle point of _AQ_. Also, _Q_ is the middle point of the +chord _BC_, and therefore the diameter _AD_ bisects all chords parallel to +_BC_. In particular, _AD_ passes through _P_, the point of contact of the +tangent drawn parallel to _BC_. + +Draw now another tangent, meeting _AB_ in _B'_ and _AC_ in _C'_. Then +these three, with the line at infinity, make a circumscribed +quadrilateral. But, by Brianchon's theorem applied to a quadrilateral (§ +88), it appears that a parallel to _AC_ through _B'_, a parallel to _AB_ +through _C'_, and the line _BC_ meet in a point _D'_. Also, from the +similar triangles _BB'D'_ and _BAC_ we have, for all positions of the +tangent line _B'C_, + + _B'D' : BB' = AC : AB,_ + +or, since _B'D' = AC'_, + + _AC': BB' = AC:AB =_ constant. + +If another tangent meet _AB_ in _B"_ and _AC_ in _C"_, we have + + _ AC' : BB' = AC" : BB", _ + +and by subtraction we get + + _C'C" : B'B" =_ constant; + +whence + +_The segments cut off on any two tangents to a parabola by a variable +tangent are proportional._ + +If now we take the tangent _B'C'_ as axis of ordinates, and the diameter +through the point of contact _O_ as axis of abscissas, calling the +coordinates of _B(x, y)_ and of _C(x', y')_, then, from the similar +triangles _BMD'_ and we have + + _y : y' = BD' : D'C = BB' : AB'._ + +Also + + _y : y' = B'D' : C'C = AC' : C'C._ + +If now a line is drawn through _A_ parallel to a diameter, meeting the +axis of ordinates in _K_, we have + + _AK : OQ' = AC' : CC' = y : y',_ + +and + + _OM : AK = BB' : AB' = y : y',_ + +and, by multiplication, + + _OM : OQ' = y__2__ : y'__2__,_ + +or + + _x : x' = y__2__ : y'__2__;_ + +whence + +_The abscissas of two points on a parabola are to each other as the +squares of the corresponding cooerdinates, a diameter and the tangent to +the curve at the extremity of the diameter being the axes of reference._ + +The last equation may be written + + _y__2__ = 2px,_ + +where _2p_ stands for _y'__2__ : x'_. + +The parabola is thus identified with the curve of the same name studied in +treatises on analytic geometry. + + + + +*120. Equation of central conics referred to conjugate diameters.* +Consider now a _central conic_, that is, one which is not a parabola and +the center of which is therefore at a finite distance. Draw any four +tangents to it, two of which are parallel (Fig. 31). Let the parallel +tangents meet one of the other tangents in _A_ and _B_ and the other in +_C_ and _D_, and let _P_ and _Q_ be the points of contact of the parallel +tangents _R_ and _S_ of the others. Then _AC_, _BD_, _PQ_, and _RS_ all +meet in a point _W_ (§ 88). From the figure, + + _PW : WQ = AP : QC = PD : BQ,_ + +or + + _AP . BQ = PD . QC._ + +If now _DC_ is a fixed tangent and _AB_ a variable one, we have from this +equation + + _AP . BQ = __constant._ + +This constant will be positive or negative according as _PA_ and _BQ_ are +measured in the same or in opposite directions. Accordingly we write + + _AP . BQ = +- b__2__._ + + [Figure 31] + + FIG. 31 + + +Since _AD_ and _BC_ are parallel tangents, _PQ_ is a diameter and the +conjugate diameter is parallel to _AD_. The middle point of _PQ_ is the +center of the conic. We take now for the axis of abscissas the diameter +_PQ_, and the conjugate diameter for the axis of ordinates. Join _A_ to +_Q_ and _B_ to _P_ and draw a line through _S_ parallel to the axis of +ordinates. These three lines all meet in a point _N_, because _AP_, _BQ_, +and _AB_ form a triangle circumscribed to the conic. Let _NS_ meet _PQ_ in +_M_. Then, from the properties of the circumscribed triangle (§ 89), _M_, +_N_, _S_, and the point at infinity on _NS_ are four harmonic points, and +therefore _N_ is the middle point of _MS_. If the cooerdinates of _S_ are +_(x, y)_, so that _OM_ is _x_ and _MS_ is _y_, then _MN = y/2_. Now from +the similar triangles _PMN_ and _PQB_ we have + + _BQ : PQ = NM : PM,_ + +and from the similar triangles _PQA_ and _MQN_, + + _AP : PQ = MN : MQ,_ + +whence, multiplying, we have + + _+-b__2__/4 a__2__ = y__2__/4 (a + x)(a - x),_ + +where + + [formula] + +or, simplifying, + + [formula] + +which is the equation of an ellipse when _b__2_ has a positive sign, and +of a hyperbola when _b__2_ has a negative sign. We have thus identified +point-rows of the second order with the curves given by equations of the +second degree. + + + + +PROBLEMS + + +1. Draw a chord of a given conic which shall be bisected by a given point +_P_. + +2. Show that all chords of a given conic that are bisected by a given +chord are tangent to a parabola. + +3. Construct a parabola, given two tangents with their points of contact. + +4. Construct a parabola, given three points and the direction of the +diameters. + +5. A line _u'_ is drawn through the pole _U_ of a line _u_ and at right +angles to _u_. The line _u_ revolves about a point _P_. Show that the line +_u'_ is tangent to a parabola. (The lines _u_ and _u'_ are called normal +conjugates.) + +6. Given a circle and its center _O_, to draw a line through a given point +_P_ parallel to a given line _q_. Prove the following construction: Let +_p_ be the polar of _P_, _Q_ the pole of _q_, and _A_ the intersection of +_p_ with _OQ_. The polar of _A_ is the desired line. + + + + + +CHAPTER VIII - INVOLUTION + + + + + [Figure 32] + + FIG. 32 + + +*121. Fundamental theorem.* The important theorem concerning two complete +quadrangles (§ 26), upon which the theory of four harmonic points was +based, can easily be extended to the case where the four lines _KL_, +_K'L'_, _MN_, _M'N'_ do not all meet in the same point _A_, and the more +general theorem that results may also be made the basis of a theory no +less important, which has to do with six points on a line. The theorem is +as follows: + +_Given two complete quadrangles, __K__, __L__, __M__, __N__ and __K'__, +__L'__, __M'__, __N'__, so related that __KL__ and __K'L'__ meet in __A__, +__MN__ and __M'N'__ in __A'__, __KN__ and __K'N'__ in __B__, __LM__ and +__L'M'__ in __B'__, __LN__ and __L'N'__ in __C__, and __KM__ and __K'M'__ +in __C'__, then, if __A__, __A'__, __B__, __B'__, and __C__ are in a +straight line, the point __C'__ also lies on that straight line._ + +The theorem follows from Desargues's theorem (Fig. 32). It is seen that +_KK'_, _LL'_, _MM'_, _NN'_ all meet in a point, and thus, from the same +theorem, applied to the triangles _KLM_ and _K'L'M'_, the point _C'_ is on +the same line with _A_ and _B'_. As in the simpler case, it is seen that +there is an indefinite number of quadrangles which may be drawn, two sides +of which go through _A_ and _A'_, two through _B_ and _B'_, and one +through _C_. The sixth side must then go through _C'_. Therefore, + + + + +*122.* _Two pairs of points, __A__, __A'__ and __B__, __B'__, being +given, then the point __C'__ corresponding to any given point __C__ is +uniquely determined._ + +The construction of this sixth point is easily accomplished. Draw through +_A_ and _A'_ any two lines, and cut across them by any line through _C_ in +the points _L_ and _N_. Join _N_ to _B_ and _L_ to _B'_, thus determining +the points _K_ and _M_ on the two lines through _A_ and _A'_, The line +_KM_ determines the desired point _C'_. Manifestly, starting from _C'_, we +come in this way always to the same point _C_. The particular quadrangle +employed is of no consequence. Moreover, since one pair of opposite sides +in a complete quadrangle is not distinguishable in any way from any other, +the same set of six points will be obtained by starting from the pairs +_AA'_ and _CC'_, or from the pairs _BB'_ and _CC'_. + + + + +*123. Definition of involution of points on a line.* + +_Three pairs of points on a line are said to be in involution if through +each pair may be drawn a pair of opposite sides of a complete quadrangle. +If two pairs are fixed and one of the third pair describes the line, then +the other also describes the line, and the points of the line are said to +be paired in the involution determined by the two fixed pairs._ + + [Figure 33] + + FIG. 33 + + + + +*124. Double-points in an involution.* The points _C_ and _C'_ describe +projective point-rows, as may be seen by fixing the points _L_ and _M_. +The self-corresponding points, of which there are two or none, are called +the _double-points_ in the involution. It is not difficult to see that the +double-points in the involution are harmonic conjugates with respect to +corresponding points in the involution. For, fixing as before the points +_L_ and _M_, let the intersection of the lines _CL_ and _C'M_ be _P_ (Fig. +33). The locus of _P_ is a conic which goes through the double-points, +because the point-rows _C_ and _C'_ are projective, and therefore so are +the pencils _LC_ and _MC'_ which generate the locus of _P_. Also, when _C_ +and _C'_ fall together, the point _P_ coincides with them. Further, the +tangents at _L_ and _M_ to this conic described by _P_ are the lines _LB_ +and _MB_. For in the pencil at _L_ the ray _LM_ common to the two pencils +which generate the conic is the ray _LB'_ and corresponds to the ray _MB_ +of _M_, which is therefore the tangent line to the conic at _M_. Similarly +for the tangent _LB_ at _L_. _LM_ is therefore the polar of _B_ with +respect to this conic, and _B_ and _B'_ are therefore harmonic conjugates +with respect to the double-points. The same discussion applies to any +other pair of corresponding points in the involution. + + [Figure 34] + + FIG. 34 + + + + +*125. Desargues's theorem concerning conics through four points.* Let +_DD'_ be any pair of points in the involution determined as above, and +consider the conic passing through the five points _K_, _L_, _M_, _N_, +_D_. We shall use Pascal's theorem to show that this conic also passes +through _D'_. The point _D'_ is determined as follows: Fix _L_ and _M_ as +before (Fig. 34) and join _D_ to _L_, giving on _MN_ the point _N'_. Join +_N'_ to _B_, giving on _LK_ the point _K'_. Then _MK'_ determines the +point _D'_ on the line _AA'_, given by the complete quadrangle _K'_, _L_, +_M_, _N'_. Consider the following six points, numbering them in order: _D += 1_, _D' = 2_, _M = 3_, _N = 4_, _K = 5_, and _L = 6_. We have the +following intersections: _B = (12-45)_, _K' = (23-56)_, _N' = (34-61)_; +and since by construction _B_, _N_, and _K'_ are on a straight line, it +follows from the converse of Pascal's theorem, which is easily +established, that the six points are on a conic. We have, then, the +beautiful theorem due to Desargues: + +_The system of conics through four points meets any line in the plane in +pairs of points in involution._ + + + + +*126.* It appears also that the six points in involution determined by +the quadrangle through the four fixed points belong also to the same +involution with the points cut out by the system of conics, as indeed we +might infer from the fact that the three pairs of opposite sides of the +quadrangle may be considered as degenerate conics of the system. + + + + +*127. Conics through four points touching a given line.* It is further +evident that the involution determined on a line by the system of conics +will have a double-point where a conic of the system is tangent to the +line. We may therefore infer the theorem + +_Through four fixed points in the plane two conics or none may be drawn +tangent to any given line._ + + [Figure 35] + + FIG. 35 + + + + +*128. Double correspondence.* We have seen that corresponding points in +an involution form two projective point-rows superposed on the same +straight line. Two projective point-rows superposed on the same straight +line are, however, not necessarily in involution, as a simple example will +show. Take two lines, _a_ and _a'_, which both revolve about a fixed point +_S_ and which always make the same angle with each other (Fig. 35). These +lines cut out on any line in the plane which does not pass through _S_ two +projective point-rows, which are not, however, in involution unless the +angle between the lines is a right angles. For a point _P_ may correspond +to a point _P'_, which in turn will correspond to some other point than +_P_. The peculiarity of point-rows in involution is that any point will +correspond to the same point, in whichever point-row it is considered as +belonging. In this case, if a point _P_ corresponds to a point _P'_, then +the point _P'_ corresponds back again to the point _P_. The points _P_ and +_P'_ are then said to _correspond doubly_. This notion is worthy of +further study. + + [Figure 36] + + FIG. 36 + + + + +*129. Steiner's construction.* It will be observed that the solution of +the fundamental problem given in § 83, _Given three pairs of points of two +protective point-rows, to construct other pairs_, cannot be carried out if +the two point-rows lie on the same straight line. Of course the method may +be easily altered to cover that case also, but it is worth while to give +another solution of the problem, due to Steiner, which will also give +further information regarding the theory of involution, and which may, +indeed, be used as a foundation for that theory. Let the two point-rows +_A_, _B_, _C_, _D_, ... and _A'_, _B'_, _C'_, _D'_, ... be superposed on +the line _u_. Project them both to a point _S_ and pass any conic _{~GREEK SMALL LETTER KAPPA~}_ +through _S_. We thus obtain two projective pencils, _a_, _b_, _c_, _d_, +... and _a'_, _b'_, _c'_, _d'_, ... at _S_, which meet the conic in the +points _{~GREEK SMALL LETTER ALPHA~}_, _{~GREEK SMALL LETTER BETA~}_, _{~GREEK SMALL LETTER GAMMA~}_, _{~GREEK SMALL LETTER DELTA~}_, ... and _{~GREEK SMALL LETTER ALPHA~}'_, _{~GREEK SMALL LETTER BETA~}'_, _{~GREEK SMALL LETTER GAMMA~}'_, _{~GREEK SMALL LETTER DELTA~}'_, ... (Fig. 36). +Take now _{~GREEK SMALL LETTER GAMMA~}_ as the center of a pencil projecting the points _{~GREEK SMALL LETTER ALPHA~}'_, _{~GREEK SMALL LETTER BETA~}'_, +_{~GREEK SMALL LETTER DELTA~}'_, ..., and take _{~GREEK SMALL LETTER GAMMA~}'_ as the center of a pencil projecting the points +_{~GREEK SMALL LETTER ALPHA~}_, _{~GREEK SMALL LETTER BETA~}_, _{~GREEK SMALL LETTER DELTA~}_, .... These two pencils are projective to each other, and +since they have a self-correspondin ray in common, they are in perspective +position and corresponding rays meet on the line joining _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER ALPHA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER ALPHA~})_ to +_({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER BETA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER BETA~})_. The correspondence between points in the two point-rows on +_u_ is now easily traced. + + + + +*130. Application of Steiner's construction to double correspondence.