summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRoger Frank <rfrank@pglaf.org>2025-10-14 19:05:54 -0700
committerRoger Frank <rfrank@pglaf.org>2025-10-14 19:05:54 -0700
commit9638e58f45d4e1a4277028e9bcf9651e334bec4f (patch)
tree91c91aeacb0f42c7a34134d1925ba624c6363f2b
initial commit of ebook 47464HEADmain
-rw-r--r--.gitattributes3
-rw-r--r--47464-h.zipbin0 -> 857965 bytes
-rw-r--r--47464-h/47464-h.htm6272
-rw-r--r--47464-h/images/001.jpgbin0 -> 16480 bytes
-rw-r--r--47464-h/images/002.jpgbin0 -> 45043 bytes
-rw-r--r--47464-h/images/003.jpgbin0 -> 17391 bytes
-rw-r--r--47464-h/images/004.jpgbin0 -> 17569 bytes
-rw-r--r--47464-h/images/005.jpgbin0 -> 40199 bytes
-rw-r--r--47464-h/images/006.jpgbin0 -> 37618 bytes
-rw-r--r--47464-h/images/007.jpgbin0 -> 40397 bytes
-rw-r--r--47464-h/images/008.jpgbin0 -> 37687 bytes
-rw-r--r--47464-h/images/1.svg1
-rw-r--r--47464-h/images/10.svg1
-rw-r--r--47464-h/images/100.svg1
-rw-r--r--47464-h/images/101.svg1
-rw-r--r--47464-h/images/102.svg1
-rw-r--r--47464-h/images/103.svg1
-rw-r--r--47464-h/images/104.svg1
-rw-r--r--47464-h/images/105.svg1
-rw-r--r--47464-h/images/106.svg1
-rw-r--r--47464-h/images/107.svg1
-rw-r--r--47464-h/images/108.svg1
-rw-r--r--47464-h/images/109.svg1
-rw-r--r--47464-h/images/11.svg1
-rw-r--r--47464-h/images/110.svg1
-rw-r--r--47464-h/images/111.svg1
-rw-r--r--47464-h/images/112.svg1
-rw-r--r--47464-h/images/113.svg1
-rw-r--r--47464-h/images/114.svg1
-rw-r--r--47464-h/images/115.svg1
-rw-r--r--47464-h/images/116.svg1
-rw-r--r--47464-h/images/117.svg1
-rw-r--r--47464-h/images/118.svg1
-rw-r--r--47464-h/images/119.svg1
-rw-r--r--47464-h/images/12.svg1
-rw-r--r--47464-h/images/120.svg1
-rw-r--r--47464-h/images/121.svg1
-rw-r--r--47464-h/images/122.svg1
-rw-r--r--47464-h/images/123.svg1
-rw-r--r--47464-h/images/124.svg1
-rw-r--r--47464-h/images/125.svg1
-rw-r--r--47464-h/images/126.svg1
-rw-r--r--47464-h/images/127.svg1
-rw-r--r--47464-h/images/128.svg1
-rw-r--r--47464-h/images/129.svg1
-rw-r--r--47464-h/images/13.svg1
-rw-r--r--47464-h/images/130.svg1
-rw-r--r--47464-h/images/131.svg1
-rw-r--r--47464-h/images/132.svg1
-rw-r--r--47464-h/images/133.svg1
-rw-r--r--47464-h/images/134.svg1
-rw-r--r--47464-h/images/135.svg1
-rw-r--r--47464-h/images/136.svg1
-rw-r--r--47464-h/images/137.svg1
-rw-r--r--47464-h/images/138.svg1
-rw-r--r--47464-h/images/139.svg1
-rw-r--r--47464-h/images/14.svg1
-rw-r--r--47464-h/images/140.svg1
-rw-r--r--47464-h/images/141.svg1
-rw-r--r--47464-h/images/142.svg1
-rw-r--r--47464-h/images/143.svg1
-rw-r--r--47464-h/images/144.svg1
-rw-r--r--47464-h/images/145.svg1
-rw-r--r--47464-h/images/146.svg1
-rw-r--r--47464-h/images/147.svg1
-rw-r--r--47464-h/images/148.svg1
-rw-r--r--47464-h/images/149.svg1
-rw-r--r--47464-h/images/15.svg1
-rw-r--r--47464-h/images/150.svg1
-rw-r--r--47464-h/images/151.svg1
-rw-r--r--47464-h/images/152.svg1
-rw-r--r--47464-h/images/153.svg1
-rw-r--r--47464-h/images/154.svg1
-rw-r--r--47464-h/images/155.svg1
-rw-r--r--47464-h/images/156.svg1
-rw-r--r--47464-h/images/157.svg1
-rw-r--r--47464-h/images/158.svg1
-rw-r--r--47464-h/images/159.svg1
-rw-r--r--47464-h/images/16.svg1
-rw-r--r--47464-h/images/160.svg1
-rw-r--r--47464-h/images/161.svg1
-rw-r--r--47464-h/images/162.svg1
-rw-r--r--47464-h/images/163.svg1
-rw-r--r--47464-h/images/164.svg1
-rw-r--r--47464-h/images/165.svg1
-rw-r--r--47464-h/images/166.svg1
-rw-r--r--47464-h/images/167.svg1
-rw-r--r--47464-h/images/168.svg1
-rw-r--r--47464-h/images/169.svg1
-rw-r--r--47464-h/images/17.svg1
-rw-r--r--47464-h/images/170.svg1
-rw-r--r--47464-h/images/171.svg1
-rw-r--r--47464-h/images/172.svg1
-rw-r--r--47464-h/images/173.svg1
-rw-r--r--47464-h/images/174.svg1
-rw-r--r--47464-h/images/175.svg1
-rw-r--r--47464-h/images/176.svg1
-rw-r--r--47464-h/images/177.svg1
-rw-r--r--47464-h/images/178.svg1
-rw-r--r--47464-h/images/179.svg1
-rw-r--r--47464-h/images/18.svg1
-rw-r--r--47464-h/images/180.svg1
-rw-r--r--47464-h/images/181.svg1
-rw-r--r--47464-h/images/182.svg1
-rw-r--r--47464-h/images/183.svg1
-rw-r--r--47464-h/images/184.svg1
-rw-r--r--47464-h/images/185.svg1
-rw-r--r--47464-h/images/186.svg1
-rw-r--r--47464-h/images/187.svg1
-rw-r--r--47464-h/images/188.svg1
-rw-r--r--47464-h/images/189.svg1
-rw-r--r--47464-h/images/19.svg1
-rw-r--r--47464-h/images/190.svg1
-rw-r--r--47464-h/images/191.svg1
-rw-r--r--47464-h/images/192.svg1
-rw-r--r--47464-h/images/193.svg1
-rw-r--r--47464-h/images/194.svg1
-rw-r--r--47464-h/images/195.svg1
-rw-r--r--47464-h/images/196.svg1
-rw-r--r--47464-h/images/197.svg1
-rw-r--r--47464-h/images/198.svg1
-rw-r--r--47464-h/images/199.svg1
-rw-r--r--47464-h/images/2.svg1
-rw-r--r--47464-h/images/20.svg1
-rw-r--r--47464-h/images/200.svg1
-rw-r--r--47464-h/images/201.svg1
-rw-r--r--47464-h/images/202.svg1
-rw-r--r--47464-h/images/203.svg1
-rw-r--r--47464-h/images/204.svg1
-rw-r--r--47464-h/images/205.svg1
-rw-r--r--47464-h/images/206.svg1
-rw-r--r--47464-h/images/207.svg1
-rw-r--r--47464-h/images/208.svg1
-rw-r--r--47464-h/images/209.svg1
-rw-r--r--47464-h/images/21.svg1
-rw-r--r--47464-h/images/210.svg1
-rw-r--r--47464-h/images/211.svg1
-rw-r--r--47464-h/images/212.svg1
-rw-r--r--47464-h/images/213.svg1
-rw-r--r--47464-h/images/214.svg1
-rw-r--r--47464-h/images/215.svg1
-rw-r--r--47464-h/images/216.svg1
-rw-r--r--47464-h/images/217.svg1
-rw-r--r--47464-h/images/218.svg1
-rw-r--r--47464-h/images/219.svg1
-rw-r--r--47464-h/images/22.svg1
-rw-r--r--47464-h/images/220.svg1
-rw-r--r--47464-h/images/221.svg1
-rw-r--r--47464-h/images/222.svg1
-rw-r--r--47464-h/images/223.svg1
-rw-r--r--47464-h/images/224.svg1
-rw-r--r--47464-h/images/225.svg1
-rw-r--r--47464-h/images/226.svg1
-rw-r--r--47464-h/images/227.svg1
-rw-r--r--47464-h/images/228.svg1
-rw-r--r--47464-h/images/229.svg1
-rw-r--r--47464-h/images/23.svg1
-rw-r--r--47464-h/images/230.svg1
-rw-r--r--47464-h/images/231.svg1
-rw-r--r--47464-h/images/232.svg1
-rw-r--r--47464-h/images/233.svg1
-rw-r--r--47464-h/images/234.svg1
-rw-r--r--47464-h/images/235.svg1
-rw-r--r--47464-h/images/236.svg1
-rw-r--r--47464-h/images/237.svg1
-rw-r--r--47464-h/images/238.svg1
-rw-r--r--47464-h/images/239.svg1
-rw-r--r--47464-h/images/24.svg1
-rw-r--r--47464-h/images/240.svg1
-rw-r--r--47464-h/images/241.svg1
-rw-r--r--47464-h/images/242.svg1
-rw-r--r--47464-h/images/243.svg1
-rw-r--r--47464-h/images/244.svg1
-rw-r--r--47464-h/images/245.svg1
-rw-r--r--47464-h/images/246.svg1
-rw-r--r--47464-h/images/247.svg1
-rw-r--r--47464-h/images/248.svg1
-rw-r--r--47464-h/images/249.svg1
-rw-r--r--47464-h/images/25.svg1
-rw-r--r--47464-h/images/250.svg1
-rw-r--r--47464-h/images/251.svg1
-rw-r--r--47464-h/images/252.svg1
-rw-r--r--47464-h/images/253.svg1
-rw-r--r--47464-h/images/254.svg1
-rw-r--r--47464-h/images/255.svg1
-rw-r--r--47464-h/images/256.svg1
-rw-r--r--47464-h/images/257.svg1
-rw-r--r--47464-h/images/258.svg1
-rw-r--r--47464-h/images/259.svg1
-rw-r--r--47464-h/images/26.svg1
-rw-r--r--47464-h/images/260.svg1
-rw-r--r--47464-h/images/261.svg1
-rw-r--r--47464-h/images/262.svg1
-rw-r--r--47464-h/images/263.svg1
-rw-r--r--47464-h/images/264.svg1
-rw-r--r--47464-h/images/265.svg1
-rw-r--r--47464-h/images/266.svg1
-rw-r--r--47464-h/images/267.svg1
-rw-r--r--47464-h/images/268.svg1
-rw-r--r--47464-h/images/269.svg1
-rw-r--r--47464-h/images/27.svg1
-rw-r--r--47464-h/images/270.svg1
-rw-r--r--47464-h/images/271.svg1
-rw-r--r--47464-h/images/272.svg1
-rw-r--r--47464-h/images/28.svg1
-rw-r--r--47464-h/images/29.svg1
-rw-r--r--47464-h/images/3.svg1
-rw-r--r--47464-h/images/30.svg1
-rw-r--r--47464-h/images/31.svg1
-rw-r--r--47464-h/images/32.svg1
-rw-r--r--47464-h/images/33.svg1
-rw-r--r--47464-h/images/34.svg1
-rw-r--r--47464-h/images/35.svg1
-rw-r--r--47464-h/images/36.svg1
-rw-r--r--47464-h/images/37.svg1
-rw-r--r--47464-h/images/38.svg1
-rw-r--r--47464-h/images/39.svg1
-rw-r--r--47464-h/images/4.svg1
-rw-r--r--47464-h/images/40.svg1
-rw-r--r--47464-h/images/41.svg1
-rw-r--r--47464-h/images/42.svg1
-rw-r--r--47464-h/images/43.svg1
-rw-r--r--47464-h/images/44.svg1
-rw-r--r--47464-h/images/45.svg1
-rw-r--r--47464-h/images/46.svg1
-rw-r--r--47464-h/images/47.svg1
-rw-r--r--47464-h/images/48.svg1
-rw-r--r--47464-h/images/49.svg1
-rw-r--r--47464-h/images/5.svg1
-rw-r--r--47464-h/images/50.svg1
-rw-r--r--47464-h/images/51.svg1
-rw-r--r--47464-h/images/52.svg1
-rw-r--r--47464-h/images/53.svg1
-rw-r--r--47464-h/images/54.svg1
-rw-r--r--47464-h/images/55.svg1
-rw-r--r--47464-h/images/56.svg1
-rw-r--r--47464-h/images/57.svg1
-rw-r--r--47464-h/images/58.svg1
-rw-r--r--47464-h/images/59.svg1
-rw-r--r--47464-h/images/6.svg1
-rw-r--r--47464-h/images/60.svg1
-rw-r--r--47464-h/images/61.svg1
-rw-r--r--47464-h/images/62.svg1
-rw-r--r--47464-h/images/63.svg1
-rw-r--r--47464-h/images/64.svg1
-rw-r--r--47464-h/images/65.svg1
-rw-r--r--47464-h/images/66.svg1
-rw-r--r--47464-h/images/67.svg1
-rw-r--r--47464-h/images/68.svg1
-rw-r--r--47464-h/images/69.svg1
-rw-r--r--47464-h/images/7.svg1
-rw-r--r--47464-h/images/70.svg1
-rw-r--r--47464-h/images/71.svg1
-rw-r--r--47464-h/images/72.svg1
-rw-r--r--47464-h/images/73.svg1
-rw-r--r--47464-h/images/74.svg1
-rw-r--r--47464-h/images/75.svg1
-rw-r--r--47464-h/images/76.svg1
-rw-r--r--47464-h/images/77.svg1
-rw-r--r--47464-h/images/78.svg1
-rw-r--r--47464-h/images/79.svg1
-rw-r--r--47464-h/images/8.svg1
-rw-r--r--47464-h/images/80.svg1
-rw-r--r--47464-h/images/81.svg1
-rw-r--r--47464-h/images/82.svg1
-rw-r--r--47464-h/images/83.svg1
-rw-r--r--47464-h/images/84.svg1
-rw-r--r--47464-h/images/85.svg1
-rw-r--r--47464-h/images/86.svg1
-rw-r--r--47464-h/images/87.svg1
-rw-r--r--47464-h/images/88.svg1
-rw-r--r--47464-h/images/89.svg1
-rw-r--r--47464-h/images/9.svg1
-rw-r--r--47464-h/images/90.svg1
-rw-r--r--47464-h/images/91.svg1
-rw-r--r--47464-h/images/92.svg1
-rw-r--r--47464-h/images/93.svg1
-rw-r--r--47464-h/images/94.svg1
-rw-r--r--47464-h/images/95.svg1
-rw-r--r--47464-h/images/96.svg1
-rw-r--r--47464-h/images/97.svg1
-rw-r--r--47464-h/images/98.svg1
-rw-r--r--47464-h/images/99.svg1
-rw-r--r--47464-h/images/cover.jpgbin0 -> 102882 bytes
-rw-r--r--47464-pdf.pdfbin0 -> 1116135 bytes
-rw-r--r--47464-pdf.zipbin0 -> 1095918 bytes
-rw-r--r--47464-t.zipbin0 -> 633714 bytes
-rw-r--r--47464-t/47464-t.tex6910
-rw-r--r--47464-t/images/fig_p102.pdfbin0 -> 69894 bytes
-rw-r--r--47464-t/images/fig_p113.pdfbin0 -> 50974 bytes
-rw-r--r--47464-t/images/fig_p123.pdfbin0 -> 142598 bytes
-rw-r--r--47464-t/images/fig_p124.pdfbin0 -> 48931 bytes
-rw-r--r--47464-t/images/fig_p30.pdfbin0 -> 55682 bytes
-rw-r--r--47464-t/images/fig_p70.pdfbin0 -> 76765 bytes
-rw-r--r--47464-t/images/fig_p79.pdfbin0 -> 55682 bytes
-rw-r--r--47464-t/images/fig_p97.pdfbin0 -> 29917 bytes
-rw-r--r--47464-t/old/47464-t.tex6908
-rw-r--r--47464-t/old/47464-t.zipbin0 -> 633961 bytes
-rw-r--r--LICENSE.txt11
-rw-r--r--README.md2
300 files changed, 20378 insertions, 0 deletions
diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..6833f05
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,3 @@
+* text=auto
+*.txt text
+*.md text
diff --git a/47464-h.zip b/47464-h.zip
new file mode 100644
index 0000000..23f100c
--- /dev/null
+++ b/47464-h.zip
Binary files differ
diff --git a/47464-h/47464-h.htm b/47464-h/47464-h.htm
new file mode 100644
index 0000000..c8406d0
--- /dev/null
+++ b/47464-h/47464-h.htm
@@ -0,0 +1,6272 @@
+<!DOCTYPE html>
+<html lang="en">
+<head>
+ <meta charset="UTF-8">
+ <title>
+ The Theory of Spectra And Atomic Constitution | Project Gutenberg
+ </title>
+ <link rel="icon" href="images/cover.jpg" type="image/x-cover">
+ <style>
+
+ #pg-header div, #pg-footer div {
+ all: initial;
+ display: block;
+ margin-top: 1em;
+ margin-bottom: 1em;
+ margin-left: 2em;
+ }
+ #pg-footer div.agate {
+ font-size: 90%;
+ margin-top: 0;
+ margin-bottom: 0;
+ text-align: center;
+ }
+ #pg-footer li {
+ all: initial;
+ display: block;
+ margin-top: 1em;
+ margin-bottom: 1em;
+ text-indent: -0.6em;
+ }
+ #pg-footer div.secthead {
+ font-size: 110%;
+ font-weight: bold;
+ }
+ #pg-footer #project-gutenberg-license {
+ font-size: 110%;
+ margin-top: 0;
+ margin-bottom: 0;
+ text-align: center;
+ }
+ #pg-header-heading {
+ all: inherit;
+ text-align: center;
+ font-size: 120%;
+ font-weight:bold;
+ }
+ #pg-footer-heading {
+ all: inherit;
+ text-align: center;
+ font-size: 120%;
+ font-weight: normal;
+ margin-top: 0;
+ margin-bottom: 0;
+ }
+ #pg-header #pg-machine-header p {
+ text-indent: -4em;
+ margin-left: 4em;
+ margin-top: 1em;
+ margin-bottom: 0;
+ font-size: medium
+ }
+ #pg-header #pg-header-authlist {
+ all: initial;
+ margin-top: 0;
+ margin-bottom: 0;
+ }
+ #pg-header #pg-machine-header strong {
+ font-weight: normal;
+ }
+ #pg-header #pg-start-separator, #pg-footer #pg-end-separator {
+ margin-bottom: 3em;
+ margin-left: 0;
+ margin-right: auto;
+ margin-top: 2em;
+ text-align: center
+ }
+
+ </style>
+ <style>
+
+body {
+ margin-left: 10%;
+ margin-right: 10%;
+}
+
+/* General headers */
+
+h1 {
+ text-align: center;
+ clear: both;
+}
+h2 {
+ text-align: center;
+ font-weight: bold;
+ margin-top: 1em;
+ margin-bottom: 1em;
+ }
+
+ h3,h4,h5,h6 {
+ text-align: center; /* all headings centered */
+ clear: both;
+}
+
+p {
+ margin-top: .51em;
+ text-align: justify;
+ margin-bottom: .49em;
+ text-indent: 1.5em;
+}
+.nind {text-indent:0;}
+
+hr {
+ width: 33%;
+ margin-top: 2em;
+ margin-bottom: 2em;
+ margin-left: 33.5%;
+ margin-right: 33.5%;
+ clear: both;
+}
+
+hr.chap {width: 65%; margin-left: 17.5%; margin-right: 17.5%;}
+@media print { hr.chap {display: none; visibility: hidden;} }
+
+div.chapter {page-break-before: always;}
+h2.nobreak {page-break-before: avoid;}
+
+table {
+ margin-left: auto;
+ margin-right: auto;
+}
+table.autotable { border-collapse: collapse; }
+table.autotable td,
+table.autotable th { padding: 0.25em; }
+
+.tdl {text-align: left;}
+.tdr {text-align: right;}
+.tdc {text-align: center;}
+
+.pagenum { /* uncomment the next line for invisible page numbers */
+ /* visibility: hidden; */
+ position: absolute;
+ left: 92%;
+ font-size: small;
+ text-align: right;
+ font-style: normal;
+ font-weight: normal;
+ font-variant: normal;
+ text-indent: 0;
+} /* page numbers */
+
+.center {text-align: center;}
+
+.right {text-align: right;}
+
+.smcap {font-variant: small-caps;}
+
+.allsmcap {font-variant: small-caps; text-transform: lowercase;}
+
+
+.space-above2 { margin-top: 2em; }
+.space-above3 { margin-top: 3em; }
+.space-below2 { margin-bottom: 2em; }
+
+
+/* Images */
+
+img {
+ max-width: 100%;
+ height: auto;
+}
+
+
+.figcenter {
+ margin: auto;
+ text-align: center;
+ page-break-inside: avoid;
+ max-width: 100%;
+}
+
+.width500 {max-width: 500px;}
+.width400 {max-width: 400px;}
+.x-ebookmaker .width500 {width: 100%;}
+.x-ebookmaker .width400 {width: 400%;}
+
+.align-center {
+ display: block;
+ text-align: center;
+ text-indent: 0;
+ margin-top: 0.3em;
+ margin-bottom: 0.3em;
+}
+.nowrap {
+ white-space: nowrap;
+}
+
+.caption {font-weight: normal;
+ font-size: 90%;
+ text-align: right;
+ padding-bottom: 1em;}
+
+.caption p
+{
+ text-align: center;
+ text-indent: 0;
+ margin: 0.25em 0;
+}
+
+/* Footnotes */
+
+.footnote {margin-left: 10%; margin-right: 10%; font-size: 0.9em;}
+
+.footnote .label {position: absolute; right: 84%; text-align: right;}
+
+.fnanchor {
+ vertical-align: super;
+ font-size: .8em;
+ text-decoration:
+ none;
+}
+
+/* Transcriber's notes */
+.transnote {background-color: #E6E6FA;
+ color: black;
+ font-size:small;
+ padding:0.5em;
+ margin-bottom:5em;
+ font-family:sans-serif, serif;
+}
+
+ </style>
+</head>
+<body>
+<section class='pg-boilerplate pgheader' id='pg-header' lang='en'>
+<h2 id='pg-header-heading' title=''>The Project Gutenberg eBook of The Theory of Spectra and Atomic Constitution: Three Essays by Niels Bohr</h2>
+
+<div>This ebook is for the use of anyone anywhere in the United States and
+most other parts of the world at no cost and with almost no restrictions
+whatsoever. You may copy it, give it away or re-use it under the terms
+of the Project Gutenberg License included with this ebook or online
+at <a class="reference external" href="https://www.gutenberg.org">www.gutenberg.org</a>. If you are not located in the United States,
+you will have to check the laws of the country where you are located
+before using this eBook.</div>
+
+
+<div class='container' id='pg-machine-header'>
+<p><strong>Title: </strong>The Theory of Spectra and Atomic Constitution: Three Essays</p>
+<div id='pg-header-authlist'>
+<p><strong>Author: </strong>Niels Bohr</p>
+</div>
+
+<p><strong>Release Date: </strong>September 26, 2023 [eBook #47464]</p>
+<p><strong>Language: </strong>English</p>
+<p><strong>Credits: </strong>Andrew D. Hwang. HTML version by Laura Natal. (This ebook was produced using scanned images and OCR text generously provided by the Brandeis University Library through the Internet Archive.)</p>
+</div>
+<div id='pg-start-separator'>
+<span>*** START OF THE PROJECT GUTENBERG EBOOK THE THEORY OF SPECTRA AND ATOMIC CONSTITUTION: THREE ESSAYS ***</span>
+</div>
+</section>
+<p><span class="pagenum" id="Page_i">[Pg i]</span></p>
+
+
+<p class="center">THE THEORY OF SPECTRA<br>
+AND<br>
+ATOMIC CONSTITUTION</p>
+<p><span class="pagenum" id="Page_ii">[Pg ii]</span></p>
+
+<p class="center space-above3 space-below2">CAMBRIDGE UNIVERSITY PRESS<br>
+C. F. CLAY, Manager<br>
+LONDON: FETTER LANE, E.C. 4</p>
+
+
+<p class="center">LONDON: H. K. LEWIS AND CO., <span class="allsmcap">LTD.,</span><br>
+136 Gower Street, W.C. 1<br>
+<img style="vertical-align: -3.507ex; width: 50.968ex; height: 8.145ex;" src="images/65.svg" alt=" " data-tex="\left.
+\begin{aligned}
+&\qquad\text{BOMBAY}\\
+&\qquad\text{CALCUTTA}\\
+&\qquad\text{MADRAS}\\
+\end{aligned}
+\right\}
+\text{MACMILLAN AND CO., LTD.}"><br>
+TORONTO: THE MACMILLAN CO. OF<br>
+CANADA, <span class="allsmcap">LTD.</span><br>
+TOKYO: MARUZEN-KABUSHIKI-KAISHA</p>
+
+<p class="center space-above3 space-below2">ALL RIGHTS RESERVED
+</p>
+
+<p><span class="pagenum" id="Page_iii">[Pg iii]</span></p>
+
+<div class="figcenter width500">
+<img src="images/cover.jpg" width="1600" alt="cover">
+</div>
+
+
+<h1>THE THEORY OF SPECTRA<br>
+AND<br>
+ATOMIC CONSTITUTION</h1>
+
+<p class="center space-above3 space-below2">THREE ESSAYS</p>
+
+
+<p class="center space-above3 space-below2 fontsize_80">BY</p>
+
+<div style="text-align:center; font-size:1.2em;">NIELS BOHR</div>
+
+<p class="center">Professor of Theoretical Physics in the University of Copenhagen</p>
+
+
+<p class="center space-above3 space-below2">CAMBRIDGE<br>
+AT THE UNIVERSITY PRESS<br>
+1922
+</p>
+
+<p><span class="pagenum" id="Page_iv">[Pg iv]</span></p>
+
+<p class="center">PRINTED IN GREAT BRITAIN<br>
+AT THE CAMBRIDGE UNIVERSITY PRESS
+</p>
+
+<p><span class="pagenum" id="Page_v">[Pg v]</span></p>
+
+
+
+<p class="center">PREFACE</p>
+
+
+<p class="nind">
+THE three essays which here appear in English all deal with the
+application of the quantum theory to problems of atomic structure, and
+refer to the different stages in the development of this theory.</p>
+
+<p>The first essay "On the spectrum of hydrogen" is a translation of a
+Danish address given before the Physical Society of Copenhagen on the
+20th of December 1913, and printed in <i>Fysisk Tidsskrift</i>, XII. p.
+97, 1914. Although this address was delivered at a time when the formal
+development of the quantum theory was only at its beginning, the reader
+will find the general trend of thought very similar to that expressed
+in the later addresses, which form the other two essays. As emphasized
+at several points the theory does not attempt an "explanation" in the
+usual sense of this word, but only the establishment of a connection
+between facts which in the present state of science are unexplained,
+that is to say the usual physical conceptions do not offer sufficient
+basis for a detailed description.</p>
+
+<p>The second essay "On the series spectra of the elements" is a
+translation of a German address given before the Physical Society
+of Berlin on the 27th of April 1920, and printed in <i>Zeitschrift
+für Physik</i>, VI. p. 423, 1920. This address falls into two main
+parts. The considerations in the first part are closely related to
+the contents of the first essay; especially no use is made of the
+new formal conceptions established through the later development of
+the quantum theory. The second part contains a survey of the results
+reached by this development. An attempt is made to elucidate the
+problems by means of a general principle which postulates a formal
+correspondence between the fundamentally different conceptions of the
+classical electrodynamics and those of the quantum theory. The first
+germ of this correspondence principle may be found in the first essay
+in the deduction of the expression for the constant of the hydrogen
+spectrum in terms of Planck's constant and of the quantities which in
+Rutherford's atomic model are necessary for the description of the
+<span class="pagenum" id="Page_vi">[Pg vi]</span>
+hydrogen atom.</p>
+
+<p>The third essay "The structure of the atom and the physical and
+chemical properties of the elements" is based on a Danish address,
+given before a joint meeting of the Physical and Chemical Societies
+of Copenhagen on the 18th of October 1921, and printed in <i>Fysisk
+Tidsskrift</i>, XIX. p. 153, 1921. While the first two essays form
+verbal translations of the respective addresses, this essay differs
+from the Danish original in certain minor points. Besides the addition
+of a few new figures with explanatory text, certain passages dealing
+with problems discussed in the second essay are left out, and some
+remarks about recent contributions to the subject are inserted. Where
+such insertions have been introduced will clearly appear from the
+text. This essay is divided into four parts. The first two parts
+contain a survey of previous results concerning atomic problems and a
+short account of the theoretical ideas of the quantum theory. In the
+following parts it is shown how these ideas lead to a view of atomic
+constitution which seems to offer an explanation of the observed
+physical and chemical properties of the elements, and especially to
+bring the characteristic features of the periodic table into close
+connection with the interpretation of the optical and high frequency
+spectra of the elements.</p>
+
+<p>For the convenience of the reader all three essays are subdivided into
+smaller paragraphs, each with a headline. Conforming to the character
+of the essays there is, however, no question of anything like a full
+account or even a proportionate treatment of the subject stated in
+these headlines, the principal object being to emphasize certain
+general views in a freer form than is usual in scientific treatises
+or text books. For the same reason no detailed references to the
+literature are given, although an attempt is made to mention the main
+contributions to the development of the subject. As regards further
+information the reader in the case of the second essay is referred to
+a larger treatise "On the quantum theory of line spectra," two parts
+of which have appeared in the Transactions of the Copenhagen Academy
+(<i>D. Kgl. Danske Vidensk. Selsk. Skrifter</i>, 8. Række, IV. 1, I and
+II, 1918), where full references to the literature may be found. The
+proposed continuation of this treatise, mentioned at several places
+<span class="pagenum" id="Page_vii">[Pg vii]</span>
+in the second essay, has for various reasons been delayed, but in the
+near future the work will be completed by the publication of a third
+part. It is my intention to deal more fully with the problems discussed
+in the third essay by a larger systematic account of the application of
+the quantum theory to atomic problems, which is under preparation.</p>
+
+<p>As mentioned both in the beginning and at the end of the third essay,
+the considerations which it contains are clearly still incomplete in
+character. This holds not only as regards the elaboration of details,
+but also as regards the development of the theoretical ideas. It may be
+useful once more to emphasize, that—although the word "explanation"
+has been used more liberally than for instance in the first essay—we
+are not concerned with a description of the phenomena, based on a
+well-defined physical picture. It may rather be said that hitherto
+every progress in the problem of atomic structure has tended to
+emphasize the well-known "mysteries" of the quantum theory more and
+more. I hope the exposition in these essays is sufficiently clear,
+nevertheless, to give the reader an impression of the peculiar charm
+which the study of atomic physics possesses just on this account.</p>
+
+<p>I wish to express my best thanks to Dr A. D. Udden, University of
+Pennsylvania, who has undertaken the translation of the original
+addresses into English, and to Mr C. D. Ellis, Trinity College,
+Cambridge, who has looked through the manuscript and suggested many
+valuable improvements in the exposition of the subject.</p>
+
+<p style="text-align:right">N. BOHR.</p>
+
+<p class="nind">
+<span class="allsmcap">COPENHAGEN,</span><br>
+<i>May</i> 1922.</p>
+
+<p><span class="pagenum" id="Page_viii">[Pg viii]</span></p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="CONTENTS">CONTENTS</h2>
+</div>
+
+<table class="autotable" >
+<tbody><tr>
+<td class="tdl"></td>
+<td class="tdc">ESSAY I</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc">ON THE SPECTRUM OF HYDROGEN</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc"></td>
+<td class="tdr">PAGE</td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Empirical Spectral Laws</span></td>
+<td class="tdr"><a href="#Page_1">1</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Laws of Temperature Radiation</span></td>
+<td class="tdr"><a href="#Page_4">4</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Nuclear Theory of the Atom</span></td>
+<td class="tdr"><a href="#Page_7">7</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Quantum Theory of Spectra</span></td>
+<td class="tdr"><a href="#Page_10">10</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Hydrogen Spectrum</span></td>
+<td class="tdr"><a href="#Page_12">12</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Pickering Lines</span></td>
+<td class="tdr"><a href="#Page_15">15</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Other Spectra</span></td>
+<td class="tdr"><a href="#Page_18">18</a></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc">ESSAY II</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc">ON THE SERIES SPECTRA OF THE ELEMENTS</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdr">I.</td>
+<td class="tdl">INTRODUCTION</td>
+<td class="tdr"><a href="#Page_20">20</a></td>
+</tr><tr>
+<td class="tdr">II.</td>
+<td class="tdl">GENERAL PRINCIPLES OF THE QUANTUM THEORY OF SPECTRA</td>
+<td class="tdr"><a href="#Page_23">23</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Hydrogen Spectrum</span></td>
+<td class="tdr"><a href="#Page_24">24</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Correspondence Principle</span></td>
+<td class="tdr"><a href="#Page_27">27</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">General Spectral Laws</span></td>
+<td class="tdr"><a href="#Page_29">29</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Absorption and Excitation of Radiation</span></td>
+<td class="tdr"><a href="#Page_32">32</a></td>
+</tr><tr>
+<td class="tdr">III.</td>
+<td class="tdl">DEVELOPMENT OF THE QUANTUM THEORY OF SPECTRA</td>
+<td class="tdr"><a href="#Page_36">36</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Effect of External Forces on the Hydrogen Spectrum</span></td>
+<td class="tdr"><a href="#Page_37">37</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Stark Effect</span></td>
+<td class="tdr"><a href="#Page_39">39</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Zeeman Effect</span></td>
+<td class="tdr"><a href="#Page_42">42</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Central Perturbations</span></td>
+<td class="tdr"><a href="#Page_44">44</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Relativity Effect on Hydrogen Lines</span></td>
+<td class="tdr"><a href="#Page_46">46</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Theory of Series Spectra</span></td>
+<td class="tdr"><a href="#Page_48">48</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Correspondence Principle and Conservation of Angular Momentum</span></td>
+<td class="tdr"><a href="#Page_50">50</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Spectra of Helium and Lithium</span></td>
+<td class="tdr"><a href="#Page_54">54</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Complex Structure of Series Lines</span></td>
+<td class="tdr"><a href="#Page_58">58</a></td>
+</tr><tr>
+<td class="tdr">IV.</td>
+<td class="tdl">CONCLUSION</td>
+<td class="tdr"><a href="#Page_59">59</a><span class="pagenum" id="Page_ix">[Pg ix]</span></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc">ESSAY III</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdl"></td>
+<td class="tdc">THE STRUCTURE OF THE ATOM AND THE PHYSICAL
+AND CHEMICAL PROPERTIES OF THE ELEMENTS</td>
+<td class="tdr"></td>
+</tr><tr>
+<td class="tdr">I.</td>
+<td class="tdl">PRELIMINARY</td>
+<td class="tdr"><a href="#Page_61">61</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Nuclear Atom</span></td>
+<td class="tdr"><a href="#Page_61">61</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Postulates of the Quantum
+Theory</span></td>
+<td class="tdr"><a href="#Page_62">62</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Hydrogen Atom</span></td>
+<td class="tdr"><a href="#Page_63">63</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Hydrogen Spectrum and X-ray
+Spectra</span></td>
+<td class="tdr"><a href="#Page_65">65</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">The Fine Structure of the
+Hydrogen Lines</span></td>
+<td class="tdr"><a href="#Page_67">67</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Periodic Table</span></td>
+<td class="tdr"><a href="#Page_69">69</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Recent Atomic Models</span></td>
+<td class="tdr"><a href="#Page_74">74</a></td>
+</tr><tr>
+<td class="tdr">II.</td>
+<td class="tdl">SERIES SPECTRA AND THE CAPTURE OF ELECTRONS BY ATOMS</td>
+<td class="tdr"><a href="#Page_75">75</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Arc and Spark Spectra</span></td>
+<td class="tdr"><a href="#Page_76">76</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Series Diagram</span></td>
+<td class="tdr"><a href="#Page_78">78</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Correspondence Principle</span></td>
+<td class="tdr"><a href="#Page_81">81</a></td>
+</tr><tr>
+<td class="tdr">III.</td>
+<td class="tdl">FORMATION OF ATOMS AND THE PERIODIC TABLE</td>
+<td class="tdr"><a href="#Page_85">85</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">First Period. Hydrogen—Helium</span></td>
+<td class="tdr"><a href="#Page_85">85</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Second Period. Lithium—Neon</span></td>
+<td class="tdr"><a href="#Page_89">89</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Third Period. Sodium—Argon</span></td>
+<td class="tdr"><a href="#Page_95">95</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Fourth Period. Potassium—Krypton</span></td>
+<td class="tdr"><a href="#Page_100">100</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Fifth Period. Rubidium—Xenon</span></td>
+<td class="tdr"><a href="#Page_108">108</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Sixth Period. Caesium—Niton</span></td>
+<td class="tdr"><a href="#Page_109">109</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Seventh Period</span></td>
+<td class="tdr"><a href="#Page_111">111</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Survey of the Periodic Table</span></td>
+<td class="tdr"><a href="#Page_113">113</a></td>
+</tr><tr>
+<td class="tdr">IV.</td>
+<td class="tdl">REORGANIZATION OF ATOMS AND X-RAY SPECTRA</td>
+<td class="tdr"><a href="#Page_116">116</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Absorption and Emission of X-rays and
+Correspondence Principle</span></td>
+<td class="tdr"><a href="#Page_117">117</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">X-ray Spectra and Atomic Structure</span></td>
+<td class="tdr"><a href="#Page_119">119</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Classification of X-ray Spectra</span></td>
+<td class="tdr"><a href="#Page_121">121</a></td>
+</tr><tr>
+<td class="tdc"></td>
+<td class="tdl"><span class="smcap">Conclusion</span></td>
+<td class="tdr"><a href="#Page_125">125</a></td>
+</tr>
+</tbody>
+</table>
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<p><span class="pagenum" id="Page_1">[Pg 1]</span></p>
+
+<h2 class="nobreak" id="ESSAY_I">ESSAY I
+<br><br>
+ON THE SPECTRUM OF HYDROGEN<a id="FNanchor_1" href="#Footnote_1" class="fnanchor">[1]</a></h2>
+</div>
+
+<p class="space-above3">
+<b>Empirical spectral laws.</b> Hydrogen possesses not only the
+smallest atomic weight of all the elements, but it also occupies a
+peculiar position both with regard to its physical and its chemical
+properties. One of the points where this becomes particularly apparent
+is the hydrogen line spectrum.</p>
+
+<p>The spectrum of hydrogen observed in an ordinary Geissler tube consists
+of a series of lines, the strongest of which lies at the red end of
+the spectrum, while the others extend out into the ultra-violet, the
+distance between the various lines, as well as their intensities,
+constantly decreasing. In the ultra-violet the series converges to a
+limit.</p>
+
+<p>Balmer, as we know, discovered (1885) that it was possible to represent
+the wave lengths of these lines very accurately by the simple law
+<span class="align-center"><img style="vertical-align: -2.148ex; width: 28.559ex; height: 5.428ex;" src="images/1.svg" alt=" " data-tex="
+\frac{1}{\lambda_{n}} = R \left(\frac{1}{4} - \frac{1}{n^{2}}\right),
+\qquad\text{(1)}
+"></span>
+where <img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R"> is a constant and <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> is a whole number. The wave lengths
+of the five strongest hydrogen lines, corresponding to
+<span class="nowrap"><img style="vertical-align: -0.439ex; width: 15.566ex; height: 1.971ex;" src="images/68.svg" alt=" " data-tex="n = 3,\, 4,\, 5,\, 6,\, 7">,</span> measured in air at ordinary pressure and
+temperature, and the values of these wave lengths multiplied by
+<img style="vertical-align: -2.148ex; width: 11.563ex; height: 5.428ex;" src="images/69.svg" alt=" " data-tex="\left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right)"> are given in the
+following table:</p>
+
+<table class="autotable">
+ <thead><tr>
+ <th class="tdc"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"><img style="vertical-align: 0; width: 4.525ex; height: 0.036ex;" src="images/70.svg" alt=" " data-tex="\qquad"></th>
+ <th class="tdc"><img style="vertical-align: 0; width: 0.378ex; height: 0.036ex;" src="images/71.svg" alt=" " data-tex="\,"><img style="vertical-align: -0.05ex; width: 6.204ex; height: 2.005ex;" src="images/72.svg" alt=" " data-tex="\lambda · 10^{8}"><img style="vertical-align: 0; width: 4.525ex; height: 0.036ex;" src="images/70.svg" alt=" " data-tex="\qquad"></th>
+ <th class="tdc"><img style="vertical-align: -0.027ex; width: 1.319ex; height: 1.597ex;" src="images/73.svg" alt=" " data-tex="\lambda"> · <img style="vertical-align: -2.148ex; width: 17.248ex; height: 5.428ex;" src="images/74.svg" alt=" " data-tex="\left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right) · 10^{10}"></th>
+ </tr>
+ </thead>
+ <tbody><tr>
+ <td class="tdl">3</td>
+ <td class="tdl">6563.04&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;91153.3</td>
+ </tr><tr>
+ <td class="tdl">4</td>
+ <td class="tdl">4861.49</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;91152.9</td>
+ </tr><tr>
+ <td class="tdl">5</td>
+ <td class="tdl">4340.66&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;91153.9</td>
+ </tr><tr>
+ <td class="tdl">6</td>
+ <td class="tdl">4101.85&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;91152.2</td>
+ </tr><tr>
+ <td class="tdl">7</td>
+ <td class="tdl">3970.25&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;91153.7</td>
+</tr>
+ </tbody>
+</table>
+
+<p class="nind">
+The table shows that the product is nearly constant, while the
+deviations are not greater than might be ascribed to experimental
+errors.</p>
+
+<p>As you already know, Balmer's discovery of the law relating to the
+hydrogen spectrum led to the discovery of laws applying to the spectra
+of other elements. The most important work in this connection was
+<span class="pagenum" id="Page_2">[Pg 2]</span>
+done by Rydberg (1890) and Ritz (1908). Rydberg pointed out that the
+spectra of many elements contain series of lines whose wave lengths are
+given approximately by the formula
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 20.885ex; height: 5.269ex;" src="images/2.svg" alt=" " data-tex="
+\frac{1}{\lambda_{n}} = A - \frac{R}{(n + \alpha)^{2}},
+"></span>
+where <img style="vertical-align: 0; width: 1.697ex; height: 1.62ex;" src="images/75.svg" alt=" " data-tex="A"> and <img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha"> are constants having different values for
+the various series, while <img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R"> is a universal constant equal to the
+constant in the spectrum of hydrogen. If the wave lengths are measured
+in vacuo Rydberg calculated the value of <img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R"> to be <span class="nowrap"><img style="vertical-align: -0.05ex; width: 6.787ex; height: 1.579ex;" src="images/77.svg" alt=" " data-tex="109675">.</span> In
+the spectra of many elements, as opposed to the simple spectrum of
+hydrogen, there are several series of lines whose wave lengths are to
+a close approximation given by Rydberg's formula if different values
+are assigned to the constants <img style="vertical-align: 0; width: 1.697ex; height: 1.62ex;" src="images/75.svg" alt=" " data-tex="A"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha">.</span> Rydberg showed,
+however, in his earliest work, that certain relations existed between
+the constants in the various series of the spectrum of one and the
+same element. These relations were later very successfully generalized
+by Ritz through the establishment of the "combination principle."
+According to this principle, the wave lengths of the various lines in
+the spectrum of an element may be expressed by the formula
+<span class="align-center"><img style="vertical-align: -1.579ex; width: 29.487ex; height: 4.615ex;" src="images/3.svg" alt=" " data-tex="
+\frac{1}{\lambda} = F_{r}(n_{1}) - F_{s}(n_{2}).
+\qquad\text{(2)}
+"></span>
+In this formula <img style="vertical-align: -0.339ex; width: 2.345ex; height: 1.339ex;" src="images/78.svg" alt=" " data-tex="n_{1}"> and <img style="vertical-align: -0.339ex; width: 2.345ex; height: 1.339ex;" src="images/79.svg" alt=" " data-tex="n_{2}"> are whole numbers, and
+<img style="vertical-align: -0.566ex; width: 15.91ex; height: 2.262ex;" src="images/80.svg" alt=" " data-tex="F_{1}(n),\, F_{2}(n)\, \dots"> is a series of functions of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span>
+which may be written approximately
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 19.352ex; height: 5.269ex;" src="images/4.svg" alt=" " data-tex="
+F_{r}(n) = \frac{R}{(n + \alpha_{r})^{2}},
+"></span>
+where <img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R"> is Rydberg's universal constant and <img style="vertical-align: -0.357ex; width: 2.357ex; height: 1.357ex;" src="images/81.svg" alt=" " data-tex="\alpha_{r}"> is a
+constant which is different for the different functions. A particular
+spectral line will, according to this principle, correspond to each
+combination of <span class="nowrap"><img style="vertical-align: -0.339ex; width: 9.093ex; height: 1.91ex;" src="images/82.svg" alt=" " data-tex="n_{1}\, \text{and}\, n_{2}">,</span> as well as to the
+functions <span class="nowrap"><img style="vertical-align: -0.439ex; width: 10.304ex; height: 1.977ex;" src="images/83.svg" alt=" " data-tex="F_{1},\, F_{2},\, \dots">.</span> The establishment of this
+principle led therefore to the prediction of a great number of lines
+which were not included in the spectral formulae previously considered,
+and in a large number of cases the calculations were found to be in
+close agreement with the experimental observations. In the case of
+hydrogen Ritz assumed that formula (1) was a special case of the
+general formula
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 28.879ex; height: 6.785ex;" src="images/5.svg" alt=" " data-tex="
+\frac{1}{\lambda} = R\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right),
+\qquad\text{(3)}
+"></span>
+<span class="pagenum" id="Page_3">[Pg 3]</span>
+and therefore predicted among other things a series of lines in the
+infra-red given by the formula
+<span class="align-center"><img style="vertical-align: -2.148ex; width: 19.618ex; height: 5.428ex;" src="images/6.svg" alt=" " data-tex="
+\frac{1}{\lambda} = R\left(\frac{1}{9} - \frac{1}{n^{2}}\right).
+"></span>
+In 1909 Paschen succeeded in observing the first two lines of this
+series corresponding to <span class="nowrap"><img style="vertical-align: -0.186ex; width: 15.414ex; height: 1.756ex;" src="images/84.svg" alt=" " data-tex="n = 4\, \text{and}\, n = 5">.</span></p>
+
+<p>The part played by hydrogen in the development of our knowledge of the
+spectral laws is not solely due to its ordinary simple spectrum, but it
+can also be traced in other less direct ways. At a time when Rydberg's
+laws were still in want of further confirmation Pickering (1897) found
+in the spectrum of a star a series of lines whose wave lengths showed a
+very simple relation to the ordinary hydrogen spectrum, since to a very
+close approximation they could be expressed by the formula
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 26.193ex; height: 6.785ex;" src="images/7.svg" alt=" " data-tex="
+\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{(n + \frac{1}{2})^{2}}\right).
+"></span>
+Rydberg considered these lines to represent a new series of lines in
+the spectrum of hydrogen, and predicted according to his theory the
+existence of still another series of hydrogen lines the wave lengths of
+which would be given by
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 23.284ex; height: 6.785ex;" src="images/8.svg" alt=" " data-tex="
+\frac{1}{\lambda} = R\left(\frac{1}{(\frac{3}{2})^{2}} - \frac{1}{n^{2}}\right).
+"></span>
+By examining earlier observations it was actually found that a line had
+been observed in the spectrum of certain stars which coincided closely
+with the first line in this series (corresponding to <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/85.svg" alt=" " data-tex="n = 2">)</span>;
+from analogy with other spectra it was also to be expected that this
+would be the strongest line. This was regarded as a great triumph for
+Rydberg's theory and tended to remove all doubt that the new spectrum
+was actually due to hydrogen. Rydberg's view has therefore been
+generally accepted by physicists up to the present moment. Recently
+however the question has been reopened and Fowler (1912) has succeeded
+in observing the Pickering lines in ordinary laboratory experiments. We
+shall return to this question again later.</p>
+
+<p>The discovery of these beautiful and simple laws concerning the line
+spectra of the elements has naturally resulted in many attempts at a
+theoretical explanation. Such attempts are very alluring because
+<span class="pagenum" id="Page_4">[Pg 4]</span>
+the simplicity of the spectral laws and the exceptional accuracy with
+which they apply appear to promise that the correct explanation will
+be very simple and will give valuable information about the properties
+of matter. I should like to consider some of these theories somewhat
+more closely, several of which are extremely interesting and have been
+developed with the greatest keenness and ingenuity, but unfortunately
+space does not permit me to do so here. I shall have to limit myself to
+the statement that not one of the theories so far proposed appears to
+offer a satisfactory or even a plausible way of explaining the laws of
+the line spectra. Considering our deficient knowledge of the laws which
+determine the processes inside atoms it is scarcely possible to give
+an explanation of the kind attempted in these theories. The inadequacy
+of our ordinary theoretical conceptions has become especially apparent
+from the important results which have been obtained in recent years
+from the theoretical and experimental study of the laws of temperature
+radiation. You will therefore understand that I shall not attempt
+to propose an explanation of the spectral laws; on the contrary I
+shall try to indicate a way in which it appears possible to bring
+the spectral laws into close connection with other properties of the
+elements, which appear to be equally inexplicable on the basis of the
+present state of the science. In these considerations I shall employ
+the results obtained from the study of temperature radiation as well as
+the view of atomic structure which has been reached by the study of the
+radioactive elements.</p>
+
+<p class="space-above3">
+<b>Laws of temperature radiation.</b> I shall commence by mentioning
+the conclusions which have been drawn from experimental and theoretical
+work on temperature radiation.</p>
+
+<p>Let us consider an enclosure surrounded by bodies which are in
+temperature equilibrium. In this space there will be a certain amount
+of energy contained in the rays emitted by the surrounding substances
+and crossing each other in every direction. By making the assumption
+that the temperature equilibrium will not be disturbed by the mutual
+radiation of the various bodies Kirchhoff (1860) showed that the
+amount of energy per unit volume as well as the distribution of this
+energy among the various wave lengths is independent of the form
+and size of the space and of the nature of the surrounding bodies
+<span class="pagenum" id="Page_5">[Pg 5]</span>
+and depends only on the temperature. Kirchhoff's result has been
+confirmed by experiment, and the amount of energy and its distribution
+among the various wave lengths and the manner in which it depends
+on the temperature are now fairly well known from a great amount of
+experimental work; or, as it is usually expressed, we have a fairly
+accurate experimental knowledge of the "laws of temperature radiation."</p>
+
+<p>Kirchhoff's considerations were only capable of predicting the
+existence of a law of temperature radiation, and many physicists
+have subsequently attempted to find a more thorough explanation of
+the experimental results. You will perceive that the electromagnetic
+theory of light together with the electron theory suggests a method
+of solving this problem. According to the electron theory of matter
+a body consists of a system of electrons. By making certain definite
+assumptions concerning the forces acting on the electrons it is
+possible to calculate their motion and consequently the energy radiated
+from the body per second in the form of electromagnetic oscillations
+of various wave lengths. In a similar manner the absorption of rays of
+a given wave length by a substance can be determined by calculating
+the effect of electromagnetic oscillations upon the motion of the
+electrons. Having investigated the emission and absorption of a body at
+all temperatures, and for rays of all wave lengths, it is possible, as
+Kirchhoff has shown, to determine immediately the laws of temperature
+radiation. Since the result is to be independent of the nature of the
+body we are justified in expecting an agreement with experiment, even
+though very special assumptions are made about the forces acting upon
+the electrons of the hypothetical substance. This naturally simplifies
+the problem considerably, but it is nevertheless sufficiently difficult
+and it is remarkable that it has been possible to make any advance at
+all in this direction. As is well known this has been done by Lorentz
+(1903). He calculated the emissive as well as the absorptive power of
+a metal for long wave lengths, using the same assumptions about the
+motions of the electrons in the metal that Drude (1900) employed in his
+calculation of the ratio of the electrical and thermal conductivities.
+Subsequently, by calculating the ratio of the emissive to the
+<span class="pagenum" id="Page_6">[Pg 6]</span>
+absorptive power, Lorentz really obtained an expression for the law of
+temperature radiation which for long wave lengths agrees remarkably
+well with experimental facts. In spite of this beautiful and promising
+result, it has nevertheless become apparent that the electromagnetic
+theory is incapable of explaining the law of temperature radiation.
+For, it is possible to show, that, if the investigation is not confined
+to oscillations of long wave lengths, as in Lorentz's work, but is also
+extended to oscillations corresponding to small wave lengths, results
+are obtained which are contrary to experiment. This is especially
+evident from Jeans' investigations (1905) in which he employed a very
+interesting statistical method first proposed by Lord Rayleigh.</p>
+
+<p>We are therefore compelled to assume, that the classical
+electrodynamics does not agree with reality, or expressed more
+carefully, that it cannot be employed in calculating the absorption and
+emission of radiation by atoms. Fortunately, the law of temperature
+radiation has also successfully indicated the direction in which the
+necessary changes in the electrodynamics are to be sought. Even before
+the appearance of the papers by Lorentz and Jeans, Planck (1900) had
+derived theoretically a formula for the black body radiation which was
+in good agreement with the results of experiment. Planck did not limit
+himself exclusively to the classical electrodynamics, but introduced
+the further assumption that a system of oscillating electrical
+particles (elementary resonators) will neither radiate nor absorb
+energy continuously, as required by the ordinary electrodynamics, but
+on the contrary will radiate and absorb discontinuously. The energy
+contained within the system at any moment is always equal to a whole
+multiple of the so-called quantum of energy the magnitude of which is
+equal to <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.502ex; height: 1.595ex;" src="images/86.svg" alt=" " data-tex="h\nu">,</span> where <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> is Planck's constant and <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> is the
+frequency of oscillation of the system per second. In formal respects
+Planck's theory leaves much to be desired; in certain calculations
+the ordinary electrodynamics is used, while in others assumptions
+distinctly at variance with it are introduced without any attempt being
+made to show that it is possible to give a consistent explanation of
+the procedure used. Planck's theory would hardly have acquired general
+recognition merely on the ground of its agreement with experiments
+on black body radiation, but, as you know, the theory has also
+contributed quite remarkably to the elucidation of many different
+<span class="pagenum" id="Page_7">[Pg 7]</span>
+physical phenomena, such as specific heats, photoelectric effect,
+X-rays and the absorption of heat rays by gases. These explanations
+involve more than the qualitative assumption of a discontinuous
+transformation of energy, for with the aid of Planck's constant <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h">
+it seems to be possible, at least approximately, to account for a great
+number of phenomena about which nothing could be said previously. It
+is therefore hardly too early to express the opinion that, whatever
+the final explanation will be, the discovery of "energy quanta" must
+be considered as one of the most important results arrived at in
+physics, and must be taken into consideration in investigations of the
+properties of atoms and particularly in connection with any explanation
+of the spectral laws in which such phenomena as the emission and
+absorption of electromagnetic radiation are concerned.</p>
+
+<p class="space-above3">
+<b>The nuclear theory of the atom.</b> We shall now consider the
+second part of the foundation on which we shall build, namely the
+conclusions arrived at from experiments with the rays emitted by
+radioactive substances. I have previously here in the Physical Society
+had the opportunity of speaking of the scattering of <img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha"> rays
+in passing through thin plates, and to mention how Rutherford (1911)
+has proposed a theory for the structure of the atom in order to
+explain the remarkable and unexpected results of these experiments. I
+shall, therefore, only remind you that the characteristic feature of
+Rutherford's theory is the assumption of the existence of a positively
+charged nucleus inside the atom. A number of electrons are supposed
+to revolve in closed orbits around the nucleus, the number of these
+electrons being sufficient to neutralize the positive charge of the
+nucleus. The dimensions of the nucleus are supposed to be very small
+in comparison with the dimensions of the orbits of the electrons, and
+almost the entire mass of the atom is supposed to be concentrated in
+the nucleus.</p>
+
+<p>According to Rutherford's calculation the positive charge of the
+nucleus corresponds to a number of electrons equal to about half the
+atomic weight. This number coincides approximately with the number
+of the particular element in the periodic system and it is therefore
+natural to assume that the number of electrons in the atom is
+<span class="pagenum" id="Page_8">[Pg 8]</span>
+exactly equal to this number. This hypothesis, which was first stated
+by van den Broek (1912), opens the possibility of obtaining a simple
+explanation of the periodic system. This assumption is strongly
+confirmed by experiments on the elements of small atomic weight. In
+the first place, it is evident that according to Rutherford's theory
+the <img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha"> particle is the same as the nucleus of a helium atom.
+Since the <img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha"> particle has a double positive charge it follows
+immediately that a neutral helium atom contains two electrons. Further
+the concordant results obtained from calculations based on experiments
+as different as the diffuse scattering of X-rays and the decrease
+in velocity of <img style="vertical-align: -0.025ex; width: 1.448ex; height: 1.025ex;" src="images/76.svg" alt=" " data-tex="\alpha"> rays in passing through matter render the
+conclusion extremely likely that a hydrogen atom contains only a single
+electron. This agrees most beautifully with the fact that J. J. Thomson
+in his well-known experiments on rays of positive electricity has never
+observed a hydrogen atom with more than a single positive charge, while
+all other elements investigated may have several charges.</p>
+
+<p>Let us now assume that a hydrogen atom simply consists of an electron
+revolving around a nucleus of equal and opposite charge, and of a mass
+which is very large in comparison with that of the electron. It is
+evident that this assumption may explain the peculiar position already
+referred to which hydrogen occupies among the elements, but it appears
+at the outset completely hopeless to attempt to explain anything at all
+of the special properties of hydrogen, still less its line spectrum, on
+the basis of considerations relating to such a simple system.</p>
+
+<p>Let us assume for the sake of brevity that the mass of the nucleus
+is infinitely large in proportion to that of the electron, and that
+the velocity of the electron is very small in comparison with that
+of light. If we now temporarily disregard the energy radiation,
+which, according to the ordinary electrodynamics, will accompany the
+accelerated motion of the electron, the latter in accordance with
+Kepler's first law will describe an ellipse with the nucleus in one of
+the foci. Denoting the frequency of revolution by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">,</span> and the
+major axis of the ellipse by <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> we find that
+<span class="align-center"><img style="vertical-align: -1.671ex; width: 33.116ex; height: 5.087ex;" src="images/9.svg" alt=" " data-tex="
+\omega^{2} = \frac{2W^{3}}{\pi^{2} e^{4} m},\quad
+2a = \frac{e^{2}}{W},
+\qquad\text{(4)}
+"></span>
+<span class="pagenum" id="Page_9">[Pg 9]</span>
+where <img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e"> is the charge of the electron and <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> its mass, while
+<img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> is the work which must be added to the system in order to remove
+the electron to an infinite distance from the nucleus.</p>
+
+<p>These expressions are extremely simple and they show that the magnitude
+of the frequency of revolution as well as the length of the major
+axis depend only on <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W">,</span> and are independent of the eccentricity
+of the orbit. By varying <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> we may obtain all possible values for
+<img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> and <span class="nowrap"><img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a">.</span> This condition shows, however, that it is not
+possible to employ the above formulae directly in calculating the orbit
+of the electron in a hydrogen atom. For this it will be necessary to
+assume that the orbit of the electron cannot take on all values, and in
+any event, the line spectrum clearly indicates that the oscillations
+of the electron cannot vary continuously between wide limits. The
+impossibility of making any progress with a simple system like the one
+considered here might have been foretold from a consideration of the
+dimensions involved; for with the aid of <img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e"> and <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> alone it is
+impossible to obtain a quantity which can be interpreted as a diameter
+of an atom or as a frequency.</p>
+
+<p>If we attempt to account for the radiation of energy in the manner
+required by the ordinary electrodynamics it will only make matters
+worse. As a result of the radiation of energy <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> would continually
+increase, and the above expressions (4) show that at the same time
+the frequency of revolution of the system would increase, and the
+dimensions of the orbit decrease. This process would not stop until the
+particles had approached so closely to one another that they no longer
+attracted each other. The quantity of energy which would be radiated
+away before this happened would be very great. If we were to treat
+these particles as geometrical points this energy would be infinitely
+great, and with the dimensions of the electrons as calculated from
+their mass (about <span class="nowrap"><img style="vertical-align: -0.05ex; width: 9.191ex; height: 2.005ex;" src="images/94.svg" alt=" " data-tex="10^{-13}\, \text{cm}.">)</span>, and of the nucleus as
+calculated by Rutherford (about <span class="nowrap"><img style="vertical-align: -0.05ex; width: 9.191ex; height: 2.005ex;" src="images/95.svg" alt=" " data-tex="10^{-12}\, \text{cm}.">)</span>, this energy
+would be many times greater than the energy changes with which we are
+familiar in ordinary atomic processes.</p>
+
+<p>It can be seen that it is impossible to employ Rutherford's atomic
+model so long as we confine ourselves exclusively to the ordinary
+electrodynamics. But this is nothing more than might have been
+expected. As I have mentioned we may consider it to be an established
+fact that it is impossible to obtain a satisfactory explanation
+<span class="pagenum" id="Page_10">[Pg 10]</span>
+of the experiments on temperature radiation with the aid of
+electrodynamics, no matter what atomic model be employed. The fact
+that the deficiencies of the atomic model we are considering stand out
+so plainly is therefore perhaps no serious drawback; even though the
+defects of other atomic models are much better concealed they must
+nevertheless be present and will be just as serious.</p>
+
+<p class="space-above3">
+<b>Quantum theory of spectra.</b> Let us now try to overcome these
+difficulties by applying Planck's theory to the problem.</p>
+
+<p>It is readily seen that there can be no question of a direct
+application of Planck's theory. This theory is concerned with the
+emission and absorption of energy in a system of electrical particles,
+which oscillate with a given frequency per second, dependent only
+on the nature of the system and independent of the amount of energy
+contained in the system. In a system consisting of an electron and
+a nucleus the period of oscillation corresponds to the period of
+revolution of the electron. But the formula (4) for <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> shows
+that the frequency of revolution depends upon <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W">,</span> i.e. on the
+energy of the system. Still the fact that we cannot immediately apply
+Planck's theory to our problem is not as serious as it might seem to
+be, for in assuming Planck's theory we have manifestly acknowledged
+the inadequacy of the ordinary electrodynamics and have definitely
+parted with the coherent group of ideas on which the latter theory is
+based. In fact in taking such a step we cannot expect that all cases of
+disagreement between the theoretical conceptions hitherto employed and
+experiment will be removed by the use of Planck's assumption regarding
+the quantum of the energy momentarily present in an oscillating system.
+We stand here almost entirely on virgin ground, and upon introducing
+new assumptions we need only take care not to get into contradiction
+with experiment. Time will have to show to what extent this can be
+avoided; but the safest way is, of course, to make as few assumptions
+as possible.</p>
+
+<p>With this in mind let us first examine the experiments on temperature
+radiation. The subject of direct observation is the distribution of
+radiant energy over oscillations of the various wave lengths. Even
+though we may assume that this energy comes from systems of oscillating
+particles, we know little or nothing about these systems. No one has
+<span class="pagenum" id="Page_11">[Pg 11]</span>
+ever seen a Planck's resonator, nor indeed even measured its frequency
+of oscillation; we can observe only the period of oscillation of the
+radiation which is emitted. It is therefore very convenient that it is
+possible to show that to obtain the laws of temperature radiation it is
+not necessary to make any assumptions about the systems which emit the
+radiation except that the amount of energy emitted each time shall be
+equal to <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.502ex; height: 1.595ex;" src="images/86.svg" alt=" " data-tex="h\nu">,</span> where <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> is Planck's constant and <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> is the
+frequency of the radiation. Indeed, it is possible to derive Planck's
+law of radiation from this assumption alone, as shown by Debye, who
+employed a method which is a combination of that of Planck and of
+Jeans. Before considering any further the nature of the oscillating
+systems let us see whether it is possible to bring this assumption
+about the emission of radiation into agreement with the spectral laws.</p>
+
+<p>If the spectrum of some element contains a spectral line corresponding
+to the frequency <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> it will be assumed that one of the atoms of
+the element (or some other elementary system) can emit an amount of
+energy <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.502ex; height: 1.595ex;" src="images/86.svg" alt=" " data-tex="h\nu">.</span> Denoting the energy of the atom before and after the
+emission of the radiation by <img style="vertical-align: -0.339ex; width: 9.717ex; height: 1.91ex;" src="images/96.svg" alt=" " data-tex="E_{1}\, \text{and}\, E_{2}"> we have
+<span class="align-center"><img style="vertical-align: -1.577ex; width: 41.721ex; height: 4.645ex;" src="images/10.svg" alt=" " data-tex="
+h\nu = E_{1} - E_{2} \text{ or }\quad
+\nu = \frac{E_{1}}{h} - \frac{E_{2}}{h}.
+\qquad\text{(5)}
+"></span></p>
+
+<p>During the emission of the radiation the system may be regarded as
+passing from one state to another; in order to introduce a name for
+these states, we shall call them "stationary" states, simply indicating
+thereby that they form some kind of waiting places between which occurs
+the emission of the energy corresponding to the various spectral
+lines. As previously mentioned the spectrum of an element consists of
+a series of lines whose wave lengths may be expressed by the formula
+(2). By comparing this expression with the relation given above it
+is seen that—since <span class="nowrap"><img style="vertical-align: -1.579ex; width: 6.531ex; height: 4.109ex;" src="images/97.svg" alt=" " data-tex="\nu = \dfrac{c}{\lambda}">,</span> where <img style="vertical-align: -0.025ex; width: 0.98ex; height: 1.025ex;" src="images/98.svg" alt=" " data-tex="c"> is the
+velocity of light—each of the spectral lines may be regarded as being
+emitted by the transition of a system between two stationary states in
+which the energy apart from an additive arbitrary constant is given
+by <img style="vertical-align: -0.566ex; width: 26.462ex; height: 2.262ex;" src="images/99.svg" alt=" " data-tex="-ch F_{r}(n_{1})\, \text{and}\, -ch F_{s}(n_{2})"> respectively.
+Using this interpretation the combination principle asserts that a
+series of stationary states exists for the given system, and that it
+can pass from one to any other of these states with the emission
+<span class="pagenum" id="Page_12">[Pg 12]</span>
+of a monochromatic radiation. We see, therefore, that with a simple
+extension of our first assumption it is possible to give a formal
+explanation of the most general law of line spectra.</p>
+
+<p class="space-above3">
+<b>Hydrogen spectrum.</b> This result encourages us to make an attempt
+to obtain a clear conception of the stationary states which have so far
+only been regarded as formal. With this end in view, we naturally turn
+to the spectrum of hydrogen. The formula applying to this spectrum is
+given by the expression
+<span class="align-center"><img style="vertical-align: -2.448ex; width: 15.407ex; height: 5.522ex;" src="images/11.svg" alt=" " data-tex="
+\frac{1}{\lambda} = \frac{R}{n_{1}^{2}} - \frac{R}{n_{2}^{2}}.
+"></span>
+According to our assumption this spectrum is produced by transitions
+between a series of stationary states of a system, concerning which
+we can for the present only say that the energy of the system in
+the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state, apart from an additive constant, is given by
+<span class="nowrap"><img style="vertical-align: -1.654ex; width: 6.756ex; height: 4.753ex;" src="images/100.svg" alt=" " data-tex="-\dfrac{Rhc}{n^{2}}">.</span> Let us now try to find a connection between
+this and the model of the hydrogen atom. We assume that in the
+calculation of the frequency of revolution of the electron in the
+stationary states of the atom it will be possible to employ the above
+formula for <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">.</span> It is quite natural to make this assumption;
+since, in trying to form a reasonable conception of the stationary
+states, there is, for the present at least, no other means available
+besides the ordinary mechanics.</p>
+
+<p>Corresponding to the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th stationary state in formula (4) for
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">,</span> let us by way of experiment put <span class="nowrap"><img style="vertical-align: -1.654ex; width: 10.384ex; height: 4.753ex;" src="images/101.svg" alt=" " data-tex="W = \dfrac{Rhc}{n^{2}}">.</span>
+This gives us
+<span class="align-center"><img style="vertical-align: -1.671ex; width: 25.603ex; height: 5.086ex;" src="images/12.svg" alt=" " data-tex="
+\omega_{n}^{2} = \frac{2}{\pi^{2}}\, \frac{R^{3} h^{3} c^{3}}{e^{4} mn^{6}}.
+\qquad\text{(6)}
+"></span></p>
+
+<p>The radiation of light corresponding to a particular spectral line
+is according to our assumption emitted by a transition between two
+stationary states, corresponding to two different frequencies of
+revolution, and we are not justified in expecting any simple relation
+between these frequencies of revolution of the electron and the
+frequency of the emitted radiation. You understand, of course, that
+I am by no means trying to give what might ordinarily be described
+as an explanation; nothing has been said here about how or why the
+<span class="pagenum" id="Page_13">[Pg 13]</span>
+radiation is emitted. On one point, however, we may expect a connection
+with the ordinary conceptions; namely, that it will be possible to
+calculate the emission of slow electromagnetic oscillations on the
+basis of the classical electrodynamics. This assumption is very
+strongly supported by the result of Lorentz's calculations which have
+already been described. From the formula for <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> it is seen that
+the frequency of revolution decreases as <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> increases, and that the
+expression <img style="vertical-align: -2.023ex; width: 5.595ex; height: 4.554ex;" src="images/102.svg" alt=" " data-tex="\dfrac{\omega_{n}}{\omega_{n+1}}"> approaches the value
+<span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">.</span></p>
+
+<p>According to what has been said above, the frequency of the radiation
+corresponding to the transition between the <img style="vertical-align: -0.566ex; width: 7.015ex; height: 2.262ex;" src="images/104.svg" alt=" " data-tex="(n + 1)">th and the
+<img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th stationary state is given by
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 26.353ex; height: 5.474ex;" src="images/13.svg" alt=" " data-tex="
+\nu = Rc \left(\frac{1}{n^{2}} - \frac{1}{(n + 1)^{2}}\right).
+"></span>
+If <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> is very large this expression is approximately equal to
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 12.15ex; height: 2.564ex;" src="images/14.svg" alt=" " data-tex="
+\nu = 2Rc/n^{3}.
+"></span>
+In order to obtain a connection with the ordinary electrodynamics let
+us now place this frequency equal to the frequency of revolution, that
+is
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 13.505ex; height: 2.564ex;" src="images/15.svg" alt=" " data-tex="
+\omega_{n} = 2Rc/n^{3}.
+"></span>
+Introducing this value of <img style="vertical-align: -0.357ex; width: 2.555ex; height: 1.359ex;" src="images/105.svg" alt=" " data-tex="\omega_{n}"> in (6) we see that <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">
+disappears from the equation, and further that the equation will be
+satisfied only if
+<span class="align-center"><img style="vertical-align: -1.652ex; width: 21.589ex; height: 5.086ex;" src="images/16.svg" alt=" " data-tex="
+R = \frac{2\pi^{2} e^{4} m}{ch^{3}}.
+\qquad\text{(7)}
+"></span>
+The constant <img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R"> is very accurately known, and is, as I have said
+before, equal to <span class="nowrap"><img style="vertical-align: -0.05ex; width: 6.787ex; height: 1.579ex;" src="images/77.svg" alt=" " data-tex="109675">.</span> By introducing the most recent values for
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e">,</span> <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> and <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> the expression on the right-hand side of the
+equation becomes equal to <span class="nowrap"><img style="vertical-align: -0.05ex; width: 8.907ex; height: 2.005ex;" src="images/106.svg" alt=" " data-tex="1.09 · 10^{5}">.</span> The agreement is as good
+as could be expected, considering the uncertainty in the experimental
+determination of the constants <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e">,</span> <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h">.</span> The agreement
+between our calculations and the classical electrodynamics is,
+therefore, fully as good as we are justified in expecting.</p>
+
+<p>We cannot expect to obtain a corresponding explanation of the frequency
+values of the other stationary states. Certain simple formal relations
+apply, however, to all the stationary states. By introducing the
+expression, which has been found for <span class="nowrap"><img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R">,</span> we get for the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th
+<span class="pagenum" id="Page_14">[Pg 14]</span>
+state <span class="nowrap"><img style="vertical-align: -0.781ex; width: 13.311ex; height: 2.737ex;" src="images/107.svg" alt=" " data-tex="W_{n} = \frac{1}{2}nh\omega_{n}">.</span> This equation is entirely
+analogous to Planck's assumption concerning the energy of a resonator.
+<img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> in our system is readily shown to be equal to the average value
+of the kinetic energy of the electron during a single revolution.
+The energy of a resonator was shown by Planck you may remember to be
+always equal to <span class="nowrap"><img style="vertical-align: -0.025ex; width: 3.86ex; height: 1.595ex;" src="images/108.svg" alt=" " data-tex="nh\nu">.</span> Further the average value of the kinetic
+energy of Planck's resonator is equal to its potential energy, so that
+the average value of the kinetic energy of the resonator, according
+to Planck, is equal to <span class="nowrap"><img style="vertical-align: -0.781ex; width: 5.863ex; height: 2.737ex;" src="images/109.svg" alt=" " data-tex="\frac{1}{2}nh\omega">.</span> This analogy suggests
+another manner of presenting the theory, and it was just in this way
+that I was originally led into these considerations. When we consider
+how differently the equation is employed here and in Planck's theory
+it appears to me misleading to use this analogy as a foundation, and
+in the account I have given I have tried to free myself as much as
+possible from it.</p>
+
+<p>Let us continue with the elucidation of the calculations, and in the
+expression for <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> introduce the value of <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> which corresponds to
+the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th stationary state. This gives us
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 54.189ex; height: 5.07ex;" src="images/17.svg" alt=" " data-tex="
+2a = n^{2} · \frac{e^{2}}{chR}
+ = n^{2} · \frac{h^{2}}{2\pi^{2} me^{2}}
+ = n^{2} · 1.1 · 10^{-8}.
+\qquad\text{(8)}
+"></span>
+</p>
+
+<p>It is seen that for small values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span> we obtain values for the
+major axis of the orbit of the electron which are of the same order
+of magnitude as the values of the diameters of the atoms calculated
+from the kinetic theory of gases. For large values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span> <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a">
+becomes very large in proportion to the calculated dimensions of the
+atoms. This, however, does not necessarily disagree with experiment.
+Under ordinary circumstances a hydrogen atom will probably exist
+only in the state corresponding to <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1">.</span> For this state <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W">
+will have its greatest value and, consequently, the atom will have
+emitted the largest amount of energy possible; this will therefore
+represent the most stable state of the atom from which the system
+cannot be transferred except by adding energy to it from without.
+The large values for <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> corresponding to large <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> need not,
+therefore, be contrary to experiment; indeed, we may in these large
+values seek an explanation of the fact, that in the laboratory it has
+hitherto not been possible to observe the hydrogen lines corresponding
+to large values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> in Balmer's formula, while they have been
+observed in the spectra of certain stars. In order that the large
+orbits of the electrons may not be disturbed by electrical forces
+<span class="pagenum" id="Page_15">[Pg 15]</span>
+from the neighbouring atoms the pressure will have to be very low, so
+low, indeed, that it is impossible to obtain sufficient light from a
+Geissler tube of ordinary dimensions. In the stars, however, we may
+assume that we have to do with hydrogen which is exceedingly attenuated
+and distributed throughout an enormously large region of space.</p>
+
+<p class="space-above3">
+<b>The Pickering lines.</b> You have probably noticed that we have not
+mentioned at all the spectrum found in certain stars which according
+to the opinion then current was assigned to hydrogen, and together
+with the ordinary hydrogen spectrum was considered by Rydberg to form
+a connected system of lines completely analogous to the spectra of
+other elements. You have probably also perceived that difficulties
+would arise in interpreting this spectrum by means of the assumptions
+which have been employed. If such an attempt were to be made it would
+be necessary to give up the simple considerations which lead to the
+expression (7) for the constant <span class="nowrap"><img style="vertical-align: -0.048ex; width: 1.717ex; height: 1.593ex;" src="images/66.svg" alt=" " data-tex="R">.</span> We shall see, however, that it
+appears possible to explain the occurrence of this spectrum in another
+way. Let us suppose that it is not due to hydrogen, but to some other
+simple system consisting of a single electron revolving about a nucleus
+with an electrical charge <span class="nowrap"><img style="vertical-align: -0.025ex; width: 3.063ex; height: 1.57ex;" src="images/111.svg" alt=" " data-tex="Ne">.</span> The expression for <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> becomes
+then
+<span class="align-center"><img style="vertical-align: -1.671ex; width: 17.835ex; height: 5.086ex;" src="images/18.svg" alt=" " data-tex="
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3}}{N^{2} e^{4} m}.
+"></span>
+Repeating the same calculations as before only in the inverse order we
+find, that this system will emit a line spectrum given by the expression
+<span class="align-center"><img style="vertical-align: -3.07ex; width: 62.839ex; height: 7.028ex;" src="images/19.svg" alt=" " data-tex="
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} m}{ch^{3}}\left(\frac{1}{n_{1}^{2}}
+- \frac{1}{n_{2}^{2}}\right)
+ = R \Biggl({\frac{1}{\left(\tfrac{n_{1}}{N}\right)^{2}}
+- \frac{1}{\left(\tfrac{n_{2}}{N}\right)^{2}}\Biggr)}.
+\qquad\text{(9)}
+"></span>
+</p>
+
+<p>By comparing this formula with the formula for Pickering's and
+Rydberg's series, we see that the observed lines can be explained on
+the basis of the theory, if it be assumed that the spectrum is due
+to an electron revolving about a nucleus with a charge <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.186ex; height: 1.532ex;" src="images/112.svg" alt=" " data-tex="2e">,</span> or
+according to Rutherford's theory around the nucleus of a helium atom.
+The fact that the spectrum in question is not observed in an ordinary
+helium tube, but only in stars, may be accounted for by the high
+<span class="pagenum" id="Page_16">[Pg 16]</span>
+degree of ionization which is required for the production of this
+spectrum; a neutral helium atom contains of course two electrons while
+the system under consideration contains only one.</p>
+
+<p>These conclusions appear to be supported by experiment. Fowler, as I
+have mentioned, has recently succeeded in observing Pickering's and
+Rydberg's lines in a laboratory experiment. By passing a very heavy
+current through a mixture of hydrogen and helium Fowler observed not
+only these lines but also a new series of lines. This new series was of
+the same general type, the wave length being given approximately by
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 29.605ex; height: 6.785ex;" src="images/20.svg" alt=" " data-tex="
+\frac{1}{\lambda}
+ = R\left(\frac{1}{(\frac{3}{2})^{2}}
+- \frac{1}{(n + \frac{1}{2})^{2}}\right).
+"></span>
+Fowler interpreted all the observed lines as the hydrogen spectrum
+sought for. With the observation of the latter series of lines,
+however, the basis of the analogy between the hypothetical hydrogen
+spectrum and the other spectra disappeared, and thereby also the
+foundation upon which Rydberg had founded his conclusions; on the
+contrary it is seen, that the occurrence of the lines was exactly what
+was to be expected on our view.</p>
+
+<p>In the following table the first column contains the wave lengths
+measured by Fowler, while the second contains the limiting
+values of the experimental errors given by him; in the third
+column we find the products of the wave lengths by the quantity
+<span class="nowrap"><img style="vertical-align: -2.827ex; width: 18.715ex; height: 6.785ex;" src="images/113.svg" alt=" " data-tex="\left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) · 10^{10}">;</span>
+the values employed for <img style="vertical-align: -0.339ex; width: 2.345ex; height: 1.339ex;" src="images/78.svg" alt=" " data-tex="n_{1}"> and <img style="vertical-align: -0.339ex; width: 2.345ex; height: 1.339ex;" src="images/79.svg" alt=" " data-tex="n_{2}"> are enclosed in
+parentheses in the last column.</p>
+
+<table class="autotable">
+ <thead><tr>
+ <th class="tdc"><img style="vertical-align: -0.05ex; width: 6.204ex; height: 2.005ex;" src="images/72.svg" alt=" " data-tex="\lambda · 10^{8}"><img style="vertical-align: 0; width: 4.525ex; height: 0.036ex;" src="images/70.svg" alt=" " data-tex="\qquad"></th>
+ <th class="tdc"><img style="vertical-align: -0.025ex; width: 13.188ex; height: 1.62ex;" src="images/114.svg" alt=" " data-tex="\text{Limit of error}"><img style="vertical-align: 0; width: 4.525ex; height: 0.036ex;" src="images/70.svg" alt=" " data-tex="\qquad"></th>
+ <th class="tdc"><img style="vertical-align: -2.827ex; width: 21.669ex; height: 6.785ex;" src="images/115.svg" alt=" " data-tex="\lambda · \left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) · 10^{10}"><img style="vertical-align: 0; width: 4.525ex; height: 0.036ex;" src="images/70.svg" alt=" " data-tex="\qquad"></th>
+ <th class="tdc">&nbsp;</th>
+ </tr>
+ </thead>
+ <tbody><tr>
+ <td class="tdl">4685.98&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.01&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22779.1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 4)</td>
+ </tr><tr>
+ <td class="tdl">3203.30&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.05&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22779.0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 5)</td>
+ </tr><tr>
+ <td class="tdl">2733.34&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.05&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22777.8&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 6)</td>
+ </tr><tr>
+ <td class="tdl">2511.31&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.05&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22778.3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 7)</td>
+ </tr><tr>
+ <td class="tdl">2385.47&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.05&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22777.9&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 8)</td>
+ </tr><tr>
+ <td class="tdl">2306.20&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.10&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22777.3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 9)</td>
+ </tr><tr>
+ <td class="tdl">2252.88&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.10&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22779.1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(3 : 10)</td>
+ </tr><tr>
+ <td class="tdl">5410.5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1.0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22774&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(4 : 7)</td>
+ </tr><tr>
+ <td class="tdl">4541.3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.25&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22777&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(4 : 9)</td>
+ </tr><tr>
+ <td class="tdl">4200.3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;22781&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td class="tdl">(4 : 11)</td>
+</tr>
+ </tbody>
+</table>
+
+<p><span class="pagenum" id="Page_17">[Pg 17]</span></p>
+
+<p>The values of the products are seen to be very nearly equal, while
+the deviations are of the same order of magnitude as the limits of
+experimental error. The value of the product
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 14.727ex; height: 6.785ex;" src="images/21.svg" alt=" " data-tex="
+\lambda \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)
+"></span>
+should for this spectrum, according to the formula (9), be exactly
+<img style="vertical-align: -0.781ex; width: 1.795ex; height: 2.737ex;" src="images/116.svg" alt=" " data-tex="\frac{1}{4}"> of the corresponding product for the hydrogen spectrum.
+From the tables on pages <a href="#Page_1">1</a> and <a href="#Page_16">16</a> we find for these products <img style="vertical-align: -0.05ex; width: 5.656ex; height: 1.557ex;" src="images/117.svg" alt=" " data-tex="91153">
+and <span class="nowrap"><img style="vertical-align: -0.05ex; width: 5.656ex; height: 1.579ex;" src="images/118.svg" alt=" " data-tex="22779">,</span> and dividing the former by the latter we get <span class="nowrap"><img style="vertical-align: -0.05ex; width: 6.285ex; height: 1.581ex;" src="images/119.svg" alt=" " data-tex="4.0016">.</span>
+This value is very nearly equal to <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">;</span> the deviation is, however,
+much greater than can be accounted for in any way by the errors of
+the experiments. It has been easy, however, to find a theoretical
+explanation of this point. In all the foregoing calculations we have
+assumed that the mass of the nucleus is infinitely great compared to
+that of the electron. This is of course not the case, even though it
+holds to a very close approximation; for a hydrogen atom the ratio of
+the mass of the nucleus to that of the electron will be about <img style="vertical-align: -0.05ex; width: 4.525ex; height: 1.557ex;" src="images/121.svg" alt=" " data-tex="1850">
+and for a helium atom four times as great.</p>
+
+<p>If we consider a system consisting of an electron revolving about a
+nucleus with a charge <img style="vertical-align: -0.025ex; width: 3.063ex; height: 1.57ex;" src="images/111.svg" alt=" " data-tex="Ne"> and a mass <span class="nowrap"><img style="vertical-align: 0; width: 2.378ex; height: 1.545ex;" src="images/122.svg" alt=" " data-tex="M">,</span> we find the following
+expression for the frequency of revolution of the system:
+<span class="align-center"><img style="vertical-align: -1.671ex; width: 23.061ex; height: 5.163ex;" src="images/22.svg" alt=" " data-tex="
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3} (M + m)}{N^{2} e^{4} Mm}.
+"></span></p>
+
+<p>From this formula we find in a manner quite similar to that previously
+employed that the system will emit a line spectrum, the wave lengths of
+which are given by the formula
+<span class="align-center"><img style="vertical-align: -2.827ex; width: 41.845ex; height: 6.785ex;" src="images/23.svg" alt=" " data-tex="
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} mM}{ch^{3} (M + m)}
+ \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right).
+\qquad\text{(10)}
+"></span>
+</p>
+
+<p>If with the aid of this formula we try to find the ratio of the product
+for the hydrogen spectrum, to that of the hypothetical helium spectrum
+we get the value <img style="vertical-align: -0.05ex; width: 7.416ex; height: 1.581ex;" src="images/123.svg" alt=" " data-tex="4.00163"> which is in complete agreement with the
+preceding value calculated from the experimental observations.</p>
+
+<p>I must further mention that Evans has made some experiments to
+determine whether the spectrum in question is due to hydrogen or
+helium. He succeeded in observing one of the lines in very pure
+<span class="pagenum" id="Page_18">[Pg 18]</span>
+helium; there was, at any rate, not enough hydrogen present to enable
+the hydrogen lines to be observed. Since in any event Fowler does not
+seem to consider such evidence as conclusive it is to be hoped that
+these experiments will be continued. There is, however, also another
+possibility of deciding this question. As is evident from the formula
+(10), the helium spectrum under consideration should contain, besides
+the lines observed by Fowler, a series of lines lying close to the
+ordinary hydrogen lines. These lines may be obtained by putting
+<span class="nowrap"><img style="vertical-align: -0.439ex; width: 20.532ex; height: 1.971ex;" src="images/124.svg" alt=" " data-tex="n_{1} = 4,\, n_{2} = 6,\, 8,\, 10">,</span> etc. Even if these lines were
+present, it would be extremely difficult to observe them on account of
+their position with regard to the hydrogen lines, but should they be
+observed this would probably also settle the question of the origin
+of the spectrum, since no reason would seem to be left to assume the
+spectrum to be due to hydrogen.</p>
+
+<p class="space-above3">
+<b>Other spectra.</b> For the spectra of other elements the problem
+becomes more complicated, since the atoms contain a larger number of
+electrons. It has not yet been possible on the basis of this theory to
+explain any other spectra besides those which I have already mentioned.
+On the other hand it ought to be mentioned that the general laws
+applying to the spectra are very simply interpreted on the basis of
+our assumptions. So far as the combination principle is concerned its
+explanation is obvious. In the method we have employed our point of
+departure was largely determined by this particular principle. But a
+simple explanation can be also given of the other general law, namely,
+the occurrence of Rydberg's constant in all spectral formulae. Let
+us assume that the spectra under consideration, like the spectrum of
+hydrogen, are emitted by a neutral system, and that they are produced
+by the binding of an electron previously removed from the system. If
+such an electron revolves about the nucleus in an orbit which is large
+in proportion to that of the other electrons it will be subjected to
+forces much the same as the electron in a hydrogen atom, since the
+inner electrons individually will approximately neutralize the effect
+of a part of the positive charge of the nucleus. We may therefore
+assume that for this system there will exist a series of stationary
+<span class="pagenum" id="Page_19">[Pg 19]</span>
+states in which the motion of the outermost electron is approximately
+the same as in the stationary states of a hydrogen atom. I shall not
+discuss these matters any further, but shall only mention that they
+lead to the conclusion that Rydberg's constant is not exactly the
+same for all elements. The expression for this constant will in fact
+contain the factor <span class="nowrap"><img style="vertical-align: -1.738ex; width: 8.125ex; height: 4.812ex;" src="images/125.svg" alt=" " data-tex="\dfrac{M}{M + m}">,</span> where <img style="vertical-align: 0; width: 2.378ex; height: 1.545ex;" src="images/122.svg" alt=" " data-tex="M"> is the mass of
+the nucleus. The correction is exceedingly small for elements of
+large atomic weight, but for hydrogen it is, from the point of view
+of spectrum analysis, very considerable. If the procedure employed
+leads to correct results, it is not therefore permissible to calculate
+Rydberg's constant directly from the hydrogen spectrum; the value of
+the universal constant should according to the theory be <img style="vertical-align: -0.05ex; width: 6.787ex; height: 1.579ex;" src="images/126.svg" alt=" " data-tex="109735"> and
+not <span class="nowrap"><img style="vertical-align: -0.05ex; width: 6.787ex; height: 1.579ex;" src="images/77.svg" alt=" " data-tex="109675">.</span></p>
+
+<p>I shall not tire you any further with more details; I hope to return to
+these questions here in the Physical Society, and to show how, on the
+basis of the underlying ideas, it is possible to develop a theory for
+the structure of atoms and molecules. Before closing I only wish to say
+that I hope I have expressed myself sufficiently clearly so that you
+have appreciated the extent to which these considerations conflict with
+the admirably coherent group of conceptions which have been rightly
+termed the classical theory of electrodynamics. On the other hand, by
+emphasizing this conflict, I have tried to convey to you the impression
+that it may be also possible in the course of time to discover a
+certain coherence in the new ideas.</p>
+
+
+<p><span class="pagenum" id="Page_20">[Pg 20]</span>
+
+</p><div class="footnote">
+
+<p class="nind">
+<a id="Footnote_1" href="#FNanchor_1" class="label">[1]</a>
+Address delivered before the Physical Society in
+Copenhagen, Dec. 20, 1913.</p>
+
+</div>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="ESSAY_II">ESSAY II<a id="FNanchor_2" href="#Footnote_2" class="fnanchor">[2]</a>
+<br><br>
+ON THE SERIES SPECTRA OF THE ELEMENTS
+</h2>
+</div>
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="I_INTRODUCTION">
+I.INTRODUCTION</h2>
+</div>
+
+<p>The subject on which I have the honour to speak here, at the kind
+invitation of the Council of your society, is very extensive and it
+would be impossible in a single address to give a comprehensive survey
+of even the most important results obtained in the theory of spectra.
+In what follows I shall try merely to emphasize some points of view
+which seem to me important when considering the present state of the
+theory of spectra and the possibilities of its development in the near
+future. I regret in this connection not to have time to describe the
+history of the development of spectral theories, although this would be
+of interest for our purpose. No difficulty, however, in understanding
+this lecture need be experienced on this account, since the points
+of view underlying previous attempts to explain the spectra differ
+fundamentally from those upon which the following considerations rest.
+This difference exists both in the development of our ideas about the
+structure of the atom and in the manner in which these ideas are used
+in explaining the spectra.</p>
+
+<p>We shall assume, according to Rutherford's theory, that an atom
+consists of a positively charged nucleus with a number of electrons
+revolving about it. Although the nucleus is assumed to be very small
+in proportion to the size of the whole atom, it will contain nearly
+the entire mass of the atom. I shall not state the reasons which led
+to the establishment of this <i>nuclear theory of the atom</i>, nor
+describe the very strong support which this theory has received from
+very different sources. I shall mention only that result which lends
+such charm and simplicity to the modern development of the atomic
+theory. I refer to the idea that the number of electrons in a neutral
+atom is exactly equal to the number, giving the position of the
+element in the periodic table, the so-called "atomic number." This
+assumption, which was first proposed by van den Broek, immediately
+suggests the possibility ultimately of deriving the explanation
+<span class="pagenum" id="Page_21">[Pg 21]</span>
+of the physical and chemical properties of the elements from their
+atomic numbers. If, however, an explanation of this kind is attempted
+on the basis of the classical laws of mechanics and electrodynamics,
+insurmountable difficulties are encountered. These difficulties become
+especially apparent when we consider the spectra of the elements. In
+fact, the difficulties are here so obvious that it would be a waste of
+time to discuss them in detail. It is evident that systems like the
+nuclear atom, if based upon the usual mechanical and electrodynamical
+conceptions, would not even possess sufficient stability to give a
+spectrum consisting of sharp lines.</p>
+
+<p>In this lecture I shall use the ideas of the quantum theory. It will
+not be necessary, particularly here in Berlin, to consider in detail
+how Planck's fundamental work on temperature radiation has given rise
+to this theory, according to which the laws governing atomic processes
+exhibit a definite element of discontinuity. I shall mention only
+Planck's chief result about the properties of an exceedingly simple
+kind of atomic system, the Planck "oscillator." This consists of an
+electrically charged particle which can execute harmonic oscillations
+about its position of equilibrium with a frequency independent of the
+amplitude. By studying the statistical equilibrium of a number of
+such systems in a field of radiation Planck was led to the conclusion
+that the emission and absorption of radiation take place in such a
+manner, that, so far as a statistical equilibrium is concerned only
+certain distinctive states of the oscillator are to be taken into
+consideration. In these states the energy of the system is equal to a
+whole multiple of a so-called "energy quantum," which was found to be
+proportional to the frequency of the oscillator. The particular energy
+values are therefore given by the well-known formula
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 18.325ex; height: 2.262ex;" src="images/24.svg" alt=" " data-tex="
+E_{n} = nh\omega,
+\qquad\text{(1)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> is a whole number, <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> the frequency of vibration of
+the oscillator, and <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> is Planck's constant.</p>
+
+<p>If we attempt to use this result to explain the spectra of the
+elements, however, we encounter difficulties, because the motion of
+the particles in the atom, in spite of its simple structure, is in
+general exceedingly complicated compared with the motion of a Planck
+<span class="pagenum" id="Page_22">[Pg 22]</span>
+oscillator. The question then arises, how Planck's result ought to be
+generalized in order to make its application possible. Different points
+of view immediately suggest themselves. Thus we might regard this
+equation as a relation expressing certain characteristic properties
+of the distinctive motions of an atomic system and try to obtain the
+general form of these properties. On the other hand, we may also
+regard equation (1) as a statement about a property of the process of
+radiation and inquire into the general laws which control this process.</p>
+
+<p>In Planck's theory it is taken for granted that the frequency of the
+radiation emitted and absorbed by the oscillator is equal to its own
+frequency, an assumption which may be written
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 14.046ex; height: 2.262ex;" src="images/25.svg" alt=" " data-tex="
+\nu \equiv \omega,
+\qquad\text{(2)}
+"></span>
+if in order to make a sharp distinction between the frequency of the
+emitted radiation and the frequency of the particles in the atoms,
+we here and in the following denote the former by <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> and the
+latter by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">.</span> We see, therefore, that Planck's result may be
+interpreted to mean, that the oscillator can emit and absorb radiation
+only in "radiation quanta" of magnitude
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 17.555ex; height: 2.262ex;" src="images/26.svg" alt=" " data-tex="
+\Delta E = h\nu.
+\qquad\text{(3)}
+"></span>
+<span class="pagenum" id="Page_23">[Pg 23]</span>
+It is well known that ideas of this kind led Einstein to a theory
+of the photoelectric effect. This is of great importance, since it
+represents the first instance in which the quantum theory was applied
+to a phenomenon of non-statistical character. I shall not here discuss
+the familiar difficulties to which the "hypothesis of light quanta"
+leads in connection with the phenomena of interference, for the
+explanation of which the classical theory of radiation has shown itself
+to be so remarkably suited. Above all I shall not consider the problem
+of the nature of radiation, I shall only attempt to show how it has
+been possible in a purely formal manner to develop a spectral theory,
+the essential elements of which may be considered as a simultaneous
+rational development of the two ways of interpreting Planck's result.</p>
+
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="II_GENERAL_PRINCIPLES_OF_THE_QUANTUM_THEORY">
+II. GENERAL PRINCIPLES OF THE QUANTUM THEORY
+SPECTRA</h2>
+</div>
+
+
+<p>In order to explain the appearance of line spectra we are compelled
+to assume that the emission of radiation by an atomic system takes
+place in such a manner that it is not possible to follow the emission
+in detail by means of the usual conceptions. Indeed, these do not
+even offer us the means of calculating the frequency of the emitted
+radiation. We shall see, however, that it is possible to give a very
+simple explanation of the general empirical laws for the frequencies
+of the spectral lines, if for each emission of radiation by the atom
+we assume the fundamental law to hold, that during the entire period
+of the emission the radiation possesses one and the same frequency
+<span class="nowrap"><img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu">,</span> connected with the total energy emitted by the <i>frequency
+relation</i>
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 22.031ex; height: 2.262ex;" src="images/27.svg" alt=" " data-tex="
+h\nu = E′ - E″.
+\qquad\text{(4)}
+"></span>
+Here <img style="vertical-align: 0; width: 2.351ex; height: 1.538ex;" src="images/127.svg" alt=" " data-tex="E′"> and <img style="vertical-align: 0; width: 2.973ex; height: 1.538ex;" src="images/128.svg" alt=" " data-tex="E″"> represent the energy of the system before and
+after the emission.</p>
+
+<p>If this law is assumed, the spectra do not give us information about
+the motion of the particles in the atom, as is supposed in the usual
+theory of radiation, but only a knowledge of the energy changes in
+the various processes which can occur in the atom. From this point of
+view the spectra show the existence of certain, definite energy values
+corresponding to certain distinctive states of the atoms. These states
+will be called the <i>stationary states</i> of the atoms, since we
+shall assume that the atom can remain a finite time in each state,
+and can leave this state only by a process of transition to another
+stationary state. Notwithstanding the fundamental departure from the
+ordinary mechanical and electrodynamical conceptions, we shall see,
+however, that it is possible to give a rational interpretation of the
+evidence provided by the spectra on the basis of these ideas.</p>
+
+<p>Although we must assume that the ordinary mechanics cannot be used to
+describe the transitions between the stationary states, nevertheless,
+it has been found possible to develop a consistent theory on the
+assumption that the motion in these states can be described by the
+use of the ordinary mechanics. Moreover, although the process of
+radiation cannot be described on the basis of the ordinary theory of
+<span class="pagenum" id="Page_24">[Pg 24]</span>
+electrodynamics, according to which the nature of the radiation emitted
+by an atom is directly related to the harmonic components occurring
+in the motion of the system, there is found, nevertheless, to exist
+a far-reaching <i>correspondence</i> between the various types of
+possible transitions between the stationary states on the one hand and
+the various harmonic components of the motion on the other hand. This
+correspondence is of such a nature, that the present theory of spectra
+is in a certain sense to be regarded as a rational generalization of
+the ordinary theory of radiation.</p>
+
+<p class="space-above3">
+<b>Hydrogen spectrum.</b> In order that the principal points may
+stand out as clearly as possible I shall, before considering the more
+complicated types of series spectra, first consider the simplest
+spectrum, namely, the series spectrum of hydrogen. This spectrum
+consists of a number of lines whose frequencies are given with great
+exactness by Balmer's formula
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 27.472ex; height: 5.269ex;" src="images/28.svg" alt=" " data-tex="
+\nu = \frac{K}{(n″)^{2}} - \frac{K}{(n′)^{2}},
+\qquad\text{(5)}
+"></span>
+where <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> is a constant, and <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are whole numbers.
+If we put <img style="vertical-align: -0.186ex; width: 6.75ex; height: 1.692ex;" src="images/132.svg" alt=" " data-tex="n″=2"> and give to <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> the values <span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">,</span> <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">,</span> etc.,
+we get the well-known Balmer series of hydrogen. If we put <img style="vertical-align: -0.186ex; width: 6.75ex; height: 1.692ex;" src="images/134.svg" alt=" " data-tex="n″=1">
+or <img style="vertical-align: -0.186ex; width: 6.75ex; height: 1.69ex;" src="images/135.svg" alt=" " data-tex="n″=3"> we obtain respectively the ultra-violet and infra-red
+series. We shall assume the hydrogen atom simply to consist of a
+positively charged nucleus with a single electron revolving about it.
+For the sake of simplicity we shall suppose the mass of the nucleus to
+be infinite in comparison with the mass of the electron, and further we
+shall disregard the small variations in the motion due to the change
+in mass of the electron with its velocity. With these simplifications
+the electron will describe a closed elliptical orbit with the nucleus
+at one of the foci. The frequency of revolution <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> and the
+major axis <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> of the orbit will be connected with the energy of the
+system by the following equations:
+<span class="align-center"><img style="vertical-align: -2.345ex; width: 34.436ex; height: 6.923ex;" src="images/29.svg" alt=" " data-tex="
+\omega = \sqrt{\frac{2W^{3}}{\pi^{2} e^{4} m}},\quad
+2a = \frac{e^{2}}{W}.
+\qquad\text{(6)}
+"></span>
+Here <img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e"> is the charge of the electron and <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> its mass, while
+<img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> is the work required to remove the electron to infinity.</p>
+
+<p>The simplicity of these formulae suggests the possibility of using
+them in an attempt to explain the spectrum of hydrogen. This,
+<span class="pagenum" id="Page_25">[Pg 25]</span>
+however, is not possible so long as we use the classical theory of
+radiation. It would not even be possible to understand how hydrogen
+could emit a spectrum consisting of sharp lines; for since <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">
+varies with <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W">,</span> the frequency of the emitted radiation would vary
+continuously during the emission. We can avoid these difficulties if
+we use the ideas of the quantum theory. If for each line we form the
+product <img style="vertical-align: -0.025ex; width: 2.502ex; height: 1.595ex;" src="images/86.svg" alt=" " data-tex="h\nu"> by multiplying both sides of (5) by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h">,</span> then, since
+the right-hand side of the resulting relation may be written as the
+difference of two simple expressions, we are led by comparison with
+formula (4) to the assumption that the separate lines of the spectrum
+will be emitted by transitions between two stationary states, forming
+members of an infinite series of states, in which the energy in the
+<img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state apart from an arbitrary additive constant is determined
+by the expression
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 20.327ex; height: 4.753ex;" src="images/30.svg" alt=" " data-tex="
+E_{n} = -\frac{Kh}{n^{2}}.
+\qquad\text{(7)}
+"></span>
+The negative sign has been chosen because the energy of the atom
+will be most simply characterized by the work <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> required to
+remove the electron completely from the atom. If we now substitute
+<img style="vertical-align: -1.654ex; width: 4.31ex; height: 4.753ex;" src="images/136.svg" alt=" " data-tex="\dfrac{Kh}{n^{2}}"> for <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W"> in formula (6), we obtain the following
+expression for the frequency and the major axis in the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th
+stationary state:
+<span class="align-center"><img style="vertical-align: -2.345ex; width: 42.321ex; height: 6.923ex;" src="images/31.svg" alt=" " data-tex="
+\omega_{n} = \frac{1}{n^{3}} \sqrt{\frac{2h^{3} K^{3}}{\pi^{2} e^{4} m}},\quad
+2a_{n} = \frac{n^{2} e^{2}}{hK}.
+\qquad\text{(8)}
+"></span>
+A comparison between the motions determined by these equations and
+the distinctive states of a Planck resonator may be shown to offer a
+theoretical determination of the constant <span class="nowrap"><img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K">.</span> Instead of doing this
+I shall show how the value of <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> can be found by a simple comparison
+of the spectrum emitted with the motion in the stationary states, a
+comparison which at the same time will lead us to the principle of
+correspondence.</p>
+
+<p>We have assumed that each hydrogen line is the result of a transition
+between two stationary states of the atom corresponding to different
+values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> Equations (8) show that the frequency of revolution
+and the major axis of the orbit can be entirely different in the two
+states, since, as the energy decreases, the major axis of the orbit
+becomes smaller and the frequency of revolution increases. In
+<span class="pagenum" id="Page_26">[Pg 26]</span>
+general, therefore, it will be impossible to obtain a relation between
+the frequency of revolution of the electrons and the frequency of the
+radiation as in the ordinary theory of radiation. If, however, we
+consider the ratio of the frequencies of revolution in two stationary
+states corresponding to given values of <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″">,</span> we see that
+this ratio approaches unity as <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> gradually increase,
+if at the same time the difference <img style="vertical-align: -0.186ex; width: 7.347ex; height: 1.505ex;" src="images/137.svg" alt=" " data-tex="n′ - n″"> remains unchanged. By
+considering transitions corresponding to large values of <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and
+<img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> we may therefore hope to establish a certain connection with
+the ordinary theory. For the frequency of the radiation emitted by a
+transition, we get according to (5)
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 53.059ex; height: 5.269ex;" src="images/32.svg" alt=" " data-tex="
+\nu = \frac{K}{(n″)^{2}} - \frac{K}{(n′)^{2}}
+ = (n′ - n″) K\, \frac{n′ + n″}{(n′)^{2} (n″)^{2}}.
+\qquad\text{(9)}
+"></span>
+If now the numbers <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are large in proportion to their
+difference, we see that by equations (8) this expression may be written
+approximately,
+<span class="align-center"><img style="vertical-align: -2.326ex; width: 35.78ex; height: 6.923ex;" src="images/33.svg" alt=" " data-tex="
+\nu \sim (n′ - n″)\, \omega\, \sqrt{\frac{2\pi^{2} e^{4} m}{Kh^{3}}},
+\qquad\text{(10)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> represents the frequency of revolution in the one or
+the other of the two stationary states. Since <img style="vertical-align: -0.186ex; width: 7.347ex; height: 1.505ex;" src="images/137.svg" alt=" " data-tex="n′ - n″"> is a whole
+number, we see that the first part of this expression, i.e.
+<span class="nowrap"><img style="vertical-align: -0.566ex; width: 10.515ex; height: 2.262ex;" src="images/138.svg" alt=" " data-tex="(n′ - n″)\omega">,</span> is the same as the frequency of one of the harmonic
+components into which the elliptical motion may be decomposed. This
+involves the well-known result that for a system of particles having a
+periodic motion of frequency <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">,</span> the displacement <img style="vertical-align: -0.464ex; width: 0.991ex; height: 2.057ex;" src="images/139.svg" alt=" " data-tex="\xi"> of
+the particles in a given direction in space may be represented as a
+function of the time by a trigonometric series of the form
+<span class="align-center"><img style="vertical-align: -1.018ex; width: 35.954ex; height: 3.167ex;" src="images/34.svg" alt=" " data-tex="
+\xi = \sum C_{\tau} \cos 2\pi(\tau\omega t + c_{\tau}),
+\qquad\text{(11)}
+"></span>
+where the summation is to be extended over all positive integral values
+of <span class="nowrap"><img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau">.</span></p>
+
+<p>We see, therefore, that the frequency of the radiation emitted by a
+transition between two stationary states, for which the numbers <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′">
+and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are large in proportion to their difference, will coincide
+with the frequency of one of the components of the radiation, which
+according to the ordinary ideas of radiation would be expected from the
+motion of the atom in these states, provided the last factor on the
+<span class="pagenum" id="Page_27">[Pg 27]</span>
+right-hand side of equation (10) is equal to <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">.</span> This condition,
+which is identical to the condition
+<span class="align-center"><img style="vertical-align: -1.652ex; width: 23.014ex; height: 5.086ex;" src="images/35.svg" alt=" " data-tex="
+K = \frac{2\pi^{2} e^{4} m}{h^{3}},
+\qquad\text{(12)}
+"></span>
+is in fact fulfilled, if we give to <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> its value as found from
+measurements on the hydrogen spectrum, and if for <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e">,</span> <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> and
+<img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> we use the values obtained directly from experiment. This
+agreement clearly gives us a <i>connection between the spectrum and the
+atomic model of hydrogen</i>, which is as close as could reasonably be
+expected considering the fundamental difference between the ideas of
+the quantum theory and of the ordinary theory of radiation.</p>
+
+<p class="space-above2">
+<b>The correspondence principle.</b> Let us now consider somewhat more
+closely this relation between the spectra one would expect on the
+basis of the quantum theory, and on the ordinary theory of radiation.
+The frequencies of the spectral lines calculated according to both
+methods agree completely in the region where the stationary states
+deviate only little from one another. We must not forget, however, that
+the mechanism of emission in both cases is different. The different
+frequencies corresponding to the various harmonic components of the
+motion are emitted simultaneously according to the ordinary theory
+of radiation and with a relative intensity depending directly upon
+the ratio of the amplitudes of these oscillations. But according to
+the quantum theory the various spectral lines are emitted by entirely
+distinct processes, consisting of transitions from one stationary state
+to various adjacent states, so that the radiation corresponding to the
+<img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau">th "harmonic" will be emitted by a transition for which
+<span class="nowrap"><img style="vertical-align: -0.186ex; width: 11.534ex; height: 1.505ex;" src="images/141.svg" alt=" " data-tex="n′ - n″ = \tau">.</span> The relative intensity with which each particular line
+is emitted depends consequently upon the relative probability of the
+occurrence of the different transitions.</p>
+
+<p>This correspondence between the frequencies determined by the two
+methods must have a deeper significance and we are led to anticipate
+that it will also apply to the intensities. This is equivalent to
+the statement that, when the quantum numbers are large, the relative
+probability of a particular transition is connected in a simple manner
+with the amplitude of the corresponding harmonic component in the
+motion.</p>
+
+<p><span class="pagenum" id="Page_28">[Pg 28]</span></p>
+
+<p>This peculiar relation suggests a <i>general law for the occurrence of
+transitions between stationary states</i>. Thus we shall assume that
+even when the quantum numbers are small the possibility of transition
+between two stationary states is connected with the presence of a
+certain harmonic component in the motion of the system. If the numbers
+<img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are not large in proportion to their difference,
+the numerical value of the amplitudes of these components in the two
+stationary states may be entirely different. We must be prepared to
+find, therefore, that the exact connection between the probability of
+a transition and the amplitude of the corresponding harmonic component
+in the motion is in general complicated like the connection between the
+frequency of the radiation and that of the component. From this point
+of view, for example, the green line <img style="vertical-align: -0.65ex; width: 2.973ex; height: 2.195ex;" src="images/142.svg" alt=" " data-tex="H_{\beta}"> of the hydrogen
+spectrum which corresponds to a transition from the fourth to the
+second stationary state may be considered in a certain sense to be an
+"octave" of the red line <span class="nowrap"><img style="vertical-align: -0.357ex; width: 3.092ex; height: 1.902ex;" src="images/143.svg" alt=" " data-tex="H_{\alpha}">,</span> corresponding to a transition
+from the third to the second state, even though the frequency of the
+first line is by no means twice as great as that of the latter. In
+fact, the transition giving rise to <img style="vertical-align: -0.65ex; width: 2.973ex; height: 2.195ex;" src="images/142.svg" alt=" " data-tex="H_{\beta}"> may be regarded as
+due to the presence of a harmonic oscillation in the motion of the
+atom, which is an octave higher than the oscillation giving rise to the
+emission of <span class="nowrap"><img style="vertical-align: -0.357ex; width: 3.092ex; height: 1.902ex;" src="images/143.svg" alt=" " data-tex="H_{\alpha}">.</span></p>
+
+<p>Before considering other spectra, where numerous opportunities will be
+found to use this point of view, I shall briefly mention an interesting
+application to the Planck oscillator. If from (1) and (4) we calculate
+the frequency, which would correspond to a transition between two
+particular states of such an oscillator, we find
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 24.662ex; height: 2.262ex;" src="images/36.svg" alt=" " data-tex="
+\nu = (n′ - n″)\,\omega,
+\qquad\text{(13)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are the numbers characterizing the states. It
+was an essential assumption in Planck's theory that the frequency of
+the radiation emitted and absorbed by the oscillator is always equal to
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">.</span> We see that this assumption is equivalent to the assertion
+that transitions occur only between two successive stationary states in
+sharp contrast to the hydrogen atom. According to our view, however,
+this was exactly what might have been expected, for we must assume that
+the essential difference between the oscillator and the hydrogen atom
+is that the motion of the oscillator is simple harmonic. We can see
+<span class="pagenum" id="Page_29">[Pg 29]</span>
+that it is possible to develop a formal theory of radiation, in which
+the spectrum of hydrogen and the simple spectrum of a Planck oscillator
+appear completely analogous. This theory can only be formulated by
+one and the same condition for a system as simple as the oscillator.
+In general this condition breaks up into two parts, one concerning
+the fixation of the stationary states, and the other relating to the
+frequency of the radiation emitted by a transition between these states.</p>
+
+<p class="space-above2">
+<b>General spectral laws.</b> Although the series spectra of the
+elements of higher atomic number have a more complicated structure
+than the hydrogen spectrum, simple laws have been discovered showing a
+remarkable analogy to the Balmer formula. Rydberg and Ritz showed that
+the frequencies in the series spectra of many elements can be expressed
+by a formula of the type
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 30.217ex; height: 2.262ex;" src="images/37.svg" alt=" " data-tex="
+\nu = f_{k″}(n″) - f_{k′}(n′),
+\qquad\text{(14)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are two whole numbers and <img style="vertical-align: -0.464ex; width: 2.57ex; height: 2.059ex;" src="images/144.svg" alt=" " data-tex="f_{k′}"> and
+<img style="vertical-align: -0.464ex; width: 3.01ex; height: 2.059ex;" src="images/145.svg" alt=" " data-tex="f_{k″}"> are two functions belonging to a series of functions
+characteristic of the element. These functions vary in a simple manner
+with <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and in particular converge to zero for increasing values
+of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> The various series of lines are obtained from this formula
+by allowing the first term <img style="vertical-align: -0.566ex; width: 7.372ex; height: 2.262ex;" src="images/146.svg" alt=" " data-tex="f_{k″}(n″)"> to remain constant, while
+a series of consecutive whole numbers are substituted for <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> in
+the second term <span class="nowrap"><img style="vertical-align: -0.566ex; width: 6.31ex; height: 2.262ex;" src="images/147.svg" alt=" " data-tex="f_{k′}(n′)">.</span> According to the Ritz <i>combination
+principle</i> the entire spectrum may then be obtained by forming
+every possible combination of two values among all the quantities
+<span class="nowrap"><img style="vertical-align: -0.566ex; width: 5.248ex; height: 2.262ex;" src="images/148.svg" alt=" " data-tex="f_{k}(n)">.</span></p>
+
+<p>The fact that the frequency of each line of the spectrum may be
+written as the difference of two simple expressions depending upon
+whole numbers suggests at once that the terms on the right-hand side
+multiplied by <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> may be placed equal to the energy in the various
+stationary states of the atom. The existence in the spectra of the
+other elements of a number of separate functions of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> compels us to
+assume the presence not of one but of a number of series of stationary
+states, the energy of the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state of the <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">th series apart
+from an arbitrary additive constant being given by
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 26.69ex; height: 2.262ex;" src="images/38.svg" alt=" " data-tex="
+E_{k}(n) = -h f_{k}(n).
+\qquad\text{(15)}
+"></span>
+This complicated character of the ensemble of stationary states of
+atoms of higher atomic number is exactly what was to be expected
+<span class="pagenum" id="Page_30">[Pg 30]</span>
+from the relation between the spectra calculated on the quantum
+theory, and the decomposition of the motions of the atoms into
+harmonic oscillations. From this point of view we may regard the
+simple character of the stationary states of the hydrogen atom as
+intimately connected with the simple periodic character of this atom.
+Where the neutral atom contains more than one electron, we find much
+more complicated motions with correspondingly complicated harmonic
+components. We must therefore expect a more complicated ensemble of
+stationary states, if we are still to have a corresponding relation
+between the motions in the atom and the spectrum. In the course of the
+lecture we shall trace this correspondence in detail, and we shall
+be led to a simple explanation of the apparent capriciousness in the
+occurrence of lines predicted by the combination principle.</p>
+
+<p>The following figure gives a survey of the stationary states of the
+sodium atom deduced from the series terms.</p>
+
+<div class="figcenter">
+<img src="images/001.jpg" width="400" alt="fig01">
+<div class="caption">
+<p>Diagram of the series spectrum of sodium.</p>
+</div></div>
+
+<p>The stationary states are represented by black dots whose distance from
+the vertical line a—a is proportional to the numerical value of the
+energy in the states. The arrows in the figure indicate the transitions
+giving those lines of the sodium spectrum which appear under the usual
+conditions of excitation. The arrangement of the states in horizontal
+rows corresponds to the ordinary arrangement of the "spectral terms"
+in the spectroscopic tables. Thus, the states in the first row (<span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S">)</span>
+correspond to the variable term in the "sharp series," the lines of
+which are emitted by transitions from these states to the first state
+in the second row. The states in the second row (<span class="nowrap"><img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P">)</span> correspond
+<span class="pagenum" id="Page_31">[Pg 31]</span>
+to the variable term in the "principal series" which is emitted by
+transitions from these states to the first state in the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> row. The
+<img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> states correspond to the variable term in the "diffuse series,"
+which like the sharp series is emitted by transitions to the first
+state in the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> row, and finally the <img style="vertical-align: 0; width: 1.717ex; height: 1.545ex;" src="images/153.svg" alt=" " data-tex="B"> states correspond to
+the variable term in the "Bergmann" series (fundamental series), in
+which transitions take place to the first state in the <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> row. The
+manner in which the various rows are arranged with reference to one
+another will be used to illustrate the more detailed theory which will
+be discussed later. The apparent capriciousness of the combination
+principle, which I mentioned, consists in the fact that under the
+usual conditions of excitation not all the lines belonging to possible
+combinations of the terms of the sodium spectrum appear, but only those
+indicated in the figure by arrows.</p>
+
+<p>The general question of the fixation of the stationary states of an
+atom containing several electrons presents difficulties of a profound
+character which are perhaps still far from completely solved. It is
+possible, however, to obtain an immediate insight into the stationary
+states involved in the emission of the series spectra by considering
+the empirical laws which have been discovered about the spectral terms.
+According to the well-known law discovered by Rydberg for the spectra
+of elements emitted under the usual conditions of excitation the
+functions <img style="vertical-align: -0.566ex; width: 5.248ex; height: 2.262ex;" src="images/148.svg" alt=" " data-tex="f_{k}(n)"> appearing in formula (14) can be written in the
+form
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 26.646ex; height: 4.728ex;" src="images/39.svg" alt=" " data-tex="
+f_{k}(n) = \frac{K}{n^{2}} \phi_{k}(n),
+\qquad\text{(16)}
+"></span>
+<span class="pagenum" id="Page_32">[Pg 32]</span>
+where <img style="vertical-align: -0.566ex; width: 5.487ex; height: 2.262ex;" src="images/154.svg" alt=" " data-tex="\phi_{k}(n)"> represents a function which converges to unity
+for large values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> is the same constant which appears in
+formula (5) for the spectrum of hydrogen. This result must evidently
+be explained by supposing the atom to be electrically neutral in these
+states and one electron to be moving round the nucleus in an orbit
+the dimensions of which are very large in proportion to the distance
+of the other electrons from the nucleus. We see, indeed, that in this
+case the electric force acting on the outer electron will to a first
+approximation be the same as that acting upon the electron in the
+hydrogen atom, and the approximation will be the better the larger the
+orbit.</p>
+
+<p>On account of the limited time I shall not discuss how this explanation
+of the universal appearance of Rydberg's constant in the arc spectra
+is convincingly supported by the investigation of the "spark spectra."
+These are emitted by the elements under the influence of very strong
+electrical discharges, and come from ionized not neutral atoms. It is
+important, however, that I should indicate briefly how the fundamental
+ideas of the theory and the assumption that in the states corresponding
+to the spectra one electron moves in an orbit around the others, are
+both supported by investigations on selective absorption and the
+excitation of spectral lines by bombardment by electrons.</p>
+
+<p class="space-above2">
+<b>Absorption and excitation of radiation.</b> Just as we have
+assumed that each emission of radiation is due to a transition from
+a stationary state of higher to one of lower energy, so also we must
+assume absorption of radiation by the atom to be due to a transition in
+the opposite direction. For an element to absorb light corresponding to
+a given line in its series spectrum, it is therefore necessary for the
+atom of this element to be in that one of the two states connected with
+the line possessing the smaller energy value. If we now consider an
+element whose atoms in the gaseous state do not combine into molecules,
+it will be necessary to assume that under ordinary conditions nearly
+all the atoms exist in that stationary state in which the value
+of the energy is a minimum. This state I shall call the <i>normal
+state</i>. We must therefore expect that the absorption spectrum of a
+monatomic gas will contain only those lines of the series spectrum,
+whose emission corresponds to transitions to the normal state. This
+expectation is completely confirmed by the spectra of the alkali
+metals. The absorption spectrum of sodium vapour, for example, exhibits
+lines corresponding only to the principal series, which as mentioned in
+the description of the figure corresponds with transitions to the state
+of minimum energy. Further confirmation of this view of the process of
+absorption is given by experiments on <i>resonance radiation</i>. Wood
+first showed that sodium vapour subjected to light corresponding to the
+first line of the principal series—the familiar yellow line—acquires
+the ability of again emitting a radiation consisting only of the light
+of this line. We can explain this by supposing the sodium atom to
+<span class="pagenum" id="Page_33">[Pg 33]</span>
+have been transferred from the normal state to the first state in the
+second row. The fact that the resonance radiation does not exhibit
+the same degree of polarization as the incident light is in perfect
+agreement with our assumption that the radiation from the excited
+vapour is not a resonance phenomenon in the sense of the ordinary
+theory of radiation, but on the contrary depends on a process which is
+not directly connected with the incident radiation.</p>
+
+<p>The phenomenon of the resonance radiation of the yellow sodium line is,
+however, not quite so simple as I have indicated, since, as you know,
+this line is really a doublet. This means that the variable terms of
+the principal series are not simple but are represented by two values
+slightly different from one another. According to our picture of the
+origin of the sodium spectrum this means that the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> states in the
+second row in the figure—as opposed to the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> states in the first
+row—are not simple, but that for each place in this row there are two
+stationary states. The energy values differ so little from one another
+that it is impossible to represent them in the figure as separate dots.
+The emission (and absorption) of the two components of the yellow
+line are, therefore, connected with two different processes. This was
+beautifully shown by some later researches of Wood and Dunoyer. They
+found that if sodium vapour is subjected to radiation from only one
+of the two components of the yellow line, the resonance radiation,
+at least at low pressures, consists only of this component. These
+experiments were later continued by Strutt, and were extended to the
+case where the exciting line corresponded to the second line in the
+principal series. Strutt found that the resonance radiation consisted
+apparently only to a small extent of light of the same frequency as the
+incident light, while the greater part consisted of the familiar yellow
+line. This result must appear very astonishing on the ordinary ideas of
+resonance, since, as Strutt pointed out, no rational connection exists
+between the frequencies of the first and second lines of the principal
+series. It is however easily explained from our point of view. From the
+figure it can be seen that when an atom has been transferred into the
+second state in the second row, in addition to the direct return to the
+normal state, there are still two other transitions which may give rise
+to radiation, namely the transitions to the second state in the first
+row and to the first state in the third row. The experiments seem to
+<span class="pagenum" id="Page_34">[Pg 34]</span>
+indicate that the second of these three transitions is most probable,
+and I shall show later that there is some theoretical justification
+for this conclusion. By this transition, which results in the emission
+of an infra-red line which could not be observed with the experimental
+arrangement, the atom is taken to the second state of the first row,
+and from this state only one transition is possible, which again gives
+an infra-red line. This transition takes the atom to the first state
+in the second row, and the subsequent transition to the normal state
+then gives rise to the yellow line. Strutt discovered another equally
+surprising result, that this yellow resonance radiation seemed to
+consist of both components of the first line of the principal series,
+even when the incident light consisted of only one component of the
+second line of the principal series. This is in beautiful agreement
+with our picture of the phenomenon. We must remember that the states in
+the first row are simple, so when the atom has arrived in one of these
+it has lost every possibility of later giving any indication from which
+of the two states in the second row it originally came.</p>
+
+<p>Sodium vapour, in addition to the absorption corresponding to the
+lines of the principal series, exhibits a <i>selective absorption in a
+continuous spectral region</i> beginning at the limit of this series
+and extending into the ultra-violet. This confirms in a striking manner
+our assumption that the absorption of the lines of the principal series
+of sodium results in final states of the atom in which one of the
+electrons revolves in larger and larger orbits. For we must assume that
+this continuous absorption corresponds to transitions from the normal
+state to states in which the electron is in a position to remove itself
+infinitely far from the nucleus. This phenomenon exhibits a complete
+analogy with the <i>photoelectric effect</i> from an illuminated metal
+plate in which, by using light of a suitable frequency, electrons of
+any velocity can be obtained. The frequency, however, must always lie
+above a certain limit connected according to Einstein's theory in a
+simple manner with the energy necessary to bring an electron out of the
+metal.</p>
+
+<p>This view of the origin of the emission and absorption spectra has
+been confirmed in a very interesting manner by experiments on the
+<i>excitation of spectral lines and production of ionization by
+electron bombardment</i>. The chief advance in this field is due to
+the well-known experiments of Franck and Hertz. These investigators
+<span class="pagenum" id="Page_35">[Pg 35]</span>
+obtained their first important results from their experiments on
+mercury vapour, whose properties particularly facilitate such
+experiments. On account of the great importance of the results, these
+experiments have been extended to most gases and metals that can be
+obtained in a gaseous state. With the aid of the figure I shall briefly
+illustrate the results for the case of sodium vapour. It was found
+that the electrons upon colliding with the atoms were thrown back with
+undiminished velocity when their energy was less than that required
+to transfer the atom from the normal state to the next succeeding
+stationary state of higher energy value. In the case of sodium vapour
+this means from the first state in the first row to the first state
+in the second row. As soon, however, as the energy of the electron
+reaches this critical value, a new type of collision takes place, in
+which the electron loses all its kinetic energy, while at the same
+time the vapour is excited and emits a radiation corresponding to
+the yellow line. This is what would be expected, if by the collision
+the atom was transferred from the normal state to the first one in
+the second row. For some time it was uncertain to what extent this
+explanation was correct, since in the experiments on mercury vapour it
+was found that, together with the occurrence of non-elastic impacts,
+ions were always formed in the vapour. From our figure, however, we
+would expect ions to be produced only when the kinetic energy of the
+electrons is sufficiently great to bring the atom out of the normal
+state to the common limit of the states. Later experiments, especially
+by Davis and Goucher, have settled this point. It has been shown that
+ions can only be directly produced by collisions when the kinetic
+energy of the electrons corresponds to the limit of the series, and
+that the ionization found at first was an indirect effect arising from
+the photoelectric effect produced at the metal walls of the apparatus
+by the radiation arising from the return of the mercury atoms to the
+normal state. These experiments provide a direct and independent
+proof of the reality of the distinctive stationary states, whose
+existence we were led to infer from the series spectra. At the same
+time we get a striking impression of the insufficiency of the ordinary
+electrodynamical and mechanical conceptions for the description of
+atomic processes, not only as regards the emission of radiation but
+<span class="pagenum" id="Page_36">[Pg 36]</span>
+also in such phenomena as the collision of free electrons with atoms.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="III_DEVELOPMENT_OF_THE_QUANTUM_THEORY">
+III. DEVELOPMENT OF THE QUANTUM THEORY
+OF SPECTRA</h2>
+</div>
+
+
+<p>We see that it is possible by making use of a few simple ideas to
+obtain a certain insight into the origin of the series spectra. But
+when we attempt to penetrate more deeply, difficulties arise. In
+fact, for systems which are not simply periodic it is not possible to
+obtain sufficient information about the motions of these systems in
+the stationary states from the numerical values of the energy alone;
+more determining factors are required for the fixation of the motion.
+We meet the same difficulties when we try to explain in detail the
+characteristic effect of external forces upon the spectrum of hydrogen.
+A foundation for further advances in this field has been made in
+recent years through a development of the quantum theory, which allows
+a fixation of the stationary states not only in the case of simple
+periodic systems, but also for certain classes of non-periodic systems.
+These are the <i>conditionally periodic systems</i> whose equations of
+motion can be solved by a "separation of the variables." If generalized
+coordinates are used the description of the motion of these systems can
+be reduced to the consideration of a number of generalized "components
+of motion." Each of these corresponds to the change of only one of
+the coordinates and may therefore in a certain sense be regarded
+as "independent." The method for the fixation of the stationary
+states consists in fixing the motion of each of these components by
+a condition, which can be considered as a direct generalization of
+condition (1) for a Planck oscillator, so that the stationary states
+are in general characterized by as many whole numbers as the number
+of the degrees of freedom which the system possesses. A considerable
+number of physicists have taken part in this development of the quantum
+theory, including Planck himself. I also wish to mention the important
+contribution made by Ehrenfest to this subject on the limitations of
+the applicability of the laws of mechanics to atomic processes. The
+decisive advance in the application of the quantum theory to spectra,
+however, is due to Sommerfeld and his followers. However, I shall not
+further discuss the systematic form in which these authors have
+<span class="pagenum" id="Page_37">[Pg 37]</span>
+presented their results. In a paper which appeared some time ago in
+the Transactions of the Copenhagen Academy, I have shown that the
+spectra, calculated with the aid of this method for the fixation of
+the stationary states, exhibit a correspondence with the spectra which
+should correspond to the motion of the system similar to that which we
+have already considered in the case of hydrogen. With the aid of this
+general correspondence I shall try in the remainder of this lecture to
+show how it is possible to present the theory of series spectra and
+the effects produced by external fields of force upon these spectra in
+a form which may be considered as the natural generalization of the
+foregoing considerations. This form appears to me to be especially
+suited for future work in the theory of spectra, since it allows of an
+immediate insight into problems for which the methods mentioned above
+fail on account of the complexity of the motions in the atom.</p>
+
+<p class="space-above2">
+<b>Effect of external forces on the hydrogen spectrum.</b> We shall
+now proceed to investigate the effect of small perturbing forces upon
+the spectrum of the simple system consisting of a single electron
+revolving about a nucleus. For the sake of simplicity we shall for the
+moment disregard the variation of the mass of the electron with its
+velocity. The consideration of the small changes in the motion due
+to this variation has been of great importance in the development of
+Sommerfeld's theory which originated in the explanation of the <i>fine
+structure of the hydrogen lines</i>. This fine structure is due to the
+fact, that taking into account the variation of mass with velocity
+the orbit of the electron deviates a little from a simple ellipse
+and is no longer exactly periodic. This deviation from a Keplerian
+motion is, however, very small compared with the perturbations due to
+the presence of external forces, such as occur in experiments on the
+Zeeman and Stark effects. In atoms of higher atomic number it is also
+negligible compared with the disturbing effect of the inner electrons
+on the motion of the outer electron. The neglect of the change in mass
+will therefore have no important influence upon the explanation of the
+Zeeman and Stark effects, or upon the explanation of the difference
+between the hydrogen spectrum and the spectra of other elements.
+<span class="pagenum" id="Page_38">[Pg 38]</span>
+</p>
+
+<p>We shall therefore as before consider the motion of the unperturbed
+hydrogen atom as simply periodic and inquire in the first place about
+the stationary states corresponding to this motion. The energy in these
+states will then be determined by expression (7) which was derived from
+the spectrum of hydrogen. The energy of the system being given, the
+major axis of the elliptical orbit of the electron and its frequency
+of revolution are also determined. Substituting in formulae (7) and
+(8) the expression for <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> given in (12), we obtain for the energy,
+major axis and frequency of revolution in the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state of the
+unperturbed atom the expressions
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 79.268ex; height: 5.087ex;" src="images/40.svg" alt=" " data-tex="
+E_{n} = -W_{n} = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}},\quad
+2a_{n} = n^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m},\quad
+\omega_{n} = \frac{1}{n^{3}}\, \frac{4\pi^{2} e^{4} m}{h^{3}}.
+\qquad\text{(17)}
+"></span>
+</p>
+
+<p>We must further assume that in the stationary states of the
+unperturbed system the form of the orbit is so far undetermined that
+the eccentricity can vary continuously. This is not only immediately
+indicated by the principle of correspondence,—since the frequency
+of revolution is determined only by the energy and not by the
+eccentricity,—but also by the fact that the presence of any small
+external forces will in general, in the course of time, produce a
+finite change in the position as well as in the eccentricity of the
+periodic orbit, while in the major axis it can produce only small
+changes proportional to the intensity of the perturbing forces.</p>
+
+<p>In order to fix the stationary states of systems in the presence
+of a given conservative external field of force, we shall have to
+investigate, on the basis of the principle of correspondence, how
+these forces affect the decomposition of the motion into harmonic
+oscillations. Owing to the external forces the form and position of the
+orbit will vary continuously. In the general case these changes will be
+so complicated that it will not be possible to decompose the perturbed
+motion into discrete harmonic oscillations. In such a case we must
+expect that the perturbed system will not possess any sharply separated
+stationary states. Although each emission of radiation must be assumed
+to be monochromatic and to proceed according to the general frequency
+condition we shall therefore expect the final effect to be a broadening
+of the sharp spectral lines of the unperturbed system. In certain
+cases, however, the perturbations will be of such a regular character
+<span class="pagenum" id="Page_39">[Pg 39]</span>
+that the perturbed system can be decomposed into harmonic oscillations,
+although the ensemble of these oscillations will naturally be of a
+more complicated kind than in the unperturbed system. This happens,
+for example, when the variations of the orbit with respect to time are
+periodic. In this case harmonic oscillations will appear in the motion
+of the system the frequencies of which are equal to whole multiples
+of the period of the orbital perturbations, and in the spectrum to be
+expected on the basis of the ordinary theory of radiation we would
+expect components corresponding to these frequencies. According to the
+principle of correspondence we are therefore immediately led to the
+conclusion, that to each stationary state in the unperturbed system
+there corresponds a number of stationary states in the perturbed system
+in such a manner, that for a transition between two of these states a
+radiation is emitted, whose frequency stands in the same relationship
+to the periodic course of the variations in the orbit, as the spectrum
+of a simple periodic system does to its motion in the stationary states.</p>
+
+<p class="space-above2">
+<b>The Stark effect.</b> An instructive example of the appearance
+of periodic perturbations is obtained when hydrogen is subjected to
+the effect of a homogeneous electric field. The eccentricity and the
+position of the orbit vary continuously under the influence of the
+field. During these changes, however, it is found that the centre of
+the orbit remains in a plane perpendicular to the direction of the
+electric force and that its motion in this plane is simply periodic.
+When the centre has returned to its starting point, the orbit will
+resume its original eccentricity and position, and from this moment
+the entire cycle of orbits will be repeated. In this case the
+determination of the energy of the stationary states of the disturbed
+system is extremely simple, since it is found that the period of the
+disturbance does not depend upon the original configuration of the
+orbits nor therefore upon the position of the plane in which the centre
+of the orbit moves, but only upon the major axis and the frequency of
+revolution. From a simple calculation it is found that the period a is
+given by the following formula
+<span class="align-center"><img style="vertical-align: -1.679ex; width: 22.857ex; height: 4.746ex;" src="images/41.svg" alt=" " data-tex="
+\sigma = \frac{3eF}{8\pi^{2} ma\omega},
+\qquad\text{(18)}
+"></span>
+<span class="pagenum" id="Page_40">[Pg 40]</span>
+where <img style="vertical-align: 0; width: 1.695ex; height: 1.538ex;" src="images/155.svg" alt=" " data-tex="F"> is the intensity of the external electric field. From
+analogy with the fixation of the distinctive energy values of a Planck
+oscillator we must therefore expect that the energy difference between
+two different states, corresponding to the same stationary state of the
+unperturbed system, will simply be equal to a whole multiple of the
+product of <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> by the period <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma"> of the perturbations. We are
+therefore immediately led to the following expression for the energy of
+the stationary states of the perturbed system,
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 23.656ex; height: 2.262ex;" src="images/42.svg" alt=" " data-tex="
+E = E_{n} + kh\sigma,
+\qquad\text{(19)}
+"></span>
+where <img style="vertical-align: -0.357ex; width: 2.817ex; height: 1.895ex;" src="images/157.svg" alt=" " data-tex="E_{n}"> depends only upon the number <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> characterizing the
+stationary state of the unperturbed system, while <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> is a new whole
+number which in this case may be either positive or negative. As we
+shall see below, consideration of the relation between the energy and
+the motion of the system shows that <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> must be numerically less than
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span> if, as before, we place the quantity <img style="vertical-align: -0.357ex; width: 2.817ex; height: 1.895ex;" src="images/157.svg" alt=" " data-tex="E_{n}"> equal to the
+energy <img style="vertical-align: -0.357ex; width: 5.044ex; height: 1.902ex;" src="images/158.svg" alt=" " data-tex="-W_{n}"> of the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th stationary state of the undisturbed
+atom. Substituting the values of <img style="vertical-align: -0.439ex; width: 6.844ex; height: 1.984ex;" src="images/159.svg" alt=" " data-tex="W_{n},\omega_{n}"> and <img style="vertical-align: -0.357ex; width: 2.344ex; height: 1.355ex;" src="images/160.svg" alt=" " data-tex="a_{n}">
+given by (17) in formula (19) we get
+<span class="align-center"><img style="vertical-align: -1.679ex; width: 41.335ex; height: 5.112ex;" src="images/43.svg" alt=" " data-tex="
+E = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}}
+ + nk\, \frac{3h^{2} F}{8\pi^{2} em}.
+\qquad\text{(20)}
+"></span>
+To find the effect of an electric field upon the lines of the hydrogen
+spectrum, we use the frequency condition (4) and obtain for the
+frequency <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> of the radiation emitted by a transition between two
+stationary states defined by the numbers <img style="vertical-align: -0.439ex; width: 4.787ex; height: 2.009ex;" src="images/161.svg" alt=" " data-tex="n′, k′"> and <img style="vertical-align: -0.439ex; width: 6.031ex; height: 2.009ex;" src="images/162.svg" alt=" " data-tex="n″, k″">
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 64.53ex; height: 5.628ex;" src="images/44.svg" alt=" " data-tex="
+\nu = \frac{2\pi^{2} e^{4} m}{h^{3}} \left(\frac{1}{(n″)^{2}}
+ - \frac{1}{(n″)^{2}}\right)
+ + \frac{3h · F}{8\pi^{2} em} (n′k′ - n″k″).
+\qquad\text{(21)}
+"></span>
+</p>
+
+<p>It is well known that this formula provides a complete explanation of
+the Stark effect of the hydrogen lines. It corresponds exactly with the
+one obtained by a different method by Epstein and Schwarzschild. They
+used the fact that the hydrogen atom in a homogeneous electric field is
+a conditionally periodic system permitting a separation of variables by
+the use of parabolic coordinates. The stationary states were fixed by
+applying quantum conditions to each of these variables.</p>
+
+<p>We shall now consider more closely the correspondence between the
+changes in the spectrum of hydrogen due to the presence of an
+<span class="pagenum" id="Page_41">[Pg 41]</span>
+electric field and the decomposition of the perturbed motion of the
+atom into its harmonic components. Instead of the simple decomposition
+into harmonic components corresponding to a simple Kepler motion, the
+displacement<img style="vertical-align: -0.464ex; width: 0.991ex; height: 2.057ex;" src="images/139.svg" alt=" " data-tex="\xi"> of the electron in a given direction in space can
+be expressed in the present case by the formula
+<span class="align-center"><img style="vertical-align: -1.018ex; width: 46.686ex; height: 3.167ex;" src="images/45.svg" alt=" " data-tex="
+\xi = \sum C_{\tau,\kappa} \cos 2\pi \bigl\{t(\tau\omega + \kappa\sigma)
+ + c_{\tau,\kappa}\bigr\},
+\qquad\text{(22)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> is the average frequency of revolution in the
+perturbed orbit and <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma"> is the period of the orbital
+perturbations, while <img style="vertical-align: -0.65ex; width: 3.999ex; height: 2.245ex;" src="images/163.svg" alt=" " data-tex="C_{\tau,\kappa}"> and <img style="vertical-align: -0.65ex; width: 3.361ex; height: 1.65ex;" src="images/164.svg" alt=" " data-tex="c_{\tau,\kappa}"> are
+constants. The summation is to be extended over all integral values for
+<img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa">.</span></p>
+
+<p>If we now consider a transition between two stationary states
+characterized by certain numbers <img style="vertical-align: -0.439ex; width: 4.787ex; height: 2.009ex;" src="images/161.svg" alt=" " data-tex="n′, k′"> and <span class="nowrap"><img style="vertical-align: -0.439ex; width: 6.031ex; height: 2.009ex;" src="images/162.svg" alt=" " data-tex="n″, k″">,</span> we
+find that in the region where these numbers are large compared with
+their differences <img style="vertical-align: -0.186ex; width: 7.347ex; height: 1.505ex;" src="images/137.svg" alt=" " data-tex="n′ - n″"> and <span class="nowrap"><img style="vertical-align: -0.186ex; width: 6.99ex; height: 1.756ex;" src="images/166.svg" alt=" " data-tex="k′ - k″">,</span> the frequency of the
+spectral line which is emitted will be given approximately by the
+formula
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 37.847ex; height: 2.262ex;" src="images/46.svg" alt=" " data-tex="
+\nu \sim (n′ - n″)\,\omega + (k′ - k″)\,\sigma.
+\qquad\text{(23)}
+"></span>
+We see, therefore, that we have obtained a relation between the
+spectrum and the motion of precisely the same character as in
+the simple case of the unperturbed hydrogen atom. We have here a
+similar correspondence between the harmonic component in the motion,
+corresponding to definite values for <img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau"> and <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa"> in formula
+(22), and the transition between two stationary states for which
+<img style="vertical-align: -0.186ex; width: 11.534ex; height: 1.505ex;" src="images/141.svg" alt=" " data-tex="n′ - n″ = \tau"> and <span class="nowrap"><img style="vertical-align: -0.186ex; width: 11.31ex; height: 1.756ex;" src="images/167.svg" alt=" " data-tex="k′ - k″ = \kappa">.</span></p>
+
+<p>A number of interesting results can be obtained from this
+correspondence by considering the motion in more detail. Each harmonic
+component in expression (22) for which <img style="vertical-align: -0.186ex; width: 5.239ex; height: 1.505ex;" src="images/168.svg" alt=" " data-tex="\tau + \kappa"> is an even
+number corresponds to a linear oscillation parallel to the direction of
+the electric field, while each component for which <img style="vertical-align: -0.186ex; width: 5.239ex; height: 1.505ex;" src="images/168.svg" alt=" " data-tex="\tau + \kappa">
+is odd corresponds to an elliptical oscillation perpendicular to
+this direction. The correspondence principle suggests at once that
+these facts are connected with the <i>characteristic polarization</i>
+observed in the Stark effect. We would anticipate that a transition
+for which <img style="vertical-align: -0.566ex; width: 20.623ex; height: 2.262ex;" src="images/169.svg" alt=" " data-tex="(n′ - n″) + (k′ - k″)"> is even would give rise to
+a component with an electric vector parallel to the field, while
+a transition for which <img style="vertical-align: -0.566ex; width: 20.623ex; height: 2.262ex;" src="images/169.svg" alt=" " data-tex="(n′ - n″) + (k′ - k″)"> is odd would
+correspond to a component with an electric vector perpendicular
+<span class="pagenum" id="Page_42">[Pg 42]</span>
+to the field. These results have been fully confirmed by experiment
+and correspond to the empirical rule of polarization, which Epstein
+proposed in his first paper on the Stark effect.</p>
+
+<p>The applications of the correspondence principle that have so far been
+described have been purely qualitative in character. It is possible
+however to obtain a quantitative estimate of the relative intensity of
+the various components of the Stark effect of hydrogen, by correlating
+the numerical values of the coefficients <img style="vertical-align: -0.65ex; width: 3.999ex; height: 2.245ex;" src="images/163.svg" alt=" " data-tex="C_{\tau,\kappa}"> in formula
+(22) with the probability of the corresponding transitions between the
+stationary states. This problem has been treated in detail by Kramers
+in a recently published dissertation. In this he gives a thorough
+discussion of the application of the correspondence principle to the
+question of the intensity of spectral lines.</p>
+
+<p class="space-above2">
+<b>The Zeeman effect.</b> The problem of the effect of a homogeneous
+magnetic field upon the hydrogen lines may be treated in an entirely
+analogous manner. The effect on the motion of the hydrogen atom
+consists simply of the superposition of a uniform rotation upon the
+motion of the electron in the unperturbed atom. The axis of rotation is
+parallel with the direction of the magnetic force, while the frequency
+of revolution is given by the formula
+<span class="align-center"><img style="vertical-align: -1.577ex; width: 20.245ex; height: 4.652ex;" src="images/47.svg" alt=" " data-tex="
+\sigma = \frac{eH}{4\pi mc},
+\qquad\text{(24)}
+"></span>
+where <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/170.svg" alt=" " data-tex="H"> is the intensity of the field and <img style="vertical-align: -0.025ex; width: 0.98ex; height: 1.025ex;" src="images/98.svg" alt=" " data-tex="c"> the velocity of light.</p>
+
+<p>Again we have a case where the perturbations are simply periodic and
+where the period of the perturbations is independent of the form and
+position of the orbit, and in the present case, even of the major axis.
+Similar considerations apply therefore as in the case of the Stark
+effect, and we must expect that the energy in the stationary states
+will again be given by formula (19), if we substitute for <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma">
+the value given in expression (24). This result is also in complete
+agreement with that obtained by Sommerfeld and Debye. The method they
+used involved the solution of the equations of motion by the method of
+the separation of the variables. The appropriate coordinates are polar
+ones about an axis parallel to the field.</p>
+
+<p>If we try, however, to calculate directly the effect of the field
+by means of the frequency condition (4), we immediately meet
+<span class="pagenum" id="Page_43">[Pg 43]</span>
+with an apparent disagreement which for some time was regarded as
+a grave difficulty for the theory. As both Sommerfeld and Debye
+have pointed out, lines are not observed corresponding to every
+transition between the stationary states included in the formula. We
+overcome this difficulty, however, as soon as we apply the principle
+of correspondence. If we consider the harmonic components of the
+motion we obtain a simple explanation both of the non-occurrence
+of certain transitions and of the observed polarization. In the
+magnetic field each elliptic harmonic component having the frequency
+<img style="vertical-align: -0.029ex; width: 2.577ex; height: 1.032ex;" src="images/171.svg" alt=" " data-tex="\tau\omega"> splits up into three harmonic components owing to
+the uniform rotation of the orbit. Of these one is rectilinear with
+frequency <img style="vertical-align: -0.029ex; width: 2.577ex; height: 1.032ex;" src="images/171.svg" alt=" " data-tex="\tau\omega"> oscillating parallel to the magnetic field,
+and two are circular with frequencies <img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/172.svg" alt=" " data-tex="\tau\omega + \sigma"> and
+<img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/173.svg" alt=" " data-tex="\tau\omega - \sigma"> oscillating in opposite directions in a
+plane perpendicular to the direction of the field. Consequently the
+motion represented by formula (22) contains no components for which
+<img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa"> is numerically greater than <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">,</span> in contrast to the Stark
+effect, where components corresponding to all values of <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa"> are
+present. Now formula (23) again applies for large values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> and shows the asymptotic agreement between the frequency of the
+radiation and the frequency of a harmonic component in the motion. We
+arrive, therefore, at the conclusion that transitions for which <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">
+changes by more than unity cannot occur. The argument is similar to
+that by which transitions between two distinctive states of a Planck
+oscillator for which the values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> in (1) differ by more than
+unity are excluded. We must further conclude that the various possible
+transitions consist of two types. For the one type corresponding
+to the rectilinear component, <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> remains unchanged, and in the
+emitted radiation which possesses the same frequency <img style="vertical-align: -0.375ex; width: 2.105ex; height: 1.375ex;" src="images/174.svg" alt=" " data-tex="\nu_{0}">
+as the original hydrogen line, the electric vector will oscillate
+parallel with the field. For the second type, corresponding to the
+circular components, <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> will increase or decrease by unity,
+and the radiation viewed in the direction of the field will
+be circularly polarized and have frequencies
+<img style="vertical-align: -0.375ex; width: 6.163ex; height: 1.694ex;" src="images/175.svg" alt=" " data-tex="\nu_{0} + \sigma"> and <img style="vertical-align: -0.375ex; width: 6.163ex; height: 1.694ex;" src="images/176.svg" alt=" " data-tex="\nu_{0} - \sigma"> respectively.
+These results agree with those of the familiar Lorentz theory. The
+similarity in the two theories is remarkable, when we recall the
+fundamental difference between the ideas of the quantum theory and the
+ordinary theories of radiation.</p>
+
+<p><span class="pagenum" id="Page_44">[Pg 44]</span></p>
+<p class="space-above2">
+<b>Central perturbations.</b> An illustration based on similar
+considerations which will throw light upon the spectra of other
+elements consists in finding the effect of a small perturbing field
+of force radially symmetrical with respect to the nucleus. In this
+case neither the form of the orbit nor the position of its plane will
+change with time, and the perturbing effect of the field will simply
+consist of a uniform rotation of the major axis of the orbit. The
+perturbations are periodic, so that we may assume that to each energy
+value of a stationary state of the unperturbed system there belongs a
+series of discrete energy values of the perturbed system, characterized
+by different values of a whole number <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span> The frequency <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma">
+of the perturbations is equal to the frequency of rotation of the major
+axis. For a given law of force for the perturbing field we find that
+<img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma"> depends both on the major axis and on the eccentricity. The
+change in the energy of the stationary states, therefore, will not be
+given by an expression as simple as the second term in formula (19),
+but will be a function of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> which is different for different
+fields. It is possible, however, to characterize by one and the same
+condition the motion in the stationary states of a hydrogen atom
+which is perturbed by any central field. In order to show this we
+must consider more closely the fixation of the motion of a perturbed
+hydrogen atom.</p>
+
+<p>In the stationary states of the unperturbed hydrogen atom only
+the major axis of the orbit is to be regarded as fixed, while the
+eccentricity may assume any value. Since the change in the energy of
+the atom due to the external field of force depends upon the form and
+position of its orbit, the fixation of the energy of the atom in the
+presence of such a field naturally involves a closer determination of
+the orbit of the perturbed system.</p>
+
+<p>Consider, for the sake of illustration, the change in the hydrogen
+spectrum due to the presence of homogeneous electric and magnetic
+fields which was described by equation (19). It is found that this
+energy condition can be given a simple geometrical interpretation. In
+the case of an electric field the distance from the nucleus to the
+plane in which the centre of the orbit moves determines the change
+in the energy of the system due to the presence of the field. In the
+stationary states this distance is simply equal to <img style="vertical-align: -1.577ex; width: 2.353ex; height: 4.676ex;" src="images/177.svg" alt=" " data-tex="\dfrac{k}{n}">
+<span class="pagenum" id="Page_45">[Pg 45]</span>
+times half the major axis of the orbit. In the case of a magnetic
+field it is found that the quantity which determines the change of
+energy of the system is the area of the projection of the orbit upon a
+plane perpendicular to the magnetic force. In the various stationary
+states this area is equal to <img style="vertical-align: -1.577ex; width: 2.353ex; height: 4.676ex;" src="images/177.svg" alt=" " data-tex="\dfrac{k}{n}"> times the area of a
+circle whose radius is equal to half the major axis of the orbit. In
+the case of a perturbing central force the correspondence between
+the spectrum and the motion which is required by the quantum theory
+leads now to the simple condition that in the stationary states of the
+perturbed system the minor axis of the rotating orbit is simply equal
+to <img style="vertical-align: -1.577ex; width: 2.353ex; height: 4.676ex;" src="images/177.svg" alt=" " data-tex="\dfrac{k}{n}"> times the major axis. This condition was first
+derived by Sommerfeld from his general theory for the determination of
+the stationary states of a central motion. It is easily shown that this
+fixation of the value of the minor axis is equivalent to the statement
+that the parameter <img style="vertical-align: -0.439ex; width: 2.269ex; height: 1.946ex;" src="images/178.svg" alt=" " data-tex="2p"> of the elliptical orbit is given by an
+expression of exactly the same form as that which gives the major axis
+<img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> in the unperturbed atom. The only difference from the expression
+for <img style="vertical-align: -0.357ex; width: 3.476ex; height: 1.864ex;" src="images/179.svg" alt=" " data-tex="2a_{n}"> in (17) is that <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> is replaced by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> so that the
+value of the parameter in the stationary states of the perturbed atom
+is given by
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 26.838ex; height: 5.07ex;" src="images/48.svg" alt=" " data-tex="
+2p_{k} = k^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m}.
+\qquad\text{(25)}
+"></span>
+The frequency of the radiation emitted by a transition between two
+stationary states determined in this way for which <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″">
+are large in proportion to their difference is given by an expression
+which is the same as that in equation (23), if in this case <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega">
+is the frequency of revolution of the electron in the slowly rotating
+orbit and <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma"> represents the frequency of rotation of the major
+axis.</p>
+
+<p>Before proceeding further, it might be of interest to note that this
+fixation of the stationary states of the hydrogen atom perturbed by
+external electric and magnetic forces does not coincide in certain
+respects with the theories of Sommerfeld, Epstein and Debye. According
+to the theory of conditionally periodic systems the stationary states
+for a system of three degrees of freedom will in general be determined
+by three conditions, and therefore in these theories each state
+<span class="pagenum" id="Page_46">[Pg 46]</span>
+is characterized by three whole numbers. This would mean that the
+stationary states of the perturbed hydrogen atom corresponding to a
+certain stationary state of the unperturbed hydrogen atom, fixed by
+one condition, should be subject to two further conditions and should
+therefore be characterized by two new whole numbers in addition to
+the number <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> But the perturbations of the Keplerian motion are
+simply periodic and the energy of the perturbed atom will therefore
+be fixed completely by one additional condition. The introduction of
+a second condition will add nothing further to the explanation of the
+phenomenon, since with the appearance of new perturbing forces, even if
+these are too small noticeably to affect the observed Zeeman and Stark
+effects, the forms of motion characterized by such a condition may be
+entirely changed. This is completely analogous to the fact that the
+hydrogen spectrum as it is usually observed is not noticeably affected
+by small forces, even when they are large enough to produce a great
+change in the form and position of the orbit of the electron.</p>
+
+<p class="space-above2">
+<b>Relativity effect on hydrogen lines.</b> Before leaving the hydrogen
+spectrum I shall consider briefly the effect of the variation of the
+mass of the electron with its velocity. In the preceding sections I
+have described how external fields of force split up the hydrogen lines
+into several components, but it should be noticed that these results
+are only accurate when the perturbations are large in comparison with
+the small deviations from a pure Keplerian motion due to the variation
+of the mass of the electron with its velocity. When the variation of
+the mass is taken into account the motion of the unperturbed atom will
+not be exactly periodic. Instead we obtain a motion of precisely the
+same kind as that occurring in the hydrogen atom perturbed by a small
+central field. According to the correspondence principle an intimate
+connection is to be expected between the frequency of revolution of
+the major axis of the orbit and the difference of the frequencies
+of the fine structure components, and the stationary states will be
+those orbits whose parameters are given by expression (25). If we
+now consider the effect of external forces upon the fine structure
+components of the hydrogen lines it is necessary to keep in mind
+that this fixation of the stationary states only applies to the
+<span class="pagenum" id="Page_47">[Pg 47]</span>
+unperturbed hydrogen atom, and that, as mentioned, the orbits in these
+states are in general already strongly influenced by the presence
+of external forces, which are small compared with those with which
+we are concerned in experiments on the Stark and Zeeman effects. In
+general the presence of such forces will lead to a great complexity of
+perturbations, and the atom will no longer possess a group of sharply
+defined stationary states. The fine structure components of a given
+hydrogen line will therefore become diffuse and merged together. There
+are, however, several important cases where this does not happen on
+account of the simple character of the perturbations. The simplest
+example is a hydrogen atom perturbed by a central force acting from
+the nucleus. In this case it is evident that the motion of the system
+will retain its centrally symmetrical character, and that the perturbed
+motion will differ from the unperturbed motion only in that the
+frequency of rotation of the major axis will be different for different
+values of this axis and of the parameter. This point is of importance
+in the theory of the spectra of elements of higher atomic number,
+since, as we shall see, the effect of the forces originating from the
+inner electrons may to a first approximation be compared with that of
+a perturbing central field. We cannot therefore expect these spectra
+to exhibit a separate effect due to the variation of the mass of the
+electron of the same kind as that found in the case of the hydrogen
+lines. This variation will not give rise to a splitting up into
+separate components but only to small displacements in the position of
+the various lines.</p>
+
+<p>We obtain still another simple example in which the hydrogen atom
+possesses sharp stationary states, although the change of mass
+of the electron is considered, if we take an atom subject to a
+homogeneous magnetic field. The effect of such a field will consist
+in the superposition of a rotation of the entire system about an
+axis through the nucleus and parallel with the magnetic force. It
+follows immediately from this result according to the principle of
+correspondence that each fine structure component must be expected to
+split up into a normal Zeeman effect (Lorentz triplet). The problem
+may also be solved by means of the theory of conditionally periodic
+systems, since the equations of motion in the presence of a magnetic
+<span class="pagenum" id="Page_48">[Pg 48]</span>
+field, even when the change in the mass is considered, will allow of a
+separation of the variables using polar coordinates in space. This has
+been pointed out by Sommerfeld and Debye.</p>
+
+<p>A more complicated case arises when the atom is exposed to a
+homogeneous electric field which is not so strong that the effect due
+to the change in the mass may be neglected. In this case there is no
+system of coordinates by which the equations of motion can be solved
+by separation of the variables, and the problem, therefore, cannot
+be treated by the theory of the stationary states of conditionally
+periodic systems. A closer investigation of the perturbations, however,
+shows them to be of such a character that the motion of the electrons
+may be decomposed into a number of separate harmonic components. These
+fall into two groups for which the direction of oscillation is either
+parallel with or perpendicular to the field. According to the principle
+of correspondence, therefore, we must expect that also in this case in
+the presence of the field each hydrogen line will consist of a number
+of sharp, polarized components. In fact by means of the principles
+I have described, it is possible to give a unique fixation of the
+stationary states. The problem of the effect of a homogeneous electric
+field upon the fine structure components of the hydrogen lines has been
+treated in detail from this point of view by Kramers in a paper which
+will soon be published. In this paper it will be shown how it appears
+possible to predict in detail the manner in which the fine structure of
+the hydrogen lines gradually changes into the ordinary Stark effect as
+the electric intensity increases.</p>
+
+<p class="space-above2">
+<b>Theory of series spectra.</b> Let us now turn our attention once
+more to the problem of the series spectra of elements of higher atomic
+number. The general appearance of the Rydberg constant in these spectra
+is to be explained by assuming that the atom is neutral and that one
+electron revolves in an orbit the dimensions of which are large in
+comparison with the distance of the inner electrons from the nucleus.
+In a certain sense, therefore, the motion of the outer electron may be
+compared with the motion of the electron of the hydrogen atom perturbed
+by external forces, and the appearance of the various series in the
+spectra of the other elements is from this point of view to be
+<span class="pagenum" id="Page_49">[Pg 49]</span>
+regarded as analogous to the splitting up of the hydrogen lines into
+components on account of such forces.</p>
+
+<p>In his theory of the structure of series spectra of the type exhibited
+by the alkali metals, Sommerfeld has made the assumption that the orbit
+of the outer electron to a first approximation possesses the same
+character as that produced by a simple perturbing central field whose
+intensity diminishes rapidly with increasing distance from the nucleus.
+He fixed the motion of the external electron by means of his general
+theory for the fixation of the stationary states of a central motion.
+The application of this method depends on the possibility of separating
+the variables in the equations of motion. In this manner Sommerfeld
+was able to calculate a number of energy values which can be arranged
+in rows just like the empirical spectral terms shown in the diagram of
+the sodium spectrum (<a href="#Page_30">p. 30</a>). The states grouped together by Sommerfeld
+in the separate rows are exactly those which were characterized by one
+and the same value of <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> in our investigation of the hydrogen atom
+perturbed by a central force. The states in the first row of the figure
+(row <span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S">)</span> correspond to the value <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/180.svg" alt=" " data-tex="k = 1">,</span> those of the second row
+(<span class="nowrap"><img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P">)</span> correspond to <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/181.svg" alt=" " data-tex="k = 2">,</span> etc. The states corresponding to one
+and the same value of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> are connected by dotted lines which are
+continued so that their vertical asymptotes correspond to the energy
+value of the stationary states of the hydrogen atom. The fact that
+for a constant <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and increasing values of <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> the energy values
+approach the corresponding values for the unperturbed hydrogen atom is
+immediately evident from the theory since the outer electron, for large
+values of the parameter of its orbit, remains at a great distance from
+the inner system during the whole revolution. The orbit will become
+almost elliptical and the period of rotation of the major axis will be
+very large. It can be seen, therefore, that the effect of the inner
+system on the energy necessary to remove this electron from the atom
+must become less for increasing values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span></p>
+
+<p>These beautiful results suggest the possibility of finding laws of
+force for the perturbing central field which would account for the
+spectra observed. Although Sommerfeld in this way has in fact succeeded
+in deriving formulae for the spectral terms which vary with <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">
+for a constant <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> in agreement with Rydberg's formulae, it has
+<span class="pagenum" id="Page_50">[Pg 50]</span>
+not been possible to explain the simultaneous variation with both
+<img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> and <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> in any actual case. This is not surprising, since it
+is to be anticipated that the effect of the inner electrons on the
+spectrum could not be accounted for in such a simple manner. Further
+consideration shows that it is necessary to consider not only the
+forces which originate from the inner electrons but also to consider
+the effect of the presence of the outer electron upon the motion of the
+inner electrons.</p>
+
+<p>Before considering the series spectra of elements of low atomic number
+I shall point out how the occurrence or non-occurrence of certain
+transitions can be shown by the correspondence principle to furnish
+convincing evidence in favour of Sommerfeld's assumption about the
+orbit of the outer electron. For this purpose we must describe the
+motion of the outer electron in terms of its harmonic components.
+This is easily performed if we assume that the presence of the inner
+electrons simply produces a uniform rotation of the orbit of the outer
+electron in its plane. On account of this rotation, the frequency
+of which we will denote by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma">,</span> two circular rotations with
+the periods <img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/172.svg" alt=" " data-tex="\tau\omega + \sigma"> and <img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/173.svg" alt=" " data-tex="\tau\omega - \sigma"> will
+appear in the motion of the perturbed electron, instead of each of
+the harmonic elliptical components with a period <img style="vertical-align: -0.029ex; width: 2.577ex; height: 1.032ex;" src="images/171.svg" alt=" " data-tex="\tau\omega"> in
+the unperturbed motion. The decomposition of the perturbed motion
+into harmonic components consequently will again be represented by a
+formula of the type (22), in which only such terms appear for which
+<img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa"> is equal to <img style="vertical-align: -0.186ex; width: 2.891ex; height: 1.692ex;" src="images/182.svg" alt=" " data-tex="+1"> or <span class="nowrap"><img style="vertical-align: -0.186ex; width: 2.891ex; height: 1.692ex;" src="images/183.svg" alt=" " data-tex="-1">.</span> Since the frequency of the
+emitted radiation in the regions where <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> are large is
+again given by the asymptotic formula (23), we at once deduce from the
+correspondence principle that the only transitions which can take place
+are those for which the values of <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> differ by unity. A glance at
+the figure for the sodium spectrum shows that this agrees exactly with
+the experimental results. This fact is all the more remarkable, since
+in Sommerfeld's theory the arrangement of the energy values of the
+stationary states in rows has no special relation to the possibility of
+transition between these states.</p>
+
+<p class="space-above2">
+<b>Correspondence principle and conservation of angular momentum.</b>
+Besides these results the correspondence principle suggests that
+the radiation emitted by the perturbed atom must exhibit circular
+<span class="pagenum" id="Page_51">[Pg 51]</span>
+polarization. On account of the indeterminateness of the plane of the
+orbit, however, this polarization cannot be directly observed. The
+assumption of such a polarization is a matter of particular interest
+for the theory of radiation emission. On account of the general
+correspondence between the spectrum of an atom and the decomposition
+of its motion into harmonic components, we are led to compare the
+radiation emitted during the transition between two stationary states
+with the radiation which would be emitted by a harmonically oscillating
+electron on the basis of the classical electrodynamics. In particular
+the radiation emitted according to the classical theory by an electron
+revolving in a circular orbit possesses an angular momentum and the
+energy <img style="vertical-align: 0; width: 3.613ex; height: 1.62ex;" src="images/184.svg" alt=" " data-tex="\Delta E"> and the angular momentum <img style="vertical-align: 0; width: 3.584ex; height: 1.62ex;" src="images/185.svg" alt=" " data-tex="\Delta P"> of the
+radiation emitted during a certain time are connected by the relation
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 25.23ex; height: 2.262ex;" src="images/49.svg" alt=" " data-tex="
+\Delta E = 2\pi\omega · \Delta P.
+\qquad\text{(26)}
+"></span>
+</p>
+
+<p>Here <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> represents the frequency of revolution of the electron,
+and according to the classical theory this is equal to the frequency
+<img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> of the radiation. If we now assume that the total energy
+emitted is equal to <img style="vertical-align: -0.025ex; width: 2.502ex; height: 1.595ex;" src="images/86.svg" alt=" " data-tex="h\nu"> we obtain for the total angular momentum
+of the radiation
+<span class="align-center"><img style="vertical-align: -1.577ex; width: 19.571ex; height: 4.676ex;" src="images/50.svg" alt=" " data-tex="
+\Delta P = \frac{h}{2\pi}.
+\qquad\text{(27)}
+"></span>
+</p>
+
+<p>It is extremely interesting to note that this expression is equal
+to the change in the angular momentum which the atom suffers in a
+transition where <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> varies by unity. For in Sommerfeld's theory
+the general condition for the fixation of the stationary states of
+a central system, which in the special case of an approximately
+Keplerian motion is equivalent to the relation (25), asserts that the
+angular momentum of the system must be equal to a whole multiple of
+<span class="nowrap"><img style="vertical-align: -1.577ex; width: 3.416ex; height: 4.676ex;" src="images/186.svg" alt=" " data-tex="\dfrac{h}{2\pi}">,</span> a condition which may be written in our notation
+<span class="align-center"><img style="vertical-align: -1.577ex; width: 19.243ex; height: 4.676ex;" src="images/51.svg" alt=" " data-tex="
+P = k\, \frac{h}{2\pi}.
+\qquad\text{(28)}
+"></span>
+We see, therefore, that this condition has obtained direct support from
+a simple consideration of the conservation of angular momentum during
+the emission of the radiation. I wish to emphasize that this equation
+is to be regarded as a rational generalization of Planck's original
+<span class="pagenum" id="Page_52">[Pg 52]</span>
+statement about the distinctive states of a harmonic oscillator. It may
+be of interest to recall that the possible significance of the angular
+momentum in applications of the quantum theory to atomic processes
+was first pointed out by Nicholson on the basis of the fact that for
+a circular motion the angular momentum is simply proportional to the
+ratio of the kinetic energy to the frequency of revolution.</p>
+
+<p>In a previous paper which I presented to the Copenhagen Academy I
+pointed out that these results confirm the conclusions obtained by
+the application of the correspondence principle to atomic systems
+possessing radial or axial symmetry. Rubinowicz has independently
+indicated the conclusions which may be obtained directly from a
+consideration of conservation of angular momentum during the radiation
+process. In this way he has obtained several of our results concerning
+the various types of possible transitions and the polarization of
+the emitted radiation. Even for systems possessing radial or axial
+symmetry, however, the conclusions which we can draw by means of the
+correspondence principle are of a more detailed character than can be
+obtained solely from a consideration of the conservation of angular
+momentum. For example, in the case of the hydrogen atom perturbed by
+a central force we can only conclude that <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> cannot change by more
+than unity, while the correspondence principle requires that <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">
+shall vary by unity for every possible transition and that its value
+cannot remain unchanged. Further, this principle enables us not only
+to exclude certain transitions as being impossible—and can from this
+point of view be considered as a "selection principle"—but it also
+enables us to draw conclusions about the relative probabilities of the
+various possible types of transitions from the values of the amplitudes
+of the harmonic components. In the present case, for example, the fact
+that the amplitudes of those circular components which rotate in the
+same sense as the electron are in general greater than the amplitudes
+of those which rotate in the opposite sense leads us to expect that
+lines corresponding to transitions for which <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> decreases by unity
+will in general possess greater intensity than lines during the
+emission of which <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> increases by unity. Simple considerations
+like this, however, apply only to spectral lines corresponding to
+transitions from one and the same stationary state. In other cases
+<span class="pagenum" id="Page_53">[Pg 53]</span>
+when we wish to estimate the relative intensities of two spectral
+lines it is clearly necessary to take into consideration the relative
+number of atoms which are present in each of the two stationary states
+from which the transitions start. While the intensity naturally cannot
+depend upon the number of atoms in the final state, it is to be
+noticed, however, that in estimating the probability of a transition
+between two stationary states it is necessary to consider the character
+of the motion in the final as well as in the initial state, since the
+values of the amplitudes of the components of oscillation of both
+states are to be regarded as decisive for the probability.</p>
+
+<p>To show how this method can be applied I shall return for a moment to
+the problem which I mentioned in connection with Strutt's experiment on
+the resonance radiation of sodium vapour. This involved the discussion
+of the relative probability of the various possible transitions which
+can start from that state corresponding to the second term in the
+second row of the figure on <a href="#Page_30">p. 30</a>. These were transitions to the first
+and second states in the first row and to the first state in the third
+row, and the results of experiment indicate, as we saw, that the
+probability is greatest for the second transitions. These transitions
+correspond to those harmonic components having frequencies
+<span class="nowrap"><img style="vertical-align: -0.186ex; width: 6.596ex; height: 1.692ex;" src="images/187.svg" alt=" " data-tex="2\omega + \sigma">,</span> <img style="vertical-align: -0.186ex; width: 5.465ex; height: 1.505ex;" src="images/188.svg" alt=" " data-tex="\omega + \sigma"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma">,</span>
+and it is seen that only for the second transition do the amplitudes of
+the corresponding harmonic component differ from zero in the initial
+as well as in the final state. [In the next essay the reader will find
+that the values of quantum number <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> assigned in <a href="#Page_70">Fig. 1</a> to the
+various stationary states must be altered. While this correction in no
+way influences the other conclusions in this essay it involves that the
+reasoning in this passage cannot be maintained.]</p>
+
+<p>I have shown how the correspondence between the spectrum of an
+element and the motion of the atom enables us to understand the
+limitations in the direct application of the combination principle in
+the prediction of spectral lines. The same ideas give an immediate
+explanation of the interesting discovery made in recent years by Stark
+and his collaborators, that certain <i>new series of combination
+line</i> appear with considerable intensity when the radiating atoms
+are subject to a strong external electric field. This phenomenon is
+entirely analogous to the appearance of the so-called combination
+<span class="pagenum" id="Page_54">[Pg 54]</span>
+tones in acoustics. It is due to the fact that the perturbation of
+the motion will not only consist in an effect upon the components
+originally present, but in addition will give rise to new components.
+The frequencies of these new components may be
+<span class="nowrap"><img style="vertical-align: -0.186ex; width: 7.938ex; height: 1.505ex;" src="images/189.svg" alt=" " data-tex="\tau\omega + \kappa\sigma">,</span> where <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.025ex;" src="images/165.svg" alt=" " data-tex="\kappa"> is different
+from <span class="nowrap"><img style="vertical-align: 0; width: 2.891ex; height: 1.507ex;" src="images/190.svg" alt=" " data-tex="±1">.</span> According to the correspondence principle we must
+therefore expect that the electric field will not only influence the
+lines appearing under ordinary circumstances, but that it will also
+render possible new types of transitions which give rise to the "new"
+combination lines observed. From an estimate of the amplitudes of the
+particular components in the initial and final states it has even been
+found possible to account for the varying facility with which the new
+lines are brought up by the external field.</p>
+
+<p>The general problem of the effect of an electric field on the spectra
+of elements of higher atomic number differs essentially from the simple
+Stark effect of the hydrogen lines, since we are here concerned not
+with the perturbation of a purely periodic system, but with the effect
+of the field on a periodic motion already subject to a perturbation.
+The problem to a certain extent resembles the effect of a weak
+electric force on the fine structure components of the hydrogen atom.
+In much the same way the effect of an electric field upon the series
+spectra of the elements may be treated directly by investigating the
+perturbations of the external electron. A continuation of my paper in
+the Transactions of the Copenhagen Academy will soon appear in which
+I shall show how this method enables us to understand the interesting
+observations Stark and others have made in this field.</p>
+
+<p class="space-above2">
+<b>The spectra of helium and lithium.</b> We see that it has been
+possible to obtain a certain general insight into the origin of
+the series spectra of a type like that of sodium. The difficulties
+encountered in an attempt to give a detailed explanation of the
+spectrum of a particular element, however, become very serious, even
+when we consider the spectrum of helium whose neutral atom contains
+only two electrons. The spectrum of this element has a simple structure
+in that it consists of single lines or at any rate of double lines
+whose components are very close together. We find, however, that the
+lines fall into two groups each of which can be described by a
+<span class="pagenum" id="Page_55">[Pg 55]</span>
+formula of the type (14). These are usually called the (ortho) helium
+and parhelium spectra. While the latter consists of simple lines, the
+former possesses narrow doublets. The discovery that helium, as opposed
+to the alkali metals, possesses two complete spectra of the Rydberg
+type which do not exhibit any mutual combinations was so surprising
+that at times there has been a tendency to believe that helium
+consisted of two elements. This way out of the difficulty is no longer
+open, since there is no room for another element in this region of the
+periodic system, or more correctly expressed, for an element possessing
+a new spectrum. The existence of the two spectra can, however, be
+traced back to the fact that in the stationary states corresponding
+to the series spectra we have to do with a system possessing only one
+inner electron and in consequence the motion of the inner system,
+in the absence of the outer electron, will be simply periodic and
+therefore easily perturbed by external forces.</p>
+
+<p>In order to illustrate this point we shall have to consider more
+carefully the stationary states connected with the origin of a series
+spectrum. We must assume that in these states one electron revolves
+in an orbit outside the nucleus and the other electrons. We might now
+suppose that in general a number of different groups of such states
+might exist, each group corresponding to a different stationary state
+of the inner system considered by itself. Further consideration shows,
+however, that under the usual conditions of excitation those groups
+have by far the greatest probability for which the motion of the inner
+electrons corresponds to the "normal" state of the inner system, i.e.
+to that stationary state having the least energy. Further the energy
+required to transfer the inner system from its normal state to another
+stationary state is in general very large compared with the energy
+which is necessary to transfer an electron from the normal state of
+the neutral atom to a stationary orbit of greater dimensions. Lastly
+the inner system is in general capable of a permanent existence only
+in its normal state. Now, the configuration of an atomic system in its
+stationary states and also in the normal state will, in general, be
+completely determined. We may therefore expect that the inner system
+under the influence of the forces arising from the presence of the
+outer electron can in the course of time suffer only small changes. For
+this reason we must assume that the influence of the inner system
+<span class="pagenum" id="Page_56">[Pg 56]</span>
+upon the motion of the external electron will, in general, be of the
+same character as the perturbations produced by a constant external
+field upon the motion of the electron in the hydrogen atom. We must
+therefore expect a spectrum consisting of an ensemble of spectral
+terms, which in general form a connected group, even though in the
+absence of external perturbing forces not every combination actually
+occurs. The case of the helium spectrum, however, is quite different
+since here the inner system contains only one electron the motion
+of which in the absence of the external electron is simple periodic
+provided the small changes due to the variation in the mass of the
+electron with its velocity are neglected. For this reason the form of
+the orbit in the stationary states of the inner system considered by
+itself will not be determined. In other words, the stability of the
+orbit is so slight, even if the variation in the mass is taken into
+account, that small external forces are in a position to change the
+eccentricity in the course of time to a finite extent. In this case,
+therefore, it is possible to have several groups of stationary states,
+for which the energy of the inner system is approximately the same
+while the form of the orbit of the inner electron and its position
+relative to the motion of the other electrons are so essentially
+different, that no transitions between the states of different groups
+can occur even in the presence of external forces. It can be seen that
+these conclusions summarize the experimental observations on the helium
+spectra.</p>
+
+<p>These considerations suggest an investigation of the nature of the
+perturbations in the orbit of the inner electron of the helium atom,
+due to the presence of the external electron. A discussion of the
+helium spectrum from this point of view has recently been given by
+Landé. The results of this work are of great interest particularly in
+the demonstration of the large back effect on the outer electron due
+to the perturbations of the inner orbit which themselves arise from
+the presence of the outer electron. Nevertheless, it can scarcely be
+regarded as a satisfactory explanation of the helium spectrum. Apart
+from the serious objections which may be raised against his calculation
+of the perturbations, difficulties arise if we try to apply the
+correspondence principle to Landé's results in order to account for the
+occurrence of two distinct spectra showing no mutual combinations. To
+<span class="pagenum" id="Page_57">[Pg 57]</span>
+explain this fact it seems necessary to base the discussion on a more
+thorough investigation of the mutual perturbations of the outer and the
+inner orbits. As a result of these perturbations both electrons move
+in such an extremely complicated way that the stationary states cannot
+be fixed by the methods developed for conditionally periodic systems.
+Dr Kramers and I have in the last few years been engaged in such an
+investigation, and in an address on atomic problems at the meeting of
+the Dutch Congress of Natural and Medical Sciences held in Leiden,
+April 1919, I gave a short communication of our results. For various
+reasons we have up to the present time been prevented from publishing,
+but in the very near future we hope to give an account of these results
+and of the light which they seem to throw upon the helium spectrum.</p>
+
+<p>The problem presented by the spectra of elements of higher atomic
+number is simpler, since the inner system is better defined in its
+normal state. On the other hand the difficulty of the mechanical
+problem of course increases with the number of the particles in the
+atom. We obtain an example of this in the case of lithium with three
+electrons. The differences between the spectral terms of the lithium
+spectrum and the corresponding spectral terms of hydrogen are very
+small for the variable term of the principal series (<span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/181.svg" alt=" " data-tex="k = 2">)</span> and
+for the diffuse series (<span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/191.svg" alt=" " data-tex="k = 3">)</span>, on the other hand it is very
+considerable for the variable term of the sharp series (<span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/180.svg" alt=" " data-tex="k = 1">)</span>.
+This is very different from what would be expected if it were possible
+to describe the effect of the inner electron by a central force
+varying in a simple manner with the distance. This must be because the
+parameter of the orbit of the outer electron in the stationary states
+corresponding to the terms of the sharp series is not much greater than
+the linear dimensions of the orbits of the inner electrons. According
+to the principle of correspondence the frequency of rotation of the
+major axis of the orbit of the outer electron is to be regarded as a
+measure of the deviation of the spectral terms from the corresponding
+hydrogen terms. In order to calculate this frequency it appears
+necessary to consider in detail the mutual effect of all three
+electrons, at all events for that part of the orbit where the outer
+electron is very close to the other two electrons. Even if we assumed
+that we were fully acquainted with the normal state of the inner
+<span class="pagenum" id="Page_58">[Pg 58]</span>
+system in the absence of the outer electron—which would be expected
+to be similar to the normal state of the neutral helium atom—the
+exact calculation of this mechanical problem would evidently form an
+exceedingly difficult task.</p>
+
+<p class="space-above2">
+<b>Complex structure of series lines.</b> For the spectra of elements
+of still higher atomic number the mechanical problem which has to
+be solved in order to describe the motion in the stationary states
+becomes still more difficult. This is indicated by the extraordinarily
+complicated structure of many of the observed spectra. The fact that
+the series spectra of the alkali metals, which possess the simplest
+structure, consist of double lines whose separation increases with
+the atomic number, indicates that here we have to do with systems in
+which the motion of the outer electron possesses in general a somewhat
+more complicated character than that of a simple central motion. This
+gives rise to a more complicated ensemble of stationary states. It
+would, however, appear that in the sodium atom the major axis and
+the parameter of the stationary states corresponding to each pair of
+spectral terms are given approximately by formulae (17) and (25). This
+is indicated not only by the similar part played by the two states
+in the experiments on the resonance radiation of sodium vapour, but
+is also shown in a very instructive manner by the peculiar effect
+of magnetic fields on the doublets. For small fields each component
+splits up into a large number of sharp lines instead of into the normal
+Lorentz triplet. With increasing field strength Paschen and Back found
+that this <i>anomalous Zeeman effect</i> changed into the normal
+Lorentz triplet of a single line by a gradual fusion of the components.</p>
+
+<p>This effect of a magnetic field upon the doublets of the alkali
+spectrum is of interest in showing the intimate relation of the
+components and confirms the reality of the simple explanation of the
+general structure of the spectra of the alkali metals. If we may
+again here rely upon the correspondence principle we have unambiguous
+evidence that the effect of a magnetic field on the motion of the
+electrons simply consists in the superposition of a uniform rotation
+with a frequency given by equation (24) as in the case of the hydrogen
+atom. For if this were the case the correspondence principle would
+indicate under all conditions a normal Zeeman effect for each
+<span class="pagenum" id="Page_59">[Pg 59]</span>
+component of the doublets. I want to emphasize that the difference
+between the simple effect of a magnetic field, which the theory
+predicts for the fine structure of components of the hydrogen lines,
+and the observed effect on the alkali doublets is in no way to be
+considered as a contradiction. The fine structure components are not
+analogous to the individual doublet components, but each single fine
+structure component corresponds to the ensemble of components (doublet,
+triplet) which makes up one of the series lines in Rydberg's scheme.
+The occurrence in strong fields of the effect observed by Paschen and
+Back must therefore be regarded as a strong support for the theoretical
+prediction of the effect of a magnetic field on the fine structure
+components of the hydrogen lines.</p>
+
+<p>It does not appear necessary to assume the "anomalous" effect of small
+fields on the doublet components to be due to a failure of the ordinary
+electrodynamical laws for the description of the motion of the outer
+electron, but rather to be connected with an effect of the magnetic
+field on that intimate interaction between the motion of the inner
+and outer electrons which is responsible for the occurrence of the
+doublets. Such a view is probably not very different from the "coupling
+theory" by which Voigt was able to account formally for the details of
+the anomalous Zeeman effect. We might even expect it to be possible
+to construct a theory of these effects which would exhibit a formal
+analogy with the Voigt theory similar to that between the quantum
+theory of the normal Zeeman effect and the theory originally developed
+by Lorentz. Time unfortunately does not permit me to enter further into
+this interesting problem, so I must refer you to the continuation of my
+paper in the Transactions of the Copenhagen Academy, which will contain
+a general discussion of the origin of series spectra and of the effects
+of electric and magnetic fields.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="IV_CONCLUSION">IV. CONCLUSION</h2>
+</div>
+
+
+<p>In this lecture I have purposely not considered the question of the
+structure of atoms and molecules although this is of course most
+intimately connected with the kind of spectral theory I have developed.
+We are encouraged to use results obtained from the spectra, since even
+the simple theory of the hydrogen spectrum gives a value for the major
+axis of the orbit of the electron in the normal state (<span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1">)</span> of
+<span class="pagenum" id="Page_60">[Pg 60]</span>
+the same order of magnitude as that derived from the kinetic theory of
+gases. In my first paper on the subject I attempted to sketch a theory
+of the structure of atoms and of molecules of chemical compounds. This
+theory was based on a simple generalization of the results for the
+stationary states of the hydrogen atom. In several respects the theory
+was supported by experiment, especially in the general way in which
+the properties of the elements change with increasing atomic number,
+shown most clearly by Moseley's results. I should like, however, to
+use this occasion to state, that in view of the recent development of
+the quantum theory, many of the special assumptions will certainly
+have to be changed in detail. This has become clear from various sides
+by the lack of agreement of the theory with experiment. It appears no
+longer possible to justify the assumption that in the normal states
+the electrons move in orbits of special geometrical simplicity, like
+"electronic rings." Considerations relating to the stability of
+atoms and molecules against external influences and concerning the
+possibility of the formation of an atom by successive addition of the
+individual electrons compel us to claim, first that the configurations
+of electrons are not only in mechanical equilibrium but also possess
+a certain stability in the sense required by ordinary mechanics, and
+secondly that the configurations employed must be of such a nature
+that transitions to these from other stationary states of the atom
+are possible. These requirements are not in general fulfilled by such
+simple configurations as electronic rings and they force us to look
+about for possibilities of more complicated motions. It will not be
+possible here to consider further these still open questions and I must
+content myself by referring to the discussion in my forthcoming paper.
+In closing, however, I should like to emphasize once more that in this
+lecture I have only intended to bring out certain general points of
+view lying at the basis of the spectral theory. In particular it was
+my intention to show that, in spite of the fundamental differences
+between these points of view and the ordinary conceptions of the
+phenomena of radiation, it still appears possible on the basis of the
+general correspondence between the spectrum and the motion in the
+atom to employ these conceptions in a certain sense as guides in the
+investigation of the spectra.</p>
+
+
+<div class="footnote">
+
+<p class="nind">
+<a id="Footnote_2" href="#FNanchor_2" class="label">[2]</a>
+Address delivered before the Physical Society in Berlin,
+April 27, 1920.</p>
+
+</div>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<p><span class="pagenum" id="Page_61">[Pg 61]</span></p>
+<h2 class="nobreak" id="Essay_III">Essay III<a id="FNanchor_3" href="#Footnote_3" class="fnanchor">[3]</a>
+<br><br>
+THE STRUCTURE OF THE ATOM AND THE PHYSICAL
+AND CHEMICAL PROPERTIES OF THE ELEMENTS
+</h2>
+</div>
+
+<h2 class="nobreak" id="I_PRELIMINARY">I. PRELIMINARY</h2>
+
+
+<p>In an address which I delivered to you about a year ago I described the
+main features of a theory of atomic structure which I shall attempt
+to develop this evening. In the meantime this theory has assumed more
+definite form, and in two recent letters to <i>Nature</i> I have given
+a somewhat further sketch of the development<a id="FNanchor_4" href="#Footnote_4" class="fnanchor">[4]</a>. The results which
+I am about to present to you are of no final character; but I hope
+to be able to show you how this view renders a correlation of the
+various properties of the elements in such a way, that we avoid the
+difficulties which previously appeared to stand in the way of a simple
+and consistent explanation. Before proceeding, however, I must ask your
+forbearance if initially I deal with matters already known to you, but
+in order to introduce you to the subject it will first be necessary
+to give a brief description of the most important results which have
+been obtained in recent years in connection with the work on atomic
+structure.</p>
+
+<p class="space-above2">
+<b>The nuclear atom.</b> The conception of atomic structure which will
+form the basis of all the following remarks is the so-called nuclear
+atom according to which an atom is assumed to consist of a nucleus
+surrounded by a number of electrons whose distances from one another
+and from the nucleus are very large compared to the dimensions of the
+particles themselves. The nucleus possesses almost the entire mass
+of the atom and has a positive charge of such a magnitude that the
+number of electrons in a neutral atom is equal to the number of the
+element in the periodic system, the so-called <i>atomic number</i>.
+This idea of the atom, which is due principally to Rutherford's
+fundamental researches on radioactive substances, exhibits extremely
+simple features, but just this simplicity appears at first sight to
+present difficulties in explaining the properties of the elements. When
+we treat this question on the basis of the ordinary mechanical and
+<span class="pagenum" id="Page_62">[Pg 62]</span>
+electrodynamical theories it is impossible to find a starting point
+for an explanation of the marked properties exhibited by the various
+elements, indeed not even of their permanency. On the one hand the
+particles of the atom apparently could not be at rest in a state of
+stable equilibrium, and on the other hand we should have to expect that
+every motion which might be present would give rise to the emission of
+electromagnetic radiation which would not cease until all the energy
+of the system had been emitted and all the electrons had fallen into
+the nucleus. A method of escaping from these difficulties has now been
+found in the application of ideas belonging to the quantum theory,
+the basis of which was laid by Planck in his celebrated work on the
+law of temperature radiation. This represented a radical departure
+from previous conceptions since it was the first instance in which the
+assumption of a discontinuity was employed in the formulation of the
+general laws of nature.</p>
+
+<p class="space-above2">
+<b>The postulates of the quantum theory.</b> The quantum theory in
+the form in which it has been applied to the problems of atomic
+structure rests upon two postulates which have a direct bearing on
+the difficulties mentioned above. According to the first postulate
+there are certain states in which the atom can exist without emitting
+radiation, although the particles are supposed to have an accelerated
+motion relative to one another. These <i>stationary states</i> are,
+in addition, supposed to possess a peculiar kind of stability, so
+that it is impossible either to add energy to or remove energy from
+the atom except by a process involving a transition of the atom into
+another of these states. According to the second postulate each
+emission of radiation from the atom resulting from such a transition
+always consists of a train of purely harmonic waves. The frequency of
+these waves does not depend directly upon the motion of the atom, but
+is determined by a <i>frequency relation</i>, according to which the
+frequency multiplied by the universal constant introduced by Planck is
+equal to the total energy emitted during the process. For a transition
+between two stationary states for which the values of the energy of the
+atom before and after the emission of radiation are <img style="vertical-align: 0; width: 2.351ex; height: 1.538ex;" src="images/127.svg" alt=" " data-tex="E′"> and <img style="vertical-align: 0; width: 2.973ex; height: 1.538ex;" src="images/128.svg" alt=" " data-tex="E″">
+respectively, we have therefore
+<span class="align-center"><img style="vertical-align: -0.566ex; width: 22.031ex; height: 2.262ex;" src="images/52.svg" alt=" " data-tex="
+h\nu = E′ - E″,
+\qquad\text{(1)}
+"></span>
+<span class="pagenum" id="Page_63">[Pg 63]</span>
+where <img style="vertical-align: -0.025ex; width: 1.303ex; height: 1.595ex;" src="images/87.svg" alt=" " data-tex="h"> is Planck's constant and <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> is the frequency of the
+emitted radiation. Time does not permit me to give a systematic survey
+of the quantum theory, the recent development of which has gone hand
+in hand with its applications to atomic structure. I shall therefore
+immediately proceed to the consideration of those applications of the
+theory which are of direct importance in connection with our subject.</p>
+
+<p class="space-above2">
+<b>Hydrogen atom.</b> We shall commence by considering the simplest
+atom conceivable, namely, an atom consisting of a nucleus and one
+electron. If the charge on the nucleus corresponds to that of a single
+electron and the system consequently is neutral we have a hydrogen
+atom. Those developments of the quantum theory which have made possible
+its application to atomic structure started with the interpretation
+of the well-known simple spectrum emitted by hydrogen. This spectrum
+consists of a series of lines, the frequencies of which are given by
+the extremely simple Balmer formula
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 33.191ex; height: 5.474ex;" src="images/53.svg" alt=" " data-tex="
+\nu = K\left(\frac{1}{(n″)^{2}} - \frac{1}{(n′)^{2}}\right),
+\qquad\text{(2)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> and <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> are integers. According to the quantum theory
+we shall now assume that the atom possesses a series of stationary
+states characterized by a series of integers, and it can be seen how
+the frequencies given by formula (2) may be derived from the frequency
+relation if it is assumed that a hydrogen line is connected with a
+radiation emitted during a transition between two of these states
+corresponding to the numbers <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″">,</span> and if the energy in
+the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state apart from an arbitrary additive constant is supposed
+to be given by the formula
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 20.327ex; height: 4.753ex;" src="images/54.svg" alt=" " data-tex="
+E_{n} = -\frac{Kh}{n^{2}}.