* +Steiner's construction throws into our hands an important theorem +concerning double correspondence: _If two projective point-rows, +superposed on the same line, have one pair of points which correspond to +each other doubly, then all pairs correspond to each other doubly, and the +line is paired in involution._ To make this appear, let us call the point +_A_ on _u_ by two names, _A_ and _P'_, according as it is thought of as +belonging to the one or to the other of the two point-rows. If this point +is one of a pair which correspond to each other doubly, then the points +_A'_ and _P_ must coincide (Fig. 37). Take now any point _C_, which we +will also call _R'_. We must show that the corresponding point _C'_ must +also coincide with the point _B_. Join all the points to _S_, as before, +and it appears that the points {~GREEK SMALL LETTER ALPHA~} and _{~GREEK SMALL LETTER PI~}'_ coincide, as also do the points +_{~GREEK SMALL LETTER ALPHA~}'{~GREEK SMALL LETTER PI~}_ and _{~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER RHO~}'_. By the above construction the line _{~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER RHO~}_ must meet _{~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER RHO~}'_ +on the line joining _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER ALPHA~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER ALPHA~})_ with _({~GREEK SMALL LETTER GAMMA~}{~GREEK SMALL LETTER PI~}', {~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER PI~})_. But these four points +form a quadrangle inscribed in the conic, and we know by § 95 that the +tangents at the opposite vertices _{~GREEK SMALL LETTER GAMMA~}_ and _{~GREEK SMALL LETTER GAMMA~}'_ meet on the line _v_. The +line _{~GREEK SMALL LETTER GAMMA~}'{~GREEK SMALL LETTER RHO~}_ is thus a tangent to the conic, and _C'_ and _R_ are the same +point. That two projective point-rows superposed on the same line are also +in involution when one pair, and therefore all pairs, correspond doubly +may be shown by taking _S_ at one vertex of a complete quadrangle which +has two pairs of opposite sides going through two pairs of points. The +details we leave to the student. + + [Figure 37] + + FIG. 37 + + + [Figure 38] + + FIG. 38 + + + + +*131. Involution of points on a point-row of the second order.* It is +important to note also, in Steiner's construction, that we have obtained +two point-rows of the second order superposed on the same conic, and have +paired the points of one with the points of the other in such a way that +the correspondence is double. We may then extend the notion of involution +to point-rows of the second order and say that _the points of a conic are +paired in involution when they are corresponding __ points of two +projective point-rows superposed on the conic, and when they correspond to +each other doubly._ With this definition we may prove the theorem: _The +lines joining corresponding points of a point-row of the second order in +involution all pass through a fixed point __U__, and the line joining any +two points __A__, __B__ meets the line joining the two corresponding +points __A'__, __B'__ in the points of a line __u__, which is the polar of +__U__ with respect to the conic._ For take _A_ and _A'_ as the centers of +two pencils, the first perspective to the point-row _A'_, _B'_, _C'_ and +the second perspective to the point-row _A_, _B_, _C_. Then, since the +common ray of the two pencils corresponds to itself, they are in +perspective position, and their axis of perspectivity _u_ (Fig. 38) is the +line which joins the point _(AB', A'B)_ to the point _(AC', A'C)_. It is +then immediately clear, from the theory of poles and polars, that _BB'_ +and _CC'_ pass through the pole _U_ of the line _u_. + + + + +*132. Involution of rays.* The whole theory thus far developed may be +dualized, and a theory of lines in involution may be built up, starting +with the complete quadrilateral. Thus, + +_The three pairs of rays which may be drawn from a point through the three +pairs of opposite vertices of a complete quadrilateral are said to be in +involution. If the pairs __aa'__ and __bb'__ are fixed, and the line __c__ +describes a pencil, the corresponding line __c'__ also describes a pencil, +and the rays of the pencil are said to be paired in the involution +determined by __aa'__ and __bb'__._ + + + + +*133. Double rays.* The self-corresponding rays, of which there are two +or none, are called _double rays_ of the involution. Corresponding rays of +the involution are harmonic conjugates with respect to the double rays. To +the theorem of Desargues (§ 125) which has to do with the system of conics +through four points we have the dual: + +_The tangents from a fixed point to a system of conics tangent to four +fixed lines form a pencil of rays in involution._ + + + + +*134.* If a conic of the system should go through the fixed point, it is +clear that the two tangents would coincide and indicate a double ray of +the involution. The theorem, therefore, follows: + +_Two conics or none may be drawn through a fixed point to be tangent to +four fixed lines._ + + + + +*135. Double correspondence.* It further appears that two projective +pencils of rays which have the same center are in involution if two pairs +of rays correspond to each other doubly. From this it is clear that we +might have deemed six rays in involution as six rays which pass through a +point and also through six points in involution. While this would have +been entirely in accord with the treatment which was given the +corresponding problem in the theory of harmonic points and lines, it is +more satisfactory, from an aesthetic point of view, to build the theory of +lines in involution on its own base. The student can show, by methods +entirely analogous to those used in the second chapter, that involution is +a projective property; that is, six rays in involution are cut by any +transversal in six points in involution. + + + + +*136. Pencils of rays of the second order in involution.* We may also +extend the notion of involution to pencils of rays of the second order. +Thus, _the tangents to a conic are in involution when they are +corresponding rays of two protective pencils of the second order +superposed upon the same conic, and when they correspond to each other +doubly._ We have then the theorem: + + + + +*137.* _The intersections of corresponding rays of a pencil of the second +order in involution are all on a straight line __u__, and the intersection +of any two tangents __ab__, when joined to the intersection of the +corresponding tangents __a'b'__, gives a line which passes through a fixed +point __U__, the pole of the line __u__ with respect to the conic._ + + + + +*138. Involution of rays determined by a conic.* We have seen in the +theory of poles and polars (§ 103) that if a point _P_ moves along a line +_m_, then the polar of _P_ revolves about a point. This pencil cuts out on +_m_ another point-row _P'_, projective also to _P_. Since the polar of _P_ +passes through _P'_, the polar of _P'_ also passes through _P_, so that +the correspondence between _P_ and _P'_ is double. The two point-rows are +therefore in involution, and the double points, if any exist, are the +points where the line _m_ meets the conic. A similar involution of rays +may be found at any point in the plane, corresponding rays passing each +through the pole of the other. We have called such points and rays +_conjugate_ with respect to the conic (§ 100). We may then state the +following important theorem: + + + + +*139.* _A conic determines on every line in its plane an involution of +points, corresponding points in the involution __ being conjugate with +respect to the conic. The double points, if any exist, are the points +where the line meets the conic._ + + + + +*140.* The dual theorem reads: _A conic determines at every point in the +plane an involution of rays, corresponding rays being conjugate with +respect to the conic. The double rays, if any exist, are the tangents from +the point to the conic._ + + + + +PROBLEMS + + +1. Two lines are drawn through a point on a conic so as always to make +right angles with each other. Show that the lines joining the points where +they meet the conic again all pass through a fixed point. + +2. Two lines are drawn through a fixed point on a conic so as always to +make equal angles with the tangent at that point. Show that the lines +joining the two points where the lines meet the conic again all pass +through a fixed point. + +3. Four lines divide the plane into a certain number of regions. +Determine for each region whether two conics or none may be drawn to pass +through points of it and also to be tangent to the four lines. + +4. If a variable quadrangle move in such a way as always to remain +inscribed in a fixed conic, while three of its sides turn each around one +of three fixed collinear points, then the fourth will also turn around a +fourth fixed point collinear with the other three. + +5. State and prove the dual of problem 4. + +6. Extend problem 4 as follows: If a variable polygon of an even number +of sides move in such a way as always to remain inscribed in a fixed +conic, while all its sides but one pass through as many fixed collinear +points, then the last side will also pass through a fixed point collinear +with the others. + +7. If a triangle _QRS_ be inscribed in a conic, and if a transversal _s_ +meet two of its sides in _A_ and _A'_, the third side and the tangent at +the opposite vertex in _B_ and _B'_, and the conic itself in _C_ and _C'_, +then _AA'_, _BB'_, _CC'_ are three pairs of points in an involution. + +8. Use the last exercise to solve the problem: Given five points, _Q_, +_R_, _S_, _C_, _C'_, on a conic, to draw the tangent at any one of them. + +9. State and prove the dual of problem 7 and use it to prove the dual of +problem 8. + +10. If a transversal cut two tangents to a conic in _B_ and _B'_, their +chord of contact in _A_, and the conic itself in _P_ and _P'_, then the +point _A_ is a double point of the involution determined by _BB'_ and +_PP'_. + +11. State and prove the dual of problem 10. + +12. If a variable conic pass through two given points, _P_ and _P'_, and +if it be tangent to two given lines, the chord of contact of these two +tangents will always pass through a fixed point on _PP'_. + +13. Use the last theorem to solve the problem: Given four points, _P_, +_P'_, _Q_, _S_, on a conic, and the tangent at one of them, _Q_, to draw +the tangent at any one of the other points, _S_. + +14. Apply the theorem of problem 9 to the case of a hyperbola where the +two tangents are the asymptotes. Show in this way that if a hyperbola and +its asymptotes be cut by a transversal, the segments intercepted by the +curve and by the asymptotes respectively have the same middle point. + +15. In a triangle circumscribed about a conic, any side is divided +harmonically by its point of contact and the point where it meets the +chord joining the points of contact of the other two sides. + + + + + +CHAPTER IX - METRICAL PROPERTIES OF INVOLUTIONS + + + + + [Figure 39] + + FIG. 39 + + +*141. Introduction of infinite point; center of involution.* We connect +the projective theory of involution with the metrical, as usual, by the +introduction of the elements at infinity. In an involution of points on a +line the point which corresponds to the infinitely distant point is called +the _center_ of the involution. Since corresponding points in the +involution have been shown to be harmonic conjugates with respect to the +double points, the center is midway between the double points when they +exist. To construct the center (Fig. 39) we draw as usual through _A_ and +_A'_ any two rays and cut them by a line parallel to _AA'_ in the points +_K_ and _M_. Join these points to _B_ and _B'_, thus determining on _AK_ +and _AN_ the points _L_ and _N_. _LN_ meets _AA'_ in the center _O_ of the +involution. + + + + +*142. Fundamental metrical theorem.* From the figure we see that the +triangles _OLB'_ and _PLM_ are similar, _P_ being the intersection of KM +and LN. Also the triangles _KPN_ and _BON_ are similar. We thus have + + _OB : PK = ON : PN_ + +and + + _OB' : PM = OL : PL;_ + +whence + + _OB . OB' : PK . PM = ON . OL : PN . PL._ + +In the same way, from the similar triangles _OAL_ and _PKL_, and also +_OA'N_ and _PMN_, we obtain + + _OA . OA' : PK . PM = ON . OL : PN . PL,_ + +and this, with the preceding, gives at once the fundamental theorem, which +is sometimes taken also as the definition of involution: + + _OA . OA' = OB . OB' = __constant__,_ + +or, in words, + +_The product of the distances from the center to two corresponding points +in an involution of points is constant._ + + + + +*143. Existence of double points.