+\qquad\text{(3)}
+"></span>
+The negative sign is used because the energy of the atom is measured
+most simply by the work required to remove the electron to infinite
+distance from the nucleus, and we shall assume that the numerical value
+of the expression on the right-hand side of formula (3) is just equal
+to this work.</p>
+
+<p>As regards the closer description of the stationary states we find that
+the electron will very nearly describe an ellipse with the nucleus
+in the focus. The major axis of this ellipse is connected with the
+<span class="pagenum" id="Page_64">[Pg 64]</span>
+energy of the atom in a simple way, and corresponding to the energy
+values of the stationary states given by formula (3) there are a series
+of values for the major axis <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a"> of the orbit of the electron given
+by the formula
+<span class="align-center"><img style="vertical-align: -1.577ex; width: 20.298ex; height: 4.993ex;" src="images/55.svg" alt=" " data-tex="
+2a_{n} = \frac{n^{2} e^{2}}{hK},
+\qquad\text{(4)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e"> is the numerical value of the charge of the electron and
+the nucleus.</p>
+
+<p>On the whole we may say that the spectrum of hydrogen shows us the
+<i>formation of the hydrogen atom</i>, since the stationary states may
+be regarded as different stages of a process by which the electron
+under the emission of radiation is bound in orbits of smaller and
+smaller dimensions corresponding to states with decreasing values
+of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> It will be seen that this view has certain characteristic
+features in common with the binding process of an electron to
+the nucleus if this were to take place according to the ordinary
+electrodynamics, but that our view differs from it in just such a way
+that it is possible to account for the observed properties of hydrogen.
+In particular it is seen that the final result of the binding process
+leads to a quite definite stationary state of the atom, namely that
+state for which <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1">.</span> This state which corresponds to the minimum
+energy of the atom will be called the <i>normal state</i> of the atom.
+It may be stated here that the values of the energy of the atom and the
+major axis of the orbit of the electron which are found if we put
+<img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1"> in formulae (3) and (4) are of the same order of magnitude as the
+values of the firmness of binding of electrons and of the dimensions of
+the atoms which have been obtained from experiments on the electrical
+and mechanical properties of gases. A more accurate check of formulae
+(3) and (4) can however not be obtained from such a comparison, because
+in such experiments hydrogen is not present in the form of simple atoms
+but as molecules.</p>
+
+<p>The formal basis of the quantum theory consists not only of the
+frequency relation, but also of conditions which permit the
+determination of the stationary states of atomic systems. The latter
+conditions, like that assumed for the frequency, may be regarded as
+natural generalizations of that assumption regarding the interaction
+between simple electrodynamic systems and a surrounding field of
+<span class="pagenum" id="Page_65">[Pg 65]</span>
+electromagnetic radiation which forms the basis of Planck's theory of
+temperature radiation. I shall not here go further into the nature of
+these conditions but only mention that by their means the stationary
+states are characterized by a number of integers, the so-called
+<i>quantum numbers</i>. For a purely periodic motion like that assumed
+in the case of the hydrogen atom only a single quantum number is
+necessary for the determination of the stationary states. This number
+determines the energy of the atom and also the major axis of the orbit
+of the electron, but not its eccentricity. The energy in the various
+stationary states, if the small influence of the motion of the nucleus
+is neglected, is given by the following formula:
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 27.569ex; height: 5.087ex;" src="images/56.svg" alt=" " data-tex="
+E_{n} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}},
+\qquad\text{(5)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.054ex; height: 1.025ex;" src="images/91.svg" alt=" " data-tex="e"> and <img style="vertical-align: -0.025ex; width: 1.986ex; height: 1.025ex;" src="images/92.svg" alt=" " data-tex="m"> are respectively the charge and the mass of the
+electron, and where for the sake of subsequent applications the charge
+on the nucleus has been designated by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 3.063ex; height: 1.57ex;" src="images/111.svg" alt=" " data-tex="Ne">.</span></p>
+
+<p>For the atom of hydrogen <span class="nowrap"><img style="vertical-align: -0.186ex; width: 6.157ex; height: 1.731ex;" src="images/192.svg" alt=" " data-tex="N = 1">,</span> and a comparison with equation (3)
+leads to the following theoretical expression for <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> in formula (2),
+namely
+<span class="align-center"><img style="vertical-align: -1.652ex; width: 21.883ex; height: 5.086ex;" src="images/57.svg" alt=" " data-tex="
+K = \frac{2\pi^{2} e^{4} m}{h^{3}}.
+\qquad\text{(6)}
+"></span>
+This agrees with the empirical value of the constant for the spectrum
+of hydrogen within the limit of accuracy with which the various
+quantities can be determined.</p>
+<p><span class="pagenum" id="Page_66">[Pg 66]</span></p>
+
+<p class="space-above2">
+<b>Hydrogen spectrum and X-ray spectra.</b> If in the above formula we
+put <img style="vertical-align: -0.186ex; width: 6.157ex; height: 1.731ex;" src="images/193.svg" alt=" " data-tex="N = 2"> which corresponds to an atom consisting of an electron
+revolving around a nucleus with a double charge, we get values for the
+energies in the stationary states, which are four times larger than
+the energies in the corresponding states of the hydrogen atom, and we
+obtain the following formula for the spectrum which would be emitted by
+such an atom:
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 34.322ex; height: 5.474ex;" src="images/58.svg" alt=" " data-tex="
+\nu = 4K \left(\frac{1}{(n″)^{2}} - \frac{1}{(n′)^{2}}\right).
+\qquad\text{(7)}
+"></span>
+This formula represents certain lines which have been known for
+some time and which had been attributed to hydrogen on account of
+the great similarity between formulae (2) and (7) since it had
+never been anticipated that two different substances could exhibit
+properties so closely resembling each other. According to the theory
+we may, however, expect that the emission of the spectrum given by
+(7) corresponds to the <i>first stage of the formation of the helium
+atom</i>, i.e. to the binding of a first electron by the doubly charged
+nucleus of this atom. This interpretation has been found to agree with
+more recent information. For instance it has been possible to obtain
+this spectrum from pure helium. I have dwelt on this point in order
+to show how this intimate connection between the properties of two
+elements, which at first sight might appear quite surprising, is to
+be regarded as an immediate expression of the characteristic simple
+structure of the nuclear atom. A short time after the elucidation of
+this question, new evidence of extraordinary interest was obtained of
+such a similarity between the properties of the elements. I refer to
+Moseley's fundamental researches on the X-ray spectra of the elements.
+Moseley found that these spectra varied in an extremely simple manner
+from one element to the next in the periodic system. It is well
+known that the lines of the X-ray spectra may be divided into groups
+corresponding to the different characteristic absorption regions for
+X-rays discovered by Barkla. As regards the <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> group which contains
+the most penetrating X-rays, Moseley found that the strongest line for
+all elements investigated could be represented by a formula which with
+a small simplification can be written
+<span class="align-center"><img style="vertical-align: -2.148ex; width: 30.471ex; height: 5.428ex;" src="images/59.svg" alt=" " data-tex="
+\nu = N^{2} K \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right).
+\qquad\text{(8)}
+"></span>
+<img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> is the same constant as in the hydrogen spectrum, and <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N"> the
+atomic number. The great significance of this discovery lies in the
+fact that it would seem firmly to establish the view that this atomic
+number is equal to the number of electrons in the atom. This assumption
+had already been used as a basis for work on atomic structure and was
+first stated by van den Broek. While the significance of this aspect of
+Moseley's discovery was at once clear to all, it has on the other hand
+been more difficult to understand the very great similarity between
+the spectrum of hydrogen and the X-ray spectra. This similarity is
+shown, not only by the lines of the <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> group, but also by groups of
+<span class="pagenum" id="Page_67">[Pg 67]</span>
+less penetrating X-rays. Thus Moseley found for all the elements he
+investigated that the frequencies of the strongest line in the <img style="vertical-align: 0; width: 1.541ex; height: 1.545ex;" src="images/195.svg" alt=" " data-tex="L">
+group may be represented by a formula which with a simplification
+similar to that employed in formula (8) can be written
+<span class="align-center"><img style="vertical-align: -2.148ex; width: 30.471ex; height: 5.428ex;" src="images/60.svg" alt=" " data-tex="
+\nu = N^{2} K \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right).
+\qquad\text{(9)}
+"></span>
+Here again we obtain an expression for the frequency which corresponds
+to a line in the spectrum which would be emitted by the <i>binding of
+an electron to a nucleus, whose charge is</i> <span class="nowrap"><img style="vertical-align: -0.025ex; width: 3.063ex; height: 1.57ex;" src="images/111.svg" alt=" " data-tex="Ne">.</span></p>
+
+<p class="space-above2">
+<b>The fine structure of the hydrogen lines.</b> This similarity
+between the structure of the X-ray spectra and the hydrogen spectrum
+was still further extended in a very interesting manner by Sommerfeld's
+important theory of the fine structure of the hydrogen lines. The
+calculation given above of the energy in the stationary states of the
+hydrogen system, where each state is characterized by a single quantum
+number, rests upon the assumption that the orbit of the electron in
+the atom is simply periodic. This is, however, only approximately
+true. It is found that if the change in the mass of the electron
+due to its velocity is taken into consideration the orbit of the
+electron no longer remains a simple ellipse, but its motion may be
+described as a <i>central motion</i> obtained by superposing a slow
+and uniform rotation upon a simple periodic motion in a very nearly
+elliptical orbit. For a central motion of this kind the stationary
+states are characterized by <i>two quantum numbers</i>. In the case
+under consideration one of these may be so chosen that to a very
+close approximation it will determine the energy of the atom in the
+same manner as the quantum number previously used determined the
+energy in the case of a simple elliptical orbit. This quantum number
+which will always be denoted by <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> will therefore be called the
+"principal quantum number." Besides this condition, which to a very
+close approximation determines the major axis in the rotating and
+almost elliptical orbit, a second condition will be imposed upon the
+stationary states of a central orbit, namely that the angular momentum
+of the electron about the centre shall be equal to a whole multiple
+of Planck's constant divided by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.421ex; height: 1.532ex;" src="images/196.svg" alt=" " data-tex="2\pi">.</span> The whole number, which
+occurs as a factor in this expression, may be regarded as the second
+quantum number and will be denoted by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span> The latter condition
+<span class="pagenum" id="Page_68">[Pg 68]</span>
+fixes the eccentricity of the rotating orbit which in the case of a
+simple periodic orbit was undetermined. It should be mentioned that
+the possible importance of the angular momentum in the quantum theory
+was pointed out by Nicholson before the application of this theory to
+the spectrum of hydrogen, and that a determination of the stationary
+states for the hydrogen atom similar to that employed by Sommerfeld was
+proposed almost simultaneously by Wilson, although the latter did not
+succeed in giving a physical application to his results.</p>
+
+<p>The simplest description of the form of the rotating nearly elliptical
+electronic orbit in the hydrogen atom is obtained by considering the
+chord which passes through the focus and is perpendicular to the major
+axis, the so-called "parameter." The length <img style="vertical-align: -0.439ex; width: 2.269ex; height: 1.946ex;" src="images/178.svg" alt=" " data-tex="2p"> of this parameter
+is given to a very close approximation by an expression of exactly the
+same form as the expression for the major axis, except that <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> takes
+the place of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> Using the same notation as before we have therefore
+<span class="align-center"><img style="vertical-align: -1.654ex; width: 49.604ex; height: 5.07ex;" src="images/61.svg" alt=" " data-tex="
+2a = n^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m},\quad
+2p = k^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m}.
+\qquad\text{(10)}
+"></span>
+For each of the stationary states which had previously been denoted by
+a given value of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span> we obtain therefore a set of stationary states
+corresponding to values of <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> from <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1"> to <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> Instead of the
+simple formula (5) Sommerfeld found a more complicated expression for
+the energy in the stationary states which depends on <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> as well as
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> Taking the variation of the mass of the electron with velocity
+into account and neglecting terms of higher order of magnitude he
+obtained
+<span class="align-center"><img style="vertical-align: -2.148ex; width: 61.689ex; height: 5.582ex;" src="images/62.svg" alt=" " data-tex="
+E_{n,k} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}}
+ \left[1 + \frac{4\pi^{2} N^{2} e^{4}}{h^{2} c^{2}}
+\left(-\frac{3}{4n^{2}} + \frac{1}{nk}\right)\right],
+\qquad\text{(11)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 0.98ex; height: 1.025ex;" src="images/98.svg" alt=" " data-tex="c"> is the velocity of light.</p>
+
+<p>Corresponding to each of the energy values for the stationary states
+of the hydrogen atom given by the simple formula (5) we obtain <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">
+values differing only very little from one another, since the second
+term within the bracket is very small. With the aid of the general
+frequency relation (1) we therefore obtain a number of components with
+nearly coincident frequencies instead of each hydrogen line given by
+the simple formula (2). Sommerfeld has now shown that this calculation
+actually agrees with measurements of the fine structure. This
+<span class="pagenum" id="Page_69">[Pg 69]</span>
+agreement applies not only to the fine structure of the hydrogen lines
+which is very difficult to measure on account of the extreme proximity
+of the components, but it is also possible to account in detail for
+the fine structure of the helium lines given by formula (7) which has
+been very carefully investigated by Paschen. Sommerfeld in connection
+with this theory also pointed out that formula (11) could be applied to
+the X-ray spectra. Thus he showed that in the <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> and <img style="vertical-align: 0; width: 1.541ex; height: 1.545ex;" src="images/195.svg" alt=" " data-tex="L"> groups
+pairs of lines appeared the differences of whose frequencies could be
+determined by the expression (11) for the energy in the stationary
+states which correspond to the binding of a single electron by a
+nucleus of charge <span class="nowrap"><img style="vertical-align: -0.025ex; width: 3.063ex; height: 1.57ex;" src="images/111.svg" alt=" " data-tex="Ne">.</span></p>
+
+<p class="space-above2">
+<b>Periodic table.</b> In spite of the great formal similarity between
+the X-ray spectra and the hydrogen spectrum indicated by these
+results a far-reaching difference must be assumed to exist between
+the processes which give rise to the appearance of these two types of
+spectra. While the emission of the hydrogen spectrum, like the emission
+of the ordinary optical spectra of other elements, may be assumed to be
+connected with the binding of an electron by an atom, observations on
+the appearance and absorption of X-ray spectra clearly indicate that
+these spectra are connected with a process which may be described as a
+<i>reorganization of the electronic arrangement</i> after a disturbance
+within the atom due to the effect of external agencies. We should
+therefore expect that the appearance of the X-ray spectra would depend
+not only upon the direct interaction between a single electron and the
+nucleus, but also on the manner in which the electrons are arranged in
+the completely formed atom.</p>
+
+<p>The peculiar manner in which the properties of the elements vary with
+the atomic number, as expressed in the periodic system, provides a
+guide of great value in considering this latter problem. A simple
+survey of this system is given in <a href="#Page_70">Fig. 1</a>. The number preceding each
+element indicates the atomic number, and the elements within the
+various vertical columns form the different "periods" of the system.
+The lines, which connect pairs of elements in successive columns,
+indicate homologous properties of such elements. Compared with usual
+representations of the periodic system, this method, proposed more
+<span class="pagenum" id="Page_70">[Pg 70]</span>
+than twenty years ago by Julius Thomsen, of indicating the periodic
+variations in the properties of the elements is more suited for
+comparison with theories of atomic constitution. The meaning of the
+frames round certain sequences of elements within the later periods of
+the table will be explained later. They refer to certain characteristic
+features of the theory of atomic constitution.</p>
+
+<div class="figcenter">
+<img src="images/002.jpg" width="400" alt="fig02">
+<div class="caption">
+<p>Fig. 1.</p>
+</div></div>
+
+<p>In an explanation of the periodic system it is natural to assume a
+division of the electrons in the atom into distinct groups in such a
+manner that the grouping of the elements in the system is attributed
+to the gradual formation of the groups of electrons in the atoms as
+the atomic number increases. Such a grouping of the electrons in
+<span class="pagenum" id="Page_71">[Pg 71]</span>
+the atom has formed a prominent part of all more detailed views of
+atomic structure ever since J. J. Thomson's famous attempt to explain
+the periodic system on the basis of an investigation of the stability
+of various electronic configurations. Although Thomson's assumption
+regarding the distribution of the positive electricity in the atom is
+not consistent with more recent experimental evidence, nevertheless
+his work has exerted great influence upon the later development of the
+atomic theory on account of the many original ideas which it contained.</p>
+
+<p>With the aid of the information concerning the binding of electrons
+by the nucleus obtained from the theory of the hydrogen spectrum I
+attempted in the same paper in which this theory was set forth to
+sketch in broad outlines a picture of the structure of the nucleus
+atom. In this it was assumed that each electron in its normal state
+moved in a manner analogous to the motion in the last stages of the
+binding of a single electron by a nucleus. As in Thomson's theory,
+it was assumed that the electrons moved in circular orbits and that
+the electrons in each separate group during this motion occupied
+positions with reference to one another corresponding to the vertices
+of plane regular polygons. Such an arrangement is frequently described
+as a distribution of the electrons in "rings." By means of these
+assumptions it was possible to account for the orders of magnitude of
+the dimensions of the atoms as well as the firmness with which the
+electrons were bound by the atom, a measure of which may be obtained by
+means of experiments on the excitation of the various types of spectra.
+It was not possible, however, in this way to arrive at a detailed
+explanation of the characteristic properties of the elements even after
+it had become apparent from the results of Moseley and the work of
+Sommerfeld and others that this simple picture ought to be extended
+to include orbits in the fully formed atom characterized by higher
+quantum numbers corresponding to previous stages in the formation of
+the hydrogen atom. This point has been especially emphasized by Vegard.</p>
+
+<p>The difficulty of arriving at a satisfactory picture of the atom
+is intimately connected with the difficulty of accounting for the
+pronounced "stability" which the properties of the elements demand. As
+I emphasized when considering the formation of the hydrogen atom,
+<span class="pagenum" id="Page_72">[Pg 72]</span>
+the postulates of the quantum theory aim directly at this point, but
+the results obtained in this way for an atom containing a single
+electron do not permit of a direct elucidation of problems like that
+of the distribution in groups of the electrons in an atom containing
+several electrons. If we imagine that the electrons in the groups
+of the atom are orientated relatively to one another at any moment,
+like the vertices of regular polygons, and rotating in either circles
+or ellipses, the postulates do not give sufficient information to
+determine the difference in the stability of electronic configurations
+with different numbers of electrons in the groups.</p>
+
+<p>The peculiar character of stability of the atomic structure, demanded
+by the properties of the elements, is brought out in an interesting way
+by Kossel in two important papers. In the first paper he shows that a
+more detailed explanation of the origin of the high frequency spectra
+can be obtained on the basis of the group structure of the atom. He
+assumes that a line in the X-ray spectrum is due to a process which
+may be described as follows: an electron is removed from the atom by
+some external action after which an electron in one of the other groups
+takes its place; this exchange of place may occur in as many ways as
+there are groups of more loosely bound electrons. This view of the
+origin of the characteristic X-rays afforded a simple explanation of
+the peculiar absorption phenomena observed. It has also led to the
+prediction of certain simple relations between the frequencies of
+the X-ray lines from one and the same element and has proved to be a
+suitable basis for the classification of the complete spectrum. However
+it has not been possible to develop a theory which reconciles in a
+satisfactory way Sommerfeld's work on the fine structure of the X-ray
+lines with Kossel's general scheme. As we shall see later the adoption
+of a new point of view when considering the stability of the atom
+renders it possible to bring the different results in a natural way in
+connection with one another.</p>
+
+<p>In his second paper Kossel investigates the possibilities for an
+explanation of the periodic system on the basis of the atomic
+theory. Without entering further into the problem of the causes of
+the division of the electrons into groups, or the reasons for the
+different stability of the various electronic configurations, he
+points out in connection with ideas which had already played a part
+in Thomson's theory, how the periodic system affords evidence of a
+<span class="pagenum" id="Page_73">[Pg 73]</span>
+periodic appearance of especially stable configurations of electrons.
+These configurations appear in the neutral atoms of elements occupying
+the final position in each period in <a href="#Page_70">Fig. 1</a>, and the stability in
+question is assumed in order to explain not only the inactive chemical
+properties of these elements but also the characteristic active
+properties of the immediately preceding or succeeding elements. If we
+consider for instance an inactive gas like argon, the atomic number
+of which is <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18">,</span> we must assume that the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons in the
+atom are arranged in an exceedingly regular configuration possessing a
+very marked stability. The pronounced electronegative character of the
+preceding element, chlorine, may then be explained by supposing the
+neutral atom which contains only <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/198.svg" alt=" " data-tex="17"> electrons to possess a tendency
+to capture an additional electron. This gives rise to a negative
+chlorine ion with a configuration of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons similar to that
+occurring in the neutral argon atom. On the other hand the marked
+electropositive character of potassium may be explained by supposing
+one of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19"> electrons in the neutral atom to be as it were
+superfluous, and that this electron therefore is easily lost; the rest
+of the atom forming a positive ion of potassium having a constitution
+similar to that of the argon atom. In a corresponding manner it is
+possible to account for the electronegative and electropositive
+character of elements like sulphur and calcium, whose atomic numbers
+are <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/200.svg" alt=" " data-tex="16"> and <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/201.svg" alt=" " data-tex="20">.</span> In contrast to chlorine and potassium these
+elements are divalent, and the stable configuration of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons
+is formed by the addition of two electrons to the sulphur atom and
+by the loss of two electrons from the calcium atom. Developing these
+ideas Kossel has succeeded not only in giving interesting explanations
+of a large number of chemical facts, but has also been led to certain
+general conclusions about the grouping of the electrons in elements
+belonging to the first periods of the periodic system, which in
+certain respects are in conformity with the results to be discussed
+in the following paragraphs. Kossel's work was later continued in an
+interesting manner by Ladenburg with special reference to the grouping
+of the electrons in atoms of elements belonging to the later periods of
+the periodic table. It will be seen that Ladenburg's conclusions also
+exhibit points of similarity with the results which we shall discuss later.
+<span class="pagenum" id="Page_74">[Pg 74]</span>
+</p>
+
+<p class="space-above2">
+<b>Recent atomic models.</b> Up to the present time it has not been
+possible to obtain a satisfactory account based upon a consistent
+application of the quantum theory to the nuclear atom of the ultimate
+cause of the pronounced stability of certain arrangements of electrons.
+Nevertheless it has been apparent for some time that the solution
+should be sought for by investigating the possibilities of a <i>spatial
+distribution of the electronic orbits</i> in the atom instead of
+limiting the investigation to configurations in which all electrons
+belonging to a particular group move in the same plane as was assumed
+for simplicity in my first papers on the structure of the atom. The
+necessity of assuming a spatial distribution of the configurations
+of electrons has been drawn attention to by various writers. Born
+and Landé, in connection with their investigations of the structure
+and properties of crystals, have pointed out that the assumption of
+spatial configurations appears necessary for an explanation of these
+properties. Landé has pursued this question still further, and as will
+be mentioned later has proposed a number of different "spatial atomic
+models" in which the electrons in each separate group of the atom at
+each moment form configurations possessing regular polyhedral symmetry.
+These models constitute in certain respects a distinct advance,
+although they have not led to decisive results on questions of the
+stability of atomic structure.</p>
+
+<p>The importance of spatial electronic configurations has, in addition,
+been pointed out by Lewis and Langmuir in connection with their
+atomic models. Thus Lewis, who in several respects independently
+came to the same conclusions as Kossel, suggested that the number
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8"> characterizing the first groups of the periodic system might
+indicate a constitution of the outer atomic groups where the electrons
+within each group formed a configuration like the corners of a cube.
+He emphasized how a configuration of this kind leads to instructive
+models of the molecular structure of chemical combinations. It is
+to be remarked, however, that such a "static" model of electronic
+configuration will not be possible if we assume the forces within the
+atom to be due exclusively to the electric charges of the particles.
+Langmuir, who has attempted to develop Lewis' conceptions still further
+and to account not only for the occurrence of the first octaves, but
+also for the longer periods of the periodic system, supposes therefore
+the structure of the atoms to be governed by forces whose nature is
+<span class="pagenum" id="Page_75">[Pg 75]</span>
+unknown to us. He conceives the atom to possess a "cellular structure,"
+so that each electron is in advance assigned a place in a cell and
+these cells are arranged in shells in such a manner, that the various
+shells from the nucleus of the atom outward contain exactly the same
+number of places as the periods in the periodic system proceeding
+in the direction of increasing atomic number. Langmuir's work has
+attracted much attention among chemists, since it has to some extent
+thrown light on the conceptions with which empirical chemical science
+is concerned. On his theory the explanation of the properties of the
+various elements is based on a number of postulates about the structure
+of the atoms formulated for that purpose. Such a descriptive theory is
+sharply differentiated from one where an attempt is made to explain
+the specific properties of the elements with the aid of general laws
+applying to the interaction between the particles in each atom. The
+principal task of this lecture will consist in an attempt to show
+that an advance along these lines appears by no means hopeless, but
+on the contrary that with the aid of a consistent application of the
+postulates of the quantum theory it actually appears possible to obtain
+an insight into the structure and stability of the atom.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="II_SERIES_SPECTRA_AND_THE_CAPTURE_OF_ELECTRONS">
+II. SERIES SPECTRA AND THE CAPTURE OF ELECTRONS
+BY ATOMS</h2>
+</div>
+
+
+<p>We attack the problem of atomic constitution by asking the question:
+"How may an atom be formed by the successive capture and binding of the
+electrons one by one in the field of force surrounding the nucleus?"</p>
+
+<p>Before attempting to answer this question it will first be necessary to
+consider in more detail what the quantum theory teaches us about the
+general character of the binding process. We have already seen how the
+hydrogen spectrum gives us definite information about the course of
+this process of binding the electron by the nucleus. In considering the
+formation of the atoms of other elements we have also in their spectra
+sources for the elucidation of the formation processes, but the direct
+information obtained in this way is not so complete as in the case of
+the hydrogen atom. For an element of atomic number <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N"> the process of
+formation may be regarded as occurring in <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N"> stages, corresponding
+<span class="pagenum" id="Page_76">[Pg 76]</span>
+with the successive binding of <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N"> electrons in the field of the
+nucleus. A spectrum must be assumed to correspond to each of these
+binding processes; but only for the first two elements, hydrogen and
+helium, do we possess a detailed knowledge of these spectra. For
+other elements of higher atomic number, where several spectra will be
+connected with the formation of the atom, we are at present acquainted
+with only two types, called the "arc" and "spark" spectra respectively,
+according to the experimental conditions of excitation. Although these
+spectra show a much more complicated structure than the hydrogen
+spectrum, given by formula (2) and the helium spectrum given by formula
+(7), nevertheless in many cases it has been possible to find simple
+laws for the frequencies exhibiting a close analogy with the laws
+expressed by these formulae.</p>
+
+<p class="space-above2">
+<b>Arc and spark spectra.</b> If for the sake of simplicity we
+disregard the complex structure shown by the lines of most spectra
+(occurrence of doublets, triplets etc.), the frequency of the lines of
+many arc spectra can be represented to a close approximation by the
+Rydberg formula
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 40.393ex; height: 5.269ex;" src="images/63.svg" alt=" " data-tex="
+\nu = \frac{K}{(n″ + \alpha_{k″})^{2}} - \frac{K}{(n′ + \alpha_{k′})^{2}},
+\qquad\text{(12)}
+"></span>
+where <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″"> are integral numbers, <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> the same constant
+as in the hydrogen spectrum, while <img style="vertical-align: -0.357ex; width: 2.909ex; height: 1.357ex;" src="images/203.svg" alt=" " data-tex="\alpha_{k′}"> and <img style="vertical-align: -0.357ex; width: 3.349ex; height: 1.357ex;" src="images/204.svg" alt=" " data-tex="\alpha_{k″}">
+are two constants belonging to a set characteristic of the element. A
+spectrum with a structure of this kind is, like the hydrogen spectrum,
+called a series spectrum, since the lines can be arranged into series
+in which the frequencies converge to definite limiting values. These
+series are for example represented by formula (12) if, using two
+definite constants for <img style="vertical-align: -0.357ex; width: 3.349ex; height: 1.357ex;" src="images/204.svg" alt=" " data-tex="\alpha_{k″}"> and <span class="nowrap"><img style="vertical-align: -0.357ex; width: 2.909ex; height: 1.357ex;" src="images/203.svg" alt=" " data-tex="\alpha_{k′}">,</span> <img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″">
+remains unaltered, while <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> assumes a series of successive,
+gradually increasing integral values.</p>
+
+<p>Formula (12) applies only approximately, but it is always found
+that the frequencies of the spectral lines can be written, as in
+formulae (2) and (12), as a difference of two functions of integral
+numbers. Thus the latter formula applies accurately, if the quantities
+<img style="vertical-align: -0.357ex; width: 2.469ex; height: 1.357ex;" src="images/205.svg" alt=" " data-tex="\alpha_{k}"> are not considered as constants, but as representatives
+of a set of series of numbers <img style="vertical-align: -0.566ex; width: 5.587ex; height: 2.262ex;" src="images/206.svg" alt=" " data-tex="\alpha_{k}(n)"> characteristic of the
+element, whose values for increasing <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> within each series quickly
+approach a constant limiting value. The fact that the frequencies of
+<span class="pagenum" id="Page_77">[Pg 77]</span>
+the spectra always appear as the difference of two terms, the so-called
+"spectral terms," from the combinations of which the complete spectrum
+is formed, has been pointed out by Ritz, who with the establishment
+of the combination principle has greatly advanced the study of the
+spectra. The quantum theory offers an immediate interpretation of this
+principle, since, according to the frequency relation we are led to
+consider the lines as due to transitions between stationary states of
+the atom, just as in the hydrogen spectrum, only in the spectra of the
+other elements we have to do not with a single series of stationary
+states, but with a set of such series. From formula (12) we thus obtain
+for an arc spectrum—if we temporarily disregard the structure of the
+individual lines—information about an ensemble of stationary states,
+for which the energy of the atom in the <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">th state of the <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">th
+series is given by
+<span class="align-center"><img style="vertical-align: -2.194ex; width: 29.469ex; height: 5.294ex;" src="images/64.svg" alt=" " data-tex="
+E_{k}(n) = -\frac{Kh}{(n + \alpha_{k})^{2}}
+\qquad\text{(13)}
+"></span>
+very similar to the simple formula (3) for the energy in the stationary
+states of the hydrogen atom.</p>
+
+<p>As regards the spark spectra, the structure of which has been cleared
+up mainly by Fowler's investigations, it has been possible in the case
+of many elements to express the frequencies approximately by means of a
+formula of exactly the same type as (12), only with the difference that
+<span class="nowrap"><img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K">,</span> just as in the helium spectrum given by formula (7), is replaced
+by a constant, which is four times as large. For the spark spectra,
+therefore, the energy values in the corresponding stationary states of
+the atom will be given by an expression of the same type as (13), only
+with the difference that <img style="vertical-align: 0; width: 2.011ex; height: 1.545ex;" src="images/129.svg" alt=" " data-tex="K"> is replaced by <span class="nowrap"><img style="vertical-align: 0; width: 3.143ex; height: 1.545ex;" src="images/207.svg" alt=" " data-tex="4K">.</span></p>
+
+<p>This remarkable similarity between the structure of these types of
+spectra and the simple spectra given by (2) and (7) is explained simply
+by assuming the arc spectra to be connected with the <i>last stage in
+the formation of the neutral atom</i> consisting in the capture and
+binding of the <img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N">th electron. On the other hand the spark spectra
+are connected with the <i>last stage but one in the formation of the
+atom</i>, namely the binding of the <img style="vertical-align: -0.566ex; width: 7.666ex; height: 2.262ex;" src="images/208.svg" alt=" " data-tex="(N - 1)">th electron. In these
+cases the field of force in which the electron moves will be much
+<span class="pagenum" id="Page_78">[Pg 78]</span>
+the same as that surrounding the nucleus of a hydrogen or helium atom
+respectively, at least in the earlier stages of the binding process,
+where during the greater part of its revolution it moves at a distance
+from the nucleus which is large in proportion to the dimensions of the
+orbits of the electrons previously bound. From analogy with formula (3)
+giving the stationary states of the hydrogen atom, we shall therefore
+assume that the numerical value of the expression on the right-hand
+side of (13) will be equal to the work required to remove the last
+captured electron from the atom, the binding of which gives rise to the
+arc spectrum of the element.</p>
+
+<p class="space-above2">
+<b>Series diagram.</b> While the origin of the arc and spark spectra
+was to this extent immediately interpreted on the basis of the original
+simple theory of the hydrogen spectrum, it was Sommerfeld's theory
+of the fine structure of the hydrogen lines which first gave us a
+clear insight into the characteristic difference between the hydrogen
+spectrum and the spark spectrum of helium on the one hand, and the arc
+and spark spectra of other elements on the other. When we consider
+the binding not of the first but of the subsequent electrons in the
+atom, the orbit of the electron under consideration—at any rate in
+the latter stages of the binding process where the electron last bound
+comes into intimate interaction with those previously bound—will no
+longer be to a near approximation a closed ellipse, but on the contrary
+will to a first approximation be a central orbit of the same type as in
+the hydrogen atom, when we take into account the change with velocity
+in the mass of the electron. This motion, as we have seen, may be
+resolved into a plane periodic motion upon which a uniform rotation
+is superposed in the plane of the orbit; only the superposed rotation
+will in this case be comparatively much more rapid and the deviation
+of the periodic orbit from an ellipse much greater than in the case of
+the hydrogen atom. For an orbit of this type the stationary states,
+just as in the theory of the fine structure, will be determined by two
+quantum numbers which we shall denote by <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> connected
+in a very simple manner with the kinematic properties of the orbit.
+For brevity I shall only mention that while the quantum number <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">
+is connected with the value of the constant angular momentum of the
+electron about the centre in the simple manner previously indicated,
+<span class="pagenum" id="Page_79">[Pg 79]</span>
+the determination of the principal quantum number <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> requires an
+investigation of the whole course of the orbit and for an arbitrary
+central orbit will not be related in a simple way to the dimensions
+of the rotating periodic orbit if this deviates essentially from a
+Keplerian ellipse.</p>
+
+<div class="figcenter">
+<img src="images/003.jpg" width="400" alt="fig03">
+<div class="caption">
+<p>Fig. 2.</p>
+</div></div>
+
+<p>These results are represented in <a href="#Page_79">Fig. 2</a> which is a reproduction of
+an illustration I have used on a previous occasion (see Essay II, <a href="#Page_30">p.
+30</a>), and which gives a survey of the origin of the sodium spectrum.
+The black dots represent the stationary states corresponding to the
+various series of spectral terms, shown on the right by the letters
+<span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S">,</span> <span class="nowrap"><img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P">,</span> <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> and <span class="nowrap"><img style="vertical-align: 0; width: 1.717ex; height: 1.545ex;" src="images/153.svg" alt=" " data-tex="B">.</span> These letters correspond to the usual
+notations employed in spectroscopic literature and indicate the nature
+of the series (sharp series, principal series, diffuse series, etc.)
+obtained by combinations of the corresponding spectral terms. The
+distances of the separate points from the vertical line at the right
+of the figure are proportional to the numerical value of the energy of
+the atom given by equation (13). The oblique, black arrows indicate
+finally the transitions between the stationary states giving rise to
+the appearance of the lines in the commonly observed sodium spectrum.
+The values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> attached to the various states indicate
+the quantum numbers, which, according to Sommerfeld's theory, from a
+preliminary consideration might be regarded as characterizing the orbit
+of the outer electron. For the sake of convenience the states which
+were regarded as corresponding to the same value of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> are connected
+by means of dotted lines, and these are so drawn that their vertical
+asymptotes correspond to the terms in the hydrogen spectrum which
+<span class="pagenum" id="Page_80">[Pg 80]</span>
+belong to the same value of the principal quantum number. The course of
+the curves illustrates how the deviation from the hydrogen terms may
+be expected to decrease with increasing values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> corresponding
+to states, where the minimum distance between the electron in its
+revolution and the nucleus constantly increases.</p>
+
+<p>It should be noted that even though the theory represents the principal
+features of the structure of the series spectra it has not yet been
+possible to give a detailed account of the spectrum of any element
+by a closer investigation of the electronic orbits which may occur
+in a simple field of force possessing central symmetry. As I have
+mentioned already the lines of most spectra show a complex structure.
+In the sodium spectrum for instance the lines of the principal series
+are doublets indicating that to each <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P">-term not one stationary
+state, but two such states correspond with slightly different values
+of the energy. This difference is so little that it would not be
+recognizable in a diagram on the same scale as <a href="#Page_79">Fig. 2</a>. The appearance
+of these doublets is undoubtedly due to the small deviations from
+central symmetry of the field of force originating from the inner
+system in consequence of which the general type of motion of the
+external electron will possess a more complicated character than that
+of a simple central motion. As a result the stationary states must
+be characterized by more than two quantum numbers, in the same way
+that the occurrence of deviations of the orbit of the electron in the
+hydrogen atom from a simple periodic orbit requires that the stationary
+states of this atom shall be characterized by more than one quantum
+number. Now the rules of the quantum theory lead to the introduction of
+a third quantum number through the condition that the resultant angular
+momentum of the atom, multiplied by <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.421ex; height: 1.532ex;" src="images/196.svg" alt=" " data-tex="2\pi">,</span> is equal to an entire
+multiple of Planck's constant. This determines the orientation of the
+orbit of the outer electron relative to the axis of the inner system.</p>
+
+<p>In this way Sommerfeld, Landé and others have shown that it is
+possible not only to account in a formal way for the complex structure
+of the lines of the series spectra, but also to obtain a promising
+interpretation of the complicated effect of external magnetic fields
+on this structure. We shall not enter here on these problems but
+<span class="pagenum" id="Page_81">[Pg 81]</span>
+shall confine ourselves to the problem of the fixation of the two
+quantum numbers <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> which to a first approximation
+describe the orbit of the outer electron in the stationary states, and
+whose determination is a matter of prime importance in the following
+discussion of the formation of the atom. In the determination of
+these numbers we at once encounter difficulties of a profound nature,
+which—as we shall see—are intimately connected with the question
+of the remarkable stability of atomic structure. I shall here only
+remark that the values of the quantum number <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">,</span> given in the
+figure, undoubtedly cannot be retained, neither for the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> nor the
+<img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> series. On the other hand, so far as the values employed for the
+quantum number <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> are concerned, it may be stated with certainty,
+that the interpretation of the properties of the orbits, which they
+indicate, is correct. A starting point for the investigation of this
+question has been obtained from considerations of an entirely different
+kind from those previously mentioned, which have made it possible to
+establish a close connection between the motion in the atom and the
+appearance of spectral lines.</p>
+
+<p class="space-above2">
+<b>Correspondence principle.</b> So far as the principles of the
+quantum theory are concerned, the point which has been emphasized
+hitherto is the radical departure of these principles from our usual
+conceptions of mechanical and electrodynamical phenomena. As I have
+attempted to show in recent years, it appears possible, however, to
+adopt a point of view which suggests that the quantum theory may,
+nevertheless, be regarded as a rational generalization of our ordinary
+conceptions. As may be seen from the postulates of the quantum theory,
+and particularly the frequency relation, a direct connection between
+the spectra and the motion of the kind required by the classical
+dynamics is excluded, but at the same time the form of these postulates
+leads us to another relation of a remarkable nature. Let us consider
+an electrodynamic system and inquire into the nature of the radiation
+which would result from the motion of the system on the basis of
+the ordinary conceptions. We imagine the motion to be decomposed
+into purely harmonic oscillations, and the radiation is assumed to
+consist of the simultaneous emission of series of electromagnetic
+<span class="pagenum" id="Page_82">[Pg 82]</span>
+waves possessing the same frequency as these harmonic components
+and intensities which depend upon the amplitudes of the components.
+An investigation of the formal basis of the quantum theory shows us
+now, that it is possible to trace the question of the origin of the
+radiation processes which accompany the various transitions back to an
+investigation of the various harmonic components, which appear in the
+motion of the atom. The possibility, that a particular transition shall
+occur, may be regarded as being due to the presence of a definitely
+assignable "corresponding" component in the motion. This principle of
+correspondence at the same time throws light upon a question mentioned
+several times previously, namely the relation between the number
+of quantum numbers, which must be used to describe the stationary
+states of an atom, and the types to which the orbits of the electrons
+belong. The classification of these types can be based very simply
+on a decomposition of the motion into its harmonic components. Time
+does not permit me to consider this question any further, and I shall
+confine myself to a statement of some simple conclusions, which the
+correspondence principle permits us to draw concerning the occurrence
+of transitions between various pairs of stationary states. These
+conclusions are of decisive importance in the subsequent argument.</p>
+
+<p>The simplest example of such a conclusion is obtained by considering
+an atomic system, which contains a particle describing a <i>purely
+periodic orbit</i>, and where the stationary states are characterized
+by a single quantum number <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span> In this case the motion can
+according to Fourier's theorem be decomposed into a simple series of
+harmonic oscillations whose frequency may be written <span class="nowrap"><img style="vertical-align: -0.029ex; width: 2.577ex; height: 1.032ex;" src="images/171.svg" alt=" " data-tex="\tau\omega">,</span>
+where <img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau"> is a whole number, and <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> is the frequency of
+revolution in the orbit. It can now be shown that a transition between
+two stationary states, for which the values of the quantum number are
+respectively equal to <img style="vertical-align: -0.025ex; width: 1.98ex; height: 1.292ex;" src="images/130.svg" alt=" " data-tex="n′"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 2.602ex; height: 1.292ex;" src="images/131.svg" alt=" " data-tex="n″">,</span> will correspond to a harmonic
+component, for which <span class="nowrap"><img style="vertical-align: -0.186ex; width: 11.534ex; height: 1.505ex;" src="images/209.svg" alt=" " data-tex="\tau = n′ - n″">.</span> This throws at once light
+upon the remarkable difference which exists between the possibilities
+of transitions between the stationary states of a hydrogen atom on the
+one hand and of a simple system consisting of an electric particle
+capable of executing simple harmonic oscillations about a position of
+equilibrium on the other. For the latter system, which is frequently
+<span class="pagenum" id="Page_83">[Pg 83]</span>
+called a Planck oscillator, the energy in the stationary states is
+determined by the familiar formula <span class="nowrap"><img style="vertical-align: -0.186ex; width: 8.813ex; height: 1.756ex;" src="images/210.svg" alt=" " data-tex="E = nh\omega">,</span> and with the aid
+of the frequency relation we obtain therefore for the radiation which
+will be emitted during a transition between two stationary states
+<span class="nowrap"><img style="vertical-align: -0.566ex; width: 15.109ex; height: 2.262ex;" src="images/211.svg" alt=" " data-tex="\nu = (n′ - n″)\, \omega">.</span> Now, an important assumption, which is not
+only essential in Planck's theory of temperature radiation, but which
+also appears necessary to account for the molecular absorption in the
+infra-red region of radiation, states that a harmonic oscillator will
+only emit and absorb radiation, for which the frequency <img style="vertical-align: 0; width: 1.199ex; height: 1ex;" src="images/88.svg" alt=" " data-tex="\nu"> is
+equal to the frequency of oscillation <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> of the oscillator. We
+are therefore compelled to assume that in the case of the oscillator
+transitions can occur only between stationary states which are
+characterized by quantum numbers differing by only one unit, while
+in the hydrogen spectrum represented by formula (2) all possible
+transitions could take place between the stationary states given by
+formula (5). From the point of view of the principle of correspondence
+it is seen, however, that this apparent difficulty is explained by the
+occurrence in the motion of the hydrogen atom, as opposed to the motion
+of the oscillator, of harmonic components corresponding to values of
+<span class="nowrap"><img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau">,</span> which are different from <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">;</span> or using a terminology well
+known from acoustics, there appear overtones in the motion of the
+hydrogen atom.</p>
+
+<p>Another simple example of the application of the correspondence
+principle is afforded by a <i>central motion</i>, to the investigation
+of which the explanation of the series spectra in the first
+approximation may be reduced. Referring once more to the figure of the
+sodium spectrum, we see that the black arrows, which correspond to the
+spectral lines appearing under the usual conditions of excitation,
+only connect pairs of points in consecutive rows. Now it is found that
+this remarkable limitation of the occurrence of combinations between
+spectral terms may quite naturally be explained by an investigation of
+the harmonic components into which a central motion can be resolved.
+It can readily be shown that such a motion can be decomposed into two
+series of harmonic components, whose frequencies can be expressed by
+<img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/172.svg" alt=" " data-tex="\tau\omega + \sigma"> and <img style="vertical-align: -0.186ex; width: 6.634ex; height: 1.505ex;" src="images/173.svg" alt=" " data-tex="\tau\omega - \sigma"> respectively, where
+<img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau"> is a whole number, <img style="vertical-align: -0.025ex; width: 1.407ex; height: 1.027ex;" src="images/89.svg" alt=" " data-tex="\omega"> the frequency of revolution
+in the rotating periodic orbit and <img style="vertical-align: -0.025ex; width: 1.292ex; height: 1ex;" src="images/156.svg" alt=" " data-tex="\sigma"> the frequency of the
+superposed rotation. These components correspond with transitions
+<span class="pagenum" id="Page_84">[Pg 84]</span>
+where the principal number <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> decreases by <img style="vertical-align: -0.029ex; width: 1.17ex; height: 1.005ex;" src="images/140.svg" alt=" " data-tex="\tau"> units, while
+the quantum number <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> decreases or increases, respectively, by one
+unit, corresponding exactly with the transitions indicated by the
+black arrows in the figure. This may be considered as a very important
+result, because we may say, that the quantum theory, which for the
+first time has offered a simple interpretation of the fundamental
+principle of combination of spectral lines has at the same time removed
+the mystery which has hitherto adhered to the application of this
+principle on account of the apparent capriciousness of the appearance
+of predicted combination lines. Especially attention may be drawn
+to the simple interpretation which the quantum theory offers of the
+appearance observed by Stark and his collaborators of certain new
+series of lines, which do not appear under ordinary circumstances,
+but which are excited when the emitting atoms are subject to intense
+external electric fields. In fact, on the correspondence principle
+this is immediately explained from an examination of the perturbations
+in the motion of the outer electron which give rise to the appearance
+in this motion—besides the harmonic components already present in a
+simple central orbit—of a number of constituent harmonic vibrations
+of new type and of amplitudes proportional to the intensity of the
+external forces.</p>
+
+<p>It may be of interest to note that an investigation of the limitation
+of the possibility of transitions between stationary states, based
+upon a simple consideration of conservation of angular momentum during
+the process of radiation, does not, contrary to what has previously
+been supposed (compare Essay II, <a href="#Page_62">p. 62</a>), suffice to throw light on
+the remarkably simple structure of series spectra illustrated by the
+figure. As mentioned above we must assume that the "complexity" of
+the spectral terms, corresponding to given values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span>
+which we witness in the fine structure of the spectral lines, may be
+ascribed to states, corresponding to different values of this angular
+momentum, in which the plane of the electronic orbit is orientated in
+a different manner, relative to the configuration of the previously
+bound electrons in the atom. Considerations of conservation of angular
+momentum can, in connection with the series spectra, therefore only
+contribute to an understanding of the limitation of the possibilities
+<span class="pagenum" id="Page_85">[Pg 85]</span>
+of combination observed in the peculiar laws applying to the number of
+components in the complex structure of the lines. So far as the last
+question is concerned, such considerations offer a direct support for
+the consequences of the correspondence principle.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="III_FORMATION_OF_ATOMS_AND_THE_PERIODIC_TABLE">
+III. FORMATION OF ATOMS AND THE PERIODIC TABLE</h2>
+</div>
+
+
+<p>A correspondence has been shown to exist between the motion of the
+electron last captured and the occurrence of transitions between the
+stationary states corresponding to the various stages of the binding
+process. This fact gives a point of departure for a choice between
+the numerous possibilities which present themselves when considering
+the formation of the atoms by the successive capture and binding of
+the electrons. Among the processes which are conceivable and which
+according to the quantum theory might occur in the atom we shall
+reject those whose occurrence cannot be regarded as consistent with a
+correspondence of the required nature.</p>
+
+<p class="space-above2">
+<b>First Period. Hydrogen—Helium.</b> It will not be necessary to
+concern ourselves long with the question of the constitution of the
+hydrogen atom. From what has been said previously we may assume that
+the final result of the process of <i>binding of the first electron</i>
+in any atom will be a stationary state, where the energy of the atom
+is given by (5), if we put <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1">,</span> or more precisely by formula
+(11), if we put <img style="vertical-align: -0.186ex; width: 5.506ex; height: 1.692ex;" src="images/110.svg" alt=" " data-tex="n = 1"> and <span class="nowrap"><img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/180.svg" alt=" " data-tex="k = 1">.</span> The orbit of the electron
+will be a circle whose radius will be given by formulae (10), if <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">
+and <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> are each put equal to <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">.</span> Such an orbit will be called a
+<img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum orbit, and in general an orbit for which the principal
+quantum number has a given value <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> will be called an <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">-quantum
+orbit. Where it is necessary to differentiate between orbits
+corresponding to various values of the quantum number <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> a central
+orbit, characterized by given values of the quantum numbers <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and
+<span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> will be referred to as an <img style="vertical-align: -0.357ex; width: 2.379ex; height: 1.357ex;" src="images/212.svg" alt=" " data-tex="n_{k}"> orbit.</p>
+
+<p>In the question of the constitution of the helium atom we meet the much
+more complicated problem of the <i>binding of the second electron</i>.
+Information about this binding process may, however, be obtained
+from the arc spectrum of helium. This spectrum, as opposed to most
+other simple spectra, consists of two complete systems of lines with
+frequencies given by formulae of the type (12). On this account
+<span class="pagenum" id="Page_86">[Pg 86]</span>
+helium was at first assumed to be a mixture of two different gases,
+"orthohelium" and "parhelium," but now we know that the two spectra
+simply mean that the binding of the second electron can occur in two
+different ways. A theoretical explanation of the main features of the
+helium spectrum has recently been attempted in an interesting paper by
+Landé. He supposes the emission of the orthohelium spectrum to be due
+to transitions between stationary states where both electrons move in
+the same plane and revolve in the same sense. The parhelium spectrum,
+on the other hand, is ascribed by him to stationary states where the
+planes of the orbits form an angle with each other. Dr Kramers and
+I have made a closer investigation of the interaction between the
+two orbits in the different stationary states. The results of our
+investigation which was begun several years before the appearance of
+Landé's work have not yet been published. Without going into details
+I may say, that even though our results in several respects differ
+materially from those of Landé (compare Essay II, <a href="#Page_56">p. 56</a>), we agree with
+his general conclusions concerning the origin of the orthohelium and
+parhelium spectra.</p>
+
+<p>The final result of the binding of the second electron is intimately
+related to the origin of the two helium spectra. Important information
+on this point has been obtained recently by Franck and his co-workers.
+As is well known he has thrown light upon many features of the
+structure of the atom and of the origin of spectra by observing the
+effect of bombarding atoms by electrons of various velocities. A short
+time ago these experiments showed that the impact of electrons could
+bring helium into a "metastable" state from which the atom cannot
+return to its normal state by means of a simple transition accompanied
+by the emission of radiation, but only by means of a process analogous
+to a chemical reaction involving interaction with atoms of other
+elements. This result is closely connected with the fact that the
+binding of the second electron can occur in two different ways, as is
+shown by the occurrence of two distinct spectra. Thus it is evident
+from Franck's experiments that the normal state of the atom is the last
+stage in the binding process involving the emission of the parhelium
+spectrum by which the electron last captured as well as the one first
+<span class="pagenum" id="Page_87">[Pg 87]</span>
+captured will be bound in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbit. The metastable state, on
+the contrary, is the final stage of the process giving the orthohelium
+spectrum. In this case the second electron, as opposed to the first,
+will move in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit. This corresponds to a firmness of
+binding which is about six times less than for the electron in the
+normal state of the atom.</p>
+
+<p>If we now consider somewhat more closely this apparently surprising
+result, it is found that a clear grasp of it may be obtained from the
+point of view of correspondence. It can be shown that the coherent
+class of motions to which the orthohelium orbits belong does not
+contain a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbit. If on the whole we would claim the existence
+of a state where the two electrons move in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbits in the same
+plane, and if in addition it is claimed that the motion should possess
+the periodic properties necessary for the definition of stationary
+states, then there seems that no possibility is afforded other than the
+assumption that the two electrons move around the nucleus in one and
+the same orbit, in such a manner that at each moment they are situated
+at the ends of a diameter. This extremely simple ring-configuration
+might be expected to correspond to the firmest possible binding of the
+electrons in the atom, and it was on this account proposed as a model
+for the helium atom in my first paper on atomic structure. If, however,
+we inquire about the possibility of a transition from one of the
+orthohelium states to a configuration of this type we meet conditions
+which are very different from those which apply to transitions between
+two of the orthohelium orbits. In fact, the occurrence of each of these
+transitions is due to the existence of well-defined corresponding
+constituent harmonic vibration in the central orbits which the outer
+electron describes in the class of motions to which the stationary
+states belong. The transition we have to discuss, on the other hand,
+is one by which the last captured electron is transferred from a state
+in which it is moving "outside" the other to a state in which it moves
+round the nucleus on equal terms with the other electron. Now it is
+impossible to find a series of simple intermediate forms for the motion
+of those two electrons in which the orbit of the last captured electron
+exhibits a sufficient similarity to a central motion that for this
+transition there could be a correspondence of the necessary kind. It
+is therefore evident, that where the two electrons move in the same
+plane, the electron captured last cannot be bound firmer than in a
+<span class="pagenum" id="Page_88">[Pg 88]</span>
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit. If, on the other hand, we consider the binding process
+which accompanies the emission of the parhelium spectrum and where the
+electrons in the stationary states move in orbits whose planes form
+angles with one another we meet essentially different conditions. A
+corresponding intimate change in the interaction between the electron
+last captured and the one previously bound is not required here for
+the two electrons in the atom to become equivalent. We may therefore
+imagine the last stage of the binding process to take place in a manner
+similar to those stages corresponding to transitions between orbits
+characterized by greater values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span></p>
+
+<p>In the <i>normal state of the helium atom</i> the two electrons
+must be assumed to move in equivalent <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbits. As a first
+approximation these may be described as two circular orbits, whose
+planes make an angle of <img style="vertical-align: -0.05ex; width: 4.525ex; height: 1.667ex;" src="images/215.svg" alt=" " data-tex="120°"> with one another, in agreement with
+the conditions which the angular momentum of an atom according to the
+quantum theory must satisfy. On account of the interaction between the
+two electrons these planes at the same time turn slowly around the
+fixed impulse axis of the atom. Starting from a distinctly different
+point of view Kemble has recently suggested a similar model for the
+helium atom. He has at the same time directed attention to a possible
+type of motion of very marked symmetry in which the electrons during
+their entire revolution assume symmetrical positions with reference
+to a fixed axis. Kemble has not, however, investigated this motion
+further. Previous to the appearance of this paper Kramers had commenced
+a closer investigation of precisely this type of motion in order
+to find out to what extent it was possible from such a calculation
+to account for the firmness with which the electrons are bound in
+the helium atom, that is to account for the ionization potential.
+Early measurements of this potential had given values corresponding
+approximately to that which would result from the ring-configuration
+already mentioned. This requires <img style="vertical-align: -0.566ex; width: 4.525ex; height: 2.262ex;" src="images/216.svg" alt=" " data-tex="17/8"> as much work to remove a
+single electron as is necessary to remove an electron from the hydrogen
+atom in its normal state. As the theoretical value for the latter
+amount of work—which for the sake of simplicity will be represented
+by <img style="vertical-align: -0.05ex; width: 2.371ex; height: 1.595ex;" src="images/93.svg" alt=" " data-tex="W">—corresponds to an ionization potential of <img style="vertical-align: -0.05ex; width: 5.154ex; height: 1.557ex;" src="images/217.svg" alt=" " data-tex="13.53">
+volts, the ionization potential of helium would be expected to be
+<img style="vertical-align: -0.05ex; width: 4.023ex; height: 1.557ex;" src="images/218.svg" alt=" " data-tex="28.8"> volts. Recent and more accurate determinations, however,
+<span class="pagenum" id="Page_89">[Pg 89]</span>
+have given a value for the ionization potential of helium which is
+considerably lower and lies in the neighbourhood of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/219.svg" alt=" " data-tex="25"> volts. This
+showed therefore the untenability of the ring-configuration quite
+independently of any other considerations. A careful investigation of
+the spatial atomic configuration requires elaborate calculation, and
+Kramers has not yet obtained final results. With the approximation
+to which they have been so far completed the calculations point to
+the possibility of an agreement with the experimental results. The
+final result may be awaited with great interest, since it offers in
+the simplest case imaginable a test of the principles by which we are
+attempting to determine stationary states of atoms containing more than
+one electron.</p>
+
+<p>Hydrogen and helium, as seen in the survey of the periodic system given
+in <a href="#Page_70">Fig. 1</a>, together form the first period in the system of elements,
+since helium is the first of the inactive gases. The great difference
+in the chemical properties of hydrogen and helium is closely related
+to the great difference in the nature of the binding of the electron.
+This is directly indicated by the spectra and ionization potentials.
+While helium possesses the highest known ionization potential of
+all the elements, the binding of the electron in the hydrogen atom
+is sufficiently loose to account for the tendency of hydrogen to
+form positive ions in aqueous solutions and chemical combinations.
+Further consideration of this particular question requires, however,
+a comparison between the nature and firmness of the electronic
+configurations of other atoms, and it can therefore not be discussed at
+the moment.</p>
+
+<p class="space-above2">
+<b>Second Period. Lithium—Neon.</b> When considering the atomic
+structure of elements which contain more than two electrons in the
+neutral atom, we shall assume first of all that what has previously
+been said about the formation of the helium atom will in the main
+features also apply to the capture and binding of the first two
+electrons. These electrons may, therefore, in the normal state of
+the atom be regarded as moving in equivalent orbits characterized by
+the quantum symbol <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}">.</span> We obtain direct information about the
+<i>binding of the third electron</i> from the spectrum of lithium. This
+spectrum shows the existence of a number of series of stationary
+<span class="pagenum" id="Page_90">[Pg 90]</span>
+states, where the firmness with which the last captured electron is
+bound is very nearly the same as in the stationary states of the
+hydrogen atom. These states correspond to orbits where <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> is greater
+than or equal to <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">,</span> and where the last captured electron moves
+entirely outside the region where the first two electrons move. But in
+addition this spectrum gives us information about a series of states
+corresponding to <img style="vertical-align: -0.186ex; width: 5.327ex; height: 1.756ex;" src="images/180.svg" alt=" " data-tex="k = 1"> in which the energy differs essentially
+from the corresponding stationary states of the hydrogen atom. In
+these states the last captured electron, even if it remains at a
+considerable distance from the nucleus during the greater part of its
+revolution, will at certain moments during the revolution approach to
+a distance from the nucleus which is of the same order of magnitude
+as the dimensions of the orbits of the previously bound electrons.
+On this account the electrons will be bound with a firmness which is
+considerably greater than that with which the electrons are bound in
+the stationary states of the hydrogen atom corresponding to the same
+value of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n">.</span></p>
+
+<p>Now as regards the lithium spectrum as well as the other alkali spectra
+we are so fortunate (see <a href="#Page_32">p. 32</a>) as to possess definite evidence about
+the normal state of the atom from experiments on selective absorption.
+In fact these experiments tell us that the first member of the sequence
+of <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S">-terms corresponds to this state. This term corresponds to a
+strength of binding which is only a little more than a third of that of
+the hydrogen atom. We must therefore conclude that the outer electron
+in the normal state of the lithium atom moves in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit,
+just as the outer electron in the metastable state of the helium atom.
+The reason why the binding of the outer electron cannot proceed to an
+orbit characterized by a smaller value for the total quantum number may
+also be considered as analogous in the two cases. In fact, a transition
+by which the third electron in the lithium atom was ultimately bound
+in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbit would lead to a state in the atom in which
+the electron would play an equivalent part with the two electrons
+previously bound. Such a process would be of a type entirely different
+from the transitions between the stationary states connected with the
+emission of the lithium spectrum, and would, contrary to these, not
+exhibit a correspondence with a harmonic component in the motion of the
+atom.
+<span class="pagenum" id="Page_91">[Pg 91]</span>
+</p>
+
+<p>We obtain, therefore, a picture of the formation and structure of
+the lithium atom which offers a natural explanation of the great
+difference of the chemical properties of lithium from those of helium
+and hydrogen. This difference is at once explained by the fact that the
+firmness by which the last captured electron is bound in its <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}">
+orbit in the lithium atom is only about a third of that with which the
+electron in the hydrogen atom is held, and almost five times smaller
+than the firmness of the binding of the electrons in the helium atom.</p>
+
+<p>What has been said here applies not alone to the formation of the
+lithium atom, but may also be assumed to apply to the binding of the
+third electron in every atom, so that in contrast to the first two
+electrons which move in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbits this may be assumed to move
+in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit. As regards the <i>binding of the fourth, fifth
+and sixth electrons</i> in the atom, we do not possess a similar
+guide as no simple series spectra are known of beryllium, boron and
+carbon. Although conclusions of the same degree of certainty cannot be
+reached it seems possible, however, to arrive at results consistent
+with general physical and chemical evidence by proceeding by means of
+considerations of the same kind as those applied to the binding of
+the first three electrons. In fact, we shall assume that the fourth,
+fifth and sixth electrons will be bound in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits. The
+reason why the binding of a first electron in an orbit of this type
+will not prevent the capture of the others in two quanta orbits may
+be ascribed to the fact that <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits are not circular but
+very eccentric. For example, the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">rd electron cannot keep the
+remaining electrons away from the inner system in the same way in
+which the first two electrons bound in the lithium atom prevent the
+third from being bound in a <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum orbit. Thus we shall expect
+that the <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">th, <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">th and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">th electrons in a similar way to
+the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">rd will at certain moments of their revolution enter into the
+region where the first two bound electrons move. We must not imagine,
+however, that these visits into the inner system take place at the
+same time, but that the four electrons visit the nucleus separately at
+equal intervals of time. In earlier work on atomic structure it was
+supposed that the electrons in the various groups in the atom moved in
+separate regions within the atom and that at each moment the electrons
+within each separate group were arranged in configurations possessing
+<span class="pagenum" id="Page_92">[Pg 92]</span>
+symmetry like that of a regular polygon or polyhedron. Among other
+things this involved that the electrons in each group were supposed
+to be at the point of the orbit nearest the nucleus at the same time.
+A structure of this kind may be described as one where the motions of
+the electrons within the groups are coupled together in a manner which
+is largely independent of the interaction between the various groups.
+On the contrary, the characteristic feature of a structure like that I
+have suggested is the <i>intimate coupling between the motions of the
+electrons in the various groups</i> characterized by different quantum
+numbers, as well as the <i>greater independence in the mode of binding
+within one and the same group of electrons</i> the orbits of which are
+characterized by the same quantum number. In emphasizing this last
+feature I have two points in mind. Firstly the smaller effect of the
+presence of previously bound electrons on the firmness of binding of
+succeeding electrons in the same group. Secondly the way in which the
+motions of the electrons within the group reflect the independence both
+of the processes by which the group can be formed and by which it can
+be reorganized by change of position of the different electrons in the
+atom after a disturbance by external forces. The last point will be
+considered more closely when we deal with the origin and nature of the
+X-ray spectra; for the present we shall continue the consideration of
+the structure of the atom to which we are led by the investigation of
+the processes connected with the successive capture of the electrons.</p>
+
+<p>The preceding considerations enable us to understand the fact that the
+two elements beryllium and boron immediately succeeding lithium can
+appear electropositively with <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2"> and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3"> valencies respectively
+in combination with other substances. For like the third electron in
+the lithium atom, the last captured electrons in these elements will
+be much more lightly bound than the first two electrons. At the same
+time we understand why the electropositive character of these elements
+is less marked than in the case of lithium, since the electrons in the
+<img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits will be much more firmly bound on account of the
+stronger field in which they are moving. New conditions arise, however,
+in the case of the next element, carbon, as this element in its typical
+chemical combinations cannot be supposed to occur as an ion, but
+rather as a neutral atom. This must be assumed to be due not only to
+<span class="pagenum" id="Page_93">[Pg 93]</span>
+the great firmness in the binding of the electrons but also to be an
+essential consequence of the symmetrical configuration of the electrons.</p>
+
+<p>With the binding of the <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">th, <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">th and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">th electrons in
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits, the spatial symmetry of the regular configuration
+of the orbits must be regarded as steadily increasing, until with
+the binding of the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">th electron the orbits of the four last
+bound electrons may be expected to form an exceptionally symmetrical
+configuration in which the normals to the planes of the orbits occupy
+positions relative to one another nearly the same as the lines from the
+centre to the vertices of a regular tetrahedron. Such a configuration
+of groups of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits in the carbon atom seems capable
+of furnishing a suitable foundation for explaining the structure of
+organic compounds. I shall not discuss this question any further,
+for it would require a thorough study of the interaction between
+the motions of the electrons in the atoms forming the molecule. I
+might mention, however, that the types of molecular models to which
+we are led are very different from the molecular models which were
+suggested in my first papers. In these the chemical "valence bonds"
+were represented by "electron rings" of the same type as those which
+were assumed to compose the groups of electrons within the individual
+atoms. It is nevertheless possible to give a general explanation of
+the chemical properties of the elements without touching on those
+matters at all. This is largely due to the fact that the structures of
+combinations of atoms of the same element and of many organic compounds
+do not have the same significance for our purpose as those molecular
+structures in which the individual atoms occur as electrically charged
+ions. The latter kind of compounds, to which the greater number of
+simple inorganic compounds belong, is frequently called "heteropolar"
+and possesses a far more typical character than the first compounds
+which are called "homoeopolar," and whose properties to quite a
+different degree exhibit the individual peculiarities of the elements.
+My main purpose will therefore be to consider the fitness which the
+configurations of the electrons in the various atoms offer for the
+formation of ions.</p>
+
+<p>Before leaving the carbon atom I should mention, that a model of this
+atom in which the orbits of the four most lightly bound electrons
+<span class="pagenum" id="Page_94">[Pg 94]</span>
+possess a pronounced tetrahedric symmetry had already been suggested
+by Landé. In order to agree with the measurements of the size of the
+atoms he also assumed that these electrons moved in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits.
+There is, however, this difference between Landé's view and that given
+here, that while Landé deduced the characteristic properties of the
+carbon atom solely from an investigation of the simplest form of motion
+which four electrons can execute employing spatial symmetry, our view
+originates from a consideration of the stability of the whole atom. For
+our assumptions about the orbits of the electrons are based directly
+on an investigation of the interaction between these electrons and the
+first two bound electrons. The result is that our model of the carbon
+atom has dynamic properties which are essentially different from the
+properties of Landé's model.</p>
+
+<p>In order to account for the properties of <i>the elements in the second
+half of the second period</i> it will first of all be necessary to show
+why the configuration of ten electrons occurring in the neutral atom
+of neon possesses such a remarkable degree of stability. Previously it
+has been assumed that the properties of this configuration were due
+to the interaction between eight electrons which moved in equivalent
+orbits outside the nucleus and an inner group of two electrons like
+that in the helium atom. It will be seen, however, that the solution
+must be sought in an entirely different direction. It cannot be
+expected that <i>the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th electron</i> will be bound in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}">
+orbit equivalent to the orbits of the four preceding electrons. The
+occurrence of five such orbits would so definitely destroy the symmetry
+in the interaction of these electrons that it is inconceivable that
+a process resulting in the accession of a fifth electron to this
+group would be in agreement with the correspondence principle. On the
+contrary it will be necessary to assume that the four electrons in
+their exceptionally symmetrical orbital configuration will keep out
+later captured electrons with the result that these electrons will be
+bound in orbits of other types.</p>
+
+<p>The orbits which come into consideration for the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th electron
+in the nitrogen atom and the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th, <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8">th, <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/224.svg" alt=" " data-tex="9">th and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/225.svg" alt=" " data-tex="10">th
+electrons in the atoms of the immediately following elements will be
+circular orbits of the type <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}">.</span> The diameters of these orbits
+are considerably larger than those of the <img style="vertical-align: -0.339ex; width: 1.662ex; height: 1.91ex;" src="images/227.svg" alt=" " data-tex="l_{1}"> orbits of the
+first two electrons; on the other hand the outermost part of the
+<span class="pagenum" id="Page_95">[Pg 95]</span>
+eccentric <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits will extend some distance beyond these
+circular <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}"> orbits. I shall not here discuss the capture and
+binding of these electrons. This requires a further investigation
+of the interaction between the motions of the electrons in the two
+types of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits. I shall simply mention, that in the
+atom of neon in which we will assume that there are four electrons
+in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}"> orbits the planes of these orbits must be regarded not
+only as occupying a position relative to one another characterized
+by a high degree of spatial symmetry, but also as possessing a
+configuration harmonizing with the four elliptical <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits. An
+interaction of this kind in which the orbital planes do not coincide
+can be attained only if the configurations in both subgroups exhibit
+a systematic deviation from tetrahedral symmetry. This will have the
+result that the electron groups with <img style="vertical-align: -0.023ex; width: 2.328ex; height: 1.529ex;" src="images/90.svg" alt=" " data-tex="2a">-quanta orbits in the neon
+atom will have only a single axis of symmetry which must be supposed
+to coincide with the axis of symmetry of the innermost group of two
+electrons.</p>
+
+<p>Before leaving the description of the elements within the second period
+it may be pointed out that the above considerations offer a basis for
+interpreting that tendency of the neutral atoms of oxygen and fluorine
+for capturing further electrons which is responsible for the marked
+electronegative character of these elements. In fact, this tendency
+may be ascribed to the fact that the orbits of the last captured
+electrons will find their place within the region, in which the
+previously captured electrons move in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits. This suggests
+an explanation of the great difference between the properties of the
+elements in the latter half of the second period of the periodic system
+and those of the elements in the first half, in whose atoms there is
+only a single type of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits.</p>
+
+<p class="space-above2">
+<b>Third Period. Sodium—Argon.</b> We shall now consider the structure
+of atoms of elements in the third period of the periodic system.
+This brings us immediately to the question of <i>the binding of the
+<img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/228.svg" alt=" " data-tex="11">th electron</i> in the atom. Here we meet conditions which in
+some respects are analogous to those connected with the binding of
+the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th electron. The same type of argument that applied to the
+carbon atom shows that the symmetry of the configuration in the neon
+<span class="pagenum" id="Page_96">[Pg 96]</span>
+atom would be essentially, if not entirely, destroyed by the addition
+of another electron in an orbit of the same type as that in which the
+last captured electrons were bound. Just as in the case of the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">rd
+and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th electrons we may therefore expect to meet a new type of
+orbit for the <img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/228.svg" alt=" " data-tex="11">th electron in the atom, and the orbits which
+present themselves this time are the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbits. An electron in
+such an orbit will for the greater part of the time remain outside
+the orbits of the first ten electrons. But at certain moments during
+the revolution it will penetrate not only into the region of the
+<img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits, but like the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits it will penetrate
+to distances from the nucleus which are smaller than the radii of the
+<img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum orbits of the two electrons first bound. This fact, which
+has a most important bearing on the stability of the atom, leads to a
+peculiar result as regards the binding of the <img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/228.svg" alt=" " data-tex="11">th electron. In
+the sodium atom this electron will move in a field which so far as the
+outer part of the orbit is concerned deviates only very little from
+that surrounding the nucleus in the hydrogen atom, but the dimensions
+of this part of the orbit will, nevertheless, be essentially different
+from the dimensions of the corresponding part of a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbit in
+the hydrogen atom. This arises from the fact, that even though the
+electron only enters the inner configuration of the first ten electrons
+for short intervals during its revolution, this part of the orbit will
+nevertheless exert an essential influence upon the determination of the
+principal quantum number. This is directly related to the fact that
+the motion of the electron in the first part of the orbit deviates
+only a little from the motion which each of the previously bound
+electrons in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits executes during a complete revolution.
+The uncertainty which has prevailed in the determination of the quantum
+numbers for the stationary states corresponding to a spectrum like that
+of sodium is connected with this. This question has been discussed by
+several physicists. From a comparison of the spectral terms of the
+various alkali metals, Roschdestwensky has drawn the conclusion that
+the normal state does not, as we might be inclined to expect a priori,
+correspond to a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbit as shown in Fig. 2 on <a href="#Page_79">p. 79</a>, but that
+this state corresponds to a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit. Schrödinger has arrived
+at a similar result in an attempt to account for the great difference
+between the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> terms and the terms in the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> and <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> series of
+the alkali spectra. He assumes that the "outer" electron in the states
+<span class="pagenum" id="Page_97">[Pg 97]</span>
+corresponding to the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> terms—in contrast to those corresponding
+to the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> and <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> terms—penetrates partly into the region of the
+orbits of the inner electrons during the course of its revolution.
+These investigations contain without doubt important hints, but in
+reality the conditions must be very different for the different alkali
+spectra. Instead of a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbit as in lithium we must thus assume
+for the spectrum of sodium not only that the first spectral term in
+the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> series corresponds to a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbit, but also, as a more
+detailed consideration shows, that the first term in the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> series
+corresponds not to a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}"> orbit as indicated in <a href="#Page_79">Fig. 2</a>, but to a
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}"> orbit. If the numbers in this figure were correct, it would
+require among other things that the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> terms should be smaller than
+the hydrogen terms corresponding to the same principal quantum number.</p>
+
+<div class="figcenter">
+<img class="w100" src="images/004.jpg" width="400" alt="fig04">
+<div class="caption">
+<p>Fig. 3.</p>
+</div></div>
+
+<p>This would mean that the average effect of the inner electrons could
+be described as a repulsion greater than would occur if their total
+electrical charge were united in the nucleus. This, however, cannot
+be expected from our view of atomic structure. The fact that the last
+captured electron, at any rate for low values of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> revolves
+partly inside the orbits of the previously bound electrons will on the
+contrary involve that the presence of these electrons will give rise to
+a virtual repulsion which is considerably smaller than that which would
+be due to their combined charges. Instead of the curves drawn between
+points in <a href="#Page_79">Fig. 2</a> which represent stationary states corresponding to
+the same value of the principal quantum number running from right to
+left, we obtain curves which run from left to right, as is indicated
+in <a href="#Page_97">Fig. 3</a>. The stationary states are labelled with quantum numbers
+<span class="pagenum" id="Page_98">[Pg 98]</span>
+corresponding to the structure I have described. According to the view
+underlying <a href="#Page_79">Fig. 2</a> the sodium spectrum might be described simply as a
+distorted hydrogen spectrum, whereas according to <a href="#Page_97">Fig. 3</a> there is not
+only distortion but also complete disappearance of certain terms of
+low quantum numbers. It may be stated, that this view not only appears
+to offer an explanation of the magnitude of the terms, but that the
+complexity of the terms in the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> and <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> series finds a natural
+explanation in the deviation of the configuration of the ten electrons
+first bound from a purely central symmetry. This lack of symmetry
+has its origin in the configuration of the two innermost electrons
+and "transmits" itself to the outer parts of the atomic structure,
+since the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits penetrate partly into the region of these
+electrons.</p>
+
+<p>This view of the sodium spectrum provides at the same time an immediate
+explanation of the pronounced electropositive properties of sodium,
+since the last bound electron in the sodium atom is still more loosely
+bound than the last captured electron in the lithium atom. In this
+connection it might be mentioned that the increase in atomic volume
+with increasing atomic number in the family of the alkali metals finds
+a simple explanation in the successively looser binding of the valency
+electrons. In his work on the X-ray spectra Sommerfeld at an earlier
+period regarded this increase in the atomic volumes as supporting
+the assumption that the principal quantum number of the orbit of the
+valency electrons increases by unity as we pass from one metal to the
+next in the family. His later investigations on the series spectra
+have led him, however, definitely to abandon this assumption. At
+first sight it might also appear to entail a far greater increase in
+the atomic volume than that actually observed. A simple explanation
+of this fact is however afforded by realizing that the orbit of the
+electron will run partly inside the region of the inner orbit and that
+therefore the "effective" quantum number which corresponds to the
+outer almost elliptical loop will be much smaller than the principal
+quantum number, by which the whole central orbit is described. It may
+be mentioned that Vegard in his investigations on the X-ray spectra has
+also proposed the assumption of successively increasing quantum numbers
+for the electronic orbits in the various groups of the atom, reckoned
+from the nucleus outward. He has introduced assumptions about the
+<span class="pagenum" id="Page_99">[Pg 99]</span>
+relations between the numbers of electrons in the various groups of
+the atom and the lengths of the periods in the periodic system which
+exhibit certain formal similarities with the results presented here.
+But Vegard's considerations do not offer points of departure for a
+further consideration of the evolution and stability of the groups, and
+consequently no basis for a detailed interpretation of the properties
+of the elements.</p>
+
+<p>When we consider the elements following sodium in the third period of
+the periodic system we meet in <i>the binding of the <img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/231.svg" alt=" " data-tex="12">th, <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/232.svg" alt=" " data-tex="13">th
+and <img style="vertical-align: 0; width: 2.262ex; height: 1.532ex;" src="images/233.svg" alt=" " data-tex="14">th electrons</i> conditions which are analogous to those we
+met in the binding of the <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">th, <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">th and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">th electrons. In
+the elements of the third periods, however, we possess a far more
+detailed knowledge of the series spectra. Too little is known about
+the beryllium spectrum to draw conclusions about the binding of the
+fourth electron, but we may infer directly from the well-known arc
+spectrum of magnesium that the <img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/231.svg" alt=" " data-tex="12">th electron in the atom of this
+element is bound in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbit. As regards the binding of the
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/232.svg" alt=" " data-tex="13">th electron we meet in aluminium an absorption spectrum different
+in structure to that of the alkali metals. In fact here not the lines
+of the principal series but the lines of the sharp and diffuse series
+are absorption lines. Consequently it is the first member of the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P">
+terms and not of the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> terms which corresponds to the normal state
+of the aluminium atom, and we must assume that the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/232.svg" alt=" " data-tex="13">th electron
+is bound in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}"> orbit. This, however, would hardly seem to be
+a general property of the binding of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/232.svg" alt=" " data-tex="13">th electron in atoms,
+but rather to arise from the special conditions for the binding of the
+last electron in an atom, where already there are two other electrons
+bound as loosely as the valency electron of aluminium. At the present
+state of the theory it seems best to assume that in the silicon atom
+the four last captured electrons will move in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbits forming
+a configuration possessing symmetrical properties similar to the outer
+configuration of the four electrons in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> orbits in carbon. Like
+what we assumed for the latter configuration we shall expect that the
+configuration of the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbits occurring for the first time in
+silicon possesses such a completion, that the addition of a further
+electron in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbit to the atom of the following elements
+is impossible, and that <i>the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/234.svg" alt=" " data-tex="15">th electron</i> in the elements
+of higher atomic number will be bound in a new type of orbit. In this
+<span class="pagenum" id="Page_100">[Pg 100]</span>
+case, however, the orbits with which we meet will not be circular, as
+in the capture of the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">th electron, but will be rotating eccentric
+orbits of the type <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}">.</span> This is very closely related to the fact,
+mentioned above, that the non-circular orbits will correspond to a
+firmer binding than the circular orbits having the same value for the
+principal quantum number, since the electrons will at certain moments
+penetrate much farther into the interior of the atom. Even though a
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}"> orbit will not penetrate into the innermost configuration
+of <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/213.svg" alt=" " data-tex="1_{1}"> orbits, it will penetrate to distances from the nucleus
+which are considerably less than the radii of the circular <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}">
+orbits. In the case of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/200.svg" alt=" " data-tex="16">th, <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/198.svg" alt=" " data-tex="17">th and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18">th electrons
+the conditions are similar to those for the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/234.svg" alt=" " data-tex="15">th. So for argon we
+may expect a configuration in which the ten innermost electrons move
+in orbits of the same type as in the neon atom while the last eight
+electrons will form a configuration of four <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbits and four
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}"> orbits, whose symmetrical properties must be regarded as
+closely corresponding to the configuration of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits in
+the neon atom. At the same time, as this picture suggests a qualitative
+explanation of the similarity of the chemical properties of the
+elements in the latter part of the second and third periods, it also
+opens up the possibility of a natural explanation of the conspicuous
+difference from a quantitative aspect.</p>
+
+<p class="space-above2">
+<b>Fourth Period. Potassium—Krypton.</b> In the fourth period we meet
+at first elements which resemble chemically those at the beginning of
+the two previous periods. This is also what we should expect. We must
+thus assume that <i>the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron</i> is bound in a new type of
+orbit, and a closer consideration shows that this will be a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}">
+orbit. The points which were emphasized in connection with the binding
+of the last electron in the sodium atom will be even more marked here
+on account of the larger quantum number by which the orbits of the
+inner electrons are characterized. In fact, in the potassium atom the
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron will, as far as inner loops
+are concerned, coincide closely with the shape of a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}"> orbit.
+On this account, therefore, the dimensions of the outer part of the
+orbit will not only deviate greatly from the dimensions of a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}">
+<span class="pagenum" id="Page_101">[Pg 101]</span>
+orbit in the hydrogen atom, but will coincide closely with a hydrogen
+orbit of the type <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}">,</span> the dimensions of which are about four
+times smaller than the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> hydrogen orbit. This result allows an
+immediate explanation of the main features of the chemical properties
+and the spectrum of potassium. Corresponding results apply to calcium,
+in the neutral atom of which there will be two valency electrons in
+equivalent <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbits.</p>
+
+<p>After calcium the properties of the elements in the fourth period
+of the periodic system deviate, however, more and more from the
+corresponding elements in the previous periods, until in the family
+of the iron metals we meet elements whose properties are essentially
+different. Proceeding to still higher atomic numbers we again meet
+different conditions. Thus we find in the latter part of the fourth
+period a series of elements whose chemical properties approach more
+and more to the properties of the elements at the end of the preceding
+periods, until finally with atomic number <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/236.svg" alt=" " data-tex="36"> we again meet one of
+the inactive gases, namely krypton. This is exactly what we should
+expect. The formation and stability of the atoms of the elements in the
+first three periods require that each of the first <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons
+in the atom shall be bound in each succeeding element in an orbit of
+the same principal quantum number as that possessed by the particular
+electron, when it first appeared. It is readily seen that this is no
+longer the case for the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron. With increasing nuclear
+charge and the consequent decrease in the difference between the fields
+of force inside and outside the region of the orbits of the first
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> bound electrons, the dimensions of those parts of a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}">
+orbit which fall outside will approach more and more to the dimensions
+of a <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quantum orbit calculated on the assumption that the
+interaction between the electrons in the atom may be neglected. <i>With
+increasing atomic number a point will therefore be reached where a
+<img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit will correspond to a firmer binding of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th
+electron than a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit</i>, and this occurs as early as at
+the beginning of the fourth period. This cannot only be anticipated
+from a simple calculation but is confirmed in a striking way from an
+examination of the series spectra. While the spectrum of potassium
+indicates that the <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit corresponds to a binding which is
+more than twice as firm as in a <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit corresponding to the
+first spectral term in the <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> series, the conditions are entirely
+different as soon as calcium is reached. We shall not consider the
+<span class="pagenum" id="Page_102">[Pg 102]</span>
+arc spectrum which is emitted during the capture of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/201.svg" alt=" " data-tex="20">th
+electron but the spark spectrum which corresponds to the capture and
+binding of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron. While the spark spectrum of magnesium
+exhibits great similarity with the sodium spectrum as regards the
+values of the spectral terms in the various series—apart from the fact
+that the constant appearing in formula (12) is four times as large as
+the Rydberg constant—we meet in the spark spectrum of calcium the
+remarkable condition that the first term of the <img style="vertical-align: 0; width: 1.873ex; height: 1.545ex;" src="images/152.svg" alt=" " data-tex="D"> series is larger
+than the first term of the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> series and is only a little smaller
+than the first term of the <img style="vertical-align: -0.05ex; width: 1.459ex; height: 1.645ex;" src="images/150.svg" alt=" " data-tex="S"> series, which may be regarded as
+corresponding to the binding of the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron in the normal
+state of the calcium atom.</p>
+
+<div class="figcenter">
+<img src="images/005.jpg" width="400" alt="fig05">
+<div class="caption">
+<p>Fig. 4.</p>
+</div></div>
+
+<p>These facts are shown in <a href="#Page_102">figure 4</a> which gives a survey of the
+stationary states corresponding to the arc spectra of sodium and
+potassium. As in figures <a href="#Page_79">2</a> and <a href="#Page_97">3</a> of the sodium spectrum, we have
+disregarded the complexity of the spectral terms, and the numbers
+characterizing the stationary states are simply the quantum numbers
+<span class="pagenum" id="Page_103">[Pg 103]</span>
+<img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span> For the sake of comparison the scale in which the
+energy of the different states is indicated is chosen four times as
+small for the spark spectra as for the arc spectra. Consequently the
+vertical lines indicated with various values of <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> correspond for
+the arc spectra to the spectral terms of hydrogen, for the spark
+spectra to the terms of the helium spectrum given by formula (7).
+Comparing the change in the relative firmness in the binding of the
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> and <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit for potassium
+and calcium we see that we must be prepared already for the next
+element, scandium, to find that the <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit will correspond
+to a stronger binding of this electron than a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit. On the
+other hand it follows from previous remarks that the binding will be
+much lighter than for the first <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons which agrees that in
+chemical combinations scandium appears electropositively with three
+valencies.</p>
+
+<p>If we proceed to the following elements, a still larger number of
+<img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbits will occur in the normal state of these atoms, since
+the number of such electron orbits will depend upon the firmness of
+their binding compared to the firmness with which an electron is
+bound in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit, in which type of orbit at least the last
+captured electron in the atom may be assumed to move. We therefore
+meet conditions which are essentially different from those which we
+have considered in connection with the previous periods, so that
+here we have to do with <i>the successive development of one of the
+inner groups of electrons in the atom</i>, in this case with groups
+of electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits. Only when the development
+of this group has been completed may we expect to find once more
+a corresponding change in the properties of the elements with
+increasing atomic number such as we find in the preceding periods. The
+properties of the elements in the latter part of the fourth period
+show immediately that the group, when completed, will possess <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18">
+electrons. Thus in krypton, for example, we may expect besides the
+groups of <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">,</span> <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2"> and <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits a markedly symmetrical
+configuration of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8"> electrons in <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits consisting of
+four <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbits and four <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/238.svg" alt=" " data-tex="4_{2}"> orbits.</p>
+
+<p>The question now arises: In which way will the gradual formation of the
+group of electrons having <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits take place? From analogy
+with the constitution of the groups of electrons with <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta
+orbits we might at first sight be inclined to suppose that the
+<span class="pagenum" id="Page_104">[Pg 104]</span>
+complete group of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits would consist of three subgroups
+of four electrons each in orbits of the types <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/229.svg" alt=" " data-tex="3_{1}">,</span> <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.844ex;" src="images/230.svg" alt=" " data-tex="3_{2}"> and
+<img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> respectively, so that the total number of electrons would
+be <img style="vertical-align: 0; width: 2.262ex; height: 1.507ex;" src="images/231.svg" alt=" " data-tex="12"> instead of <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18">.</span> Further consideration shows, however,
+that such an expectation would not be justified. The stability of the
+configuration of eight electrons with <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits occurring
+in neon must be ascribed not only to the symmetrical configuration of
+the electronic orbits in the two subgroups of <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/214.svg" alt=" " data-tex="2_{1}"> and <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}">
+orbits respectively, but fully as much to the possibility of bringing
+the orbits inside these subgroups into harmonic relation with one
+another. The situation is different, however, for the groups of
+electrons with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits. Three subgroups of four orbits
+each cannot in this case be expected to come into interaction with one
+another in a correspondingly simple manner. On the contrary we must
+assume that the presence of electrons in <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbits will diminish
+the harmony of the orbits within the first two <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta subgroups,
+at any rate when a point is reached where the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron is no
+longer, as was the case with scandium, bound considerably more lightly
+than the previously bound electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits, but has
+been drawn so far into the atom that it revolves within essentially the
+same region of the atom where these electrons move. We shall now assume
+that this decrease in the harmony will so to say "open" the previously
+"closed" configuration of electrons in orbits of these types. As
+regards the final result, the number <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> indicates that after the
+group is finally formed there will be three subgroups containing six
+electrons each. Even if it has not at present been possible to follow
+in detail the various steps in the formation of the group this result
+is nevertheless confirmed in an interesting manner by the fact that
+it is possible to arrange three configurations having six electrons
+each in a simple manner relative to one another. The configuration of
+the subgroups does not exhibit a tetrahedral symmetry like the groups
+of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits in carbon, but a symmetry which, so far as the
+relative orientation of the normals to the planes of the orbits is
+concerned, may be described as trigonal.</p>
+
+<p>In spite of the great difference in the properties of the elements
+of this period, compared with those of the preceding period, the
+completion of the group of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits in
+the fourth period may to a certain extent be said to have the same
+<span class="pagenum" id="Page_105">[Pg 105]</span>
+characteristic results as the completion of the group of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta
+orbits in the second period. As we have seen, this determined not
+only the properties of neon as an inactive gas, but in addition
+the electronegative properties of the preceding elements and the
+electropositive properties of the elements which follow. The fact that
+there is no inactive gas possessing an outer group of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons
+is very easily accounted for by the much larger dimensions which a
+<img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit has in comparison with a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/226.svg" alt=" " data-tex="2_{2}"> orbit revolving
+in the same field of force. On this account a complete <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta
+group cannot occur as the outermost group in a neutral atom, but only
+in positively charged ions. The characteristic decrease in valency
+which we meet in copper, shown by the appearance of the singly charged
+cuprous ions, indicates the same tendency towards the completion of
+a symmetrical configuration of electrons that we found in the marked
+electronegative character of an element like fluorine. Direct evidence
+that a complete group of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits is present in the cuprous
+ion is given by the spectrum of copper which, in contrast to the
+extremely complicated spectra of the preceding elements resulting from
+the unsymmetrical character of the inner system, possesses a simple
+structure very much like that of the sodium spectrum. This may no doubt
+be ascribed to a simple symmetrical structure present in the cuprous
+ion similar to that in the sodium ion, although the great difference
+in the constitution of the outer group of electrons in these ions is
+shown both by the considerable difference in the values of the spectral
+terms and in the separation of the doublets in the <img style="vertical-align: 0; width: 1.699ex; height: 1.545ex;" src="images/151.svg" alt=" " data-tex="P"> terms of the
+two spectra. The occurrence of the cupric compounds shows, however,
+that the firmness of binding in the group of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits in the
+copper atom is not as great as the firmness with which the electrons
+are bound in the group of <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta orbits in the sodium atom. Zinc,
+which is always divalent, is the first element in which the groups
+of the electrons are so firmly bound that they cannot be removed by
+ordinary chemical processes.</p>
+
+<p>The picture I have given of the formation and structure of the
+atoms of the elements in the fourth period gives an explanation of
+the chemical and spectral properties. In addition it is supported
+by evidence of a different nature to that which we have hitherto
+<span class="pagenum" id="Page_106">[Pg 106]</span>
+used. It is a familiar fact, that the elements in the fourth period
+differ markedly from the elements in the preceding periods partly in
+their <i>magnetic properties</i> and partly in the <i>characteristic
+colours</i> of their compounds. Paramagnetism and colours do occur
+in elements belonging to the foregoing periods, but not in simple
+compounds where the atoms considered enter as ions. Many elements of
+the fourth period, on the contrary, exhibit paramagnetic properties
+and characteristic colours even in dissociated aqueous solutions. The
+importance of this has been emphasized by Ladenburg in his attempt
+to explain the properties of the elements in the long periods of the
+periodic system (see p. 73). Langmuir in order to account for the
+difference between the fourth period and the preceding periods simply
+assumed that the atom, in addition to the layers of cells containing
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8"> electrons each, possesses an outer layer of cells with room for
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons which is completely filled for the first time in the
+case of krypton. Ladenburg, on the other hand, assumes that for some
+reason or other an intermediate layer is developed between the inner
+electronic configuration in the atom appearing already in argon, and
+the external group of valency electrons. This layer commences with
+scandium and is completed exactly at the end of the family of iron
+metals. In support of this assumption Ladenburg not only mentions the
+chemical properties of the elements in the fourth period, but also
+refers to the paramagnetism and colours which occur exactly in the
+elements, where this intermediate layer should be in development. It is
+seen that Ladenburg's ideas exhibit certain formal similarities with
+the interpretation I have given above of the appearance of the fourth
+period, and it is interesting to note that our view, based on a direct
+investigation of the conditions for the formation of the atoms, enables
+us to understand the relation emphasized by Ladenburg.</p>
+
+<p>Our ordinary electrodynamic conceptions are probably insufficient to
+form a basis for an explanation of atomic magnetism. This is hardly to
+be wondered at when we remember that they have not proved adequate to
+account for the phenomena of radiation which are connected with the
+intimate interaction between the electric and magnetic forces arising
+from the motion of the electrons. In whatever way these difficulties
+may be solved it seems simplest to assume that the occurrence of
+<span class="pagenum" id="Page_107">[Pg 107]</span>
+magnetism, such as we meet in the elements of the fourth period,
+results from a lack of symmetry in the internal structure of the
+atom, thus preventing the magnetic forces arising from the motion of
+the electrons from forming a system of closed lines of force running
+wholly within the atom. While it has been assumed that the ions of the
+elements in the previous periods, whether positively or negatively
+charged, contain configurations of marked symmetrical character, we
+must, however, be prepared to encounter a definite lack of symmetry
+in the electronic configurations in ions of those elements within
+the fourth period which contain a group of electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta
+orbits in the transition stage between symmetrical configurations of
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8"> and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons respectively. As pointed out by Kossel,
+the experimental results exhibit an extreme simplicity, the magnetic
+moment of the ions depending only on the number of electrons in the
+ion. Ferric ions, for example, exhibit the same atomic magnetism as
+manganous ions, while manganic ions exhibit the same atomic magnetism
+as chromous ions. It is in beautiful agreement with what we have
+assumed about the structure of the atoms of copper and zinc, that
+the magnetism disappears with those ions containing <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/239.svg" alt=" " data-tex="28"> electrons
+which, as I stated, must be assumed to contain a complete group of
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits. On the whole a consideration of the magnetic
+properties of the elements within the fourth period gives us a
+vivid impression of how a wound in the otherwise symmetrical inner
+structure is first developed and then healed as we pass from element
+to element. It is to be hoped that a further investigation of the
+magnetic properties will give us a clue to the way in which the group
+of electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits is developed step by step.</p>
+
+<p>Also the colours of the ions directly support our view of atomic
+structure. According to the postulates of the quantum theory absorption
+as well as emission of radiation is regarded as taking place during
+transitions between stationary states. The occurrence of colours,
+that is to say the absorption of light in the visible region of the
+spectrum, is evidence of transitions involving energy changes of the
+same order of magnitude as those giving the usual optical spectra of
+the elements. In contrast to the ions of the elements of the preceding
+periods where all the electrons are assumed to be very firmly bound,
+the occurrence of such processes in the fourth period is exactly what
+<span class="pagenum" id="Page_108">[Pg 108]</span>
+we should expect. For the development and completion of the electronic
+groups with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits will proceed, so to say, in competition
+with the binding of electrons in orbits of higher quanta, since the
+binding of electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits occurs when the electrons
+in these orbits are bound more firmly than electrons in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}">
+orbits. The development of the group will therefore proceed to the
+point where we may say there is equilibrium between the two kinds of
+orbits. This condition may be assumed to be intimately connected not
+only with the colour of the ions, but also with the tendency of the
+elements to form ions with different valencies. This is in contrast
+to the elements of the first periods where the charge of the ions in
+aqueous solutions is always the same for one and the same element.</p>
+
+<p class="space-above2">
+<b>Fifth Period. Rubidium—Xenon.</b> The structure of the atoms in
+the remaining periods may be followed up in complete analogy with
+what has already been said. Thus we shall assume that the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/240.svg" alt=" " data-tex="37">th
+and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/241.svg" alt=" " data-tex="38">th electrons in the elements of the fifth period are bound
+in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/242.svg" alt=" " data-tex="5_{1}"> orbits. This is supported by the measurements of the arc
+spectrum of rubidium and the spark spectrum of strontium. The latter
+spectrum indicates at the same time that <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.906ex;" src="images/243.svg" alt=" " data-tex="4_{3}"> orbits will soon
+appear, and therefore in this period, which like the <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">th contains
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> elements, we must assume that we are witnessing a <i>further
+stage in the development of the electronic group of <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta
+orbits</i>. The first stage in the formation of this group may be said
+to have been attained in krypton with the appearance of a symmetrical
+configuration of eight electrons consisting of two subgroups each of
+four electrons in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> and <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/238.svg" alt=" " data-tex="4_{2}"> orbits. A second preliminary
+completion must be regarded as having been reached with the appearance
+of a symmetrical configuration of <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons in the case of
+silver, consisting of three subgroups with six electrons each in orbits
+of the types <span class="nowrap"><img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}">,</span> <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/238.svg" alt=" " data-tex="4_{2}"> and <span class="nowrap"><img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.906ex;" src="images/243.svg" alt=" " data-tex="4_{3}">.</span> Everything that has
+been said about the successive formation of the group of electrons
+with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits applies unchanged to this stage in the
+transformation of the group with <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits. For in no case
+have we made use of the absolute values of the quantum numbers nor of
+assumptions concerning the form of the orbits but only of the number of
+possible types of orbits which might come into consideration. At the
+<span class="pagenum" id="Page_109">[Pg 109]</span>
+same time it may be of interest to mention that the properties of these
+elements compared with those of the foregoing period nevertheless show
+a difference corresponding exactly to what would be expected from the
+difference in the types of orbits. For instance, the divergencies from
+the characteristic valency conditions of the elements in the second and
+third periods appear later in the fifth period than for elements in
+the fourth period. While an element like titanium in the fourth period
+already shows a marked tendency to occur with various valencies, on the
+other hand an element like zirconium is still quadri-valent like carbon
+in the second period and silicon in the third. A simple investigation
+of the kinematic properties of the orbits of the electrons shows in
+fact that an electron in an eccentric <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.906ex;" src="images/243.svg" alt=" " data-tex="4_{3}"> orbit of an element
+in the fifth period will be considerably more loosely bound than an
+electron in a circular <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}"> orbit of the corresponding element in
+the fourth period, while electrons which are bound in eccentric orbits
+of the types <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/242.svg" alt=" " data-tex="5_{1}"> and <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> respectively will correspond to a
+binding of about the same firmness.</p>
+
+<p>At the end of the fifth period we may assume that xenon, the atomic
+number of which is <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.581ex;" src="images/244.svg" alt=" " data-tex="54">,</span> has a structure which in addition to the
+two <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum, eight <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta, eighteen <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta and
+eighteen <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits already mentioned contains a symmetrical
+configuration of eight electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">-quanta orbits consisting
+of two subgroups with four electrons each in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/242.svg" alt=" " data-tex="5_{1}"> and <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/245.svg" alt=" " data-tex="5_{2}">
+orbits respectively.</p>
+
+<p class="space-above2">
+<b>Sixth Period. Caesium—Niton.</b> If we now consider the atoms of
+elements of still higher atomic number, we must first of all assume
+that the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/246.svg" alt=" " data-tex="55">th and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/247.svg" alt=" " data-tex="56">th electrons in the atoms of caesium and
+barium are bound in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/248.svg" alt=" " data-tex="6_{1}"> orbits. This is confirmed by the spectra
+of these elements. It is clear, however, that we must be prepared
+shortly to meet entirely new conditions. With increasing nuclear charge
+we shall have to expect not only that an electron in a <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.881ex;" src="images/249.svg" alt=" " data-tex="5_{3}">
+orbit will be bound more firmly than in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/248.svg" alt=" " data-tex="6_{1}"> orbit, but we
+must also expect that a moment will arrive when during the formation
+of the atom a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/250.svg" alt=" " data-tex="4_{4}"> orbit will represent a firmer binding of the
+electron than an orbit of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5"> or <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">-quanta, in much the same way
+as in the elements of the fourth period a new stage in the development
+of the <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta group was started when a point was reached where
+<span class="pagenum" id="Page_110">[Pg 110]</span>
+for the first time the <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/199.svg" alt=" " data-tex="19">th electron was bound in a <img style="vertical-align: -0.375ex; width: 2.119ex; height: 1.879ex;" src="images/237.svg" alt=" " data-tex="3_{3}">
+orbit instead of in a <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/235.svg" alt=" " data-tex="4_{1}"> orbit. We shall thus expect in the
+sixth period to meet with a new stage in the development of the group
+with <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits. Once this point has been reached we must be
+prepared to find with increasing atomic number a number of elements
+following one another, which as in the family of the iron metals have
+very nearly the same properties. The similarity will, however, be
+still more pronounced, since in this case we are concerned with the
+successive transformation of a configuration of electrons which lies
+deeper in the interior of the atom. You will have already guessed that
+what I have in view is a simple explanation of the occurrence of the
+<i>family of rare earths</i> at the beginning of the sixth period.