* Clearly, according as the constant is +positive or negative the involution will or will not have double points. +The constant is the square root of the distance from the center to the +double points. If _A_ and _A'_ lie both on the same side of the center, +the product _OA . OA'_ is positive; and if they lie on opposite sides, it +is negative. Take the case where they both lie on the same side of the +center, and take also the pair of corresponding points _BB'_. Then, since +_OA . OA' = OB . OB'_, it cannot happen that _B_ and _B'_ are separated +from each other by _A_ and _A'_. This is evident enough if the points are +on opposite sides of the center. If the pairs are on the same side of the +center, and _B_ lies between _A_ and _A'_, so that _OB_ is greater, say, +than _OA_, but less than _OA'_, then, by the equation _OA . OA' = OB . +OB'_, we must have _OB'_ also less than _OA'_ and greater than _OA_. A +similar discussion may be made for the case where _A_ and _A'_ lie on +opposite sides of _O_. The results may be stated as follows, without any +reference to the center: + +_Given two pairs of points in an involution of points, if the points of +one pair are separated from each other by the points of the other pair, +then the involution has no double points. If the points of one pair are +not separated from each other by the points of the other pair, then the +involution has two double points._ + + + + +*144.* An entirely similar criterion decides whether an involution of +rays has or has not double rays, or whether an involution of planes has or +has not double planes. + + [Figure 40] + + FIG. 40 + + + + +*145. Construction of an involution by means of circles.* The equation +just derived, _OA . OA' = OB . OB'_, indicates another simple way in which +points of an involution of points may be constructed. Through _A_ and _A'_ +draw any circle, and draw also any circle through _B_ and _B'_ to cut the +first in the two points _G_ and _G'_ (Fig. 40). Then any circle through +_G_ and _G'_ will meet the line in pairs of points in the involution +determined by _AA'_ and _BB'_. For if such a circle meets the line in the +points _CC'_, then, by the theorem in the geometry of the circle which +says that _if any chord is __ drawn through a fixed point within a circle, +the product of its segments is constant in whatever direction the chord is +drawn, and if a secant line be drawn from a fixed point without a circle, +the product of the secant and its external segment is constant in whatever +direction the secant line is drawn_, we have _OC . OC' = OG . OG' =_ +constant. So that for all such points _OA . OA' = OB . OB' = OC . OC'_. +Further, the line _GG'_ meets _AA'_ in the center of the involution. To +find the double points, if they exist, we draw a tangent from _O_ to any +of the circles through _GG'_. Let _T_ be the point of contact. Then lay +off on the line _OA_ a line _OF_ equal to _OT_. Then, since by the above +theorem of elementary geometry _OA . OA' = OT__2__ = OF__2_, we have one +double point _F_. The other is at an equal distance on the other side of +_O_. This simple and effective method of constructing an involution of +points is often taken as the basis for the theory of involution. In +projective geometry, however, the circle, which is not a figure that +remains unaltered by projection, and is essentially a metrical notion, +ought not to be used to build up the purely projective part of the theory. + + + + +*146.* It ought to be mentioned that the theory of analytic geometry +indicates that the circle is a special conic section that happens to pass +through two particular imaginary points on the line at infinity, called +the _circular points_ and usually denoted by _I_ and _J_. The above method +of obtaining a point-row in involution is, then, nothing but a special +case of the general theorem of the last chapter (§ 125), which asserted +that a system of conics through four points will cut any line in the plane +in a point-row in involution. + + [Figure 41] + + FIG. 41 + + + + +*147. Pairs in an involution of rays which are at right angles. Circular +involution.* In an involution of rays there is no one ray which may be +distinguished from all the others as the point at infinity is +distinguished from all other points on a line. There is one pair of rays, +however, which does differ from all the others in that for this particular +pair the angle is a right angle. This is most easily shown by using the +construction that employs circles, as indicated above. The centers of all +the circles through _G_ and _G'_ lie on the perpendicular bisector of the +line _GG'_. Let this line meet the line _AA'_ in the point _C_ (Fig. 41), +and draw the circle with center _C_ which goes through _G_ and _G'_. This +circle cuts out two points _M_ and _M'_ in the involution. The rays _GM_ +and _GM'_ are clearly at right angles, being inscribed in a semicircle. +If, therefore, the involution of points is projected to _G_, we have found +two corresponding rays which are at right angles to each other. Given now +any involution of rays with center _G_, we may cut across it by a straight +line and proceed to find the two points _M_ and _M'_. Clearly there will +be only one such pair unless the perpendicular bisector of _GG'_ coincides +with the line _AA'_. In this case every ray is at right angles to its +corresponding ray, and the involution is called _circular_. + + + + +*148. Axes of conics.* At the close of the last chapter (§ 140) we gave +the theorem: _A conic determines at every point in its plane an involution +of rays, corresponding rays __ being conjugate with respect to the conic. +The double rays, if any exist, are the tangents from the point to the +conic._ In particular, taking the point as the center of the conic, we +find that conjugate diameters form a system of rays in involution, of +which the asymptotes, if there are any, are the double rays. Also, +conjugate diameters are harmonic conjugates with respect to the +asymptotes. By the theorem of the last paragraph, there are two conjugate +diameters which are at right angles to each other. These are called axes. +In the case of the parabola, where the center is at infinity, and on the +curve, there are, properly speaking, no conjugate diameters. While the +line at infinity might be considered as conjugate to all the other +diameters, it is not possible to assign to it any particular direction, +and so it cannot be used for the purpose of defining an axis of a +parabola. There is one diameter, however, which is at right angles to its +conjugate system of chords, and this one is called the _axis_ of the +parabola. The circle also furnishes an exception in that every diameter is +an axis. The involution in this case is circular, every ray being at right +angles to its conjugate ray at the center. + + + + +*149. Points at which the involution determined by a conic is circular.* +It is an important problem to discover whether for any conic other than +the circle it is possible to find any point in the plane where the +involution determined as above by the conic is circular. We shall proceed +to the curious problem of proving the existence of such points and of +determining their number and situation. We shall then develop the +important properties of such points. + + + + +*150.* It is clear, in the first place, that such a point cannot be on +the outside of the conic, else the involution would have double rays and +such rays would have to be at right angles to themselves. In the second +place, if two such points exist, the line joining them must be a diameter +and, indeed, an axis. For if _F_ and _F'_ were two such points, then, +since the conjugate ray at _F_ to the line _FF'_ must be at right angles +to it, and also since the conjugate ray at _F'_ to the line _FF'_ must be +at right angles to it, the pole of _FF'_ must be at infinity in a +direction at right angles to _FF'_. The line _FF'_ is then a diameter, and +since it is at right angles to its conjugate diameter, it must be an axis. +From this it follows also that the points we are seeking must all lie on +one of the two axes, else we should have a diameter which does not go +through the intersection of all axes--the center of the conic. At least one +axis, therefore, must be free from any such points. + + [Figure 42] + + FIG. 42 + + + + +*151.* Let now _P_ be a point on one of the axes (Fig. 42), and draw any +ray through it, such as _q_. As _q_ revolves about _P_, its pole _Q_ moves +along a line at right angles to the axis on which _P_ lies, describing a +point-row _p_ projective to the pencil of rays _q_. The point at infinity +in a direction at right angles to _q_ also describes a point-row +projective to _q_. The line joining corresponding points of these two +point-rows is always a conjugate line to _q_ and at right angles to _q_, +or, as we may call it, a _conjugate normal_ to _q_. These conjugate +normals to _q_, joining as they do corresponding points in two projective +point-rows, form a pencil of rays of the second order. But since the point +at infinity on the point-row _Q_ corresponds to the point at infinity in a +direction at right angles to _q_, these point-rows are in perspective +position and the normal conjugates of all the lines through _P_ meet in a +point. This point lies on the same axis with _P_, as is seen by taking _q_ +at right angles to the axis on which _P_ lies. The center of this pencil +may be called _P'_, and thus we have paired the point _P_ with the point +_P'_. By moving the point _P_ along the axis, and by keeping the ray _q_ +parallel to a fixed direction, we may see that the point-row _P_ and the +point-row _P'_ are projective. Also the correspondence is double, and by +starting from the point _P'_ we arrive at the point _P_. Therefore the +point-rows _P_ and _P'_ are in involution, and if only the involution has +double points, we shall have found in them the points we are seeking. For +it is clear that the rays through _P_ and the corresponding rays through +_P'_ are conjugate normals; and if _P_ and _P'_ coincide, we shall have a +point where all rays are at right angles to their conjugates. We shall now +show that the involution thus obtained on one of the two axes must have +double points. + + [Figure 43] + + FIG. 43 + + + + +*152. Discovery of the foci of the conic.* We know that on one axis no +such points as we are seeking can lie (§ 150). The involution of points +_PP'_ on this axis can therefore have no double points. Nevertheless, let +_PP'_ and _RR'_ be two pairs of corresponding points on this axis (Fig. +43). Then we know that _P_ and _P'_ are separated from each other by _R_ +and _R'_ (§ 143). Draw a circle on _PP'_ as a diameter, and one on _RR'_ +as a diameter. These must intersect in two points, _F_ and _F'_, and since +the center of the conic is the center of the involution _PP'_, _RR'_, as +is easily seen, it follows that _F_ and _F'_ are on the other axis of the +conic. Moreover, _FR_ and _FR'_ are conjugate normal rays, since _RFR'_ is +inscribed in a semicircle, and the two rays go one through _R_ and the +other through _R'_. The involution of points _PP'_, _RR'_ therefore +projects to the two points _F_ and _F'_ in two pencils of rays in +involution which have for corresponding rays conjugate normals to the +conic. We may, then, say: + +_There are two and only two points of the plane where the involution +determined by the conic is circular. These two points lie on one of the +axes, at equal distances from the center, on the inside of the conic. +These points are called the foci of the conic._ + + + + +*153. The circle and the parabola.* The above discussion applies only to +the central conics, apart from the circle. In the circle the two foci fall +together at the center. In the case of the parabola, that part of the +investigation which proves the existence of two foci on one of the axes +will not hold, as we have but one axis. It is seen, however, that as _P_ +moves to infinity, carrying the line _q_ with it, _q_ becomes the line at +infinity, which for the parabola is a tangent line. Its pole _Q_ is thus +at infinity and also the point _P'_, so that _P_ and _P'_ fall together at +infinity, and therefore one focus of the parabola is at infinity. There +must therefore be another, so that + +_A parabola has one and only one focus in the finite part of the plane._ + + [Figure 44] + + FIG. 44 + + + + +*154. Focal properties of conics.* We proceed to develop some theorems +which will exhibit the importance of these points in the theory of the +conic section. Draw a tangent to the conic, and also the normal at the +point of contact _P_. These two lines are clearly conjugate normals. The +two points _T_ and _N_, therefore, where they meet the axis which contains +the foci, are corresponding points in the involution considered above, and +are therefore harmonic conjugates with respect to the foci (Fig. 44); and +if we join them to the point _P_, we shall obtain four harmonic lines. But +two of them are at right angles to each other, and so the others make +equal angles with them (Problem 4, Chapter II). Therefore + +_The lines joining a point on the conic to the foci make equal angles with +the tangent._ + +It follows that rays from a source of light at one focus are reflected by +an ellipse to the other. + + + + +*155.* In the case of the parabola, where one of the foci must be +considered to be at infinity in the direction of the diameter, we have + + [Figure 45] + + FIG. 45 + + +_A diameter makes the same angle with the tangent at its extremity as that +tangent does with the line from its point of contact to the focus (Fig. +45)._ + + + + +*156.* This last theorem is the basis for the construction of the +parabolic reflector. A ray of light from the focus is reflected from such +a reflector in a direction parallel to the axis of the reflector. + + + + +*157. Directrix. Principal axis. Vertex.* The polar of the focus with +respect to the conic is called the _directrix_. The axis which contains +the foci is called the _principal axis_, and the intersection of the axis +with the curve is called the _vertex_ of the curve. The directrix is at +right angles to the principal axis. In a parabola the vertex is equally +distant from the focus and the directrix, these three points and the point +at infinity on the axis being four harmonic points. In the ellipse the +vertex is nearer to the focus than it is to the directrix, for the same +reason, and in the hyperbola it is farther from the focus than it is from +the directrix. + + [Figure 46] + + FIG. 46 + + + + +*158. Another definition of a conic.* Let _P_ be any point on the +directrix through which a line is drawn meeting the conic in the points +_A_ and _B_ (Fig. 46). Let the tangents at _A_ and _B_ meet in _T_, and +call the focus _F_. Then _TF_ and _PF_ are conjugate lines, and as they +pass through a focus they must be at right angles to each other. Let _TF_ +meet _AB_ in _C_. Then _P_, _A_, _C_, _B_ are four harmonic points. +Project these four points parallel to _TF_ upon the directrix, and we then +get the four harmonic points _P_, _M_, _Q_, _N_. Since, now, _TFP_ is a +right angle, the angles _MFQ_ and _NFQ_ are equal, as well as the angles +_AFC_ and _BFC_. Therefore the triangles _MAF_ and _NFB_ are similar, and +_FA : FM = FB : BN_. Dropping perpendiculars _AA_ and _BB'_ upon the +directrix, this becomes _FA : AA' = FB : BB'_. We have thus the property +often taken as the definition of a conic: + +_The ratio of the distances from a point on the conic to the focus and the +directrix is constant._ + + [Figure 47] + + FIG. 47 + + + + +*159. Eccentricity.* By taking the point at the vertex of the conic, we +note that this ratio is less than unity for the ellipse, greater than +unity for the hyperbola, and equal to unity for the parabola. This ratio +is called the _eccentricity_. + + [Figure 48] + + FIG. 48 + + + + +*160. Sum or difference of focal distances.* The ellipse and the hyperbola +have two foci and two directrices. The eccentricity, of course, is the +same for one focus as for the other, since the curve is symmetrical with +respect to both. If the distances from a point on a conic to the two foci +are _r_ and _r'_, and the distances from the same point to the +corresponding directrices are _d_ and _d'_ (Fig. 47), we have _r : d = r' +: d'_; _(r +- r') : (d +- d')_. In the ellipse _(d + d')_ is constant, being +the distance between the directrices. In the hyperbola this distance is +_(d - d')_. It follows (Fig. 48) that + +_In the ellipse the sum of the focal distances of any point on the curve +is constant, and in the hyperbola the difference between the focal +distances is constant._ + + + + +PROBLEMS + + +1. Construct the axis of a parabola, given four tangents. + +2. Given two conjugate lines at right angles to each other, and let them +meet the axis which has no foci on it in the points _A_ and _B_. The +circle on _AB_ as diameter will pass through the foci of the conic. + +3. Given the axes of a conic in position, and also a tangent with its +point of contact, to construct the foci and determine the length of the +axes. + +4. Given the tangent at the vertex of a parabola, and two other tangents, +to find the focus. + +5. The locus of the center of a circle touching two given circles is a +conic with the centers of the given circles for its foci. + +6. Given the axis of a parabola and a tangent, with its point of contact, +to find the focus. + +7. The locus of the center of a circle which touches a given line and a +given circle consists of two parabolas. + +8. Let _F_ and _F'_ be the foci of an ellipse, and _P_ any point on it. +Produce _PF_ to _G_, making _PG_ equal to _PF'_. Find the locus of _G_. + +9. If the points _G_ of a circle be folded over upon a point _F_, the +creases will all be tangent to a conic. If _F_ is within the circle, the +conic will be an ellipse; if _F_ is without the circle, the conic will be +a hyperbola. + +10. If the points _G_ in the last example be taken on a straight line, the +locus is a parabola. + +11. Find the foci and the length of the principal axis of the conics in +problems 9 and 10. + +12. In problem 10 a correspondence is set up between straight lines and +parabolas. As there is a fourfold infinity of parabolas in the plane, and +only a twofold infinity of straight lines, there must be some restriction +on the parabolas obtained by this method. Find and explain this +restriction. + +13. State and explain the similar problem for problem 9. + +14. The last four problems are a study of the consequences of the +following transformation: A point _O_ is fixed in the plane. Then to any +point _P_ is made to correspond the line _p_ at right angles to _OP_ and +bisecting it. In this correspondence, what happens to _p_ when _P_ moves +along a straight line? What corresponds to the theorem that two lines have +only one point in common? What to the theorem that the angle sum of a +triangle is two right angles? Etc. + + + + + +CHAPTER X - ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY + + + + +*161. Ancient results.* The theory of synthetic projective geometry as we +have built it up in this course is less than a century old. This is not to +say that many of the theorems and principles involved were not discovered +much earlier, but isolated theorems do not make a theory, any more than a +pile of bricks makes a building. The materials for our building have been +contributed by many different workmen from the days of Euclid down to the +present time. Thus, the notion of four harmonic points was familiar to the +ancients, who considered it from the metrical point of view as the +division of a line internally and externally in the same ratio(1) the +involution of six points cut out by any transversal which intersects the +sides of a complete quadrilateral as studied by Pappus(2); but these +notions were not made the foundation for any general theory. Taken by +themselves, they are of small consequence; it is their relation to other +theorems and sets of theorems that gives them their importance. The +ancients were doubtless familiar with the theorem, _Two lines determine a +point, and two points determine a line_, but they had no glimpse of the +wonderful law of duality, of which this theorem is a simple example. The +principle of projection, by which many properties of the conic sections +may be inferred from corresponding properties of the circle which forms +the base of the cone from which they are cut--a principle so natural to +modern mathematicians--seems not to have occurred to the Greeks. The +ellipse, the hyperbola, and the parabola were to them entirely different +curves, to be treated separately with methods appropriate to each. Thus +the focus of the ellipse was discovered some five hundred years before the +focus of the parabola! It was not till 1522 that Verner(3) of Nuernberg +undertook to demonstrate the properties of the conic sections by means of +the circle. + + + + +*162. Unifying principles.* In the early years of the seventeenth +century--that wonderful epoch in the history of the world which produced a +Galileo, a Kepler, a Tycho Brahe, a Descartes, a Desargues, a Pascal, a +Cavalieri, a Wallis, a Fermat, a Huygens, a Bacon, a Napier, and a goodly +array of lesser lights, to say nothing of a Rembrandt or of a +Shakespeare--there began to appear certain unifying principles connecting +the great mass of material dug out by the ancients. Thus, in 1604 the +great astronomer Kepler(4) introduced the notion that parallel lines +should be considered as meeting at an infinite distance, and that a +parabola is at once the limiting case of an ellipse and of a hyperbola. He +also attributes to the parabola a "blind focus" (_caecus focus_) at +infinity on the axis. + + + + +*163. Desargues.* In 1639 Desargues,(5) an architect of Lyons, published +a little treatise on the conic sections, in which appears the theorem upon +which we have founded the theory of four harmonic points (§ 25). +Desargues, however, does not make use of it for that purpose. Four +harmonic points are for him a special case of six points in involution +when two of the three pairs coincide giving double points. His development +of the theory of involution is also different from the purely geometric +one which we have adopted, and is based on the theorem (§ 142) that the +product of the distances of two conjugate points from the center is +constant. He also proves the projective character of an involution of +points by showing that when six lines pass through a point and through six +points in involution, then any transversal must meet them in six points +which are also in involution. + + + + +*164. Poles and polars.* In this little treatise is also contained the +theory of poles and polars. The polar line is called a _traversal_.(6) The +harmonic properties of poles and polars are given, but Desargues seems not +to have arrived at the metrical properties which result when the infinite +elements of the plane are introduced. Thus he says, "When the _traversal_ +is at an infinite distance, all is unimaginable." + + + + +*165. Desargues's theorem concerning conics through four points.* We find +in this little book the beautiful theorem concerning a quadrilateral +inscribed in a conic section, which is given by his name in § 138. The +theorem is not given in terms of a system of conics through four points, +for Desargues had no conception of any such system. He states the theorem, +in effect, as follows: _Given a simple quadrilateral inscribed in a conic +section, every transversal meets the conic and the four sides of the +quadrilateral in six points which are in involution._ + + + + +*166. Extension of the theory of poles and polars to space.* As an +illustration of his remarkable powers of generalization, we may note that +Desargues extended the notion of poles and polars to space of three +dimensions for the sphere and for certain other surfaces of the second +degree. This is a matter which has not been touched on in this book, but +the notion is not difficult to grasp. If we draw through any point _P_ in +space a line to cut a sphere in two points, _A_ and _S_, and then +construct the fourth harmonic of _P_ with respect to _A_ and _B_, the +locus of this fourth harmonic, for various lines through _P_, is a plane +called the _polar plane_ of _P_ with respect to the sphere. With this +definition and theorem one can easily find dual relations between points +and planes in space analogous to those between points and lines in a +plane. Desargues closes his discussion of this matter with the remark, +"Similar properties may be found for those other solids which are related +to the sphere in the same way that the conic section is to the circle." It +should not be inferred from this remark, however, that he was acquainted +with all the different varieties of surfaces of the second order. The +ancients were well acquainted with the surfaces obtained by revolving an +ellipse or a parabola about an axis. Even the hyperboloid of two sheets, +obtained by revolving the hyperbola about its major axis, was known to +them, but probably not the hyperboloid of one sheet, which results from +revolving a hyperbola about the other axis. All the other solids of the +second degree were probably unknown until their discovery by Euler.(7) + + + + +*167.* Desargues had no conception of the conic section of the locus of +intersection of corresponding rays of two projective pencils of rays. He +seems to have tried to describe the curve by means of a pair of compasses, +moving one leg back and forth along a straight line instead of holding it +fixed as in drawing a circle. He does not attempt to define the law of the +movement necessary to obtain a conic by this means. + + + + +*168. Reception of Desargues's work.* Strange to say, Desargues's +immortal work was heaped with the most violent abuse and held up to +ridicule and scorn! "Incredible errors! Enormous mistakes and falsities! +Really it is impossible for anyone who is familiar with the science +concerning which he wishes to retail his thoughts, to keep from laughing!" +Such were the comments of reviewers and critics. Nor were his detractors +altogether ignorant and uninstructed men. In spite of the devotion of his +pupils and in spite of the admiration and friendship of men like +Descartes, Fermat, Mersenne, and Roberval, his book disappeared so +completely that two centuries after the date of its publication, when the +French geometer Chasles wrote his history of geometry, there was no means +of estimating the value of the work done by Desargues. Six years later, +however, in 1845, Chasles found a manuscript copy of the +"Bruillon-project," made by Desargues's pupil, De la Hire. + + + + +*169. Conservatism in Desargues's time.* It is not necessary to suppose +that this effacement of Desargues's work for two centuries was due to the +savage attacks of his critics. All this was in accordance with the fashion +of the time, and no man escaped bitter denunciation who attempted to +improve on the methods of the ancients. Those were days when men refused +to believe that a heavy body falls at the same rate as a lighter one, even +when Galileo made them see it with their own eyes at the foot of the tower +of Pisa. Could they not turn to the exact page and line of Aristotle which +declared that the heavier body must fall the faster! "I have read +Aristotle's writings from end to end, many times," wrote a Jesuit +provincial to the mathematician and astronomer, Christoph Scheiner, at +Ingolstadt, whose telescope seemed to reveal certain mysterious spots on +the sun, "and I can assure you I have nowhere found anything similar to +what you describe. Go, my son, and tranquilize yourself; be assured that +what you take for spots on the sun are the faults of your glasses, or of +your eyes." The dead hand of Aristotle barred the advance in every +department of research. Physicians would have nothing to do with Harvey's +discoveries about the circulation of the blood. "Nature is accused of +tolerating a vacuum!" exclaimed a priest when Pascal began his experiments +on the Puy-de-Dome to show that the column of mercury in a glass tube +varied in height with the pressure of the atmosphere. + + + + +*170. Desargues's style of writing.