+As in the case of the transformation and completion of the group of
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits in the fourth period and the partial completion of
+groups of <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits in the fifth period, we may immediately
+deduce from the length of the sixth period the number of electrons,
+namely <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/251.svg" alt=" " data-tex="32">,</span> which are finally contained in the <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta group
+of orbits. Analogous to what applied to the group of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta
+orbits it is probable that, when the group is completed, it will
+contain eight electrons in each of the four subgroups. Even though it
+has not yet been possible to follow the development of the group step
+by step, we can even here give some theoretical evidence in favour of
+the occurrence of a symmetrical configuration of exactly this number
+of electrons. I shall simply mention that it is not possible without
+coincidence of the planes of the orbits to arrive at an interaction
+between four subgroups of six electrons each in a configuration of
+simple trigonal symmetry, which is equally simple as that shown by
+three subgroups. The difficulties which we meet make it probable that
+a harmonic interaction can be attained precisely by four groups each
+containing eight electrons the orbital configurations of which exhibit
+axial symmetry.</p>
+
+<p>Just as in the case of the family of the iron metals in the fourth
+period, the proposed explanation of the occurrence of the family of
+rare earths in the sixth period is supported in an interesting manner
+by an investigation of the magnetic properties of these elements. In
+spite of the great chemical similarity the members of this family
+exhibit very different magnetic properties, so that while some of them
+exhibit but very little magnetism others exhibit a greater magnetic
+<span class="pagenum" id="Page_111">[Pg 111]</span>
+moment per atom than any other element which has been investigated.
+It is also possible to give a simple interpretation of the peculiar
+colours exhibited by the compounds of these elements in much the same
+way as in the case of the family of iron metals in the fourth period.
+The idea that the appearance of the group of the rare earths is
+connected with the development of inner groups in the atom is not in
+itself new and has for instance been considered by Vegard in connection
+with his work on X-ray spectra. The new feature of the present
+considerations lies, however, in the emphasis laid on the peculiar
+way in which the relative strength of the binding for two orbits of
+the same principal quantum number but of different shapes varies with
+the nuclear charge and with the number of electrons previously bound.
+Due to this fact the presence of a group like that of the rare earths
+in the sixth period may be considered as a direct consequence of the
+theory and might actually have been predicted on a quantum theory,
+adapted to the explanation of the properties of the elements within the
+preceding periods in the way I have shown.</p>
+
+<p>Besides <i>the final development of the group of <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta
+orbits</i> we observe in the sixth period in the family of the
+platinum metals <i>the second stage in the development of the group
+of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">-quanta orbits</i>. Also in the radioactive, chemically
+inactive gas niton, which completes this period, we observe the first
+preliminary step in the development of a group of electrons with
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">-quanta orbits. In the atom of this element, in addition to the
+groups of electrons of two <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum, eight <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">-quanta, eighteen
+<img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta, thirty-two <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta and eighteen <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">-quanta orbits
+respectively, there is also an outer symmetrical configuration of eight
+electrons in <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">-quanta orbits, which we shall assume to consist
+of two subgroups with four electrons each in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/248.svg" alt=" " data-tex="6_{1}"> and <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/252.svg" alt=" " data-tex="6_{2}">
+orbits respectively.</p>
+
+<p class="space-above2">
+<b>Seventh Period.</b> In the seventh and last period of the periodic
+system we may expect the appearance of <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.579ex;" src="images/223.svg" alt=" " data-tex="7">-quanta orbits in the
+normal state of the atom. Thus in the neutral atom of radium in
+addition to the electronic structure of niton there will be two
+electrons in <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.869ex;" src="images/253.svg" alt=" " data-tex="7_{1}"> orbits which will penetrate during their
+revolution not only into the region of the orbits of electrons
+possessing lower values for the principal quantum number, but even
+<span class="pagenum" id="Page_112">[Pg 112]</span>
+to distances from the nucleus which are less than the radii of the
+orbits of the innermost <img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/103.svg" alt=" " data-tex="1">-quantum orbits. The properties of the
+elements in the seventh period are very similar to the properties of
+the elements in the fifth period. Thus, in contrast to the conditions
+in the sixth period, there are no elements whose properties resemble
+one another like those of the rare earths. In exact analogy with what
+has already been said about the relations between the properties of
+the elements in the fourth and fifth periods this may be very simply
+explained by the fact that an eccentric <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/254.svg" alt=" " data-tex="5_{4}"> orbit will correspond
+to a considerably looser binding of an electron in the atom of an
+element of the seventh period than the binding of an electron in a
+circular <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.871ex;" src="images/250.svg" alt=" " data-tex="4_{4}"> orbit in the corresponding element of the sixth
+period, while there will be a much smaller difference in the firmness
+of the binding of these electrons in orbits of the types <img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.869ex;" src="images/253.svg" alt=" " data-tex="7_{1}"> and
+<img style="vertical-align: -0.339ex; width: 2.119ex; height: 1.846ex;" src="images/248.svg" alt=" " data-tex="6_{1}"> respectively.</p>
+
+<p>It is well known that the seventh period is not complete, for no atom
+has been found having an atomic number greater than <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/255.svg" alt=" " data-tex="92">.</span> This is
+probably connected with the fact that the last elements in the system
+are radioactive and that nuclei of atoms with a total charge greater
+than <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/255.svg" alt=" " data-tex="92"> will not be sufficiently stable to exist under conditions
+where the elements can be observed. It is tempting to sketch a picture
+of the atoms formed by the capture and binding of electrons around
+nuclei having higher charges, and thus to obtain some idea of the
+properties which the corresponding hypothetical elements might be
+expected to exhibit. I shall not develop this matter further, however,
+since the general results we should get will be evident to you from
+the views I have developed to explain the properties of the elements
+actually observed. A survey of these results is given in the following
+table, which gives a symbolical representation of the atomic structure
+of the inactive gases which complete the first six periods in the
+periodic system. In order to emphasize the progressive change the table
+includes the probable arrangement of electrons in the next atom which
+would possess properties like the inactive gases.</p>
+
+<p>The view of atomic constitution underlying this table, which involves
+configurations of electrons moving with large velocities between each
+other, so that the electrons in the "outer" groups penetrate into the
+region of the orbits of the electrons of the "inner" groups, is of
+course completely different from such statical models of the atom as
+<span class="pagenum" id="Page_113">[Pg 113]</span>
+are proposed by Langmuir. But quite apart from this it will be seen
+that the arrangement of the electronic groups in the atom, to which
+we have been lead by tracing the way in which each single electron
+has been bound, is essentially different from the arrangement of the
+groups in Langmuir's theory. In order to explain the properties of the
+elements of the sixth period Langmuir assumes for instance that, in
+addition to the inner layers of cells containing <span class="nowrap"><img style="vertical-align: 0; width: 1.131ex; height: 1.507ex;" src="images/220.svg" alt=" " data-tex="2">,</span> <span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8">,</span> <span class="nowrap"><img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/202.svg" alt=" " data-tex="8">,</span>
+<img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> and <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/197.svg" alt=" " data-tex="18"> electrons respectively, which are employed to account
+for the properties of the elements in the earlier periods, the atom
+also possesses a layer of cells with room for <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.557ex;" src="images/251.svg" alt=" " data-tex="32"> electrons which is
+just completed in the case of niton.</p>
+
+<div class="figcenter">
+<img src="images/006.jpg" width="400" alt="fig06">
+</div>
+
+<p>In this connection it may be of interest to mention a recent paper
+by Bury, to which my attention was first drawn after the deliverance
+of this address, and which contains an interesting survey of the
+chemical properties of the elements based on similar conceptions of
+atomic structure as those applied by Lewis and Langmuir. From purely
+chemical considerations Bury arrives at conclusions which as regards
+the arrangement and completion of the groups in the main coincide with
+those of the present theory, the outlines of which were given in my
+letters to Nature mentioned in the introduction.</p>
+<p><span class="pagenum" id="Page_114">[Pg 114]</span></p>
+
+<p class="space-above2">
+<b>Survey of the periodic table.</b> The results given in this
+address are also illustrated by means of the representation of the
+periodic system given in <a href="#Page_70">Fig. 1</a>. In this figure the frames are meant
+to indicate such elements in which one of the "inner" groups is in a
+stage of development. Thus there will be found in the fourth and
+fifth periods a single frame indicating the final completion of the
+electronic group with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.554ex;" src="images/133.svg" alt=" " data-tex="3">-quanta orbits, and the last stage but one
+in the development of the group with <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits respectively.
+In the sixth period it has been necessary to introduce two frames, of
+which the inner one indicates the last stage of the evolution of the
+group with <img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits, giving rise to the rare earths. This
+occurs at a place in the periodic system where the third stage in the
+development of an electronic group with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">-quanta orbits, indicated
+by the outer frame, has already begun. In this connection it will be
+seen that the inner frame encloses a smaller number of elements than
+is usually attributed to the family of the rare earths. At the end of
+this group an uncertainty exists, due to the fact that no element of
+atomic number <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/256.svg" alt=" " data-tex="72"> is known with certainty. However, as indicated
+in <a href="#Page_70">Fig. 1</a>, we must conclude from the theory that the group with
+<img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits is finally completed in lutetium (<span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/257.svg" alt=" " data-tex="71">)</span>. This
+element therefore ought to be the last in the sequence of consecutive
+elements with similar properties in the first half of the sixth
+period, and at the place <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/256.svg" alt=" " data-tex="72"> an element must be expected which in
+its chemical and physical properties is homologous with zirconium
+and thorium. This, which is already indited on Julius Thomsen's old
+table, has also been pointed out by Bury. [Quite recently Dauvillier
+has in an investigation of the X-ray spectrum excited in preparations
+containing rare earths, observed certain faint lines which he ascribes
+to an element of atomic number <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/256.svg" alt=" " data-tex="72">.</span> This element is identified by
+him as the element celtium, belonging to the family of rare earths, the
+existence of which had previously been suspected by Urbain. Quite apart
+from the difficulties which this result, if correct, might entail for
+atomic theories, it would, since the rare earths according to chemical
+view possess three valencies, imply a rise in positive valency of two
+units when passing from the element <img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/256.svg" alt=" " data-tex="72"> to the next element <span class="nowrap"><img style="vertical-align: -0.05ex; width: 2.262ex; height: 1.579ex;" src="images/258.svg" alt=" " data-tex="73">,</span>
+tantalum. This would mean an exception from the otherwise general rule,
+that the valency never increases by more than one unit when passing
+from one element to the next in the periodic table.] In the case of
+the incomplete seventh period the full drawn frame indicates the third
+stage in the development of the electronic group with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/222.svg" alt=" " data-tex="6">-quanta
+<span class="pagenum" id="Page_115">[Pg 115]</span>
+orbits, which must begin in actinium. The dotted frame indicates the
+last stage but one in the development of the group with <img style="vertical-align: -0.05ex; width: 1.131ex; height: 1.557ex;" src="images/221.svg" alt=" " data-tex="5">-quanta
+orbits, which hitherto has not been observed, but which ought to begin
+shortly after uranium, if it has not already begun in this element.</p>
+
+<p>With reference to the homology of the elements the exceptional position
+of the elements enclosed by frames in <a href="#Page_70">Fig. 1</a> is further emphasized
+by taking care that, in spite of the large similarity many elements
+exhibit, no connecting lines are drawn between two elements which
+occupy different positions in the system with respect to framing.
+In fact, the large chemical similarity between, for instance,
+aluminium and scandium, both of which are trivalent and pronounced
+electropositive elements, is directly or indirectly emphasized in the
+current representations of the periodic table. While this procedure
+is justified by the analogous structure of the trivalent ions of
+these elements, our more detailed ideas of atomic structure suggest,
+however, marked differences in the physical properties of aluminium
+and scandium, originating in the essentially different character of
+the way in which the last three electrons in the neutral atom are
+bound. This fact gives probably a direct explanation of the marked
+difference existing between the spectra of aluminium and scandium.
+Even if the spectrum of scandium is not yet sufficiently cleared up,
+this difference seems to be of a much more fundamental character than
+for instance the difference between the arc spectra of sodium and
+copper, which apart from the large difference in the absolute values
+of the spectral terms possess a completely analogous structure, as
+previously mentioned in this essay. On the whole we must expect that
+the spectra of elements in the later periods lying inside a frame will
+show new features compared with the spectra of the elements in the
+first three periods. This expectation seems supported by recent work on
+the spectrum of manganese by Catalan, which appeared just before the
+printing of this essay.</p>
+
+<p>Before I leave the interpretation of the chemical properties by means
+of this atomic model I should like to remind you once again of the
+fundamental principles which we have used. The whole theory has evolved
+from an investigation of the way in which electrons can be captured by
+an atom. The formation of an atom was held to consist in the successive
+binding of electrons, this binding resulting in radiation according
+to the quantum theory. According to the fundamental postulates of
+<span class="pagenum" id="Page_116">[Pg 116]</span>
+the theory this binding takes place in stages by transitions between
+stationary states accompanied by emission of radiation. For the problem
+of the stability of the atom the essential problem is at what stage
+such a process comes to an end. As regards this point the postulates
+give no direct information, but here the correspondence principle is
+brought in. Even though it has been possible to penetrate considerably
+further at many points than the time has permitted me to indicate
+to you, still it has not yet been possible to follow in detail all
+stages in the formation of the atoms. We cannot say, for instance,
+that the above table of the atomic constitution of the inert gases may
+in every detail be considered as the unambiguous result of applying
+the correspondence principle. On the other hand it appears that our
+considerations already place the empirical data in a light which
+scarcely permits of an essentially different interpretation of the
+properties of the elements based upon the postulates of the quantum
+theory. This applies not only to the series spectra and the close
+relationship of these to the chemical properties of the elements, but
+also to the X-ray spectra, the consideration of which leads us into
+an investigation of interatomic processes of an entirely different
+character. As we have already mentioned, it is necessary to assume that
+the emission of the latter spectra is connected with processes which
+may be described as a reorganization of the completely formed atom
+after a disturbance produced in the interior of the atom by the action
+of external forces.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="IV_REORGANIZATION_OF_ATOMS_AND_X-RAY_SPECTRA">
+IV. REORGANIZATION OF ATOMS AND X-RAY SPECTRA</h2>
+</div>
+
+
+<p>As in the case of the series spectra it has also been possible to
+represent the frequency of each line in the X-ray spectrum of an
+element as the difference of two of a set of spectral terms. We shall
+therefore assume that each X-ray line is due to a transition between
+two stationary states of the atom. The values of the atomic energy
+corresponding to these states are frequently referred to as the "energy
+levels" of the X-ray spectra. The great difference between the origin
+of the X-ray and the series spectra is clearly seen, however, in
+the difference of the laws applying to the absorption of radiation
+in the X-ray and the optical regions of the spectra. The absorption
+by non-excited atoms in the latter case is connected with those
+<span class="pagenum" id="Page_117">[Pg 117]</span>
+lines in the series spectrum which correspond to combinations of the
+various spectral terms with the largest of these terms. As has been
+shown, especially by the investigations of Wagner and de Broglie, the
+absorption in the X-ray region, on the other hand, is connected not
+with the X-ray lines but with certain spectral regions commencing
+at the so-called "absorption edges." The frequencies of these edges
+agree very closely with the spectral terms used to account for the
+X-ray lines. We shall now see how the conception of atomic structure
+developed in the preceding pages offers a simple interpretation of
+these facts. Let us consider the following question: What changes in
+the state of the atom can be produced by the absorption of radiation,
+and which processes of emission can be initiated by such changes?</p>
+
+<p class="space-above2">
+<b>Absorption and emission of X-rays and correspondence principle.</b>
+The possibility of producing a change at all in the motion of an
+electron in the interior of an atom by means of radiation must in the
+first place be regarded as intimately connected with the character of
+the interaction between the electrons within the separate groups. In
+contrast to the forms of motion where at every moment the position of
+the electrons exhibits polygonal or polyhedral symmetry, the conception
+of this interaction evolved from a consideration of the possible
+formation of atoms by successive binding of electrons has such a
+character that the harmonic components in the motion of an electron are
+in general represented in the resulting electric moment of the atom. As
+a result of this it will be possible to release a single electron from
+the interaction with the other electrons in the same group by a process
+which possesses the necessary analogy with an absorption process
+on the ordinary electrodynamic view claimed by the correspondence
+principle. The points of view on which we based the interpretation of
+the development and completion of the groups during the formation of
+an atom imply, on the other hand, that just as no additional electron
+can be taken up into a previously completed group in the atom by a
+change involving emission of radiation, similarly it will not be
+possible for a new electron to be added to such a group, when the state
+of the atom is changed by absorption of radiation. This means that
+an electron which belongs to one of the inner groups of the atom,
+<span class="pagenum" id="Page_118">[Pg 118]</span>
+as a consequence of an absorption process—besides the case where it
+leaves the atom completely—can only go over either to an incompleted
+group, or to an orbit where the electron during the greater part of its
+revolution moves at a distance from the nucleus large compared to the
+distance of the other electrons. On account of the peculiar conditions
+of stability which control the occurrence of incomplete groups in the
+interior of the atom, the energy which is necessary to bring about a
+transition to such a group will in general differ very little from
+that required to remove the particular electron completely from the
+atom. We must therefore assume that the energy levels corresponding to
+the absorption edges indicate to a first approximation the amount of
+work that is required to remove an electron in one of the inner groups
+completely from the atom. The correspondence principle also provides a
+basis for understanding the experimental evidence about the appearance
+of the emission lines of the X-ray spectra due to transitions between
+the stationary states corresponding to these energy levels. Thus the
+nature of the interaction between the electrons in the groups of the
+atom implies that each electron in the atom is so to say prepared,
+independently of the other electrons in the same group, to seize any
+opportunity which is offered to become more firmly bound by being taken
+up into a group of electrons with orbits corresponding to smaller
+values of the principal quantum number. It is evident, however, that
+on the basis of our views of atomic structure, such an opportunity is
+always at hand as soon as an electron has been removed from one of
+these groups.</p>
+
+<p>At the same time that our view of the atom leads to a natural
+conception of the phenomena of emission and absorption of X-rays,
+agreeing closely with that by which Kossel has attempted to give a
+formal explanation of the experimental observations, it also suggests
+a simple explanation of those quantitative relations holding for
+the frequencies of the lines which have been discovered by Moseley
+and Sommerfeld. These researches brought to light a remarkable and
+far-reaching similarity between the Röntgen spectrum of a given
+element and the spectrum which would be expected to appear upon
+the binding of a single electron by the nucleus. This similarity
+we immediately understand if we recall that in the normal state of
+the atom there are electrons moving in orbits which, with certain
+<span class="pagenum" id="Page_119">[Pg 119]</span>
+limitations, correspond to all stages of such a binding process and
+that, when an electron is removed from its original place in the atom,
+processes may be started within the atom which will correspond to
+all transitions between these stages permitted by the correspondence
+principle. This brings us at once out of those difficulties which
+apparently arise, when one attempts to account for the origin of the
+X-ray spectra by means of an atomic structure, suited to explain the
+periodic system. This difficulty has been felt to such an extent that
+it has led Sommerfeld for example in his recent work to assume that
+the configurations of the electrons in the various atoms of one and
+the same element may be different even under usual conditions. Since,
+in contrast to our ideas, he supposed all electrons in the principal
+groups of the atom to move in equivalent orbits, he is compelled
+to assume that these groups are different in the different atoms,
+corresponding to different possible types of orbital shapes. Such an
+assumption, however, seems inconsistent with an interpretation of the
+definite character of the physical and chemical properties of the
+elements, and stands in marked contradiction with the points of view
+about the stability of the atoms which form the basis of the view of
+atomic structure here proposed.</p>
+
+<p class="space-above2">
+<b>X-ray spectra and atomic structure.</b> In this connection it is of
+interest to emphasize that the group distribution of the electrons in
+the atom, on which we have based both the explanation of the periodic
+system and the classification of the lines in the X-ray spectra, shows
+itself in an entirely different manner in these two phenomena. While
+the characteristic change of the chemical properties with atomic
+number is due to the gradual development and completion of the groups
+of the loosest bound electrons, the characteristic absence of almost
+every trace of a periodic change in the X-ray spectra is due to two
+causes. Firstly the electronic configuration of the completed groups
+is repeated unchanged for increasing atomic number, and secondly the
+gradual way in which the incompleted groups are developed implies that
+a type of orbit, from the moment when it for the first time appears in
+the normal state of the neutral atom, always will occur in this state
+<span class="pagenum" id="Page_120">[Pg 120]</span>
+and will correspond to a steadily increasing firmness of binding. The
+development of the groups in the atom with increasing atomic number,
+which governs the chemical properties of the elements shows itself in
+the X-ray spectra mainly in the appearance of new lines. Swinne has
+already referred to a connection of this kind between the periodic
+system and the X-ray spectra in connection with Kossel's theory. We
+can only expect a closer connection between the X-ray phenomena and
+the chemical properties of the elements, when the conditions on the
+surface of the atom are concerned. In agreement with what has been
+brought to light by investigations on absorption of X-rays in elements
+of lower atomic number, such as have been performed in recent years
+in the physical laboratory at Lund, we understand immediately that
+the position and eventual structure of the absorption edges will to a
+certain degree depend upon the physical and chemical conditions under
+which the element investigated exists, while such a dependence does not
+appear in the characteristic emission lines.</p>
+
+<p>If we attempt to obtain a more detailed explanation of the experimental
+observations, we meet the question of the influence of the presence of
+the other electrons in the atom upon the firmness of the binding of an
+electron in a given type of orbit. This influence will, as we at once
+see, be least for the inner parts of the atom, where for each electron
+the attraction of the nucleus is large in proportion to the repulsion
+of the other electrons. It should also be recalled, that while the
+relative influence of the presence of the other electrons upon the
+firmness of the binding will decrease with increasing charge of the
+nucleus, the effect of the variation in the mass of the electron with
+the velocity upon the firmness of the binding will increase strongly.
+This may be seen from Sommerfeld's formula (11). While we obtain a
+fairly good agreement for the levels corresponding to the removal of
+one of the innermost electrons in the atom by using the simple formula
+(11), it is, however, already necessary to take the influence of the
+other electrons into consideration in making an approximate calculation
+of the levels corresponding to a removal of an electron from one of the
+outer groups in the atom. Just this circumstance offers us, however,
+a possibility of obtaining information about the configurations of
+the electrons in the interior of the atoms from the X-ray spectra.
+Numerous investigations have been directed at this question both by
+<span class="pagenum" id="Page_121">[Pg 121]</span>
+Sommerfeld and his pupils and by Debye, Vegard and others. It may also
+be remarked that de Broglie and Dauvillier in a recent paper have
+thought it possible to find support in the experimental material for
+certain assumptions about the numbers of electrons in the groups of
+the atom to which Dauvillier had been led by considerations about the
+periodic system similar to those proposed by Langmuir and Ladenburg.
+In calculations made in connection with these investigations it is
+assumed that the electrons in the various groups move in separate
+concentric regions of the atom, so that the effect of the presence
+of the electrons in inner groups upon the motion of the electrons in
+outer groups as a first approximation may be expected to consist in a
+simple screening of the nucleus. On our view, however, the conditions
+are essentially different, since for the calculation of the firmness of
+the binding of the electrons it is necessary to take into consideration
+that the electrons in the more lightly bound groups in general during
+a certain fraction of their revolution will penetrate into the region
+of the orbits of electrons in the more firmly bound groups. On account
+of this fact, many examples of which we saw in the series spectra, we
+cannot expect to give an account of the firmness of the binding of
+the separate electrons, simply by means of a "screening correction"
+consisting in the subtraction of a constant quantity from the value for
+<img style="vertical-align: 0; width: 2.009ex; height: 1.545ex;" src="images/194.svg" alt=" " data-tex="N"> in such formulae as (5) and (11). Furthermore in the calculation
+of the work corresponding to the energy levels we must take account not
+only of the interaction between, the electrons in the normal state of
+the atom, but also of the changes in the configuration and interaction
+of the remaining electrons, which establish themselves automatically
+without emission of radiation during the removal of the electron.
+Even though such calculations have not yet been made very accurately,
+a preliminary investigation has already shown that it is possible
+approximately to account for the experimental results.</p>
+
+<p class="space-above2">
+<b>Classification of X-ray spectra.</b> Independently of a definite
+view of atomic structure it has been possible by means of a formal
+application of Kossel's and Sommerfeld's theories to disentangle the
+large amount of experimental material on X-ray spectra. This material
+is drawn mainly from the accurate measurements of Siegbahn and
+<span class="pagenum" id="Page_122">[Pg 122]</span>
+his collaborators. From this disentanglement of the experimental
+observations, in which besides Sommerfeld and his students especially
+Smekal and Coster have taken part, we have obtained a nearly complete
+classification of the energy levels corresponding to the X-ray spectra.
+These levels are formally referred to types of orbits characterized
+by two quantum numbers <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> and certain definite rules
+for the possibilities of combination between the various levels have
+also been found. In this way a number of results of great interest for
+the further elucidation of the origin of the X-ray spectra have been
+attained. First it has not only been possible to find levels, which
+within certain limits correspond to all possible pairs of numbers
+for <img style="vertical-align: -0.025ex; width: 1.357ex; height: 1.025ex;" src="images/67.svg" alt=" " data-tex="n"> and <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">,</span> but it has been found that in general to each
+such pair more than one level must be assigned. This result, which
+at first may appear very surprising, upon further consideration can
+be given a simple interpretation. We must remember that the levels
+depend not only upon the constitution of the atom in the normal state,
+but also upon the configurations which appear after the removal of
+one of the inner electrons and which in contrast to the normal state
+do not possess a uniquely completed character. If we thus consider a
+process in which one of the electrons in a group (subgroup) is removed
+we must be prepared to find that after the process the orbits of the
+remaining electrons in this group may be orientated in more than
+one way in relation to one another, and still fulfil the conditions
+required of the stationary states by the quantum theory. Such a view
+of the "complexity" of the levels, as further consideration shows,
+just accounts for the manner in which the energy difference of the two
+levels varies with the atomic number. Without attempting to develop a
+more detailed picture of atomic structure, Smekal has already discussed
+the possibility of accounting for the multiplicity of levels. Besides
+referring to the possibility that the separate electrons in the
+principal groups do not move in equivalent orbits, Smekal suggests
+the introduction of three quantum numbers for the description of the
+various groups, but does not further indicate to what extent these
+quantum numbers shall be regarded as characterizing a complexity in the
+structure of the groups in the normal state itself or on the contrary
+characterizing the incompleted groups which appear when an electron is
+removed.
+<span class="pagenum" id="Page_123">[Pg 123]</span>
+</p>
+
+<p>It will be seen that the complexity of the X-ray levels exhibits a
+close analogy with the explanation of the complexity of the terms of
+the series spectra. There exists, however, this difference between the
+complex structure of the X-ray spectra and the complex structure of the
+lines in the series spectra, that in the X-ray spectra there occur not
+only combinations between spectral terms, for which <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> varies by
+unity, but also between terms corresponding to the same value of <span class="nowrap"><img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k">.</span></p>
+
+<div class="figcenter">
+<img src="images/007.jpg" width="400" alt="fig07">
+<div class="caption">
+<p>Fig. 5.</p>
+</div></div>
+
+<p>This may be assumed to be due to the fact, that in the X-ray spectra in
+contrast to the series spectra we have to do with transitions between
+stationary states where, both before and after the transition, the
+electron concerned takes part in an intimate interaction with other
+electrons in orbits with the same principal quantum number. Even
+though this interaction may be assumed to be of such a nature that the
+harmonic components which would appear in the motion of an electron in
+the absence of the others will in general also appear in the resulting
+moment of the atom, we must expect that the interaction between the
+electrons will give rise to the appearance in this moment of new types
+of harmonic components.</p>
+
+<p><span class="pagenum" id="Page_124">[Pg 124]</span></p>
+
+<p>It may be of interest to insert here a few words about a new paper of
+Coster which appeared after this address was given, and in which he has
+succeeded in obtaining an extended and detailed connection between the
+X-ray spectra and the ideas of atomic structure given in this essay.
+The classification mentioned above was based on measurements of the
+spectra of the heaviest elements, and the results in their complete
+form, which were principally due to independent work of Coster and
+Wentzel, may be represented by the diagram in <a href="#Page_123">Fig. 5</a>, which refers to
+elements in the neighbourhood of niton.</p>
+
+<div class="figcenter">
+<img src="images/008.jpg" width="400" alt="fig08">
+<div class="caption">
+<p>Fig. 6.</p>
+</div></div>
+
+<p>The vertical arrows represent the observed lines arising from
+combinations between the different energy levels which are represented
+by horizontal lines. In each group the levels are arranged in the same
+succession as their energy values, but their distances do not give
+a quantitative picture of the actual energy-differences, since this
+would require a much larger figure. The numbers <img style="vertical-align: -0.357ex; width: 2.379ex; height: 1.357ex;" src="images/212.svg" alt=" " data-tex="n_{k}"> attached to
+the different levels indicate the type of the corresponding orbit.
+The letters <img style="vertical-align: -0.023ex; width: 1.197ex; height: 1.02ex;" src="images/259.svg" alt=" " data-tex="a"> and <img style="vertical-align: -0.025ex; width: 0.971ex; height: 1.595ex;" src="images/260.svg" alt=" " data-tex="b"> refer to the rules of combination which I
+mentioned. According to these rules the possibility of combination is
+limited (1) by the exclusion of combinations, for which <img style="vertical-align: -0.025ex; width: 1.179ex; height: 1.595ex;" src="images/149.svg" alt=" " data-tex="k"> changes
+by more than one unit, (2) by the condition that only combinations
+between an <img style="vertical-align: -0.023ex; width: 1.197ex; height: 1.02ex;" src="images/259.svg" alt=" " data-tex="a">- and a <img style="vertical-align: -0.025ex; width: 0.971ex; height: 1.595ex;" src="images/260.svg" alt=" " data-tex="b">-level can take place. The latter rule was
+given in this form by Coster; Wentzel formulated it in a somewhat
+<span class="pagenum" id="Page_125">[Pg 125]</span>
+different way by the formal introduction of a third quantum number.
+In his new paper Coster has established a similar classification for
+the lighter elements. For the elements in the neighbourhood of xenon
+and krypton he has obtained results illustrated by the diagrams given
+in <a href="#Page_124">Fig. 6</a>. Just as in <a href="#Page_123">Fig. 5</a> the levels correspond exactly to those
+types of orbits which, as seen from the table on <a href="#Page_113">page 113</a>, according
+to the theory will be present in the atoms of these elements. In xenon
+several of the levels present in niton have disappeared, and in krypton
+still more levels have fallen away. Coster has also investigated in
+which elements these particular levels appear for the last time, when
+passing from higher to lower atomic number. His results concerning
+this point confirm in detail the predictions of the theory. Further
+he proves that the change in the firmness of binding of the electrons
+in the outer groups in the elements of the family of the rare earths
+shows a dependence on the atomic number which strongly supports the
+assumption that in these elements a completion of an inner group of
+<img style="vertical-align: 0; width: 1.131ex; height: 1.532ex;" src="images/120.svg" alt=" " data-tex="4">-quanta orbits takes place. For details the reader is referred to
+Coster's paper in the <i>Philosophical Magazine</i>. Another important
+contribution to our systematic knowledge of the X-ray spectra is
+contained in a recent paper by Wentzel. He shows that various lines,
+which find no place in the classification hitherto considered, can be
+ascribed in a natural manner to processes of reorganization, initiated
+by the removal of more than one electron from the atom; these lines are
+therefore in a certain sense analogous to the enhanced lines in the
+optical spectra.</p>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="CONCLUSION">CONCLUSION</h2>
+</div>
+
+
+<p>Before bringing this address to a close I wish once more to emphasize
+the complete analogy in the application of the quantum theory to the
+stability of the atom, used in explaining two so different phenomena
+as the periodic system and X-ray spectra. This point is of the
+greatest importance in judging the reality of the theory, since the
+justification for employing considerations, relating to the formation
+of atoms by successive capture of electrons, as a guiding principle for
+the investigation of atomic structure might appear doubtful if such
+<span class="pagenum" id="Page_126">[Pg 126]</span>
+considerations could not be brought into natural agreement with views
+on the reorganization of the atom after a disturbance in the normal
+electronic arrangement. Even though a certain inner consistency in this
+view of atomic structure will be recognized, it is, however, hardly
+necessary for me to emphasize the incomplete character of the theory,
+not only as regards the elaboration of details, but also so far as the
+foundation of the general points of view is concerned. There seems,
+however, to be no other way of advance in atomic problems than that
+which hitherto has been followed, namely to let the work in these two
+directions go hand in hand.</p>
+
+
+<div class="footnote">
+
+<p class="nind">
+<a id="Footnote_3" href="#FNanchor_3" class="label">[3]</a>
+Address delivered before a joint meeting of the Physical
+and Chemical Societies in Copenhagen, October 18, 1921.</p>
+
+</div>
+
+<div class="footnote">
+
+<p class="nind">
+<a id="Footnote_4" href="#FNanchor_4" class="label">[4]</a>
+<i>Nature</i>, March 24, and October 13, 1921.</p>
+
+</div>
+
+
+<hr class="chap x-ebookmaker-drop">
+
+<div class="chapter">
+<h2 class="nobreak" id="TRANSCRIBERS_NOTES">TRANSCRIBER'S NOTES</h2>
+</div>
+
+
+<p>This ebook was produced using scanned images and OCR text generously
+provided by the Brandeis University Library through the Internet
+Archive.</p>
+
+<p>Minor typographical corrections and presentational changes have been
+made without comment.</p>
+
+
+<div style='display:block; margin-top:4em'></div>
+<section class='pg-boilerplate pgheader' id='pg-footer' lang='en' >
+<div id='pg-end-separator'>
+<span>*** END OF THE PROJECT GUTENBERG EBOOK THE THEORY OF SPECTRA AND ATOMIC CONSTITUTION: THREE ESSAYS ***</span>
+</div>
+
+<div>
+Updated editions will replace the previous one—the old editions will
+be renamed.
+</div>
+<div>
+Creating the works from print editions not protected by U.S. copyright
+law means that no one owns a United States copyright in these works,
+so the Foundation (and you!) can copy and distribute it in the United
+States without permission and without paying copyright
+royalties. Special rules, set forth in the General Terms of Use part
+of this license, apply to copying and distributing Project
+Gutenbergâ„¢ electronic works to protect the PROJECT GUTENBERGâ„¢
+concept and trademark. Project Gutenberg is a registered trademark,
+and may not be used if you charge for an eBook, except by following
+the terms of the trademark license, including paying royalties for use
+of the Project Gutenberg trademark. If you do not charge anything for
+copies of this eBook, complying with the trademark license is very
+easy. You may use this eBook for nearly any purpose such as creation
+of derivative works, reports, performances and research. Project
+Gutenberg eBooks may be modified and printed and given away—you may
+do practically ANYTHING in the United States with eBooks not protected
+by U.S. copyright law. Redistribution is subject to the trademark
+license, especially commercial redistribution.
+</div>
+
+<div id='project-gutenberg-license'>START: FULL LICENSE</div>
+<h2 id='pg-footer-heading'>THE FULL PROJECT GUTENBERG LICENSE</h2>
+<div class='agate'>PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK</div>
+
+<div>
+To protect the Project Gutenbergâ„¢ mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase “Project
+Gutenbergâ€), you agree to comply with all the terms of the Full
+Project Gutenbergâ„¢ License available with this file or online at
+www.gutenberg.org/license.
+</div>
+<div class='secthead'>
+Section 1. General Terms of Use and Redistributing Project Gutenbergâ„¢ electronic works
+</div>
+<div>
+1.A. By reading or using any part of this Project Gutenbergâ„¢
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or
+destroy all copies of Project Gutenbergâ„¢ electronic works in your
+possession. If you paid a fee for obtaining a copy of or access to a
+Project Gutenbergâ„¢ electronic work and you do not agree to be bound
+by the terms of this agreement, you may obtain a refund from the person
+or entity to whom you paid the fee as set forth in paragraph 1.E.8.
+</div>
+<div>
+1.B. “Project Gutenberg†is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenbergâ„¢ electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenbergâ„¢ electronic works if you follow the terms of this
+agreement and help preserve free future access to Project Gutenbergâ„¢
+electronic works. See paragraph 1.E below.
+</div>
+<div>
+1.C. The Project Gutenberg Literary Archive Foundation (“the
+Foundation†or PGLAF), owns a compilation copyright in the collection
+of Project Gutenbergâ„¢ electronic works. Nearly all the individual
+works in the collection are in the public domain in the United
+States. If an individual work is unprotected by copyright law in the
+United States and you are located in the United States, we do not
+claim a right to prevent you from copying, distributing, performing,
+displaying or creating derivative works based on the work as long as
+all references to Project Gutenberg are removed. Of course, we hope
+that you will support the Project Gutenbergâ„¢ mission of promoting
+free access to electronic works by freely sharing Project Gutenbergâ„¢
+works in compliance with the terms of this agreement for keeping the
+Project Gutenbergâ„¢ name associated with the work. You can easily
+comply with the terms of this agreement by keeping this work in the
+same format with its attached full Project Gutenbergâ„¢ License when
+you share it without charge with others.
+</div>
+
+<div>
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are
+in a constant state of change. If you are outside the United States,
+check the laws of your country in addition to the terms of this
+agreement before downloading, copying, displaying, performing,
+distributing or creating derivative works based on this work or any
+other Project Gutenbergâ„¢ work. The Foundation makes no
+representations concerning the copyright status of any work in any
+country other than the United States.
+</div>
+<div>
+1.E. Unless you have removed all references to Project Gutenberg:
+</div>
+<div>
+1.E.1. The following sentence, with active links to, or other
+immediate access to, the full Project Gutenbergâ„¢ License must appear
+prominently whenever any copy of a Project Gutenbergâ„¢ work (any work
+on which the phrase “Project Gutenberg†appears, or with which the
+phrase “Project Gutenberg†is associated) is accessed, displayed,
+performed, viewed, copied or distributed:
+</div>
+<blockquote>
+ <div>
+ This eBook is for the use of anyone anywhere in the United States and most
+ other parts of the world at no cost and with almost no restrictions
+ whatsoever. You may copy it, give it away or re-use it under the terms
+ of the Project Gutenberg License included with this eBook or online
+ at <a href="https://www.gutenberg.org">www.gutenberg.org</a>. If you
+ are not located in the United States, you will have to check the laws
+ of the country where you are located before using this eBook.
+ </div>
+</blockquote>
+<div>
+1.E.2. If an individual Project Gutenbergâ„¢ electronic work is
+derived from texts not protected by U.S. copyright law (does not
+contain a notice indicating that it is posted with permission of the
+copyright holder), the work can be copied and distributed to anyone in
+the United States without paying any fees or charges. If you are
+redistributing or providing access to a work with the phrase “Project
+Gutenberg†associated with or appearing on the work, you must comply
+either with the requirements of paragraphs 1.E.1 through 1.E.7 or
+obtain permission for the use of the work and the Project Gutenbergâ„¢
+trademark as set forth in paragraphs 1.E.8 or 1.E.9.
+</div>
+<div>
+1.E.3. If an individual Project Gutenbergâ„¢ electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any
+additional terms imposed by the copyright holder. Additional terms
+will be linked to the Project Gutenbergâ„¢ License for all works
+posted with the permission of the copyright holder found at the
+beginning of this work.
+</div>
+<div>
+1.E.4. Do not unlink or detach or remove the full Project Gutenbergâ„¢
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenbergâ„¢.
+</div>
+<div>
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenbergâ„¢ License.
+</div>
+<div>
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including
+any word processing or hypertext form. However, if you provide access
+to or distribute copies of a Project Gutenbergâ„¢ work in a format
+other than “Plain Vanilla ASCII†or other format used in the official
+version posted on the official Project Gutenbergâ„¢ website
+(www.gutenberg.org), you must, at no additional cost, fee or expense
+to the user, provide a copy, a means of exporting a copy, or a means
+of obtaining a copy upon request, of the work in its original “Plain
+Vanilla ASCII†or other form. Any alternate format must include the
+full Project Gutenbergâ„¢ License as specified in paragraph 1.E.1.
+</div>
+<div>
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenbergâ„¢ works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+</div>
+<div>
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenbergâ„¢ electronic works
+provided that:
+</div>
+<ul>
+ <li>• You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenbergâ„¢ works calculated using the method
+ you already use to calculate your applicable taxes. The fee is owed
+ to the owner of the Project Gutenbergâ„¢ trademark, but he has
+ agreed to donate royalties under this paragraph to the Project
+ Gutenberg Literary Archive Foundation. Royalty payments must be paid
+ within 60 days following each date on which you prepare (or are
+ legally required to prepare) your periodic tax returns. Royalty
+ payments should be clearly marked as such and sent to the Project
+ Gutenberg Literary Archive Foundation at the address specified in
+ Section 4, “Information about donations to the Project Gutenberg
+ Literary Archive Foundation.â€
+ </li>
+ <li>• You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenbergâ„¢
+ License. You must require such a user to return or destroy all
+ copies of the works possessed in a physical medium and discontinue
+ all use of and all access to other copies of Project Gutenbergâ„¢
+ works.
+ </li>
+ <li>• You provide, in accordance with paragraph 1.F.3, a full refund of
+ any money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days of
+ receipt of the work.
+ </li>
+ <li>• You comply with all other terms of this agreement for free
+ distribution of Project Gutenbergâ„¢ works.
+ </li>
+</ul>
+<div>
+1.E.9. If you wish to charge a fee or distribute a Project
+Gutenbergâ„¢ electronic work or group of works on different terms than
+are set forth in this agreement, you must obtain permission in writing
+from the Project Gutenberg Literary Archive Foundation, the manager of
+the Project Gutenbergâ„¢ trademark. Contact the Foundation as set
+forth in Section 3 below.
+</div>
+<div>
+1.F.
+</div>
+<div>
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+works not protected by U.S. copyright law in creating the Project
+Gutenbergâ„¢ collection. Despite these efforts, Project Gutenbergâ„¢
+electronic works, and the medium on which they may be stored, may
+contain “Defects,†such as, but not limited to, incomplete, inaccurate
+or corrupt data, transcription errors, a copyright or other
+intellectual property infringement, a defective or damaged disk or
+other medium, a computer virus, or computer codes that damage or
+cannot be read by your equipment.
+</div>
+<div>
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
+of Replacement or Refund†described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenbergâ„¢ trademark, and any other party distributing a Project
+Gutenbergâ„¢ electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+</div>
+<div>
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium
+with your written explanation. The person or entity that provided you
+with the defective work may elect to provide a replacement copy in
+lieu of a refund. If you received the work electronically, the person
+or entity providing it to you may choose to give you a second
+opportunity to receive the work electronically in lieu of a refund. If
+the second copy is also defective, you may demand a refund in writing
+without further opportunities to fix the problem.
+</div>
+<div>
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
+OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
+LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
+</div>
+<div>
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of
+damages. If any disclaimer or limitation set forth in this agreement
+violates the law of the state applicable to this agreement, the
+agreement shall be interpreted to make the maximum disclaimer or
+limitation permitted by the applicable state law. The invalidity or
+unenforceability of any provision of this agreement shall not void the
+remaining provisions.
+</div>
+<div>
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenbergâ„¢ electronic works in
+accordance with this agreement, and any volunteers associated with the
+production, promotion and distribution of Project Gutenbergâ„¢
+electronic works, harmless from all liability, costs and expenses,
+including legal fees, that arise directly or indirectly from any of
+the following which you do or cause to occur: (a) distribution of this
+or any Project Gutenbergâ„¢ work, (b) alteration, modification, or
+additions or deletions to any Project Gutenbergâ„¢ work, and (c) any
+Defect you cause.
+</div>
+<div class='secthead'>
+Section 2. Information about the Mission of Project Gutenbergâ„¢
+</div>
+<div>
+Project Gutenbergâ„¢ is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of
+computers including obsolete, old, middle-aged and new computers. It
+exists because of the efforts of hundreds of volunteers and donations
+from people in all walks of life.
+</div>
+<div>
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg™’s
+goals and ensuring that the Project Gutenbergâ„¢ collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenbergâ„¢ and future
+generations. To learn more about the Project Gutenberg Literary
+Archive Foundation and how your efforts and donations can help, see
+Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
+</div>
+<div class='secthead'>
+Section 3. Information about the Project Gutenberg Literary Archive Foundation
+</div>
+<div>
+The Project Gutenberg Literary Archive Foundation is a non-profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation’s EIN or federal tax identification
+number is 64-6221541. Contributions to the Project Gutenberg Literary
+Archive Foundation are tax deductible to the full extent permitted by
+U.S. federal laws and your state’s laws.
+</div>
+<div>
+The Foundation’s business office is located at 809 North 1500 West,
+Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
+to date contact information can be found at the Foundation’s website
+and official page at www.gutenberg.org/contact
+</div>
+<div class='secthead'>
+Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation
+</div>
+<div>
+Project Gutenbergâ„¢ depends upon and cannot survive without widespread
+public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine-readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+</div>
+<div>
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To SEND
+DONATIONS or determine the status of compliance for any particular state
+visit <a href="https://www.gutenberg.org/donate/">www.gutenberg.org/donate</a>.
+</div>
+<div>
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+</div>
+<div>
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+</div>
+<div>
+Please check the Project Gutenberg web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including checks, online payments and credit card donations. To
+donate, please visit: www.gutenberg.org/donate.
+</div>
+<div class='secthead'>
+Section 5. General Information About Project Gutenbergâ„¢ electronic works
+</div>
+<div>
+Professor Michael S. Hart was the originator of the Project
+Gutenbergâ„¢ concept of a library of electronic works that could be
+freely shared with anyone. For forty years, he produced and
+distributed Project Gutenbergâ„¢ eBooks with only a loose network of
+volunteer support.
+</div>
+<div>
+Project Gutenbergâ„¢ eBooks are often created from several printed
+editions, all of which are confirmed as not protected by copyright in
+the U.S. unless a copyright notice is included. Thus, we do not
+necessarily keep eBooks in compliance with any particular paper
+edition.
+</div>
+<div>
+Most people start at our website which has the main PG search
+facility: <a href="https://www.gutenberg.org">www.gutenberg.org</a>.
+</div>
+<div>
+This website includes information about Project Gutenbergâ„¢,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+</div>
+
+</section>
+</body>
+</html>
+
diff --git a/47464-h/images/001.jpg b/47464-h/images/001.jpg
new file mode 100644
index 0000000..0b9483f
--- /dev/null
+++ b/47464-h/images/001.jpg
Binary files differ
diff --git a/47464-h/images/002.jpg b/47464-h/images/002.jpg
new file mode 100644
index 0000000..3c4e8e4
--- /dev/null
+++ b/47464-h/images/002.jpg
Binary files differ
diff --git a/47464-h/images/003.jpg b/47464-h/images/003.jpg
new file mode 100644
index 0000000..a1fa67d
--- /dev/null
+++ b/47464-h/images/003.jpg
Binary files differ
diff --git a/47464-h/images/004.jpg b/47464-h/images/004.jpg
new file mode 100644
index 0000000..5c28f30
--- /dev/null
+++ b/47464-h/images/004.jpg
Binary files differ
diff --git a/47464-h/images/005.jpg b/47464-h/images/005.jpg
new file mode 100644
index 0000000..9b9edd3
--- /dev/null
+++ b/47464-h/images/005.jpg
Binary files differ
diff --git a/47464-h/images/006.jpg b/47464-h/images/006.jpg
new file mode 100644
index 0000000..de8c4e7
--- /dev/null
+++ b/47464-h/images/006.jpg
Binary files differ
diff --git a/47464-h/images/007.jpg b/47464-h/images/007.jpg
new file mode 100644
index 0000000..06c769b
--- /dev/null
+++ b/47464-h/images/007.jpg
Binary files differ
diff --git a/47464-h/images/008.jpg b/47464-h/images/008.jpg
new file mode 100644
index 0000000..2cf8373
--- /dev/null
+++ b/47464-h/images/008.jpg
Binary files differ
diff --git a/47464-h/images/1.svg b/47464-h/images/1.svg
new file mode 100644
index 0000000..b8a3ddf
--- /dev/null
+++ b/47464-h/images/1.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="12623.2px" height="2399px" viewBox="0 -1449.5 12623.2 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-1-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-1-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-1-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-1-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-1-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-1-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-1-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-1-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-1-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-1-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-1-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-1-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-1-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(515.1,676)"><use xlink:href="#MJX-1-TEX-N-31"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-1-TEX-I-1D706"></use></g><g transform="translate(616,-150) scale(0.707)" ><g ><use xlink:href="#MJX-1-TEX-I-1D45B"></use></g></g></g><rect width="1290.3" height="60" x="120" y="220"></rect></g><g transform="translate(1808,0)"><use xlink:href="#MJX-1-TEX-N-3D"></use></g><g transform="translate(2863.8,0)"><use xlink:href="#MJX-1-TEX-I-1D445"></use></g><g transform="translate(3789.5,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-1-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(220,676)"><use xlink:href="#MJX-1-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-1-TEX-N-34"></use></g><rect width="700" height="60" x="120" y="220"></rect></g><g transform="translate(1898.2,0)"><use xlink:href="#MJX-1-TEX-N-2212"></use></g><g transform="translate(2898.4,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-1-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-1-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-1-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4375,0) translate(0 -0.5)"><use xlink:href="#MJX-1-TEX-S3-29"></use></g></g><g transform="translate(8900.5,0)"><use xlink:href="#MJX-1-TEX-N-2C"></use></g><g transform="translate(9178.5,0)"><g ></g></g><g transform="translate(11345.2,0)"><use xlink:href="#MJX-1-TEX-N-28"></use><use xlink:href="#MJX-1-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-1-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/10.svg b/47464-h/images/10.svg
new file mode 100644
index 0000000..3f179f1
--- /dev/null
+++ b/47464-h/images/10.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="18440.9px" height="2053px" viewBox="0 -1356 18440.9 2053" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-10-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-10-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-10-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-10-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-10-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-10-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-10-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-10-TEX-N-A0" d=""></path><path id="MJX-10-TEX-N-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path id="MJX-10-TEX-N-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path id="MJX-10-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-10-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-10-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-10-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-10-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-10-TEX-I-1D708"></use></g><g transform="translate(1383.8,0)"><use xlink:href="#MJX-10-TEX-N-3D"></use></g><g transform="translate(2439.6,0)"><g ><use xlink:href="#MJX-10-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-10-TEX-N-31"></use></g></g></g><g transform="translate(3836.3,0)"><use xlink:href="#MJX-10-TEX-N-2212"></use></g><g transform="translate(4836.6,0)"><g ><use xlink:href="#MJX-10-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-10-TEX-N-32"></use></g></g></g><g transform="translate(6011.1,0)"><use xlink:href="#MJX-10-TEX-N-A0"></use><use xlink:href="#MJX-10-TEX-N-6F" transform="translate(250,0)"></use><use xlink:href="#MJX-10-TEX-N-72" transform="translate(750,0)"></use><use xlink:href="#MJX-10-TEX-N-A0" transform="translate(1142,0)"></use></g><g transform="translate(7403.1,0)"><g ></g></g><g transform="translate(8403.1,0)"><use xlink:href="#MJX-10-TEX-I-1D708"></use></g><g transform="translate(9210.9,0)"><use xlink:href="#MJX-10-TEX-N-3D"></use></g><g transform="translate(10266.7,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-10-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-10-TEX-N-31"></use></g></g></g><g transform="translate(519.3,-686)"><use xlink:href="#MJX-10-TEX-I-210E"></use></g><rect width="1374.6" height="60" x="120" y="220"></rect></g><g transform="translate(12103.4,0)"><use xlink:href="#MJX-10-TEX-N-2212"></use></g><g transform="translate(13103.7,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-10-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-10-TEX-N-32"></use></g></g></g><g transform="translate(519.3,-686)"><use xlink:href="#MJX-10-TEX-I-210E"></use></g><rect width="1374.6" height="60" x="120" y="220"></rect></g><g transform="translate(14718.2,0)"><use xlink:href="#MJX-10-TEX-N-2E"></use></g><g transform="translate(14996.2,0)"><g ></g></g><g transform="translate(17162.9,0)"><use xlink:href="#MJX-10-TEX-N-28"></use><use xlink:href="#MJX-10-TEX-N-35" transform="translate(389,0)"></use><use xlink:href="#MJX-10-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/100.svg b/47464-h/images/100.svg
new file mode 100644
index 0000000..1f69eb7
--- /dev/null
+++ b/47464-h/images/100.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="2986px" height="2100.9px" viewBox="0 -1370 2986 2100.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-128-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-128-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-128-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-128-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-128-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-128-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-128-TEX-N-2212"></use></g><g transform="translate(778,0)"><g ><g transform="translate(220,676)"><g ><use xlink:href="#MJX-128-TEX-I-1D445"></use></g><g transform="translate(759,0)"><use xlink:href="#MJX-128-TEX-I-210E"></use></g><g transform="translate(1335,0)"><use xlink:href="#MJX-128-TEX-I-1D450"></use></g></g><g transform="translate(585.7,-719.9)"><g ><use xlink:href="#MJX-128-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-128-TEX-N-32"></use></g></g></g><rect width="1968" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/101.svg b/47464-h/images/101.svg
new file mode 100644
index 0000000..1fd0bc0
--- /dev/null
+++ b/47464-h/images/101.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="4589.6px" height="2100.9px" viewBox="0 -1370 4589.6 2100.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-132-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-132-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-132-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-132-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-132-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-132-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-132-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-132-TEX-I-1D44A"></use></g><g transform="translate(1325.8,0)"><use xlink:href="#MJX-132-TEX-N-3D"></use></g><g transform="translate(2381.6,0)"><g ><g transform="translate(220,676)"><g ><use xlink:href="#MJX-132-TEX-I-1D445"></use></g><g transform="translate(759,0)"><use xlink:href="#MJX-132-TEX-I-210E"></use></g><g transform="translate(1335,0)"><use xlink:href="#MJX-132-TEX-I-1D450"></use></g></g><g transform="translate(585.7,-719.9)"><g ><use xlink:href="#MJX-132-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-132-TEX-N-32"></use></g></g></g><rect width="1968" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/102.svg b/47464-h/images/102.svg
new file mode 100644
index 0000000..93fb1e4
--- /dev/null
+++ b/47464-h/images/102.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.023ex;" xmlns="http://www.w3.org/2000/svg" width="2472.9px" height="2013px" viewBox="0 -1119 2472.9 2013" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-135-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-135-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-135-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-135-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><g transform="translate(671.8,676)"><g ><use xlink:href="#MJX-135-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-135-TEX-I-1D45B"></use></g></g></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-135-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-135-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><use xlink:href="#MJX-135-TEX-N-2B"></use></g><g transform="translate(1378,0)"><use xlink:href="#MJX-135-TEX-N-31"></use></g></g></g><rect width="2232.9" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/103.svg b/47464-h/images/103.svg
new file mode 100644
index 0000000..393e1d2
--- /dev/null
+++ b/47464-h/images/103.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="500px" height="666px" viewBox="0 -666 500 666" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-805-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-805-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/104.svg b/47464-h/images/104.svg
new file mode 100644
index 0000000..763a9a1
--- /dev/null
+++ b/47464-h/images/104.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="3100.4px" height="1000px" viewBox="0 -750 3100.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-137-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-137-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-137-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-137-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-137-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-137-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-137-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-137-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><use xlink:href="#MJX-137-TEX-N-31"></use></g><g transform="translate(2711.4,0)"><use xlink:href="#MJX-137-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/105.svg b/47464-h/images/105.svg
new file mode 100644
index 0000000..ef22cf8
--- /dev/null
+++ b/47464-h/images/105.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1129.3px" height="600.8px" viewBox="0 -443 1129.3 600.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-140-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-140-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-140-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-140-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/106.svg b/47464-h/images/106.svg
new file mode 100644
index 0000000..11b0e0d
--- /dev/null
+++ b/47464-h/images/106.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="3937px" height="886px" viewBox="0 -864 3937 886" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-147-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-147-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-147-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-147-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-147-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-147-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-147-TEX-N-31"></use><use xlink:href="#MJX-147-TEX-N-2E" transform="translate(500,0)"></use><use xlink:href="#MJX-147-TEX-N-30" transform="translate(778,0)"></use><use xlink:href="#MJX-147-TEX-N-39" transform="translate(1278,0)"></use></g><g transform="translate(2000.2,0)"><use xlink:href="#MJX-147-TEX-N-B7"></use></g><g transform="translate(2500.4,0)"><g ><use xlink:href="#MJX-147-TEX-N-31"></use><use xlink:href="#MJX-147-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-147-TEX-N-35"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/107.svg b/47464-h/images/107.svg
new file mode 100644
index 0000000..5250b4b
--- /dev/null
+++ b/47464-h/images/107.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.781ex;" xmlns="http://www.w3.org/2000/svg" width="5883.6px" height="1209.9px" viewBox="0 -864.9 5883.6 1209.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-153-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-153-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-153-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-153-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-153-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-153-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-153-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-153-TEX-I-1D44A"></use></g><g transform="translate(977,-150) scale(0.707)" ><g ><use xlink:href="#MJX-153-TEX-I-1D45B"></use></g></g></g><g transform="translate(1729,0)"><use xlink:href="#MJX-153-TEX-N-3D"></use></g><g transform="translate(2784.8,0)"><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-153-TEX-N-31"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-153-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(3578.4,0)"><use xlink:href="#MJX-153-TEX-I-1D45B"></use></g><g transform="translate(4178.4,0)"><use xlink:href="#MJX-153-TEX-I-210E"></use></g><g transform="translate(4754.4,0)"><g ><use xlink:href="#MJX-153-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-153-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/108.svg b/47464-h/images/108.svg
new file mode 100644
index 0000000..74837e8
--- /dev/null
+++ b/47464-h/images/108.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1706px" height="705px" viewBox="0 -694 1706 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-155-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-155-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-155-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-155-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><use xlink:href="#MJX-155-TEX-I-210E"></use></g><g transform="translate(1176,0)"><use xlink:href="#MJX-155-TEX-I-1D708"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/109.svg b/47464-h/images/109.svg
new file mode 100644
index 0000000..940f5f2
--- /dev/null
+++ b/47464-h/images/109.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.781ex;" xmlns="http://www.w3.org/2000/svg" width="2591.6px" height="1209.9px" viewBox="0 -864.9 2591.6 1209.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-156-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-156-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-156-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-156-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-156-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-156-TEX-N-31"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-156-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(793.6,0)"><use xlink:href="#MJX-156-TEX-I-1D45B"></use></g><g transform="translate(1393.6,0)"><use xlink:href="#MJX-156-TEX-I-210E"></use></g><g transform="translate(1969.6,0)"><use xlink:href="#MJX-156-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/11.svg b/47464-h/images/11.svg
new file mode 100644
index 0000000..6eb22d6
--- /dev/null
+++ b/47464-h/images/11.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.448ex;" xmlns="http://www.w3.org/2000/svg" width="6810.1px" height="2440.9px" viewBox="0 -1359 6810.1 2440.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-11-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-11-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-11-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-11-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-11-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-11-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-11-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-11-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-11-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-11-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-11-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><g transform="translate(358.8,676)"><use xlink:href="#MJX-11-TEX-I-1D445"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-11-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-11-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-11-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4055.3,0)"><use xlink:href="#MJX-11-TEX-N-2212"></use></g><g transform="translate(5055.6,0)"><g transform="translate(358.8,676)"><use xlink:href="#MJX-11-TEX-I-1D445"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-11-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-11-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-11-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(6532.1,0)"><use xlink:href="#MJX-11-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/110.svg b/47464-h/images/110.svg
new file mode 100644
index 0000000..639bdb2
--- /dev/null
+++ b/47464-h/images/110.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2433.6px" height="748px" viewBox="0 -666 2433.6 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-526-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-526-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-526-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-526-TEX-I-1D45B"></use></g><g transform="translate(877.8,0)"><use xlink:href="#MJX-526-TEX-N-3D"></use></g><g transform="translate(1933.6,0)"><use xlink:href="#MJX-526-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/111.svg b/47464-h/images/111.svg
new file mode 100644
index 0000000..9bda6ff
--- /dev/null
+++ b/47464-h/images/111.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1354px" height="694px" viewBox="0 -683 1354 694" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-450-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-450-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-450-TEX-I-1D441"></use></g><g transform="translate(888,0)"><use xlink:href="#MJX-450-TEX-I-1D452"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/112.svg b/47464-h/images/112.svg
new file mode 100644
index 0000000..4a50e90
--- /dev/null
+++ b/47464-h/images/112.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="966px" height="677px" viewBox="0 -666 966 677" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-171-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-171-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-171-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-171-TEX-I-1D452"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/113.svg b/47464-h/images/113.svg
new file mode 100644
index 0000000..de5f82f
--- /dev/null
+++ b/47464-h/images/113.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="8272.1px" height="2999px" viewBox="0 -1749.5 8272.1 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-172-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-172-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-172-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-172-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-172-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-172-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-172-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-172-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(0 -0.5)"><use xlink:href="#MJX-172-TEX-S4-28"></use></g><g transform="translate(792,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-172-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-172-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-172-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-172-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-172-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-172-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-172-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-172-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-172-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-172-TEX-S4-29"></use></g></g><g transform="translate(5981.8,0)"><use xlink:href="#MJX-172-TEX-N-B7"></use></g><g transform="translate(6482,0)"><g ><use xlink:href="#MJX-172-TEX-N-31"></use><use xlink:href="#MJX-172-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-172-TEX-N-31"></use><use xlink:href="#MJX-172-TEX-N-30" transform="translate(500,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/114.svg b/47464-h/images/114.svg
new file mode 100644
index 0000000..58df221
--- /dev/null
+++ b/47464-h/images/114.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="5829px" height="716px" viewBox="0 -705 5829 716" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-177-TEX-N-4C" d="M128 622Q121 629 117 631T101 634T58 637H25V683H36Q48 680 182 680Q324 680 348 683H360V637H333Q273 637 258 635T233 622L232 342V129Q232 57 237 52Q243 47 313 47Q384 47 410 53Q470 70 498 110T536 221Q536 226 537 238T540 261T542 272T562 273H582V268Q580 265 568 137T554 5V0H25V46H58Q100 47 109 49T128 61V622Z"></path><path id="MJX-177-TEX-N-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path id="MJX-177-TEX-N-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-177-TEX-N-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path id="MJX-177-TEX-N-20" d=""></path><path id="MJX-177-TEX-N-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path id="MJX-177-TEX-N-66" d="M273 0Q255 3 146 3Q43 3 34 0H26V46H42Q70 46 91 49Q99 52 103 60Q104 62 104 224V385H33V431H104V497L105 564L107 574Q126 639 171 668T266 704Q267 704 275 704T289 705Q330 702 351 679T372 627Q372 604 358 590T321 576T284 590T270 627Q270 647 288 667H284Q280 668 273 668Q245 668 223 647T189 592Q183 572 182 497V431H293V385H185V225Q185 63 186 61T189 57T194 54T199 51T206 49T213 48T222 47T231 47T241 46T251 46H282V0H273Z"></path><path id="MJX-177-TEX-N-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path id="MJX-177-TEX-N-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-177-TEX-N-4C"></use><use xlink:href="#MJX-177-TEX-N-69" transform="translate(625,0)"></use><use xlink:href="#MJX-177-TEX-N-6D" transform="translate(903,0)"></use><use xlink:href="#MJX-177-TEX-N-69" transform="translate(1736,0)"></use><use xlink:href="#MJX-177-TEX-N-74" transform="translate(2014,0)"></use><use xlink:href="#MJX-177-TEX-N-20" transform="translate(2403,0)"></use><use xlink:href="#MJX-177-TEX-N-6F" transform="translate(2653,0)"></use><use xlink:href="#MJX-177-TEX-N-66" transform="translate(3153,0)"></use><use xlink:href="#MJX-177-TEX-N-20" transform="translate(3459,0)"></use><use xlink:href="#MJX-177-TEX-N-65" transform="translate(3709,0)"></use><use xlink:href="#MJX-177-TEX-N-72" transform="translate(4153,0)"></use><use xlink:href="#MJX-177-TEX-N-72" transform="translate(4545,0)"></use><use xlink:href="#MJX-177-TEX-N-6F" transform="translate(4937,0)"></use><use xlink:href="#MJX-177-TEX-N-72" transform="translate(5437,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/115.svg b/47464-h/images/115.svg
new file mode 100644
index 0000000..8603968
--- /dev/null
+++ b/47464-h/images/115.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="9577.5px" height="2999px" viewBox="0 -1749.5 9577.5 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-179-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-179-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-179-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-179-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-179-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-179-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-179-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-179-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-179-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-179-TEX-I-1D706"></use></g><g transform="translate(805.2,0)"><use xlink:href="#MJX-179-TEX-N-B7"></use></g><g transform="translate(1305.4,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-179-TEX-S4-28"></use></g><g transform="translate(792,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-179-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-179-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-179-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-179-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-179-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-179-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-179-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-179-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-179-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-179-TEX-S4-29"></use></g></g><g transform="translate(7287.2,0)"><use xlink:href="#MJX-179-TEX-N-B7"></use></g><g transform="translate(7787.4,0)"><g ><use xlink:href="#MJX-179-TEX-N-31"></use><use xlink:href="#MJX-179-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-179-TEX-N-31"></use><use xlink:href="#MJX-179-TEX-N-30" transform="translate(500,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/116.svg b/47464-h/images/116.svg
new file mode 100644
index 0000000..c91d80b
--- /dev/null
+++ b/47464-h/images/116.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.781ex;" xmlns="http://www.w3.org/2000/svg" width="793.6px" height="1209.9px" viewBox="0 -864.9 793.6 1209.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-181-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-181-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-181-TEX-N-31"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-181-TEX-N-34"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/117.svg b/47464-h/images/117.svg
new file mode 100644
index 0000000..71d0251
--- /dev/null
+++ b/47464-h/images/117.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2500px" height="688px" viewBox="0 -666 2500 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-182-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-182-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-182-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-182-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-182-TEX-N-39"></use><use xlink:href="#MJX-182-TEX-N-31" transform="translate(500,0)"></use><use xlink:href="#MJX-182-TEX-N-31" transform="translate(1000,0)"></use><use xlink:href="#MJX-182-TEX-N-35" transform="translate(1500,0)"></use><use xlink:href="#MJX-182-TEX-N-33" transform="translate(2000,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/118.svg b/47464-h/images/118.svg
new file mode 100644
index 0000000..191b150
--- /dev/null
+++ b/47464-h/images/118.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2500px" height="698px" viewBox="0 -676 2500 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-183-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-183-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-183-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-183-TEX-N-32"></use><use xlink:href="#MJX-183-TEX-N-32" transform="translate(500,0)"></use><use xlink:href="#MJX-183-TEX-N-37" transform="translate(1000,0)"></use><use xlink:href="#MJX-183-TEX-N-37" transform="translate(1500,0)"></use><use xlink:href="#MJX-183-TEX-N-39" transform="translate(2000,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/119.svg b/47464-h/images/119.svg
new file mode 100644
index 0000000..36914ec
--- /dev/null
+++ b/47464-h/images/119.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2778px" height="699px" viewBox="0 -677 2778 699" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-184-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-184-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-184-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-184-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-184-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-184-TEX-N-34"></use><use xlink:href="#MJX-184-TEX-N-2E" transform="translate(500,0)"></use><use xlink:href="#MJX-184-TEX-N-30" transform="translate(778,0)"></use><use xlink:href="#MJX-184-TEX-N-30" transform="translate(1278,0)"></use><use xlink:href="#MJX-184-TEX-N-31" transform="translate(1778,0)"></use><use xlink:href="#MJX-184-TEX-N-36" transform="translate(2278,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/12.svg b/47464-h/images/12.svg
new file mode 100644
index 0000000..54ef999
--- /dev/null
+++ b/47464-h/images/12.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.671ex;" xmlns="http://www.w3.org/2000/svg" width="11316.7px" height="2247.9px" viewBox="0 -1509.2 11316.7 2247.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-12-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-12-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-12-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-12-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-12-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-12-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-12-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-12-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-12-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-12-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-12-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-12-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-12-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-12-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-12-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-12-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-12-TEX-I-1D714"></use></g><g transform="translate(655,413) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-32"></use></g></g><g transform="translate(655,-247) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-I-1D45B"></use></g></g></g><g transform="translate(1407,0)"><use xlink:href="#MJX-12-TEX-N-3D"></use></g><g transform="translate(2462.8,0)"><g transform="translate(473.3,676)"><use xlink:href="#MJX-12-TEX-N-32"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-12-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-32"></use></g></g></g><rect width="1206.6" height="60" x="120" y="220"></rect></g><g transform="translate(3909.4,0)"><g ></g></g><g transform="translate(4076.4,0)"><g transform="translate(220,676)"><g ><g ><use xlink:href="#MJX-12-TEX-I-1D445"></use></g><g transform="translate(792,363) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-33"></use></g></g></g><g transform="translate(1195.6,0)"><g ><use xlink:href="#MJX-12-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-33"></use></g></g></g><g transform="translate(2208.1,0)"><g ><use xlink:href="#MJX-12-TEX-I-1D450"></use></g><g transform="translate(466,363) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-33"></use></g></g></g></g><g transform="translate(350.3,-727.7)"><g ><g ><use xlink:href="#MJX-12-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-34"></use></g></g></g><g transform="translate(902.6,0)"><use xlink:href="#MJX-12-TEX-I-1D45A"></use></g><g transform="translate(1780.6,0)"><g ><use xlink:href="#MJX-12-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-12-TEX-N-36"></use></g></g></g></g><rect width="3277.7" height="60" x="120" y="220"></rect></g><g transform="translate(7594,0)"><use xlink:href="#MJX-12-TEX-N-2E"></use></g><g transform="translate(7872,0)"><g ></g></g><g transform="translate(10038.7,0)"><use xlink:href="#MJX-12-TEX-N-28"></use><use xlink:href="#MJX-12-TEX-N-36" transform="translate(389,0)"></use><use xlink:href="#MJX-12-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/120.svg b/47464-h/images/120.svg
new file mode 100644
index 0000000..8200d55
--- /dev/null
+++ b/47464-h/images/120.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="500px" height="677px" viewBox="0 -677 500 677" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-844-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-844-TEX-N-34"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/121.svg b/47464-h/images/121.svg
new file mode 100644
index 0000000..08e2631
--- /dev/null
+++ b/47464-h/images/121.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2000px" height="688px" viewBox="0 -666 2000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-186-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-186-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-186-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-186-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-186-TEX-N-31"></use><use xlink:href="#MJX-186-TEX-N-38" transform="translate(500,0)"></use><use xlink:href="#MJX-186-TEX-N-35" transform="translate(1000,0)"></use><use xlink:href="#MJX-186-TEX-N-30" transform="translate(1500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/122.svg b/47464-h/images/122.svg
new file mode 100644
index 0000000..50fe399
--- /dev/null
+++ b/47464-h/images/122.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1051px" height="683px" viewBox="0 -683 1051 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-192-TEX-I-1D440" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-192-TEX-I-1D440"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/123.svg b/47464-h/images/123.svg
new file mode 100644
index 0000000..00a5d2d
--- /dev/null
+++ b/47464-h/images/123.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="3278px" height="699px" viewBox="0 -677 3278 699" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-189-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-189-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-189-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-189-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-189-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-189-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-189-TEX-N-34"></use><use xlink:href="#MJX-189-TEX-N-2E" transform="translate(500,0)"></use><use xlink:href="#MJX-189-TEX-N-30" transform="translate(778,0)"></use><use xlink:href="#MJX-189-TEX-N-30" transform="translate(1278,0)"></use><use xlink:href="#MJX-189-TEX-N-31" transform="translate(1778,0)"></use><use xlink:href="#MJX-189-TEX-N-36" transform="translate(2278,0)"></use><use xlink:href="#MJX-189-TEX-N-33" transform="translate(2778,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/124.svg b/47464-h/images/124.svg
new file mode 100644
index 0000000..5dfff62
--- /dev/null
+++ b/47464-h/images/124.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="9075.2px" height="871px" viewBox="0 -677 9075.2 871" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-190-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-190-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-190-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-190-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-190-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-190-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-190-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-190-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-190-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-190-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-190-TEX-N-31"></use></g></g></g><g transform="translate(1314.3,0)"><use xlink:href="#MJX-190-TEX-N-3D"></use></g><g transform="translate(2370.1,0)"><use xlink:href="#MJX-190-TEX-N-34"></use></g><g transform="translate(2870.1,0)"><use xlink:href="#MJX-190-TEX-N-2C"></use></g><g transform="translate(3148.1,0)"><g ></g></g><g transform="translate(3481.8,0)"><g ><use xlink:href="#MJX-190-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-190-TEX-N-32"></use></g></g></g><g transform="translate(4796.1,0)"><use xlink:href="#MJX-190-TEX-N-3D"></use></g><g transform="translate(5851.9,0)"><use xlink:href="#MJX-190-TEX-N-36"></use></g><g transform="translate(6351.9,0)"><use xlink:href="#MJX-190-TEX-N-2C"></use></g><g transform="translate(6629.9,0)"><g ></g></g><g transform="translate(6963.6,0)"><use xlink:href="#MJX-190-TEX-N-38"></use></g><g transform="translate(7463.6,0)"><use xlink:href="#MJX-190-TEX-N-2C"></use></g><g transform="translate(7741.6,0)"><g ></g></g><g transform="translate(8075.2,0)"><use xlink:href="#MJX-190-TEX-N-31"></use><use xlink:href="#MJX-190-TEX-N-30" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/125.svg b/47464-h/images/125.svg
new file mode 100644
index 0000000..9acf3bb
--- /dev/null
+++ b/47464-h/images/125.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.738ex;" xmlns="http://www.w3.org/2000/svg" width="3591.4px" height="2127px" viewBox="0 -1359 3591.4 2127" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-191-TEX-I-1D440" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path id="MJX-191-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-191-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><g transform="translate(1270.2,676)"><use xlink:href="#MJX-191-TEX-I-1D440"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-191-TEX-I-1D440"></use></g><g transform="translate(1273.2,0)"><use xlink:href="#MJX-191-TEX-N-2B"></use></g><g transform="translate(2273.4,0)"><use xlink:href="#MJX-191-TEX-I-1D45A"></use></g></g><rect width="3351.4" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/126.svg b/47464-h/images/126.svg
new file mode 100644
index 0000000..a972fcd
--- /dev/null
+++ b/47464-h/images/126.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="3000px" height="698px" viewBox="0 -676 3000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-193-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-193-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-193-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-193-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-193-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-193-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-193-TEX-N-31"></use><use xlink:href="#MJX-193-TEX-N-30" transform="translate(500,0)"></use><use xlink:href="#MJX-193-TEX-N-39" transform="translate(1000,0)"></use><use xlink:href="#MJX-193-TEX-N-37" transform="translate(1500,0)"></use><use xlink:href="#MJX-193-TEX-N-33" transform="translate(2000,0)"></use><use xlink:href="#MJX-193-TEX-N-35" transform="translate(2500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/127.svg b/47464-h/images/127.svg
new file mode 100644
index 0000000..89cd3f3
--- /dev/null
+++ b/47464-h/images/127.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1039px" height="680px" viewBox="0 -680 1039 680" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-408-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-408-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-408-TEX-I-1D438"></use></g><g transform="translate(764,0)"><g ><use xlink:href="#MJX-408-TEX-N-2032"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/128.svg b/47464-h/images/128.svg
new file mode 100644
index 0000000..f893047
--- /dev/null
+++ b/47464-h/images/128.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1314px" height="680px" viewBox="0 -680 1314 680" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-409-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-409-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-409-TEX-I-1D438"></use></g><g transform="translate(764,0)"><g ><g ><use xlink:href="#MJX-409-TEX-N-2032"></use><use xlink:href="#MJX-409-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/129.svg b/47464-h/images/129.svg
new file mode 100644
index 0000000..df18e1d
--- /dev/null
+++ b/47464-h/images/129.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="889px" height="683px" viewBox="0 -683 889 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-478-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-478-TEX-I-1D43E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/13.svg b/47464-h/images/13.svg
new file mode 100644
index 0000000..43b5eea
--- /dev/null
+++ b/47464-h/images/13.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="11648.2px" height="2419.4px" viewBox="0 -1449.5 11648.2 2419.4" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-13-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-13-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-13-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-13-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-13-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-13-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-13-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-13-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-13-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-13-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-13-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-13-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-13-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-13-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-13-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-13-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-13-TEX-I-1D445"></use></g><g transform="translate(2622.6,0)"><use xlink:href="#MJX-13-TEX-I-1D450"></use></g><g transform="translate(3222.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-13-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-13-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-13-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-13-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(2434.8,0)"><use xlink:href="#MJX-13-TEX-N-2212"></use></g><g transform="translate(3435,0)"><g transform="translate(1738.5,676)"><use xlink:href="#MJX-13-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-13-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-13-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-13-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><use xlink:href="#MJX-13-TEX-N-31"></use></g><g transform="translate(2711.4,0)"><g ><use xlink:href="#MJX-13-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-13-TEX-N-32"></use></g></g></g></g><rect width="3737" height="60" x="120" y="220"></rect></g><g transform="translate(7412,0) translate(0 -0.5)"><use xlink:href="#MJX-13-TEX-S3-29"></use></g></g><g transform="translate(11370.2,0)"><use xlink:href="#MJX-13-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/130.svg b/47464-h/images/130.svg
new file mode 100644
index 0000000..4203895
--- /dev/null
+++ b/47464-h/images/130.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="875px" height="571px" viewBox="0 -560 875 571" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-506-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-506-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-506-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><use xlink:href="#MJX-506-TEX-N-2032"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/131.svg b/47464-h/images/131.svg
new file mode 100644
index 0000000..7b8a09b
--- /dev/null
+++ b/47464-h/images/131.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1150px" height="571px" viewBox="0 -560 1150 571" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-507-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-507-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-507-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><g ><use xlink:href="#MJX-507-TEX-N-2032"></use><use xlink:href="#MJX-507-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/132.svg b/47464-h/images/132.svg
new file mode 100644
index 0000000..a5fbf66
--- /dev/null
+++ b/47464-h/images/132.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2983.6px" height="748px" viewBox="0 -666 2983.6 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-206-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-206-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-206-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-206-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-206-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><g ><use xlink:href="#MJX-206-TEX-N-2032"></use><use xlink:href="#MJX-206-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1427.8,0)"><use xlink:href="#MJX-206-TEX-N-3D"></use></g><g transform="translate(2483.6,0)"><use xlink:href="#MJX-206-TEX-N-32"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/133.svg b/47464-h/images/133.svg
new file mode 100644
index 0000000..2406ddf
--- /dev/null
+++ b/47464-h/images/133.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="687px" viewBox="0 -665 500 687" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-818-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-818-TEX-N-33"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/134.svg b/47464-h/images/134.svg
new file mode 100644
index 0000000..6a33a91
--- /dev/null
+++ b/47464-h/images/134.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2983.6px" height="748px" viewBox="0 -666 2983.6 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-210-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-210-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-210-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-210-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-210-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><g ><use xlink:href="#MJX-210-TEX-N-2032"></use><use xlink:href="#MJX-210-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1427.8,0)"><use xlink:href="#MJX-210-TEX-N-3D"></use></g><g transform="translate(2483.6,0)"><use xlink:href="#MJX-210-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/135.svg b/47464-h/images/135.svg
new file mode 100644
index 0000000..218ec7b
--- /dev/null
+++ b/47464-h/images/135.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2983.6px" height="747px" viewBox="0 -665 2983.6 747" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-211-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-211-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-211-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-211-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-211-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><g ><use xlink:href="#MJX-211-TEX-N-2032"></use><use xlink:href="#MJX-211-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1427.8,0)"><use xlink:href="#MJX-211-TEX-N-3D"></use></g><g transform="translate(2483.6,0)"><use xlink:href="#MJX-211-TEX-N-33"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/136.svg b/47464-h/images/136.svg
new file mode 100644
index 0000000..2ff57e3
--- /dev/null
+++ b/47464-h/images/136.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="1905px" height="2100.9px" viewBox="0 -1370 1905 2100.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-223-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-223-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-223-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-223-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><g transform="translate(220,676)"><g ><use xlink:href="#MJX-223-TEX-I-1D43E"></use></g><g transform="translate(889,0)"><use xlink:href="#MJX-223-TEX-I-210E"></use></g></g><g transform="translate(434.2,-719.9)"><g ><use xlink:href="#MJX-223-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-223-TEX-N-32"></use></g></g></g><rect width="1665" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/137.svg b/47464-h/images/137.svg
new file mode 100644
index 0000000..7ffd1ab
--- /dev/null
+++ b/47464-h/images/137.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="3247.4px" height="665px" viewBox="0 -583 3247.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-316-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-316-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-316-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-316-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><use xlink:href="#MJX-316-TEX-N-2032"></use></g></g><g transform="translate(1097.2,0)"><use xlink:href="#MJX-316-TEX-N-2212"></use></g><g transform="translate(2097.4,0)"><use xlink:href="#MJX-316-TEX-I-1D45B"></use></g><g transform="translate(2697.4,0)"><g ><g ><use xlink:href="#MJX-316-TEX-N-2032"></use><use xlink:href="#MJX-316-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/138.svg b/47464-h/images/138.svg
new file mode 100644
index 0000000..88ff652
--- /dev/null
+++ b/47464-h/images/138.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="4647.4px" height="1000px" viewBox="0 -750 4647.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-240-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-240-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-240-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-240-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-240-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-240-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-240-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-240-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-240-TEX-N-2032"></use></g></g><g transform="translate(1486.2,0)"><use xlink:href="#MJX-240-TEX-N-2212"></use></g><g transform="translate(2486.4,0)"><use xlink:href="#MJX-240-TEX-I-1D45B"></use></g><g transform="translate(3086.4,0)"><g ><g ><use xlink:href="#MJX-240-TEX-N-2032"></use><use xlink:href="#MJX-240-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(3636.4,0)"><use xlink:href="#MJX-240-TEX-N-29"></use></g><g transform="translate(4025.4,0)"><use xlink:href="#MJX-240-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/139.svg b/47464-h/images/139.svg
new file mode 100644
index 0000000..932a994
--- /dev/null
+++ b/47464-h/images/139.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.464ex;" xmlns="http://www.w3.org/2000/svg" width="438px" height="909px" viewBox="0 -704 438 909" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-307-TEX-I-1D709" d="M268 632Q268 704 296 704Q314 704 314 687Q314 682 311 664T308 635T309 620V616H315Q342 619 360 619Q443 619 443 586Q439 548 358 546H344Q326 546 317 549T290 566Q257 550 226 505T195 405Q195 381 201 364T211 342T218 337Q266 347 298 347Q375 347 375 314Q374 297 359 288T327 277T280 275Q234 275 208 283L195 286Q149 260 119 214T88 130Q88 116 90 108Q101 79 129 63T229 20Q238 17 243 15Q337 -21 354 -33Q383 -53 383 -94Q383 -137 351 -171T273 -205Q240 -205 202 -190T158 -167Q156 -163 156 -159Q156 -151 161 -146T176 -140Q182 -140 189 -143Q232 -168 274 -168Q286 -168 292 -165Q313 -151 313 -129Q313 -112 301 -104T232 -75Q214 -68 204 -64Q198 -62 171 -52T136 -38T107 -24T78 -8T56 12T36 37T26 66T21 103Q21 149 55 206T145 301L154 307L148 313Q141 319 136 323T124 338T111 358T103 382T99 413Q99 471 143 524T259 602L271 607Q268 618 268 632Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-307-TEX-I-1D709"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/14.svg b/47464-h/images/14.svg
new file mode 100644
index 0000000..84fbe64
--- /dev/null
+++ b/47464-h/images/14.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="5370.1px" height="1133.2px" viewBox="0 -883.2 5370.1 1133.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-14-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-14-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-14-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-14-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-14-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-14-TEX-N-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path id="MJX-14-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-14-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-14-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-14-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-14-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-14-TEX-N-32"></use></g><g transform="translate(2363.6,0)"><use xlink:href="#MJX-14-TEX-I-1D445"></use></g><g transform="translate(3122.6,0)"><use xlink:href="#MJX-14-TEX-I-1D450"></use></g><g transform="translate(3555.6,0)"><g ><use xlink:href="#MJX-14-TEX-N-2F"></use></g></g><g transform="translate(4055.6,0)"><g ><use xlink:href="#MJX-14-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-14-TEX-N-33"></use></g></g></g><g transform="translate(5092.1,0)"><use xlink:href="#MJX-14-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/140.svg b/47464-h/images/140.svg
new file mode 100644
index 0000000..7c5d1bb
--- /dev/null
+++ b/47464-h/images/140.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.029ex;" xmlns="http://www.w3.org/2000/svg" width="517px" height="444px" viewBox="0 -431 517 444" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-521-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-521-TEX-I-1D70F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/141.svg b/47464-h/images/141.svg
new file mode 100644
index 0000000..c586d64
--- /dev/null
+++ b/47464-h/images/141.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="5098px" height="665px" viewBox="0 -583 5098 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-320-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-320-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-320-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-320-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-320-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-320-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><use xlink:href="#MJX-320-TEX-N-2032"></use></g></g><g transform="translate(1097.2,0)"><use xlink:href="#MJX-320-TEX-N-2212"></use></g><g transform="translate(2097.4,0)"><use xlink:href="#MJX-320-TEX-I-1D45B"></use></g><g transform="translate(2697.4,0)"><g ><g ><use xlink:href="#MJX-320-TEX-N-2032"></use><use xlink:href="#MJX-320-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(3525.2,0)"><use xlink:href="#MJX-320-TEX-N-3D"></use></g><g transform="translate(4581,0)"><use xlink:href="#MJX-320-TEX-I-1D70F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/142.svg b/47464-h/images/142.svg
new file mode 100644
index 0000000..8fce853
--- /dev/null
+++ b/47464-h/images/142.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.65ex;" xmlns="http://www.w3.org/2000/svg" width="1314.2px" height="970.2px" viewBox="0 -683 1314.2 970.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-257-TEX-I-1D43B" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path id="MJX-257-TEX-I-1D6FD" d="M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-257-TEX-I-1D43B"></use></g><g transform="translate(864,-150) scale(0.707)" ><g ><use xlink:href="#MJX-257-TEX-I-1D6FD"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/143.svg b/47464-h/images/143.svg
new file mode 100644
index 0000000..7b4ee20
--- /dev/null
+++ b/47464-h/images/143.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1366.5px" height="840.8px" viewBox="0 -683 1366.5 840.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-258-TEX-I-1D43B" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path id="MJX-258-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-258-TEX-I-1D43B"></use></g><g transform="translate(864,-150) scale(0.707)" ><g ><use xlink:href="#MJX-258-TEX-I-1D6FC"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/144.svg b/47464-h/images/144.svg
new file mode 100644
index 0000000..da7e8be
--- /dev/null
+++ b/47464-h/images/144.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.464ex;" xmlns="http://www.w3.org/2000/svg" width="1135.9px" height="910px" viewBox="0 -705 1135.9 910" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-264-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-264-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-264-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-264-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-264-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-264-TEX-N-2032"></use></g></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/145.svg b/47464-h/images/145.svg
new file mode 100644
index 0000000..5f8dbb3
--- /dev/null
+++ b/47464-h/images/145.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.464ex;" xmlns="http://www.w3.org/2000/svg" width="1330.3px" height="910px" viewBox="0 -705 1330.3 910" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-265-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-265-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-265-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-265-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-265-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><g ><use xlink:href="#MJX-265-TEX-N-2032"></use><use xlink:href="#MJX-265-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/146.svg b/47464-h/images/146.svg
new file mode 100644
index 0000000..75462db
--- /dev/null
+++ b/47464-h/images/146.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="3258.3px" height="1000px" viewBox="0 -750 3258.3 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-268-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-268-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-268-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-268-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-268-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-268-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-268-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-268-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><g ><use xlink:href="#MJX-268-TEX-N-2032"></use><use xlink:href="#MJX-268-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g><g transform="translate(1330.3,0)"><use xlink:href="#MJX-268-TEX-N-28"></use></g><g transform="translate(1719.3,0)"><use xlink:href="#MJX-268-TEX-I-1D45B"></use></g><g transform="translate(2319.3,0)"><g ><g ><use xlink:href="#MJX-268-TEX-N-2032"></use><use xlink:href="#MJX-268-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(2869.3,0)"><use xlink:href="#MJX-268-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/147.svg b/47464-h/images/147.svg
new file mode 100644
index 0000000..51c9f0c
--- /dev/null