* Nevertheless, authority counted for +less at this time in Paris than it did in Italy, and the tragedy enacted +in Rome when Galileo was forced to deny his inmost convictions at the +bidding of a brutal Inquisition could not have been staged in France. +Moreover, in the little company of scientists of which Desargues was a +member the utmost liberty of thought and expression was maintained. One +very good reason for the disappearance of the work of Desargues is to be +found in his style of writing. He failed to heed the very good advice +given him in a letter from his warm admirer Descartes.(8) "You may have +two designs, both very good and very laudable, but which do not require +the same method of procedure: The one is to write for the learned, and +show them some new properties of the conic sections which they do not +already know; and the other is to write for the curious unlearned, and to +do it so that this matter which until now has been understood by only a +very few, and which is nevertheless very useful for perspective, for +painting, architecture, etc., shall become common and easy to all who wish +to study them in your book. If you have the first idea, then it seems to +me that it is necessary to avoid using new terms; for the learned are +already accustomed to using those of Apollonius, and will not readily +change them for others, though better, and thus yours will serve only to +render your demonstrations more difficult, and to turn away your readers +from your book. If you have the second plan in mind, it is certain that +your terms, which are French, and conceived with spirit and grace, will be +better received by persons not preoccupied with those of the ancients.... +But, if you have that intention, you should make of it a great volume; +explain it all so fully and so distinctly that those gentlemen who cannot +study without yawning; who cannot distress their imaginations enough to +grasp a proposition in geometry, nor turn the leaves of a book to look at +the letters in a figure, shall find nothing in your discourse more +difficult to understand than the description of an enchanted palace in a +fairy story." The point of these remarks is apparent when we note that +Desargues introduced some seventy new terms in his little book, of which +only one, _involution_, has survived. Curiously enough, this is the one +term singled out for the sharpest criticism and ridicule by his reviewer, +De Beaugrand.(9) That Descartes knew the character of Desargues's audience +better than he did is also evidenced by the fact that De Beaugrand +exhausted his patience in reading the first ten pages of the book. + + + + +*171. Lack of appreciation of Desargues.* Desargues's methods, entirely +different from the analytic methods just then being developed by Descartes +and Fermat, seem to have been little understood. "Between you and me," +wrote Descartes(10) to Mersenne, "I can hardly form an idea of what he may +have written concerning conics." Desargues seems to have boasted that he +owed nothing to any man, and that all his results had come from his own +mind. His favorite pupil, De la Hire, did not realize the extraordinary +simplicity and generality of his work. It is a remarkable fact that the +only one of all his associates to understand and appreciate the methods of +Desargues should be a lad of sixteen years! + + + + +*172. Pascal and his theorem.* One does not have to believe all the +marvelous stories of Pascal's admiring sisters to credit him with +wonderful precocity. We have the fact that in 1640, when he was sixteen +years old, he published a little placard, or poster, entitled "Essay pour +les conique,"(11) in which his great theorem appears for the first time. +His manner of putting it may be a little puzzling to one who has only seen +it in the form given in this book, and it may be worth while for the +student to compare the two methods of stating it. It is given as follows: +_"If in the plane of __M__, __S__, __Q__ we draw through __M__ the two +lines __MK__ and __MV__, and through the point __S__ the two lines __SK__ +and __SV__, and let __K__ be the intersection of __MK__ and __SK__; __V__ +the intersection of __MV__ and __SV__; __A__ the intersection of __MA__ +and __SA__ (__A__ is the intersection of __SV__ and __MK__), and __{~GREEK SMALL LETTER MU~}__ the +intersection of __MV__ and __SK__; and if through two of the four points +__A__, __K__, __{~GREEK SMALL LETTER MU~}__, __V__, which are not in the same straight line with +__M__ and __S__, such as __K__ and __V__, we pass the circumference of a +circle cutting the lines __MV__, __MP__, __SV__, __SK__ in the points +__O__, __P__, __Q__, __N__; I say that the lines __MS__, __NO__, __PQ__ +are of the same order."_ (By "lines of the same order" Pascal means lines +which meet in the same point or are parallel.) By projecting the figure +thus described upon another plane he is able to state his theorem for the +case where the circle is replaced by any conic section. + + + + +*173.* It must be understood that the "Essay" was only a resume of a more +extended treatise on conics which, owing partly to Pascal's extreme youth, +partly to the difficulty of publishing scientific works in those days, and +also to his later morbid interest in religious matters, was never +published. Leibniz(12) examined a copy of the complete work, and has +reported that the great theorem on the mystic hexagram was made the basis +of the whole theory, and that Pascal had deduced some four hundred +corollaries from it. This would indicate that here was a man able to take +the unconnected materials of projective geometry and shape them into some +such symmetrical edifice as we have to-day. Unfortunately for science, +Pascal's early death prevented the further development of the subject at +his hands. + + + + +*174.* In the "Essay" Pascal gives full credit to Desargues, saying of +one of the other propositions, "We prove this property also, the original +discoverer of which is M. Desargues, of Lyons, one of the greatest minds +of this age ... and I wish to acknowledge that I owe to him the little +which I have discovered." This acknowledgment led Descartes to believe +that Pascal's theorem should also be credited to Desargues. But in the +scientific club which the young Pascal attended in company with his +father, who was also a scientist of some reputation, the theorem went by +the name of 'la Pascalia,' and Descartes's remarks do not seem to have +been taken seriously, which indeed is not to be wondered at, seeing that +he was in the habit of giving scant credit to the work of other scientific +investigators than himself. + + + + +*175. De la Hire and his work.* De la Hire added little to the +development of the subject, but he did put into print much of what +Desargues had already worked out, not fully realizing, perhaps, how much +was his own and how much he owed to his teacher. Writing in 1679, he +says,(13) "I have just read for the first time M. Desargues's little +treatise, and have made a copy of it in order to have a more perfect +knowledge of it." It was this copy that saved the work of his master from +oblivion. De la Hire should be credited, among other things, with the +invention of a method by which figures in the plane may be transformed +into others of the same order. His method is extremely interesting, and +will serve as an exercise for the student in synthetic projective +geometry. It is as follows: _Draw two parallel lines, __a__ and __b__, and +select a point __P__ in their plane. Through any point __M__ of the plane +draw a line meeting __a__ in __A__ and __b__ in __B__. Draw a line through +__B__ parallel to __AP__, and let it meet __MP__ in the point __M'__. It +may be shown that the point __M'__ thus obtained does not depend at all on +the particular ray __MAB__ used in determining it, so that we have set up +a one-to-one correspondence between the points __M__ and __M'__ in the +plane._ The student may show that as _M_ describes a point-row, _M'_ +describes a point-row projective to it. As _M_ describes a conic, _M'_ +describes another conic. This sort of correspondence is called a +_collineation_. It will be found that the points on the line _b_ transform +into themselves, as does also the single point _P_. Points on the line _a_ +transform into points on the line at infinity. The student should remove +the metrical features of the construction and take, instead of two +parallel lines _a_ and _b_, any two lines which may meet in a finite part +of the plane. The collineation is a special one in that the general one +has an invariant triangle instead of an invariant point and line. + + + + +*176. Descartes and his influence.* The history of synthetic projective +geometry has little to do with the work of the great philosopher +Descartes, except in an indirect way. The method of algebraic analysis +invented by him, and the differential and integral calculus which +developed from it, attracted all the interest of the mathematical world +for nearly two centuries after Desargues, and synthetic geometry received +scant attention during the rest of the seventeenth century and for the +greater part of the eighteenth century. It is difficult for moderns to +conceive of the richness and variety of the problems which confronted the +first workers in the calculus. To come into the possession of a method +which would solve almost automatically problems which had baffled the +keenest minds of antiquity; to be able to derive in a few moments results +which an Archimedes had toiled long and patiently to reach or a Galileo +had determined experimentally; such was the happy experience of +mathematicians for a century and a half after Descartes, and it is not to +be wondered at that along with this enthusiastic pursuit of new theorems +in analysis should come a species of contempt for the methods of the +ancients, so that in his preface to his "Mechanique Analytique," published +in 1788, Lagrange boasts, "One will find no figures in this work." But at +the close of the eighteenth century the field opened up to research by the +invention of the calculus began to appear so thoroughly explored that new +methods and new objects of investigation began to attract attention. +Lagrange himself, in his later years, turned in weariness from analysis +and mechanics, and applied himself to chemistry, physics, and +philosophical speculations. "This state of mind," says Darboux,(14) "we +find almost always at certain moments in the lives of the greatest +scholars." At any rate, after lying fallow for almost two centuries, the +field of pure geometry was attacked with almost religious enthusiasm. + + + + +*177. Newton and Maclaurin.* But in hastening on to the epoch of Poncelet +and Steiner we should not omit to mention the work of Newton and +Maclaurin. Although their results were obtained by analysis for the most +part, nevertheless they have given us theorems which fall naturally into +the domain of synthetic projective geometry. Thus Newton's "organic +method"(15) of generating conic sections is closely related to the method +which we have made use of in Chapter III. It is as follows: _If two +angles, __AOS__ and __AO'S__, of given magnitudes turn about their +respective vertices, __O__ and __O'__, in such a way that the point of +intersection, __S__, of one pair of arms always lies on a straight line, +the point of intersection, __A__, of the other pair of arms will describe +a conic._ The proof of this is left to the student. + + + + +*178.* Another method of generating a conic is due to Maclaurin.(16) The +construction, which we also leave for the student to justify, is as +follows: _If a triangle __C'PQ__ move in such a way that its sides, +__PQ__, __QC'__, and __C'P__, turn __ around three fixed points, __R__, +__A__, __B__, respectively, while two of its vertices, __P__, __Q__, slide +along two fixed lines, __CB'__ and __CA'__, respectively, then the +remaining vertex will describe a conic._ + + + + +*179. Descriptive geometry and the second revival.* The second revival of +pure geometry was again to take place at a time of great intellectual +activity. The period at the close of the eighteenth and the beginning of +the nineteenth century is adorned with a glorious list of mighty names, +among which are Gauss, Lagrange, Legendre, Laplace, Monge, Carnot, +Poncelet, Cauchy, Fourier, Steiner, Von Staudt, Moebius, Abel, and many +others. The renaissance may be said to date from the invention by +Monge(17) of the theory of _descriptive geometry_. Descriptive geometry is +concerned with the representation of figures in space of three dimensions +by means of space of two dimensions. The method commonly used consists in +projecting the space figure on two planes (a vertical and a horizontal +plane being most convenient), the projections being made most simply for +metrical purposes from infinity in directions perpendicular to the two +planes of projection. These two planes are then made to coincide by +revolving the horizontal into the vertical about their common line. Such +is the method of descriptive geometry which in the hands of Monge acquired +wonderful generality and elegance. Problems concerning fortifications were +worked so quickly by this method that the commandant at the military +school at Mezieres, where Monge was a draftsman and pupil, viewed the +results with distrust. Monge afterward became professor of mathematics at +Mezieres and gathered around him a group of students destined to have a +share in the advancement of pure geometry. Among these were Hachette, +Brianchon, Dupin, Chasles, Poncelet, and many others. + + + + +*180. Duality, homology, continuity, contingent relations.* Analytic +geometry had left little to do in the way of discovery of new material, +and the mathematical world was ready for the construction of the edifice. +The activities of the group of men that followed Monge were directed +toward this end, and we now begin to hear of the great unifying notions of +duality, homology, continuity, contingent relations, and the like. The +devotees of pure geometry were beginning to feel the need of a basis for +their science which should be at once as general and as rigorous as that +of the analysts. Their dream was the building up of a system of geometry +which should be independent of analysis. Monge, and after him Poncelet, +spent much thought on the so-called "principle of continuity," afterwards +discussed by Chasles under the name of the "principle of contingent +relations." To get a clear idea of this principle, consider a theorem in +geometry in the proof of which certain auxiliary elements are employed. +These elements do not appear in the statement of the theorem, and the +theorem might possibly be proved without them. In drawing the figure for +the proof of the theorem, however, some of these elements may not appear, +or, as the analyst would say, they become imaginary. "No matter," says the +principle of contingent relations, "the theorem is true, and the proof is +valid whether the elements used in the proof are real or imaginary." + + + + +*181. Poncelet and Cauchy.* The efforts of Poncelet to compel the +acceptance of this principle independent of analysis resulted in a bitter +and perhaps fruitless controversy between him and the great analyst +Cauchy. In his review of Poncelet's great work on the projective +properties of figures(18) Cauchy says, "In his preliminary discourse the +author insists once more on the necessity of admitting into geometry what +he calls the 'principle of continuity.' We have already discussed that +principle ... and we have found that that principle is, properly speaking, +only a strong induction, which cannot be indiscriminately applied to all +sorts of questions in geometry, nor even in analysis. The reasons which we +have given as the basis of our opinion are not affected by the +considerations which the author has developed in his Traite des Proprietes +Projectives des Figures." Although this principle is constantly made use +of at the present day in all sorts of investigations, careful +geometricians are in agreement with Cauchy in this matter, and use it only +as a convenient working tool for purposes of exploration. The one-to-one +correspondence between geometric forms and algebraic analysis is subject +to many and important exceptions. The field of analysis is much more +general than the field of geometry, and while there may be a clear notion +in analysis to, correspond to every notion in geometry, the opposite is +not true. Thus, in analysis we can deal with four cooerdinates as well as +with three, but the existence of a space of four dimensions to correspond +to it does not therefore follow. When the geometer speaks of the two real +or imaginary intersections of a straight line with a conic, he is really +speaking the language of algebra. _Apart from the algebra involved_, it is +the height of absurdity to try to distinguish between the two points in +which a line _fails to meet a conic!_ + + + + +*182. The work of Poncelet.* But Poncelet's right to the title "The +Father of Modern Geometry" does not stand or fall with the principle of +contingent relations. In spite of the fact that he considered this +principle the most important of all his discoveries, his reputation rests +on more solid foundations. He was the first to study figures _in +homology_, which is, in effect, the collineation described in § 175, where +corresponding points lie on straight lines through a fixed point. He was +the first to give, by means of the theory of poles and polars, a +transformation by which an element is transformed into another of a +different sort. Point-to-point transformations will sometimes generalize a +theorem, but the transformation discovered by Poncelet may throw a theorem +into one of an entirely different aspect. The principle of duality, first +stated in definite form by Gergonne,(19) the editor of the mathematical +journal in which Poncelet published his researches, was based by Poncelet +on his theory of poles and polars. He also put into definite form the +notions of the infinitely distant elements in space as all lying on a +plane at infinity. + + + + +*183. The debt which analytic geometry owes to synthetic geometry.* The +reaction of pure geometry on analytic geometry is clearly seen in the +development of the notion of the _class_ of a curve, which is the number +of tangents that may be drawn from a point in a plane to a given curve +lying in that plane. If a point moves along a conic, it is easy to +show--and the student is recommended to furnish the proof--that the polar +line with respect to a conic remains tangent to another conic. This may be +expressed by the statement that the conic is of the second order and also +of the second class. It might be thought that if a point moved along a +cubic curve, its polar line with respect to a conic would remain tangent +to another cubic curve. This is not the case, however, and the +investigations of Poncelet and others to determine the class of a given +curve were afterward completed by Pluecker. The notion of geometrical +transformation led also to the very important developments in the theory +of invariants, which, geometrically, are the elements and configurations +which are not affected by the transformation. The anharmonic ratio of four +points is such an invariant, since it remains unaltered under all +projective transformations. + + + + +*184. Steiner and his work.* In the work of Poncelet and his +contemporaries, Chasles, Brianchon, Hachette, Dupin, Gergonne, and others, +the anharmonic ratio enjoyed a fundamental role. It is made also the basis +of the great work of Steiner,(20) who was the first to treat of the conic, +not as the projection of a circle, but as the locus of intersection of +corresponding rays of two projective pencils. Steiner not only related to +each other, in one-to-one correspondence, point-rows and pencils and all +the other fundamental forms, but he set into correspondence even curves +and surfaces of higher degrees. This new and fertile conception gave him +an easy and direct route into the most abstract and difficult regions of +pure geometry. Much of his work was given without any indication of the +methods by which he had arrived at it, and many of his results have only +recently been verified. + + + + +*185. Von Staudt and his work.* To complete the theory of geometry as we +have it to-day it only remained to free it from its dependence on the +semimetrical basis of the anharmonic ratio. This work was accomplished by +Von Staudt,(21) who applied himself to the restatement of the theory of +geometry in a form independent of analytic and metrical notions. The +method which has been used in Chapter II to develop the notion of four +harmonic points by means of the complete quadrilateral is due to Von +Staudt. His work is characterized by a most remarkable generality, in that +he is able to discuss real and imaginary forms with equal ease. Thus he +assumes a one-to-one correspondence between the points and lines of a +plane, and defines a conic as the locus of points which lie on their +corresponding lines, and a pencil of rays of the second order as the +system of lines which pass through their corresponding points. The +point-row and pencil of the second order may be real or imaginary, but his +theorems still apply. An illustration of a correspondence of this sort, +where the conic is imaginary, is given in § 15 of the first chapter. In +defining conjugate imaginary points on a line, Von Staudt made use of an +involution of points having no double points. His methods, while elegant +and powerful, are hardly adapted to an elementary course, but Reye(22) and +others have done much toward simplifying his presentation. + + + + +*186. Recent developments.* It would be only confusing to the student to +attempt to trace here the later developments of the science of protective +geometry. It is concerned for the most part with curves and surfaces of a +higher degree than the second. Purely synthetic methods have been used +with marked success in the study of the straight line in space. The +struggle between analysis and pure geometry has long since come to an end. +Each has its distinct advantages, and the mathematician who cultivates one +at the expense of the other will never attain the results that he would +attain if both methods were equally ready to his hand. Pure geometry has +to its credit some of the finest discoveries in mathematics, and need not +apologize for having been born. The day of its usefulness has not passed +with the invention of abridged notation and of short methods in analysis. +While we may be certain that any geometrical problem may always be stated +in analytic form, it does not follow that that statement will be simple or +easily interpreted. For many mathematicians the geometric intuitions are +weak, and for such the method will have little attraction. On the other +hand, there will always be those for whom the subject will have a peculiar +glamor--who will follow with delight the curious and unexpected relations +between the forms of space. There is a corresponding pleasure, doubtless, +for the analyst in tracing the marvelous connections between the various +fields in which he wanders, and it is as absurd to shut one's eyes to the +beauties in one as it is to ignore those in the other. "Let us cultivate +geometry, then," says Darboux,(23) "without wishing in all points to equal +it to its rival. Besides, if we were tempted to neglect it, it would not +be long in finding in the applications of mathematics, as once it has +already done, the means of renewing its life and of developing itself +anew. It is like the Giant Antaeus, who renewed, his strength by touching +the earth." + + + + + +INDEX + + + (The numbers refer to the paragraphs) + +Abel (1802-1829), 179 + +Analogy, 24 + +Analytic geometry, 21, 118, 119, 120, 146, 176, 180 + +Anharmonic ratio, 46, 161, 184, 185 + +Apollonius (second half of third century B.C.), 70 + +Archimedes (287-212 B.C.), 176 + +Aristotle (384-322 B.C.), 169 + +Asymptotes, 111, 113, 114, 115, 116, 117, 118, 148 + +Axes of a conic, 148 + +Axial pencil, 7, 8, 23, 50, 54 + +Axis of perspectivity, 8, 47 + +Bacon (1561-1626), 162 + +Bisection, 41, 109 + +Brianchon (1785-1864), 84, 85, 86, 88, 89, 90, 95, 105, 113, 174, 184 + +Calculus, 176 + +Carnot (1796-1832), 179 + +Cauchy (1789-1857), 179, 181 + +Cavalieri (1598-1647), 162 + +Center of a conic, 107, 112, 148 + +Center of involution, 141, 142 + +Center of perspectivity, 8 + +Central conic, 120 + +Chasles (1793-1880), 168, 179, 180, 184 + +Circle, 21, 73, 80, 145, 146, 147 + +Circular involution, 147, 149, 150, 151 + +Circular points, 146 + +Class of a curve, 183 + +Classification of conics, 110 + +Collineation, 175 + +Concentric pencils, 50 + +Cone of the second order, 59 + +Conic, 73, 81 + +Conjugate diameters, 114, 148 + +Conjugate normal, 151 + +Conjugate points and lines, 100, 109, 138, 139, 140 + +Constants in an equation, 21 + +Contingent relations, 180, 181 + +Continuity, 180, 181 + +Continuous correspondence, 9, 10, 21, 49 + +Corresponding elements, 64 + +Counting, 1, 4 + +Cross ratio, 46 + +Darboux, 176, 186 + +De Beaugrand, 170 + +Degenerate pencil of rays of the second order, 58, 93 + +Degenerate point-row of the second order, 56, 78 + +De la Hire (1640-1718), 168, 171, 175 + +Desargues (1593-1662), 25, 26, 40, 121, 125, 162, 163, 164, 165, 166, 167, +168, 169, 170, 171, 174, 175 + +Descartes (1596-1650), 162, 170, 171, 174, 176 + +Descriptive geometry, 179 + +Diameter, 107 + +Directrix, 157, 158, 159, 160 + +Double correspondence, 128, 130 + +Double points of an involution, 124 + +Double rays of an involution, 133, 134 + +Duality, 94, 104, 161, 180, 182 + +Dupin (1784-1873), 174, 184 + +Eccentricity of conic, 159 + +Ellipse, 110, 111, 162 + +Equation of conic, 118, 119, 120 + +Euclid (ca. 300 B.C.), 6, 22, 104 + +Euler (1707-1783), 166 + +Fermat (1601-1665), 162, 171 + +Foci of a conic, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162 + +Fourier (1768-1830), 179 + +Fourth harmonic, 29 + +Fundamental form, 7, 16, 23, 36, 47, 60, 184 + +Galileo (1564-1642), 162, 169, 170, 176 + +Gauss (1777-1855), 179 + +Gergonne (1771-1859), 182, 184 + +Greek geometry, 161 + +Hachette (1769-1834), 179, 184 + +Harmonic conjugates, 29, 30, 39 + +Harmonic elements, 86, 49, 91, 163, 185 + +Harmonic lines, 33, 34, 35, 66, 67 + +Harmonic planes, 34, 35 + +Harmonic points, 29, 31, 32, 33, 34, 35, 36, 43, 71, 161 + +Harmonic tangents to a conic, 91, 92 + +Harvey (1578-1657), 169 + +Homology, 180, 182 + +Huygens (1629-1695), 162 + +Hyperbola, 110, 111, 113, 114, 115, 116, 117, 118, 162 + +Imaginary elements, 146, 180, 181, 182, 185 + +Infinitely distant elements, 6, 9, 22, 39, 40, 41, 104, 107, 110 + +Infinity, 4, 5, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 41 + +Involution, 37, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, +134, 135, 136, 137, 138, 139, 140, 161, 163, 170 + +Kepler (1571-1630), 162 + +Lagrange (1736-1813), 176, 179 + +Laplace (1749-1827), 179 + +Legendre (1752-1833), 179 + +Leibniz (1646-1716), 173 + +Linear construction, 40, 41, 42 + +Maclaurin (1698-1746), 177, 178 + +Measurements, 23, 40, 41, 104 + +Mersenne (1588-1648), 168, 171 + +Metrical theorems, 40, 104, 106, 107, 141 + +Middle point, 39, 41 + +Moebius (1790-1868), 179 + +Monge (1746-1818), 179, 180 + +Napier (1550-1617), 162 + +Newton (1642-1727), 177 + +Numbers, 4, 21, 43 + +Numerical computations, 43, 44, 46 + +One-to-one correspondence, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 24, 36, 87, 43, +60, 104, 106, 184 + +Opposite sides of a hexagon, 70 + +Opposite sides of a quadrilateral, 28, 29 + +Order of a form, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 + +Pappus (fourth century A.D.), 161 + +Parabola, 110, 111, 112, 119, 162 + +Parallel lines, 39, 41, 162 + +Pascal (1623-1662), 69, 70, 74, 75, 76, 77, 78, 95, 105, 125, 162, 169, +171, 172, 173 + +Pencil of planes of the second order, 59 + +Pencil of rays, 6, 7, 8, 23; of the second order, 57, 60, 79, 81 + +Perspective position, 6, 8, 35, 37, 51, 53, 71 + +Plane system, 16, 23 + +Planes on space, 17 + +Point of contact, 87, 88, 89, 90 + +Point system, 16, 23 + +Point-row, 6, 7, 8, 9, 23; of the second order, 55, 60, 61, 66, 67, 72 + +Points in space, 18 + +Pole and polar, 98, 99, 100, 101, 138, 164, 166 + +Poncelet (1788-1867), 177, 179, 180, 181, 182, 183, 184 + +Principal axis of a conic, 157 + +Projection, 161 + +Protective axial pencils, 59 + +Projective correspondence, 9, 35, 36, 37, 47, 71, 92, 104 + +Projective pencils, 53, 64, 68 + +Projective point-rows, 51, 79 + +Projective properties, 24 + +Projective theorems, 40, 104 + +Quadrangle, 26, 27, 28, 29 + +Quadric cone, 59 + +Quadrilateral, 88, 95, 96 + +Roberval (1602-1675), 168 + +Ruler construction, 40 + +Scheiner, 169 + +Self-corresponding elements, 47, 48, 49, 50, 51 + +Self-dual, 105 + +Self-polar triangle, 102 + +Separation of elements in involution, 148 + +Separation of harmonic conjugates, 38 + +Sequence of points, 49 + +Sign of segment, 44, 45 + +Similarity, 106 + +Skew lines, 12 + +Space system, 19, 23 + +Sphere, 21 + +Steiner (1796-1863), 129, 130, 131, 177, 179, 184 + +Steiner's construction, 129, 130, 131 + +Superposed point-rows, 47, 48, 49 + +Surfaces of the second degree, 166 + +System of lines in space, 20, 23 + +Systems of conics, 125 + +Tangent line, 61, 80, 81, 87, 88, 89, 90, 91, 92 + +Tycho Brahe (1546-1601), 162 + +Verner, 161 + +Vertex of conic, 157, 159 + +Von Staudt (1798-1867), 179, 185 + +Wallis (1616-1703), 162 + + + + + + +FOOTNOTES + + + 1 The more general notion of _anharmonic ratio_, which includes the + harmonic ratio as a special case, was also known to the ancients. + While we have not found it necessary to make use of the anharmonic + ratio in building up our theory, it is so frequently met with in + treatises on geometry that some account of it should be given. + + Consider any four points, _A_, _B_, _C_, _D_, on a line, and join + them to any point _S_ not on that line. Then the triangles _ASB_, + _GSD_, _ASD_, _CSB_, having all the same altitude, are to each other + as their bases. Also, since the area of any triangle is one half the + product of any two of its sides by the sine of the angle included + between them, we have + + [formula] + + Now the fraction on the right would be unchanged if instead of the + points _A_, _B_, _C_, _D_ we should take any other four points _A'_, + _B'_, _C'_, _D'_ lying on any other line cutting across _SA_, _SB_, + _SC_, _SD_. In other words, _the fraction on the left is unaltered + in value if the points __A__, __B__, __C__, __D__ are replaced by + any other four points perspective to them._ Again, the fraction on + the left is unchanged if some other point were taken instead of _S_. + In other words, _the fraction on the right is unaltered if we + replace the four lines __SA__, __SB__, __SC__, __SD__ by any other + four lines perspective to them._ The fraction on the left is called + the _anharmonic ratio_ of the four points _A_, _B_, _C_, _D_; the + fraction on the right is called the _anharmonic ratio_ of the four + lines _SA_, _SB_, _SC_, _SD_. The anharmonic ratio of four points is + sometimes written (_ABCD_), so that + + [formula] + + If we take the points in different order, the value of the + anharmonic ratio will not necessarily remain the same. The + twenty-four different ways of writing them will, however, give not + more than six different values for the anharmonic ratio, for by + writing out the fractions which define them we can find that _(ABCD) + = (BADC) = (CDAB) = (DCBA)_. If we write _(ABCD) = a_, it is not + difficult to show that the six values are + + [formula] + + The proof of this we leave to the student. + + If _A_, _B_, _C_, _D_ are four harmonic points (see Fig. 6, p. *22), + and a quadrilateral _KLMN_ is constructed such that _KL_ and _MN_ + pass through _A_, _KN_ and _LM_ through _C_, _LN_ through _B_, and + _KM_ through _D_, then, projecting _A_, _B_, _C_, _D_ from _L_ upon + _KM_, we have _(ABCD) = (KOMD)_, where _O_ is the intersection of + _KM_ with _LN_. But, projecting again the points _K_, _O_, _M_, _D_ + from _N_ back upon the line _AB_, we have _(KOMD) = (CBAD)_. From + this we have + + _(ABCD) = (CBAD),_ + + or + + [formula] + + whence _a = 0_ or _a = 2_. But it is easy to see that _a = 0_ + implies that two of the four points coincide. For four harmonic + points, therefore, the six values of the anharmonic ratio reduce to + three, namely, 2, [formula], and -1. Incidentally we see that if an + interchange of any two points in an anharmonic ratio does not change + its value, then the four points are harmonic. + + [Figure 49] + + FIG. 49 + + + Many theorems of projective geometry are succinctly stated in terms + of anharmonic ratios. Thus, the _anharmonic ratio of any four + elements of a form is equal to the anharmonic ratio of the + corresponding four elements in any form projectively related to it. + The anharmonic ratio of the lines joining any four fixed points on a + conic to a variable fifthpoint on the conic is constant. The locus + of points from which four points in a plane are seen along four rays + of constant anharmonic ratio is a conic through the four points._ We + leave these theorems for the student, who may also justify the + following solution of the problem: _Given three points and a certain + anharmonic ratio, to find a fourth point which shall have with the + given three the given anharmonic ratio._ Let _A_, _B_, _D_ be the + three given points (Fig. 49). On any convenient line through _A_ + take two points _B'_ and _D'_ such that _AB'/AD'_ is equal to the + given anharmonic ratio. Join _BB'_ and _DD'_ and let the two lines + meet in _S_. Draw through _S_ a parallel to _AB'_. This line will + meet _AB_ in the required point _C_. + + 2 Pappus, Mathematicae Collectiones, vii, 129. + + 3 J. Verneri, Libellus super vigintiduobus elementis conicis, etc. + 1522. + + 4 Kepler, Ad Vitellionem paralipomena quibus astronomiae pars optica + traditur. 1604. + + 5 Desargues, Bruillon-project d'une atteinte aux evenements des + rencontres d'un cone avec un plan. 1639. Edited and analyzed by + Poudra, 1864. + + 6 The term 'pole' was first introduced, in the sense in which we have + used it, in 1810, by a French mathematician named Servois (Gergonne, + _Annales des Matheematiques_, I, 337), and the corresponding term + 'polar' by the editor, Gergonne, of this same journal three years + later. + + 7 Euler, Introductio in analysin infinitorum, Appendix, cap. V. 1748. + + 8 OEuvres de Desargues, t. II, 132. + + 9 OEuvres de Desargues, t. II, 370. + + 10 OEuvres de Descartes, t. II, 499. + + 11 OEuvres de Pascal, par Brunsehvig et Boutroux, t. I, 252. + + 12 Chasles, Histoire de la Geometrie, 70. + + 13 OEuvres de Desargues, t. I, 231. + + 14 See Ball, History of Mathematics, French edition, t. II, 233. + + 15 Newton, Principia, lib. i, lemma XXI. + + 16 Maclaurin, Philosophical Transactions of the Royal Society of + London, 1735. + + 17 Monge, Geometrie Descriptive. 1800. + + 18 Poncelet, Traite des Proprietes Projectives des Figures. 1822. (See + p. 357, Vol. II, of the edition of 1866.) + + 19 Gergonne, _Annales de Mathematiques, XVI, 209. 1826._ + + 20 Steiner, Systematische Ehtwickelung der Abhaengigkeit geometrischer + Gestalten von einander. 1832. + + 21 Von Staudt, Geometrie der Lage. 1847. + + 22 Reye, Geometrie der Lage. Translated by Holgate, 1897. + + 23 Ball, loc. cit. p. 261. + + + + +***END OF THE PROJECT GUTENBERG EBOOK AN ELEMENTARY COURSE IN SYNTHETIC PROJECTIVE GEOMETRY*** + + + + +CREDITS + + +November 2005 + + Project Gutenberg Edition + Joshua Hutchinson, Cornell University, Online Distributed + Proofreading Team + +June 2006 + + Added PGHeader/PGFooter. + Joshua Hutchinson + + +A WORD FROM PROJECT GUTENBERG + + +This file should be named 17001-0.txt or 17001-0.zip. + +This and all associated files of various formats will be found in: + + + http://www.gutenberg.org/dirs/1/7/0/0/17001/ + + +Updated editions will replace the previous one -- the old editions will be +renamed. + +Creating the works from public domain print editions means that no one +owns a United States copyright in these works, so the Foundation (and +you!) can copy and distribute it in the United States without permission +and without paying copyright royalties. Special rules, set forth in the +General Terms of Use part of this license, apply to copying and +distributing Project Gutenberg{~TRADE MARK SIGN~} electronic works to protect the Project +Gutenberg{~TRADE MARK SIGN~} concept and trademark. Project Gutenberg is a registered +trademark, and may not be used if you charge for the eBooks, unless you +receive specific permission. If you do not charge anything for copies of +this eBook, complying with the rules is very easy. You may use this eBook +for nearly any purpose such as creation of derivative works, reports, +performances and research. They may be modified and printed and given away +-- you may do practically _anything_ with public domain eBooks. +Redistribution is subject to the trademark license, especially commercial +redistribution. + + +THE FULL PROJECT GUTENBERG LICENSE + + +_Please read this before you distribute or use this work._ + +To protect the Project Gutenberg{~TRADE MARK SIGN~} mission of promoting the free +distribution of electronic works, by using or distributing this work (or +any other work associated in any way with the phrase "Project Gutenberg"), +you agree to comply with all the terms of the Full Project Gutenberg{~TRADE MARK SIGN~} +License (available with this file or online at +http://www.gutenberg.org/license). + + +Section 1. + + +General Terms of Use & Redistributing Project Gutenberg{~TRADE MARK SIGN~} electronic works + + +1.A. + + +By reading or using any part of this Project Gutenberg{~TRADE MARK SIGN~} electronic work, +you indicate that you have read, understand, agree to and accept all the +terms of this license and intellectual property (trademark/copyright) +agreement. If you do not agree to abide by all the terms of this +agreement, you must cease using and return or destroy all copies of +Project Gutenberg{~TRADE MARK SIGN~} electronic works in your possession. If you paid a fee +for obtaining a copy of or access to a Project Gutenberg{~TRADE MARK SIGN~} electronic work +and you do not agree to be bound by the terms of this agreement, you may +obtain a refund from the person or entity to whom you paid the fee as set +forth in paragraph 1.E.8. + + +1.B. + + +"Project Gutenberg" is a registered trademark. It may only be used on or +associated in any way with an electronic work by people who agree to be +bound by the terms of this agreement. There are a few things that you can +do with most Project Gutenberg{~TRADE MARK SIGN~} electronic works even without complying +with the full terms of this agreement. See paragraph 1.C below. There are +a lot of things you can do with Project Gutenberg{~TRADE MARK SIGN~} electronic works if you +follow the terms of this agreement and help preserve free future access to +Project Gutenberg{~TRADE MARK SIGN~} electronic works. See paragraph 1.E below. + + +1.C. + + +The Project Gutenberg Literary Archive Foundation ("the Foundation" or +PGLAF), owns a compilation copyright in the collection of Project +Gutenberg{~TRADE MARK SIGN~} electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an individual +work is in the public domain in the United States and you are located in +the United States, we do not claim a right to prevent you from copying, +distributing, performing, displaying or creating derivative works based on +the work as long as all references to Project Gutenberg are removed. Of +course, we hope that you will support the Project Gutenberg{~TRADE MARK SIGN~} mission of +promoting free access to electronic works by freely sharing Project +Gutenberg{~TRADE MARK SIGN~} works in compliance with the terms of this agreement for +keeping the Project Gutenberg{~TRADE MARK SIGN~} name associated with the work. You can +easily comply with the terms of this agreement by keeping this work in the +same format with its attached full Project Gutenberg{~TRADE MARK SIGN~} License when you +share it without charge with others. + + +1.D. + + +The copyright laws of the place where you are located also govern what you +can do with this work. Copyright laws in most countries are in a constant +state of change. If you are outside the United States, check the laws of +your country in addition to the terms of this agreement before +downloading, copying, displaying, performing, distributing or creating +derivative works based on this work or any other Project Gutenberg{~TRADE MARK SIGN~} work. +The Foundation makes no representations concerning the copyright status of +any work in any country outside the United States. + + +1.E. + + +Unless you have removed all references to Project Gutenberg: + + +1.E.1. + + +The following sentence, with active links to, or other immediate access +to, the full Project Gutenberg{~TRADE MARK SIGN~} License must appear prominently whenever +any copy of a Project Gutenberg{~TRADE MARK SIGN~} work (any work on which the phrase +"Project Gutenberg" appears, or with which the phrase "Project Gutenberg" +is