+++ b/47464-h/images/147.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="2788.9px" height="1000px" viewBox="0 -750 2788.9 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-270-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-270-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-270-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-270-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-270-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-270-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-270-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-270-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-270-TEX-N-2032"></use></g></g></g></g><g transform="translate(1135.9,0)"><use xlink:href="#MJX-270-TEX-N-28"></use></g><g transform="translate(1524.9,0)"><use xlink:href="#MJX-270-TEX-I-1D45B"></use></g><g transform="translate(2124.9,0)"><g ><use xlink:href="#MJX-270-TEX-N-2032"></use></g></g><g transform="translate(2399.9,0)"><use xlink:href="#MJX-270-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/148.svg b/47464-h/images/148.svg
new file mode 100644
index 0000000..621b94e
--- /dev/null
+++ b/47464-h/images/148.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="2319.4px" height="1000px" viewBox="0 -750 2319.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-283-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-283-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-283-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-283-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-283-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-283-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-283-TEX-I-1D458"></use></g></g></g><g transform="translate(941.4,0)"><use xlink:href="#MJX-283-TEX-N-28"></use></g><g transform="translate(1330.4,0)"><use xlink:href="#MJX-283-TEX-I-1D45B"></use></g><g transform="translate(1930.4,0)"><use xlink:href="#MJX-283-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/149.svg b/47464-h/images/149.svg
new file mode 100644
index 0000000..e73acfa
--- /dev/null
+++ b/47464-h/images/149.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="521px" height="705px" viewBox="0 -694 521 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-841-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-841-TEX-I-1D458"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/15.svg b/47464-h/images/15.svg
new file mode 100644
index 0000000..d1dd741
--- /dev/null
+++ b/47464-h/images/15.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="5969.4px" height="1133.2px" viewBox="0 -883.2 5969.4 1133.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-15-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-15-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-15-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-15-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-15-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-15-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-15-TEX-N-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path id="MJX-15-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-15-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-15-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-15-TEX-I-1D45B"></use></g></g></g><g transform="translate(1407,0)"><use xlink:href="#MJX-15-TEX-N-3D"></use></g><g transform="translate(2462.8,0)"><use xlink:href="#MJX-15-TEX-N-32"></use></g><g transform="translate(2962.8,0)"><use xlink:href="#MJX-15-TEX-I-1D445"></use></g><g transform="translate(3721.8,0)"><use xlink:href="#MJX-15-TEX-I-1D450"></use></g><g transform="translate(4154.8,0)"><g ><use xlink:href="#MJX-15-TEX-N-2F"></use></g></g><g transform="translate(4654.8,0)"><g ><use xlink:href="#MJX-15-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-15-TEX-N-33"></use></g></g></g><g transform="translate(5691.4,0)"><use xlink:href="#MJX-15-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/150.svg b/47464-h/images/150.svg
new file mode 100644
index 0000000..8505644
--- /dev/null
+++ b/47464-h/images/150.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="645px" height="727px" viewBox="0 -705 645 727" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-685-TEX-I-1D446" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-685-TEX-I-1D446"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/151.svg b/47464-h/images/151.svg
new file mode 100644
index 0000000..5c1b629
--- /dev/null
+++ b/47464-h/images/151.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="751px" height="683px" viewBox="0 -683 751 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-733-TEX-I-1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-733-TEX-I-1D443"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/152.svg b/47464-h/images/152.svg
new file mode 100644
index 0000000..319b636
--- /dev/null
+++ b/47464-h/images/152.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="828px" height="683px" viewBox="0 -683 828 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-683-TEX-I-1D437" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-683-TEX-I-1D437"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/153.svg b/47464-h/images/153.svg
new file mode 100644
index 0000000..4368f6f
--- /dev/null
+++ b/47464-h/images/153.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="759px" height="683px" viewBox="0 -683 759 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-489-TEX-I-1D435" d="M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-489-TEX-I-1D435"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/154.svg b/47464-h/images/154.svg
new file mode 100644
index 0000000..70ae48e
--- /dev/null
+++ b/47464-h/images/154.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="2425.4px" height="1000px" viewBox="0 -750 2425.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-284-TEX-I-1D719" d="M409 688Q413 694 421 694H429H442Q448 688 448 686Q448 679 418 563Q411 535 404 504T392 458L388 442Q388 441 397 441T429 435T477 418Q521 397 550 357T579 260T548 151T471 65T374 11T279 -10H275L251 -105Q245 -128 238 -160Q230 -192 227 -198T215 -205H209Q189 -205 189 -198Q189 -193 211 -103L234 -11Q234 -10 226 -10Q221 -10 206 -8T161 6T107 36T62 89T43 171Q43 231 76 284T157 370T254 422T342 441Q347 441 348 445L378 567Q409 686 409 688ZM122 150Q122 116 134 91T167 53T203 35T237 27H244L337 404Q333 404 326 403T297 395T255 379T211 350T170 304Q152 276 137 237Q122 191 122 150ZM500 282Q500 320 484 347T444 385T405 400T381 404H378L332 217L284 29Q284 27 285 27Q293 27 317 33T357 47Q400 66 431 100T475 170T494 234T500 282Z"></path><path id="MJX-284-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-284-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-284-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-284-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-284-TEX-I-1D719"></use></g><g transform="translate(629,-150) scale(0.707)" ><g ><use xlink:href="#MJX-284-TEX-I-1D458"></use></g></g></g><g transform="translate(1047.4,0)"><use xlink:href="#MJX-284-TEX-N-28"></use></g><g transform="translate(1436.4,0)"><use xlink:href="#MJX-284-TEX-I-1D45B"></use></g><g transform="translate(2036.4,0)"><use xlink:href="#MJX-284-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/155.svg b/47464-h/images/155.svg
new file mode 100644
index 0000000..70475dc
--- /dev/null
+++ b/47464-h/images/155.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="749px" height="680px" viewBox="0 -680 749 680" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-291-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-291-TEX-I-1D439"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/156.svg b/47464-h/images/156.svg
new file mode 100644
index 0000000..b9162ca
--- /dev/null
+++ b/47464-h/images/156.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="571px" height="442px" viewBox="0 -431 571 442" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-519-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-519-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/157.svg b/47464-h/images/157.svg
new file mode 100644
index 0000000..36c3fda
--- /dev/null
+++ b/47464-h/images/157.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1245.3px" height="837.8px" viewBox="0 -680 1245.3 837.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-299-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-299-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-299-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-299-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/158.svg b/47464-h/images/158.svg
new file mode 100644
index 0000000..d22f84c
--- /dev/null
+++ b/47464-h/images/158.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="2229.3px" height="840.8px" viewBox="0 -683 2229.3 840.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-300-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-300-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-300-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-300-TEX-N-2212"></use></g><g transform="translate(778,0)"><g ><use xlink:href="#MJX-300-TEX-I-1D44A"></use></g><g transform="translate(977,-150) scale(0.707)" ><g ><use xlink:href="#MJX-300-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/159.svg b/47464-h/images/159.svg
new file mode 100644
index 0000000..13c17a2
--- /dev/null
+++ b/47464-h/images/159.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="3025.2px" height="877px" viewBox="0 -683 3025.2 877" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-302-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-302-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-302-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-302-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-302-TEX-I-1D44A"></use></g><g transform="translate(977,-150) scale(0.707)" ><g ><use xlink:href="#MJX-302-TEX-I-1D45B"></use></g></g></g><g transform="translate(1451.3,0)"><use xlink:href="#MJX-302-TEX-N-2C"></use></g><g transform="translate(1895.9,0)"><g ><use xlink:href="#MJX-302-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-302-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/16.svg b/47464-h/images/16.svg
new file mode 100644
index 0000000..ccd2530
--- /dev/null
+++ b/47464-h/images/16.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.652ex;" xmlns="http://www.w3.org/2000/svg" width="9542.3px" height="2247.9px" viewBox="0 -1517.7 9542.3 2247.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-16-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-16-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-16-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-16-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-16-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-16-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-16-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-16-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-16-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-16-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-16-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-16-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-16-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-16-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-16-TEX-I-1D445"></use></g><g transform="translate(1036.8,0)"><use xlink:href="#MJX-16-TEX-N-3D"></use></g><g transform="translate(2092.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-16-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-16-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-16-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-16-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-16-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-16-TEX-I-1D45A"></use></g></g><g transform="translate(1140.8,-719.2)"><g ><use xlink:href="#MJX-16-TEX-I-1D450"></use></g><g transform="translate(433,0)"><g ><use xlink:href="#MJX-16-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-16-TEX-N-33"></use></g></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(5819.7,0)"><use xlink:href="#MJX-16-TEX-N-2E"></use></g><g transform="translate(6097.7,0)"><g ></g></g><g transform="translate(8264.3,0)"><use xlink:href="#MJX-16-TEX-N-28"></use><use xlink:href="#MJX-16-TEX-N-37" transform="translate(389,0)"></use><use xlink:href="#MJX-16-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/160.svg b/47464-h/images/160.svg
new file mode 100644
index 0000000..37c7390
--- /dev/null
+++ b/47464-h/images/160.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1036.3px" height="598.8px" viewBox="0 -441 1036.3 598.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-303-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-303-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-303-TEX-I-1D44E"></use></g><g transform="translate(562,-150) scale(0.707)" ><g ><use xlink:href="#MJX-303-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/161.svg b/47464-h/images/161.svg
new file mode 100644
index 0000000..43494ac
--- /dev/null
+++ b/47464-h/images/161.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="2115.7px" height="888px" viewBox="0 -694 2115.7 888" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-314-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-314-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-314-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-314-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-314-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><use xlink:href="#MJX-314-TEX-N-2032"></use></g></g><g transform="translate(875,0)"><use xlink:href="#MJX-314-TEX-N-2C"></use></g><g transform="translate(1319.7,0)"><use xlink:href="#MJX-314-TEX-I-1D458"></use></g><g transform="translate(1840.7,0)"><g ><use xlink:href="#MJX-314-TEX-N-2032"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/162.svg b/47464-h/images/162.svg
new file mode 100644
index 0000000..aa001b1
--- /dev/null
+++ b/47464-h/images/162.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="2665.7px" height="888px" viewBox="0 -694 2665.7 888" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-315-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-315-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-315-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-315-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-315-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><g ><use xlink:href="#MJX-315-TEX-N-2032"></use><use xlink:href="#MJX-315-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1150,0)"><use xlink:href="#MJX-315-TEX-N-2C"></use></g><g transform="translate(1594.7,0)"><use xlink:href="#MJX-315-TEX-I-1D458"></use></g><g transform="translate(2115.7,0)"><g ><g ><use xlink:href="#MJX-315-TEX-N-2032"></use><use xlink:href="#MJX-315-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/163.svg b/47464-h/images/163.svg
new file mode 100644
index 0000000..2463652
--- /dev/null
+++ b/47464-h/images/163.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.65ex;" xmlns="http://www.w3.org/2000/svg" width="1767.4px" height="992.2px" viewBox="0 -705 1767.4 992.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-326-TEX-I-1D436" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path id="MJX-326-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-326-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-326-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-326-TEX-I-1D436"></use></g><g transform="translate(748,-150) scale(0.707)" ><g ><use xlink:href="#MJX-326-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-326-TEX-N-2C"></use></g><g transform="translate(795,0)"><use xlink:href="#MJX-326-TEX-I-1D705"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/164.svg b/47464-h/images/164.svg
new file mode 100644
index 0000000..b406f38
--- /dev/null
+++ b/47464-h/images/164.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.65ex;" xmlns="http://www.w3.org/2000/svg" width="1485.4px" height="729.2px" viewBox="0 -442 1485.4 729.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-311-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-311-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-311-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-311-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-311-TEX-I-1D450"></use></g><g transform="translate(466,-150) scale(0.707)" ><g ><use xlink:href="#MJX-311-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-311-TEX-N-2C"></use></g><g transform="translate(795,0)"><use xlink:href="#MJX-311-TEX-I-1D705"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/165.svg b/47464-h/images/165.svg
new file mode 100644
index 0000000..d19111c
--- /dev/null
+++ b/47464-h/images/165.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="576px" height="453px" viewBox="0 -442 576 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-402-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-402-TEX-I-1D705"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/166.svg b/47464-h/images/166.svg
new file mode 100644
index 0000000..833ed6d
--- /dev/null
+++ b/47464-h/images/166.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="3089.4px" height="776px" viewBox="0 -694 3089.4 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-317-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-317-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-317-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-317-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-317-TEX-N-2032"></use></g></g><g transform="translate(1018.2,0)"><use xlink:href="#MJX-317-TEX-N-2212"></use></g><g transform="translate(2018.4,0)"><use xlink:href="#MJX-317-TEX-I-1D458"></use></g><g transform="translate(2539.4,0)"><g ><g ><use xlink:href="#MJX-317-TEX-N-2032"></use><use xlink:href="#MJX-317-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/167.svg b/47464-h/images/167.svg
new file mode 100644
index 0000000..8b649b4
--- /dev/null
+++ b/47464-h/images/167.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="4999px" height="776px" viewBox="0 -694 4999 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-321-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-321-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-321-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-321-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-321-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-321-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-321-TEX-N-2032"></use></g></g><g transform="translate(1018.2,0)"><use xlink:href="#MJX-321-TEX-N-2212"></use></g><g transform="translate(2018.4,0)"><use xlink:href="#MJX-321-TEX-I-1D458"></use></g><g transform="translate(2539.4,0)"><g ><g ><use xlink:href="#MJX-321-TEX-N-2032"></use><use xlink:href="#MJX-321-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(3367.2,0)"><use xlink:href="#MJX-321-TEX-N-3D"></use></g><g transform="translate(4423,0)"><use xlink:href="#MJX-321-TEX-I-1D705"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/168.svg b/47464-h/images/168.svg
new file mode 100644
index 0000000..f1c0ee3
--- /dev/null
+++ b/47464-h/images/168.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2315.4px" height="665px" viewBox="0 -583 2315.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-323-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-323-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-323-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-323-TEX-I-1D70F"></use></g><g transform="translate(739.2,0)"><use xlink:href="#MJX-323-TEX-N-2B"></use></g><g transform="translate(1739.4,0)"><use xlink:href="#MJX-323-TEX-I-1D705"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/169.svg b/47464-h/images/169.svg
new file mode 100644
index 0000000..3c2bf00
--- /dev/null
+++ b/47464-h/images/169.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="9115.3px" height="1000px" viewBox="0 -750 9115.3 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-325-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-325-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-325-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-325-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-325-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-325-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-325-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-325-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-325-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-325-TEX-N-2032"></use></g></g><g transform="translate(1486.2,0)"><use xlink:href="#MJX-325-TEX-N-2212"></use></g><g transform="translate(2486.4,0)"><use xlink:href="#MJX-325-TEX-I-1D45B"></use></g><g transform="translate(3086.4,0)"><g ><g ><use xlink:href="#MJX-325-TEX-N-2032"></use><use xlink:href="#MJX-325-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(3636.4,0)"><use xlink:href="#MJX-325-TEX-N-29"></use></g><g transform="translate(4247.7,0)"><use xlink:href="#MJX-325-TEX-N-2B"></use></g><g transform="translate(5247.9,0)"><use xlink:href="#MJX-325-TEX-N-28"></use></g><g transform="translate(5636.9,0)"><use xlink:href="#MJX-325-TEX-I-1D458"></use></g><g transform="translate(6157.9,0)"><g ><use xlink:href="#MJX-325-TEX-N-2032"></use></g></g><g transform="translate(6655.1,0)"><use xlink:href="#MJX-325-TEX-N-2212"></use></g><g transform="translate(7655.3,0)"><use xlink:href="#MJX-325-TEX-I-1D458"></use></g><g transform="translate(8176.3,0)"><g ><g ><use xlink:href="#MJX-325-TEX-N-2032"></use><use xlink:href="#MJX-325-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(8726.3,0)"><use xlink:href="#MJX-325-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/17.svg b/47464-h/images/17.svg
new file mode 100644
index 0000000..1e4df35
--- /dev/null
+++ b/47464-h/images/17.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="23951.6px" height="2240.9px" viewBox="0 -1509.9 23951.6 2240.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-17-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-17-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-17-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-17-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-17-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-17-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-17-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-17-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-17-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-17-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-17-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-17-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-17-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-17-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-17-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-17-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-17-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-17-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-17-TEX-I-1D44E"></use></g><g transform="translate(1306.8,0)"><use xlink:href="#MJX-17-TEX-N-3D"></use></g><g transform="translate(2362.6,0)"><g ><use xlink:href="#MJX-17-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(3621.3,0)"><use xlink:href="#MJX-17-TEX-N-B7"></use></g><g transform="translate(4121.6,0)"><g transform="translate(652.7,676)"><g ><use xlink:href="#MJX-17-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-17-TEX-I-1D450"></use></g><g transform="translate(433,0)"><use xlink:href="#MJX-17-TEX-I-210E"></use></g><g transform="translate(1009,0)"><use xlink:href="#MJX-17-TEX-I-1D445"></use></g></g><rect width="1968" height="60" x="120" y="220"></rect></g><g transform="translate(6607.3,0)"><use xlink:href="#MJX-17-TEX-N-3D"></use></g><g transform="translate(7663.1,0)"><g ><use xlink:href="#MJX-17-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(8921.9,0)"><use xlink:href="#MJX-17-TEX-N-B7"></use></g><g transform="translate(9422.1,0)"><g transform="translate(1357.3,676)"><g ><use xlink:href="#MJX-17-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-17-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-17-TEX-I-1D45A"></use></g><g transform="translate(2384.6,0)"><g ><use xlink:href="#MJX-17-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(13427,0)"><use xlink:href="#MJX-17-TEX-N-3D"></use></g><g transform="translate(14482.8,0)"><g ><use xlink:href="#MJX-17-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-32"></use></g></g></g><g transform="translate(15741.5,0)"><use xlink:href="#MJX-17-TEX-N-B7"></use></g><g transform="translate(16241.8,0)"><use xlink:href="#MJX-17-TEX-N-31"></use><use xlink:href="#MJX-17-TEX-N-2E" transform="translate(500,0)"></use><use xlink:href="#MJX-17-TEX-N-31" transform="translate(778,0)"></use></g><g transform="translate(17742,0)"><use xlink:href="#MJX-17-TEX-N-B7"></use></g><g transform="translate(18242.2,0)"><g ><use xlink:href="#MJX-17-TEX-N-31"></use><use xlink:href="#MJX-17-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,413) scale(0.707)" ><g ><use xlink:href="#MJX-17-TEX-N-2212"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-17-TEX-N-38"></use></g></g></g><g transform="translate(20228.9,0)"><use xlink:href="#MJX-17-TEX-N-2E"></use></g><g transform="translate(20506.9,0)"><g ></g></g><g transform="translate(22673.6,0)"><use xlink:href="#MJX-17-TEX-N-28"></use><use xlink:href="#MJX-17-TEX-N-38" transform="translate(389,0)"></use><use xlink:href="#MJX-17-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/170.svg b/47464-h/images/170.svg
new file mode 100644
index 0000000..e96c405
--- /dev/null
+++ b/47464-h/images/170.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="888px" height="683px" viewBox="0 -683 888 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-327-TEX-I-1D43B" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-327-TEX-I-1D43B"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/171.svg b/47464-h/images/171.svg
new file mode 100644
index 0000000..93ffc13
--- /dev/null
+++ b/47464-h/images/171.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.029ex;" xmlns="http://www.w3.org/2000/svg" width="1139px" height="456px" viewBox="0 -443 1139 456" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-503-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-503-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-503-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-503-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/172.svg b/47464-h/images/172.svg
new file mode 100644
index 0000000..2c5fb28
--- /dev/null
+++ b/47464-h/images/172.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2932.4px" height="665px" viewBox="0 -583 2932.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-515-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-515-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-515-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-515-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-515-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-515-TEX-I-1D714"></use></g><g transform="translate(1361.2,0)"><use xlink:href="#MJX-515-TEX-N-2B"></use></g><g transform="translate(2361.4,0)"><use xlink:href="#MJX-515-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/173.svg b/47464-h/images/173.svg
new file mode 100644
index 0000000..5516dca
--- /dev/null
+++ b/47464-h/images/173.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2932.4px" height="665px" viewBox="0 -583 2932.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-516-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-516-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-516-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-516-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-516-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-516-TEX-I-1D714"></use></g><g transform="translate(1361.2,0)"><use xlink:href="#MJX-516-TEX-N-2212"></use></g><g transform="translate(2361.4,0)"><use xlink:href="#MJX-516-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/174.svg b/47464-h/images/174.svg
new file mode 100644
index 0000000..7a8530a
--- /dev/null
+++ b/47464-h/images/174.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="930.6px" height="607.6px" viewBox="0 -442 930.6 607.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-342-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-342-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-342-TEX-I-1D708"></use></g><g transform="translate(527,-150) scale(0.707)" ><g ><use xlink:href="#MJX-342-TEX-N-30"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/175.svg b/47464-h/images/175.svg
new file mode 100644
index 0000000..add3221
--- /dev/null
+++ b/47464-h/images/175.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="2724px" height="748.6px" viewBox="0 -583 2724 748.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-344-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-344-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-344-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-344-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-344-TEX-I-1D708"></use></g><g transform="translate(527,-150) scale(0.707)" ><g ><use xlink:href="#MJX-344-TEX-N-30"></use></g></g></g><g transform="translate(1152.8,0)"><use xlink:href="#MJX-344-TEX-N-2B"></use></g><g transform="translate(2153,0)"><use xlink:href="#MJX-344-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/176.svg b/47464-h/images/176.svg
new file mode 100644
index 0000000..8f1d6c9
--- /dev/null
+++ b/47464-h/images/176.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="2724px" height="748.6px" viewBox="0 -583 2724 748.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-345-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-345-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-345-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-345-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-345-TEX-I-1D708"></use></g><g transform="translate(527,-150) scale(0.707)" ><g ><use xlink:href="#MJX-345-TEX-N-30"></use></g></g></g><g transform="translate(1152.8,0)"><use xlink:href="#MJX-345-TEX-N-2212"></use></g><g transform="translate(2153,0)"><use xlink:href="#MJX-345-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/177.svg b/47464-h/images/177.svg
new file mode 100644
index 0000000..577ba24
--- /dev/null
+++ b/47464-h/images/177.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="1040px" height="2067px" viewBox="0 -1370 1040 2067" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-352-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-352-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><g transform="translate(259.5,676)"><use xlink:href="#MJX-352-TEX-I-1D458"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-352-TEX-I-1D45B"></use></g><rect width="800" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/178.svg b/47464-h/images/178.svg
new file mode 100644
index 0000000..65f0e6e
--- /dev/null
+++ b/47464-h/images/178.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="1003px" height="860px" viewBox="0 -666 1003 860" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-437-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-437-TEX-I-1D45D" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-437-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-437-TEX-I-1D45D"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/179.svg b/47464-h/images/179.svg
new file mode 100644
index 0000000..a569700
--- /dev/null
+++ b/47464-h/images/179.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1536.3px" height="823.8px" viewBox="0 -666 1536.3 823.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-355-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-355-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-355-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-355-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-355-TEX-I-1D44E"></use></g><g transform="translate(562,-150) scale(0.707)" ><g ><use xlink:href="#MJX-355-TEX-I-1D45B"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/18.svg b/47464-h/images/18.svg
new file mode 100644
index 0000000..1d0edfc
--- /dev/null
+++ b/47464-h/images/18.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.671ex;" xmlns="http://www.w3.org/2000/svg" width="7883px" height="2247.9px" viewBox="0 -1509.2 7883 2247.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-18-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-18-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-18-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-18-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-18-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-18-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-18-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-18-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-18-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-18-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-18-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-18-TEX-I-1D714"></use></g><g transform="translate(655,413) scale(0.707)" ><g ><use xlink:href="#MJX-18-TEX-N-32"></use></g></g></g><g transform="translate(1336.3,0)"><use xlink:href="#MJX-18-TEX-N-3D"></use></g><g transform="translate(2392.1,0)"><g transform="translate(473.3,676)"><use xlink:href="#MJX-18-TEX-N-32"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-18-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-18-TEX-N-32"></use></g></g></g><rect width="1206.6" height="60" x="120" y="220"></rect></g><g transform="translate(3838.7,0)"><g ></g></g><g transform="translate(4005.7,0)"><g transform="translate(1029.8,676)"><g ><use xlink:href="#MJX-18-TEX-I-1D44A"></use></g><g transform="translate(1136.2,363) scale(0.707)" ><g ><use xlink:href="#MJX-18-TEX-N-33"></use></g></g></g><g transform="translate(220,-727.7)"><g ><g ><use xlink:href="#MJX-18-TEX-I-1D441"></use></g><g transform="translate(975.3,289) scale(0.707)" ><g ><use xlink:href="#MJX-18-TEX-N-32"></use></g></g></g><g transform="translate(1378.8,0)"><g ><use xlink:href="#MJX-18-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-18-TEX-N-34"></use></g></g></g><g transform="translate(2281.4,0)"><use xlink:href="#MJX-18-TEX-I-1D45A"></use></g></g><rect width="3359.4" height="60" x="120" y="220"></rect></g><g transform="translate(7605,0)"><use xlink:href="#MJX-18-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/180.svg b/47464-h/images/180.svg
new file mode 100644
index 0000000..880fcbb
--- /dev/null
+++ b/47464-h/images/180.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2354.6px" height="776px" viewBox="0 -694 2354.6 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-555-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-555-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-555-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-555-TEX-I-1D458"></use></g><g transform="translate(798.8,0)"><use xlink:href="#MJX-555-TEX-N-3D"></use></g><g transform="translate(1854.6,0)"><use xlink:href="#MJX-555-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/181.svg b/47464-h/images/181.svg
new file mode 100644
index 0000000..fe6b401
--- /dev/null
+++ b/47464-h/images/181.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2354.6px" height="776px" viewBox="0 -694 2354.6 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-404-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-404-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-404-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-404-TEX-I-1D458"></use></g><g transform="translate(798.8,0)"><use xlink:href="#MJX-404-TEX-N-3D"></use></g><g transform="translate(1854.6,0)"><use xlink:href="#MJX-404-TEX-N-32"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/182.svg b/47464-h/images/182.svg
new file mode 100644
index 0000000..1824773
--- /dev/null
+++ b/47464-h/images/182.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="1278px" height="748px" viewBox="0 -666 1278 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-381-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-381-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-381-TEX-N-2B"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-381-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/183.svg b/47464-h/images/183.svg
new file mode 100644
index 0000000..1beec9b
--- /dev/null
+++ b/47464-h/images/183.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="1278px" height="748px" viewBox="0 -666 1278 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-382-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-382-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-382-TEX-N-2212"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-382-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/184.svg b/47464-h/images/184.svg
new file mode 100644
index 0000000..e16a552
--- /dev/null
+++ b/47464-h/images/184.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1597px" height="716px" viewBox="0 -716 1597 716" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-386-TEX-N-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path id="MJX-386-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-386-TEX-N-394"></use></g><g transform="translate(833,0)"><use xlink:href="#MJX-386-TEX-I-1D438"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/185.svg b/47464-h/images/185.svg
new file mode 100644
index 0000000..2e5de3a
--- /dev/null
+++ b/47464-h/images/185.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1584px" height="716px" viewBox="0 -716 1584 716" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-387-TEX-N-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path id="MJX-387-TEX-I-1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-387-TEX-N-394"></use></g><g transform="translate(833,0)"><use xlink:href="#MJX-387-TEX-I-1D443"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/186.svg b/47464-h/images/186.svg
new file mode 100644
index 0000000..82db46d
--- /dev/null
+++ b/47464-h/images/186.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="1510px" height="2067px" viewBox="0 -1370 1510 2067" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-392-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-392-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-392-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><g transform="translate(467,676)"><use xlink:href="#MJX-392-TEX-I-210E"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-392-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-392-TEX-I-1D70B"></use></g></g><rect width="1270" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/187.svg b/47464-h/images/187.svg
new file mode 100644
index 0000000..fe0643f
--- /dev/null
+++ b/47464-h/images/187.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2915.4px" height="748px" viewBox="0 -666 2915.4 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-397-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-397-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-397-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-397-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-397-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-397-TEX-I-1D714"></use></g><g transform="translate(1344.2,0)"><use xlink:href="#MJX-397-TEX-N-2B"></use></g><g transform="translate(2344.4,0)"><use xlink:href="#MJX-397-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/188.svg b/47464-h/images/188.svg
new file mode 100644
index 0000000..a17fa47
--- /dev/null
+++ b/47464-h/images/188.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2415.4px" height="665px" viewBox="0 -583 2415.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-398-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-398-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-398-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-398-TEX-I-1D714"></use></g><g transform="translate(844.2,0)"><use xlink:href="#MJX-398-TEX-N-2B"></use></g><g transform="translate(1844.4,0)"><use xlink:href="#MJX-398-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/189.svg b/47464-h/images/189.svg
new file mode 100644
index 0000000..bb7e4bc
--- /dev/null
+++ b/47464-h/images/189.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="3508.4px" height="665px" viewBox="0 -583 3508.4 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-401-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-401-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-401-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-401-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path><path id="MJX-401-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-401-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-401-TEX-I-1D714"></use></g><g transform="translate(1361.2,0)"><use xlink:href="#MJX-401-TEX-N-2B"></use></g><g transform="translate(2361.4,0)"><use xlink:href="#MJX-401-TEX-I-1D705"></use></g><g transform="translate(2937.4,0)"><use xlink:href="#MJX-401-TEX-I-1D70E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/19.svg b/47464-h/images/19.svg
new file mode 100644
index 0000000..1b4cc2b
--- /dev/null
+++ b/47464-h/images/19.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -3.07ex;" xmlns="http://www.w3.org/2000/svg" width="27774.7px" height="3106.5px" viewBox="0 -1749.5 27774.7 3106.5" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-19-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-19-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-19-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-19-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-19-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-19-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-19-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-19-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-19-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-19-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-19-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-19-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-19-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-19-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-19-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-19-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-19-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-19-TEX-SO-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path id="MJX-19-TEX-SO-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path><path id="MJX-19-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-19-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-19-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-19-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-19-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-19-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-19-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-19-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-19-TEX-I-1D441"></use></g><g transform="translate(975.3,363) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><g transform="translate(2885.4,0)"><g ><use xlink:href="#MJX-19-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-34"></use></g></g></g><g transform="translate(3787.9,0)"><use xlink:href="#MJX-19-TEX-I-1D45A"></use></g></g><g transform="translate(1830.2,-719.2)"><g ><use xlink:href="#MJX-19-TEX-I-1D450"></use></g><g transform="translate(433,0)"><g ><use xlink:href="#MJX-19-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-33"></use></g></g></g></g><rect width="4865.9" height="60" x="120" y="220"></rect></g><g transform="translate(7462.5,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-19-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-19-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-19-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-19-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-19-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-S4-29"></use></g></g><g transform="translate(13499.8,0)"><use xlink:href="#MJX-19-TEX-N-3D"></use></g><g transform="translate(14555.6,0)"><use xlink:href="#MJX-19-TEX-I-1D445"></use></g><g transform="translate(15314.6,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-S4-28"></use></g></g><g transform="translate(16106.6,0)"><g ><g transform="translate(1232.8,676)"><use xlink:href="#MJX-19-TEX-N-31"></use></g><g transform="translate(220,-1007.5)"><g ><g transform="translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-SO-28"></use></g><g transform="translate(458,0)"><g ><g transform="translate(220,446.1) scale(0.707)"><g ><use xlink:href="#MJX-19-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-31"></use></g></g></g><g transform="translate(272.5,-345) scale(0.707)"><use xlink:href="#MJX-19-TEX-I-1D441"></use></g><rect width="933" height="60" x="120" y="220"></rect></g></g><g transform="translate(1631,0) translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-SO-29"></use></g></g><g transform="translate(2122,576.6) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><rect width="2725.5" height="60" x="120" y="220"></rect></g><g transform="translate(3187.7,0)"><use xlink:href="#MJX-19-TEX-N-2212"></use></g><g transform="translate(4188,0)"><g transform="translate(1232.8,676)"><use xlink:href="#MJX-19-TEX-N-31"></use></g><g transform="translate(220,-1007.5)"><g ><g transform="translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-SO-28"></use></g><g transform="translate(458,0)"><g ><g transform="translate(220,446.1) scale(0.707)"><g ><use xlink:href="#MJX-19-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><g transform="translate(272.5,-345) scale(0.707)"><use xlink:href="#MJX-19-TEX-I-1D441"></use></g><rect width="933" height="60" x="120" y="220"></rect></g></g><g transform="translate(1631,0) translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-SO-29"></use></g></g><g transform="translate(2122,576.6) scale(0.707)" ><g ><use xlink:href="#MJX-19-TEX-N-32"></use></g></g></g><rect width="2725.5" height="60" x="120" y="220"></rect></g><g transform="translate(7153.5,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-19-TEX-S4-29"></use></g></g></g><g transform="translate(24052,0)"><use xlink:href="#MJX-19-TEX-N-2E"></use></g><g transform="translate(24330,0)"><g ></g></g><g transform="translate(26496.7,0)"><use xlink:href="#MJX-19-TEX-N-28"></use><use xlink:href="#MJX-19-TEX-N-39" transform="translate(389,0)"></use><use xlink:href="#MJX-19-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/190.svg b/47464-h/images/190.svg
new file mode 100644
index 0000000..a6bbf15
--- /dev/null
+++ b/47464-h/images/190.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1278px" height="666px" viewBox="0 -666 1278 666" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-403-TEX-N-B1" d="M56 320T56 333T70 353H369V502Q369 651 371 655Q376 666 388 666Q402 666 405 654T409 596V500V353H707Q722 345 722 333Q722 320 707 313H409V40H707Q722 32 722 20T707 0H70Q56 7 56 20T70 40H369V313H70Q56 320 56 333Z"></path><path id="MJX-403-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-403-TEX-N-B1"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-403-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/191.svg b/47464-h/images/191.svg
new file mode 100644
index 0000000..fd342d3
--- /dev/null
+++ b/47464-h/images/191.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2354.6px" height="776px" viewBox="0 -694 2354.6 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-405-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-405-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-405-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-405-TEX-I-1D458"></use></g><g transform="translate(798.8,0)"><use xlink:href="#MJX-405-TEX-N-3D"></use></g><g transform="translate(1854.6,0)"><use xlink:href="#MJX-405-TEX-N-33"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/192.svg b/47464-h/images/192.svg
new file mode 100644
index 0000000..4af84d9
--- /dev/null
+++ b/47464-h/images/192.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2721.6px" height="765px" viewBox="0 -683 2721.6 765" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-425-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-425-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-425-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-425-TEX-I-1D441"></use></g><g transform="translate(1165.8,0)"><use xlink:href="#MJX-425-TEX-N-3D"></use></g><g transform="translate(2221.6,0)"><use xlink:href="#MJX-425-TEX-N-31"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/193.svg b/47464-h/images/193.svg
new file mode 100644
index 0000000..f0b04e3
--- /dev/null
+++ b/47464-h/images/193.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2721.6px" height="765px" viewBox="0 -683 2721.6 765" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-427-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-427-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-427-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-427-TEX-I-1D441"></use></g><g transform="translate(1165.8,0)"><use xlink:href="#MJX-427-TEX-N-3D"></use></g><g transform="translate(2221.6,0)"><use xlink:href="#MJX-427-TEX-N-32"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/194.svg b/47464-h/images/194.svg
new file mode 100644
index 0000000..cb407a3
--- /dev/null
+++ b/47464-h/images/194.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="888px" height="683px" viewBox="0 -683 888 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-831-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-831-TEX-I-1D441"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/195.svg b/47464-h/images/195.svg
new file mode 100644
index 0000000..4fe1f93
--- /dev/null
+++ b/47464-h/images/195.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="681px" height="683px" viewBox="0 -683 681 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-449-TEX-I-1D43F" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-449-TEX-I-1D43F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/196.svg b/47464-h/images/196.svg
new file mode 100644
index 0000000..f017d77
--- /dev/null
+++ b/47464-h/images/196.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1070px" height="677px" viewBox="0 -666 1070 677" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-495-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-495-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-495-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-495-TEX-I-1D70B"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/197.svg b/47464-h/images/197.svg
new file mode 100644
index 0000000..079a06d
--- /dev/null
+++ b/47464-h/images/197.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-816-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-816-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-816-TEX-N-31"></use><use xlink:href="#MJX-816-TEX-N-38" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/198.svg b/47464-h/images/198.svg
new file mode 100644
index 0000000..2629447
--- /dev/null
+++ b/47464-h/images/198.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-654-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-654-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-654-TEX-N-31"></use><use xlink:href="#MJX-654-TEX-N-37" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/199.svg b/47464-h/images/199.svg
new file mode 100644
index 0000000..3100b23
--- /dev/null
+++ b/47464-h/images/199.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-783-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-783-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-783-TEX-N-31"></use><use xlink:href="#MJX-783-TEX-N-39" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/2.svg b/47464-h/images/2.svg
new file mode 100644
index 0000000..7aecada
--- /dev/null
+++ b/47464-h/images/2.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="9231.3px" height="2328.9px" viewBox="0 -1359 9231.3 2328.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-2-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-2-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-2-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-2-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-2-TEX-I-1D434" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path id="MJX-2-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-2-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-2-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-2-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-2-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-2-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-2-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-2-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(515.1,676)"><use xlink:href="#MJX-2-TEX-N-31"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-2-TEX-I-1D706"></use></g><g transform="translate(616,-150) scale(0.707)" ><g ><use xlink:href="#MJX-2-TEX-I-1D45B"></use></g></g></g><rect width="1290.3" height="60" x="120" y="220"></rect></g><g transform="translate(1808,0)"><use xlink:href="#MJX-2-TEX-N-3D"></use></g><g transform="translate(2863.8,0)"><use xlink:href="#MJX-2-TEX-I-1D434"></use></g><g transform="translate(3836,0)"><use xlink:href="#MJX-2-TEX-N-2212"></use></g><g transform="translate(4836.3,0)"><g transform="translate(1679,676)"><use xlink:href="#MJX-2-TEX-I-1D445"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-2-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-2-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-2-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><use xlink:href="#MJX-2-TEX-I-1D6FC"></use></g><g transform="translate(2851.4,0)"><g ><use xlink:href="#MJX-2-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-2-TEX-N-32"></use></g></g></g></g><rect width="3877" height="60" x="120" y="220"></rect></g><g transform="translate(8953.3,0)"><use xlink:href="#MJX-2-TEX-N-2C"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/20.svg b/47464-h/images/20.svg
new file mode 100644
index 0000000..dcc4dfb
--- /dev/null
+++ b/47464-h/images/20.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="13085.3px" height="2999px" viewBox="0 -1749.5 13085.3 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-20-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-20-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-20-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-20-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-20-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-20-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-20-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-20-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-20-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-20-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-20-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-20-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-20-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-20-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-20-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-20-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-20-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><use xlink:href="#MJX-20-TEX-I-1D445"></use></g><g transform="translate(3282.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-20-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(974.1,676)"><use xlink:href="#MJX-20-TEX-N-31"></use></g><g transform="translate(220,-824.2)"><g ><use xlink:href="#MJX-20-TEX-N-28"></use></g><g transform="translate(389,0)"><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-20-TEX-N-33"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-20-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(1182.6,0)"><g ><use xlink:href="#MJX-20-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-20-TEX-N-32"></use></g></g></g></g><rect width="2208.1" height="60" x="120" y="220"></rect></g><g transform="translate(3462.3,0)"><use xlink:href="#MJX-20-TEX-N-2212"></use></g><g transform="translate(4462.6,0)"><g transform="translate(1885.3,676)"><use xlink:href="#MJX-20-TEX-N-31"></use></g><g transform="translate(220,-824.9)"><g ><use xlink:href="#MJX-20-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-20-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-20-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-20-TEX-N-31"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-20-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(3005,0)"><g ><use xlink:href="#MJX-20-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-20-TEX-N-32"></use></g></g></g></g><rect width="4030.6" height="60" x="120" y="220"></rect></g><g transform="translate(8733.1,0) translate(0 -0.5)"><use xlink:href="#MJX-20-TEX-S4-29"></use></g></g><g transform="translate(12807.3,0)"><use xlink:href="#MJX-20-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/200.svg b/47464-h/images/200.svg
new file mode 100644
index 0000000..62d1b97
--- /dev/null
+++ b/47464-h/images/200.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-653-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-653-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-653-TEX-N-31"></use><use xlink:href="#MJX-653-TEX-N-36" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/201.svg b/47464-h/images/201.svg
new file mode 100644
index 0000000..c60c546
--- /dev/null
+++ b/47464-h/images/201.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-681-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-681-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-681-TEX-N-32"></use><use xlink:href="#MJX-681-TEX-N-30" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/202.svg b/47464-h/images/202.svg
new file mode 100644
index 0000000..7f0da7f
--- /dev/null
+++ b/47464-h/images/202.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="688px" viewBox="0 -666 500 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-814-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-814-TEX-N-38"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/203.svg b/47464-h/images/203.svg
new file mode 100644
index 0000000..39328fc
--- /dev/null
+++ b/47464-h/images/203.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1285.9px" height="599.8px" viewBox="0 -442 1285.9 599.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-469-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-469-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-469-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-469-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-469-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-469-TEX-N-2032"></use></g></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/204.svg b/47464-h/images/204.svg
new file mode 100644
index 0000000..55236d9
--- /dev/null
+++ b/47464-h/images/204.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1480.3px" height="599.8px" viewBox="0 -442 1480.3 599.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-468-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-468-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-468-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-468-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-468-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><g ><use xlink:href="#MJX-468-TEX-N-2032"></use><use xlink:href="#MJX-468-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/205.svg b/47464-h/images/205.svg
new file mode 100644
index 0000000..f853fe6
--- /dev/null
+++ b/47464-h/images/205.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1091.4px" height="599.8px" viewBox="0 -442 1091.4 599.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-472-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-472-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-472-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-472-TEX-I-1D458"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/206.svg b/47464-h/images/206.svg
new file mode 100644
index 0000000..f119578
--- /dev/null
+++ b/47464-h/images/206.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="2469.4px" height="1000px" viewBox="0 -750 2469.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-473-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-473-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-473-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-473-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-473-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-473-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-473-TEX-I-1D458"></use></g></g></g><g transform="translate(1091.4,0)"><use xlink:href="#MJX-473-TEX-N-28"></use></g><g transform="translate(1480.4,0)"><use xlink:href="#MJX-473-TEX-I-1D45B"></use></g><g transform="translate(2080.4,0)"><use xlink:href="#MJX-473-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/207.svg b/47464-h/images/207.svg
new file mode 100644
index 0000000..f4f84c1
--- /dev/null
+++ b/47464-h/images/207.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1389px" height="683px" viewBox="0 -683 1389 683" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-479-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-479-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-479-TEX-N-34"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-479-TEX-I-1D43E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/208.svg b/47464-h/images/208.svg
new file mode 100644
index 0000000..29dad8a
--- /dev/null
+++ b/47464-h/images/208.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="3388.4px" height="1000px" viewBox="0 -750 3388.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-481-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-481-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-481-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-481-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-481-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-481-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-481-TEX-I-1D441"></use></g><g transform="translate(1499.2,0)"><use xlink:href="#MJX-481-TEX-N-2212"></use></g><g transform="translate(2499.4,0)"><use xlink:href="#MJX-481-TEX-N-31"></use></g><g transform="translate(2999.4,0)"><use xlink:href="#MJX-481-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/209.svg b/47464-h/images/209.svg
new file mode 100644
index 0000000..8ed7624
--- /dev/null
+++ b/47464-h/images/209.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="5098px" height="665px" viewBox="0 -583 5098 665" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-508-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-508-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-508-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-508-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-508-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-508-TEX-I-1D70F"></use></g><g transform="translate(794.8,0)"><use xlink:href="#MJX-508-TEX-N-3D"></use></g><g transform="translate(1850.6,0)"><use xlink:href="#MJX-508-TEX-I-1D45B"></use></g><g transform="translate(2450.6,0)"><g ><use xlink:href="#MJX-508-TEX-N-2032"></use></g></g><g transform="translate(2947.8,0)"><use xlink:href="#MJX-508-TEX-N-2212"></use></g><g transform="translate(3948,0)"><use xlink:href="#MJX-508-TEX-I-1D45B"></use></g><g transform="translate(4548,0)"><g ><g ><use xlink:href="#MJX-508-TEX-N-2032"></use><use xlink:href="#MJX-508-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/21.svg b/47464-h/images/21.svg
new file mode 100644
index 0000000..951f067
--- /dev/null
+++ b/47464-h/images/21.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="6509.2px" height="2999px" viewBox="0 -1749.5 6509.2 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-21-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-21-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-21-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-21-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-21-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-21-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-21-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-21-TEX-I-1D706"></use></g><g transform="translate(749.7,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-21-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-21-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-21-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-21-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-21-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-21-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-21-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-21-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-21-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-21-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-21-TEX-S4-29"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/210.svg b/47464-h/images/210.svg
new file mode 100644
index 0000000..4e59031
--- /dev/null
+++ b/47464-h/images/210.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="3895.6px" height="776px" viewBox="0 -694 3895.6 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-509-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-509-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-509-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-509-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-509-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-509-TEX-I-1D438"></use></g><g transform="translate(1041.8,0)"><use xlink:href="#MJX-509-TEX-N-3D"></use></g><g transform="translate(2097.6,0)"><use xlink:href="#MJX-509-TEX-I-1D45B"></use></g><g transform="translate(2697.6,0)"><use xlink:href="#MJX-509-TEX-I-210E"></use></g><g transform="translate(3273.6,0)"><use xlink:href="#MJX-509-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/211.svg b/47464-h/images/211.svg
new file mode 100644
index 0000000..d935d6d
--- /dev/null
+++ b/47464-h/images/211.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="6678px" height="1000px" viewBox="0 -750 6678 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-510-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-510-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-510-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-510-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-510-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-510-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-510-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-510-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-510-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-510-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-510-TEX-N-28"></use></g><g transform="translate(2252.6,0)"><use xlink:href="#MJX-510-TEX-I-1D45B"></use></g><g transform="translate(2852.6,0)"><g ><use xlink:href="#MJX-510-TEX-N-2032"></use></g></g><g transform="translate(3349.8,0)"><use xlink:href="#MJX-510-TEX-N-2212"></use></g><g transform="translate(4350,0)"><use xlink:href="#MJX-510-TEX-I-1D45B"></use></g><g transform="translate(4950,0)"><g ><g ><use xlink:href="#MJX-510-TEX-N-2032"></use><use xlink:href="#MJX-510-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(5500,0)"><use xlink:href="#MJX-510-TEX-N-29"></use></g><g transform="translate(5889,0)"><g ></g></g><g transform="translate(6056,0)"><use xlink:href="#MJX-510-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/212.svg b/47464-h/images/212.svg
new file mode 100644
index 0000000..79f503b
--- /dev/null
+++ b/47464-h/images/212.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1051.4px" height="599.8px" viewBox="0 -442 1051.4 599.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-838-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-838-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-838-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-838-TEX-I-1D458"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/213.svg b/47464-h/images/213.svg
new file mode 100644
index 0000000..d0884f0
--- /dev/null
+++ b/47464-h/images/213.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-651-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-651-TEX-N-31"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-651-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/214.svg b/47464-h/images/214.svg
new file mode 100644
index 0000000..ecc8d62
--- /dev/null
+++ b/47464-h/images/214.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-716-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-716-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-716-TEX-N-32"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-716-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/215.svg b/47464-h/images/215.svg
new file mode 100644
index 0000000..81d567d
--- /dev/null
+++ b/47464-h/images/215.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2000px" height="737px" viewBox="0 -715 2000 737" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-546-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-546-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-546-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-546-TEX-N-B0" d="M147 628Q147 669 179 692T244 715Q298 715 325 689T352 629Q352 592 323 567T249 542Q202 542 175 567T147 628ZM313 628Q313 660 300 669T259 678H253Q248 678 242 678T234 679Q217 679 207 674T192 659T188 644T187 629Q187 600 198 590Q210 579 250 579H265Q279 579 288 581T305 595T313 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-546-TEX-N-31"></use><use xlink:href="#MJX-546-TEX-N-32" transform="translate(500,0)"></use><use xlink:href="#MJX-546-TEX-N-30" transform="translate(1000,0)"></use></g><g transform="translate(1500,0)"><g ><use xlink:href="#MJX-546-TEX-N-B0"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/216.svg b/47464-h/images/216.svg
new file mode 100644
index 0000000..56adf71
--- /dev/null
+++ b/47464-h/images/216.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="2000px" height="1000px" viewBox="0 -750 2000 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-547-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-547-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-547-TEX-N-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path id="MJX-547-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-547-TEX-N-31"></use><use xlink:href="#MJX-547-TEX-N-37" transform="translate(500,0)"></use></g><g transform="translate(1000,0)"><g ><use xlink:href="#MJX-547-TEX-N-2F"></use></g></g><g transform="translate(1500,0)"><use xlink:href="#MJX-547-TEX-N-38"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/217.svg b/47464-h/images/217.svg
new file mode 100644
index 0000000..490026e
--- /dev/null
+++ b/47464-h/images/217.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2278px" height="688px" viewBox="0 -666 2278 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-549-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-549-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-549-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-549-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-549-TEX-N-31"></use><use xlink:href="#MJX-549-TEX-N-33" transform="translate(500,0)"></use><use xlink:href="#MJX-549-TEX-N-2E" transform="translate(1000,0)"></use><use xlink:href="#MJX-549-TEX-N-35" transform="translate(1278,0)"></use><use xlink:href="#MJX-549-TEX-N-33" transform="translate(1778,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/218.svg b/47464-h/images/218.svg
new file mode 100644
index 0000000..ce1edfd
--- /dev/null
+++ b/47464-h/images/218.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1778px" height="688px" viewBox="0 -666 1778 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-550-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-550-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-550-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-550-TEX-N-32"></use><use xlink:href="#MJX-550-TEX-N-38" transform="translate(500,0)"></use><use xlink:href="#MJX-550-TEX-N-2E" transform="translate(1000,0)"></use><use xlink:href="#MJX-550-TEX-N-38" transform="translate(1278,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/219.svg b/47464-h/images/219.svg
new file mode 100644
index 0000000..ffbb28d
--- /dev/null
+++ b/47464-h/images/219.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-551-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-551-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-551-TEX-N-32"></use><use xlink:href="#MJX-551-TEX-N-35" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/22.svg b/47464-h/images/22.svg
new file mode 100644
index 0000000..aed738f
--- /dev/null
+++ b/47464-h/images/22.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.671ex;" xmlns="http://www.w3.org/2000/svg" width="10192.9px" height="2281.9px" viewBox="0 -1543.2 10192.9 2281.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-22-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-22-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-22-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-22-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-22-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-22-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-22-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-22-TEX-I-1D440" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path id="MJX-22-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-22-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-22-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-22-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-22-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-22-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-22-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-22-TEX-I-1D714"></use></g><g transform="translate(655,413) scale(0.707)" ><g ><use xlink:href="#MJX-22-TEX-N-32"></use></g></g></g><g transform="translate(1336.3,0)"><use xlink:href="#MJX-22-TEX-N-3D"></use></g><g transform="translate(2392.1,0)"><g transform="translate(473.3,676)"><use xlink:href="#MJX-22-TEX-N-32"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-22-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-22-TEX-N-32"></use></g></g></g><rect width="1206.6" height="60" x="120" y="220"></rect></g><g transform="translate(3838.7,0)"><g ></g></g><g transform="translate(4005.7,0)"><g transform="translate(220,710)"><g ><g ><use xlink:href="#MJX-22-TEX-I-1D44A"></use></g><g transform="translate(1136.2,363) scale(0.707)" ><g ><use xlink:href="#MJX-22-TEX-N-33"></use></g></g></g><g transform="translate(1539.8,0)"><use xlink:href="#MJX-22-TEX-N-28"></use></g><g transform="translate(1928.8,0)"><use xlink:href="#MJX-22-TEX-I-1D440"></use></g><g transform="translate(3202,0)"><use xlink:href="#MJX-22-TEX-N-2B"></use></g><g transform="translate(4202.2,0)"><use xlink:href="#MJX-22-TEX-I-1D45A"></use></g><g transform="translate(5080.2,0)"><use xlink:href="#MJX-22-TEX-N-29"></use></g></g><g transform="translate(849.4,-727.7)"><g ><g ><use xlink:href="#MJX-22-TEX-I-1D441"></use></g><g transform="translate(975.3,289) scale(0.707)" ><g ><use xlink:href="#MJX-22-TEX-N-32"></use></g></g></g><g transform="translate(1378.8,0)"><g ><use xlink:href="#MJX-22-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-22-TEX-N-34"></use></g></g></g><g transform="translate(2281.4,0)"><use xlink:href="#MJX-22-TEX-I-1D440"></use></g><g transform="translate(3332.4,0)"><use xlink:href="#MJX-22-TEX-I-1D45A"></use></g></g><rect width="5669.2" height="60" x="120" y="220"></rect></g><g transform="translate(9914.9,0)"><use xlink:href="#MJX-22-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/220.svg b/47464-h/images/220.svg
new file mode 100644
index 0000000..b9dc1de
--- /dev/null
+++ b/47464-h/images/220.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="500px" height="666px" viewBox="0 -666 500 666" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-812-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-812-TEX-N-32"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/221.svg b/47464-h/images/221.svg
new file mode 100644
index 0000000..7c5572a
--- /dev/null
+++ b/47464-h/images/221.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="688px" viewBox="0 -666 500 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-830-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-830-TEX-N-35"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/222.svg b/47464-h/images/222.svg
new file mode 100644
index 0000000..a4c9d3f
--- /dev/null
+++ b/47464-h/images/222.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="688px" viewBox="0 -666 500 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-829-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-829-TEX-N-36"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/223.svg b/47464-h/images/223.svg
new file mode 100644
index 0000000..c10b343
--- /dev/null
+++ b/47464-h/images/223.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="698px" viewBox="0 -676 500 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-803-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-803-TEX-N-37"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/224.svg b/47464-h/images/224.svg
new file mode 100644
index 0000000..26806a8
--- /dev/null
+++ b/47464-h/images/224.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="500px" height="688px" viewBox="0 -666 500 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-586-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-586-TEX-N-39"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/225.svg b/47464-h/images/225.svg
new file mode 100644
index 0000000..e4ca341
--- /dev/null
+++ b/47464-h/images/225.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-587-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-587-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-587-TEX-N-31"></use><use xlink:href="#MJX-587-TEX-N-30" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/226.svg b/47464-h/images/226.svg
new file mode 100644
index 0000000..1f69815
--- /dev/null
+++ b/47464-h/images/226.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-730-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-730-TEX-N-32"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-730-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/227.svg b/47464-h/images/227.svg
new file mode 100644
index 0000000..355026e
--- /dev/null
+++ b/47464-h/images/227.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="734.6px" height="844px" viewBox="0 -694 734.6 844" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-589-TEX-I-1D459" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path id="MJX-589-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-589-TEX-I-1D459"></use></g><g transform="translate(331,-150) scale(0.707)" ><g ><use xlink:href="#MJX-589-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/228.svg b/47464-h/images/228.svg
new file mode 100644
index 0000000..0f4e7c5
--- /dev/null
+++ b/47464-h/images/228.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="666px" viewBox="0 -666 1000 666" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-607-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-607-TEX-N-31"></use><use xlink:href="#MJX-607-TEX-N-31" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/229.svg b/47464-h/images/229.svg
new file mode 100644
index 0000000..0325501
--- /dev/null
+++ b/47464-h/images/229.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="815px" viewBox="0 -665 936.6 815" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-710-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-710-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-710-TEX-N-33"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-710-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/23.svg b/47464-h/images/23.svg
new file mode 100644
index 0000000..27e16b1
--- /dev/null
+++ b/47464-h/images/23.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="18495.7px" height="2999px" viewBox="0 -1749.5 18495.7 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-23-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-23-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-23-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-23-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-23-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-23-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-23-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-23-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-23-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-23-TEX-I-1D440" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path id="MJX-23-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-23-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-23-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-23-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-23-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-23-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-23-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-23-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-23-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-23-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-23-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-23-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-23-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-23-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-23-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-23-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-23-TEX-I-1D441"></use></g><g transform="translate(975.3,363) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g></g></g><g transform="translate(2885.4,0)"><g ><use xlink:href="#MJX-23-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-34"></use></g></g></g><g transform="translate(3787.9,0)"><use xlink:href="#MJX-23-TEX-I-1D45A"></use></g><g transform="translate(4665.9,0)"><use xlink:href="#MJX-23-TEX-I-1D440"></use></g></g><g transform="translate(391,-719.2)"><g ><use xlink:href="#MJX-23-TEX-I-1D450"></use></g><g transform="translate(433,0)"><g ><use xlink:href="#MJX-23-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-33"></use></g></g></g><g transform="translate(1445.6,0)"><use xlink:href="#MJX-23-TEX-N-28"></use></g><g transform="translate(1834.6,0)"><use xlink:href="#MJX-23-TEX-I-1D440"></use></g><g transform="translate(3107.8,0)"><use xlink:href="#MJX-23-TEX-N-2B"></use></g><g transform="translate(4108,0)"><use xlink:href="#MJX-23-TEX-I-1D45A"></use></g><g transform="translate(4986,0)"><use xlink:href="#MJX-23-TEX-N-29"></use></g></g><rect width="5916.9" height="60" x="120" y="220"></rect></g><g transform="translate(8513.5,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-23-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-23-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-23-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-23-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-23-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-23-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-23-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-23-TEX-S4-29"></use></g></g><g transform="translate(14273,0)"><use xlink:href="#MJX-23-TEX-N-2E"></use></g><g transform="translate(14551,0)"><g ></g></g><g transform="translate(16717.7,0)"><use xlink:href="#MJX-23-TEX-N-28"></use><use xlink:href="#MJX-23-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-23-TEX-N-30" transform="translate(889,0)"></use><use xlink:href="#MJX-23-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/230.svg b/47464-h/images/230.svg
new file mode 100644
index 0000000..f904ab6
--- /dev/null
+++ b/47464-h/images/230.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="815px" viewBox="0 -665 936.6 815" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-711-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-711-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-711-TEX-N-33"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-711-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/231.svg b/47464-h/images/231.svg
new file mode 100644
index 0000000..8095cef
--- /dev/null
+++ b/47464-h/images/231.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="666px" viewBox="0 -666 1000 666" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-713-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-713-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-713-TEX-N-31"></use><use xlink:href="#MJX-713-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/232.svg b/47464-h/images/232.svg
new file mode 100644
index 0000000..6050f72
--- /dev/null
+++ b/47464-h/images/232.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-642-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-642-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-642-TEX-N-31"></use><use xlink:href="#MJX-642-TEX-N-33" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/233.svg b/47464-h/images/233.svg
new file mode 100644
index 0000000..f08fa69
--- /dev/null
+++ b/47464-h/images/233.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="677px" viewBox="0 -677 1000 677" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-631-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-631-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-631-TEX-N-31"></use><use xlink:href="#MJX-631-TEX-N-34" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/234.svg b/47464-h/images/234.svg
new file mode 100644
index 0000000..ae3ca7b
--- /dev/null
+++ b/47464-h/images/234.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-656-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-656-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-656-TEX-N-31"></use><use xlink:href="#MJX-656-TEX-N-35" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/235.svg b/47464-h/images/235.svg
new file mode 100644
index 0000000..d440fe2
--- /dev/null
+++ b/47464-h/images/235.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="827px" viewBox="0 -677 936.6 827" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-785-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-785-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-785-TEX-N-34"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-785-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/236.svg b/47464-h/images/236.svg
new file mode 100644
index 0000000..5b85ff7
--- /dev/null
+++ b/47464-h/images/236.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-669-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-669-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-669-TEX-N-33"></use><use xlink:href="#MJX-669-TEX-N-36" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/237.svg b/47464-h/images/237.svg
new file mode 100644
index 0000000..a05d8e2
--- /dev/null
+++ b/47464-h/images/237.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="830.6px" viewBox="0 -665 936.6 830.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-784-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-784-TEX-N-33"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-784-TEX-N-33"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/238.svg b/47464-h/images/238.svg
new file mode 100644
index 0000000..c3990b5
--- /dev/null
+++ b/47464-h/images/238.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="827px" viewBox="0 -677 936.6 827" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-758-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-758-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-758-TEX-N-34"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-758-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/239.svg b/47464-h/images/239.svg
new file mode 100644
index 0000000..5169eda
--- /dev/null
+++ b/47464-h/images/239.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-741-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-741-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-741-TEX-N-32"></use><use xlink:href="#MJX-741-TEX-N-38" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/24.svg b/47464-h/images/24.svg
new file mode 100644
index 0000000..ad47a1d
--- /dev/null
+++ b/47464-h/images/24.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="8099.5px" height="1000px" viewBox="0 -750 8099.5 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-24-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-24-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-24-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-24-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-24-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-24-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-24-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-24-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-24-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-24-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-24-TEX-I-1D45B"></use></g></g></g><g transform="translate(1523,0)"><use xlink:href="#MJX-24-TEX-N-3D"></use></g><g transform="translate(2578.8,0)"><use xlink:href="#MJX-24-TEX-I-1D45B"></use></g><g transform="translate(3178.8,0)"><use xlink:href="#MJX-24-TEX-I-210E"></use></g><g transform="translate(3754.8,0)"><use xlink:href="#MJX-24-TEX-I-1D714"></use></g><g transform="translate(4376.8,0)"><use xlink:href="#MJX-24-TEX-N-2C"></use></g><g transform="translate(4654.8,0)"><g ></g></g><g transform="translate(6821.5,0)"><use xlink:href="#MJX-24-TEX-N-28"></use><use xlink:href="#MJX-24-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-24-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/240.svg b/47464-h/images/240.svg
new file mode 100644
index 0000000..0f648a0
--- /dev/null
+++ b/47464-h/images/240.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-747-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-747-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-747-TEX-N-33"></use><use xlink:href="#MJX-747-TEX-N-37" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/241.svg b/47464-h/images/241.svg
new file mode 100644
index 0000000..16c0fd6
--- /dev/null
+++ b/47464-h/images/241.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-748-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-748-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-748-TEX-N-33"></use><use xlink:href="#MJX-748-TEX-N-38" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/242.svg b/47464-h/images/242.svg
new file mode 100644
index 0000000..8cae091
--- /dev/null
+++ b/47464-h/images/242.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-772-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-772-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-772-TEX-N-35"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-772-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/243.svg b/47464-h/images/243.svg
new file mode 100644
index 0000000..7523349
--- /dev/null
+++ b/47464-h/images/243.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="842.6px" viewBox="0 -677 936.6 842.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-762-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-762-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-762-TEX-N-34"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-762-TEX-N-33"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/244.svg b/47464-h/images/244.svg
new file mode 100644
index 0000000..4fab4b9
--- /dev/null
+++ b/47464-h/images/244.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="699px" viewBox="0 -677 1000 699" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-766-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-766-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-766-TEX-N-35"></use><use xlink:href="#MJX-766-TEX-N-34" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/245.svg b/47464-h/images/245.svg
new file mode 100644
index 0000000..8ec960d
--- /dev/null
+++ b/47464-h/images/245.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-773-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-773-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-773-TEX-N-35"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-773-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/246.svg b/47464-h/images/246.svg
new file mode 100644
index 0000000..1d22d14
--- /dev/null
+++ b/47464-h/images/246.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-774-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-774-TEX-N-35"></use><use xlink:href="#MJX-774-TEX-N-35" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/247.svg b/47464-h/images/247.svg
new file mode 100644
index 0000000..9e8059d
--- /dev/null
+++ b/47464-h/images/247.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-775-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-775-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-775-TEX-N-35"></use><use xlink:href="#MJX-775-TEX-N-36" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/248.svg b/47464-h/images/248.svg
new file mode 100644
index 0000000..120e8c9
--- /dev/null
+++ b/47464-h/images/248.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-809-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-809-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-809-TEX-N-36"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-809-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/249.svg b/47464-h/images/249.svg
new file mode 100644
index 0000000..c2c2f0f
--- /dev/null
+++ b/47464-h/images/249.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.375ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="831.6px" viewBox="0 -666 936.6 831.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-777-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-777-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-777-TEX-N-35"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-777-TEX-N-33"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/25.svg b/47464-h/images/25.svg
new file mode 100644
index 0000000..ea5cc95
--- /dev/null
+++ b/47464-h/images/25.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="6208.2px" height="1000px" viewBox="0 -750 6208.2 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-25-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-25-TEX-N-2261" d="M56 444Q56 457 70 464H707Q722 456 722 444Q722 430 706 424H72Q56 429 56 444ZM56 237T56 250T70 270H707Q722 262 722 250T707 230H70Q56 237 56 250ZM56 56Q56 71 72 76H706Q722 70 722 56Q722 44 707 36H70Q56 43 56 56Z"></path><path id="MJX-25-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-25-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-25-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-25-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-25-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-25-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-25-TEX-N-2261"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-25-TEX-I-1D714"></use></g><g transform="translate(2485.6,0)"><use xlink:href="#MJX-25-TEX-N-2C"></use></g><g transform="translate(2763.6,0)"><g ></g></g><g transform="translate(4930.2,0)"><use xlink:href="#MJX-25-TEX-N-28"></use><use xlink:href="#MJX-25-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-25-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/250.svg b/47464-h/images/250.svg
new file mode 100644
index 0000000..5ceb715
--- /dev/null
+++ b/47464-h/images/250.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="827px" viewBox="0 -677 936.6 827" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-807-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-807-TEX-N-34"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-807-TEX-N-34"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/251.svg b/47464-h/images/251.svg
new file mode 100644
index 0000000..b949062
--- /dev/null
+++ b/47464-h/images/251.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-817-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-817-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-817-TEX-N-33"></use><use xlink:href="#MJX-817-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/252.svg b/47464-h/images/252.svg
new file mode 100644
index 0000000..cd8c868
--- /dev/null
+++ b/47464-h/images/252.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-802-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-802-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-802-TEX-N-36"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-802-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/253.svg b/47464-h/images/253.svg
new file mode 100644
index 0000000..e5ad6b6
--- /dev/null
+++ b/47464-h/images/253.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="826px" viewBox="0 -676 936.6 826" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-808-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-808-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-808-TEX-N-37"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-808-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/254.svg b/47464-h/images/254.svg
new file mode 100644
index 0000000..dee57a2
--- /dev/null
+++ b/47464-h/images/254.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-806-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-806-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-806-TEX-N-35"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-806-TEX-N-34"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/255.svg b/47464-h/images/255.svg
new file mode 100644
index 0000000..e383bae
--- /dev/null
+++ b/47464-h/images/255.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-811-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-811-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-811-TEX-N-39"></use><use xlink:href="#MJX-811-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/256.svg b/47464-h/images/256.svg
new file mode 100644
index 0000000..c5060af
--- /dev/null
+++ b/47464-h/images/256.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-827-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-827-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-827-TEX-N-37"></use><use xlink:href="#MJX-827-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/257.svg b/47464-h/images/257.svg
new file mode 100644
index 0000000..9fe70f8
--- /dev/null
+++ b/47464-h/images/257.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-824-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-824-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-824-TEX-N-37"></use><use xlink:href="#MJX-824-TEX-N-31" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/258.svg b/47464-h/images/258.svg
new file mode 100644
index 0000000..32324c7
--- /dev/null
+++ b/47464-h/images/258.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-828-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-828-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-828-TEX-N-37"></use><use xlink:href="#MJX-828-TEX-N-33" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/259.svg b/47464-h/images/259.svg
new file mode 100644
index 0000000..d70d940
--- /dev/null
+++ b/47464-h/images/259.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.023ex;" xmlns="http://www.w3.org/2000/svg" width="529px" height="451px" viewBox="0 -441 529 451" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-842-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-842-TEX-I-1D44E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/26.svg b/47464-h/images/26.svg
new file mode 100644
index 0000000..8a9d9bd
--- /dev/null
+++ b/47464-h/images/26.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="7759.2px" height="1000px" viewBox="0 -750 7759.2 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-26-TEX-N-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path id="MJX-26-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-26-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-26-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-26-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-26-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-26-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-26-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-26-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-26-TEX-N-394"></use></g><g transform="translate(833,0)"><use xlink:href="#MJX-26-TEX-I-1D438"></use></g><g transform="translate(1874.8,0)"><use xlink:href="#MJX-26-TEX-N-3D"></use></g><g transform="translate(2930.6,0)"><use xlink:href="#MJX-26-TEX-I-210E"></use></g><g transform="translate(3506.6,0)"><use xlink:href="#MJX-26-TEX-I-1D708"></use></g><g transform="translate(4036.6,0)"><use xlink:href="#MJX-26-TEX-N-2E"></use></g><g transform="translate(4314.6,0)"><g ></g></g><g transform="translate(6481.2,0)"><use xlink:href="#MJX-26-TEX-N-28"></use><use xlink:href="#MJX-26-TEX-N-33" transform="translate(389,0)"></use><use xlink:href="#MJX-26-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/260.svg b/47464-h/images/260.svg
new file mode 100644
index 0000000..a24349d
--- /dev/null
+++ b/47464-h/images/260.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="429px" height="705px" viewBox="0 -694 429 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-843-TEX-I-1D44F" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-843-TEX-I-1D44F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/261.svg b/47464-h/images/261.svg
new file mode 100644
index 0000000..d70d940
--- /dev/null
+++ b/47464-h/images/261.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.023ex;" xmlns="http://www.w3.org/2000/svg" width="529px" height="451px" viewBox="0 -441 529 451" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-842-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-842-TEX-I-1D44E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/262.svg b/47464-h/images/262.svg
new file mode 100644
index 0000000..a24349d
--- /dev/null
+++ b/47464-h/images/262.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="429px" height="705px" viewBox="0 -694 429 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-843-TEX-I-1D44F" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-843-TEX-I-1D44F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/263.svg b/47464-h/images/263.svg
new file mode 100644
index 0000000..c5060af
--- /dev/null
+++ b/47464-h/images/263.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-827-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-827-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-827-TEX-N-37"></use><use xlink:href="#MJX-827-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/264.svg b/47464-h/images/264.svg
new file mode 100644
index 0000000..9fe70f8
--- /dev/null
+++ b/47464-h/images/264.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-824-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-824-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-824-TEX-N-37"></use><use xlink:href="#MJX-824-TEX-N-31" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/265.svg b/47464-h/images/265.svg
new file mode 100644
index 0000000..32324c7
--- /dev/null
+++ b/47464-h/images/265.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="698px" viewBox="0 -676 1000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-828-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-828-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-828-TEX-N-37"></use><use xlink:href="#MJX-828-TEX-N-33" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/266.svg b/47464-h/images/266.svg
new file mode 100644
index 0000000..d70d940
--- /dev/null
+++ b/47464-h/images/266.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.023ex;" xmlns="http://www.w3.org/2000/svg" width="529px" height="451px" viewBox="0 -441 529 451" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-842-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-842-TEX-I-1D44E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/267.svg b/47464-h/images/267.svg
new file mode 100644
index 0000000..a24349d
--- /dev/null
+++ b/47464-h/images/267.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="429px" height="705px" viewBox="0 -694 429 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-843-TEX-I-1D44F" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-843-TEX-I-1D44F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/268.svg b/47464-h/images/268.svg
new file mode 100644
index 0000000..07df7ee
--- /dev/null
+++ b/47464-h/images/268.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-982-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-982-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-982-TEX-N-35"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-982-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/269.svg b/47464-h/images/269.svg
new file mode 100644
index 0000000..bfa9e81
--- /dev/null
+++ b/47464-h/images/269.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="936.6px" height="816px" viewBox="0 -666 936.6 816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-1011-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-1011-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-1011-TEX-N-36"></use></g><g transform="translate(533,-150) scale(0.707)" ><g ><use xlink:href="#MJX-1011-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/27.svg b/47464-h/images/27.svg
new file mode 100644
index 0000000..2d252dc
--- /dev/null
+++ b/47464-h/images/27.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="9737.7px" height="1000px" viewBox="0 -750 9737.7 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-27-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-27-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-27-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-27-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-27-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-27-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-27-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-27-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-27-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-27-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-27-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-27-TEX-I-1D708"></use></g><g transform="translate(1383.8,0)"><use xlink:href="#MJX-27-TEX-N-3D"></use></g><g transform="translate(2439.6,0)"><use xlink:href="#MJX-27-TEX-I-1D438"></use></g><g transform="translate(3203.6,0)"><g ><use xlink:href="#MJX-27-TEX-N-2032"></use></g></g><g transform="translate(3700.8,0)"><use xlink:href="#MJX-27-TEX-N-2212"></use></g><g transform="translate(4701,0)"><use xlink:href="#MJX-27-TEX-I-1D438"></use></g><g transform="translate(5465,0)"><g ><g ><use xlink:href="#MJX-27-TEX-N-2032"></use><use xlink:href="#MJX-27-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(6015,0)"><use xlink:href="#MJX-27-TEX-N-2E"></use></g><g transform="translate(6293,0)"><g ></g></g><g transform="translate(8459.7,0)"><use xlink:href="#MJX-27-TEX-N-28"></use><use xlink:href="#MJX-27-TEX-N-34" transform="translate(389,0)"></use><use xlink:href="#MJX-27-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/270.svg b/47464-h/images/270.svg
new file mode 100644
index 0000000..4b1c447
--- /dev/null
+++ b/47464-h/images/270.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1000px" height="688px" viewBox="0 -666 1000 688" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-1020-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-1020-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-1020-TEX-N-39"></use><use xlink:href="#MJX-1020-TEX-N-32" transform="translate(500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/271.svg b/47464-h/images/271.svg
new file mode 100644
index 0000000..9989f47
--- /dev/null
+++ b/47464-h/images/271.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.023ex;" xmlns="http://www.w3.org/2000/svg" width="529px" height="451px" viewBox="0 -441 529 451" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-1051-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-1051-TEX-I-1D44E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/272.svg b/47464-h/images/272.svg
new file mode 100644
index 0000000..92491fe
--- /dev/null
+++ b/47464-h/images/272.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="429px" height="705px" viewBox="0 -694 429 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-1052-TEX-I-1D44F" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-1052-TEX-I-1D44F"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/28.svg b/47464-h/images/28.svg
new file mode 100644
index 0000000..701b6ef
--- /dev/null
+++ b/47464-h/images/28.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="12142.8px" height="2328.9px" viewBox="0 -1359 12142.8 2328.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-28-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-28-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-28-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-28-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-28-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-28-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-28-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-28-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-28-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-28-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-28-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-28-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-28-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g transform="translate(957.8,676)"><use xlink:href="#MJX-28-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-28-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-28-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-28-TEX-N-2032"></use><use xlink:href="#MJX-28-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-28-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-28-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(4890.3,0)"><use xlink:href="#MJX-28-TEX-N-2212"></use></g><g transform="translate(5890.6,0)"><g transform="translate(820.3,676)"><use xlink:href="#MJX-28-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-28-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-28-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-28-TEX-N-2032"></use></g></g><g transform="translate(1264,0)"><g ><use xlink:href="#MJX-28-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-28-TEX-N-32"></use></g></g></g></g><rect width="2289.6" height="60" x="120" y="220"></rect></g><g transform="translate(8420.1,0)"><use xlink:href="#MJX-28-TEX-N-2C"></use></g><g transform="translate(8698.1,0)"><g ></g></g><g transform="translate(10864.8,0)"><use xlink:href="#MJX-28-TEX-N-28"></use><use xlink:href="#MJX-28-TEX-N-35" transform="translate(389,0)"></use><use xlink:href="#MJX-28-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/29.svg b/47464-h/images/29.svg
new file mode 100644
index 0000000..fb52cc4
--- /dev/null
+++ b/47464-h/images/29.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.345ex;" xmlns="http://www.w3.org/2000/svg" width="15220.6px" height="3060px" viewBox="0 -2023.5 15220.6 3060" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-29-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-29-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-29-TEX-S4-221A" d="M983 1739Q988 1750 1001 1750Q1008 1750 1013 1745T1020 1733Q1020 1726 742 244T460 -1241Q458 -1250 439 -1250H436Q424 -1250 424 -1248L410 -1166Q395 -1083 367 -920T312 -601L201 44L137 -83L111 -57L187 96L264 247Q265 246 369 -357Q470 -958 473 -963L727 384Q979 1729 983 1739Z"></path><path id="MJX-29-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-29-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-29-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-29-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-29-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-29-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-29-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-29-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-29-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-29-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-29-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-29-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-29-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-29-TEX-I-1D714"></use></g><g transform="translate(899.8,0)"><use xlink:href="#MJX-29-TEX-N-3D"></use></g><g transform="translate(1955.6,0)"><g transform="translate(1020,0)"><g ><g transform="translate(593.7,676)"><g ><use xlink:href="#MJX-29-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-29-TEX-I-1D44A"></use></g><g transform="translate(1136.2,289) scale(0.707)" ><g ><use xlink:href="#MJX-29-TEX-N-33"></use></g></g></g></g><g transform="translate(220,-727.7)"><g ><g ><use xlink:href="#MJX-29-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-29-TEX-N-32"></use></g></g></g><g transform="translate(1006.6,0)"><g ><use xlink:href="#MJX-29-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-29-TEX-N-34"></use></g></g></g><g transform="translate(1909.1,0)"><use xlink:href="#MJX-29-TEX-I-1D45A"></use></g></g><rect width="2987.1" height="60" x="120" y="220"></rect></g></g><g transform="translate(0,213.5)"><use xlink:href="#MJX-29-TEX-S4-221A"></use></g><rect width="3227.1" height="60" x="1020" y="1903.5"></rect></g><g transform="translate(6202.7,0)"><use xlink:href="#MJX-29-TEX-N-2C"></use></g><g transform="translate(6480.7,0)"><g ></g></g><g transform="translate(7647.3,0)"><use xlink:href="#MJX-29-TEX-N-32"></use></g><g transform="translate(8147.3,0)"><use xlink:href="#MJX-29-TEX-I-1D44E"></use></g><g transform="translate(8954.1,0)"><use xlink:href="#MJX-29-TEX-N-3D"></use></g><g transform="translate(10009.9,0)"><g transform="translate(292.7,676)"><g ><use xlink:href="#MJX-29-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-29-TEX-N-32"></use></g></g></g><g transform="translate(220,-686)"><use xlink:href="#MJX-29-TEX-I-1D44A"></use></g><rect width="1248" height="60" x="120" y="220"></rect></g><g transform="translate(11497.9,0)"><use xlink:href="#MJX-29-TEX-N-2E"></use></g><g transform="translate(11775.9,0)"><g ></g></g><g transform="translate(13942.6,0)"><use xlink:href="#MJX-29-TEX-N-28"></use><use xlink:href="#MJX-29-TEX-N-36" transform="translate(389,0)"></use><use xlink:href="#MJX-29-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/3.svg b/47464-h/images/3.svg
new file mode 100644
index 0000000..4bf933f
--- /dev/null
+++ b/47464-h/images/3.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.579ex;" xmlns="http://www.w3.org/2000/svg" width="13033.3px" height="2040px" viewBox="0 -1342 13033.3 2040" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-3-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-3-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-3-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-3-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-3-TEX-I-1D45F" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-3-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-3-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-3-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-3-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-3-TEX-I-1D460" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path id="MJX-3-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-3-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-3-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-3-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-3-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><g ><use xlink:href="#MJX-3-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-3-TEX-I-1D45F"></use></g></g></g><g transform="translate(3401.5,0)"><use xlink:href="#MJX-3-TEX-N-28"></use></g><g transform="translate(3790.5,0)"><g ><use xlink:href="#MJX-3-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-3-TEX-N-31"></use></g></g></g><g transform="translate(4827,0)"><use xlink:href="#MJX-3-TEX-N-29"></use></g><g transform="translate(5438.2,0)"><use xlink:href="#MJX-3-TEX-N-2212"></use></g><g transform="translate(6438.5,0)"><g ><use xlink:href="#MJX-3-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-3-TEX-I-1D460"></use></g></g></g><g transform="translate(7496.1,0)"><use xlink:href="#MJX-3-TEX-N-28"></use></g><g transform="translate(7885.1,0)"><g ><use xlink:href="#MJX-3-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-3-TEX-N-32"></use></g></g></g><g transform="translate(8921.6,0)"><use xlink:href="#MJX-3-TEX-N-29"></use></g><g transform="translate(9310.6,0)"><use xlink:href="#MJX-3-TEX-N-2E"></use></g><g transform="translate(9588.6,0)"><g ></g></g><g transform="translate(11755.3,0)"><use xlink:href="#MJX-3-TEX-N-28"></use><use xlink:href="#MJX-3-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-3-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/30.svg b/47464-h/images/30.svg
new file mode 100644
index 0000000..86e2e95
--- /dev/null
+++ b/47464-h/images/30.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="8984.5px" height="2100.9px" viewBox="0 -1370 8984.5 2100.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-30-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-30-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-30-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-30-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-30-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-30-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-30-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-30-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-30-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-30-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-30-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-30-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-30-TEX-I-1D45B"></use></g></g></g><g transform="translate(1523,0)"><use xlink:href="#MJX-30-TEX-N-3D"></use></g><g transform="translate(2578.8,0)"><use xlink:href="#MJX-30-TEX-N-2212"></use></g><g transform="translate(3356.8,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-30-TEX-I-1D43E"></use></g><g transform="translate(889,0)"><use xlink:href="#MJX-30-TEX-I-210E"></use></g></g><g transform="translate(434.2,-719.9)"><g ><use xlink:href="#MJX-30-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-30-TEX-N-32"></use></g></g></g><rect width="1665" height="60" x="120" y="220"></rect></g><g transform="translate(5261.8,0)"><use xlink:href="#MJX-30-TEX-N-2E"></use></g><g transform="translate(5539.8,0)"><g ></g></g><g transform="translate(7706.5,0)"><use xlink:href="#MJX-30-TEX-N-28"></use><use xlink:href="#MJX-30-TEX-N-37" transform="translate(389,0)"></use><use xlink:href="#MJX-30-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/31.svg b/47464-h/images/31.svg
new file mode 100644
index 0000000..8131177
--- /dev/null
+++ b/47464-h/images/31.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.345ex;" xmlns="http://www.w3.org/2000/svg" width="18705.7px" height="3060px" viewBox="0 -2023.5 18705.7 3060" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-31-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-31-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-31-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-31-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-31-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-31-TEX-S4-221A" d="M983 1739Q988 1750 1001 1750Q1008 1750 1013 1745T1020 1733Q1020 1726 742 244T460 -1241Q458 -1250 439 -1250H436Q424 -1250 424 -1248L410 -1166Q395 -1083 367 -920T312 -601L201 44L137 -83L111 -57L187 96L264 247Q265 246 369 -357Q470 -958 473 -963L727 384Q979 1729 983 1739Z"></path><path id="MJX-31-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-31-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-31-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-31-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-31-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-31-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-31-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-31-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-31-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-31-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-31-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-31-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-31-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-31-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-I-1D45B"></use></g></g></g><g transform="translate(1407,0)"><use xlink:href="#MJX-31-TEX-N-3D"></use></g><g transform="translate(2462.8,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-31-TEX-N-31"></use></g><g transform="translate(220,-719.2)"><g ><use xlink:href="#MJX-31-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-33"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(3939.4,0)"><g transform="translate(1020,0)"><g ><g transform="translate(220,676)"><g ><use xlink:href="#MJX-31-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-31-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-33"></use></g></g></g><g transform="translate(1512.6,0)"><g ><use xlink:href="#MJX-31-TEX-I-1D43E"></use></g><g transform="translate(974,289) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-33"></use></g></g></g></g><g transform="translate(271.5,-727.7)"><g ><g ><use xlink:href="#MJX-31-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-32"></use></g></g></g><g transform="translate(1006.6,0)"><g ><use xlink:href="#MJX-31-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-34"></use></g></g></g><g transform="translate(1909.1,0)"><use xlink:href="#MJX-31-TEX-I-1D45A"></use></g></g><rect width="3090.1" height="60" x="120" y="220"></rect></g></g><g transform="translate(0,213.5)"><use xlink:href="#MJX-31-TEX-S4-221A"></use></g><rect width="3330.1" height="60" x="1020" y="1903.5"></rect></g><g transform="translate(8289.5,0)"><use xlink:href="#MJX-31-TEX-N-2C"></use></g><g transform="translate(8567.5,0)"><g ></g></g><g transform="translate(9734.1,0)"><use xlink:href="#MJX-31-TEX-N-32"></use></g><g transform="translate(10234.1,0)"><g ><use xlink:href="#MJX-31-TEX-I-1D44E"></use></g><g transform="translate(562,-150) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-I-1D45B"></use></g></g></g><g transform="translate(11548.2,0)"><use xlink:href="#MJX-31-TEX-N-3D"></use></g><g transform="translate(12604,0)"><g transform="translate(220,676)"><g ><g ><use xlink:href="#MJX-31-TEX-I-1D45B"></use></g><g transform="translate(633,363) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-32"></use></g></g></g><g transform="translate(1036.6,0)"><g ><use xlink:href="#MJX-31-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-31-TEX-N-32"></use></g></g></g></g><g transform="translate(457.1,-686)"><g ><use xlink:href="#MJX-31-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-31-TEX-I-1D43E"></use></g></g><rect width="2139.1" height="60" x="120" y="220"></rect></g><g transform="translate(14983.1,0)"><use xlink:href="#MJX-31-TEX-N-2E"></use></g><g transform="translate(15261.1,0)"><g ></g></g><g transform="translate(17427.7,0)"><use xlink:href="#MJX-31-TEX-N-28"></use><use xlink:href="#MJX-31-TEX-N-38" transform="translate(389,0)"></use><use xlink:href="#MJX-31-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/32.svg b/47464-h/images/32.svg
new file mode 100644
index 0000000..45f0f0c
--- /dev/null
+++ b/47464-h/images/32.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="23451.9px" height="2328.9px" viewBox="0 -1359 23451.9 2328.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-32-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-32-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-32-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-32-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-32-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-32-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-32-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-32-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-32-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-32-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-32-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-32-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-32-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-32-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g transform="translate(957.8,676)"><use xlink:href="#MJX-32-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-32-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-32-TEX-N-2032"></use><use xlink:href="#MJX-32-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-32-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-32-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(4890.3,0)"><use xlink:href="#MJX-32-TEX-N-2212"></use></g><g transform="translate(5890.6,0)"><g transform="translate(820.3,676)"><use xlink:href="#MJX-32-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-32-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-32-TEX-N-2032"></use></g></g><g transform="translate(1264,0)"><g ><use xlink:href="#MJX-32-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-32-TEX-N-32"></use></g></g></g></g><rect width="2289.6" height="60" x="120" y="220"></rect></g><g transform="translate(8697.9,0)"><use xlink:href="#MJX-32-TEX-N-3D"></use></g><g transform="translate(9753.7,0)"><use xlink:href="#MJX-32-TEX-N-28"></use></g><g transform="translate(10142.7,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(10742.7,0)"><g ><use xlink:href="#MJX-32-TEX-N-2032"></use></g></g><g transform="translate(11239.9,0)"><use xlink:href="#MJX-32-TEX-N-2212"></use></g><g transform="translate(12240.1,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(12840.1,0)"><g ><g ><use xlink:href="#MJX-32-TEX-N-2032"></use><use xlink:href="#MJX-32-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(13390.1,0)"><use xlink:href="#MJX-32-TEX-N-29"></use></g><g transform="translate(13779.1,0)"><use xlink:href="#MJX-32-TEX-I-1D43E"></use></g><g transform="translate(14668.1,0)"><g ></g></g><g transform="translate(14835.1,0)"><g transform="translate(823.3,676)"><g ><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><g ><use xlink:href="#MJX-32-TEX-N-2032"></use></g></g><g transform="translate(1097.2,0)"><use xlink:href="#MJX-32-TEX-N-2B"></use></g><g transform="translate(2097.4,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(2697.4,0)"><g ><g ><use xlink:href="#MJX-32-TEX-N-2032"></use><use xlink:href="#MJX-32-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-32-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-32-TEX-N-2032"></use></g></g><g transform="translate(1264,0)"><g ><use xlink:href="#MJX-32-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-32-TEX-N-32"></use></g></g></g><g transform="translate(2089.6,0)"><use xlink:href="#MJX-32-TEX-N-28"></use></g><g transform="translate(2478.6,0)"><use xlink:href="#MJX-32-TEX-I-1D45B"></use></g><g transform="translate(3078.6,0)"><g ><g ><use xlink:href="#MJX-32-TEX-N-2032"></use><use xlink:href="#MJX-32-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(3628.6,0)"><g ><use xlink:href="#MJX-32-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-32-TEX-N-32"></use></g></g></g></g><rect width="4654.1" height="60" x="120" y="220"></rect></g><g transform="translate(19729.2,0)"><use xlink:href="#MJX-32-TEX-N-2E"></use></g><g transform="translate(20007.2,0)"><g ></g></g><g transform="translate(22173.9,0)"><use xlink:href="#MJX-32-TEX-N-28"></use><use xlink:href="#MJX-32-TEX-N-39" transform="translate(389,0)"></use><use xlink:href="#MJX-32-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/33.svg b/47464-h/images/33.svg
new file mode 100644
index 0000000..7eace2d
--- /dev/null
+++ b/47464-h/images/33.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.326ex;" xmlns="http://www.w3.org/2000/svg" width="15814.8px" height="3060px" viewBox="0 -2032 15814.8 3060" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-33-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-33-TEX-N-223C" d="M55 166Q55 241 101 304T222 367Q260 367 296 349T362 304T421 252T484 208T554 189Q616 189 655 236T694 338Q694 350 698 358T708 367Q722 367 722 334Q722 260 677 197T562 134H554Q517 134 481 152T414 196T355 248T292 293T223 311Q179 311 145 286Q109 257 96 218T80 156T69 133Q55 133 55 166Z"></path><path id="MJX-33-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-33-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-33-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-33-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-33-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-33-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-33-TEX-S4-221A" d="M983 1739Q988 1750 1001 1750Q1008 1750 1013 1745T1020 1733Q1020 1726 742 244T460 -1241Q458 -1250 439 -1250H436Q424 -1250 424 -1248L410 -1166Q395 -1083 367 -920T312 -601L201 44L137 -83L111 -57L187 96L264 247Q265 246 369 -357Q470 -958 473 -963L727 384Q979 1729 983 1739Z"></path><path id="MJX-33-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-33-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-33-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-33-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-33-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-33-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-33-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-33-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-33-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-33-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-33-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-33-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-33-TEX-N-223C"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-33-TEX-N-28"></use></g><g transform="translate(2252.6,0)"><use xlink:href="#MJX-33-TEX-I-1D45B"></use></g><g transform="translate(2852.6,0)"><g ><use xlink:href="#MJX-33-TEX-N-2032"></use></g></g><g transform="translate(3349.8,0)"><use xlink:href="#MJX-33-TEX-N-2212"></use></g><g transform="translate(4350,0)"><use xlink:href="#MJX-33-TEX-I-1D45B"></use></g><g transform="translate(4950,0)"><g ><g ><use xlink:href="#MJX-33-TEX-N-2032"></use><use xlink:href="#MJX-33-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(5500,0)"><use xlink:href="#MJX-33-TEX-N-29"></use></g><g transform="translate(5889,0)"><g ></g></g><g transform="translate(6056,0)"><use xlink:href="#MJX-33-TEX-I-1D714"></use></g><g transform="translate(6678,0)"><g ></g></g><g transform="translate(6845,0)"><g transform="translate(1020,0)"><g ><g transform="translate(220,676)"><g ><use xlink:href="#MJX-33-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-33-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-33-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-33-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-33-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-33-TEX-I-1D45A"></use></g></g><g transform="translate(912.8,-719.2)"><g ><use xlink:href="#MJX-33-TEX-I-1D43E"></use></g><g transform="translate(889,0)"><g ><use xlink:href="#MJX-33-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-33-TEX-N-33"></use></g></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g></g><g transform="translate(0,222)"><use xlink:href="#MJX-33-TEX-S4-221A"></use></g><rect width="3727.1" height="60" x="1020" y="1912"></rect></g><g transform="translate(11592.1,0)"><use xlink:href="#MJX-33-TEX-N-2C"></use></g><g transform="translate(11870.1,0)"><g ></g></g><g transform="translate(14036.8,0)"><use xlink:href="#MJX-33-TEX-N-28"></use><use xlink:href="#MJX-33-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-33-TEX-N-30" transform="translate(889,0)"></use><use xlink:href="#MJX-33-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/34.svg b/47464-h/images/34.svg
new file mode 100644
index 0000000..6bed69a
--- /dev/null
+++ b/47464-h/images/34.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.018ex;" xmlns="http://www.w3.org/2000/svg" width="15891.8px" height="1400px" viewBox="0 -950 15891.8 1400" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-34-TEX-I-1D709" d="M268 632Q268 704 296 704Q314 704 314 687Q314 682 311 664T308 635T309 620V616H315Q342 619 360 619Q443 619 443 586Q439 548 358 546H344Q326 546 317 549T290 566Q257 550 226 505T195 405Q195 381 201 364T211 342T218 337Q266 347 298 347Q375 347 375 314Q374 297 359 288T327 277T280 275Q234 275 208 283L195 286Q149 260 119 214T88 130Q88 116 90 108Q101 79 129 63T229 20Q238 17 243 15Q337 -21 354 -33Q383 -53 383 -94Q383 -137 351 -171T273 -205Q240 -205 202 -190T158 -167Q156 -163 156 -159Q156 -151 161 -146T176 -140Q182 -140 189 -143Q232 -168 274 -168Q286 -168 292 -165Q313 -151 313 -129Q313 -112 301 -104T232 -75Q214 -68 204 -64Q198 -62 171 -52T136 -38T107 -24T78 -8T56 12T36 37T26 66T21 103Q21 149 55 206T145 301L154 307L148 313Q141 319 136 323T124 338T111 358T103 382T99 413Q99 471 143 524T259 602L271 607Q268 618 268 632Z"></path><path id="MJX-34-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-34-TEX-LO-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path id="MJX-34-TEX-I-1D436" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path id="MJX-34-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-34-TEX-N-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path id="MJX-34-TEX-N-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path id="MJX-34-TEX-N-73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z"></path><path id="MJX-34-TEX-N-2061" d=""></path><path id="MJX-34-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-34-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-34-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-34-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-34-TEX-I-1D461" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path id="MJX-34-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-34-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-34-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-34-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-34-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-34-TEX-I-1D709"></use></g><g transform="translate(715.8,0)"><use xlink:href="#MJX-34-TEX-N-3D"></use></g><g transform="translate(1771.6,0)"><use xlink:href="#MJX-34-TEX-LO-2211"></use></g><g transform="translate(3382.2,0)"><g ><use xlink:href="#MJX-34-TEX-I-1D436"></use></g><g transform="translate(748,-150) scale(0.707)" ><g ><use xlink:href="#MJX-34-TEX-I-1D70F"></use></g></g></g><g transform="translate(4712.5,0)"><use xlink:href="#MJX-34-TEX-N-63"></use><use xlink:href="#MJX-34-TEX-N-6F" transform="translate(444,0)"></use><use xlink:href="#MJX-34-TEX-N-73" transform="translate(944,0)"></use></g><g transform="translate(6050.5,0)"><use xlink:href="#MJX-34-TEX-N-2061"></use></g><g transform="translate(6217.1,0)"><use xlink:href="#MJX-34-TEX-N-32"></use></g><g transform="translate(6717.1,0)"><use xlink:href="#MJX-34-TEX-I-1D70B"></use></g><g transform="translate(7287.1,0)"><use xlink:href="#MJX-34-TEX-N-28"></use></g><g transform="translate(7676.1,0)"><use xlink:href="#MJX-34-TEX-I-1D70F"></use></g><g transform="translate(8193.1,0)"><use xlink:href="#MJX-34-TEX-I-1D714"></use></g><g transform="translate(8815.1,0)"><use xlink:href="#MJX-34-TEX-I-1D461"></use></g><g transform="translate(9398.4,0)"><use xlink:href="#MJX-34-TEX-N-2B"></use></g><g transform="translate(10398.6,0)"><g ><use xlink:href="#MJX-34-TEX-I-1D450"></use></g><g transform="translate(466,-150) scale(0.707)" ><g ><use xlink:href="#MJX-34-TEX-I-1D70F"></use></g></g></g><g transform="translate(11280.1,0)"><use xlink:href="#MJX-34-TEX-N-29"></use></g><g transform="translate(11669.1,0)"><use xlink:href="#MJX-34-TEX-N-2C"></use></g><g transform="translate(11947.1,0)"><g ></g></g><g transform="translate(14113.8,0)"><use xlink:href="#MJX-34-TEX-N-28"></use><use xlink:href="#MJX-34-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-34-TEX-N-31" transform="translate(889,0)"></use><use xlink:href="#MJX-34-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/35.svg b/47464-h/images/35.svg
new file mode 100644
index 0000000..ce5a977
--- /dev/null
+++ b/47464-h/images/35.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.652ex;" xmlns="http://www.w3.org/2000/svg" width="10172.3px" height="2247.9px" viewBox="0 -1517.7 10172.3 2247.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-35-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-35-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-35-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-35-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-35-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-35-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-35-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-35-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-35-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-35-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-35-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-35-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-35-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-35-TEX-I-1D43E"></use></g><g transform="translate(1166.8,0)"><use xlink:href="#MJX-35-TEX-N-3D"></use></g><g transform="translate(2222.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-35-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-35-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-35-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-35-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-35-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-35-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.2)"><g ><use xlink:href="#MJX-35-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-35-TEX-N-33"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(5949.7,0)"><use xlink:href="#MJX-35-TEX-N-2C"></use></g><g transform="translate(6227.7,0)"><g ></g></g><g transform="translate(8394.3,0)"><use xlink:href="#MJX-35-TEX-N-28"></use><use xlink:href="#MJX-35-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-35-TEX-N-32" transform="translate(889,0)"></use><use xlink:href="#MJX-35-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/36.svg b/47464-h/images/36.svg
new file mode 100644
index 0000000..ca3b1aa
--- /dev/null
+++ b/47464-h/images/36.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="10900.7px" height="1000px" viewBox="0 -750 10900.7 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-36-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-36-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-36-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-36-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-36-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-36-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-36-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-36-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-36-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-36-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-36-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-36-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-36-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-36-TEX-N-28"></use></g><g transform="translate(2252.6,0)"><use xlink:href="#MJX-36-TEX-I-1D45B"></use></g><g transform="translate(2852.6,0)"><g ><use xlink:href="#MJX-36-TEX-N-2032"></use></g></g><g transform="translate(3349.8,0)"><use xlink:href="#MJX-36-TEX-N-2212"></use></g><g transform="translate(4350,0)"><use xlink:href="#MJX-36-TEX-I-1D45B"></use></g><g transform="translate(4950,0)"><g ><g ><use xlink:href="#MJX-36-TEX-N-2032"></use><use xlink:href="#MJX-36-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(5500,0)"><use xlink:href="#MJX-36-TEX-N-29"></use></g><g transform="translate(5889,0)"><g ></g></g><g transform="translate(6056,0)"><use xlink:href="#MJX-36-TEX-I-1D714"></use></g><g transform="translate(6678,0)"><use xlink:href="#MJX-36-TEX-N-2C"></use></g><g transform="translate(6956,0)"><g ></g></g><g transform="translate(9122.7,0)"><use xlink:href="#MJX-36-TEX-N-28"></use><use xlink:href="#MJX-36-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-36-TEX-N-33" transform="translate(889,0)"></use><use xlink:href="#MJX-36-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/37.svg b/47464-h/images/37.svg
new file mode 100644
index 0000000..8249f80
--- /dev/null
+++ b/47464-h/images/37.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="13355.8px" height="1000px" viewBox="0 -750 13355.8 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-37-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-37-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-37-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-37-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-37-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-37-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-37-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-37-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-37-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-37-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-37-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-37-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-37-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-37-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g ><use xlink:href="#MJX-37-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-37-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><g ><use xlink:href="#MJX-37-TEX-N-2032"></use><use xlink:href="#MJX-37-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g><g transform="translate(3193.9,0)"><use xlink:href="#MJX-37-TEX-N-28"></use></g><g transform="translate(3582.9,0)"><use xlink:href="#MJX-37-TEX-I-1D45B"></use></g><g transform="translate(4182.9,0)"><g ><g ><use xlink:href="#MJX-37-TEX-N-2032"></use><use xlink:href="#MJX-37-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(4732.9,0)"><use xlink:href="#MJX-37-TEX-N-29"></use></g><g transform="translate(5344.1,0)"><use xlink:href="#MJX-37-TEX-N-2212"></use></g><g transform="translate(6344.3,0)"><g ><use xlink:href="#MJX-37-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-37-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-37-TEX-N-2032"></use></g></g></g></g><g transform="translate(7480.2,0)"><use xlink:href="#MJX-37-TEX-N-28"></use></g><g transform="translate(7869.2,0)"><use xlink:href="#MJX-37-TEX-I-1D45B"></use></g><g transform="translate(8469.2,0)"><g ><use xlink:href="#MJX-37-TEX-N-2032"></use></g></g><g transform="translate(8744.2,0)"><use xlink:href="#MJX-37-TEX-N-29"></use></g><g transform="translate(9133.2,0)"><use xlink:href="#MJX-37-TEX-N-2C"></use></g><g transform="translate(9411.2,0)"><g ></g></g><g transform="translate(11577.8,0)"><use xlink:href="#MJX-37-TEX-N-28"></use><use xlink:href="#MJX-37-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-37-TEX-N-34" transform="translate(889,0)"></use><use xlink:href="#MJX-37-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/38.svg b/47464-h/images/38.svg
new file mode 100644
index 0000000..8837679
--- /dev/null
+++ b/47464-h/images/38.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="11797px" height="1000px" viewBox="0 -750 11797 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-38-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-38-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-38-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-38-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-38-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-38-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-38-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-38-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-38-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-38-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-38-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-38-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-38-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-38-TEX-I-1D458"></use></g></g></g><g transform="translate(1189.4,0)"><use xlink:href="#MJX-38-TEX-N-28"></use></g><g transform="translate(1578.4,0)"><use xlink:href="#MJX-38-TEX-I-1D45B"></use></g><g transform="translate(2178.4,0)"><use xlink:href="#MJX-38-TEX-N-29"></use></g><g transform="translate(2845.2,0)"><use xlink:href="#MJX-38-TEX-N-3D"></use></g><g transform="translate(3901,0)"><use xlink:href="#MJX-38-TEX-N-2212"></use></g><g transform="translate(4679,0)"><use xlink:href="#MJX-38-TEX-I-210E"></use></g><g transform="translate(5255,0)"><g ><use xlink:href="#MJX-38-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-38-TEX-I-1D458"></use></g></g></g><g transform="translate(6196.4,0)"><use xlink:href="#MJX-38-TEX-N-28"></use></g><g transform="translate(6585.4,0)"><use xlink:href="#MJX-38-TEX-I-1D45B"></use></g><g transform="translate(7185.4,0)"><use xlink:href="#MJX-38-TEX-N-29"></use></g><g transform="translate(7574.4,0)"><use xlink:href="#MJX-38-TEX-N-2E"></use></g><g transform="translate(7852.4,0)"><g ></g></g><g transform="translate(10019,0)"><use xlink:href="#MJX-38-TEX-N-28"></use><use xlink:href="#MJX-38-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-38-TEX-N-35" transform="translate(889,0)"></use><use xlink:href="#MJX-38-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/39.svg b/47464-h/images/39.svg
new file mode 100644
index 0000000..b9244b6
--- /dev/null
+++ b/47464-h/images/39.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="11777.6px" height="2089.9px" viewBox="0 -1359 11777.6 2089.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-39-TEX-I-1D453" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path id="MJX-39-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-39-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-39-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-39-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-39-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-39-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-39-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-39-TEX-I-1D719" d="M409 688Q413 694 421 694H429H442Q448 688 448 686Q448 679 418 563Q411 535 404 504T392 458L388 442Q388 441 397 441T429 435T477 418Q521 397 550 357T579 260T548 151T471 65T374 11T279 -10H275L251 -105Q245 -128 238 -160Q230 -192 227 -198T215 -205H209Q189 -205 189 -198Q189 -193 211 -103L234 -11Q234 -10 226 -10Q221 -10 206 -8T161 6T107 36T62 89T43 171Q43 231 76 284T157 370T254 422T342 441Q347 441 348 445L378 567Q409 686 409 688ZM122 150Q122 116 134 91T167 53T203 35T237 27H244L337 404Q333 404 326 403T297 395T255 379T211 350T170 304Q152 276 137 237Q122 191 122 150ZM500 282Q500 320 484 347T444 385T405 400T381 404H378L332 217L284 29Q284 27 285 27Q293 27 317 33T357 47Q400 66 431 100T475 170T494 234T500 282Z"></path><path id="MJX-39-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-39-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-39-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-39-TEX-I-1D453"></use></g><g transform="translate(523,-150) scale(0.707)" ><g ><use xlink:href="#MJX-39-TEX-I-1D458"></use></g></g></g><g transform="translate(941.4,0)"><use xlink:href="#MJX-39-TEX-N-28"></use></g><g transform="translate(1330.4,0)"><use xlink:href="#MJX-39-TEX-I-1D45B"></use></g><g transform="translate(1930.4,0)"><use xlink:href="#MJX-39-TEX-N-29"></use></g><g transform="translate(2597.2,0)"><use xlink:href="#MJX-39-TEX-N-3D"></use></g><g transform="translate(3653,0)"><g transform="translate(293.8,676)"><use xlink:href="#MJX-39-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-39-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-39-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(5129.5,0)"><g ><use xlink:href="#MJX-39-TEX-I-1D719"></use></g><g transform="translate(629,-150) scale(0.707)" ><g ><use xlink:href="#MJX-39-TEX-I-1D458"></use></g></g></g><g transform="translate(6176.9,0)"><use xlink:href="#MJX-39-TEX-N-28"></use></g><g transform="translate(6565.9,0)"><use xlink:href="#MJX-39-TEX-I-1D45B"></use></g><g transform="translate(7165.9,0)"><use xlink:href="#MJX-39-TEX-N-29"></use></g><g transform="translate(7554.9,0)"><use xlink:href="#MJX-39-TEX-N-2C"></use></g><g transform="translate(7832.9,0)"><g ></g></g><g transform="translate(9999.6,0)"><use xlink:href="#MJX-39-TEX-N-28"></use><use xlink:href="#MJX-39-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-39-TEX-N-36" transform="translate(889,0)"></use><use xlink:href="#MJX-39-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/4.svg b/47464-h/images/4.svg
new file mode 100644
index 0000000..d089cae
--- /dev/null
+++ b/47464-h/images/4.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="8553.4px" height="2328.9px" viewBox="0 -1359 8553.4 2328.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-4-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-4-TEX-I-1D45F" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-4-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-4-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-4-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-4-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-4-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-4-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-4-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-4-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-4-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-4-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-4-TEX-I-1D45F"></use></g></g></g><g transform="translate(1044.9,0)"><use xlink:href="#MJX-4-TEX-N-28"></use></g><g transform="translate(1433.9,0)"><use xlink:href="#MJX-4-TEX-I-1D45B"></use></g><g transform="translate(2033.9,0)"><use xlink:href="#MJX-4-TEX-N-29"></use></g><g transform="translate(2700.7,0)"><use xlink:href="#MJX-4-TEX-N-3D"></use></g><g transform="translate(3756.5,0)"><g transform="translate(1880,676)"><use xlink:href="#MJX-4-TEX-I-1D445"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-4-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-4-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-4-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><g ><use xlink:href="#MJX-4-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-4-TEX-I-1D45F"></use></g></g></g><g transform="translate(3253.3,0)"><g ><use xlink:href="#MJX-4-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-4-TEX-N-32"></use></g></g></g></g><rect width="4278.9" height="60" x="120" y="220"></rect></g><g transform="translate(8275.4,0)"><use xlink:href="#MJX-4-TEX-N-2C"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/40.svg b/47464-h/images/40.svg
new file mode 100644
index 0000000..ac210cb
--- /dev/null
+++ b/47464-h/images/40.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="35036.3px" height="2248.6px" viewBox="0 -1517.7 35036.3 2248.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-40-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-40-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-40-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-40-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-40-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-40-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-40-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-40-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-40-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-40-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-40-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-40-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-40-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-40-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-40-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-40-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-40-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-40-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-40-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-40-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-40-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g></g></g><g transform="translate(1523,0)"><use xlink:href="#MJX-40-TEX-N-3D"></use></g><g transform="translate(2578.8,0)"><use xlink:href="#MJX-40-TEX-N-2212"></use></g><g transform="translate(3356.8,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D44A"></use></g><g transform="translate(977,-150) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g></g></g><g transform="translate(5085.9,0)"><use xlink:href="#MJX-40-TEX-N-3D"></use></g><g transform="translate(6141.6,0)"><use xlink:href="#MJX-40-TEX-N-2212"></use></g><g transform="translate(6919.6,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-40-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(8396.2,0)"><g ></g></g><g transform="translate(8563.2,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-40-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.9)"><g ><use xlink:href="#MJX-40-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(12290.3,0)"><use xlink:href="#MJX-40-TEX-N-2C"></use></g><g transform="translate(12568.3,0)"><g ></g></g><g transform="translate(13735,0)"><use xlink:href="#MJX-40-TEX-N-32"></use></g><g transform="translate(14235,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D44E"></use></g><g transform="translate(562,-150) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g></g></g><g transform="translate(15549,0)"><use xlink:href="#MJX-40-TEX-N-3D"></use></g><g transform="translate(16604.8,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(17641.3,0)"><g ></g></g><g transform="translate(17808.3,0)"><g transform="translate(1357.3,676)"><g ><use xlink:href="#MJX-40-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-40-TEX-I-1D45A"></use></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(21535.4,0)"><use xlink:href="#MJX-40-TEX-N-2C"></use></g><g transform="translate(21813.4,0)"><g ></g></g><g transform="translate(22980.1,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D714"></use></g><g transform="translate(655,-150) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g></g></g><g transform="translate(24387.2,0)"><use xlink:href="#MJX-40-TEX-N-3D"></use></g><g transform="translate(25442.9,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-40-TEX-N-31"></use></g><g transform="translate(220,-719.2)"><g ><use xlink:href="#MJX-40-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-33"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(26919.5,0)"><g ></g></g><g transform="translate(27086.5,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-40-TEX-N-34"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-40-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-40-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.2)"><g ><use xlink:href="#MJX-40-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-40-TEX-N-33"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(30813.6,0)"><use xlink:href="#MJX-40-TEX-N-2E"></use></g><g transform="translate(31091.6,0)"><g ></g></g><g transform="translate(33258.3,0)"><use xlink:href="#MJX-40-TEX-N-28"></use><use xlink:href="#MJX-40-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-40-TEX-N-37" transform="translate(889,0)"></use><use xlink:href="#MJX-40-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/41.svg b/47464-h/images/41.svg
new file mode 100644
index 0000000..c75f933
--- /dev/null
+++ b/47464-h/images/41.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.679ex;" xmlns="http://www.w3.org/2000/svg" width="10102.8px" height="2097.9px" viewBox="0 -1356 10102.8 2097.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-41-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path><path id="MJX-41-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-41-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-41-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-41-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-41-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-41-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-41-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-41-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-41-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-41-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-41-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-41-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-41-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-41-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-41-TEX-I-1D70E"></use></g><g transform="translate(848.8,0)"><use xlink:href="#MJX-41-TEX-N-3D"></use></g><g transform="translate(1904.6,0)"><g transform="translate(1130.3,676)"><g ><use xlink:href="#MJX-41-TEX-N-33"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-41-TEX-I-1D452"></use></g><g transform="translate(966,0)"><use xlink:href="#MJX-41-TEX-I-1D439"></use></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-41-TEX-N-38"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-41-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-41-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-41-TEX-I-1D45A"></use></g><g transform="translate(2384.6,0)"><use xlink:href="#MJX-41-TEX-I-1D44E"></use></g><g transform="translate(2913.6,0)"><use xlink:href="#MJX-41-TEX-I-1D714"></use></g></g><rect width="3735.6" height="60" x="120" y="220"></rect></g><g transform="translate(5880.1,0)"><use xlink:href="#MJX-41-TEX-N-2C"></use></g><g transform="translate(6158.1,0)"><g ></g></g><g transform="translate(8324.8,0)"><use xlink:href="#MJX-41-TEX-N-28"></use><use xlink:href="#MJX-41-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-41-TEX-N-38" transform="translate(889,0)"></use><use xlink:href="#MJX-41-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/42.svg b/47464-h/images/42.svg
new file mode 100644
index 0000000..0fcc650
--- /dev/null
+++ b/47464-h/images/42.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="10455.9px" height="1000px" viewBox="0 -750 10455.9 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-42-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-42-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-42-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-42-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-42-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-42-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-42-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path><path id="MJX-42-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-42-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-42-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-42-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-42-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-42-TEX-I-1D438"></use></g><g transform="translate(1041.8,0)"><use xlink:href="#MJX-42-TEX-N-3D"></use></g><g transform="translate(2097.6,0)"><g ><use xlink:href="#MJX-42-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-42-TEX-I-1D45B"></use></g></g></g><g transform="translate(3565,0)"><use xlink:href="#MJX-42-TEX-N-2B"></use></g><g transform="translate(4565.3,0)"><use xlink:href="#MJX-42-TEX-I-1D458"></use></g><g transform="translate(5086.3,0)"><use xlink:href="#MJX-42-TEX-I-210E"></use></g><g transform="translate(5662.3,0)"><use xlink:href="#MJX-42-TEX-I-1D70E"></use></g><g transform="translate(6233.3,0)"><use xlink:href="#MJX-42-TEX-N-2C"></use></g><g transform="translate(6511.3,0)"><g ></g></g><g transform="translate(8677.9,0)"><use xlink:href="#MJX-42-TEX-N-28"></use><use xlink:href="#MJX-42-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-42-TEX-N-39" transform="translate(889,0)"></use><use xlink:href="#MJX-42-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/43.svg b/47464-h/images/43.svg
new file mode 100644
index 0000000..5052e44
--- /dev/null
+++ b/47464-h/images/43.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.679ex;" xmlns="http://www.w3.org/2000/svg" width="18269.9px" height="2259.6px" viewBox="0 -1517.7 18269.9 2259.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-43-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-43-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-43-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-43-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-43-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-43-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-43-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-43-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-43-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-43-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-43-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-43-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-43-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-43-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-43-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-43-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-43-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-43-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-43-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-43-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-43-TEX-I-1D438"></use></g><g transform="translate(1041.8,0)"><use xlink:href="#MJX-43-TEX-N-3D"></use></g><g transform="translate(2097.6,0)"><use xlink:href="#MJX-43-TEX-N-2212"></use></g><g transform="translate(2875.6,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-43-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-43-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4352.1,0)"><g ></g></g><g transform="translate(4519.1,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-43-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-43-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-43-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.9)"><g ><use xlink:href="#MJX-43-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(8468.4,0)"><use xlink:href="#MJX-43-TEX-N-2B"></use></g><g transform="translate(9468.7,0)"><use xlink:href="#MJX-43-TEX-I-1D45B"></use></g><g transform="translate(10068.7,0)"><use xlink:href="#MJX-43-TEX-I-1D458"></use></g><g transform="translate(10589.7,0)"><g ></g></g><g transform="translate(10756.7,0)"><g transform="translate(514.5,676)"><g ><use xlink:href="#MJX-43-TEX-N-33"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-43-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g></g></g><g transform="translate(1512.6,0)"><use xlink:href="#MJX-43-TEX-I-1D439"></use></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-43-TEX-N-38"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-43-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-43-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-43-TEX-I-1D452"></use></g><g transform="translate(1972.6,0)"><use xlink:href="#MJX-43-TEX-I-1D45A"></use></g></g><rect width="3050.6" height="60" x="120" y="220"></rect></g><g transform="translate(14047.2,0)"><use xlink:href="#MJX-43-TEX-N-2E"></use></g><g transform="translate(14325.2,0)"><g ></g></g><g transform="translate(16491.9,0)"><use xlink:href="#MJX-43-TEX-N-28"></use><use xlink:href="#MJX-43-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-43-TEX-N-30" transform="translate(889,0)"></use><use xlink:href="#MJX-43-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/44.svg b/47464-h/images/44.svg
new file mode 100644
index 0000000..09dce90
--- /dev/null
+++ b/47464-h/images/44.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="28522.3px" height="2487.6px" viewBox="0 -1517.7 28522.3 2487.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-44-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-44-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-44-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-44-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-44-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-44-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-44-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-44-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-44-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-44-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-44-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-44-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-44-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-44-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-44-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-44-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-44-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-44-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-44-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-44-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-44-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-44-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-44-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-44-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-44-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-44-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-44-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-44-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-44-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.2)"><g ><use xlink:href="#MJX-44-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-33"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(5590.7,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-44-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(1152.3,676)"><use xlink:href="#MJX-44-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-44-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-44-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-44-TEX-N-2032"></use><use xlink:href="#MJX-44-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-44-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(3762.8,0)"><use xlink:href="#MJX-44-TEX-N-2212"></use></g><g transform="translate(4763,0)"><g transform="translate(1152.3,676)"><use xlink:href="#MJX-44-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-44-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-44-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-44-TEX-N-2032"></use><use xlink:href="#MJX-44-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-44-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(7567.6,0) translate(0 -0.5)"><use xlink:href="#MJX-44-TEX-S3-29"></use></g></g><g transform="translate(14116.4,0)"><use xlink:href="#MJX-44-TEX-N-2B"></use></g><g transform="translate(15116.7,0)"><g transform="translate(371.6,676)"><g ><use xlink:href="#MJX-44-TEX-N-33"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-44-TEX-I-210E"></use></g><g transform="translate(1298.2,0)"><use xlink:href="#MJX-44-TEX-N-B7"></use></g><g transform="translate(1798.4,0)"><use xlink:href="#MJX-44-TEX-I-1D439"></use></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-44-TEX-N-38"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-44-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-44-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-44-TEX-I-1D452"></use></g><g transform="translate(1972.6,0)"><use xlink:href="#MJX-44-TEX-I-1D45A"></use></g></g><rect width="3050.6" height="60" x="120" y="220"></rect></g><g transform="translate(18407.2,0)"><use xlink:href="#MJX-44-TEX-N-28"></use></g><g transform="translate(18796.2,0)"><use xlink:href="#MJX-44-TEX-I-1D45B"></use></g><g transform="translate(19396.2,0)"><g ><use xlink:href="#MJX-44-TEX-N-2032"></use></g></g><g transform="translate(19671.2,0)"><use xlink:href="#MJX-44-TEX-I-1D458"></use></g><g transform="translate(20192.2,0)"><g ><use xlink:href="#MJX-44-TEX-N-2032"></use></g></g><g transform="translate(20689.4,0)"><use xlink:href="#MJX-44-TEX-N-2212"></use></g><g transform="translate(21689.7,0)"><use xlink:href="#MJX-44-TEX-I-1D45B"></use></g><g transform="translate(22289.7,0)"><g ><g ><use xlink:href="#MJX-44-TEX-N-2032"></use><use xlink:href="#MJX-44-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(22839.7,0)"><use xlink:href="#MJX-44-TEX-I-1D458"></use></g><g transform="translate(23360.7,0)"><g ><g ><use xlink:href="#MJX-44-TEX-N-2032"></use><use xlink:href="#MJX-44-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(23910.7,0)"><use xlink:href="#MJX-44-TEX-N-29"></use></g><g transform="translate(24299.7,0)"><use xlink:href="#MJX-44-TEX-N-2E"></use></g><g transform="translate(24577.7,0)"><g ></g></g><g transform="translate(26744.3,0)"><use xlink:href="#MJX-44-TEX-N-28"></use><use xlink:href="#MJX-44-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-44-TEX-N-31" transform="translate(889,0)"></use><use xlink:href="#MJX-44-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/45.svg b/47464-h/images/45.svg
new file mode 100644
index 0000000..274829f
--- /dev/null
+++ b/47464-h/images/45.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.018ex;" xmlns="http://www.w3.org/2000/svg" width="20635px" height="1400px" viewBox="0 -950 20635 1400" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-45-TEX-I-1D709" d="M268 632Q268 704 296 704Q314 704 314 687Q314 682 311 664T308 635T309 620V616H315Q342 619 360 619Q443 619 443 586Q439 548 358 546H344Q326 546 317 549T290 566Q257 550 226 505T195 405Q195 381 201 364T211 342T218 337Q266 347 298 347Q375 347 375 314Q374 297 359 288T327 277T280 275Q234 275 208 283L195 286Q149 260 119 214T88 130Q88 116 90 108Q101 79 129 63T229 20Q238 17 243 15Q337 -21 354 -33Q383 -53 383 -94Q383 -137 351 -171T273 -205Q240 -205 202 -190T158 -167Q156 -163 156 -159Q156 -151 161 -146T176 -140Q182 -140 189 -143Q232 -168 274 -168Q286 -168 292 -165Q313 -151 313 -129Q313 -112 301 -104T232 -75Q214 -68 204 -64Q198 -62 171 -52T136 -38T107 -24T78 -8T56 12T36 37T26 66T21 103Q21 149 55 206T145 301L154 307L148 313Q141 319 136 323T124 338T111 358T103 382T99 413Q99 471 143 524T259 602L271 607Q268 618 268 632Z"></path><path id="MJX-45-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-45-TEX-LO-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path id="MJX-45-TEX-I-1D436" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path id="MJX-45-TEX-I-1D70F" d="M39 284Q18 284 18 294Q18 301 45 338T99 398Q134 425 164 429Q170 431 332 431Q492 431 497 429Q517 424 517 402Q517 388 508 376T485 360Q479 358 389 358T299 356Q298 355 283 274T251 109T233 20Q228 5 215 -4T186 -13Q153 -13 153 20V30L203 192Q214 228 227 272T248 336L254 357Q254 358 208 358Q206 358 197 358T183 359Q105 359 61 295Q56 287 53 286T39 284Z"></path><path id="MJX-45-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-45-TEX-I-1D705" d="M83 -11Q70 -11 62 -4T51 8T49 17Q49 30 96 217T147 414Q160 442 193 442Q205 441 213 435T223 422T225 412Q225 401 208 337L192 270Q193 269 208 277T235 292Q252 304 306 349T396 412T467 431Q489 431 500 420T512 391Q512 366 494 347T449 327Q430 327 418 338T405 368Q405 370 407 380L397 375Q368 360 315 315L253 266L240 257H245Q262 257 300 251T366 230Q422 203 422 150Q422 140 417 114T411 67Q411 26 437 26Q484 26 513 137Q516 149 519 151T535 153Q554 153 554 144Q554 121 527 64T457 -7Q447 -10 431 -10Q386 -10 360 17T333 90Q333 108 336 122T339 146Q339 170 320 186T271 209T222 218T185 221H180L155 122Q129 22 126 16Q113 -11 83 -11Z"></path><path id="MJX-45-TEX-N-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path id="MJX-45-TEX-N-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path id="MJX-45-TEX-N-73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z"></path><path id="MJX-45-TEX-N-2061" d=""></path><path id="MJX-45-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-45-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-45-TEX-SO-7B" d="M477 -343L471 -349H458Q432 -349 367 -325T273 -263Q258 -245 250 -212L249 -51Q249 -27 249 12Q248 118 244 128Q243 129 243 130Q220 189 121 228Q109 232 107 235T105 250Q105 256 105 257T105 261T107 265T111 268T118 272T128 276T142 283T162 291Q224 324 243 371Q243 372 244 373Q248 384 249 469Q249 475 249 489Q249 528 249 552L250 714Q253 728 256 736T271 761T299 789T347 816T422 843Q440 849 441 849H443Q445 849 447 849T452 850T457 850H471L477 844V830Q477 820 476 817T470 811T459 807T437 801T404 785Q353 760 338 724Q333 710 333 550Q333 526 333 492T334 447Q334 393 327 368T295 318Q257 280 181 255L169 251L184 245Q318 198 332 112Q333 106 333 -49Q333 -209 338 -223Q351 -255 391 -277T469 -309Q477 -311 477 -329V-343Z"></path><path id="MJX-45-TEX-I-1D461" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path id="MJX-45-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-45-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-45-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-45-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path><path id="MJX-45-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-45-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-45-TEX-SO-7D" d="M110 849L115 850Q120 850 125 850Q151 850 215 826T309 764Q324 747 332 714L333 552Q333 528 333 489Q334 383 338 373Q339 372 339 371Q353 336 391 310T469 271Q477 268 477 251Q477 241 476 237T472 232T456 225T428 214Q357 179 339 130Q339 129 338 128Q334 117 333 32Q333 26 333 12Q333 -27 333 -51L332 -212Q328 -228 323 -240T302 -271T255 -307T175 -338Q139 -349 125 -349T108 -346T105 -329Q105 -314 107 -312T130 -304Q233 -271 248 -209Q249 -203 249 -49V57Q249 106 253 125T273 167Q307 213 398 245L413 251L401 255Q265 300 250 389Q249 395 249 550Q249 710 244 724Q224 774 112 811Q105 813 105 830Q105 845 110 849Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-45-TEX-I-1D709"></use></g><g transform="translate(715.8,0)"><use xlink:href="#MJX-45-TEX-N-3D"></use></g><g transform="translate(1771.6,0)"><use xlink:href="#MJX-45-TEX-LO-2211"></use></g><g transform="translate(3382.2,0)"><g ><use xlink:href="#MJX-45-TEX-I-1D436"></use></g><g transform="translate(748,-150) scale(0.707)" ><g ><use xlink:href="#MJX-45-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-45-TEX-N-2C"></use></g><g transform="translate(795,0)"><use xlink:href="#MJX-45-TEX-I-1D705"></use></g></g></g><g transform="translate(5316.3,0)"><use xlink:href="#MJX-45-TEX-N-63"></use><use xlink:href="#MJX-45-TEX-N-6F" transform="translate(444,0)"></use><use xlink:href="#MJX-45-TEX-N-73" transform="translate(944,0)"></use></g><g transform="translate(6654.3,0)"><use xlink:href="#MJX-45-TEX-N-2061"></use></g><g transform="translate(6821,0)"><use xlink:href="#MJX-45-TEX-N-32"></use></g><g transform="translate(7321,0)"><use xlink:href="#MJX-45-TEX-I-1D70B"></use></g><g transform="translate(7891,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-45-TEX-SO-7B"></use></g></g><g transform="translate(8474,0)"><use xlink:href="#MJX-45-TEX-I-1D461"></use></g><g transform="translate(8835,0)"><use xlink:href="#MJX-45-TEX-N-28"></use></g><g transform="translate(9224,0)"><use xlink:href="#MJX-45-TEX-I-1D70F"></use></g><g transform="translate(9741,0)"><use xlink:href="#MJX-45-TEX-I-1D714"></use></g><g transform="translate(10585.2,0)"><use xlink:href="#MJX-45-TEX-N-2B"></use></g><g transform="translate(11585.4,0)"><use xlink:href="#MJX-45-TEX-I-1D705"></use></g><g transform="translate(12161.4,0)"><use xlink:href="#MJX-45-TEX-I-1D70E"></use></g><g transform="translate(12732.4,0)"><use xlink:href="#MJX-45-TEX-N-29"></use></g><g transform="translate(13343.7,0)"><use xlink:href="#MJX-45-TEX-N-2B"></use></g><g transform="translate(14343.9,0)"><g ><use xlink:href="#MJX-45-TEX-I-1D450"></use></g><g transform="translate(466,-150) scale(0.707)" ><g ><use xlink:href="#MJX-45-TEX-I-1D70F"></use></g><g transform="translate(517,0)"><use xlink:href="#MJX-45-TEX-N-2C"></use></g><g transform="translate(795,0)"><use xlink:href="#MJX-45-TEX-I-1D705"></use></g></g></g><g transform="translate(15829.3,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-45-TEX-SO-7D"></use></g></g><g transform="translate(16412.3,0)"><use xlink:href="#MJX-45-TEX-N-2C"></use></g><g transform="translate(16690.3,0)"><g ></g></g><g transform="translate(18857,0)"><use xlink:href="#MJX-45-TEX-N-28"></use><use xlink:href="#MJX-45-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-45-TEX-N-32" transform="translate(889,0)"></use><use xlink:href="#MJX-45-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/46.svg b/47464-h/images/46.svg
new file mode 100644
index 0000000..8885302
--- /dev/null
+++ b/47464-h/images/46.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="16728.6px" height="1000px" viewBox="0 -750 16728.6 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-46-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-46-TEX-N-223C" d="M55 166Q55 241 101 304T222 367Q260 367 296 349T362 304T421 252T484 208T554 189Q616 189 655 236T694 338Q694 350 698 358T708 367Q722 367 722 334Q722 260 677 197T562 134H554Q517 134 481 152T414 196T355 248T292 293T223 311Q179 311 145 286Q109 257 96 218T80 156T69 133Q55 133 55 166Z"></path><path id="MJX-46-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-46-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-46-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-46-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-46-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-46-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-46-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-46-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-46-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path><path id="MJX-46-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-46-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-46-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-46-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-46-TEX-N-223C"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-46-TEX-N-28"></use></g><g transform="translate(2252.6,0)"><use xlink:href="#MJX-46-TEX-I-1D45B"></use></g><g transform="translate(2852.6,0)"><g ><use xlink:href="#MJX-46-TEX-N-2032"></use></g></g><g transform="translate(3349.8,0)"><use xlink:href="#MJX-46-TEX-N-2212"></use></g><g transform="translate(4350,0)"><use xlink:href="#MJX-46-TEX-I-1D45B"></use></g><g transform="translate(4950,0)"><g ><g ><use xlink:href="#MJX-46-TEX-N-2032"></use><use xlink:href="#MJX-46-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(5500,0)"><use xlink:href="#MJX-46-TEX-N-29"></use></g><g transform="translate(5889,0)"><g ></g></g><g transform="translate(6056,0)"><use xlink:href="#MJX-46-TEX-I-1D714"></use></g><g transform="translate(6900.2,0)"><use xlink:href="#MJX-46-TEX-N-2B"></use></g><g transform="translate(7900.4,0)"><use xlink:href="#MJX-46-TEX-N-28"></use></g><g transform="translate(8289.4,0)"><use xlink:href="#MJX-46-TEX-I-1D458"></use></g><g transform="translate(8810.4,0)"><g ><use xlink:href="#MJX-46-TEX-N-2032"></use></g></g><g transform="translate(9307.7,0)"><use xlink:href="#MJX-46-TEX-N-2212"></use></g><g transform="translate(10307.9,0)"><use xlink:href="#MJX-46-TEX-I-1D458"></use></g><g transform="translate(10828.9,0)"><g ><g ><use xlink:href="#MJX-46-TEX-N-2032"></use><use xlink:href="#MJX-46-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(11378.9,0)"><use xlink:href="#MJX-46-TEX-N-29"></use></g><g transform="translate(11767.9,0)"><g ></g></g><g transform="translate(11934.9,0)"><use xlink:href="#MJX-46-TEX-I-1D70E"></use></g><g transform="translate(12505.9,0)"><use xlink:href="#MJX-46-TEX-N-2E"></use></g><g transform="translate(12783.9,0)"><g ></g></g><g transform="translate(14950.6,0)"><use xlink:href="#MJX-46-TEX-N-28"></use><use xlink:href="#MJX-46-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-46-TEX-N-33" transform="translate(889,0)"></use><use xlink:href="#MJX-46-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/47.svg b/47464-h/images/47.svg
new file mode 100644
index 0000000..e204fee
--- /dev/null
+++ b/47464-h/images/47.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="8948.2px" height="2056px" viewBox="0 -1359 8948.2 2056" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-47-TEX-I-1D70E" d="M184 -11Q116 -11 74 34T31 147Q31 247 104 333T274 430Q275 431 414 431H552Q553 430 555 429T559 427T562 425T565 422T567 420T569 416T570 412T571 407T572 401Q572 357 507 357Q500 357 490 357T476 358H416L421 348Q439 310 439 263Q439 153 359 71T184 -11ZM361 278Q361 358 276 358Q152 358 115 184Q114 180 114 178Q106 141 106 117Q106 67 131 47T188 26Q242 26 287 73Q316 103 334 153T356 233T361 278Z"></path><path id="MJX-47-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-47-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-47-TEX-I-1D43B" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path id="MJX-47-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-47-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-47-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-47-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-47-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-47-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-47-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-47-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-47-TEX-I-1D70E"></use></g><g transform="translate(848.8,0)"><use xlink:href="#MJX-47-TEX-N-3D"></use></g><g transform="translate(1904.6,0)"><g transform="translate(733.5,676)"><g ><use xlink:href="#MJX-47-TEX-I-1D452"></use></g><g transform="translate(466,0)"><use xlink:href="#MJX-47-TEX-I-1D43B"></use></g></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-47-TEX-N-34"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-47-TEX-I-1D70B"></use></g><g transform="translate(1070,0)"><use xlink:href="#MJX-47-TEX-I-1D45A"></use></g><g transform="translate(1948,0)"><use xlink:href="#MJX-47-TEX-I-1D450"></use></g></g><rect width="2581" height="60" x="120" y="220"></rect></g><g transform="translate(4725.6,0)"><use xlink:href="#MJX-47-TEX-N-2C"></use></g><g transform="translate(5003.6,0)"><g ></g></g><g transform="translate(7170.2,0)"><use xlink:href="#MJX-47-TEX-N-28"></use><use xlink:href="#MJX-47-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-47-TEX-N-34" transform="translate(889,0)"></use><use xlink:href="#MJX-47-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/48.svg b/47464-h/images/48.svg
new file mode 100644
index 0000000..6fbf395
--- /dev/null
+++ b/47464-h/images/48.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="11862.3px" height="2240.9px" viewBox="0 -1509.9 11862.3 2240.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-48-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-48-TEX-I-1D45D" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path id="MJX-48-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-48-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-48-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-48-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-48-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-48-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-48-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-48-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-48-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-48-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-48-TEX-I-1D45D"></use></g><g transform="translate(536,-150) scale(0.707)" ><g ><use xlink:href="#MJX-48-TEX-I-1D458"></use></g></g></g><g transform="translate(1732.2,0)"><use xlink:href="#MJX-48-TEX-N-3D"></use></g><g transform="translate(2788,0)"><g ><use xlink:href="#MJX-48-TEX-I-1D458"></use></g><g transform="translate(554,413) scale(0.707)" ><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g></g></g><g transform="translate(3745.5,0)"><g ></g></g><g transform="translate(3912.5,0)"><g transform="translate(1357.3,676)"><g ><use xlink:href="#MJX-48-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-48-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-48-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-48-TEX-N-32"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-48-TEX-I-1D45A"></use></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(7639.6,0)"><use xlink:href="#MJX-48-TEX-N-2E"></use></g><g transform="translate(7917.6,0)"><g ></g></g><g transform="translate(10084.3,0)"><use xlink:href="#MJX-48-TEX-N-28"></use><use xlink:href="#MJX-48-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-48-TEX-N-35" transform="translate(889,0)"></use><use xlink:href="#MJX-48-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/49.svg b/47464-h/images/49.svg
new file mode 100644
index 0000000..0982b53
--- /dev/null
+++ b/47464-h/images/49.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="11151.7px" height="1000px" viewBox="0 -750 11151.7 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-49-TEX-N-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path id="MJX-49-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-49-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-49-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-49-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-49-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-49-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-49-TEX-I-1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path id="MJX-49-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-49-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-49-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-49-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-49-TEX-N-394"></use></g><g transform="translate(833,0)"><use xlink:href="#MJX-49-TEX-I-1D438"></use></g><g transform="translate(1874.8,0)"><use xlink:href="#MJX-49-TEX-N-3D"></use></g><g transform="translate(2930.6,0)"><use xlink:href="#MJX-49-TEX-N-32"></use></g><g transform="translate(3430.6,0)"><use xlink:href="#MJX-49-TEX-I-1D70B"></use></g><g transform="translate(4000.6,0)"><use xlink:href="#MJX-49-TEX-I-1D714"></use></g><g transform="translate(4844.8,0)"><use xlink:href="#MJX-49-TEX-N-B7"></use></g><g transform="translate(5345,0)"><use xlink:href="#MJX-49-TEX-N-394"></use></g><g transform="translate(6178,0)"><use xlink:href="#MJX-49-TEX-I-1D443"></use></g><g transform="translate(6929,0)"><use xlink:href="#MJX-49-TEX-N-2E"></use></g><g transform="translate(7207,0)"><g ></g></g><g transform="translate(9373.7,0)"><use xlink:href="#MJX-49-TEX-N-28"></use><use xlink:href="#MJX-49-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-49-TEX-N-36" transform="translate(889,0)"></use><use xlink:href="#MJX-49-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/5.svg b/47464-h/images/5.svg
new file mode 100644
index 0000000..b65ec01
--- /dev/null
+++ b/47464-h/images/5.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="12764.4px" height="2999px" viewBox="0 -1749.5 12764.4 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-5-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-5-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-5-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-5-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-5-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-5-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-5-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-5-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-5-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-5-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-5-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-5-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-5-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-5-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-5-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-5-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><use xlink:href="#MJX-5-TEX-I-1D445"></use></g><g transform="translate(3282.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-5-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-5-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-5-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-5-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-5-TEX-N-31"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(2490.8,0)"><use xlink:href="#MJX-5-TEX-N-2212"></use></g><g transform="translate(3491,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-5-TEX-N-31"></use></g><g transform="translate(220,-784.5)"><g ><use xlink:href="#MJX-5-TEX-I-1D45B"></use></g><g transform="translate(633,353.6) scale(0.707)" ><g ><use xlink:href="#MJX-5-TEX-N-32"></use></g></g><g transform="translate(633,-297.3) scale(0.707)" ><g ><use xlink:href="#MJX-5-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4967.6,0) translate(0 -0.5)"><use xlink:href="#MJX-5-TEX-S4-29"></use></g></g><g transform="translate(9041.8,0)"><use xlink:href="#MJX-5-TEX-N-2C"></use></g><g transform="translate(9319.8,0)"><g ></g></g><g transform="translate(11486.4,0)"><use xlink:href="#MJX-5-TEX-N-28"></use><use xlink:href="#MJX-5-TEX-N-33" transform="translate(389,0)"></use><use xlink:href="#MJX-5-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/50.svg b/47464-h/images/50.svg
new file mode 100644
index 0000000..f392877
--- /dev/null
+++ b/47464-h/images/50.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="8650.2px" height="2067px" viewBox="0 -1370 8650.2 2067" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-50-TEX-N-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path id="MJX-50-TEX-I-1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path id="MJX-50-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-50-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-50-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-50-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-50-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-50-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-50-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-50-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-50-TEX-N-394"></use></g><g transform="translate(833,0)"><use xlink:href="#MJX-50-TEX-I-1D443"></use></g><g transform="translate(1861.8,0)"><use xlink:href="#MJX-50-TEX-N-3D"></use></g><g transform="translate(2917.6,0)"><g transform="translate(467,676)"><use xlink:href="#MJX-50-TEX-I-210E"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-50-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-50-TEX-I-1D70B"></use></g></g><rect width="1270" height="60" x="120" y="220"></rect></g><g transform="translate(4427.6,0)"><use xlink:href="#MJX-50-TEX-N-2E"></use></g><g transform="translate(4705.6,0)"><g ></g></g><g transform="translate(6872.2,0)"><use xlink:href="#MJX-50-TEX-N-28"></use><use xlink:href="#MJX-50-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-50-TEX-N-37" transform="translate(889,0)"></use><use xlink:href="#MJX-50-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/51.svg b/47464-h/images/51.svg
new file mode 100644
index 0000000..1190ef1
--- /dev/null
+++ b/47464-h/images/51.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="8505.2px" height="2067px" viewBox="0 -1370 8505.2 2067" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-51-TEX-I-1D443" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path id="MJX-51-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-51-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-51-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-51-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-51-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-51-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-51-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-51-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-51-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-51-TEX-I-1D443"></use></g><g transform="translate(1028.8,0)"><use xlink:href="#MJX-51-TEX-N-3D"></use></g><g transform="translate(2084.6,0)"><use xlink:href="#MJX-51-TEX-I-1D458"></use></g><g transform="translate(2605.6,0)"><g ></g></g><g transform="translate(2772.6,0)"><g transform="translate(467,676)"><use xlink:href="#MJX-51-TEX-I-210E"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-51-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-51-TEX-I-1D70B"></use></g></g><rect width="1270" height="60" x="120" y="220"></rect></g><g transform="translate(4282.6,0)"><use xlink:href="#MJX-51-TEX-N-2E"></use></g><g transform="translate(4560.6,0)"><g ></g></g><g transform="translate(6727.2,0)"><use xlink:href="#MJX-51-TEX-N-28"></use><use xlink:href="#MJX-51-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-51-TEX-N-38" transform="translate(889,0)"></use><use xlink:href="#MJX-51-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/52.svg b/47464-h/images/52.svg
new file mode 100644
index 0000000..e16e95d
--- /dev/null
+++ b/47464-h/images/52.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="9737.7px" height="1000px" viewBox="0 -750 9737.7 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-52-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-52-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-52-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-52-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-52-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-52-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-52-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-52-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-52-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-52-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-52-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-52-TEX-I-1D708"></use></g><g transform="translate(1383.8,0)"><use xlink:href="#MJX-52-TEX-N-3D"></use></g><g transform="translate(2439.6,0)"><use xlink:href="#MJX-52-TEX-I-1D438"></use></g><g transform="translate(3203.6,0)"><g ><use xlink:href="#MJX-52-TEX-N-2032"></use></g></g><g transform="translate(3700.8,0)"><use xlink:href="#MJX-52-TEX-N-2212"></use></g><g transform="translate(4701,0)"><use xlink:href="#MJX-52-TEX-I-1D438"></use></g><g transform="translate(5465,0)"><g ><g ><use xlink:href="#MJX-52-TEX-N-2032"></use><use xlink:href="#MJX-52-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(6015,0)"><use xlink:href="#MJX-52-TEX-N-2C"></use></g><g transform="translate(6293,0)"><g ></g></g><g transform="translate(8459.7,0)"><use xlink:href="#MJX-52-TEX-N-28"></use><use xlink:href="#MJX-52-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-52-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/53.svg b/47464-h/images/53.svg
new file mode 100644
index 0000000..1fbf89f
--- /dev/null
+++ b/47464-h/images/53.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="14670.4px" height="2419.4px" viewBox="0 -1449.5 14670.4 2419.4" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-53-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-53-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-53-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-53-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-53-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-53-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-53-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-53-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-53-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-53-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-53-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-53-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-53-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-53-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-53-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-53-TEX-I-1D43E"></use></g><g transform="translate(2919.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-53-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(1152.3,676)"><use xlink:href="#MJX-53-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-53-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-53-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-53-TEX-N-2032"></use><use xlink:href="#MJX-53-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-53-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-53-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(3762.8,0)"><use xlink:href="#MJX-53-TEX-N-2212"></use></g><g transform="translate(4763,0)"><g transform="translate(1014.8,676)"><use xlink:href="#MJX-53-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-53-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-53-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-53-TEX-N-2032"></use></g></g><g transform="translate(1264,0)"><g ><use xlink:href="#MJX-53-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-53-TEX-N-32"></use></g></g></g></g><rect width="2289.6" height="60" x="120" y="220"></rect></g><g transform="translate(7292.6,0) translate(0 -0.5)"><use xlink:href="#MJX-53-TEX-S3-29"></use></g></g><g transform="translate(10947.8,0)"><use xlink:href="#MJX-53-TEX-N-2C"></use></g><g transform="translate(11225.8,0)"><g ></g></g><g transform="translate(13392.4,0)"><use xlink:href="#MJX-53-TEX-N-28"></use><use xlink:href="#MJX-53-TEX-N-32" transform="translate(389,0)"></use><use xlink:href="#MJX-53-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/54.svg b/47464-h/images/54.svg
new file mode 100644
index 0000000..e74c15a
--- /dev/null
+++ b/47464-h/images/54.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="8984.5px" height="2100.9px" viewBox="0 -1370 8984.5 2100.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-54-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-54-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-54-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-54-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-54-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-54-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-54-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-54-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-54-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-54-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-54-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-54-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-54-TEX-I-1D45B"></use></g></g></g><g transform="translate(1523,0)"><use xlink:href="#MJX-54-TEX-N-3D"></use></g><g transform="translate(2578.8,0)"><use xlink:href="#MJX-54-TEX-N-2212"></use></g><g transform="translate(3356.8,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-54-TEX-I-1D43E"></use></g><g transform="translate(889,0)"><use xlink:href="#MJX-54-TEX-I-210E"></use></g></g><g transform="translate(434.2,-719.9)"><g ><use xlink:href="#MJX-54-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-54-TEX-N-32"></use></g></g></g><rect width="1665" height="60" x="120" y="220"></rect></g><g transform="translate(5261.8,0)"><use xlink:href="#MJX-54-TEX-N-2E"></use></g><g transform="translate(5539.8,0)"><g ></g></g><g transform="translate(7706.5,0)"><use xlink:href="#MJX-54-TEX-N-28"></use><use xlink:href="#MJX-54-TEX-N-33" transform="translate(389,0)"></use><use xlink:href="#MJX-54-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/55.svg b/47464-h/images/55.svg
new file mode 100644
index 0000000..826083c
--- /dev/null
+++ b/47464-h/images/55.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.577ex;" xmlns="http://www.w3.org/2000/svg" width="8971.6px" height="2206.9px" viewBox="0 -1509.9 8971.6 2206.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-55-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-55-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-55-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-55-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-55-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-55-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-55-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-55-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-55-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-55-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-55-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-55-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-55-TEX-I-1D44E"></use></g><g transform="translate(562,-150) scale(0.707)" ><g ><use xlink:href="#MJX-55-TEX-I-1D45B"></use></g></g></g><g transform="translate(1814,0)"><use xlink:href="#MJX-55-TEX-N-3D"></use></g><g transform="translate(2869.8,0)"><g transform="translate(220,676)"><g ><g ><use xlink:href="#MJX-55-TEX-I-1D45B"></use></g><g transform="translate(633,363) scale(0.707)" ><g ><use xlink:href="#MJX-55-TEX-N-32"></use></g></g></g><g transform="translate(1036.6,0)"><g ><use xlink:href="#MJX-55-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-55-TEX-N-32"></use></g></g></g></g><g transform="translate(457.1,-686)"><g ><use xlink:href="#MJX-55-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-55-TEX-I-1D43E"></use></g></g><rect width="2139.1" height="60" x="120" y="220"></rect></g><g transform="translate(5248.9,0)"><use xlink:href="#MJX-55-TEX-N-2C"></use></g><g transform="translate(5526.9,0)"><g ></g></g><g transform="translate(7693.6,0)"><use xlink:href="#MJX-55-TEX-N-28"></use><use xlink:href="#MJX-55-TEX-N-34" transform="translate(389,0)"></use><use xlink:href="#MJX-55-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/56.svg b/47464-h/images/56.svg
new file mode 100644
index 0000000..05327c9
--- /dev/null
+++ b/47464-h/images/56.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="12185.4px" height="2248.6px" viewBox="0 -1517.7 12185.4 2248.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-56-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-56-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-56-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-56-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-56-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-56-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-56-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-56-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-56-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-56-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-56-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-56-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-56-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-56-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-56-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-56-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-I-1D45B"></use></g></g></g><g transform="translate(1523,0)"><use xlink:href="#MJX-56-TEX-N-3D"></use></g><g transform="translate(2578.8,0)"><use xlink:href="#MJX-56-TEX-N-2212"></use></g><g transform="translate(3356.8,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-56-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-56-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-56-TEX-I-1D441"></use></g><g transform="translate(975.3,363) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-N-32"></use></g></g></g><g transform="translate(2885.4,0)"><g ><use xlink:href="#MJX-56-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-N-34"></use></g></g></g><g transform="translate(3787.9,0)"><use xlink:href="#MJX-56-TEX-I-1D45A"></use></g></g><g transform="translate(1528.4,-719.9)"><g ><g ><use xlink:href="#MJX-56-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-N-32"></use></g></g></g><g transform="translate(1036.6,0)"><g ><use xlink:href="#MJX-56-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-56-TEX-N-32"></use></g></g></g></g><rect width="4865.9" height="60" x="120" y="220"></rect></g><g transform="translate(8462.7,0)"><use xlink:href="#MJX-56-TEX-N-2C"></use></g><g transform="translate(8740.7,0)"><g ></g></g><g transform="translate(10907.4,0)"><use xlink:href="#MJX-56-TEX-N-28"></use><use xlink:href="#MJX-56-TEX-N-35" transform="translate(389,0)"></use><use xlink:href="#MJX-56-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/57.svg b/47464-h/images/57.svg
new file mode 100644
index 0000000..00497ec
--- /dev/null
+++ b/47464-h/images/57.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.652ex;" xmlns="http://www.w3.org/2000/svg" width="9672.3px" height="2247.9px" viewBox="0 -1517.7 9672.3 2247.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-57-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-57-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-57-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-57-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-57-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-57-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-57-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-57-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-57-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-57-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-57-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-57-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-57-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-57-TEX-I-1D43E"></use></g><g transform="translate(1166.8,0)"><use xlink:href="#MJX-57-TEX-N-3D"></use></g><g transform="translate(2222.6,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-57-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-57-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-57-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-57-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-57-TEX-N-34"></use></g></g></g><g transform="translate(2409.1,0)"><use xlink:href="#MJX-57-TEX-I-1D45A"></use></g></g><g transform="translate(1357.3,-719.2)"><g ><use xlink:href="#MJX-57-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-57-TEX-N-33"></use></g></g></g><rect width="3487.1" height="60" x="120" y="220"></rect></g><g transform="translate(5949.7,0)"><use xlink:href="#MJX-57-TEX-N-2E"></use></g><g transform="translate(6227.7,0)"><g ></g></g><g transform="translate(8394.3,0)"><use xlink:href="#MJX-57-TEX-N-28"></use><use xlink:href="#MJX-57-TEX-N-36" transform="translate(389,0)"></use><use xlink:href="#MJX-57-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/58.svg b/47464-h/images/58.svg
new file mode 100644
index 0000000..0b94918
--- /dev/null
+++ b/47464-h/images/58.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="15170.4px" height="2419.4px" viewBox="0 -1449.5 15170.4 2419.4" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-58-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-58-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-58-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-58-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-58-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-58-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-58-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-58-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-58-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-58-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-58-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-58-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-58-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-58-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-58-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-58-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-58-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><use xlink:href="#MJX-58-TEX-N-34"></use></g><g transform="translate(2363.6,0)"><use xlink:href="#MJX-58-TEX-I-1D43E"></use></g><g transform="translate(3419.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-58-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(1152.3,676)"><use xlink:href="#MJX-58-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-58-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-58-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-58-TEX-N-2032"></use><use xlink:href="#MJX-58-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1539,0)"><g ><use xlink:href="#MJX-58-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-58-TEX-N-32"></use></g></g></g></g><rect width="2564.6" height="60" x="120" y="220"></rect></g><g transform="translate(3762.8,0)"><use xlink:href="#MJX-58-TEX-N-2212"></use></g><g transform="translate(4763,0)"><g transform="translate(1014.8,676)"><use xlink:href="#MJX-58-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-58-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-58-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-58-TEX-N-2032"></use></g></g><g transform="translate(1264,0)"><g ><use xlink:href="#MJX-58-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-58-TEX-N-32"></use></g></g></g></g><rect width="2289.6" height="60" x="120" y="220"></rect></g><g transform="translate(7292.6,0) translate(0 -0.5)"><use xlink:href="#MJX-58-TEX-S3-29"></use></g></g><g transform="translate(11447.8,0)"><use xlink:href="#MJX-58-TEX-N-2E"></use></g><g transform="translate(11725.8,0)"><g ></g></g><g transform="translate(13892.4,0)"><use xlink:href="#MJX-58-TEX-N-28"></use><use xlink:href="#MJX-58-TEX-N-37" transform="translate(389,0)"></use><use xlink:href="#MJX-58-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/59.svg b/47464-h/images/59.svg
new file mode 100644
index 0000000..ed88dca
--- /dev/null
+++ b/47464-h/images/59.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="13468.2px" height="2399px" viewBox="0 -1449.5 13468.2 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-59-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-59-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-59-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-59-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-59-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-59-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-59-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-59-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-59-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-59-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-59-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-59-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path id="MJX-59-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-59-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-59-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g ><use xlink:href="#MJX-59-TEX-I-1D441"></use></g><g transform="translate(975.3,413) scale(0.707)" ><g ><use xlink:href="#MJX-59-TEX-N-32"></use></g></g></g><g transform="translate(3242.4,0)"><use xlink:href="#MJX-59-TEX-I-1D43E"></use></g><g transform="translate(4298,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-59-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(438.3,676)"><use xlink:href="#MJX-59-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-59-TEX-N-31"></use></g><g transform="translate(533,289) scale(0.707)" ><g ><use xlink:href="#MJX-59-TEX-N-32"></use></g></g></g><rect width="1136.6" height="60" x="120" y="220"></rect></g><g transform="translate(2334.8,0)"><use xlink:href="#MJX-59-TEX-N-2212"></use></g><g transform="translate(3335,0)"><g transform="translate(438.3,676)"><use xlink:href="#MJX-59-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-59-TEX-N-32"></use></g><g transform="translate(533,289) scale(0.707)" ><g ><use xlink:href="#MJX-59-TEX-N-32"></use></g></g></g><rect width="1136.6" height="60" x="120" y="220"></rect></g><g transform="translate(4711.6,0) translate(0 -0.5)"><use xlink:href="#MJX-59-TEX-S3-29"></use></g></g><g transform="translate(9745.6,0)"><use xlink:href="#MJX-59-TEX-N-2E"></use></g><g transform="translate(10023.6,0)"><g ></g></g><g transform="translate(12190.2,0)"><use xlink:href="#MJX-59-TEX-N-28"></use><use xlink:href="#MJX-59-TEX-N-38" transform="translate(389,0)"></use><use xlink:href="#MJX-59-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/6.svg b/47464-h/images/6.svg
new file mode 100644
index 0000000..06ed3a1
--- /dev/null
+++ b/47464-h/images/6.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="8671.2px" height="2399px" viewBox="0 -1449.5 8671.2 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-6-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-6-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-6-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-6-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-6-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-6-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-6-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-6-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-6-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-6-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-6-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-6-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-6-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-6-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><use xlink:href="#MJX-6-TEX-I-1D445"></use></g><g transform="translate(3282.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-6-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(220,676)"><use xlink:href="#MJX-6-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-6-TEX-N-39"></use></g><rect width="700" height="60" x="120" y="220"></rect></g><g transform="translate(1898.2,0)"><use xlink:href="#MJX-6-TEX-N-2212"></use></g><g transform="translate(2898.4,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-6-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-6-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-6-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(4375,0) translate(0 -0.5)"><use xlink:href="#MJX-6-TEX-S3-29"></use></g></g><g transform="translate(8393.2,0)"><use xlink:href="#MJX-6-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/60.svg b/47464-h/images/60.svg
new file mode 100644
index 0000000..a38bce7
--- /dev/null
+++ b/47464-h/images/60.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="13468.2px" height="2399px" viewBox="0 -1449.5 13468.2 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-60-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-60-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-60-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-60-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-60-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-60-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-60-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-60-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-60-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-60-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-60-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-60-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-60-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-60-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-60-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-60-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g ><use xlink:href="#MJX-60-TEX-I-1D441"></use></g><g transform="translate(975.3,413) scale(0.707)" ><g ><use xlink:href="#MJX-60-TEX-N-32"></use></g></g></g><g transform="translate(3242.4,0)"><use xlink:href="#MJX-60-TEX-I-1D43E"></use></g><g transform="translate(4298,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-60-TEX-S3-28"></use></g><g transform="translate(736,0)"><g transform="translate(438.3,676)"><use xlink:href="#MJX-60-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-60-TEX-N-32"></use></g><g transform="translate(533,289) scale(0.707)" ><g ><use xlink:href="#MJX-60-TEX-N-32"></use></g></g></g><rect width="1136.6" height="60" x="120" y="220"></rect></g><g transform="translate(2334.8,0)"><use xlink:href="#MJX-60-TEX-N-2212"></use></g><g transform="translate(3335,0)"><g transform="translate(438.3,676)"><use xlink:href="#MJX-60-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-60-TEX-N-33"></use></g><g transform="translate(533,289) scale(0.707)" ><g ><use xlink:href="#MJX-60-TEX-N-32"></use></g></g></g><rect width="1136.6" height="60" x="120" y="220"></rect></g><g transform="translate(4711.6,0) translate(0 -0.5)"><use xlink:href="#MJX-60-TEX-S3-29"></use></g></g><g transform="translate(9745.6,0)"><use xlink:href="#MJX-60-TEX-N-2E"></use></g><g transform="translate(10023.6,0)"><g ></g></g><g transform="translate(12190.2,0)"><use xlink:href="#MJX-60-TEX-N-28"></use><use xlink:href="#MJX-60-TEX-N-39" transform="translate(389,0)"></use><use xlink:href="#MJX-60-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/61.svg b/47464-h/images/61.svg
new file mode 100644
index 0000000..6a87d8d
--- /dev/null
+++ b/47464-h/images/61.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.654ex;" xmlns="http://www.w3.org/2000/svg" width="21924.8px" height="2240.9px" viewBox="0 -1509.9 21924.8 2240.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-61-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-61-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-61-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-61-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-61-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-61-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-61-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-61-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-61-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-61-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-61-TEX-I-1D45D" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path id="MJX-61-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-61-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-61-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-61-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-61-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-61-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-61-TEX-I-1D44E"></use></g><g transform="translate(1306.8,0)"><use xlink:href="#MJX-61-TEX-N-3D"></use></g><g transform="translate(2362.6,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D45B"></use></g><g transform="translate(633,413) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(3399.1,0)"><g ></g></g><g transform="translate(3566.1,0)"><g transform="translate(1801.3,676)"><g ><use xlink:href="#MJX-61-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-61-TEX-I-1D441"></use></g><g transform="translate(2394.6,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(3297.1,0)"><use xlink:href="#MJX-61-TEX-I-1D45A"></use></g></g><rect width="4375.1" height="60" x="120" y="220"></rect></g><g transform="translate(8181.2,0)"><use xlink:href="#MJX-61-TEX-N-2C"></use></g><g transform="translate(8459.2,0)"><g ></g></g><g transform="translate(9625.9,0)"><use xlink:href="#MJX-61-TEX-N-32"></use></g><g transform="translate(10125.9,0)"><use xlink:href="#MJX-61-TEX-I-1D45D"></use></g><g transform="translate(10906.7,0)"><use xlink:href="#MJX-61-TEX-N-3D"></use></g><g transform="translate(11962.4,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D458"></use></g><g transform="translate(554,413) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(12920,0)"><g ></g></g><g transform="translate(13087,0)"><g transform="translate(1801.3,676)"><g ><use xlink:href="#MJX-61-TEX-I-210E"></use></g><g transform="translate(609,363) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><use xlink:href="#MJX-61-TEX-I-1D441"></use></g><g transform="translate(2394.6,0)"><g ><use xlink:href="#MJX-61-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-61-TEX-N-32"></use></g></g></g><g transform="translate(3297.1,0)"><use xlink:href="#MJX-61-TEX-I-1D45A"></use></g></g><rect width="4375.1" height="60" x="120" y="220"></rect></g><g transform="translate(17702.1,0)"><use xlink:href="#MJX-61-TEX-N-2E"></use></g><g transform="translate(17980.1,0)"><g ></g></g><g transform="translate(20146.8,0)"><use xlink:href="#MJX-61-TEX-N-28"></use><use xlink:href="#MJX-61-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-61-TEX-N-30" transform="translate(889,0)"></use><use xlink:href="#MJX-61-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/62.svg b/47464-h/images/62.svg
new file mode 100644
index 0000000..f12fe74
--- /dev/null
+++ b/47464-h/images/62.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="27266.7px" height="2467.2px" viewBox="0 -1517.7 27266.7 2467.2" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-62-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-62-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-62-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-62-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-62-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-62-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-62-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-62-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-62-TEX-I-1D441" d="M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z"></path><path id="MJX-62-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-62-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-62-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-62-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-62-TEX-S3-5B" d="M247 -949V1450H516V1388H309V-887H516V-949H247Z"></path><path id="MJX-62-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-62-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-62-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-62-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-62-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-62-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-62-TEX-S3-5D" d="M11 1388V1450H280V-949H11V-887H218V1388H11Z"></path><path id="MJX-62-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-62-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-62-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><use xlink:href="#MJX-62-TEX-N-2C"></use></g><g transform="translate(878,0)"><use xlink:href="#MJX-62-TEX-I-1D458"></use></g></g></g><g transform="translate(2088,0)"><use xlink:href="#MJX-62-TEX-N-3D"></use></g><g transform="translate(3143.8,0)"><use xlink:href="#MJX-62-TEX-N-2212"></use></g><g transform="translate(3921.8,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D441"></use></g><g transform="translate(975.3,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(2885.4,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-34"></use></g></g></g><g transform="translate(3787.9,0)"><use xlink:href="#MJX-62-TEX-I-1D45A"></use></g></g><g transform="translate(1528.4,-719.9)"><g ><g ><use xlink:href="#MJX-62-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(1036.6,0)"><g ><use xlink:href="#MJX-62-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g></g><rect width="4865.9" height="60" x="120" y="220"></rect></g><g transform="translate(9027.7,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-62-TEX-S3-5B"></use></g><g transform="translate(528,0)"><use xlink:href="#MJX-62-TEX-N-31"></use></g><g transform="translate(1250.2,0)"><use xlink:href="#MJX-62-TEX-N-2B"></use></g><g transform="translate(2250.4,0)"><g transform="translate(220,676)"><g ><use xlink:href="#MJX-62-TEX-N-34"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D70B"></use></g><g transform="translate(603,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(1506.6,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D441"></use></g><g transform="translate(975.3,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(2885.4,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-34"></use></g></g></g></g><g transform="translate(1172.9,-719.9)"><g ><g ><use xlink:href="#MJX-62-TEX-I-210E"></use></g><g transform="translate(609,289) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g><g transform="translate(1012.6,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D450"></use></g><g transform="translate(466,289) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g></g><rect width="3987.9" height="60" x="120" y="220"></rect></g><g transform="translate(6478.4,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-62-TEX-S3-28"></use></g><g transform="translate(736,0)"><use xlink:href="#MJX-62-TEX-N-2212"></use></g><g transform="translate(1514,0)"><g transform="translate(738.3,676)"><use xlink:href="#MJX-62-TEX-N-33"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-62-TEX-N-34"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-62-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-62-TEX-N-32"></use></g></g></g></g><rect width="1736.6" height="60" x="120" y="220"></rect></g><g transform="translate(3712.8,0)"><use xlink:href="#MJX-62-TEX-N-2B"></use></g><g transform="translate(4713,0)"><g transform="translate(530.5,676)"><use xlink:href="#MJX-62-TEX-N-31"></use></g><g transform="translate(220,-686)"><g ><use xlink:href="#MJX-62-TEX-I-1D45B"></use></g><g transform="translate(600,0)"><use xlink:href="#MJX-62-TEX-I-1D458"></use></g></g><rect width="1321" height="60" x="120" y="220"></rect></g><g transform="translate(6274,0) translate(0 -0.5)"><use xlink:href="#MJX-62-TEX-S3-29"></use></g></g><g transform="translate(13488.4,0) translate(0 -0.5)"><use xlink:href="#MJX-62-TEX-S3-5D"></use></g></g><g transform="translate(23044.1,0)"><use xlink:href="#MJX-62-TEX-N-2C"></use></g><g transform="translate(23322.1,0)"><g ></g></g><g transform="translate(25488.7,0)"><use xlink:href="#MJX-62-TEX-N-28"></use><use xlink:href="#MJX-62-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-62-TEX-N-31" transform="translate(889,0)"></use><use xlink:href="#MJX-62-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/63.svg b/47464-h/images/63.svg
new file mode 100644
index 0000000..8459d99
--- /dev/null
+++ b/47464-h/images/63.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="17853.8px" height="2328.9px" viewBox="0 -1359 17853.8 2328.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-63-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-63-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-63-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-63-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-63-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-63-TEX-N-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path id="MJX-63-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-63-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-63-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-63-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-63-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-63-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-63-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-63-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-63-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-63-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g transform="translate(2309.2,676)"><use xlink:href="#MJX-63-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-63-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-63-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><g ><use xlink:href="#MJX-63-TEX-N-2032"></use><use xlink:href="#MJX-63-TEX-N-2032" transform="translate(275,0)"></use></g></g></g><g transform="translate(1761.2,0)"><use xlink:href="#MJX-63-TEX-N-2B"></use></g><g transform="translate(2761.4,0)"><g ><use xlink:href="#MJX-63-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-63-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><g ><use xlink:href="#MJX-63-TEX-N-2032"></use><use xlink:href="#MJX-63-TEX-N-2032" transform="translate(275,0)"></use></g></g></g></g></g><g transform="translate(4241.8,0)"><g ><use xlink:href="#MJX-63-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-63-TEX-N-32"></use></g></g></g></g><rect width="5267.3" height="60" x="120" y="220"></rect></g><g transform="translate(7593.1,0)"><use xlink:href="#MJX-63-TEX-N-2212"></use></g><g transform="translate(8593.3,0)"><g transform="translate(2074.4,676)"><use xlink:href="#MJX-63-TEX-I-1D43E"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-63-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-63-TEX-I-1D45B"></use></g><g transform="translate(989,0)"><g ><use xlink:href="#MJX-63-TEX-N-2032"></use></g></g><g transform="translate(1486.2,0)"><use xlink:href="#MJX-63-TEX-N-2B"></use></g><g transform="translate(2486.4,0)"><g ><use xlink:href="#MJX-63-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-63-TEX-I-1D458"></use></g><g transform="translate(521,0)"><g ><use xlink:href="#MJX-63-TEX-N-2032"></use></g></g></g></g><g transform="translate(3772.3,0)"><g ><use xlink:href="#MJX-63-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-63-TEX-N-32"></use></g></g></g></g><rect width="4797.9" height="60" x="120" y="220"></rect></g><g transform="translate(13631.2,0)"><use xlink:href="#MJX-63-TEX-N-2C"></use></g><g transform="translate(13909.2,0)"><g ></g></g><g transform="translate(16075.8,0)"><use xlink:href="#MJX-63-TEX-N-28"></use><use xlink:href="#MJX-63-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-63-TEX-N-32" transform="translate(889,0)"></use><use xlink:href="#MJX-63-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/64.svg b/47464-h/images/64.svg
new file mode 100644
index 0000000..2ca3ce4
--- /dev/null
+++ b/47464-h/images/64.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.194ex;" xmlns="http://www.w3.org/2000/svg" width="13025.4px" height="2339.9px" viewBox="0 -1370 13025.4 2339.9" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-64-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-64-TEX-I-1D458" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path id="MJX-64-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-64-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-64-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-64-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-64-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-64-TEX-I-1D43E" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path id="MJX-64-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-64-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-64-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-64-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-64-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-64-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-64-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-64-TEX-I-1D458"></use></g></g></g><g transform="translate(1189.4,0)"><use xlink:href="#MJX-64-TEX-N-28"></use></g><g transform="translate(1578.4,0)"><use xlink:href="#MJX-64-TEX-I-1D45B"></use></g><g transform="translate(2178.4,0)"><use xlink:href="#MJX-64-TEX-N-29"></use></g><g transform="translate(2845.2,0)"><use xlink:href="#MJX-64-TEX-N-3D"></use></g><g transform="translate(3901,0)"><use xlink:href="#MJX-64-TEX-N-2212"></use></g><g transform="translate(4679,0)"><g transform="translate(1551.7,676)"><g ><use xlink:href="#MJX-64-TEX-I-1D43E"></use></g><g transform="translate(889,0)"><use xlink:href="#MJX-64-TEX-I-210E"></use></g></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-64-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-64-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-64-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><g ><use xlink:href="#MJX-64-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-64-TEX-I-1D458"></use></g></g></g><g transform="translate(3302.8,0)"><g ><use xlink:href="#MJX-64-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-64-TEX-N-32"></use></g></g></g></g><rect width="4328.4" height="60" x="120" y="220"></rect></g><g transform="translate(9247.4,0)"><g ></g></g><g transform="translate(11247.4,0)"><use xlink:href="#MJX-64-TEX-N-28"></use><use xlink:href="#MJX-64-TEX-N-31" transform="translate(389,0)"></use><use xlink:href="#MJX-64-TEX-N-33" transform="translate(889,0)"></use><use xlink:href="#MJX-64-TEX-N-29" transform="translate(1389,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/65.svg b/47464-h/images/65.svg
new file mode 100644
index 0000000..9b308ca
--- /dev/null