associated) is accessed, displayed, performed, viewed, copied or +distributed: + + + This eBook is for the use of anyone anywhere at no cost and with + almost no restrictions whatsoever. You may copy it, give it away + or re-use it under the terms of the Project Gutenberg License + included with this eBook or online at http://www.gutenberg.org + + +1.E.2. + + +If an individual Project Gutenberg{~TRADE MARK SIGN~} electronic work is derived from the +public domain (does not contain a notice indicating that it is posted with +permission of the copyright holder), the work can be copied and +distributed to anyone in the United States without paying any fees or +charges. If you are redistributing or providing access to a work with the +phrase "Project Gutenberg" associated with or appearing on the work, you +must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 +or obtain permission for the use of the work and the Project Gutenberg{~TRADE MARK SIGN~} +trademark as set forth in paragraphs 1.E.8 or 1.E.9. + + +1.E.3. + + +If an individual Project Gutenberg{~TRADE MARK SIGN~} electronic work is posted with the +permission of the copyright holder, your use and distribution must comply +with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed +by the copyright holder. Additional terms will be linked to the Project +Gutenberg{~TRADE MARK SIGN~} License for all works posted with the permission of the +copyright holder found at the beginning of this work. + + +1.E.4. + + +Do not unlink or detach or remove the full Project Gutenberg{~TRADE MARK SIGN~} License +terms from this work, or any files containing a part of this work or any +other work associated with Project Gutenberg{~TRADE MARK SIGN~}. + + +1.E.5. + + +Do not copy, display, perform, distribute or redistribute this electronic +work, or any part of this electronic work, without prominently displaying +the sentence set forth in paragraph 1.E.1 with active links or immediate +access to the full terms of the Project Gutenberg{~TRADE MARK SIGN~} License. + + +1.E.6. + + +You may convert to and distribute this work in any binary, compressed, +marked up, nonproprietary or proprietary form, including any word +processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenberg{~TRADE MARK SIGN~} work in a format other than +"Plain Vanilla ASCII" or other format used in the official version posted +on the official Project Gutenberg{~TRADE MARK SIGN~} web site (http://www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original "Plain Vanilla ASCII" or other form. +Any alternate format must include the full Project Gutenberg{~TRADE MARK SIGN~} License as +specified in paragraph 1.E.1. + + +1.E.7. + + +Do not charge a fee for access to, viewing, displaying, performing, +copying or distributing any Project Gutenberg{~TRADE MARK SIGN~} works unless you comply +with paragraph 1.E.8 or 1.E.9. + + +1.E.8. + + +You may charge a reasonable fee for copies of or providing access to or +distributing Project Gutenberg{~TRADE MARK SIGN~} electronic works provided that + + - You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenberg{~TRADE MARK SIGN~} works calculated using the method you + already use to calculate your applicable taxes. The fee is owed to + the owner of the Project Gutenberg{~TRADE MARK SIGN~} trademark, but he has agreed to + donate royalties under this paragraph to the Project Gutenberg + Literary Archive Foundation. Royalty payments must be paid within 60 + days following each date on which you prepare (or are legally + required to prepare) your periodic tax returns. Royalty payments + should be clearly marked as such and sent to the Project Gutenberg + Literary Archive Foundation at the address specified in Section 4, + "Information about donations to the Project Gutenberg Literary + Archive Foundation." + + - You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenberg{~TRADE MARK SIGN~} License. + You must require such a user to return or destroy all copies of the + works possessed in a physical medium and discontinue all use of and + all access to other copies of Project Gutenberg{~TRADE MARK SIGN~} works. + + - You provide, in accordance with paragraph 1.F.3, a full refund of + any money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days of + receipt of the work. + + - You comply with all other terms of this agreement for free + distribution of Project Gutenberg{~TRADE MARK SIGN~} works. + + +1.E.9. + + +If you wish to charge a fee or distribute a Project Gutenberg{~TRADE MARK SIGN~} electronic +work or group of works on different terms than are set forth in this +agreement, you must obtain permission in writing from both the Project +Gutenberg Literary Archive Foundation and Michael Hart, the owner of the +Project Gutenberg{~TRADE MARK SIGN~} trademark. Contact the Foundation as set forth in +Section 3 below. + + +1.F. + + +1.F.1. + + +Project Gutenberg volunteers and employees expend considerable effort to +identify, do copyright research on, transcribe and proofread public domain +works in creating the Project Gutenberg{~TRADE MARK SIGN~} collection. Despite these +efforts, Project Gutenberg{~TRADE MARK SIGN~} electronic works, and the medium on which they +may be stored, may contain "Defects," such as, but not limited to, +incomplete, inaccurate or corrupt data, transcription errors, a copyright +or other intellectual property infringement, a defective or damaged disk +or other medium, a computer virus, or computer codes that damage or cannot +be read by your equipment. + + +1.F.2. + + +LIMITED WARRANTY, DISCLAIMER OF DAMAGES -- Except for the "Right of +Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg +Literary Archive Foundation, the owner of the Project Gutenberg{~TRADE MARK SIGN~} +trademark, and any other party distributing a Project Gutenberg{~TRADE MARK SIGN~} +electronic work under this agreement, disclaim all liability to you for +damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE +NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH +OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE +FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT +WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, +PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY +OF SUCH DAMAGE. + + +1.F.3. + + +LIMITED RIGHT OF REPLACEMENT OR REFUND -- If you discover a defect in this +electronic work within 90 days of receiving it, you can receive a refund +of the money (if any) you paid for it by sending a written explanation to +the person you received the work from. If you received the work on a +physical medium, you must return the medium with your written explanation. +The person or entity that provided you with the defective work may elect +to provide a replacement copy in lieu of a refund. If you received the +work electronically, the person or entity providing it to you may choose +to give you a second opportunity to receive the work electronically in +lieu of a refund. If the second copy is also defective, you may demand a +refund in writing without further opportunities to fix the problem. + + +1.F.4. + + +Except for the limited right of replacement or refund set forth in +paragraph 1.F.3, this work is provided to you 'AS-IS,' WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + + +1.F.5. + + +Some states do not allow disclaimers of certain implied warranties or the +exclusion or limitation of certain types of damages. If any disclaimer or +limitation set forth in this agreement violates the law of the state +applicable to this agreement, the agreement shall be interpreted to make +the maximum disclaimer or limitation permitted by the applicable state +law. The invalidity or unenforceability of any provision of this agreement +shall not void the remaining provisions. + + +1.F.6. + + +INDEMNITY -- You agree to indemnify and hold the Foundation, the trademark +owner, any agent or employee of the Foundation, anyone providing copies of +Project Gutenberg{~TRADE MARK SIGN~} electronic works in accordance with this agreement, and +any volunteers associated with the production, promotion and distribution +of Project Gutenberg{~TRADE MARK SIGN~} electronic works, harmless from all liability, costs +and expenses, including legal fees, that arise directly or indirectly from +any of the following which you do or cause to occur: (a) distribution of +this or any Project Gutenberg{~TRADE MARK SIGN~} work, (b) alteration, modification, or +additions or deletions to any Project Gutenberg{~TRADE MARK SIGN~} work, and (c) any Defect +you cause. + + +Section 2. + + + Information about the Mission of Project Gutenberg{~TRADE MARK SIGN~} + + +Project Gutenberg{~TRADE MARK SIGN~} is synonymous with the free distribution of electronic +works in formats readable by the widest variety of computers including +obsolete, old, middle-aged and new computers. It exists because of the +efforts of hundreds of volunteers and donations from people in all walks +of life. + +Volunteers and financial support to provide volunteers with the assistance +they need, is critical to reaching Project Gutenberg{~TRADE MARK SIGN~}'s goals and ensuring +that the Project Gutenberg{~TRADE MARK SIGN~} collection will remain freely available for +generations to come. In 2001, the Project Gutenberg Literary Archive +Foundation was created to provide a secure and permanent future for +Project Gutenberg{~TRADE MARK SIGN~} and future generations. To learn more about the Project +Gutenberg Literary Archive Foundation and how your efforts and donations +can help, see Sections 3 and 4 and the Foundation web page at +http://www.pglaf.org. + + +Section 3. + + + Information about the Project Gutenberg Literary Archive Foundation + + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the state of +Mississippi and granted tax exempt status by the Internal Revenue Service. +The Foundation's EIN or federal tax identification number is 64-6221541. +Its 501(c)(3) letter is posted at +http://www.gutenberg.org/fundraising/pglaf. Contributions to the Project +Gutenberg Literary Archive Foundation are tax deductible to the full +extent permitted by U.S. federal laws and your state's laws. + +The Foundation's principal office is located at 4557 Melan Dr. +S. Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at 809 North +1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact information +can be found at the Foundation's web site and official page at +http://www.pglaf.org + +For additional contact information: + + + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. + + + Information about Donations to the Project Gutenberg Literary Archive + Foundation + + +Project Gutenberg{~TRADE MARK SIGN~} depends upon and cannot survive without wide spread +public support and donations to carry out its mission of increasing the +number of public domain and licensed works that can be freely distributed +in machine readable form accessible by the widest array of equipment +including outdated equipment. Many small donations ($1 to $5,000) are +particularly important to maintaining tax exempt status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United States. +Compliance requirements are not uniform and it takes a considerable +effort, much paperwork and many fees to meet and keep up with these +requirements. We do not solicit donations in locations where we have not +received written confirmation of compliance. To SEND DONATIONS or +determine the status of compliance for any particular state visit +http://www.gutenberg.org/fundraising/donate + +While we cannot and do not solicit contributions from states where we have +not met the solicitation requirements, we know of no prohibition against +accepting unsolicited donations from donors in such states who approach us +with offers to donate. + +International donations are gratefully accepted, but we cannot make any +statements concerning tax treatment of donations received from outside the +United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation methods +and addresses. Donations are accepted in a number of other ways including +checks, online payments and credit card donations. To donate, please +visit: http://www.gutenberg.org/fundraising/donate + + +Section 5. + + + General Information About Project Gutenberg{~TRADE MARK SIGN~} electronic works. + + +Professor Michael S. Hart is the originator of the Project Gutenberg{~TRADE MARK SIGN~} +concept of a library of electronic works that could be freely shared with +anyone. For thirty years, he produced and distributed Project Gutenberg{~TRADE MARK SIGN~} +eBooks with only a loose network of volunteer support. + +Project Gutenberg{~TRADE MARK SIGN~} eBooks are often created from several printed editions, +all of which are confirmed as Public Domain in the U.S. unless a copyright +notice is included. Thus, we do not necessarily keep eBooks in compliance +with any particular paper edition. + +Each eBook is in a subdirectory of the same number as the eBook's eBook +number, often in several formats including plain vanilla ASCII, compressed +(zipped), HTML and others. + +Corrected _editions_ of our eBooks replace the old file and take over the +old filename and etext number. The replaced older file is renamed. +_Versions_ based on separate sources are treated as new eBooks receiving +new filenames and etext numbers. + +Most people start at our Web site which has the main PG search facility: + + + http://www.gutenberg.org + + +This Web site includes information about Project Gutenberg{~TRADE MARK SIGN~}, including how +to make donations to the Project Gutenberg Literary Archive Foundation, +how to help produce our new eBooks, and how to subscribe to our email +newsletter to hear about new eBooks. + + + + + + +***FINIS*** +
\ No newline at end of file diff --git a/old/17001.zip b/old/17001.zip Binary files differnew file mode 100644 index 0000000..42d1330 --- /dev/null +++ b/old/17001.zip |