+++ b/47464-h/images/65.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -3.507ex;" xmlns="http://www.w3.org/2000/svg" width="22528px" height="3600px" viewBox="0 -2050 22528 3600" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-65-TEX-N-42" d="M131 622Q124 629 120 631T104 634T61 637H28V683H229H267H346Q423 683 459 678T531 651Q574 627 599 590T624 512Q624 461 583 419T476 360L466 357Q539 348 595 302T651 187Q651 119 600 67T469 3Q456 1 242 0H28V46H61Q103 47 112 49T131 61V622ZM511 513Q511 560 485 594T416 636Q415 636 403 636T371 636T333 637Q266 637 251 636T232 628Q229 624 229 499V374H312L396 375L406 377Q410 378 417 380T442 393T474 417T499 456T511 513ZM537 188Q537 239 509 282T430 336L329 337H229V200V116Q229 57 234 52Q240 47 334 47H383Q425 47 443 53Q486 67 511 104T537 188Z"></path><path id="MJX-65-TEX-N-4F" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM467 647Q426 665 388 665Q360 665 331 654T269 620T213 549T179 439Q174 411 174 354Q174 144 277 61Q327 20 385 20H389H391Q474 20 537 99Q603 188 603 354Q603 411 598 439Q577 592 467 647Z"></path><path id="MJX-65-TEX-N-4D" d="M132 622Q125 629 121 631T105 634T62 637H29V683H135Q221 683 232 682T249 675Q250 674 354 398L458 124L562 398Q666 674 668 675Q671 681 683 682T781 683H887V637H854Q814 636 803 634T785 622V61Q791 51 802 49T854 46H887V0H876Q855 3 736 3Q605 3 596 0H585V46H618Q660 47 669 49T688 61V347Q688 424 688 461T688 546T688 613L687 632Q454 14 450 7Q446 1 430 1T410 7Q409 9 292 316L176 624V606Q175 588 175 543T175 463T175 356L176 86Q187 50 261 46H278V0H269Q254 3 154 3Q52 3 37 0H29V46H46Q78 48 98 56T122 69T132 86V622Z"></path><path id="MJX-65-TEX-N-41" d="M255 0Q240 3 140 3Q48 3 39 0H32V46H47Q119 49 139 88Q140 91 192 245T295 553T348 708Q351 716 366 716H376Q396 715 400 709Q402 707 508 390L617 67Q624 54 636 51T687 46H717V0H708Q699 3 581 3Q458 3 437 0H427V46H440Q510 46 510 64Q510 66 486 138L462 209H229L209 150Q189 91 189 85Q189 72 209 59T259 46H264V0H255ZM447 255L345 557L244 256Q244 255 345 255H447Z"></path><path id="MJX-65-TEX-N-59" d="M518 0Q497 3 374 3Q253 3 232 0H221V46H254Q313 47 321 58Q324 62 324 167V273L221 446Q117 620 114 623Q106 631 91 634T31 637H11V683H20Q29 680 148 680Q273 680 294 683H305V637H287Q239 636 236 621Q236 619 321 475L407 332L483 460Q502 492 527 534Q563 594 563 604Q563 632 517 637H508V683H517H525Q533 683 545 683T571 682T600 681T626 681Q695 681 731 683H738V637H723Q640 633 613 588Q612 587 517 427L425 273V169V95Q425 66 428 59T444 49Q459 46 506 46H528V0H518Z"></path><path id="MJX-65-TEX-N-43" d="M56 342Q56 428 89 500T174 615T283 681T391 705Q394 705 400 705T408 704Q499 704 569 636L582 624L612 663Q639 700 643 704Q644 704 647 704T653 705H657Q660 705 666 699V419L660 413H626Q620 419 619 430Q610 512 571 572T476 651Q457 658 426 658Q322 658 252 588Q173 509 173 342Q173 221 211 151Q232 111 263 84T328 45T384 29T428 24Q517 24 571 93T626 244Q626 251 632 257H660L666 251V236Q661 133 590 56T403 -21Q262 -21 159 83T56 342Z"></path><path id="MJX-65-TEX-N-4C" d="M128 622Q121 629 117 631T101 634T58 637H25V683H36Q48 680 182 680Q324 680 348 683H360V637H333Q273 637 258 635T233 622L232 342V129Q232 57 237 52Q243 47 313 47Q384 47 410 53Q470 70 498 110T536 221Q536 226 537 238T540 261T542 272T562 273H582V268Q580 265 568 137T554 5V0H25V46H58Q100 47 109 49T128 61V622Z"></path><path id="MJX-65-TEX-N-55" d="M128 622Q121 629 117 631T101 634T58 637H25V683H36Q57 680 180 680Q315 680 324 683H335V637H302Q262 636 251 634T233 622L232 418V291Q232 189 240 145T280 67Q325 24 389 24Q454 24 506 64T571 183Q575 206 575 410V598Q569 608 565 613T541 627T489 637H472V683H481Q496 680 598 680T715 683H724V637H707Q634 633 622 598L621 399Q620 194 617 180Q617 179 615 171Q595 83 531 31T389 -22Q304 -22 226 33T130 192Q129 201 128 412V622Z"></path><path id="MJX-65-TEX-N-54" d="M36 443Q37 448 46 558T55 671V677H666V671Q667 666 676 556T685 443V437H645V443Q645 445 642 478T631 544T610 593Q593 614 555 625Q534 630 478 630H451H443Q417 630 414 618Q413 616 413 339V63Q420 53 439 50T528 46H558V0H545L361 3Q186 1 177 0H164V46H194Q264 46 283 49T309 63V339V550Q309 620 304 625T271 630H244H224Q154 630 119 601Q101 585 93 554T81 486T76 443V437H36V443Z"></path><path id="MJX-65-TEX-N-44" d="M130 622Q123 629 119 631T103 634T60 637H27V683H228Q399 682 419 682T461 676Q504 667 546 641T626 573T685 470T708 336Q708 210 634 116T442 3Q429 1 228 0H27V46H60Q102 47 111 49T130 61V622ZM593 338Q593 439 571 501T493 602Q439 637 355 637H322H294Q238 637 234 628Q231 624 231 344Q231 62 232 59Q233 49 248 48T339 46H350Q456 46 515 95Q561 133 577 191T593 338Z"></path><path id="MJX-65-TEX-N-52" d="M130 622Q123 629 119 631T103 634T60 637H27V683H202H236H300Q376 683 417 677T500 648Q595 600 609 517Q610 512 610 501Q610 468 594 439T556 392T511 361T472 343L456 338Q459 335 467 332Q497 316 516 298T545 254T559 211T568 155T578 94Q588 46 602 31T640 16H645Q660 16 674 32T692 87Q692 98 696 101T712 105T728 103T732 90Q732 59 716 27T672 -16Q656 -22 630 -22Q481 -16 458 90Q456 101 456 163T449 246Q430 304 373 320L363 322L297 323H231V192L232 61Q238 51 249 49T301 46H334V0H323Q302 3 181 3Q59 3 38 0H27V46H60Q102 47 111 49T130 61V622ZM491 499V509Q491 527 490 539T481 570T462 601T424 623T362 636Q360 636 340 636T304 637H283Q238 637 234 628Q231 624 231 492V360H289Q390 360 434 378T489 456Q491 467 491 499Z"></path><path id="MJX-65-TEX-N-53" d="M55 507Q55 590 112 647T243 704H257Q342 704 405 641L426 672Q431 679 436 687T446 700L449 704Q450 704 453 704T459 705H463Q466 705 472 699V462L466 456H448Q437 456 435 459T430 479Q413 605 329 646Q292 662 254 662Q201 662 168 626T135 542Q135 508 152 480T200 435Q210 431 286 412T370 389Q427 367 463 314T500 191Q500 110 448 45T301 -21Q245 -21 201 -4T140 27L122 41Q118 36 107 21T87 -7T78 -21Q76 -22 68 -22H64Q61 -22 55 -16V101Q55 220 56 222Q58 227 76 227H89Q95 221 95 214Q95 182 105 151T139 90T205 42T305 24Q352 24 386 62T420 155Q420 198 398 233T340 281Q284 295 266 300Q261 301 239 306T206 314T174 325T141 343T112 367T85 402Q55 451 55 507Z"></path><path id="MJX-65-TEX-S4-23AB" d="M170 875Q170 892 172 895T189 899H194H211L222 893Q345 826 420 715T503 476Q504 467 504 230Q504 51 504 21T499 -9H498Q496 -10 444 -10Q402 -10 394 -9T385 -4Q384 -2 384 240V311V366Q384 469 380 513T358 609Q342 657 319 698T271 767T227 812T189 843T171 856T170 875Z"></path><path id="MJX-65-TEX-S4-23AD" d="M384 -239V-57Q384 4 389 9Q391 10 455 10Q496 10 498 9Q501 8 502 5Q504 -5 504 -230Q504 -261 504 -311T505 -381Q505 -486 492 -551T435 -691Q357 -820 222 -893L211 -899H195Q176 -899 173 -896T170 -874Q170 -858 171 -855T184 -846Q262 -793 312 -709T378 -525Q378 -524 379 -522Q383 -493 384 -351Q384 -345 384 -334Q384 -276 384 -239Z"></path><path id="MJX-65-TEX-S4-23AC" d="M389 1159Q391 1160 455 1160Q496 1160 498 1159Q501 1158 502 1155Q504 1145 504 925V782Q504 676 511 616T546 490Q563 446 587 408T633 345T674 304T705 278T717 268Q718 267 718 250T717 232Q717 231 697 216T648 169T588 93T534 -24T505 -179Q504 -191 504 -425Q504 -600 504 -629T499 -659H498Q496 -660 444 -660T390 -659Q387 -658 386 -655Q384 -645 384 -424Q384 -191 385 -182Q394 -49 463 61T645 241L659 250L645 259Q539 325 467 434T385 682Q384 692 384 873Q384 1153 385 1155L389 1159Z"></path><path id="MJX-65-TEX-S4-23AA" d="M384 150V266Q384 304 389 309Q391 310 455 310Q496 310 498 309Q502 308 503 298Q504 283 504 150Q504 32 504 12T499 -9H498Q496 -10 444 -10T390 -9Q386 -8 385 2Q384 17 384 150Z"></path><path id="MJX-65-TEX-N-49" d="M328 0Q307 3 180 3T32 0H21V46H43Q92 46 106 49T126 60Q128 63 128 342Q128 620 126 623Q122 628 118 630T96 635T43 637H21V683H32Q53 680 180 680T328 683H339V637H317Q268 637 254 634T234 623Q232 620 232 342Q232 63 234 60Q238 55 242 53T264 48T317 46H339V0H328Z"></path><path id="MJX-65-TEX-N-4E" d="M42 46Q74 48 94 56T118 69T128 86V634H124Q114 637 52 637H25V683H232L235 680Q237 679 322 554T493 303L578 178V598Q572 608 568 613T544 627T492 637H475V683H483Q498 680 600 680Q706 680 715 683H724V637H707Q634 633 622 598L621 302V6L614 0H600Q585 0 582 3T481 150T282 443T171 605V345L172 86Q183 50 257 46H274V0H265Q250 3 150 3Q48 3 33 0H25V46H42Z"></path><path id="MJX-65-TEX-N-20" d=""></path><path id="MJX-65-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path id="MJX-65-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(0 250)"></g><g ><g transform="translate(0,1300)"><g ></g><g ><g ><g ></g></g><g transform="translate(2000,0)"><use xlink:href="#MJX-65-TEX-N-42"></use><use xlink:href="#MJX-65-TEX-N-4F" transform="translate(708,0)"></use><use xlink:href="#MJX-65-TEX-N-4D" transform="translate(1486,0)"></use><use xlink:href="#MJX-65-TEX-N-42" transform="translate(2403,0)"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(3111,0)"></use><use xlink:href="#MJX-65-TEX-N-59" transform="translate(3861,0)"></use></g></g></g><g transform="translate(0,0)"><g ></g><g ><g ><g ></g></g><g transform="translate(2000,0)"><use xlink:href="#MJX-65-TEX-N-43"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(722,0)"></use><use xlink:href="#MJX-65-TEX-N-4C" transform="translate(1472,0)"></use><use xlink:href="#MJX-65-TEX-N-43" transform="translate(2097,0)"></use><use xlink:href="#MJX-65-TEX-N-55" transform="translate(2819,0)"></use><use xlink:href="#MJX-65-TEX-N-54" transform="translate(3569,0)"></use><use xlink:href="#MJX-65-TEX-N-54" transform="translate(4291,0)"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(5013,0)"></use></g></g></g><g transform="translate(0,-1300)"><g ></g><g ><g ><g ></g></g><g transform="translate(2000,0)"><use xlink:href="#MJX-65-TEX-N-4D"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(917,0)"></use><use xlink:href="#MJX-65-TEX-N-44" transform="translate(1667,0)"></use><use xlink:href="#MJX-65-TEX-N-52" transform="translate(2431,0)"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(3167,0)"></use><use xlink:href="#MJX-65-TEX-N-53" transform="translate(3917,0)"></use></g></g></g></g><g transform="translate(7763,0)"><use xlink:href="#MJX-65-TEX-S4-23AB" transform="translate(0,1151)"></use><use xlink:href="#MJX-65-TEX-S4-23AD" transform="translate(0,-651)"></use><use xlink:href="#MJX-65-TEX-S4-23AC" transform="translate(0,0)"></use><svg width="889" height="181" y="1060" x="0" viewBox="0 31.9 889 181"><use xlink:href="#MJX-65-TEX-S4-23AA" transform="scale(1,0.89)"></use></svg><svg width="889" height="181" y="-741" x="0" viewBox="0 31.9 889 181"><use xlink:href="#MJX-65-TEX-S4-23AA" transform="scale(1,0.89)"></use></svg></g></g><g transform="translate(8652,0)"><use xlink:href="#MJX-65-TEX-N-4D"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(917,0)"></use><use xlink:href="#MJX-65-TEX-N-43" transform="translate(1667,0)"></use><use xlink:href="#MJX-65-TEX-N-4D" transform="translate(2389,0)"></use><use xlink:href="#MJX-65-TEX-N-49" transform="translate(3306,0)"></use><use xlink:href="#MJX-65-TEX-N-4C" transform="translate(3667,0)"></use><use xlink:href="#MJX-65-TEX-N-4C" transform="translate(4292,0)"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(4917,0)"></use><use xlink:href="#MJX-65-TEX-N-4E" transform="translate(5667,0)"></use><use xlink:href="#MJX-65-TEX-N-20" transform="translate(6417,0)"></use><use xlink:href="#MJX-65-TEX-N-41" transform="translate(6667,0)"></use><use xlink:href="#MJX-65-TEX-N-4E" transform="translate(7417,0)"></use><use xlink:href="#MJX-65-TEX-N-44" transform="translate(8167,0)"></use><use xlink:href="#MJX-65-TEX-N-20" transform="translate(8931,0)"></use><use xlink:href="#MJX-65-TEX-N-43" transform="translate(9181,0)"></use><use xlink:href="#MJX-65-TEX-N-4F" transform="translate(9903,0)"></use><use xlink:href="#MJX-65-TEX-N-2E" transform="translate(10681,0)"></use><use xlink:href="#MJX-65-TEX-N-2C" transform="translate(10959,0)"></use><use xlink:href="#MJX-65-TEX-N-20" transform="translate(11237,0)"></use><use xlink:href="#MJX-65-TEX-N-4C" transform="translate(11487,0)"></use><use xlink:href="#MJX-65-TEX-N-54" transform="translate(12112,0)"></use><use xlink:href="#MJX-65-TEX-N-44" transform="translate(12834,0)"></use><use xlink:href="#MJX-65-TEX-N-2E" transform="translate(13598,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/66.svg b/47464-h/images/66.svg
new file mode 100644
index 0000000..08ee305
--- /dev/null
+++ b/47464-h/images/66.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.048ex;" xmlns="http://www.w3.org/2000/svg" width="759px" height="704px" viewBox="0 -683 759 704" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-168-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-168-TEX-I-1D445"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/67.svg b/47464-h/images/67.svg
new file mode 100644
index 0000000..dfafbe7
--- /dev/null
+++ b/47464-h/images/67.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="600px" height="453px" viewBox="0 -442 600 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-834-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-834-TEX-I-1D45B"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/68.svg b/47464-h/images/68.svg
new file mode 100644
index 0000000..3924d42
--- /dev/null
+++ b/47464-h/images/68.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="6880.2px" height="871px" viewBox="0 -677 6880.2 871" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-68-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-68-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-68-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-68-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-68-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-68-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path id="MJX-68-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-68-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-68-TEX-I-1D45B"></use></g><g transform="translate(877.8,0)"><use xlink:href="#MJX-68-TEX-N-3D"></use></g><g transform="translate(1933.6,0)"><use xlink:href="#MJX-68-TEX-N-33"></use></g><g transform="translate(2433.6,0)"><use xlink:href="#MJX-68-TEX-N-2C"></use></g><g transform="translate(2711.6,0)"><g ></g></g><g transform="translate(3045.2,0)"><use xlink:href="#MJX-68-TEX-N-34"></use></g><g transform="translate(3545.2,0)"><use xlink:href="#MJX-68-TEX-N-2C"></use></g><g transform="translate(3823.2,0)"><g ></g></g><g transform="translate(4156.9,0)"><use xlink:href="#MJX-68-TEX-N-35"></use></g><g transform="translate(4656.9,0)"><use xlink:href="#MJX-68-TEX-N-2C"></use></g><g transform="translate(4934.9,0)"><g ></g></g><g transform="translate(5268.6,0)"><use xlink:href="#MJX-68-TEX-N-36"></use></g><g transform="translate(5768.6,0)"><use xlink:href="#MJX-68-TEX-N-2C"></use></g><g transform="translate(6046.6,0)"><g ></g></g><g transform="translate(6380.2,0)"><use xlink:href="#MJX-68-TEX-N-37"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/69.svg b/47464-h/images/69.svg
new file mode 100644
index 0000000..07ade5c
--- /dev/null
+++ b/47464-h/images/69.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="5111px" height="2399px" viewBox="0 -1449.5 5111 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-69-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-69-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-69-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-69-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-69-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-69-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-69-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(0 -0.5)"><use xlink:href="#MJX-69-TEX-S3-28"></use></g><g transform="translate(736,0)"><g ><g transform="translate(220,676)"><use xlink:href="#MJX-69-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-69-TEX-N-34"></use></g><rect width="700" height="60" x="120" y="220"></rect></g></g><g transform="translate(1898.2,0)"><use xlink:href="#MJX-69-TEX-N-2212"></use></g><g transform="translate(2898.4,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-69-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-69-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-69-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(4375,0) translate(0 -0.5)"><use xlink:href="#MJX-69-TEX-S3-29"></use></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/7.svg b/47464-h/images/7.svg
new file mode 100644
index 0000000..e2a8264
--- /dev/null
+++ b/47464-h/images/7.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="11577.2px" height="2999px" viewBox="0 -1749.5 11577.2 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-7-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-7-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-7-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-7-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-7-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-7-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-7-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-7-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-7-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-7-TEX-N-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path id="MJX-7-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-7-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-7-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-7-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-7-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-7-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-7-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><use xlink:href="#MJX-7-TEX-I-1D445"></use></g><g transform="translate(3282.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-7-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(220,676)"><use xlink:href="#MJX-7-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-7-TEX-N-34"></use></g><rect width="700" height="60" x="120" y="220"></rect></g><g transform="translate(1954.2,0)"><use xlink:href="#MJX-7-TEX-N-2212"></use></g><g transform="translate(2954.4,0)"><g transform="translate(1885.3,676)"><use xlink:href="#MJX-7-TEX-N-31"></use></g><g transform="translate(220,-824.9)"><g ><use xlink:href="#MJX-7-TEX-N-28"></use></g><g transform="translate(389,0)"><use xlink:href="#MJX-7-TEX-I-1D45B"></use></g><g transform="translate(1211.2,0)"><use xlink:href="#MJX-7-TEX-N-2B"></use></g><g transform="translate(2211.4,0)"><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-7-TEX-N-31"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-7-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(3005,0)"><g ><use xlink:href="#MJX-7-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-7-TEX-N-32"></use></g></g></g></g><rect width="4030.6" height="60" x="120" y="220"></rect></g><g transform="translate(7225,0) translate(0 -0.5)"><use xlink:href="#MJX-7-TEX-S4-29"></use></g></g><g transform="translate(11299.2,0)"><use xlink:href="#MJX-7-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/70.svg b/47464-h/images/70.svg
new file mode 100644
index 0000000..14cea85
--- /dev/null
+++ b/47464-h/images/70.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="2000px" height="16px" viewBox="0 0 2000 16" xmlns:xlink="http://www.w3.org/1999/xlink"><defs></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/71.svg b/47464-h/images/71.svg
new file mode 100644
index 0000000..de77f2b
--- /dev/null
+++ b/47464-h/images/71.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="167px" height="16px" viewBox="0 0 167 16" xmlns:xlink="http://www.w3.org/1999/xlink"><defs></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/72.svg b/47464-h/images/72.svg
new file mode 100644
index 0000000..94d3c4b
--- /dev/null
+++ b/47464-h/images/72.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="2742px" height="886px" viewBox="0 -864 2742 886" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-175-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-175-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-175-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-175-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-175-TEX-N-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-175-TEX-I-1D706"></use></g><g transform="translate(805.2,0)"><use xlink:href="#MJX-175-TEX-N-B7"></use></g><g transform="translate(1305.4,0)"><g ><use xlink:href="#MJX-175-TEX-N-31"></use><use xlink:href="#MJX-175-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-175-TEX-N-38"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/73.svg b/47464-h/images/73.svg
new file mode 100644
index 0000000..fa2007f
--- /dev/null
+++ b/47464-h/images/73.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.027ex;" xmlns="http://www.w3.org/2000/svg" width="583px" height="706px" viewBox="0 -694 583 706" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-75-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-75-TEX-I-1D706"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/74.svg b/47464-h/images/74.svg
new file mode 100644
index 0000000..a9b31d4
--- /dev/null
+++ b/47464-h/images/74.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.148ex;" xmlns="http://www.w3.org/2000/svg" width="7623.5px" height="2399px" viewBox="0 -1449.5 7623.5 2399" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-76-TEX-S3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path id="MJX-76-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-76-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-76-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-76-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-76-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-76-TEX-S3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path id="MJX-76-TEX-N-B7" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path id="MJX-76-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(0 -0.5)"><use xlink:href="#MJX-76-TEX-S3-28"></use></g><g transform="translate(736,0)"><g ><g transform="translate(220,676)"><use xlink:href="#MJX-76-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-76-TEX-N-34"></use></g><rect width="700" height="60" x="120" y="220"></rect></g></g><g transform="translate(1898.2,0)"><use xlink:href="#MJX-76-TEX-N-2212"></use></g><g transform="translate(2898.4,0)"><g ><g transform="translate(488.3,676)"><use xlink:href="#MJX-76-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-76-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-76-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g></g><g transform="translate(4375,0) translate(0 -0.5)"><use xlink:href="#MJX-76-TEX-S3-29"></use></g></g><g transform="translate(5333.2,0)"><use xlink:href="#MJX-76-TEX-N-B7"></use></g><g transform="translate(5833.4,0)"><g ><use xlink:href="#MJX-76-TEX-N-31"></use><use xlink:href="#MJX-76-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-76-TEX-N-31"></use><use xlink:href="#MJX-76-TEX-N-30" transform="translate(500,0)"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/75.svg b/47464-h/images/75.svg
new file mode 100644
index 0000000..0ccda88
--- /dev/null
+++ b/47464-h/images/75.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="750px" height="716px" viewBox="0 -716 750 716" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-82-TEX-I-1D434" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-82-TEX-I-1D434"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/76.svg b/47464-h/images/76.svg
new file mode 100644
index 0000000..4082a3b
--- /dev/null
+++ b/47464-h/images/76.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="640px" height="453px" viewBox="0 -442 640 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-101-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-101-TEX-I-1D6FC"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/77.svg b/47464-h/images/77.svg
new file mode 100644
index 0000000..7110eff
--- /dev/null
+++ b/47464-h/images/77.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="3000px" height="698px" viewBox="0 -676 3000 698" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-194-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-194-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-194-TEX-N-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path id="MJX-194-TEX-N-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path id="MJX-194-TEX-N-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path id="MJX-194-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-194-TEX-N-31"></use><use xlink:href="#MJX-194-TEX-N-30" transform="translate(500,0)"></use><use xlink:href="#MJX-194-TEX-N-39" transform="translate(1000,0)"></use><use xlink:href="#MJX-194-TEX-N-36" transform="translate(1500,0)"></use><use xlink:href="#MJX-194-TEX-N-37" transform="translate(2000,0)"></use><use xlink:href="#MJX-194-TEX-N-35" transform="translate(2500,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/78.svg b/47464-h/images/78.svg
new file mode 100644
index 0000000..6202f40
--- /dev/null
+++ b/47464-h/images/78.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="1036.6px" height="592px" viewBox="0 -442 1036.6 592" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-173-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-173-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-173-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-173-TEX-N-31"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/79.svg b/47464-h/images/79.svg
new file mode 100644
index 0000000..ba44bf0
--- /dev/null
+++ b/47464-h/images/79.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="1036.6px" height="592px" viewBox="0 -442 1036.6 592" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-174-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-174-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-174-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-174-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/8.svg b/47464-h/images/8.svg
new file mode 100644
index 0000000..4cdaa52
--- /dev/null
+++ b/47464-h/images/8.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -2.827ex;" xmlns="http://www.w3.org/2000/svg" width="10291.3px" height="2999px" viewBox="0 -1749.5 10291.3 2999" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-8-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-8-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path id="MJX-8-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-8-TEX-I-1D445" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path><path id="MJX-8-TEX-S4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path id="MJX-8-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-8-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-8-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-8-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-8-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-8-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-8-TEX-S4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path id="MJX-8-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g transform="translate(261.5,676)"><use xlink:href="#MJX-8-TEX-N-31"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-8-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g><g transform="translate(1300.8,0)"><use xlink:href="#MJX-8-TEX-N-3D"></use></g><g transform="translate(2356.6,0)"><use xlink:href="#MJX-8-TEX-I-1D445"></use></g><g transform="translate(3282.2,0)"><g transform="translate(0 -0.5)"><use xlink:href="#MJX-8-TEX-S4-28"></use></g><g transform="translate(792,0)"><g transform="translate(974.1,676)"><use xlink:href="#MJX-8-TEX-N-31"></use></g><g transform="translate(220,-824.2)"><g ><use xlink:href="#MJX-8-TEX-N-28"></use></g><g transform="translate(389,0)"><g transform="translate(220,394) scale(0.707)"><use xlink:href="#MJX-8-TEX-N-33"></use></g><g transform="translate(220,-345) scale(0.707)"><use xlink:href="#MJX-8-TEX-N-32"></use></g><rect width="553.6" height="60" x="120" y="220"></rect></g><g transform="translate(1182.6,0)"><g ><use xlink:href="#MJX-8-TEX-N-29"></use></g><g transform="translate(422,289) scale(0.707)" ><g ><use xlink:href="#MJX-8-TEX-N-32"></use></g></g></g></g><rect width="2208.1" height="60" x="120" y="220"></rect></g><g transform="translate(3462.3,0)"><use xlink:href="#MJX-8-TEX-N-2212"></use></g><g transform="translate(4462.6,0)"><g transform="translate(488.3,676)"><use xlink:href="#MJX-8-TEX-N-31"></use></g><g transform="translate(220,-719.9)"><g ><use xlink:href="#MJX-8-TEX-I-1D45B"></use></g><g transform="translate(633,289) scale(0.707)" ><g ><use xlink:href="#MJX-8-TEX-N-32"></use></g></g></g><rect width="1236.6" height="60" x="120" y="220"></rect></g><g transform="translate(5939.1,0) translate(0 -0.5)"><use xlink:href="#MJX-8-TEX-S4-29"></use></g></g><g transform="translate(10013.3,0)"><use xlink:href="#MJX-8-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/80.svg b/47464-h/images/80.svg
new file mode 100644
index 0000000..4ed0445
--- /dev/null
+++ b/47464-h/images/80.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="7032.4px" height="1000px" viewBox="0 -750 7032.4 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-86-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-86-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-86-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-86-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-86-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-86-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-86-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-86-TEX-N-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-86-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-86-TEX-N-31"></use></g></g></g><g transform="translate(1079.6,0)"><use xlink:href="#MJX-86-TEX-N-28"></use></g><g transform="translate(1468.6,0)"><use xlink:href="#MJX-86-TEX-I-1D45B"></use></g><g transform="translate(2068.6,0)"><use xlink:href="#MJX-86-TEX-N-29"></use></g><g transform="translate(2457.6,0)"><use xlink:href="#MJX-86-TEX-N-2C"></use></g><g transform="translate(2735.6,0)"><g ></g></g><g transform="translate(3069.2,0)"><g ><use xlink:href="#MJX-86-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-86-TEX-N-32"></use></g></g></g><g transform="translate(4148.8,0)"><use xlink:href="#MJX-86-TEX-N-28"></use></g><g transform="translate(4537.8,0)"><use xlink:href="#MJX-86-TEX-I-1D45B"></use></g><g transform="translate(5137.8,0)"><use xlink:href="#MJX-86-TEX-N-29"></use></g><g transform="translate(5526.8,0)"><g ></g></g><g transform="translate(5860.4,0)"><use xlink:href="#MJX-86-TEX-N-2026"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/81.svg b/47464-h/images/81.svg
new file mode 100644
index 0000000..a047783
--- /dev/null
+++ b/47464-h/images/81.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.357ex;" xmlns="http://www.w3.org/2000/svg" width="1041.9px" height="599.8px" viewBox="0 -442 1041.9 599.8" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-89-TEX-I-1D6FC" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path id="MJX-89-TEX-I-1D45F" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-89-TEX-I-1D6FC"></use></g><g transform="translate(673,-150) scale(0.707)" ><g ><use xlink:href="#MJX-89-TEX-I-1D45F"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/82.svg b/47464-h/images/82.svg
new file mode 100644
index 0000000..3588ef8
--- /dev/null
+++ b/47464-h/images/82.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="4019.1px" height="844px" viewBox="0 -694 4019.1 844" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-90-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-90-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-90-TEX-N-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path id="MJX-90-TEX-N-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-90-TEX-N-64" d="M376 495Q376 511 376 535T377 568Q377 613 367 624T316 637H298V660Q298 683 300 683L310 684Q320 685 339 686T376 688Q393 689 413 690T443 693T454 694H457V390Q457 84 458 81Q461 61 472 55T517 46H535V0Q533 0 459 -5T380 -11H373V44L365 37Q307 -11 235 -11Q158 -11 96 50T34 215Q34 315 97 378T244 442Q319 442 376 393V495ZM373 342Q328 405 260 405Q211 405 173 369Q146 341 139 305T131 211Q131 155 138 120T173 59Q203 26 251 26Q322 26 373 103V342Z"></path><path id="MJX-90-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-90-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-90-TEX-N-31"></use></g></g></g><g transform="translate(1036.6,0)"><g ></g></g><g transform="translate(1203.6,0)"><use xlink:href="#MJX-90-TEX-N-61"></use><use xlink:href="#MJX-90-TEX-N-6E" transform="translate(500,0)"></use><use xlink:href="#MJX-90-TEX-N-64" transform="translate(1056,0)"></use></g><g transform="translate(2815.6,0)"><g ></g></g><g transform="translate(2982.6,0)"><g ><use xlink:href="#MJX-90-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-90-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/83.svg b/47464-h/images/83.svg
new file mode 100644
index 0000000..49cdb8f
--- /dev/null
+++ b/47464-h/images/83.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.439ex;" xmlns="http://www.w3.org/2000/svg" width="4554.4px" height="874px" viewBox="0 -680 4554.4 874" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-91-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-91-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-91-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-91-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-91-TEX-N-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-91-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-91-TEX-N-31"></use></g></g></g><g transform="translate(1079.6,0)"><use xlink:href="#MJX-91-TEX-N-2C"></use></g><g transform="translate(1357.6,0)"><g ></g></g><g transform="translate(1691.2,0)"><g ><use xlink:href="#MJX-91-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-91-TEX-N-32"></use></g></g></g><g transform="translate(2770.8,0)"><use xlink:href="#MJX-91-TEX-N-2C"></use></g><g transform="translate(3048.8,0)"><g ></g></g><g transform="translate(3382.4,0)"><use xlink:href="#MJX-91-TEX-N-2026"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/84.svg b/47464-h/images/84.svg
new file mode 100644
index 0000000..03a3200
--- /dev/null
+++ b/47464-h/images/84.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="6813.1px" height="776px" viewBox="0 -694 6813.1 776" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-92-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-92-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-92-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-92-TEX-N-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path id="MJX-92-TEX-N-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-92-TEX-N-64" d="M376 495Q376 511 376 535T377 568Q377 613 367 624T316 637H298V660Q298 683 300 683L310 684Q320 685 339 686T376 688Q393 689 413 690T443 693T454 694H457V390Q457 84 458 81Q461 61 472 55T517 46H535V0Q533 0 459 -5T380 -11H373V44L365 37Q307 -11 235 -11Q158 -11 96 50T34 215Q34 315 97 378T244 442Q319 442 376 393V495ZM373 342Q328 405 260 405Q211 405 173 369Q146 341 139 305T131 211Q131 155 138 120T173 59Q203 26 251 26Q322 26 373 103V342Z"></path><path id="MJX-92-TEX-N-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-92-TEX-I-1D45B"></use></g><g transform="translate(877.8,0)"><use xlink:href="#MJX-92-TEX-N-3D"></use></g><g transform="translate(1933.6,0)"><use xlink:href="#MJX-92-TEX-N-34"></use></g><g transform="translate(2433.6,0)"><g ></g></g><g transform="translate(2600.6,0)"><use xlink:href="#MJX-92-TEX-N-61"></use><use xlink:href="#MJX-92-TEX-N-6E" transform="translate(500,0)"></use><use xlink:href="#MJX-92-TEX-N-64" transform="translate(1056,0)"></use></g><g transform="translate(4212.6,0)"><g ></g></g><g transform="translate(4379.6,0)"><use xlink:href="#MJX-92-TEX-I-1D45B"></use></g><g transform="translate(5257.3,0)"><use xlink:href="#MJX-92-TEX-N-3D"></use></g><g transform="translate(6313.1,0)"><use xlink:href="#MJX-92-TEX-N-35"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/85.svg b/47464-h/images/85.svg
new file mode 100644
index 0000000..e753b26
--- /dev/null
+++ b/47464-h/images/85.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.186ex;" xmlns="http://www.w3.org/2000/svg" width="2433.6px" height="748px" viewBox="0 -666 2433.6 748" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-93-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-93-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-93-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-93-TEX-I-1D45B"></use></g><g transform="translate(877.8,0)"><use xlink:href="#MJX-93-TEX-N-3D"></use></g><g transform="translate(1933.6,0)"><use xlink:href="#MJX-93-TEX-N-32"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/86.svg b/47464-h/images/86.svg
new file mode 100644
index 0000000..dfb576f
--- /dev/null
+++ b/47464-h/images/86.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="1106px" height="705px" viewBox="0 -694 1106 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-390-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-390-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-390-TEX-I-210E"></use></g><g transform="translate(576,0)"><use xlink:href="#MJX-390-TEX-I-1D708"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/87.svg b/47464-h/images/87.svg
new file mode 100644
index 0000000..2418b3e
--- /dev/null
+++ b/47464-h/images/87.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="576px" height="705px" viewBox="0 -694 576 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-410-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-410-TEX-I-210E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/88.svg b/47464-h/images/88.svg
new file mode 100644
index 0000000..4bf4d9e
--- /dev/null
+++ b/47464-h/images/88.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: 0;" xmlns="http://www.w3.org/2000/svg" width="530px" height="442px" viewBox="0 -442 530 442" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-511-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-511-TEX-I-1D708"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/89.svg b/47464-h/images/89.svg
new file mode 100644
index 0000000..f7ae19b
--- /dev/null
+++ b/47464-h/images/89.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="622px" height="454px" viewBox="0 -443 622 454" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-518-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-518-TEX-I-1D714"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/9.svg b/47464-h/images/9.svg
new file mode 100644
index 0000000..381a870
--- /dev/null
+++ b/47464-h/images/9.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.671ex;" xmlns="http://www.w3.org/2000/svg" width="14637.1px" height="2248.6px" viewBox="0 -1509.9 14637.1 2248.6" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-9-TEX-I-1D714" d="M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z"></path><path id="MJX-9-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-9-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-9-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path><path id="MJX-9-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-9-TEX-I-1D70B" d="M132 -11Q98 -11 98 22V33L111 61Q186 219 220 334L228 358H196Q158 358 142 355T103 336Q92 329 81 318T62 297T53 285Q51 284 38 284Q19 284 19 294Q19 300 38 329T93 391T164 429Q171 431 389 431Q549 431 553 430Q573 423 573 402Q573 371 541 360Q535 358 472 358H408L405 341Q393 269 393 222Q393 170 402 129T421 65T431 37Q431 20 417 5T381 -10Q370 -10 363 -7T347 17T331 77Q330 86 330 121Q330 170 339 226T357 318T367 358H269L268 354Q268 351 249 275T206 114T175 17Q164 -11 132 -11Z"></path><path id="MJX-9-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path id="MJX-9-TEX-N-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path id="MJX-9-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-9-TEX-N-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path id="MJX-9-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path id="MJX-9-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-9-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-9-TEX-I-1D714"></use></g><g transform="translate(655,413) scale(0.707)" ><g ><use xlink:href="#MJX-9-TEX-N-32"></use></g></g></g><g transform="translate(1336.3,0)"><use xlink:href="#MJX-9-TEX-N-3D"></use></g><g transform="translate(2392.1,0)"><g transform="translate(593.7,676)"><g ><use xlink:href="#MJX-9-TEX-N-32"></use></g><g transform="translate(500,0)"><g ><use xlink:href="#MJX-9-TEX-I-1D44A"></use></g><g transform="translate(1136.2,363) scale(0.707)" ><g ><use xlink:href="#MJX-9-TEX-N-33"></use></g></g></g></g><g transform="translate(220,-727.7)"><g ><g ><use xlink:href="#MJX-9-TEX-I-1D70B"></use></g><g transform="translate(603,289) scale(0.707)" ><g ><use xlink:href="#MJX-9-TEX-N-32"></use></g></g></g><g transform="translate(1006.6,0)"><g ><use xlink:href="#MJX-9-TEX-I-1D452"></use></g><g transform="translate(499,289) scale(0.707)" ><g ><use xlink:href="#MJX-9-TEX-N-34"></use></g></g></g><g transform="translate(1909.1,0)"><use xlink:href="#MJX-9-TEX-I-1D45A"></use></g></g><rect width="2987.1" height="60" x="120" y="220"></rect></g><g transform="translate(5619.2,0)"><use xlink:href="#MJX-9-TEX-N-2C"></use></g><g transform="translate(5897.2,0)"><g ></g></g><g transform="translate(7063.9,0)"><use xlink:href="#MJX-9-TEX-N-32"></use></g><g transform="translate(7563.9,0)"><use xlink:href="#MJX-9-TEX-I-1D44E"></use></g><g transform="translate(8370.7,0)"><use xlink:href="#MJX-9-TEX-N-3D"></use></g><g transform="translate(9426.4,0)"><g transform="translate(292.7,676)"><g ><use xlink:href="#MJX-9-TEX-I-1D452"></use></g><g transform="translate(499,363) scale(0.707)" ><g ><use xlink:href="#MJX-9-TEX-N-32"></use></g></g></g><g transform="translate(220,-686)"><use xlink:href="#MJX-9-TEX-I-1D44A"></use></g><rect width="1248" height="60" x="120" y="220"></rect></g><g transform="translate(10914.4,0)"><use xlink:href="#MJX-9-TEX-N-2C"></use></g><g transform="translate(11192.4,0)"><g ></g></g><g transform="translate(13359.1,0)"><use xlink:href="#MJX-9-TEX-N-28"></use><use xlink:href="#MJX-9-TEX-N-34" transform="translate(389,0)"></use><use xlink:href="#MJX-9-TEX-N-29" transform="translate(889,0)"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/90.svg b/47464-h/images/90.svg
new file mode 100644
index 0000000..9a6284f
--- /dev/null
+++ b/47464-h/images/90.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.023ex;" xmlns="http://www.w3.org/2000/svg" width="1029px" height="676px" viewBox="0 -666 1029 676" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-595-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-595-TEX-I-1D44E" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-595-TEX-N-32"></use></g><g transform="translate(500,0)"><use xlink:href="#MJX-595-TEX-I-1D44E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/91.svg b/47464-h/images/91.svg
new file mode 100644
index 0000000..50ac4dd
--- /dev/null
+++ b/47464-h/images/91.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="466px" height="453px" viewBox="0 -442 466 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-422-TEX-I-1D452" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-422-TEX-I-1D452"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/92.svg b/47464-h/images/92.svg
new file mode 100644
index 0000000..1c6d682
--- /dev/null
+++ b/47464-h/images/92.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="878px" height="453px" viewBox="0 -442 878 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-423-TEX-I-1D45A" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-423-TEX-I-1D45A"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/93.svg b/47464-h/images/93.svg
new file mode 100644
index 0000000..b6af996
--- /dev/null
+++ b/47464-h/images/93.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="1048px" height="705px" viewBox="0 -683 1048 705" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-548-TEX-I-1D44A" d="M436 683Q450 683 486 682T553 680Q604 680 638 681T677 682Q695 682 695 674Q695 670 692 659Q687 641 683 639T661 637Q636 636 621 632T600 624T597 615Q597 603 613 377T629 138L631 141Q633 144 637 151T649 170T666 200T690 241T720 295T759 362Q863 546 877 572T892 604Q892 619 873 628T831 637Q817 637 817 647Q817 650 819 660Q823 676 825 679T839 682Q842 682 856 682T895 682T949 681Q1015 681 1034 683Q1048 683 1048 672Q1048 666 1045 655T1038 640T1028 637Q1006 637 988 631T958 617T939 600T927 584L923 578L754 282Q586 -14 585 -15Q579 -22 561 -22Q546 -22 542 -17Q539 -14 523 229T506 480L494 462Q472 425 366 239Q222 -13 220 -15T215 -19Q210 -22 197 -22Q178 -22 176 -15Q176 -12 154 304T131 622Q129 631 121 633T82 637H58Q51 644 51 648Q52 671 64 683H76Q118 680 176 680Q301 680 313 683H323Q329 677 329 674T327 656Q322 641 318 637H297Q236 634 232 620Q262 160 266 136L501 550L499 587Q496 629 489 632Q483 636 447 637Q428 637 422 639T416 648Q416 650 418 660Q419 664 420 669T421 676T424 680T428 682T436 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-548-TEX-I-1D44A"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/94.svg b/47464-h/images/94.svg
new file mode 100644
index 0000000..ab42e76
--- /dev/null
+++ b/47464-h/images/94.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="4062.2px" height="886px" viewBox="0 -864 4062.2 886" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-114-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-114-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-114-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-114-TEX-N-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path id="MJX-114-TEX-N-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path id="MJX-114-TEX-N-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-114-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-114-TEX-N-31"></use><use xlink:href="#MJX-114-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-114-TEX-N-2212"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-114-TEX-N-31"></use><use xlink:href="#MJX-114-TEX-N-33" transform="translate(500,0)"></use></g></g></g><g transform="translate(2340.2,0)"><g ></g></g><g transform="translate(2507.2,0)"><use xlink:href="#MJX-114-TEX-N-63"></use><use xlink:href="#MJX-114-TEX-N-6D" transform="translate(444,0)"></use></g><g transform="translate(3784.2,0)"><use xlink:href="#MJX-114-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/95.svg b/47464-h/images/95.svg
new file mode 100644
index 0000000..055d964
--- /dev/null
+++ b/47464-h/images/95.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.05ex;" xmlns="http://www.w3.org/2000/svg" width="4062.2px" height="886px" viewBox="0 -864 4062.2 886" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-115-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-115-TEX-N-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path id="MJX-115-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-115-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path id="MJX-115-TEX-N-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path id="MJX-115-TEX-N-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-115-TEX-N-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-115-TEX-N-31"></use><use xlink:href="#MJX-115-TEX-N-30" transform="translate(500,0)"></use></g><g transform="translate(1033,393.1) scale(0.707)" ><g ><use xlink:href="#MJX-115-TEX-N-2212"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-115-TEX-N-31"></use><use xlink:href="#MJX-115-TEX-N-32" transform="translate(500,0)"></use></g></g></g><g transform="translate(2340.2,0)"><g ></g></g><g transform="translate(2507.2,0)"><use xlink:href="#MJX-115-TEX-N-63"></use><use xlink:href="#MJX-115-TEX-N-6D" transform="translate(444,0)"></use></g><g transform="translate(3784.2,0)"><use xlink:href="#MJX-115-TEX-N-2E"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/96.svg b/47464-h/images/96.svg
new file mode 100644
index 0000000..47e8ce5
--- /dev/null
+++ b/47464-h/images/96.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.339ex;" xmlns="http://www.w3.org/2000/svg" width="4295.1px" height="844px" viewBox="0 -694 4295.1 844" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-123-TEX-I-1D438" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path id="MJX-123-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-123-TEX-N-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path id="MJX-123-TEX-N-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-123-TEX-N-64" d="M376 495Q376 511 376 535T377 568Q377 613 367 624T316 637H298V660Q298 683 300 683L310 684Q320 685 339 686T376 688Q393 689 413 690T443 693T454 694H457V390Q457 84 458 81Q461 61 472 55T517 46H535V0Q533 0 459 -5T380 -11H373V44L365 37Q307 -11 235 -11Q158 -11 96 50T34 215Q34 315 97 378T244 442Q319 442 376 393V495ZM373 342Q328 405 260 405Q211 405 173 369Q146 341 139 305T131 211Q131 155 138 120T173 59Q203 26 251 26Q322 26 373 103V342Z"></path><path id="MJX-123-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><g ><use xlink:href="#MJX-123-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-123-TEX-N-31"></use></g></g></g><g transform="translate(1174.6,0)"><g ></g></g><g transform="translate(1341.6,0)"><use xlink:href="#MJX-123-TEX-N-61"></use><use xlink:href="#MJX-123-TEX-N-6E" transform="translate(500,0)"></use><use xlink:href="#MJX-123-TEX-N-64" transform="translate(1056,0)"></use></g><g transform="translate(2953.6,0)"><g ></g></g><g transform="translate(3120.6,0)"><g ><use xlink:href="#MJX-123-TEX-I-1D438"></use></g><g transform="translate(771,-150) scale(0.707)" ><g ><use xlink:href="#MJX-123-TEX-N-32"></use></g></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/97.svg b/47464-h/images/97.svg
new file mode 100644
index 0000000..3e7f841
--- /dev/null
+++ b/47464-h/images/97.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -1.579ex;" xmlns="http://www.w3.org/2000/svg" width="2886.6px" height="1816px" viewBox="0 -1118 2886.6 1816" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-124-TEX-I-1D708" d="M74 431Q75 431 146 436T219 442Q231 442 231 434Q231 428 185 241L137 51H140L150 55Q161 59 177 67T214 86T261 119T312 165Q410 264 445 394Q458 442 496 442Q509 442 519 434T530 411Q530 390 516 352T469 262T388 162T267 70T106 5Q81 -2 71 -2Q66 -2 59 -1T51 1Q45 5 45 11Q45 13 88 188L132 364Q133 377 125 380T86 385H65Q59 391 59 393T61 412Q65 431 74 431Z"></path><path id="MJX-124-TEX-N-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path id="MJX-124-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-124-TEX-I-1D706" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-124-TEX-I-1D708"></use></g><g transform="translate(807.8,0)"><use xlink:href="#MJX-124-TEX-N-3D"></use></g><g transform="translate(1863.6,0)"><g ><g transform="translate(295,676)"><use xlink:href="#MJX-124-TEX-I-1D450"></use></g><g transform="translate(220,-686)"><use xlink:href="#MJX-124-TEX-I-1D706"></use></g><rect width="783" height="60" x="120" y="220"></rect></g></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/98.svg b/47464-h/images/98.svg
new file mode 100644
index 0000000..b45714f
--- /dev/null
+++ b/47464-h/images/98.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.025ex;" xmlns="http://www.w3.org/2000/svg" width="433px" height="453px" viewBox="0 -442 433 453" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-446-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-446-TEX-I-1D450"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/99.svg b/47464-h/images/99.svg
new file mode 100644
index 0000000..38fa249
--- /dev/null
+++ b/47464-h/images/99.svg
@@ -0,0 +1 @@
+<svg version="1.1" style="vertical-align: -0.566ex;" xmlns="http://www.w3.org/2000/svg" width="11696.1px" height="1000px" viewBox="0 -750 11696.1 1000" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="MJX-126-TEX-N-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path id="MJX-126-TEX-I-1D450" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path id="MJX-126-TEX-I-210E" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path id="MJX-126-TEX-I-1D439" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path id="MJX-126-TEX-I-1D45F" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-126-TEX-N-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path id="MJX-126-TEX-I-1D45B" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path id="MJX-126-TEX-N-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path id="MJX-126-TEX-N-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path id="MJX-126-TEX-N-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path id="MJX-126-TEX-N-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path id="MJX-126-TEX-N-64" d="M376 495Q376 511 376 535T377 568Q377 613 367 624T316 637H298V660Q298 683 300 683L310 684Q320 685 339 686T376 688Q393 689 413 690T443 693T454 694H457V390Q457 84 458 81Q461 61 472 55T517 46H535V0Q533 0 459 -5T380 -11H373V44L365 37Q307 -11 235 -11Q158 -11 96 50T34 215Q34 315 97 378T244 442Q319 442 376 393V495ZM373 342Q328 405 260 405Q211 405 173 369Q146 341 139 305T131 211Q131 155 138 120T173 59Q203 26 251 26Q322 26 373 103V342Z"></path><path id="MJX-126-TEX-I-1D460" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path id="MJX-126-TEX-N-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="scale(1,-1)"><g ><g ><use xlink:href="#MJX-126-TEX-N-2212"></use></g><g transform="translate(778,0)"><use xlink:href="#MJX-126-TEX-I-1D450"></use></g><g transform="translate(1211,0)"><use xlink:href="#MJX-126-TEX-I-210E"></use></g><g transform="translate(1787,0)"><g ><use xlink:href="#MJX-126-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-126-TEX-I-1D45F"></use></g></g></g><g transform="translate(2831.9,0)"><use xlink:href="#MJX-126-TEX-N-28"></use></g><g transform="translate(3220.9,0)"><g ><use xlink:href="#MJX-126-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-126-TEX-N-31"></use></g></g></g><g transform="translate(4257.5,0)"><use xlink:href="#MJX-126-TEX-N-29"></use></g><g transform="translate(4646.5,0)"><g ></g></g><g transform="translate(4813.5,0)"><use xlink:href="#MJX-126-TEX-N-61"></use><use xlink:href="#MJX-126-TEX-N-6E" transform="translate(500,0)"></use><use xlink:href="#MJX-126-TEX-N-64" transform="translate(1056,0)"></use></g><g transform="translate(6425.5,0)"><g ></g></g><g transform="translate(6814.7,0)"><use xlink:href="#MJX-126-TEX-N-2212"></use></g><g transform="translate(7814.9,0)"><use xlink:href="#MJX-126-TEX-I-1D450"></use></g><g transform="translate(8247.9,0)"><use xlink:href="#MJX-126-TEX-I-210E"></use></g><g transform="translate(8823.9,0)"><g ><use xlink:href="#MJX-126-TEX-I-1D439"></use></g><g transform="translate(676,-150) scale(0.707)" ><g ><use xlink:href="#MJX-126-TEX-I-1D460"></use></g></g></g><g transform="translate(9881.5,0)"><use xlink:href="#MJX-126-TEX-N-28"></use></g><g transform="translate(10270.5,0)"><g ><use xlink:href="#MJX-126-TEX-I-1D45B"></use></g><g transform="translate(633,-150) scale(0.707)" ><g ><use xlink:href="#MJX-126-TEX-N-32"></use></g></g></g><g transform="translate(11307.1,0)"><use xlink:href="#MJX-126-TEX-N-29"></use></g></g></g></svg> \ No newline at end of file
diff --git a/47464-h/images/cover.jpg b/47464-h/images/cover.jpg
new file mode 100644
index 0000000..c868881
--- /dev/null
+++ b/47464-h/images/cover.jpg
Binary files differ
diff --git a/47464-pdf.pdf b/47464-pdf.pdf
new file mode 100644
index 0000000..bbbdd93
--- /dev/null
+++ b/47464-pdf.pdf
Binary files differ
diff --git a/47464-pdf.zip b/47464-pdf.zip
new file mode 100644
index 0000000..f8cf793
--- /dev/null
+++ b/47464-pdf.zip
Binary files differ
diff --git a/47464-t.zip b/47464-t.zip
new file mode 100644
index 0000000..c7cf0aa
--- /dev/null
+++ b/47464-t.zip
Binary files differ
diff --git a/47464-t/47464-t.tex b/47464-t/47464-t.tex
new file mode 100644
index 0000000..f79a93e
--- /dev/null
+++ b/47464-t/47464-t.tex
@@ -0,0 +1,6910 @@
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% The Project Gutenberg EBook of The Theory of Spectra and Atomic %
+% Constitution, by Niels (Niels Henrik David) Bohr %
+% %
+% This eBook is for the use of anyone anywhere in the United States and most
+% other parts of the world at no cost and with almost no restrictions %
+% whatsoever. You may copy it, give it away or re-use it under the terms of
+% the Project Gutenberg License included with this eBook or online at %
+% www.gutenberg.org. If you are not located in the United States, you'll have
+% to check the laws of the country where you are located before using this ebook.
+% %
+% %
+% %
+% Title: The Theory of Spectra and Atomic Constitution %
+% Three Essays %
+% %
+% Author: Niels (Niels Henrik David) Bohr %
+% %
+% Release Date: November 26, 2014 [EBook #47464] %
+% Most recently updated: June 11, 2021 %
+% %
+% Language: English %
+% %
+% Character set encoding: UTF-8 %
+% %
+% *** START OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA *** %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\def\ebook{47464}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %%
+%% Packages and substitutions: %%
+%% %%
+%% book: Required. %%
+%% inputenc: Latin-1 text encoding. Required. %%
+%% %%
+%% ifthen: Logical conditionals. Required. %%
+%% %%
+%% amsmath: AMS mathematics enhancements. Required. %%
+%% amssymb: Additional mathematical symbols. Required. %%
+%% %%
+%% alltt: Fixed-width font environment. Required. %%
+%% %%
+%% indentfirst: Indent first paragraph of each section. Optional. %%
+%% array: Array enhancements. Required. %%
+%% %%
+%% footmisc: Start footnote numbering on each page. Required. %%
+%% %%
+%% graphicx: Standard interface for graphics inclusion. Required. %%
+%% %%
+%% calc: Length calculations. Required. %%
+%% %%
+%% fancyhdr: Enhanced running headers and footers. Required. %%
+%% %%
+%% geometry: Enhanced page layout package. Required. %%
+%% hyperref: Hypertext embellishments for pdf output. Required. %%
+%% %%
+%% %%
+%% Producer's Comments: %%
+%% %%
+%% OCR text for this ebook was obtained on Nov. 21, 2014, from %%
+%% http://www.archive.org/details/theoryofspectraa00bohr. %%
+%% %%
+%% Minor changes to the original are noted in this file in two %%
+%% ways: %%
+%% 1. \Chg{}{} and \Add{} for modernization and consistency: %%
+%% * "excentric" modernized to "eccentric". %%
+%% * "can not" uniformized to "cannot". %%
+%% * "ultra-violet" and "infra-red" hyphenated uniformly. %%
+%% %%
+%% 2. [** TN: Note]s for other remarks. %%
+%% %%
+%% Compilation Flags: %%
+%% %%
+%% The following behavior may be controlled by a boolean flag. %%
+%% %%
+%% ForPrinting (false by default): %%
+%% If false, compile a screen optimized file (one-sided layout, %%
+%% blue hyperlinks). If true, print-optimized PDF file: Larger %%
+%% text block, two-sided layout, black hyperlinks. %%
+%% %%
+%% %%
+%% PDF pages: 209 (if ForPrinting set to false) %%
+%% PDF page size: 4.5 x 6.5" (non-standard) %%
+%% %%
+%% Summary of log file: %%
+%% * Two underfull hboxes. (No visual problems.) %%
+%% %%
+%% Compile History: %%
+%% %%
+%% November, 2014: (Andrew D. Hwang) %%
+%% texlive2012, GNU/Linux %%
+%% %%
+%% Command block: %%
+%% %%
+%% pdflatex x4 %%
+%% %%
+%% %%
+%% November 2014: pglatex. %%
+%% Compile this project with: %%
+%% pdflatex 47464-t.tex ..... FOUR times %%
+%% %%
+%% pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) %%
+%% %%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\listfiles
+\documentclass[12pt]{book}[2005/09/16]
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\usepackage[utf8]{inputenc}[2006/05/05]
+
+\usepackage{ifthen}[2001/05/26] %% Logical conditionals
+
+\usepackage{amsmath}[2000/07/18] %% Displayed equations
+\usepackage{amssymb}[2002/01/22] %% and additional symbols
+
+\usepackage{alltt}[1997/06/16] %% boilerplate, credits, license
+
+\IfFileExists{indentfirst.sty}{%
+ \usepackage{indentfirst}[1995/11/23]
+}{}
+
+\usepackage{array}[2008/09/09]
+
+\usepackage[perpage,symbol]{footmisc}[2005/03/17]
+
+\usepackage{graphicx}[1999/02/16]%% For diagrams
+
+\usepackage{calc}[2005/08/06]
+
+\usepackage{fancyhdr} %% For running heads
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% ForPrinting=true false (default)
+% Asymmetric margins Symmetric margins
+% 1 : 1.6 text block aspect ratio 3 : 4 text block aspect ratio
+% Black hyperlinks Blue hyperlinks
+% Start major marker pages recto No blank verso pages
+%
+\newboolean{ForPrinting}
+
+%% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %%
+%\setboolean{ForPrinting}{true}
+
+%% Initialize values to ForPrinting=false
+\newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins
+\newcommand{\HLinkColor}{blue} % Hyperlink color
+\newcommand{\PDFPageLayout}{SinglePage}
+\newcommand{\TransNote}{Transcriber's Note}
+\newcommand{\TransNoteCommon}{%
+ The camera-quality files for this public-domain ebook may be
+ downloaded \textit{gratis} at
+ \begin{center}
+ \texttt{www.gutenberg.org/ebooks/\ebook}.
+ \end{center}
+
+ This ebook was produced using scanned images and OCR text generously
+ provided by the Brandeis University Library through the Internet Archive.
+ \bigskip
+
+ Minor typographical corrections and presentational changes have been
+ made without comment.
+ \bigskip
+}
+
+\newcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for screen viewing, but may be recompiled
+ for printing. Please consult the preamble of the \LaTeX\ source file
+ for instructions and other particulars.
+}
+%% Re-set if ForPrinting=true
+\ifthenelse{\boolean{ForPrinting}}{%
+ \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins
+ \renewcommand{\HLinkColor}{black} % Hyperlink color
+ \renewcommand{\PDFPageLayout}{TwoPageRight}
+ \renewcommand{\TransNote}{Transcriber's Note}
+ \renewcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for printing, but may be recompiled for
+ screen viewing. Please consult the preamble of the \LaTeX\ source
+ file for instructions and other particulars.
+ }
+}{% If ForPrinting=false, don't skip to recto
+ \renewcommand{\cleardoublepage}{\clearpage}
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\ifthenelse{\boolean{ForPrinting}}{%
+ \setlength{\paperwidth}{8.5in}%
+ \setlength{\paperheight}{11in}%
+% 1:1.6
+ \usepackage[body={5in,8in},\Margins]{geometry}[2002/07/08]
+}{%
+ \setlength{\paperwidth}{4.5in}%
+ \setlength{\paperheight}{6.5in}%
+ \raggedbottom
+% 3:4
+ \usepackage[body={4.25in,5.6in},\Margins,includeheadfoot]{geometry}[2002/07/08]
+}
+
+\providecommand{\ebook}{00000} % Overridden during white-washing
+\usepackage[pdftex,
+ hyperfootnotes=false,
+ pdfauthor={Niels Henrik David Bohr},
+ pdftitle={The Project Gutenberg eBook \#\ebook: The Theory of Spectra and Atomic Constitution.},
+ pdfkeywords={Brandeis University, The Internet Archive, Andrew D. Hwang},
+ pdfstartview=Fit, % default value
+ pdfstartpage=1, % default value
+ pdfpagemode=UseNone, % default value
+ bookmarks=true, % default value
+ linktocpage=false, % default value
+ pdfpagelayout=\PDFPageLayout,
+ pdfdisplaydoctitle,
+ pdfpagelabels=true,
+ bookmarksopen=true,
+ bookmarksopenlevel=0,
+ colorlinks=true,
+ linkcolor=\HLinkColor]{hyperref}[2007/02/07]
+
+
+%% Fixed-width environment to format PG boilerplate %%
+\newenvironment{PGtext}{%
+\begin{alltt}
+\fontsize{8.1}{10}\ttfamily\selectfont}%
+{\end{alltt}}
+
+% Stylistic changes made for consistency
+\newcommand{\Chg}[2]{#2}
+%\newcommand{\Chg}[2]{#1} % Use this to revert inconsistencies in the original
+\newcommand{\Add}[1]{\Chg{}{#1}}
+
+%% Miscellaneous global parameters %%
+% No hrule in page header
+\renewcommand{\headrulewidth}{0pt}
+
+% Loosen spacing
+\setlength{\emergencystretch}{1em}
+
+\hyphenation{electro-dynamics electro-magnetic}
+
+% Scratch pad for length calculations
+\newlength{\TmpLen}
+
+%% Running heads %%
+\newcommand{\FlushRunningHeads}{%
+ \clearpage\fancyhf{}%
+ \ifthenelse{\boolean{ForPrinting}}{\cleardoublepage}{\clearpage}%
+}
+\newcommand{\InitRunningHeads}{%
+ \setlength{\headheight}{15pt}
+ \pagestyle{fancy}
+ \thispagestyle{empty}
+ \ifthenelse{\boolean{ForPrinting}}
+ {\fancyhead[RO,LE]{\thepage}}
+ {\fancyhead[R]{\thepage}}
+}
+
+% Uniform style for running heads
+\newcommand{\RHeads}[1]{\textsc{\MakeLowercase{#1}}}
+
+\newcommand{\SetRunningHeads}[2][C]{\fancyhead[#1]{\RHeads{#2}}}
+
+\newcommand{\BookMark}[2]{\phantomsection\pdfbookmark[#1]{#2}{#2}}
+
+%% Major document divisions %%
+\newcommand{\PGBoilerPlate}{%
+ \pagenumbering{Alph}
+ \pagestyle{empty}
+ \BookMark{0}{PG Boilerplate.}
+}
+\newcommand{\FrontMatter}{%
+ \cleardoublepage
+ \FlushRunningHeads
+ \frontmatter
+ \BookMark{-1}{Front Matter.}
+}
+\newcommand{\MainMatter}{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \mainmatter
+ \BookMark{-1}{Main Matter.}
+}
+\newcommand{\PGLicense}{%
+ \FlushRunningHeads
+ \pagenumbering{Roman}
+ \InitRunningHeads
+ \BookMark{-1}{PG License.}
+ \SetRunningHeads{License}
+}
+
+%% ToC formatting %%
+\AtBeginDocument{\renewcommand{\contentsname}%
+ {\protect\thispagestyle{empty}%
+ \protect\SectTitle[\Large]{\textbf{CONTENTS}}\protect\vspace{-1.5\baselineskip}}
+}
+
+\newcommand{\TableofContents}{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \SetRunningHeads{Contents}
+ \BookMark{0}{Contents.}
+ \tableofcontents
+}
+
+% Set the section number in a fixed-width box
+\newcommand{\ToCBox}[1]{\settowidth{\TmpLen}{III.}%
+ \makebox[\TmpLen][r]{#1}\hspace*{1em}%
+}
+% For internal use, to determine if we need the Sect./Page line
+\newcommand{\ToCAnchor}{}
+
+% \ToCBox{Label}{Anchor}{Title}
+\newcommand{\ToCLine}[3]{%
+ \label{toc:#2}%
+ \ifthenelse{\not\equal{\pageref{toc:#2}}{\ToCAnchor}}{%
+ \renewcommand{\ToCAnchor}{\pageref{toc:#2}}%
+ \noindent\makebox[\textwidth][r]{\null\hfill\scriptsize PAGE}\\[8pt]%
+ }{}%
+ \settowidth{\TmpLen}{9999}%
+ \noindent\strut\parbox[b]{\textwidth-\TmpLen}{\small%
+ \ToCBox{#1}\hangindent4em#3\dotfill}%
+ \makebox[\TmpLen][r]{\pageref{#2}}%
+ \smallskip
+}
+
+%% Sectional units %%
+% Typographical abstraction
+\newcommand{\SectTitle}[2][\large]{%
+ \section*{\centering#1\normalfont #2}
+}
+\newcommand{\SubsectTitle}[2][\normalsize]{%
+ \subsection*{\centering#1\normalfont #2}
+}
+\newcommand{\SubsubsectTitle}[2][\small]{%
+ \subsubsection*{\centering#1\normalfont #2}
+}
+
+% For internal cross-referencing
+\newcommand{\EssayNo}{}
+\newcounter{SecNo}
+
+% \Essay{Number}{Title}{Footnote}
+\newcommand{\Essay}[3]{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \ifthenelse{\equal{#1}{III}}{% [** TN: Hack to handle long running head]
+ \ifthenelse{\boolean{ForPrinting}}{%
+ \fancyhead[CE]{\RHeads{The Structure of the Atom and the}}%
+ \fancyhead[CO]{\RHeads{Physical and Chemical Properties of the Elements}}%
+ }{% Not ForPrinting
+ \SetRunningHeads{The Structure of the Atom}%
+ }%
+ }{% Not Essay III
+ \SetRunningHeads{#2}%
+ }
+ \BookMark{0}{Essay #1.}
+ \renewcommand{\EssayNo}{#1}% For \Eq and \Tag
+ \addtocontents{toc}{\protect\SectTitle{ESSAY #1}}
+ \addtocontents{toc}{\protect\SubsectTitle[\protect\small]{\MakeUppercase{#2}}}
+ \SectTitle[\Large]{ESSAY #1\footnotemark}
+ \SubsectTitle{\MakeUppercase{#2}}
+ \footnotetext{#3}%
+}
+
+% \Chapter{Number}{Title}
+\newcommand{\Chapter}[2]{%
+ \BookMark{1}{#1 #2.}
+ \label{chapter:\EssayNo.#1}
+ \addtocontents{toc}{\protect\ToCLine{#1}{chapter:\EssayNo.#1}{\textsc{#2}}}
+ \SubsubsectTitle{#1 \MakeUppercase{#2}}
+}
+
+\newcommand{\Section}[1]{
+ \paragraph*{\indent #1}
+ \refstepcounter{SecNo}
+ \label{section:\theSecNo}
+ \addtocontents{toc}{\protect\ToCLine{}{section:\theSecNo}{#1}}
+}
+
+\newcommand{\Preface}{%
+ \InitRunningHeads
+ \SetRunningHeads{Preface}
+ \BookMark{0}{Preface.}
+ \SectTitle[\Large]{\textbf{PREFACE}}
+}
+
+\newcommand{\Signature}[4]{%
+ \par\null\hfill#1\hspace{\parindent}
+
+ \settowidth{\TmpLen}{\small\textsc{#2}}%
+ \parbox{\TmpLen}{\centering\small\textsc{#2} \\
+ \textit{#3} #4}
+ \normalsize
+}
+
+%% Diagrams %%
+\newcommand{\DefWidth}{0.95\textwidth}% Default figure width
+\newcommand{\Graphic}[1]{%
+ \includegraphics[width=\DefWidth]{./images/fig_p#1.pdf}%
+}
+% \Figure[caption]{label}{page}
+\newcommand{\Figure}[3][]{%
+ \begin{figure}[hbt!]
+ \centering
+ \phantomsection\Pagelabel{#3}%
+ \Graphic{#3}%
+ \ifthenelse{\not\equal{#1}{}}{%
+ \\
+ #1%
+ }{% #1=[]
+ \ifthenelse{\not\equal{#2}{}}{%
+ \\
+ \label{fig:#2}%
+ Fig.~#2.%
+ }{}%
+ }%
+ \end{figure}\ignorespaces%
+}
+
+% \Fig[figure]{Number}
+\newcommand{\Fig}[2][fig.]{\hyperref[fig:#2]{#1~#2}}
+\newcommand{\FigNum}[1]{\hyperref[fig:#1]{#1}}
+
+\newcommand{\Pagelabel}[1]{\phantomsection\label{page:#1}}
+
+% Page separators
+\newcommand{\PageSep}[1]{\ignorespaces}
+\newcommand{\PageRef}[2][page]{\hyperref[page:#2]{#1~\pageref*{page:#2}}}
+\newcommand{\PageNum}[1]{\hyperref[page:#1]{\pageref*{page:#1}}}
+
+% Miscellaneous textual conveniences (N.B. \emph, not \textit)
+\newcommand{\ie}{i.e.}
+
+\newcommand{\First}[1]{\textsc{#1}}
+\newcommand{\Title}[1]{\textit{#1}}% Journal title
+\newcommand{\No}[1]{\textsc{#1}}% Journal number
+
+%% Miscellaneous mathematical formatting %%
+\DeclareInputMath{176}{{}^{\circ}}
+\DeclareInputMath{183}{\cdot}
+
+% Centered column heading in left-aligned array column
+\newcommand{\ColHead}[1]{\multicolumn{1}{c}{#1}}
+% Conditional (ForPrinting-dependent) breaking for wide math
+\newcommand{\BreakMath}[2]{\ifthenelse{\boolean{ForPrinting}}{#1}{#2}}
+
+% Cross-ref-able equation tags
+\newcommand{\Tag}[1]{%
+ \phantomsection\label{eqn:\EssayNo#1}\tag*{\ensuremath{#1}}%
+}
+\newcommand{\Eq}[1]{%
+ \hyperref[eqn:\EssayNo#1]{\ensuremath{#1}}%
+}
+
+%%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{document}
+%% PG BOILERPLATE %%
+\PGBoilerPlate
+\begin{center}
+\begin{minipage}{\textwidth}
+\small
+\begin{PGtext}
+The Project Gutenberg EBook of The Theory of Spectra and Atomic
+Constitution, by Niels (Niels Henrik David) Bohr
+
+This eBook is for the use of anyone anywhere in the United States and most
+other parts of the world at no cost and with almost no restrictions
+whatsoever. You may copy it, give it away or re-use it under the terms of
+the Project Gutenberg License included with this eBook or online at
+www.gutenberg.org. If you are not located in the United States, you'll have
+to check the laws of the country where you are located before using this ebook.
+
+
+
+Title: The Theory of Spectra and Atomic Constitution
+ Three Essays
+
+Author: Niels (Niels Henrik David) Bohr
+
+Release Date: November 26, 2014 [EBook #47464]
+Most recently updated: June 11, 2021
+
+Language: English
+
+Character set encoding: UTF-8
+
+*** START OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA ***
+\end{PGtext}
+\end{minipage}
+\end{center}
+\newpage
+%% Credits and transcriber's note %%
+\begin{center}
+\begin{minipage}{\textwidth}
+\begin{PGtext}
+Produced by Andrew D. Hwang
+\end{PGtext}
+\end{minipage}
+\vfill
+\end{center}
+
+\begin{minipage}{0.85\textwidth}
+\small
+\BookMark{0}{Transcriber's Note.}
+\subsection*{\centering\normalfont\scshape%
+\normalsize\MakeLowercase{\TransNote}}%
+
+\raggedright
+\TransNoteText
+\end{minipage}
+%%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%
+\PageSep{i}
+\iffalse
+% [** TN: Omitting half-title page and verso]
+The Theory of Spectra
+and
+Atomic Constitution
+\PageSep{ii}
+%[** TN: Publisher's information]
+
+CAMBRIDGE UNIVERSITY PRESS
+C. F. CLAY, Manager
+LONDON : FETTER LANE, E.C. 4
+
+%[** TN: Publisher's device]
+
+LONDON : H. K. LEWIS AND CO., Ltd.,
+136 Gower Street, W.C. 1
+NEW YORK : THE MACMILLAN CO.
+BOMBAY }
+CALCUTTA } MACMILLAN AND CO., Ltd.
+MADRAS }
+TORONTO : THE MACMILLAN CO. OF
+CANADA, Ltd.
+TOKYO : MARUZEN-KABUSHIKI-KAISHA
+
+ALL RIGHTS RESERVED
+\fi
+%[** TN: End of omitted half-title]
+\PageSep{iii}
+\newpage
+\begin{center}
+\Huge\bfseries
+The Theory of Spectra \\
+and \\
+Atomic Constitution
+\bigskip
+
+\large\normalfont
+THREE ESSAYS \\
+BY \\
+\Large
+NIELS BOHR
+\medskip
+
+\normalsize
+Professor of Theoretical Physics in~the~University~of~Copenhagen
+\vfill
+
+\Large
+CAMBRIDGE \\
+AT THE UNIVERSITY PRESS \\
+1922
+\end{center}
+\newpage
+\PageSep{iv}
+\ifthenelse{\boolean{ForPrinting}}{% Publisher's verso
+\begin{center}
+\null\vfill
+\footnotesize
+PRINTED IN GREAT BRITAIN \\
+AT THE CAMBRIDGE UNIVERSITY PRESS
+\end{center}
+}{}% Omit for screen-formatted version
+\PageSep{v}
+
+\FrontMatter
+
+\Preface
+
+\First{The} three essays which here appear in English all deal with
+the application of the quantum theory to problems of atomic
+structure, and refer to the different stages in the development of
+this theory.
+
+The first essay ``On the spectrum of hydrogen'' is a translation of
+a Danish address given before the Physical Society of Copenhagen
+on the 20th~of December 1913, and printed in \Title{Fysisk Tidsskrift},
+\No{xii.}\ p.~97, 1914. Although this address was delivered at a time
+when the formal development of the quantum theory was only at
+its beginning, the reader will find the general trend of thought
+very similar to that expressed in the later addresses, which
+form the other two essays. As emphasized at several points the
+theory does not attempt an ``explanation'' in the usual sense of
+this word, but only the establishment of a connection between facts
+which in the present state of science are unexplained, that is to
+say the usual physical conceptions do not offer sufficient basis for
+a detailed description.
+
+The second essay ``On the series spectra of the elements'' is a
+translation of a German address given before the Physical Society
+of Berlin on the 27th~of April 1920, and printed in \Title{Zeitschrift für
+Physik}, \No{vi.}\ p.~423, 1920. This address falls into two main parts.
+The considerations in the first part are closely related to the contents
+of the first essay; especially no use is made of the new
+formal conceptions established through the later development of
+the quantum theory. The second part contains a survey of the
+results reached by this development. An attempt is made to
+elucidate the problems by means of a general principle which postulates
+a formal correspondence between the fundamentally different
+conceptions of the classical electrodynamics and those of the
+quantum theory. The first germ of this correspondence principle
+may be found in the first essay in the deduction of the expression
+for the constant of the hydrogen spectrum in terms of
+Planck's constant and of the quantities which in Rutherford's
+\PageSep{vi}
+atomic model are necessary for the description of the hydrogen
+atom.
+
+The third essay ``The structure of the atom and the physical
+and chemical properties of the elements'' is based on a Danish
+address, given before a joint meeting of the Physical and Chemical
+Societies of Copenhagen on the 18th~of October 1921, and printed
+in \Title{Fysisk Tidsskrift}, \No{xix.}\ p.~153, 1921. While the first two essays
+form verbal translations of the respective addresses, this essay
+differs from the Danish original in certain minor points. Besides
+the addition of a few new figures with explanatory text, certain
+passages dealing with problems discussed in the second essay are
+left out, and some remarks about recent contributions to the
+subject are inserted. Where such insertions have been introduced
+will clearly appear from the text. This essay is divided into
+four parts. The first two parts contain a survey of previous results
+concerning atomic problems and a short account of the theoretical
+ideas of the quantum theory. In the following parts it is shown
+how these ideas lead to a view of atomic constitution which seems
+to offer an explanation of the observed physical and chemical
+properties of the elements, and especially to bring the characteristic
+features of the periodic table into close connection with the
+interpretation of the optical and high frequency spectra of the
+elements.
+
+For the convenience of the reader all three essays are subdivided
+into smaller paragraphs, each with a headline. Conforming to the
+character of the essays there is, however, no question of anything
+like a full account or even a proportionate treatment of the subject
+stated in these headlines, the principal object being to emphasize
+certain general views in a freer form than is usual in scientific
+treatises or text books. For the same reason no detailed references
+to the literature are given, although an attempt is made to mention
+the main contributions to the development of the subject. As
+regards further information the reader in the case of the second
+essay is referred to a larger treatise ``On the quantum theory of
+line spectra,'' two parts of which have appeared in the Transactions of
+the Copenhagen Academy (\Title{D.\ Kgl.\ Danske Vidensk.\ Selsk.\ Skrifter},
+8.\ Række, \No{iv.}~1, I~and~II, 1918),\footnote
+ {See \href{http://www.gutenberg.org/ebooks/47167}{www.gutenberg.org/ebooks/47167}.---\textit{Trans.}}
+where full references to the literature
+may be found. The proposed continuation of this treatise, mentioned
+\PageSep{vii}
+at several places in the second essay, has for various reasons been
+delayed, but in the near future the work will be completed by the
+publication of a third part. It is my intention to deal more fully
+with the problems discussed in the third essay by a larger systematic
+account of the application of the quantum theory to atomic
+problems, which is under preparation.
+
+As mentioned both in the beginning and at the end of the
+third essay, the considerations which it contains are clearly still
+incomplete in character. This holds not only as regards the
+elaboration of details, but also as regards the development of the
+theoretical ideas. It may be useful once more to emphasize,
+that---although the word ``explanation'' has been used more
+liberally than for instance in the first essay---we are not concerned
+with a description of the phenomena, based on a well-defined
+physical picture. It may rather be said that hitherto every
+progress in the problem of atomic structure has tended to emphasize
+the well-known ``mysteries'' of the quantum theory more and more.
+I hope the exposition in these essays is sufficiently clear, nevertheless,
+to give the reader an impression of the peculiar charm
+which the study of atomic physics possesses just on this account.
+
+I wish to express my best thanks to Dr~A.~D. Udden, University
+of Pennsylvania, who has undertaken the translation of the
+original addresses into English, and to Mr~C.~D. Ellis, Trinity
+College, Cambridge, who has looked through the manuscript and
+suggested many valuable improvements in the exposition of the
+subject.
+\Signature{N. BOHR.}{Copenhagen,}{May}{1922.}
+\PageSep{viii}
+
+\TableofContents
+
+\iffalse
+%[** TN: Original ToC text (not manually verified)]
+CONTENTS
+
+ESSAY I
+ON THE SPECTRUM OF HYDROGEN
+
+PAGE
+
+Empirical Spectral Laws 1
+Laws of Temperature Radiation 4
+The Nuclear Theory of the Atom 7
+Quantum Theory of Spectra 10
+Hydrogen Spectrum 12
+The Pickering Lines 15
+Other Spectra 18
+
+
+ESSAY II
+ON THE SERIES SPECTRA OF THE ELEMENTS
+
+I. Introduction .20
+
+II. General Principles of the Quantum Theory of Spectra . 23
+Hydrogen Spectrum 24
+The Correspondence Principle 27
+General Spectral Laws 29
+Absorption and Excitation of Radiation 32
+
+III. Development of the Quantum Theory of Spectra . . 36
+Effect of External Forces on the Hydrogen Spectrum . . 37
+The Stark Effect 39
+The Zeeman Effect 42
+Central Perturbations . 44
+Relativity Effect on Hydrogen Lines 46
+Theory of Series Spectra 48
+Correspondence Principle and Conservation of Angular Momentum 50
+The Spectra of Helium and Lithium 54
+Complex Structure of Series Lines 58
+
+IV. Conclusion 59
+
+\PageSep{ix}
+CONTENTS
+
+ESSAY III
+
+THE STRUCTURE OF THE ATOM AND THE PHYSICAL
+AND CHEMICAL PROPERTIES OF THE ELEMENTS
+
+PAGE
+
+I. Preliminary 61
+The Nuclear Atom 61
+The Postulates of the Quantum Theory 62
+Hydrogen Atom 63
+Hydrogen Spectrum and X-ray Spectra 65
+The Fine Structure of the Hydrogen Lines .... 67
+Periodic Table 69
+Recent Atomic Models 74
+
+II. Series Spectra and the Capture of Electrons by Atoms . 75
+Arc and Spark Spectra 76
+Series Diagram 78
+Correspondence Principle 81
+
+III. Formation of Atoms and the Periodic Table ... 85
+First Period. Hydrogen---Helium 85
+Second Period. Lithium---Neon 89
+Third Period. Sodium---Argon 95
+Fourth Period. Potassium---Krypton 100
+Fifth Period. Rubidium--- Xenon 108
+Sixth Period. Caesium---Niton 109
+Seventh Period 111
+Survey of the Periodic Table 113
+
+IV. Reorganization of Atoms and X-ray Spectra . . .116
+Absorption and Emission of X-rays and Correspondence Principle 117
+X-ray Spectra and Atomic Structure 119
+Classification of X-ray Spectra 121
+Conclusion 125
+\fi
+%[** TN: End of original ToC text]
+\PageSep{1}
+\MainMatter
+
+\Essay{I}{On the Spectrum of Hydrogen}
+ {Address delivered before the Physical Society in Copenhagen, Dec.~20, 1913.}
+
+\Section{Empirical spectral laws.} Hydrogen possesses not only the
+smallest atomic weight of all the elements, but it also occupies a
+peculiar position both with regard to its physical and its chemical
+properties. One of the points where this becomes particularly apparent
+is the hydrogen line spectrum.
+
+The spectrum of hydrogen observed in an ordinary Geissler tube
+consists of a series of lines, the strongest of which lies at the red
+end of the spectrum, while the others extend out into the ultra\Add{-}violet,
+the distance between the various lines, as well as their intensities,
+constantly decreasing. In the ultra\Add{-}violet the series converges
+to a limit.
+
+Balmer, as we know, discovered (1885) that it was possible to
+represent the wave lengths of these lines very accurately by the
+simple law
+\[
+\frac{1}{\lambda_{n}} = R \left(\frac{1}{4} - \frac{1}{n^{2}}\right),
+\Tag{(1)}
+\]
+where $R$~is a constant and $n$~is a whole number. The wave lengths
+of the five strongest hydrogen lines, corresponding to $n = 3$, $4$,~$5$, $6$,~$7$,
+measured in air at ordinary pressure and temperature, and the
+values of these wave lengths multiplied by $\left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right)$ are given in
+the following table:\Pagelabel{1}
+\[
+%[** TN: Original uses a period for multiplication and a center dot as a decimal point]
+\begin{array}{*{2}{c<{\qquad\qquad}}c}
+n & \lambda · 10^{8} & \lambda · \left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right) · 10^{10} \\
+3 & 6563.04 & 91153.3 \\
+4 & 4861.49 & 91152.9 \\
+5 & 4340.66 & 91153.9 \\
+6 & 4101.85 & 91152.2 \\
+7 & 3970.25 & 91153.7 \\
+\end{array}
+\]
+The table shows that the product is nearly constant, while the deviations
+are not greater than might be ascribed to experimental errors.
+
+As you already know, Balmer's discovery of the law relating to
+the hydrogen spectrum led to the discovery of laws applying to
+the spectra of other elements. The most important work in this
+\PageSep{2}
+connection was done by Rydberg (1890) and Ritz (1908). Rydberg
+pointed out that the spectra of many elements contain series of
+lines whose wave lengths are given approximately by the formula
+\[
+\frac{1}{\lambda_{n}} = A - \frac{R}{(n + \alpha)^{2}},
+\]
+where $A$~and~$\alpha$ are constants having different values for the various
+series, while $R$~is a universal constant equal to the constant in the
+spectrum of hydrogen. If the wave lengths are measured in vacuo
+Rydberg calculated the value of~$R$ to be~$109675$. In the spectra of
+many elements, as opposed to the simple spectrum of hydrogen, there
+are several series of lines whose wave lengths are to a close approximation
+given by Rydberg's formula if different values are assigned to
+the constants $A$~and~$\alpha$. Rydberg showed, however, in his earliest
+work, that certain relations existed between the constants in the
+various series of the spectrum of one and the same element. These
+relations were later very successfully generalized by Ritz through
+the establishment of the ``combination principle.'' According to
+this principle, the wave lengths of the various lines in the spectrum
+of an element may be expressed by the formula
+\[
+\frac{1}{\lambda} = F_{r}(n_{1}) - F_{s}(n_{2}).
+\Tag{(2)}
+\]
+In this formula $n_{1}$~and~$n_{2}$ are whole numbers, and $F_{1}(n)$, $F_{2}(n)$,~\dots\ is
+a series of functions of~$n$, which may be written approximately
+\[
+F_{r}(n) = \frac{R}{(n + \alpha_{r})^{2}},
+\]
+where $R$~is Rydberg's universal constant and $\alpha_{r}$ is a constant which
+is different for the different functions. A particular spectral line will,
+according to this principle, correspond to each combination of $n_{1}$~and~$n_{2}$,
+as well as to the functions $F_{1}$, $F_{2}$,~\dots. The establishment of
+this principle led therefore to the prediction of a great number of
+lines which were not included in the spectral formulae previously
+considered, and in a large number of cases the calculations were
+found to be in close agreement with the experimental observations.
+In the case of hydrogen Ritz assumed that formula~\Eq{(1)} was a special
+case of the general formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right),
+\Tag{(3)}
+\]
+\PageSep{3}
+and therefore predicted among other things a series of lines in the
+infra\Add{-}red given by the formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{9} - \frac{1}{n^{2}}\right).
+\]
+In 1909 Paschen succeeded in observing the first two lines of this
+series corresponding to $n = 4$ and $n = 5$.
+
+The part played by hydrogen in the development of our
+knowledge of the spectral laws is not solely due to its ordinary
+simple spectrum, but it can also be traced in other less direct
+ways. At a time when Rydberg's laws were still in want of
+further confirmation Pickering (1897) found in the spectrum of a
+star a series of lines whose wave lengths showed a very simple relation
+to the ordinary hydrogen spectrum, since to a very close
+approximation they could be expressed by the formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{(n + \frac{1}{2})^{2}}\right).
+\]
+Rydberg considered these lines to represent a new series of lines
+in the spectrum of hydrogen, and predicted according to his theory
+the existence of still another series of hydrogen lines the wave
+lengths of which would be given by
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{(\frac{3}{2})^{2}} - \frac{1}{n^{2}}\right).
+\]
+By examining earlier observations it was actually found that a line
+had been observed in the spectrum of certain stars which coincided
+closely with the first line in this series (corresponding to $n = 2$);
+from analogy with other spectra it was also to be expected that this
+would be the strongest line. This was regarded as a great triumph
+for Rydberg's theory and tended to remove all doubt that the new
+spectrum was actually due to hydrogen. Rydberg's view has therefore
+been generally accepted by physicists up to the present moment.
+Recently however the question has been reopened and Fowler
+(1912) has succeeded in observing the Pickering lines in ordinary
+laboratory experiments. We shall return to this question again
+later.
+
+The discovery of these beautiful and simple laws concerning the
+line spectra of the elements has naturally resulted in many attempts
+at a theoretical explanation. Such attempts are very alluring
+\PageSep{4}
+because the simplicity of the spectral laws and the exceptional accuracy
+with which they apply appear to promise that the correct explanation
+will be very simple and will give valuable information
+about the properties of matter. I should like to consider some of
+these theories somewhat more closely, several of which are extremely
+interesting and have been developed with the greatest keenness
+and ingenuity, but unfortunately space does not permit me to do
+so here. I shall have to limit myself to the statement that not
+one of the theories so far proposed appears to offer a satisfactory or
+even a plausible way of explaining the laws of the line spectra.
+Considering our deficient knowledge of the laws which determine
+the processes inside atoms it is scarcely possible to give an explanation
+of the kind attempted in these theories. The inadequacy of
+our ordinary theoretical conceptions has become especially apparent
+from the important results which have been obtained in recent years
+from the theoretical and experimental study of the laws of temperature
+radiation. You will therefore understand that I shall not
+attempt to propose an explanation of the spectral laws; on the
+contrary I shall try to indicate a way in which it appears possible
+to bring the spectral laws into close connection with other properties
+of the elements, which appear to be equally inexplicable on
+the basis of the present state of the science. In these considerations
+I shall employ the results obtained from the study of temperature
+radiation as well as the view of atomic structure which has been
+reached by the study of the radioactive elements.
+
+\Section{Laws of temperature radiation.} I shall commence by mentioning
+the conclusions which have been drawn from experimental
+and theoretical work on temperature radiation.
+
+Let us consider an enclosure surrounded by bodies which are in
+temperature equilibrium. In this space there will be a certain
+amount of energy contained in the rays emitted by the surrounding
+substances and crossing each other in every direction. By making
+the assumption that the temperature equilibrium will not be disturbed
+by the mutual radiation of the various bodies Kirchhoff
+(1860) showed that the amount of energy per unit volume as well
+as the distribution of this energy among the various wave lengths
+is independent of the form and size of the space and of the nature
+\PageSep{5}
+of the surrounding bodies and depends only on the temperature.
+Kirchhoff's result has been confirmed by experiment, and the
+amount of energy and its distribution among the various wave
+lengths and the manner in which it depends on the temperature
+are now fairly well known from a great amount of experimental
+work; or, as it is usually expressed, we have a fairly
+accurate experimental knowledge of the ``laws of temperature
+radiation.''
+
+Kirchhoff's considerations were only capable of predicting the
+existence of a law of temperature radiation, and many physicists
+have subsequently attempted to find a more thorough explanation
+of the experimental results. You will perceive that the electromagnetic
+theory of light together with the electron theory suggests
+a method of solving this problem. According to the electron theory
+of matter a body consists of a system of electrons. By making
+certain definite assumptions concerning the forces acting on the
+electrons it is possible to calculate their motion and consequently
+the energy radiated from the body per second in the form of
+electromagnetic oscillations of various wave lengths. In a similar
+manner the absorption of rays of a given wave length by a substance
+can be determined by calculating the effect of electromagnetic
+oscillations upon the motion of the electrons. Having investigated
+the emission and absorption of a body at all temperatures, and for
+rays of all wave lengths, it is possible, as Kirchhoff has shown, to
+determine immediately the laws of temperature radiation. Since
+the result is to be independent of the nature of the body we are
+justified in expecting an agreement with experiment, even though
+very special assumptions are made about the forces acting upon
+the electrons of the hypothetical substance. This naturally
+simplifies the problem considerably, but it is nevertheless sufficiently
+difficult and it is remarkable that it has been possible
+to make any advance at all in this direction. As is well known
+this has been done by Lorentz (1903). He calculated the
+emissive as well as the absorptive power of a metal for long
+wave lengths, using the same assumptions about the motions
+of the electrons in the metal that Drude (1900) employed in
+his calculation of the ratio of the electrical and thermal conductivities.
+Subsequently, by calculating the ratio of the emissive
+\PageSep{6}
+to the absorptive power, Lorentz really obtained an expression
+for the law of temperature radiation which for long wave lengths
+agrees remarkably well with experimental facts. In spite of this
+beautiful and promising result, it has nevertheless become apparent
+that the electromagnetic theory is incapable of explaining the law
+of temperature radiation. For, it is possible to show, that, if the
+investigation is not confined to oscillations of long wave lengths,
+as in Lorentz's work, but is also extended to oscillations corresponding
+to small wave lengths, results are obtained which are
+contrary to experiment. This is especially evident from Jeans'
+investigations (1905) in which he employed a very interesting
+statistical method first proposed by Lord Rayleigh.
+
+We are therefore compelled to assume, that the classical electrodynamics
+does not agree with reality, or expressed more carefully,
+that it \Chg{can not}{cannot} be employed in calculating the absorption and
+emission of radiation by atoms. Fortunately, the law of temperature
+radiation has also successfully indicated the direction in which the
+necessary changes in the electrodynamics are to be sought. Even
+before the appearance of the papers by Lorentz and Jeans, Planck
+(1900) had derived theoretically a formula for the black body radiation
+which was in good agreement with the results of experiment.
+Planck did not limit himself exclusively to the classical electrodynamics,
+but introduced the further assumption that a system of
+oscillating electrical particles (elementary resonators) will neither
+radiate nor absorb energy continuously, as required by the ordinary
+electrodynamics, but on the contrary will radiate and absorb discontinuously.
+The energy contained within the system at any
+moment is always equal to a whole multiple of the so-called
+quantum of energy the magnitude of which is equal to~$h\nu$, where
+$h$~is Planck's constant and $\nu$~is the frequency of oscillation of the
+system per second. In formal respects Planck's theory leaves much
+to be desired; in certain calculations the ordinary electrodynamics
+is used, while in others assumptions distinctly at variance with it
+are introduced without any attempt being made to show that it
+is possible to give a consistent explanation of the procedure used.
+Planck's theory would hardly have acquired general recognition
+merely on the ground of its agreement with experiments on black
+body radiation, but, as you know, the theory has also contributed
+\PageSep{7}
+quite remarkably to the elucidation of many different physical
+phenomena, such as specific heats, photoelectric effect, X-rays and
+the absorption of heat rays by gases. These explanations involve
+more than the qualitative assumption of a discontinuous transformation
+of energy, for with the aid of Planck's constant~$h$ it
+seems to be possible, at least approximately, to account for a great
+number of phenomena about which nothing could be said previously.
+It is therefore hardly too early to express the opinion that, whatever
+the final explanation will be, the discovery of ``energy quanta''
+must be considered as one of the most important results arrived at
+in physics, and must be taken into consideration in investigations
+of the properties of atoms and particularly in connection with any
+explanation of the spectral laws in which such phenomena as
+the emission and absorption of electromagnetic radiation are
+concerned.
+
+\Section{The nuclear theory of the atom.} We shall now consider the
+second part of the foundation on which we shall build, namely the
+conclusions arrived at from experiments with the rays emitted by
+radioactive substances. I have previously here in the Physical
+Society had the opportunity of speaking of the scattering of $\alpha$~rays
+in passing through thin plates, and to mention how Rutherford
+(1911) has proposed a theory for the structure of the atom in
+order to explain the remarkable and unexpected results of these
+experiments. I shall, therefore, only remind you that the characteristic
+feature of Rutherford's theory is the assumption of the
+existence of a positively charged nucleus inside the atom. A number
+of electrons are supposed to revolve in closed orbits around the
+nucleus, the number of these electrons being sufficient to neutralize
+the positive charge of the nucleus. The dimensions of the nucleus
+are supposed to be very small in comparison with the dimensions
+of the orbits of the electrons, and almost the entire mass of the
+atom is supposed to be concentrated in the nucleus.
+
+According to Rutherford's calculation the positive charge of the
+nucleus corresponds to a number of electrons equal to about half
+the atomic weight. This number coincides approximately with the
+number of the particular element in the periodic system and it is
+therefore natural to assume that the number of electrons in the
+\PageSep{8}
+atom is exactly equal to this number. This hypothesis, which was
+first stated by van~den Broek (1912), opens the possibility of
+obtaining a simple explanation of the periodic system. This assumption
+is strongly confirmed by experiments on the elements
+of small atomic weight. In the first place, it is evident that according
+to Rutherford's theory the $\alpha$~particle is the same as the
+nucleus of a helium atom. Since the $\alpha$~particle has a double positive
+charge it follows immediately that a neutral helium atom contains
+two electrons. Further the concordant results obtained from calculations
+based on experiments as different as the diffuse scattering
+of X-rays and the decrease in velocity of $\alpha$~rays in passing
+through matter render the conclusion extremely likely that a
+hydrogen atom contains only a single electron. This agrees most
+beautifully with the fact that J.~J. Thomson in his well-known
+experiments on rays of positive electricity has never observed a
+hydrogen atom with more than a single positive charge, while all
+other elements investigated may have several charges.
+
+Let us now assume that a hydrogen atom simply consists of an
+electron revolving around a nucleus of equal and opposite charge,
+and of a mass which is very large in comparison with that of the
+electron. It is evident that this assumption may explain the peculiar
+position already referred to which hydrogen occupies among the
+elements, but it appears at the outset completely hopeless to attempt
+to explain anything at all of the special properties of hydrogen,
+still less its line spectrum, on the basis of considerations relating
+to such a simple system.
+
+Let us assume for the sake of brevity that the mass of the nucleus
+is infinitely large in proportion to that of the electron, and that the
+velocity of the electron is very small in comparison with that of
+light. If we now temporarily disregard the energy radiation, which,
+according to the ordinary electrodynamics, will accompany the accelerated
+motion of the electron, the latter in accordance with
+Kepler's first law will describe an ellipse with the nucleus in one
+of the foci. Denoting the frequency of revolution by~$\omega$, and the
+major axis of the ellipse by~$2a$ we find that
+\[
+\omega^{2} = \frac{2W^{3}}{\pi^{2} e^{4} m},\quad
+2a = \frac{e^{2}}{W},
+\Tag{(4)}
+\]
+\PageSep{9}
+where $e$~is the charge of the electron and $m$~its mass, while $W$~is
+the work which must be added to the system in order to remove
+the electron to an infinite distance from the nucleus.
+
+These expressions are extremely simple and they show that the
+magnitude of the frequency of revolution as well as the length of
+the major axis depend only on~$W$, and are independent of the
+\Chg{excentricity}{eccentricity} of the orbit. By varying~$W$ we may obtain all possible
+values for $\omega$~and~$2a$. This condition shows, however, that it is not
+possible to employ the above formulae directly in calculating the
+orbit of the electron in a hydrogen atom. For this it will be necessary
+to assume that the orbit of the electron \Chg{can not}{cannot} take on all values,
+and in any event, the line spectrum clearly indicates that the
+oscillations of the electron cannot vary continuously between wide
+limits. The impossibility of making any progress with a simple
+system like the one considered here might have been foretold from
+a consideration of the dimensions involved; for with the aid of $e$~and
+$m$~alone it is impossible to obtain a quantity which can be
+interpreted as a diameter of an atom or as a frequency.
+
+If we attempt to account for the radiation of energy in the manner
+required by the ordinary electrodynamics it will only make matters
+worse. As a result of the radiation of energy~$W$ would continually
+increase, and the above expressions~\Eq{(4)} show that at the same time
+the frequency of revolution of the system would increase, and the
+dimensions of the orbit decrease. This process would not stop until
+the particles had approached so closely to one another that they no
+longer attracted each other. The quantity of energy which would
+be radiated away before this happened would be very great. If we
+were to treat these particles as geometrical points this energy would
+be infinitely great, and with the dimensions of the electrons as
+calculated from their mass (about $10^{-13}$~cm.), and of the nucleus as
+calculated by Rutherford (about $10^{-12}$~cm.), this energy would be
+many times greater than the energy changes with which we are
+familiar in ordinary atomic processes.
+
+It can be seen that it is impossible to employ Rutherford's atomic
+model so long as we confine ourselves exclusively to the ordinary
+electrodynamics. But this is nothing more than might have been
+expected. As I have mentioned we may consider it to be an
+established fact that it is impossible to obtain a satisfactory
+\PageSep{10}
+explanation of the experiments on temperature radiation with the
+aid of electrodynamics, no matter what atomic model be employed.
+The fact that the deficiencies of the atomic model we are
+considering stand out so plainly is therefore perhaps no serious
+drawback; even though the defects of other atomic models are
+much better concealed they must nevertheless be present and will
+be just as serious.
+
+\Section{Quantum theory of spectra.} Let us now try to overcome these
+difficulties by applying Planck's theory to the problem.
+
+It is readily seen that there can be no question of a direct application
+of Planck's theory. This theory is concerned with the emission
+and absorption of energy in a system of electrical particles, which
+oscillate with a given frequency per second, dependent only on the
+nature of the system and independent of the amount of energy
+contained in the system. In a system consisting of an electron and
+a nucleus the period of oscillation corresponds to the period of
+revolution of the electron. But the formula~\Eq{(4)} for~$\omega$ shows that the
+frequency of revolution depends upon~$W$, \ie\ on the energy of the
+system. Still the fact that we \Chg{can not}{cannot} immediately apply Planck's
+theory to our problem is not as serious as it might seem to be, for
+in assuming Planck's theory we have manifestly acknowledged the
+inadequacy of the ordinary electrodynamics and have definitely
+parted with the coherent group of ideas on which the latter theory
+is based. In fact in taking such a step we \Chg{can not}{cannot} expect that all
+cases of disagreement between the theoretical conceptions hitherto
+employed and experiment will be removed by the use of Planck's
+assumption regarding the quantum of the energy momentarily
+present in an oscillating system. We stand here almost entirely on
+virgin ground, and upon introducing new assumptions we need only
+take care not to get into contradiction with experiment. Time will
+have to show to what extent this can be avoided; but the safest
+way is, of course, to make as few assumptions as possible.
+
+With this in mind let us first examine the experiments on
+temperature radiation. The subject of direct observation is the
+distribution of radiant energy over oscillations of the various wave
+lengths. Even though we may assume that this energy comes from
+systems of oscillating particles, we know little or nothing about
+\PageSep{11}
+these systems. No one has ever seen a Planck's resonator, nor
+indeed even measured its frequency of oscillation; we can observe
+only the period of oscillation of the radiation which is emitted. It
+is therefore very convenient that it is possible to show that to
+obtain the laws of temperature radiation it is not necessary to
+make any assumptions about the systems which emit the radiation
+except that the amount of energy emitted each time shall be equal
+to~$h\nu$, where $h$~is Planck's constant and $\nu$~is the frequency of the
+radiation. Indeed, it is possible to derive Planck's law of radiation
+from this assumption alone, as shown by Debye, who employed a
+method which is a combination of that of Planck and of Jeans.
+Before considering any further the nature of the oscillating systems
+let us see whether it is possible to bring this assumption about the
+emission of radiation into agreement with the spectral laws.
+
+If the spectrum of some element contains a spectral line corresponding
+to the frequency~$\nu$ it will be assumed that one of the
+atoms of the element (or some other elementary system) can emit
+an amount of energy~$h\nu$. Denoting the energy of the atom before
+and after the emission of the radiation by $E_{1}$ and~$E_{2}$ we have
+\[
+h\nu = E_{1} - E_{2} \text{ or }
+\nu = \frac{E_{1}}{h} - \frac{E_{2}}{h}.
+\Tag{(5)}
+\]
+
+During the emission of the radiation the system may be regarded
+as passing from one state to another; in order to introduce a name
+for these states, we shall call them ``stationary'' states, simply
+indicating thereby that they form some kind of waiting places
+between which occurs the emission of the energy corresponding to
+the various spectral lines. As previously mentioned the spectrum
+of an element consists of a series of lines whose wave lengths may
+be expressed by the formula~\Eq{(2)}. By comparing this expression
+with the relation given above it is seen that---since $\nu = \dfrac{c}{\lambda}$, where $c$~is
+the velocity of light---each of the spectral lines may be regarded
+as being emitted by the transition of a system between two stationary
+states in which the energy apart from an additive arbitrary
+constant is given by $-ch F_{r}(n_{1})$ and $-ch F_{s}(n_{2})$ respectively. Using
+this interpretation the combination principle asserts that a series
+of stationary states exists for the given system, and that it can
+\PageSep{12}
+pass from one to any other of these states with the emission of
+a monochromatic radiation. We see, therefore, that with a simple
+extension of our first assumption it is possible to give a formal
+explanation of the most general law of line spectra.
+
+\Section{Hydrogen spectrum.} This result encourages us to make an
+attempt to obtain a clear conception of the stationary states which
+have so far only been regarded as formal. With this end in view,
+we naturally turn to the spectrum of hydrogen. The formula
+applying to this spectrum is given by the expression
+\[
+\frac{1}{\lambda} = \frac{R}{n_{1}^{2}} - \frac{R}{n_{2}^{2}}.
+\]
+According to our assumption this spectrum is produced by transitions
+between a series of stationary states of a system, concerning
+which we can for the present only say that the energy of the system
+in the $n$th~state, apart from an additive constant, is given by
+$-\dfrac{Rhc}{n^{2}}$. Let us now try to find a connection between this and the
+model of the hydrogen atom. We assume that in the calculation
+of the frequency of revolution of the electron in the stationary states
+of the atom it will be possible to employ the above formula for~$\omega$.
+It is quite natural to make this assumption; since, in trying to
+form a reasonable conception of the stationary states, there is, for
+the present at least, no other means available besides the ordinary
+mechanics.
+
+Corresponding to the $n$th~stationary state in formula~\Eq{(4)} for~$\omega$,
+let us by way of experiment put $W = \dfrac{Rhc}{n^{2}}$. This gives us
+\[
+\omega_{n}^{2} = \frac{2}{\pi^{2}}\, \frac{R^{3} h^{3} c^{3}}{e^{4} mn^{6}}.
+\Tag{(6)}
+\]
+
+The radiation of light corresponding to a particular spectral line
+is according to our assumption emitted by a transition between
+two stationary states, corresponding to two different frequencies of
+revolution, and we are not justified in expecting any simple relation
+between these frequencies of revolution of the electron and
+the frequency of the emitted radiation. You understand, of course,
+that I am by no means trying to give what might ordinarily be
+described as an explanation; nothing has been said here about
+\PageSep{13}
+how or why the radiation is emitted. On one point, however, we
+may expect a connection with the ordinary conceptions; namely,
+that it will be possible to calculate the emission of slow electromagnetic
+oscillations on the basis of the classical electrodynamics.
+This assumption is very strongly supported by the result of
+Lorentz's calculations which have already been described. From
+the formula for~$\omega$ it is seen that the frequency of revolution decreases
+as $n$~increases, and that the expression~$\dfrac{\omega_{n}}{\omega_{n+1}}$ approaches the
+value~$1$.
+
+According to what has been said above, the frequency of the
+radiation corresponding to the transition between the $(n + 1)$th
+and the $n$th~stationary state is given by
+\[
+\nu = Rc \left(\frac{1}{n^{2}} - \frac{1}{(n + 1)^{2}}\right).
+\]
+If $n$~is very large this expression is approximately equal to
+\[
+\nu = 2Rc/n^{3}.
+\]
+In order to obtain a connection with the ordinary electrodynamics
+let us now place this frequency equal to the frequency of revolution,
+that is
+\[
+\omega_{n} = 2Rc/n^{3}.
+\]
+Introducing this value of~$\omega_{n}$ in~\Eq{(6)} we see that $n$~disappears from
+the equation, and further that the equation will be satisfied only if
+\[
+R = \frac{2\pi^{2} e^{4} m}{ch^{3}}.
+\Tag{(7)}
+\]
+The constant~$R$ is very accurately known, and is, as I have said
+before, equal to~$109675$. By introducing the most recent values
+for $e$,~$m$ and~$h$ the expression on the right-hand side of the equation
+becomes equal to $1.09 · 10^{5}$. The agreement is as good as
+could be expected, considering the uncertainty in the experimental
+determination of the constants $e$,~$m$ and~$h$. The agreement between
+our calculations and the classical electrodynamics is, therefore,
+fully as good as we are justified in expecting.
+
+We \Chg{can not}{cannot} expect to obtain a corresponding explanation of the
+frequency values of the other stationary states. Certain simple
+formal relations apply, however, to all the stationary states. By
+introducing the expression, which has been found for~$R$, we
+get for the $n$th~state $W_{n} = \frac{1}{2}nh\omega_{n}$. This equation is entirely
+\PageSep{14}
+analogous to Planck's assumption concerning the energy of a
+resonator. $W$~in our system is readily shown to be equal to the
+average value of the kinetic energy of the electron during a
+single revolution. The energy of a resonator was shown by Planck
+you may remember to be always equal to~$nh\nu$. Further the average
+value of the kinetic energy of Planck's resonator is equal to its
+potential energy, so that the average value of the kinetic energy
+of the resonator, according to Planck, is equal to~$\frac{1}{2}nh\omega$. This
+analogy suggests another manner of presenting the theory, and it
+was just in this way that I was originally led into these considerations.
+When we consider how differently the equation is
+employed here and in Planck's theory it appears to me misleading
+to use this analogy as a foundation, and in the account I have
+given I have tried to free myself as much as possible from it.
+
+Let us continue with the elucidation of the calculations, and in
+the expression for~$2a$ introduce the value of~$W$ which corresponds
+to the $n$th~stationary state. This gives us
+\[
+2a = n^{2} · \frac{e^{2}}{chR}
+ = n^{2} · \frac{h^{2}}{2\pi^{2} me^{2}}
+ = n^{2} · 1.1 · 10^{-8}.
+\Tag{(8)}
+\]
+
+It is seen that for small values of~$n$, we obtain values for the
+major axis of the orbit of the electron which are of the same
+order of magnitude as the values of the diameters of the atoms
+calculated from the kinetic theory of gases. For large values of~$n$,
+$2a$~becomes very large in proportion to the calculated dimensions
+of the atoms. This, however, does not necessarily disagree with
+experiment. Under ordinary circumstances a hydrogen atom will
+probably exist only in the state corresponding to $n = 1$. For this
+state $W$~will have its greatest value and, consequently, the atom
+will have emitted the largest amount of energy possible; this will
+therefore represent the most stable state of the atom from which
+the system \Chg{can not}{cannot} be transferred except by adding energy to it
+from without. The large values for~$2a$ corresponding to large~$n$ need
+not, therefore, be contrary to experiment; indeed, we may in these
+large values seek an explanation of the fact, that in the laboratory
+it has hitherto not been possible to observe the hydrogen lines
+corresponding to large values of~$n$ in Balmer's formula, while they
+have been observed in the spectra of certain stars. In order that
+the large orbits of the electrons may not be disturbed by electrical
+\PageSep{15}
+forces from the neighbouring atoms the pressure will have to be
+very low, so low, indeed, that it is impossible to obtain sufficient
+light from a Geissler tube of ordinary dimensions. In the stars,
+however, we may assume that we have to do with hydrogen which
+is exceedingly attenuated and distributed throughout an enormously
+large region of space.
+
+\Section{The Pickering lines.} You have probably noticed that we have
+not mentioned at all the spectrum found in certain stars which
+according to the opinion then current was assigned to hydrogen,
+and together with the ordinary hydrogen spectrum was considered
+by Rydberg to form a connected system of lines completely
+analogous to the spectra of other elements. You have probably
+also perceived that difficulties would arise in interpreting this
+spectrum by means of the assumptions which have been employed.
+If such an attempt were to be made it would be necessary to give
+up the simple considerations which lead to the expression~\Eq{(7)} for
+the constant~$R$. We shall see, however, that it appears possible to
+explain the occurrence of this spectrum in another way. Let us
+suppose that it is not due to hydrogen, but to some other simple
+system consisting of a single electron revolving about a nucleus
+with an electrical charge~$Ne$. The expression for~$\omega$ becomes then
+\[
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3}}{N^{2} e^{4} m}.
+\]
+Repeating the same calculations as before only in the inverse
+order we find, that this system will emit a line spectrum given by
+the expression
+\[
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} m}{ch^{3}}\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)
+ = R\raisebox{-4pt}{$\Biggl($}\frac{1}{\left(\dfrac{n_{1}}{N}\right)^{2}} - \frac{1}{\left(\dfrac{n_{2}}{N}\right)^{2}}\raisebox{-4pt}{$\Biggr)$}.
+\Tag{(9)}
+\]
+
+By comparing this formula with the formula for Pickering's and
+Rydberg's series, we see that the observed lines can be explained
+on the basis of the theory, if it be assumed that the spectrum is
+due to an electron revolving about a nucleus with a charge~$2e$, or
+according to Rutherford's theory around the nucleus of a helium
+atom. The fact that the spectrum in question is not observed in
+an ordinary helium tube, but only in stars, may be accounted for
+\PageSep{16}
+by the high degree of ionization which is required for the production
+of this spectrum; a neutral helium atom contains of course
+two electrons while the system under consideration contains
+only one.
+
+These conclusions appear to be supported by experiment.
+Fowler, as I have mentioned, has recently succeeded in observing
+Pickering's and Rydberg's lines in a laboratory experiment. By
+passing a very heavy current through a mixture of hydrogen and
+helium Fowler observed not only these lines but also a new series
+of lines. This new series was of the same general type, the wave
+length being given approximately by
+\[
+\frac{1}{\lambda}
+ = R\left(\frac{1}{(\frac{3}{2})^{2}} - \frac{1}{(n + \frac{1}{2})^{2}}\right).
+\]
+Fowler interpreted all the observed lines as the hydrogen spectrum
+sought for. With the observation of the latter series of lines,
+however, the basis of the analogy between the hypothetical
+hydrogen spectrum and the other spectra disappeared, and thereby
+also the foundation upon which Rydberg had founded his conclusions;
+on the contrary it is seen, that the occurrence of the lines
+was exactly what was to be expected on our view.
+
+In the following table the first column contains the wave
+lengths measured by Fowler, while the second contains the limiting
+values of the experimental errors given by him; in the third
+column we find the products of the wave lengths by the quantity
+$\left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) \Add{·} 10^{10}$; the values employed for $n_{1}$~and~$n_{2}$ are enclosed in
+parentheses in the last column.
+\begin{table}[hbt]
+\Pagelabel{16}
+\[
+\begin{array}{l*{2}{>{\qquad}l}l}
+\ColHead{\lambda · 10^{8}} &
+\ColHead{\text{Limit of error}} &
+\ColHead{\lambda · \left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) · 10^{10}} & \\
+4685.98 & 0.01 & 22779.1 & (3 : 4) \\
+3203.30 & 0.05 & 22779.0 & (3 : 5) \\
+2733.34 & 0.05 & 22777.8 & (3 : 6) \\
+2511.31 & 0.05 & 22778.3 & (3 : 7) \\
+2385.47 & 0.05 & 22777.9 & (3 : 8) \\
+2306.20 & 0.10 & 22777.3 & (3 : 9) \\
+2252.88 & 0.10 & 22779.1 & (3 : 10) \\
+5410.5 & 1.0 & 22774 & (4 : 7) \\
+4541.3 & 0.25 & 22777 & (4 : 9) \\
+4200.3 & 0.5 & 22781 & (4 : 11) \\
+\end{array}
+\]
+\end{table}
+\PageSep{17}
+
+The values of the products are seen to be very nearly equal,
+while the deviations are of the same order of magnitude as the
+limits of experimental error. The value of the product
+\[
+\lambda \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)
+\]
+should for this spectrum, according to the formula~\Eq{(9)}, be exactly
+$\frac{1}{4}$~of the corresponding product for the hydrogen spectrum. From
+the tables on pages \PageNum{1} and~\PageNum{16} we find for these products $91153$
+and $22779$, and dividing the former by the latter we get $4.0016$.
+This value is very nearly equal to~$4$; the deviation is, however,
+much greater than can be accounted for in any way by the errors
+of the experiments. It has been easy, however, to find a theoretical
+explanation of this point. In all the foregoing calculations
+we have assumed that the mass of the nucleus is infinitely great
+compared to that of the electron. This is of course not the
+case, even though it holds to a very close approximation; for a
+hydrogen atom the ratio of the mass of the nucleus to that of the
+electron will be about $1850$ and for a helium atom four times as
+great.
+
+If we consider a system consisting of an electron revolving about
+a nucleus with a charge~$Ne$ and a mass~$M$, we find the following
+expression for the frequency of revolution of the system:
+\[
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3} (M + m)}{N^{2} e^{4} Mm}.
+\]
+
+From this formula we find in a manner quite similar to that
+previously employed that the system will emit a line spectrum,
+the wave lengths of which are given by the formula
+\[
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} mM}{ch^{3} (M + m)}
+ \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right).
+\Tag{(10)}
+\]
+
+If with the aid of this formula we try to find the ratio of the
+product for the hydrogen spectrum, to that of the hypothetical
+helium spectrum we get the value $4.00163$ which is in complete
+agreement with the preceding value calculated from the experimental
+observations.
+
+I must further mention that Evans has made some experiments
+to determine whether the spectrum in question is due to hydrogen
+or helium. He succeeded in observing one of the lines in very
+\PageSep{18}
+pure helium; there was, at any rate, not enough hydrogen present
+to enable the hydrogen lines to be observed. Since in any event
+Fowler does not seem to consider such evidence as conclusive it is
+to be hoped that these experiments will be continued. There is,
+however, also another possibility of deciding this question. As is
+evident from the formula~\Eq{(10)}, the helium spectrum under consideration
+should contain, besides the lines observed by Fowler, a
+series of lines lying close to the ordinary hydrogen lines. These
+lines may be obtained by putting $n_{1} = 4$, $n_{2} = 6$, $8$, $10$,~etc. Even
+if these lines were present, it would be extremely difficult to
+observe them on account of their position with regard to the
+hydrogen lines, but should they be observed this would probably
+also settle the question of the origin of the spectrum, since no
+reason would seem to be left to assume the spectrum to be due to
+hydrogen.
+
+\Section{Other spectra.} For the spectra of other elements the problem
+becomes more complicated, since the atoms contain a larger
+number of electrons. It has not yet been possible on the basis of
+this theory to explain any other spectra besides those which I
+have already mentioned. On the other hand it ought to be
+mentioned that the general laws applying to the spectra are very
+simply interpreted on the basis of our assumptions. So far as the
+combination principle is concerned its explanation is obvious. In
+the method we have employed our point of departure was largely
+determined by this particular principle. But a simple explanation
+can be also given of the other general law, namely, the occurrence
+of Rydberg's constant in all spectral formulae. Let us assume
+that the spectra under consideration, like the spectrum of hydrogen,
+are emitted by a neutral system, and that they are produced by
+the binding of an electron previously removed from the system.
+If such an electron revolves about the nucleus in an orbit which
+is large in proportion to that of the other electrons it will be
+subjected to forces much the same as the electron in a hydrogen
+atom, since the inner electrons individually will approximately
+neutralize the effect of a part of the positive charge of the nucleus.
+We may therefore assume that for this system there will exist a
+series of stationary states in which the motion of the outermost
+\PageSep{19}
+electron is approximately the same as in the stationary states of a
+hydrogen atom. I shall not discuss these matters any further,
+but shall only mention that they lead to the conclusion that
+Rydberg's constant is not exactly the same for all elements.
+The expression for this constant will in fact contain the factor
+$\dfrac{M}{M + m}$, where $M$~is the mass of the nucleus. The correction is
+exceedingly small for elements of large atomic weight, but for
+hydrogen it is, from the point of view of spectrum analysis, very
+considerable. If the procedure employed leads to correct results, it
+is not therefore permissible to calculate Rydberg's constant directly
+from the hydrogen spectrum; the value of the universal constant
+should according to the theory be~$109735$ and not~$109675$.
+
+I shall not tire you any further with more details; I hope to
+return to these questions here in the Physical Society, and to
+show how, on the basis of the underlying ideas, it is possible
+to develop a theory for the structure of atoms and molecules.
+Before closing I only wish to say that I hope I have expressed
+myself sufficiently clearly so that you have appreciated the extent
+to which these considerations conflict with the admirably coherent
+group of conceptions which have been rightly termed the classical
+theory of electrodynamics. On the other hand, by emphasizing
+this conflict, I have tried to convey to you the impression that it
+may be also possible in the course of time to discover a certain
+coherence in the new ideas.
+\PageSep{20}
+
+
+\Essay{II}{On the Series Spectra of the Elements}
+ {Address delivered before the Physical Society in Berlin, April~27, 1920.}
+
+\Chapter{I.}{Introduction}
+
+The subject on which I have the honour to speak here, at the
+kind invitation of the Council of your society, is very extensive and
+it would be impossible in a single address to give a comprehensive
+survey of even the most important results obtained in the theory
+of spectra. In what follows I shall try merely to emphasize some
+points of view which seem to me important when considering the
+present state of the theory of spectra and the possibilities of its
+development in the near future. I regret in this connection not to
+have time to describe the history of the development of spectral
+theories, although this would be of interest for our purpose. No
+difficulty, however, in understanding this lecture need be experienced
+on this account, since the points of view underlying previous
+attempts to explain the spectra differ fundamentally from those upon
+which the following considerations rest. This difference exists both
+in the development of our ideas about the structure of the atom
+and in the manner in which these ideas are used in explaining the
+spectra.
+
+We shall assume, according to Rutherford's theory, that an atom
+consists of a positively charged nucleus with a number of electrons
+revolving about it. Although the nucleus is assumed to be very
+small in proportion to the size of the whole atom, it will contain
+nearly the entire mass of the atom. I shall not state the reasons
+which led to the establishment of this nuclear theory of the atom,
+nor describe the very strong support which this theory has received
+from very different sources. I shall mention only that result
+which lends such charm and simplicity to the modern development
+of the atomic theory. I refer to the idea that the number of electrons
+in a neutral atom is exactly equal to the number, giving the
+position of the element in the periodic table, the so-called ``atomic
+number.'' This assumption, which was first proposed by van~den
+Broek, immediately suggests the possibility ultimately of deriving
+\PageSep{21}
+the explanation of the physical and chemical properties of the
+elements from their atomic numbers. If, however, an explanation
+of this kind is attempted on the basis of the classical laws of
+mechanics and electrodynamics, insurmountable difficulties are encountered.
+These difficulties become especially apparent when we
+consider the spectra of the elements. In fact, the difficulties are
+here so obvious that it would be a waste of time to discuss them in
+detail. It is evident that systems like the nuclear atom, if based
+upon the usual mechanical and electrodynamical conceptions,
+would not even possess sufficient stability to give a spectrum consisting
+of sharp lines.
+
+In this lecture I shall use the ideas of the quantum theory. It
+will not be necessary, particularly here in Berlin, to consider in
+detail how Planck's fundamental work on temperature radiation
+has given rise to this theory, according to which the laws governing
+atomic processes exhibit a definite element of discontinuity. I shall
+mention only Planck's chief result about the properties of an exceedingly
+simple kind of atomic system, the Planck ``oscillator.''
+This consists of an electrically charged particle which can execute
+harmonic oscillations about its position of equilibrium with a frequency
+independent of the amplitude. By studying the statistical
+equilibrium of a number of such systems in a field of radiation
+Planck was led to the conclusion that the emission and absorption
+of radiation take place in such a manner, that, so far as a statistical
+equilibrium is concerned only certain distinctive states of the
+oscillator are to be taken into consideration. In these states the
+energy of the system is equal to a whole multiple of a so-called
+``energy quantum,'' which was found to be proportional to the frequency
+of the oscillator. The particular energy values are therefore
+given by the well-known formula
+\[
+E_{n} = nh\omega,
+\Tag{(1)}
+\]
+where $n$~is a whole number, $\omega$~the frequency of vibration of the
+oscillator, and $h$~is Planck's constant.
+
+If we attempt to use this result to explain the spectra of the
+elements, however, we encounter difficulties, because the motion of
+the particles in the atom, in spite of its simple structure, is in general
+exceedingly complicated compared with the motion of a Planck
+\PageSep{22}
+oscillator. The question then arises, how Planck's result ought to
+be generalized in order to make its application possible. Different
+points of view immediately suggest themselves. Thus we might
+regard this equation as a relation expressing certain characteristic
+properties of the distinctive motions of an atomic system and try
+to obtain the general form of these properties. On the other hand,
+we may also regard equation~\Eq{(1)} as a statement about a property
+of the process of radiation and inquire into the general laws which
+control this process.
+
+In Planck's theory it is taken for granted that the frequency of
+the radiation emitted and absorbed by the oscillator is equal to its
+own frequency, an assumption which may be written
+\[
+\nu \equiv \omega,
+\Tag{(2)}
+\]
+if in order to make a sharp distinction between the frequency of
+the emitted radiation and the frequency of the particles in the atoms,
+we here and in the following denote the former by~$\nu$ and the latter
+by~$\omega$. We see, therefore, that Planck's result may be interpreted to
+mean, that the oscillator can emit and absorb radiation only in
+``radiation quanta'' of magnitude
+\[
+\Delta E = h\nu.
+\Tag{(3)}
+\]
+It is well known that ideas of this kind led Einstein to a theory
+of the photoelectric effect. This is of great importance, since it
+represents the first instance in which the quantum theory was
+applied to a phenomenon of non-statistical character. I shall not
+here discuss the familiar difficulties to which the ``hypothesis of
+light quanta'' leads in connection with the phenomena of interference,
+for the explanation of which the classical theory of radiation
+has shown itself to be so remarkably suited. Above all I shall not
+consider the problem of the nature of radiation, I shall only attempt
+to show how it has been possible in a purely formal manner to
+develop a spectral theory, the essential elements of which may be
+considered as a simultaneous rational development of the two ways
+of interpreting Planck's result.
+\PageSep{23}
+
+
+\Chapter{II.}{General Principles of the Quantum Theory
+of\protect~Spectra}
+
+In order to explain the appearance of line spectra we are compelled
+to assume that the emission of radiation by an atomic system
+takes place in such a manner that it is not possible to follow the
+emission in detail by means of the usual conceptions. Indeed, these
+do not even offer us the means of calculating the frequency of the
+emitted radiation. We shall see, however, that it is possible to give
+a very simple explanation of the general empirical laws for the
+frequencies of the spectral lines, if for each emission of radiation
+by the atom we assume the fundamental law to hold, that during
+the entire period of the emission the radiation possesses one and
+the same frequency~$\nu$, connected with the total energy emitted by
+the \emph{frequency relation}
+\[
+h\nu = E' - E''.
+\Tag{(4)}
+\]
+Here $E'$~and $E''$ represent the energy of the system before and
+after the emission.
+
+If this law is assumed, the spectra do not give us information
+about the motion of the particles in the atom, as is supposed in the
+usual theory of radiation, but only a knowledge of the energy
+changes in the various processes which can occur in the atom.
+From this point of view the spectra show the existence of certain,
+definite energy values corresponding to certain distinctive states
+of the atoms. These states will be called the \emph{stationary states} of
+the atoms, since we shall assume that the atom can remain a finite
+time in each state, and can leave this state only by a process of
+transition to another stationary state. Notwithstanding the fundamental
+departure from the ordinary mechanical and electrodynamical
+conceptions, we shall see, however, that it is possible to give a
+rational interpretation of the evidence provided by the spectra on
+the basis of these ideas.
+
+Although we must assume that the ordinary mechanics \Chg{can not}{cannot}
+be used to describe the transitions between the stationary states,
+nevertheless, it has been found possible to develop a consistent
+theory on the assumption that the motion in these states can be
+described by the use of the ordinary mechanics. Moreover, although
+the process of radiation \Chg{can not}{cannot} be described on the basis of the
+\PageSep{24}
+ordinary theory of electrodynamics, according to which the nature
+of the radiation emitted by an atom is directly related to the harmonic
+components occurring in the motion of the system, there is
+found, nevertheless, to exist a far-reaching \emph{correspondence} between
+the various types of possible transitions between the stationary
+states on the one hand and the various harmonic components of the
+motion on the other hand. This correspondence is of such a nature,
+that the present theory of spectra is in a certain sense to be regarded
+as a rational generalization of the ordinary theory of radiation.
+
+\Section{Hydrogen spectrum.} In order that the principal points may
+stand out as clearly as possible I shall, before considering the more
+complicated types of series spectra, first consider the simplest spectrum,
+namely, the series spectrum of hydrogen. This spectrum
+consists of a number of lines whose frequencies are given with great
+exactness by Balmer's formula
+\[
+\nu = \frac{K}{(n'')^{2}} - \frac{K}{(n')^{2}},
+\Tag{(5)}
+\]
+where $K$~is a constant, and $n'$~and $n''$ are whole numbers. If we put
+$n'' = 2$ and give to~$n'$ the values $3$,~$4$,~etc., we get the well-known
+Balmer series of hydrogen. If we put $n'' = 1$ or $n'' = 3$ we obtain
+respectively the ultra-violet and infra-red series. We shall assume
+the hydrogen atom simply to consist of a positively charged nucleus
+with a single electron revolving about it. For the sake of simplicity
+we shall suppose the mass of the nucleus to be infinite in comparison
+with the mass of the electron, and further we shall disregard the
+small variations in the motion due to the change in mass of the
+electron with its velocity. With these simplifications the electron
+will describe a closed elliptical orbit with the nucleus at one of the
+foci. The frequency of revolution~$\omega$ and the major axis~$2a$ of the
+orbit will be connected with the energy of the system by the following
+equations:
+\[
+\omega = \sqrt{\frac{2W^{3}}{\pi^{2} e^{4} m}},\quad
+2a = \frac{e^{2}}{W}.
+\Tag{(6)}
+\]
+Here $e$~is the charge of the electron and $m$~its mass, while $W$~is the
+work required to remove the electron to infinity.
+
+The simplicity of these formulae suggests the possibility of using
+them in an attempt to explain the spectrum of hydrogen. This,
+\PageSep{25}
+however, is not possible so long as we use the classical theory of
+radiation. It would not even be possible to understand how hydrogen
+could emit a spectrum consisting of sharp lines; for since $\omega$~varies
+with~$W$, the frequency of the emitted radiation would vary continuously
+during the emission. We can avoid these difficulties if
+we use the ideas of the quantum theory. If for each line we form
+the product~$h\nu$ by multiplying both sides of~\Eq{(5)} by~$h$, then, since
+the right-hand side of the resulting relation may be written as
+the difference of two simple expressions, we are led by comparison
+with formula~\Eq{(4)} to the assumption that the separate lines of the
+spectrum will be emitted by transitions between two stationary
+states, forming members of an infinite series of states, in which the
+energy in the $n$th~state apart from an arbitrary additive constant is
+determined by the expression
+\[
+E_{n} = -\frac{Kh}{n^{2}}.
+\Tag{(7)}
+\]
+The negative sign has been chosen because the energy of the atom
+will be most simply characterized by the work~$W$ required to remove
+the electron completely from the atom. If we now substitute $\dfrac{Kh}{n^{2}}$
+for~$W$ in formula~\Eq{(6)}, we obtain the following expression for the frequency
+and the major axis in the $n$th~stationary state:
+\[
+\omega_{n} = \frac{1}{n^{3}} \sqrt{\frac{2h^{3} K^{3}}{\pi^{2} e^{4} m}},\quad
+2a_{n} = \frac{n^{2} e^{2}}{hK}.
+\Tag{(8)}
+\]
+A comparison between the motions determined by these equations
+and the distinctive states of a Planck resonator may be shown to
+offer a theoretical determination of the constant~$K$. Instead of
+doing this I shall show how the value of~$K$ can be found by a simple
+comparison of the spectrum emitted with the motion in the stationary
+states, a comparison which at the same time will lead us to the
+principle of correspondence.
+
+We have assumed that each hydrogen line is the result of a
+transition between two stationary states of the atom corresponding
+to different values of~$n$. Equations~\Eq{(8)} show that the frequency of
+revolution and the major axis of the orbit can be entirely different
+in the two states, since, as the energy decreases, the major axis of
+the orbit becomes smaller and the frequency of revolution increases.
+\PageSep{26}
+In general, therefore, it will be impossible to obtain a relation between
+the frequency of revolution of the electrons and the frequency
+of the radiation as in the ordinary theory of radiation. If, however,
+we consider the ratio of the frequencies of revolution in two stationary
+states corresponding to given values of $n'$~and~$n''$, we see that this
+ratio approaches unity as $n'$~and $n''$ gradually increase, if at the
+same time the difference $n' - n''$ remains unchanged. By considering
+transitions corresponding to large values of $n'$~and~$n''$ we may
+therefore hope to establish a certain connection with the ordinary
+theory. For the frequency of the radiation emitted by a transition,
+we get according to~\Eq{(5)}
+\[
+\nu = \frac{K}{(n'')^{2}} - \frac{K}{(n')^{2}}
+ = (n' - n'') K\, \frac{n' + n''}{(n')^{2} (n'')^{2}}.
+\Tag{(9)}
+\]
+If now the numbers $n'$~and $n''$ are large in proportion to their difference,
+we see that by equations~\Eq{(8)} this expression may be written
+approximately,
+\[
+\nu \sim (n' - n'') \omega \sqrt{\frac{2\pi^{2} e^{4} m}{Kh^{3}}},
+\Tag{(10)}
+\]
+where $\omega$~represents the frequency of revolution in the one or the
+other of the two stationary states. Since $n' - n''$ is a whole number,
+we see that the first part of this expression, \ie\ $(n' - n'')\omega$, is the
+same as the frequency of one of the harmonic components into
+which the elliptical motion may be decomposed. This involves the
+well-known result that for a system of particles having a periodic
+motion of frequency~$\omega$, the displacement~$\xi$ of the particles in a given
+direction in space may be represented as a function of the time by
+a trigonometric series of the form
+\[
+\xi = \sum C_{\tau} \cos 2\pi(\tau\omega t + c_{\tau}),
+\Tag{(11)}
+\]
+where the summation is to be extended over all positive integral
+values of~$\tau$.
+
+We see, therefore, that the frequency of the radiation emitted
+by a transition between two stationary states, for which the numbers
+$n'$~and $n''$ are large in proportion to their difference, will coincide
+with the frequency of one of the components of the radiation, which
+according to the ordinary ideas of radiation would be expected from
+the motion of the atom in these states, provided the last factor on
+\PageSep{27}
+the right-hand side of equation~\Eq{(10)} is equal to~$1$. This condition,
+which is identical to the condition
+\[
+K = \frac{2\pi^{2} e^{4} m}{h^{3}},
+\Tag{(12)}
+\]
+is in fact fulfilled, if we give to~$K$ its value as found from measurements
+on the hydrogen spectrum, and if for $e$,~$m$ and~$h$ we use the
+values obtained directly from experiment. This agreement clearly
+gives us a \emph{connection between the spectrum and the atomic model of
+hydrogen}, which is as close as could reasonably be expected considering
+the fundamental difference between the ideas of the quantum
+theory and of the ordinary theory of radiation.
+
+\Section{The correspondence principle.} Let us now consider somewhat
+more closely this relation between the spectra one would expect on
+the basis of the quantum theory, and on the ordinary theory of
+radiation. The frequencies of the spectral lines calculated according
+to both methods agree completely in the region where the stationary
+states deviate only little from one another. We must not forget,
+however, that the mechanism of emission in both cases is different.
+The different frequencies corresponding to the various harmonic
+components of the motion are emitted simultaneously according to
+the ordinary theory of radiation and with a relative intensity depending
+directly upon the ratio of the amplitudes of these oscillations.
+But according to the quantum theory the various spectral
+lines are emitted by entirely distinct processes, consisting of transitions
+from one stationary state to various adjacent states, so that
+the radiation corresponding to the $\tau$th~``harmonic'' will be emitted
+by a transition for which $n' - n'' = \tau$. The relative intensity
+with which each particular line is emitted depends consequently
+upon the relative probability of the occurrence of the different
+transitions.
+
+This correspondence between the frequencies determined by the
+two methods must have a deeper significance and we are led to
+anticipate that it will also apply to the intensities. This is equivalent
+to the statement that, when the quantum numbers are large,
+the relative probability of a particular transition is connected in a
+simple manner with the amplitude of the corresponding harmonic
+component in the motion.
+\PageSep{28}
+
+This peculiar relation suggests a \emph{general law for the occurrence
+of transitions between stationary states}. Thus we shall assume that
+even when the quantum numbers are small the possibility of
+transition between two stationary states is connected with the
+presence of a certain harmonic component in the motion of the
+system. If the numbers $n'$~and $n''$ are not large in proportion to
+their difference, the numerical value of the amplitudes of these
+components in the two stationary states may be entirely different.
+We must be prepared to find, therefore, that the exact connection
+between the probability of a transition and the amplitude of the
+corresponding harmonic component in the motion is in general
+complicated like the connection between the frequency of the radiation
+and that of the component. From this point of view, for
+example, the green line~$H_{\beta}$ of the hydrogen spectrum which corresponds
+to a transition from the fourth to the second stationary
+state may be considered in a certain sense to be an ``octave'' of the
+red line~$H_{\alpha}$, corresponding to a transition from the third to the
+second state, even though the frequency of the first line is by no
+means twice as great as that of the latter. In fact, the transition
+giving rise to~$H_{\beta}$ may be regarded as due to the presence of a harmonic
+oscillation in the motion of the atom, which is an octave
+higher than the oscillation giving rise to the emission of~$H_{\alpha}$.
+
+Before considering other spectra, where numerous opportunities
+will be found to use this point of view, I shall briefly mention an
+interesting application to the Planck oscillator. If from \Eq{(1)}~and \Eq{(4)}
+we calculate the frequency, which would correspond to a transition
+between two particular states of such an oscillator, we find
+\[
+\nu = (n' - n'')\omega,
+\Tag{(13)}
+\]
+where $n'$~and $n''$ are the numbers characterizing the states. It was
+an essential assumption in Planck's theory that the frequency of
+the radiation emitted and absorbed by the oscillator is always equal
+to~$\omega$. We see that this assumption is equivalent to the assertion
+that transitions occur only between two successive stationary states
+in sharp contrast to the hydrogen atom. According to our view,
+however, this was exactly what might have been expected, for we
+must assume that the essential difference between the oscillator
+and the hydrogen atom is that the motion of the oscillator is simple
+\PageSep{29}
+harmonic. We can see that it is possible to develop a formal theory
+of radiation, in which the spectrum of hydrogen and the simple
+spectrum of a Planck oscillator appear completely analogous. This
+theory can only be formulated by one and the same condition for
+a system as simple as the oscillator. In general this condition
+breaks up into two parts, one concerning the fixation of the stationary
+states, and the other relating to the frequency of the radiation
+emitted by a transition between these states.
+
+\Section{General spectral laws.} Although the series spectra of the
+elements of higher atomic number have a more complicated structure
+than the hydrogen spectrum, simple laws have been discovered
+showing a remarkable analogy to the Balmer formula. Rydberg
+and Ritz showed that the frequencies in the series spectra of many
+elements can be expressed by a formula of the type
+\[
+\nu = f_{k''}(n'') - f_{k'}(n'),
+\Tag{(14)}
+\]
+where $n'$~and $n''$ are two whole numbers and $f_{k'}$~and $f_{k''}$ are two
+functions belonging to a series of functions characteristic of the
+element. These functions vary in a simple manner with~$n$ and in
+particular converge to zero for increasing values of~$n$. The various
+series of lines are obtained from this formula by allowing the first
+term~$f_{k''}(n'')$ to remain constant, while a series of consecutive whole
+numbers are substituted for~$n'$ in the second term~$f_{k'}(n')$. According
+to the Ritz \emph{combination principle} the entire spectrum may then
+be obtained by forming every possible combination of two values
+among all the quantities~$f_{k}(n)$.
+
+The fact that the frequency of each line of the spectrum may be
+written as the difference of two simple expressions depending upon
+whole numbers suggests at once that the terms on the right-hand
+side multiplied by~$h$ may be placed equal to the energy in the
+various stationary states of the atom. The existence in the spectra
+of the other elements of a number of separate functions of~$n$ compels
+us to assume the presence not of one but of a number of series of
+stationary states, the energy of the $n$th~state of the $k$th~series apart
+from an arbitrary additive constant being given by
+\[
+E_{k}(n) = -h f_{k}(n).
+\Tag{(15)}
+\]
+This complicated character of the ensemble of stationary states of
+atoms of higher atomic number is exactly what was to be expected
+\PageSep{30}
+from the relation between the spectra calculated on the quantum
+theory, and the decomposition of the motions of the atoms into
+harmonic oscillations. From this point of view we may regard the
+simple character of the stationary states of the hydrogen atom as
+intimately connected with the simple periodic character of this
+atom. Where the neutral atom contains more than one electron, we
+find much more complicated motions with correspondingly complicated
+harmonic components. We must therefore expect a more
+complicated ensemble of stationary states, if we are still to have a
+corresponding relation between the motions in the atom and the
+spectrum. In the course of the lecture we shall trace this correspondence
+in detail, and we shall be led to a simple explanation of
+the apparent capriciousness in the occurrence of lines predicted by
+the combination principle.
+
+The following figure gives a survey of the stationary states of
+the sodium atom deduced from the series terms.
+\Figure[Diagram of the series spectrum of sodium.]{}{30}
+
+The stationary states are represented by black dots whose distance
+from the vertical line a---a is proportional to the numerical value
+of the energy in the states. The arrows in the figure indicate the
+transitions giving those lines of the sodium spectrum which appear
+under the usual conditions of excitation. The arrangement of the
+states in horizontal rows corresponds to the ordinary arrangement
+of the ``spectral terms'' in the spectroscopic tables. Thus, the states
+in the first row~($S$) correspond to the variable term in the ``sharp
+series,'' the lines of which are emitted by transitions from these
+states to the first state in the second row. The states in the second
+\PageSep{31}
+row~($P$) correspond to the variable term in the ``principal series''
+which is emitted by transitions from these states to the first state
+in the $S$~row. The $D$~states correspond to the variable term in the
+``diffuse series,'' which like the sharp series is emitted by transitions
+to the first state in the $P$~row, and finally the $B$~states correspond
+to the variable term in the ``Bergmann'' series (fundamental series),
+in which transitions take place to the first state in the $D$~row. The
+manner in which the various rows are arranged with reference to
+one another will be used to illustrate the more detailed theory
+which will be discussed later. The apparent capriciousness of the
+combination principle, which I mentioned, consists in the fact that
+under the usual conditions of excitation not all the lines belonging
+to possible combinations of the terms of the sodium spectrum appear,
+but only those indicated in the figure by arrows.
+
+The general question of the fixation of the stationary states of
+an atom containing several electrons presents difficulties of a profound
+character which are perhaps still far from completely solved.
+It is possible, however, to obtain an immediate insight into the
+stationary states involved in the emission of the series spectra by
+considering the empirical laws which have been discovered about
+the spectral terms. According to the well-known law discovered by
+Rydberg for the spectra of elements emitted under the usual conditions
+of excitation the functions~$f_{k}(n)$ appearing in formula~\Eq{(14)}
+can be written in the form
+\[
+f_{k}(n) = \frac{K}{n^{2}} \phi_{k}(n),
+\Tag{(16)}
+\]
+where $\phi_{k}(n)$~represents a function which converges to unity for
+large values of~$n$. $K$~is the same constant which appears in formula~\Eq{(5)}
+for the spectrum of hydrogen. This result must evidently be
+explained by supposing the atom to be electrically neutral in these
+states and one electron to be moving round the nucleus in an orbit
+the dimensions of which are very large in proportion to the distance
+of the other electrons from the nucleus. We see, indeed, that in
+this case the electric force acting on the outer electron will to a
+first approximation be the same as that acting upon the electron
+in the hydrogen atom, and the approximation will be the better
+the larger the orbit.
+\PageSep{32}
+
+On account of the limited time I shall not discuss how this
+explanation of the universal appearance of Rydberg's constant in
+the arc spectra is convincingly supported by the investigation of
+the ``spark spectra.'' These are emitted by the elements under the
+influence of very strong electrical discharges, and come from ionized
+not neutral atoms. It is important, however, that I should indicate
+briefly how the fundamental ideas of the theory and the assumption
+that in the states corresponding to the spectra one electron moves
+in an orbit around the others, are both supported by investigations
+on selective absorption and the excitation of spectral lines by
+bombardment by electrons.
+
+\Section{Absorption and excitation of radiation.}\Pagelabel{32} Just as we have
+assumed that each emission of radiation is due to a transition from
+a stationary state of higher to one of lower energy, so also we must
+assume absorption of radiation by the atom to be due to a transition
+in the opposite direction. For an element to absorb light corresponding
+to a given line in its series spectrum, it is therefore
+necessary for the atom of this element to be in that one of the two
+states connected with the line possessing the smaller energy value.
+If we now consider an element whose atoms in the gaseous state
+do not combine into molecules, it will be necessary to assume that
+under ordinary conditions nearly all the atoms exist in that stationary
+state in which the value of the energy is a minimum. This state
+I shall call the \emph{normal state}. We must therefore expect that the
+absorption spectrum of a monatomic gas will contain only those
+lines of the series spectrum, whose emission corresponds to transitions
+to the normal state. This expectation is completely confirmed
+by the spectra of the alkali metals. The absorption spectrum of
+sodium vapour, for example, exhibits lines corresponding only to
+the principal series, which as mentioned in the description of the
+figure corresponds with transitions to the state of minimum energy.
+Further confirmation of this view of the process of absorption is
+given by experiments on \emph{resonance radiation}. Wood first showed
+that sodium vapour subjected to light corresponding to the first
+line of the principal series---the familiar yellow line---acquires the
+ability of again emitting a radiation consisting only of the light of
+this line. We can explain this by supposing the sodium atom to
+\PageSep{33}
+have been transferred from the normal state to the first state in
+the second row. The fact that the resonance radiation does not
+exhibit the same degree of polarization as the incident light is
+in perfect agreement with our assumption that the radiation from
+the excited vapour is not a resonance phenomenon in the sense of
+the ordinary theory of radiation, but on the contrary depends on a
+process which is not directly connected with the incident radiation.
+
+The phenomenon of the resonance radiation of the yellow sodium
+line is, however, not quite so simple as I have indicated, since, as
+you know, this line is really a doublet. This means that the variable
+terms of the principal series are not simple but are represented by
+two values slightly different from one another. According to our
+picture of the origin of the sodium spectrum this means that the
+$P$~states in the second row in the figure---as opposed to the $S$~states
+in the first row---are not simple, but that for each place in this row
+there are two stationary states. The energy values differ so little
+from one another that it is impossible to represent them in the
+figure as separate dots. The emission (and absorption) of the two
+components of the yellow line are, therefore, connected with two
+different processes. This was beautifully shown by some later researches
+of Wood and Dunoyer. They found that if sodium vapour
+is subjected to radiation from only one of the two components of
+the yellow line, the resonance radiation, at least at low pressures,
+consists only of this component. These experiments were later
+continued by Strutt, and were extended to the case where the
+exciting line corresponded to the second line in the principal series.
+Strutt found that the resonance radiation consisted apparently only
+to a small extent of light of the same frequency as the incident
+light, while the greater part consisted of the familiar yellow line.
+This result must appear very astonishing on the ordinary ideas of
+resonance, since, as Strutt pointed out, no rational connection exists
+between the frequencies of the first and second lines of the principal
+series. It is however easily explained from our point of view. From
+the figure it can be seen that when an atom has been transferred
+into the second state in the second row, in addition to the direct
+return to the normal state, there are still two other transitions
+which may give rise to radiation, namely the transitions to the
+second state in the first row and to the first state in the third row.
+\PageSep{34}
+The experiments seem to indicate that the second of these three
+transitions is most probable, and I shall show later that there is
+some theoretical justification for this conclusion. By this transition,
+which results in the emission of an infra-red line which could not
+be observed with the experimental arrangement, the atom is taken
+to the second state of the first row, and from this state only
+one transition is possible, which again gives an infra-red line. This
+transition takes the atom to the first state in the second row, and
+the subsequent transition to the normal state then gives rise to the
+yellow line. Strutt discovered another equally surprising result,
+that this yellow resonance radiation seemed to consist of both
+components of the first line of the principal series, even when the
+incident light consisted of only one component of the second line
+of the principal series. This is in beautiful agreement with our
+picture of the phenomenon. We must remember that the states in
+the first row are simple, so when the atom has arrived in one of
+these it has lost every possibility of later giving any indication
+from which of the two states in the second row it originally came.
+
+Sodium vapour, in addition to the absorption corresponding to
+the lines of the principal series, exhibits a \emph{selective absorption in a
+continuous spectral region} beginning at the limit of this series and
+extending into the ultra\Add{-}violet. This confirms in a striking manner
+our assumption that the absorption of the lines of the principal
+series of sodium results in final states of the atom in which one of
+the electrons revolves in larger and larger orbits. For we must
+assume that this continuous absorption corresponds to transitions
+from the normal state to states in which the electron is in a position
+to remove itself infinitely far from the nucleus. This phenomenon
+exhibits a complete analogy with the \emph{photoelectric effect} from an
+illuminated metal plate in which, by using light of a suitable
+frequency, electrons of any velocity can be obtained. The frequency,
+however, must always lie above a certain limit connected according
+to Einstein's theory in a simple manner with the energy necessary
+to bring an electron out of the metal.
+
+This view of the origin of the emission and absorption spectra
+has been confirmed in a very interesting manner by experiments
+on the \emph{excitation of spectral lines and production of ionization by
+electron bombardment}. The chief advance in this field is due to the
+\PageSep{35}
+well-known experiments of Franck and Hertz. These investigators
+obtained their first important results from their experiments on
+mercury vapour, whose properties particularly facilitate such experiments.
+On account of the great importance of the results, these
+experiments have been extended to most gases and metals that can
+be obtained in a gaseous state. With the aid of the figure I shall
+briefly illustrate the results for the case of sodium vapour. It was
+found that the electrons upon colliding with the atoms were thrown
+back with undiminished velocity when their energy was less than
+that required to transfer the atom from the normal state to the
+next succeeding stationary state of higher energy value. In the
+case of sodium vapour this means from the first state in the first
+row to the first state in the second row. As soon, however, as the
+energy of the electron reaches this critical value, a new type of
+collision takes place, in which the electron loses all its kinetic
+energy, while at the same time the vapour is excited and emits a
+radiation corresponding to the yellow line. This is what would be
+expected, if by the collision the atom was transferred from the
+normal state to the first one in the second row. For some time it
+was uncertain to what extent this explanation was correct, since
+in the experiments on mercury vapour it was found that, together
+with the occurrence of non-elastic impacts, ions were always formed
+in the vapour. From our figure, however, we would expect ions
+to be produced only when the kinetic energy of the electrons is
+sufficiently great to bring the atom out of the normal state to the
+common limit of the states. Later experiments, especially by Davis
+and Goucher, have settled this point. It has been shown that ions
+can only be directly produced by collisions when the kinetic energy
+of the electrons corresponds to the limit of the series, and that the
+ionization found at first was an indirect effect arising from the
+photoelectric effect produced at the metal walls of the apparatus
+by the radiation arising from the return of the mercury atoms to
+the normal state. These experiments provide a direct and independent
+proof of the reality of the distinctive stationary states,
+whose existence we were led to infer from the series spectra. At
+the same time we get a striking impression of the insufficiency of
+the ordinary electrodynamical and mechanical conceptions for the
+description of atomic processes, not only as regards the emission
+\PageSep{36}
+of radiation but also in such phenomena as the collision of free
+electrons with atoms.
+
+
+\Chapter{III.}{Development of the Quantum Theory
+of Spectra}
+
+We see that it is possible by making use of a few simple ideas
+to obtain a certain insight into the origin of the series spectra.
+But when we attempt to penetrate more deeply, difficulties arise.
+In fact, for systems which are not simply periodic it is not possible
+to obtain sufficient information about the motions of these systems
+in the stationary states from the numerical values of the energy
+alone; more determining factors are required for the fixation of
+the motion. We meet the same difficulties when we try to explain
+in detail the characteristic effect of external forces upon the spectrum
+of hydrogen. A foundation for further advances in this field has
+been made in recent years through a development of the quantum
+theory, which allows a fixation of the stationary states not only in
+the case of simple periodic systems, but also for certain classes of
+non-periodic systems. These are the \emph{conditionally periodic systems}
+whose equations of motion can be solved by a ``separation of the
+variables.'' If generalized coordinates are used the description of
+the motion of these systems can be reduced to the consideration
+of a number of generalized ``components of motion.'' Each of these
+corresponds to the change of only one of the coordinates and may
+therefore in a certain sense be regarded as ``independent.'' The
+method for the fixation of the stationary states consists in fixing
+the motion of each of these components by a condition, which can
+be considered as a direct generalization of condition~\Eq{(1)} for a
+Planck oscillator, so that the stationary states are in general
+characterized by as many whole numbers as the number of the
+degrees of freedom which the system possesses. A considerable
+number of physicists have taken part in this development of the
+quantum theory, including Planck himself. I also wish to mention
+the important contribution made by Ehrenfest to this subject on
+the limitations of the applicability of the laws of mechanics to
+atomic processes. The decisive advance in the application of the
+quantum theory to spectra, however, is due to Sommerfeld and his
+followers. However, I shall not further discuss the systematic form
+\PageSep{37}
+in which these authors have presented their results. In a paper which
+appeared some time ago in the Transactions of the Copenhagen
+Academy, I have shown that the spectra, calculated with the aid
+of this method for the fixation of the stationary states, exhibit a
+correspondence with the spectra which should correspond to the
+motion of the system similar to that which we have already considered
+in the case of hydrogen. With the aid of this general
+correspondence I shall try in the remainder of this lecture to
+show how it is possible to present the theory of series spectra
+and the effects produced by external fields of force upon these
+spectra in a form which may be considered as the natural generalization
+of the foregoing considerations. This form appears to me
+to be especially suited for future work in the theory of spectra,
+since it allows of an immediate insight into problems for which
+the methods mentioned above fail on account of the complexity of
+the motions in the atom.
+
+\Section{Effect of external forces on the hydrogen spectrum.} We
+shall now proceed to investigate the effect of small perturbing
+forces upon the spectrum of the simple system consisting of a single
+electron revolving about a nucleus. For the sake of simplicity we
+shall for the moment disregard the variation of the mass of the
+electron with its velocity. The consideration of the small changes
+in the motion due to this variation has been of great importance
+in the development of Sommerfeld's theory which originated in the
+explanation of the \emph{fine structure of the hydrogen lines}. This fine
+structure is due to the fact, that taking into account the variation
+of mass with velocity the orbit of the electron deviates a little
+from a simple ellipse and is no longer exactly periodic. This deviation
+from a Keplerian motion is, however, very small compared
+with the perturbations due to the presence of external forces, such
+as occur in experiments on the Zeeman and Stark effects. In atoms
+of higher atomic number it is also negligible compared with the
+disturbing effect of the inner electrons on the motion of the outer
+electron. The neglect of the change in mass will therefore have no
+important influence upon the explanation of the Zeeman and Stark
+effects, or upon the explanation of the difference between the
+hydrogen spectrum and the spectra of other elements.
+\PageSep{38}
+
+We shall therefore as before consider the motion of the unperturbed
+hydrogen atom as simply periodic and inquire in the
+first place about the stationary states corresponding to this motion.
+The energy in these states will then be determined by expression~\Eq{(7)}
+which was derived from the spectrum of hydrogen. The energy of
+the system being given, the major axis of the elliptical orbit of the
+electron and its frequency of revolution are also determined. Substituting
+in formulae \Eq{(7)} and~\Eq{(8)} the expression for~$K$ given in~\Eq{(12)},
+we obtain for the energy, major axis and frequency of revolution
+in the $n$th~state of the unperturbed atom the expressions
+\[
+\BreakMath{%
+E_{n} = -W_{n} = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}},\quad
+2a_{n} = n^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m},\quad
+\omega_{n} = \frac{1}{n^{3}}\, \frac{4\pi^{2} e^{4} m}{h^{3}}.
+}{%
+\begin{gathered}
+E_{n} = -W_{n} = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}}, \\
+2a_{n} = n^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m},\qquad
+\omega_{n} = \frac{1}{n^{3}}\, \frac{4\pi^{2} e^{4} m}{h^{3}}.
+\end{gathered}
+}
+\Tag{(17)}
+\]
+
+We must further assume that in the stationary states of the
+unperturbed system the form of the orbit is so far undetermined
+that the \Chg{excentricity}{eccentricity} can vary continuously. This is not only immediately
+indicated by the principle of correspondence,---since the
+frequency of revolution is determined only by the energy and not
+by the \Chg{excentricity}{eccentricity},---but also by the fact that the presence of any
+small external forces will in general, in the course of time, produce
+a finite change in the position as well as in the \Chg{excentricity}{eccentricity} of the
+periodic orbit, while in the major axis it can produce only small
+changes proportional to the intensity of the perturbing forces.
+
+In order to fix the stationary states of systems in the presence
+of a given conservative external field of force, we shall have to
+investigate, on the basis of the principle of correspondence, how
+these forces affect the decomposition of the motion into harmonic
+oscillations. Owing to the external forces the form and position of
+the orbit will vary continuously. In the general case these changes
+will be so complicated that it will not be possible to decompose the
+perturbed motion into discrete harmonic oscillations. In such a
+case we must expect that the perturbed system will not possess
+any sharply separated stationary states. Although each emission
+of radiation must be assumed to be monochromatic and to proceed
+according to the general frequency condition we shall therefore
+expect the final effect to be a broadening of the sharp spectral lines
+of the unperturbed system. In certain cases, however, the perturbations
+\PageSep{39}
+will be of such a regular character that the perturbed system
+can be decomposed into harmonic oscillations, although the ensemble
+of these oscillations will naturally be of a more complicated kind
+than in the unperturbed system. This happens, for example, when
+the variations of the orbit with respect to time are periodic. In
+this case harmonic oscillations will appear in the motion of the
+system the frequencies of which are equal to whole multiples of the
+period of the orbital perturbations, and in the spectrum to be
+expected on the basis of the ordinary theory of radiation we would
+expect components corresponding to these frequencies. According
+to the principle of correspondence we are therefore immediately
+led to the conclusion, that to each stationary state in the unperturbed
+system there corresponds a number of stationary states in
+the perturbed system in such a manner, that for a transition
+between two of these states a radiation is emitted, whose frequency
+stands in the same relationship to the periodic course of the
+variations in the orbit, as the spectrum of a simple periodic system
+does to its motion in the stationary states.
+
+\Section{The Stark effect.} An instructive example of the appearance of
+periodic perturbations is obtained when hydrogen is subjected to
+the effect of a homogeneous electric field. The \Chg{excentricity}{eccentricity} and
+the position of the orbit vary continuously under the influence of
+the field. During these changes, however, it is found that the
+centre of the orbit remains in a plane perpendicular to the direction
+of the electric force and that its motion in this plane is
+simply periodic. When the centre has returned to its starting
+point, the orbit will resume its original \Chg{excentricity}{eccentricity} and position,
+and from this moment the entire cycle of orbits will be repeated.
+In this case the determination of the energy of the stationary
+states of the disturbed system is extremely simple, since it is found
+that the period of the disturbance does not depend upon the
+original configuration of the orbits nor therefore upon the position
+of the plane in which the centre of the orbit moves, but only upon
+the major axis and the frequency of revolution. From a simple
+calculation it is found that the period a is given by the following
+formula
+\[
+\sigma = \frac{3eF}{8\pi^{2} ma\omega},
+\Tag{(18)}
+\]
+\PageSep{40}
+where $F$~is the intensity of the external electric field. From
+analogy with the fixation of the distinctive energy values of a
+Planck oscillator we must therefore expect that the energy difference
+between two different states, corresponding to the same stationary
+state of the unperturbed system, will simply be equal to a whole
+multiple of the product of $h$~by the period~$\sigma$ of the perturbations.
+We are therefore immediately led to the following expression for
+the energy of the stationary states of the perturbed system,
+\[
+E = E_{n} + kh\sigma,
+\Tag{(19)}
+\]
+where $E_{n}$~depends only upon the number~$n$ characterizing the
+stationary state of the unperturbed system, while $k$~is a new whole
+number which in this case may be either positive or negative. As
+we shall see below, consideration of the relation between the energy
+and the motion of the system shows that $k$~must be numerically
+less than~$n$, if, as before, we place the quantity~$E_{n}$ equal to the
+energy~$-W_{n}$ of the $n$th~stationary state of the undisturbed atom.
+Substituting the values of $W_{n}$,~$\omega_{n}$ and~$a_{n}$ given by~\Eq{(17)} in formula~\Eq{(19)}
+we get
+\[
+E = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}} + nk\, \frac{3h^{2} F}{8\pi^{2} em}.
+\Tag{(20)}
+\]
+To find the effect of an electric field upon the lines of the hydrogen
+spectrum, we use the frequency condition~\Eq{(4)} and obtain for the
+frequency~$\nu$ of the radiation emitted by a transition between two
+stationary states defined by the numbers $n'$,~$k'$ and $n''$,~$k''$
+\[
+\nu = \frac{2\pi^{2} e^{4} m}{h^{3}} \left(\frac{1}{(n'')^{2}} - \frac{1}{(n'')^{2}}\right)
+ + \frac{3h · F}{8\pi^{2} em} (n'k' - n''k'').
+\Tag{(21)}
+\]
+
+It is well known that this formula provides a complete explanation
+of the Stark effect of the hydrogen lines. It corresponds
+exactly with the one obtained by a different method by Epstein
+and Schwarzschild. They used the fact that the hydrogen atom in
+a homogeneous electric field is a conditionally periodic system
+permitting a separation of variables by the use of parabolic coordinates.
+The stationary states were fixed by applying quantum
+conditions to each of these variables.
+
+We shall now consider more closely the correspondence between
+the changes in the spectrum of hydrogen due to the presence of
+\PageSep{41}
+an electric field and the decomposition of the perturbed motion
+of the atom into its harmonic components. Instead of the simple
+decomposition into harmonic components corresponding to a simple
+Kepler motion, the displacement~$\xi$ of the electron in a given
+direction in space can be expressed in the present case by the
+formula
+\[
+\xi = \sum C_{\tau,\kappa} \cos 2\pi \bigl\{t(\tau\omega + \kappa\sigma) + c_{\tau,\kappa}\bigr\},
+\Tag{(22)}
+\]
+where $\omega$~is the average frequency of revolution in the perturbed
+orbit and $\sigma$~is the period of the orbital perturbations, while $C_{\tau,\kappa}$~and
+$c_{\tau,\kappa}$ are constants. The summation is to be extended over all integral
+values for $\tau$~and~$\kappa$.
+
+If we now consider a transition between two stationary states
+characterized by certain numbers $n'$,~$k'$ and $n''$,~$k''$, we find that in
+the region where these numbers are large compared with their
+differences $n' - n''$ and $k' - k''$, the frequency of the spectral line
+which is emitted will be given approximately by the formula
+\[
+\nu \sim (n' - n'')\omega + (k' - k'')\sigma.
+\Tag{(23)}
+\]
+We see, therefore, that we have obtained a relation between the
+spectrum and the motion of precisely the same character as in the
+simple case of the unperturbed hydrogen atom. We have here a
+similar correspondence between the harmonic component in the
+motion, corresponding to definite values for $\tau$~and $\kappa$ in formula~\Eq{(22)},
+and the transition between two stationary states for which $n' - n'' = \tau$
+and $k' - k'' = \kappa$.
+
+A number of interesting results can be obtained from this
+correspondence by considering the motion in more detail. Each
+harmonic component in expression~\Eq{(22)} for which $\tau + \kappa$ is an even
+number corresponds to a linear oscillation parallel to the direction
+of the electric field, while each component for which $\tau + \kappa$ is odd
+corresponds to an elliptical oscillation perpendicular to this direction.
+The correspondence principle suggests at once that these
+facts are connected with the \emph{characteristic polarization} observed in
+the Stark effect. We would anticipate that a transition for which
+$(n' - n'') + (k' - k'')$ is even would give rise to a component with an
+electric vector parallel to the field, while a transition for which
+$(n' - n'') + (k' - k'')$ is odd would correspond to a component with an
+\PageSep{42}
+electric vector perpendicular to the field. These results have been
+fully confirmed by experiment and correspond to the empirical rule
+of polarization, which Epstein proposed in his first paper on the
+Stark effect.
+
+The applications of the correspondence principle that have so
+far been described have been purely qualitative in character. It is
+possible however to obtain a quantitative estimate of the relative
+intensity of the various components of the Stark effect of hydrogen,
+by correlating the numerical values of the coefficients~$C_{\tau,\kappa}$ in formula~\Eq{(22)}
+with the probability of the corresponding transitions between
+the stationary states. This problem has been treated in detail by
+Kramers in a recently published dissertation. In this he gives a
+thorough discussion of the application of the correspondence principle
+to the question of the intensity of spectral lines.
+
+\Section{The Zeeman effect.} The problem of the effect of a homogeneous
+magnetic field upon the hydrogen lines may be treated in an
+entirely analogous manner. The effect on the motion of the hydrogen
+atom consists simply of the superposition of a uniform rotation
+upon the motion of the electron in the unperturbed atom.
+The axis of rotation is parallel with the direction of the magnetic
+force, while the frequency of revolution is given by the formula
+\[
+\sigma = \frac{eH}{4\pi mc},
+\Tag{(24)}
+\]
+where $H$~is the intensity of the field and $c$~the velocity of light.
+
+Again we have a case where the perturbations are simply
+periodic and where the period of the perturbations is independent
+of the form and position of the orbit, and in the present case, even
+of the major axis. Similar considerations apply therefore as in the
+case of the Stark effect, and we must expect that the energy in the
+stationary states will again be given by formula~\Eq{(19)}, if we substitute
+for~$\sigma$ the value given in expression~\Eq{(24)}. This result is
+also in complete agreement with that obtained by Sommerfeld and
+Debye. The method they used involved the solution of the equations
+of motion by the method of the separation of the variables. The
+appropriate coordinates are polar ones about an axis parallel to
+the field.
+
+If we try, however, to calculate directly the effect of the field by
+\PageSep{43}
+means of the frequency condition~\Eq{(4)}, we immediately meet with
+an apparent disagreement which for some time was regarded as a
+grave difficulty for the theory. As both Sommerfeld and Debye
+have pointed out, lines are not observed corresponding to every
+transition between the stationary states included in the formula.
+We overcome this difficulty, however, as soon as we apply the
+principle of correspondence. If we consider the harmonic components
+of the motion we obtain a simple explanation both of the
+non-occurrence of certain transitions and of the observed polarization.
+In the magnetic field each elliptic harmonic component having
+the frequency~$\tau\omega$ splits up into three harmonic components owing
+to the uniform rotation of the orbit. Of these one is rectilinear
+with frequency~$\tau\omega$ oscillating parallel to the magnetic field, and
+two are circular with frequencies $\tau\omega + \sigma$ and $\tau\omega - \sigma$ oscillating in
+opposite directions in a plane perpendicular to the direction of the
+field. Consequently the motion represented by formula~\Eq{(22)} contains
+no components for which $\kappa$~is numerically greater than~$1$, in contrast
+to the Stark effect, where components corresponding to all values
+of~$\kappa$ are present. Now formula~\Eq{(23)} again applies for large values
+of $n$~and~$k$, and shows the asymptotic agreement between the
+frequency of the radiation and the frequency of a harmonic component
+in the motion. We arrive, therefore, at the conclusion that
+transitions for which $k$~changes by more than unity \Chg{can not}{cannot} occur.
+The argument is similar to that by which transitions between two
+distinctive states of a Planck oscillator for which the values of~$n$
+in~\Eq{(1)} differ by more than unity are excluded. We must further
+conclude that the various possible transitions consist of two types.
+For the one type corresponding to the rectilinear component, $k$~remains
+unchanged, and in the emitted radiation which possesses
+the same frequency~$\nu_{0}$ as the original hydrogen line, the electric
+vector will oscillate parallel with the field. For the second type,
+corresponding to the circular components, $k$~will increase or decrease
+by unity, and the radiation viewed in the direction of the field will
+be circularly polarized and have frequencies $\nu_{0} + \sigma$ and $\nu_{0} - \sigma$ respectively.
+These results agree with those of the familiar Lorentz
+theory. The similarity in the two theories is remarkable, when we
+recall the fundamental difference between the ideas of the quantum
+theory and the ordinary theories of radiation.
+\PageSep{44}
+
+\Section{Central perturbations.} An illustration based on similar considerations
+which will throw light upon the spectra of other elements
+consists in finding the effect of a small perturbing field of
+force radially symmetrical with respect to the nucleus. In this case
+neither the form of the orbit nor the position of its plane will
+change with time, and the perturbing effect of the field will simply
+consist of a uniform rotation of the major axis of the orbit. The
+perturbations are periodic, so that we may assume that to each
+energy value of a stationary state of the unperturbed system there
+belongs a series of discrete energy values of the perturbed system,
+characterized by different values of a whole number~$k$. The frequency~$\sigma$
+of the perturbations is equal to the frequency of rotation
+of the major axis. For a given law of force for the perturbing
+field we find that $\sigma$~depends both on the major axis and on the
+\Chg{excentricity}{eccentricity}. The change in the energy of the stationary states,
+therefore, will not be given by an expression as simple as the
+second term in formula~\Eq{(19)}, but will be a function of~$k$, which is
+different for different fields. It is possible, however, to characterize
+by one and the same condition the motion in the stationary states
+of a hydrogen atom which is perturbed by any central field. In
+order to show this we must consider more closely the fixation of
+the motion of a perturbed hydrogen atom.
+
+In the stationary states of the unperturbed hydrogen atom
+only the major axis of the orbit is to be regarded as fixed,
+while the \Chg{excentricity}{eccentricity} may assume any value. Since the change
+in the energy of the atom due to the external field of force depends
+upon the form and position of its orbit, the fixation of the
+energy of the atom in the presence of such a field naturally
+involves a closer determination of the orbit of the perturbed
+system.
+
+Consider, for the sake of illustration, the change in the hydrogen
+spectrum due to the presence of homogeneous electric and magnetic
+fields which was described by equation~\Eq{(19)}. It is found that
+this energy condition can be given a simple geometrical interpretation.
+In the case of an electric field the distance from the
+nucleus to the plane in which the centre of the orbit moves determines
+the change in the energy of the system due to the presence
+of the field. In the stationary states this distance is simply equal
+\PageSep{45}
+to $\dfrac{k}{n}$~times half the major axis of the orbit. In the case of a magnetic
+field it is found that the quantity which determines the change
+of energy of the system is the area of the projection of the orbit
+upon a plane perpendicular to the magnetic force. In the various
+stationary states this area is equal to $\dfrac{k}{n}$~times the area of a circle
+whose radius is equal to half the major axis of the orbit. In the
+case of a perturbing central force the correspondence between
+the spectrum and the motion which is required by the quantum
+theory leads now to the simple condition that in the stationary
+states of the perturbed system the minor axis of the rotating orbit
+is simply equal to $\dfrac{k}{n}$~times the major axis. This condition was first
+derived by Sommerfeld from his general theory for the determination
+of the stationary states of a central motion. It is easily shown
+that this fixation of the value of the minor axis is equivalent to
+the statement that the parameter~$2p$ of the elliptical orbit is given
+by an expression of exactly the same form as that which gives the
+major axis~$2a$ in the unperturbed atom. The only difference from
+the expression for~$2a_{n}$ in~\Eq{(17)} is that $n$~is replaced by~$k$, so that
+the value of the parameter in the stationary states of the perturbed
+atom is given by
+\[
+2p_{k} = k^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m}.
+\Tag{(25)}
+\]
+The frequency of the radiation emitted by a transition between
+two stationary states determined in this way for which $n'$~and~$n''$ are
+large in proportion to their difference is given by an expression
+which is the same as that in equation~\Eq{(23)}, if in this case $\omega$~is the
+frequency of revolution of the electron in the slowly rotating orbit
+and $\sigma$~represents the frequency of rotation of the major axis.
+
+Before proceeding further, it might be of interest to note that
+this fixation of the stationary states of the hydrogen atom perturbed
+by external electric and magnetic forces does not coincide in certain
+respects with the theories of Sommerfeld, Epstein and Debye.
+According to the theory of conditionally periodic systems the stationary
+states for a system of three degrees of freedom will in general
+be determined by three conditions, and therefore in these theories
+\PageSep{46}
+each state is characterized by three whole numbers. This would
+mean that the stationary states of the perturbed hydrogen atom
+corresponding to a certain stationary state of the unperturbed
+hydrogen atom, fixed by one condition, should be subject to two
+further conditions and should therefore be characterized by two
+new whole numbers in addition to the number~$n$. But the perturbations
+of the Keplerian motion are simply periodic and the
+energy of the perturbed atom will therefore be fixed completely
+by one additional condition. The introduction of a second condition
+will add nothing further to the explanation of the phenomenon,
+since with the appearance of new perturbing forces, even if
+these are too small noticeably to affect the observed Zeeman and
+Stark effects, the forms of motion characterized by such a condition
+may be entirely changed. This is completely analogous to the
+fact that the hydrogen spectrum as it is usually observed is not
+noticeably affected by small forces, even when they are large enough
+to produce a great change in the form and position of the orbit of
+the electron.
+
+\Section{Relativity effect on hydrogen lines.} Before leaving the hydrogen
+spectrum I shall consider briefly the effect of the variation of
+the mass of the electron with its velocity. In the preceding sections
+I have described how external fields of force split up the hydrogen
+lines into several components, but it should be noticed that these
+results are only accurate when the perturbations are large in comparison
+with the small deviations from a pure Keplerian motion
+due to the variation of the mass of the electron with its velocity.
+When the variation of the mass is taken into account the motion
+of the unperturbed atom will not be exactly periodic. Instead we
+obtain a motion of precisely the same kind as that occurring in the
+hydrogen atom perturbed by a small central field. According to
+the correspondence principle an intimate connection is to be expected
+between the frequency of revolution of the major axis of the
+orbit and the difference of the frequencies of the fine structure
+components, and the stationary states will be those orbits whose
+parameters are given by expression~\Eq{(25)}. If we now consider the
+effect of external forces upon the fine structure components of the
+hydrogen lines it is necessary to keep in mind that this fixation of
+\PageSep{47}
+the stationary states only applies to the unperturbed hydrogen
+atom, and that, as mentioned, the orbits in these states are in
+general already strongly influenced by the presence of external
+forces, which are small compared with those with which we are
+concerned in experiments on the Stark and Zeeman effects. In
+general the presence of such forces will lead to a great complexity
+of perturbations, and the atom will no longer possess a group of
+sharply defined stationary states. The fine structure components
+of a given hydrogen line will therefore become diffuse and merged
+together. There are, however, several important cases where this
+does not happen on account of the simple character of the perturbations.
+The simplest example is a hydrogen atom perturbed
+by a central force acting from the nucleus. In this case it is evident
+that the motion of the system will retain its centrally symmetrical
+character, and that the perturbed motion will differ from the unperturbed
+motion only in that the frequency of rotation of the major
+axis will be different for different values of this axis and of the
+parameter. This point is of importance in the theory of the
+spectra of elements of higher atomic number, since, as we shall see,
+the effect of the forces originating from the inner electrons may
+to a first approximation be compared with that of a perturbing
+central field. We \Chg{can not}{cannot} therefore expect these spectra to exhibit
+a separate effect due to the variation of the mass of the electron
+of the same kind as that found in the case of the hydrogen lines.
+This variation will not give rise to a splitting up into separate
+components but only to small displacements in the position of the
+various lines.
+
+We obtain still another simple example in which the hydrogen
+atom possesses sharp stationary states, although the change of mass
+of the electron is considered, if we take an atom subject to a homogeneous
+magnetic field. The effect of such a field will consist in
+the superposition of a rotation of the entire system about an axis
+through the nucleus and parallel with the magnetic force. It follows
+immediately from this result according to the principle of correspondence
+that each fine structure component must be expected
+to split up into a normal Zeeman effect (Lorentz triplet). The
+problem may also be solved by means of the theory of conditionally
+periodic systems, since the equations of motion in the presence
+\PageSep{48}
+of a magnetic field, even when the change in the mass is considered,
+will allow of a separation of the variables using polar
+coordinates in space. This has been pointed out by Sommerfeld
+and Debye.
+
+A more complicated case arises when the atom is exposed to a
+homogeneous electric field which is not so strong that the effect
+due to the change in the mass may be neglected. In this case there
+is no system of coordinates by which the equations of motion can
+be solved by separation of the variables, and the problem, therefore,
+\Chg{can not}{cannot} be treated by the theory of the stationary states of conditionally
+periodic systems. A closer investigation of the perturbations,
+however, shows them to be of such a character that the motion
+of the electrons may be decomposed into a number of separate harmonic
+components. These fall into two groups for which the direction
+of oscillation is either parallel with or perpendicular to the
+field. According to the principle of correspondence, therefore, we
+must expect that also in this case in the presence of the field each
+hydrogen line will consist of a number of sharp, polarized components.
+In fact by means of the principles I have described, it is
+possible to give a unique fixation of the stationary states. The
+problem of the effect of a homogeneous electric field upon the fine
+structure components of the hydrogen lines has been treated in
+detail from this point of view by Kramers in a paper which will
+soon be published. In this paper it will be shown how it appears
+possible to predict in detail the manner in which the fine structure
+of the hydrogen lines gradually changes into the ordinary Stark
+effect as the electric intensity increases.
+
+\Section{Theory of series spectra.} Let us now turn our attention once
+more to the problem of the series spectra of elements of higher
+atomic number. The general appearance of the Rydberg constant
+in these spectra is to be explained by assuming that the atom is
+neutral and that one electron revolves in an orbit the dimensions
+of which are large in comparison with the distance of the inner electrons
+from the nucleus. In a certain sense, therefore, the motion of
+the outer electron may be compared with the motion of the electron
+of the hydrogen atom perturbed by external forces, and the appearance
+of the various series in the spectra of the other elements is
+\PageSep{49}
+from this point of view to be regarded as analogous to the splitting
+up of the hydrogen lines into components on account of such forces.
+
+In his theory of the structure of series spectra of the type exhibited
+by the alkali metals, Sommerfeld has made the assumption
+that the orbit of the outer electron to a first approximation possesses
+the same character as that produced by a simple perturbing
+central field whose intensity diminishes rapidly with increasing
+distance from the nucleus. He fixed the motion of the external
+electron by means of his general theory for the fixation of the
+stationary states of a central motion. The application of this
+method depends on the possibility of separating the variables in
+the equations of motion. In this manner Sommerfeld was able to
+calculate a number of energy values which can be arranged in rows
+just like the empirical spectral terms shown in the diagram of the
+sodium spectrum (\PageRef[p.]{30}). The states grouped together by Sommerfeld
+in the separate rows are exactly those which were characterized
+by one and the same value of~$k$ in our investigation of the
+hydrogen atom perturbed by a central force. The states in the
+first row of the figure (row~$S$) correspond to the value $k = 1$, those
+of the second row~($P$) correspond to $k = 2$, etc. The states corresponding
+to one and the same value of~$n$ are connected by dotted
+lines which are continued so that their vertical asymptotes correspond
+to the energy value of the stationary states of the hydrogen
+atom. The fact that for a constant~$n$ and increasing values of~$k$
+the energy values approach the corresponding values for the unperturbed
+hydrogen atom is immediately evident from the theory
+since the outer electron, for large values of the parameter of its
+orbit, remains at a great distance from the inner system during the
+whole revolution. The orbit will become almost elliptical and the
+period of rotation of the major axis will be very large. It can be
+seen, therefore, that the effect of the inner system on the energy
+necessary to remove this electron from the atom must become less
+for increasing values of~$k$.
+
+These beautiful results suggest the possibility of finding laws of
+force for the perturbing central field which would account for the
+spectra observed. Although Sommerfeld in this way has in fact
+succeeded in deriving formulae for the spectral terms which vary
+with~$n$ for a constant~$k$ in agreement with Rydberg's formulae, it
+\PageSep{50}
+has not been possible to explain the simultaneous variation with
+both $k$~and~$n$ in any actual case. This is not surprising, since it is
+to be anticipated that the effect of the inner electrons on the spectrum
+could not be accounted for in such a simple manner. Further
+consideration shows that it is necessary to consider not only the
+forces which originate from the inner electrons but also to consider
+the effect of the presence of the outer electron upon the motion of
+the inner electrons.
+
+Before considering the series spectra of elements of low atomic
+number I shall point out how the occurrence or non-occurrence of
+certain transitions can be shown by the correspondence principle
+to furnish convincing evidence in favour of Sommerfeld's assumption
+about the orbit of the outer electron. For this purpose we
+must describe the motion of the outer electron in terms of its harmonic
+components. This is easily performed if we assume that the
+presence of the inner electrons simply produces a uniform rotation
+of the orbit of the outer electron in its plane. On account of this
+rotation, the frequency of which we will denote by~$\sigma$, two circular
+rotations with the periods $\tau\omega + \sigma$ and $\tau\omega - \sigma$ will appear in the
+motion of the perturbed electron, instead of each of the harmonic
+elliptical components with a period $\tau\omega$ in the unperturbed motion.
+The decomposition of the perturbed motion into harmonic components
+consequently will again be represented by a formula of the
+type~\Eq{(22)}, in which only such terms appear for which $\kappa$~is equal
+to $+1$ or~$-1$. Since the frequency of the emitted radiation in the
+regions where $n$~and $k$ are large is again given by the asymptotic
+formula~\Eq{(23)}, we at once deduce from the correspondence principle
+that the only transitions which can take place are those for which
+the values of~$k$ differ by unity. A glance at the figure for the sodium
+spectrum shows that this agrees exactly with the experimental
+results. This fact is all the more remarkable, since in Sommerfeld's
+theory the arrangement of the energy values of the stationary
+states in rows has no special relation to the possibility of transition
+between these states.
+
+\Section{Correspondence principle and conservation of angular momentum.}
+Besides these results the correspondence principle suggests
+that the radiation emitted by the perturbed atom must
+\PageSep{51}
+exhibit circular polarization. On account of the indeterminateness
+of the plane of the orbit, however, this polarization \Chg{can not}{cannot} be
+directly observed. The assumption of such a polarization is a matter
+of particular interest for the theory of radiation emission. On
+account of the general correspondence between the spectrum of
+an atom and the decomposition of its motion into harmonic
+components, we are led to compare the radiation emitted during
+the transition between two stationary states with the radiation
+which would be emitted by a harmonically oscillating
+electron on the basis of the classical electrodynamics. In particular
+the radiation emitted according to the classical theory
+by an electron revolving in a circular orbit possesses an angular
+momentum and the energy~$\Delta E$ and the angular momentum~$\Delta P$ of
+the radiation emitted during a certain time are connected by the
+relation
+\[
+\Delta E = 2\pi\omega · \Delta P.
+\Tag{(26)}
+\]
+
+Here $\omega$~represents the frequency of revolution of the electron,
+and according to the classical theory this is equal to the frequency~$\nu$
+of the radiation. If we now assume that the total energy emitted
+is equal to~$h\nu$ we obtain for the total angular momentum of the
+radiation
+\[
+\Delta P = \frac{h}{2\pi}.
+\Tag{(27)}
+\]
+
+It is extremely interesting to note that this expression is equal
+to the change in the angular momentum which the atom suffers in
+a transition where $k$~varies by unity. For in Sommerfeld's theory
+the general condition for the fixation of the stationary states of a
+central system, which in the special case of an approximately
+Keplerian motion is equivalent to the relation~\Eq{(25)}, asserts that
+the angular momentum of the system must be equal to a whole
+multiple of~$\dfrac{h}{2\pi}$, a condition which may be written in our notation
+\[
+P = k\, \frac{h}{2\pi}.
+\Tag{(28)}
+\]
+We see, therefore, that this condition has obtained direct support
+from a simple consideration of the conservation of angular momentum
+during the emission of the radiation. I wish to emphasize
+that this equation is to be regarded as a rational generalization of
+\PageSep{52}
+Planck's original statement about the distinctive states of a harmonic
+oscillator. It may be of interest to recall that the possible
+significance of the angular momentum in applications of the
+quantum theory to atomic processes was first pointed out by
+Nicholson on the basis of the fact that for a circular motion the
+angular momentum is simply proportional to the ratio of the
+kinetic energy to the frequency of revolution.
+
+In a previous paper which I presented to the Copenhagen
+Academy I pointed out that these results confirm the conclusions
+obtained by the application of the correspondence principle to
+atomic systems possessing radial or axial symmetry. Rubinowicz
+has independently indicated the conclusions which may be obtained
+directly from a consideration of conservation of angular momentum
+during the radiation process. In this way he has obtained several
+of our results concerning the various types of possible transitions
+and the polarization of the emitted radiation. Even for systems
+possessing radial or axial symmetry, however, the conclusions which
+we can draw by means of the correspondence principle are of a
+more detailed character than can be obtained solely from a consideration
+of the conservation of angular momentum. For example,
+in the case of the hydrogen atom perturbed by a central force we
+can only conclude that $k$~\Chg{can not}{cannot} change by more than unity, while
+the correspondence principle requires that $k$~shall vary by unity
+for every possible transition and that its value cannot remain unchanged.
+Further, this principle enables us not only to exclude
+certain transitions as being impossible---and can from this point of
+view be considered as a ``selection principle''---but it also enables
+us to draw conclusions about the relative probabilities of the various
+possible types of transitions from the values of the amplitudes of
+the harmonic components. In the present case, for example, the
+fact that the amplitudes of those circular components which rotate
+in the same sense as the electron are in general greater than the
+amplitudes of those which rotate in the opposite sense leads us to
+expect that lines corresponding to transitions for which $k$~decreases
+by unity will in general possess greater intensity than lines during
+the emission of which $k$~increases by unity. Simple considerations
+like this, however, apply only to spectral lines corresponding to
+transitions from one and the same stationary state. In other
+\PageSep{53}
+cases when we wish to estimate the relative intensities of two
+spectral lines it is clearly necessary to take into consideration the
+relative number of atoms which are present in each of the two
+stationary states from which the transitions start. While the intensity
+naturally \Chg{can not}{cannot} depend upon the number of atoms in the
+final state, it is to be noticed, however, that in estimating the
+probability of a transition between two stationary states it is necessary
+to consider the character of the motion in the final as well as
+in the initial state, since the values of the amplitudes of the components
+of oscillation of both states are to be regarded as decisive
+for the probability.
+
+To show how this method can be applied I shall return for a
+moment to the problem which I mentioned in connection with
+Strutt's experiment on the resonance radiation of sodium vapour.
+This involved the discussion of the relative probability of the various
+possible transitions which can start from that state corresponding
+to the second term in the second row of the figure on \PageRef[p.]{30}. These
+were transitions to the first and second states in the first row and
+to the first state in the third row, and the results of experiment
+indicate, as we saw, that the probability is greatest for the second
+transitions. These transitions correspond to those harmonic components
+having frequencies $2\omega + \sigma$, $\omega + \sigma$ and~$\sigma$, and it is seen
+that only for the second transition do the amplitudes of the corresponding
+harmonic component differ from zero in the initial as
+well as in the final state. [In the next essay the reader will find
+that the values of quantum number~$n$ assigned in \Fig{1} to the
+various stationary states must be altered. While this correction
+in no way influences the other conclusions in this essay it involves
+that the reasoning in this passage \Chg{can not}{cannot} be maintained.]
+
+I have shown how the correspondence between the spectrum of
+an element and the motion of the atom enables us to understand
+the limitations in the direct application of the combination principle
+in the prediction of spectral lines. The same ideas give an immediate
+explanation of the interesting discovery made in recent years
+by Stark and his collaborators, that certain \emph{new series of combination
+lines} appear with considerable intensity when the radiating
+atoms are subject to a strong external electric field. This phenomenon
+is entirely analogous to the appearance of the so-called
+\PageSep{54}
+combination tones in acoustics. It is due to the fact that the
+perturbation of the motion will not only consist in an effect upon
+the components originally present, but in addition will give rise to
+new components. The frequencies of these new components may be
+$\tau\omega + \kappa\sigma$, where $\kappa$~is different from~$±1$. According to the correspondence
+principle we must therefore expect that the electric field will
+not only influence the lines appearing under ordinary circumstances,
+but that it will also render possible new types of transitions which
+give rise to the ``new'' combination lines observed. From an estimate
+of the amplitudes of the particular components in the initial
+and final states it has even been found possible to account for the
+varying facility with which the new lines are brought up by the
+external field.
+
+The general problem of the effect of an electric field on the spectra
+of elements of higher atomic number differs essentially from the
+simple Stark effect of the hydrogen lines, since we are here concerned
+not with the perturbation of a purely periodic system, but
+with the effect of the field on a periodic motion already subject to
+a perturbation. The problem to a certain extent resembles the
+effect of a weak electric force on the fine structure components of
+the hydrogen atom. In much the same way the effect of an electric
+field upon the series spectra of the elements may be treated directly
+by investigating the perturbations of the external electron. A
+continuation of my paper in the Transactions of the Copenhagen
+Academy will soon appear in which I shall show how this method
+enables us to understand the interesting observations Stark and
+others have made in this field.
+
+\Section{The spectra of helium and lithium.} We see that it has been
+possible to obtain a certain general insight into the origin of the
+series spectra of a type like that of sodium. The difficulties encountered
+in an attempt to give a detailed explanation of the
+spectrum of a particular element, however, become very serious,
+even when we consider the spectrum of helium whose neutral atom
+contains only two electrons. The spectrum of this element has a
+simple structure in that it consists of single lines or at any rate of
+double lines whose components are very close together. We find,
+however, that the lines fall into two groups each of which can be
+\PageSep{55}
+described by a formula of the type~\Eq{(14)}. These are usually called
+the (ortho) helium and parhelium spectra. While the latter consists
+of simple lines, the former possesses narrow doublets. The
+discovery that helium, as opposed to the alkali metals, possesses
+two complete spectra of the Rydberg type which do not exhibit any
+mutual combinations was so surprising that at times there has been
+a tendency to believe that helium consisted of two elements. This
+way out of the difficulty is no longer open, since there is no room
+for another element in this region of the periodic system, or more
+correctly expressed, for an element possessing a new spectrum. The
+existence of the two spectra can, however, be traced back to the fact
+that in the stationary states corresponding to the series spectra we
+have to do with a system possessing only one inner electron and in
+consequence the motion of the inner system, in the absence of the
+outer electron, will be simply periodic and therefore easily perturbed
+by external forces.
+
+In order to illustrate this point we shall have to consider more
+carefully the stationary states connected with the origin of a series
+spectrum. We must assume that in these states one electron revolves
+in an orbit outside the nucleus and the other electrons. We
+might now suppose that in general a number of different groups of
+such states might exist, each group corresponding to a different
+stationary state of the inner system considered by itself. Further
+consideration shows, however, that under the usual conditions of
+excitation those groups have by far the greatest probability for which
+the motion of the inner electrons corresponds to the ``normal'' state
+of the inner system, \ie\ to that stationary state having the least
+energy. Further the energy required to transfer the inner system
+from its normal state to another stationary state is in general very
+large compared with the energy which is necessary to transfer an
+electron from the normal state of the neutral atom to a stationary
+orbit of greater dimensions. Lastly the inner system is in general
+capable of a permanent existence only in its normal state. Now,
+the configuration of an atomic system in its stationary states and
+also in the normal state will, in general, be completely determined.
+We may therefore expect that the inner system under the influence
+of the forces arising from the presence of the outer electron can in
+the course of time suffer only small changes. For this reason we
+\PageSep{56}
+must assume that the influence of the inner system upon the motion
+of the external electron will, in general, be of the same character
+as the perturbations produced by a constant external field upon
+the motion of the electron in the hydrogen atom. We must therefore
+expect a spectrum consisting of an ensemble of spectral terms,
+which in general form a connected group, even though in the
+absence of external perturbing forces not every combination actually
+occurs. The case of the helium spectrum, however, is quite different
+since here the inner system contains only one electron the motion
+of which in the absence of the external electron is simple periodic
+provided the small changes due to the variation in the mass of the
+electron with its velocity are neglected. For this reason the form of
+the orbit in the stationary states of the inner system considered by
+itself will not be determined. In other words, the stability of the
+orbit is so slight, even if the variation in the mass is taken into
+account, that small external forces are in a position to change the
+\Chg{excentricity}{eccentricity} in the course of time to a finite extent. In this case,
+therefore, it is possible to have several groups of stationary states,
+for which the energy of the inner system is approximately the same
+while the form of the orbit of the inner electron and its position
+relative to the motion of the other electrons are so essentially
+different, that no transitions between the states of different groups
+can occur even in the presence of external forces. It can be seen
+that these conclusions summarize the experimental observations
+on the helium spectra.
+
+These\Pagelabel{56} considerations suggest an investigation of the nature of
+the perturbations in the orbit of the inner electron of the helium
+atom, due to the presence of the external electron. A discussion
+of the helium spectrum from this point of view has recently been
+given by Landé. The results of this work are of great interest particularly
+in the demonstration of the large back effect on the outer
+electron due to the perturbations of the inner orbit which themselves
+arise from the presence of the outer electron. Nevertheless, it can
+scarcely be regarded as a satisfactory explanation of the helium
+spectrum. Apart from the serious objections which may be raised
+against his calculation of the perturbations, difficulties arise if we
+try to apply the correspondence principle to Landé's results in
+order to account for the occurrence of two distinct spectra showing
+\PageSep{57}
+no mutual combinations. To explain this fact it seems necessary
+to base the discussion on a more thorough investigation of the
+mutual perturbations of the outer and the inner orbits. As a
+result of these perturbations both electrons move in such an
+extremely complicated way that the stationary states \Chg{can not}{cannot} be
+fixed by the methods developed for conditionally periodic systems.
+Dr~Kramers and I have in the last few years been engaged in such
+an investigation, and in an address on atomic problems at the
+meeting of the Dutch Congress of Natural and Medical Sciences
+held in Leiden, April 1919, I gave a short communication of our
+results. For various reasons we have up to the present time been
+prevented from publishing, but in the very near future we hope to
+give an account of these results and of the light which they seem
+to throw upon the helium spectrum.
+
+The problem presented by the spectra of elements of higher
+atomic number is simpler, since the inner system is better defined
+in its normal state. On the other hand the difficulty of the mechanical
+problem of course increases with the number of the particles in
+the atom. We obtain an example of this in the case of lithium
+with three electrons. The differences between the spectral terms
+of the lithium spectrum and the corresponding spectral terms of
+hydrogen are very small for the variable term of the principal series
+($k = 2$) and for the diffuse series ($k = 3$), on the other hand it is very
+considerable for the variable term of the sharp series ($k = 1$). This
+is very different from what would be expected if it were possible to
+describe the effect of the inner electron by a central force varying
+in a simple manner with the distance. This must be because the
+parameter of the orbit of the outer electron in the stationary states
+corresponding to the terms of the sharp series is not much greater
+than the linear dimensions of the orbits of the inner electrons.
+According to the principle of correspondence the frequency of rotation
+of the major axis of the orbit of the outer electron is to be regarded
+as a measure of the deviation of the spectral terms from the corresponding
+hydrogen terms. In order to calculate this frequency it
+appears necessary to consider in detail the mutual effect of all three
+electrons, at all events for that part of the orbit where the outer
+electron is very close to the other two electrons. Even if we assumed
+that we were fully acquainted with the normal state of the inner
+\PageSep{58}
+system in the absence of the outer electron---which would be
+expected to be similar to the normal state of the neutral helium
+atom---the exact calculation of this mechanical problem would
+evidently form an exceedingly difficult task.
+
+\Section{Complex structure of series lines.} For the spectra of elements
+of still higher atomic number the mechanical problem which has to
+be solved in order to describe the motion in the stationary states
+becomes still more difficult. This is indicated by the extraordinarily
+complicated structure of many of the observed spectra. The fact that
+the series spectra of the alkali metals, which possess the simplest
+structure, consist of double lines whose separation increases with
+the atomic number, indicates that here we have to do with systems
+in which the motion of the outer electron possesses in general a
+somewhat more complicated character than that of a simple central
+motion. This gives rise to a more complicated ensemble of stationary
+states. It would, however, appear that in the sodium atom the major
+axis and the parameter of the stationary states corresponding to
+each pair of spectral terms are given approximately by formulae
+\Eq{(17)} and~\Eq{(25)}. This is indicated not only by the similar part played
+by the two states in the experiments on the resonance radiation of
+sodium vapour, but is also shown in a very instructive manner by
+the peculiar effect of magnetic fields on the doublets. For small
+fields each component splits up into a large number of sharp lines
+instead of into the normal Lorentz triplet. With increasing field
+strength Paschen and Back found that this \emph{anomalous Zeeman effect}
+changed into the normal Lorentz triplet of a single line by a gradual
+fusion of the components.
+
+This effect of a magnetic field upon the doublets of the alkali
+spectrum is of interest in showing the intimate relation of the components
+and confirms the reality of the simple explanation of the
+general structure of the spectra of the alkali metals. If we may
+again here rely upon the correspondence principle we have unambiguous
+evidence that the effect of a magnetic field on the motion
+of the electrons simply consists in the superposition of a uniform
+rotation with a frequency given by equation~\Eq{(24)} as in the case of
+the hydrogen atom. For if this were the case the correspondence
+principle would indicate under all conditions a normal Zeeman effect
+\PageSep{59}
+for each component of the doublets. I want to emphasize that the
+difference between the simple effect of a magnetic field, which the
+theory predicts for the fine structure of components of the hydrogen
+lines, and the observed effect on the alkali doublets is in no way to
+be considered as a contradiction. The fine structure components
+are not analogous to the individual doublet components, but each
+single fine structure component corresponds to the ensemble of
+components (doublet, triplet) which makes up one of the series lines
+in Rydberg's scheme. The occurrence in strong fields of the effect
+observed by Paschen and Back must therefore be regarded as a
+strong support for the theoretical prediction of the effect of a magnetic
+field on the fine structure components of the hydrogen lines.
+
+It does not appear necessary to assume the ``anomalous'' effect
+of small fields on the doublet components to be due to a failure of
+the ordinary electrodynamical laws for the description of the motion
+of the outer electron, but rather to be connected with an effect of
+the magnetic field on that intimate interaction between the motion
+of the inner and outer electrons which is responsible for the occurrence
+of the doublets. Such a view is probably not very different
+from the ``coupling theory'' by which Voigt was able to account
+formally for the details of the anomalous Zeeman effect. We might
+even expect it to be possible to construct a theory of these effects
+which would exhibit a formal analogy with the Voigt theory similar
+to that between the quantum theory of the normal Zeeman effect and
+the theory originally developed by Lorentz. Time unfortunately
+does not permit me to enter further into this interesting problem, so
+I must refer you to the continuation of my paper in the Transactions
+of the Copenhagen Academy, which will contain a general discussion
+of the origin of series spectra and of the effects of electric and
+magnetic fields.
+
+
+\Chapter{IV.}{Conclusion}
+
+In this lecture I have purposely not considered the question of
+the structure of atoms and molecules although this is of course most
+intimately connected with the kind of spectral theory I have developed.
+We are encouraged to use results obtained from the spectra,
+since even the simple theory of the hydrogen spectrum gives a
+value for the major axis of the orbit of the electron in the normal
+\PageSep{60}
+state ($n = 1$) of the same order of magnitude as that derived from
+the kinetic theory of gases. In my first paper on the subject I
+attempted to sketch a theory of the structure of atoms and of
+molecules of chemical compounds. This theory was based on a
+simple generalization of the results for the stationary states of the
+hydrogen atom. In several respects the theory was supported by
+experiment, especially in the general way in which the properties
+of the elements change with increasing atomic number, shown most
+clearly by Moseley's results. I should like, however, to use this
+occasion to state, that in view of the recent development of the
+quantum theory, many of the special assumptions will certainly have
+to be changed in detail. This has become clear from various sides
+by the lack of agreement of the theory with experiment. It appears
+no longer possible to justify the assumption that in the normal
+states the electrons move in orbits of special geometrical simplicity,
+like ``electronic rings.'' Considerations relating to the stability of
+atoms and molecules against external influences and concerning the
+possibility of the formation of an atom by successive addition of
+the individual electrons compel us to claim, first that the configurations
+of electrons are not only in mechanical equilibrium
+but also possess a certain stability in the sense required by
+ordinary mechanics, and secondly that the configurations employed
+must be of such a nature that transitions to these from other
+stationary states of the atom are possible. These requirements are
+not in general fulfilled by such simple configurations as electronic
+rings and they force us to look about for possibilities of more complicated
+motions. It will not be possible here to consider further
+these still open questions and I must content myself by referring
+to the discussion in my forthcoming paper. In closing, however,
+I should like to emphasize once more that in this lecture I have
+only intended to bring out certain general points of view lying at
+the basis of the spectral theory. In particular it was my intention
+to show that, in spite of the fundamental differences between these
+points of view and the ordinary conceptions of the phenomena of
+radiation, it still appears possible on the basis of the general correspondence
+between the spectrum and the motion in the atom to
+employ these conceptions in a certain sense as guides in the investigation
+of the spectra.
+\PageSep{61}
+
+
+\Essay{III}{The Structure of~the~Atom and the~Physical
+and~Chemical~Properties of~the~Elements}
+{Address delivered before a joint meeting of the Physical and Chemical
+Societies in Copenhagen, October~18, 1921.}
+
+\Chapter{I.}{Preliminary}
+
+In an address which I delivered to you about a year ago I
+described the main features of a theory of atomic structure which
+I shall attempt to develop this evening. In the meantime this
+theory has assumed more definite form, and in two recent letters
+%[** TN: Footnote mark before punctuation in the original]
+to \Title{Nature} I have given a somewhat further sketch of the development.\footnote
+ {\Title{Nature}, March~24, and October~13, 1921.}
+The results which I am about to present to you are
+of no final character; but I hope to be able to show you how this
+view renders a correlation of the various properties of the elements
+in such a way, that we avoid the difficulties which previously
+appeared to stand in the way of a simple and consistent explanation.
+Before proceeding, however, I must ask your forbearance if initially
+I deal with matters already known to you, but in order to introduce
+you to the subject it will first be necessary to give a brief
+description of the most important results which have been obtained
+in recent years in connection with the work on atomic structure.
+
+\Section{The nuclear atom.} The conception of atomic structure which
+will form the basis of all the following remarks is the so-called
+nuclear atom according to which an atom is assumed to consist of
+a nucleus surrounded by a number of electrons whose distances
+from one another and from the nucleus are very large compared
+to the dimensions of the particles themselves. The nucleus
+possesses almost the entire mass of the atom and has a positive
+charge of such a magnitude that the number of electrons in a
+neutral atom is equal to the number of the element in the periodic
+system, the so-called \emph{atomic number}. This idea of the atom, which
+is due principally to Rutherford's fundamental researches on radioactive
+substances, exhibits extremely simple features, but just this
+simplicity appears at first sight to present difficulties in explaining
+the properties of the elements. When we treat this question on
+\PageSep{62}
+the basis of the ordinary mechanical and electrodynamical theories
+it is impossible to find a starting point for an explanation of the
+marked properties exhibited by the various elements, indeed not
+even of their permanency. On the one hand the particles of the
+atom apparently could not be at rest in a state of stable equilibrium,
+and on the other hand we should have to expect that every motion
+which might be present would give rise to the emission of electromagnetic
+radiation which would not cease until all the energy of
+the system had been emitted and all the electrons had fallen into
+the nucleus. A method of escaping from these difficulties has now
+been found in the application of ideas belonging to the quantum
+theory, the basis of which was laid by Planck in his celebrated
+work on the law of temperature radiation. This represented a
+radical departure from previous conceptions since it was the first
+instance in which the assumption of a discontinuity was employed
+in the formulation of the general laws of nature.
+
+\Section{The postulates of the quantum theory.}\Pagelabel{62} The quantum theory
+in the form in which it has been applied to the problems of atomic
+structure rests upon two postulates which have a direct bearing
+on the difficulties mentioned above. According to the first postulate
+there are certain states in which the atom can exist without
+emitting radiation, although the particles are supposed to have an
+accelerated motion relative to one another. These \emph{stationary states}
+are, in addition, supposed to possess a peculiar kind of stability, so
+that it is impossible either to add energy to or remove energy from
+the atom except by a process involving a transition of the atom
+into another of these states. According to the second postulate
+each emission of radiation from the atom resulting from such a
+transition always consists of a train of purely harmonic waves.
+The frequency of these waves does not depend directly upon the
+motion of the atom, but is determined by a \emph{frequency relation},
+according to which the frequency multiplied by the universal constant
+introduced by Planck is equal to the total energy emitted
+during the process. For a transition between two stationary states
+for which the values of the energy of the atom before and after the
+emission of radiation are $E'$~and $E''$ respectively, we have therefore
+\[
+h\nu = E' - E'',
+\Tag{(1)}
+\]
+\PageSep{63}
+where $h$~is Planck's constant and $\nu$~is the frequency of the emitted
+radiation. Time does not permit me to give a systematic survey
+of the quantum theory, the recent development of which has gone
+hand in hand with its applications to atomic structure. I shall
+therefore immediately proceed to the consideration of those applications
+of the theory which are of direct importance in connection
+with our subject.
+
+\Section{Hydrogen atom.} We shall commence by considering the
+simplest atom conceivable, namely, an atom consisting of a nucleus
+and one electron. If the charge on the nucleus corresponds to that
+of a single electron and the system consequently is neutral we have
+a hydrogen atom. Those developments of the quantum theory which
+have made possible its application to atomic structure started with
+the interpretation of the well-known simple spectrum emitted by
+hydrogen. This spectrum consists of a series of lines, the frequencies
+of which are given by the extremely simple Balmer formula
+\[
+\nu = K\left(\frac{1}{(n'')^{2}} - \frac{1}{(n')^{2}}\right),
+\Tag{(2)}
+\]
+where $n''$~and $n'$ are integers. According to the quantum theory
+we shall now assume that the atom possesses a series of stationary
+states characterized by a series of integers, and it can be seen how
+the frequencies given by formula~\Eq{(2)} may be derived from the
+frequency relation if it is assumed that a hydrogen line is connected
+with a radiation emitted during a transition between two
+of these states corresponding to the numbers $n'$~and~$n''$, and if the
+energy in the $n$th~state apart from an arbitrary additive constant
+is supposed to be given by the formula
+\[
+E_{n} = -\frac{Kh}{n^{2}}.
+\Tag{(3)}
+\]
+The negative sign is used because the energy of the atom is
+measured most simply by the work required to remove the electron
+to infinite distance from the nucleus, and we shall assume that the
+numerical value of the expression on the right-hand side of formula~\Eq{(3)}
+is just equal to this work.
+
+As regards the closer description of the stationary states we find
+that the electron will very nearly describe an ellipse with the
+nucleus in the focus. The major axis of this ellipse is connected
+\PageSep{64}
+with the energy of the atom in a simple way, and corresponding to
+the energy values of the stationary states given by formula~\Eq{(3)}
+there are a series of values for the major axis~$2a$ of the orbit of the
+electron given by the formula
+\[
+2a_{n} = \frac{n^{2} e^{2}}{hK},
+\Tag{(4)}
+\]
+where $e$~is the numerical value of the charge of the electron and
+the nucleus.
+
+On the whole we may say that the spectrum of hydrogen shows
+us the \emph{formation of the hydrogen atom}, since the stationary states
+may be regarded as different stages of a process by which the electron
+under the emission of radiation is bound in orbits of smaller
+and smaller dimensions corresponding to states with decreasing
+values of~$n$. It will be seen that this view has certain characteristic
+features in common with the binding process of an electron
+to the nucleus if this were to take place according to the ordinary
+electrodynamics, but that our view differs from it in just such a
+way that it is possible to account for the observed properties of
+hydrogen. In particular it is seen that the final result of the
+binding process leads to a quite definite stationary state of the
+atom, namely that state for which $n = 1$. This state which corresponds
+to the minimum energy of the atom will be called the
+\emph{normal state} of the atom. It may be stated here that the values of
+the energy of the atom and the major axis of the orbit of the
+electron which are found if we put $n = 1$ in formulae \Eq{(3)} and~\Eq{(4)}
+are of the same order of magnitude as the values of the firmness
+of binding of electrons and of the dimensions of the atoms which
+have been obtained from experiments on the electrical and mechanical
+properties of gases. A more accurate check of formulae
+\Eq{(3)} and~\Eq{(4)} can however not be obtained from such a comparison,
+because in such experiments hydrogen is not present in the form
+of simple atoms but as molecules.
+
+The formal basis of the quantum theory consists not only of the
+frequency relation, but also of conditions which permit the determination
+of the stationary states of atomic systems. The latter
+conditions, like that assumed for the frequency, may be regarded as
+natural generalizations of that assumption regarding the interaction
+between simple electrodynamic systems and a surrounding field of
+\PageSep{65}
+electromagnetic radiation which forms the basis of Planck's theory
+of temperature radiation. I shall not here go further into the
+nature of these conditions but only mention that by their means
+the stationary states are characterized by a number of integers,
+the so-called \emph{quantum numbers}. For a purely periodic motion like
+that assumed in the case of the hydrogen atom only a single
+quantum number is necessary for the determination of the stationary
+states. This number determines the energy of the atom and also
+the major axis of the orbit of the electron, but not its \Chg{excentricity}{eccentricity}.
+The energy in the various stationary states, if the small influence
+of the motion of the nucleus is neglected, is given by the following
+formula:
+\[
+E_{n} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}},
+\Tag{(5)}
+\]
+where $e$~and $m$ are respectively the charge and the mass of the
+electron, and where for the sake of subsequent applications the
+charge on the nucleus has been designated by~$Ne$.
+
+For the atom of hydrogen $N = 1$, and a comparison with
+equation~\Eq{(3)} leads to the following theoretical expression for~$K$ in
+formula~\Eq{(2)}, namely
+\[
+K = \frac{2\pi^{2} e^{4} m}{h^{3}}.
+\Tag{(6)}
+\]
+This agrees with the empirical value of the constant for the spectrum
+of hydrogen within the limit of accuracy with which the various
+quantities can be determined.
+
+\Section{Hydrogen spectrum and X-ray spectra.} If in the above
+formula we put $N = 2$ which corresponds to an atom consisting of
+an electron revolving around a nucleus with a double charge, we
+get values for the energies in the stationary states, which are four
+times larger than the energies in the corresponding states of the
+hydrogen atom, and we obtain the following formula for the
+spectrum which would be emitted by such an atom:
+\[
+\nu = 4K \left(\frac{1}{(n'')^{2}} - \frac{1}{(n')^{2}}\right).
+\Tag{(7)}
+\]
+This formula represents certain lines which have been known for
+some time and which had been attributed to hydrogen on account
+of the great similarity between formulae \Eq{(2)} and~\Eq{(7)} since it had
+\PageSep{66}
+never been anticipated that two different substances could exhibit
+properties so closely resembling each other. According to the theory
+we may, however, expect that the emission of the spectrum given by~\Eq{(7)}
+corresponds to the \emph{first stage of the formation of the helium atom},
+\ie\ to the binding of a first electron by the doubly charged nucleus
+of this atom. This interpretation has been found to agree with
+more recent information. For instance it has been possible to
+obtain this spectrum from pure helium. I have dwelt on this point
+in order to show how this intimate connection between the properties
+of two elements, which at first sight might appear quite
+surprising, is to be regarded as an immediate expression of the
+characteristic simple structure of the nuclear atom. A short time
+after the elucidation of this question, new evidence of extraordinary
+interest was obtained of such a similarity between the properties of
+the elements. I refer to Moseley's fundamental researches on the
+X-ray spectra of the elements. Moseley found that these spectra
+varied in an extremely simple manner from one element to the
+next in the periodic system. It is well known that the lines of
+the X-ray spectra may be divided into groups corresponding to the
+different characteristic absorption regions for X-rays discovered by
+Barkla. As regards the $K$~group which contains the most penetrating
+X-rays, Moseley found that the strongest line for all elements
+investigated could be represented by a formula which with
+a small simplification can be written
+\[
+\nu = N^{2} K \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right).
+\Tag{(8)}
+\]
+$K$~is the same constant as in the hydrogen spectrum, and $N$~the
+atomic number. The great significance of this discovery lies in
+the fact that it would seem firmly to establish the view that this
+atomic number is equal to the number of electrons in the atom.
+This assumption had already been used as a basis for work on
+atomic structure and was first stated by van~den Broek. While
+the significance of this aspect of Moseley's discovery was at once
+clear to all, it has on the other hand been more difficult to understand
+the very great similarity between the spectrum of hydrogen
+and the X-ray spectra. This similarity is shown, not only by the
+lines of the $K$~group, but also by groups of less penetrating X-rays.
+\PageSep{67}
+Thus Moseley found for all the elements he investigated that the
+frequencies of the strongest line in the $L$~group may be represented
+by a formula which with a simplification similar to that employed
+in formula~\Eq{(8)} can be written
+\[
+\nu = N^{2} K \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right).
+\Tag{(9)}
+\]
+Here again we obtain an expression for the frequency which corresponds
+to a line in the spectrum which would be emitted by the
+\emph{binding of an electron to a nucleus, whose charge is~$Ne$}.
+
+\Section{The fine structure of the hydrogen lines.} This similarity between
+the structure of the X-ray spectra and the hydrogen spectrum
+was still further extended in a very interesting manner by Sommerfeld's
+important theory of the fine structure of the hydrogen lines.
+The calculation given above of the energy in the stationary states
+of the hydrogen system, where each state is characterized by a
+single quantum number, rests upon the assumption that the orbit
+of the electron in the atom is simply periodic. This is, however,
+only approximately true. It is found that if the change in the mass
+of the electron due to its velocity is taken into consideration the
+orbit of the electron no longer remains a simple ellipse, but its
+motion may be described as a \emph{central motion} obtained by superposing
+a slow and uniform rotation upon a simple periodic motion in a
+very nearly elliptical orbit. For a central motion of this kind the
+stationary states are characterized by \emph{two quantum numbers}. In the
+case under consideration one of these may be so chosen that to a
+very close approximation it will determine the energy of the atom
+in the same manner as the quantum number previously used
+determined the energy in the case of a simple elliptical orbit. This
+quantum number which will always be denoted by~$n$ will therefore
+be called the ``principal quantum number.'' Besides this condition,
+which to a very close approximation determines the major axis in the
+rotating and almost elliptical orbit, a second condition will be imposed
+upon the stationary states of a central orbit, namely that the angular
+momentum of the electron about the centre shall be equal to a whole
+multiple of Planck's constant divided by~$2\pi$. The whole number, which
+occurs as a factor in this expression, may be regarded as the second
+quantum number and will be denoted by~$k$. The latter condition fixes
+\PageSep{68}
+the \Chg{excentricity}{eccentricity} of the rotating orbit which in the case of a simple
+periodic orbit was undetermined. It should be mentioned that the
+possible importance of the angular momentum in the quantum theory
+was pointed out by Nicholson before the application of this theory to
+the spectrum of hydrogen, and that a determination of the stationary
+states for the hydrogen atom similar to that employed by Sommerfeld
+was proposed almost simultaneously by Wilson, although the
+latter did not succeed in giving a physical application to his results.
+
+The simplest description of the form of the rotating nearly
+elliptical electronic orbit in the hydrogen atom is obtained by
+considering the chord which passes through the focus and is
+perpendicular to the major axis, the so-called ``parameter.'' The
+length~$2p$ of this parameter is given to a very close approximation
+by an expression of exactly the same form as the expression for the
+major axis, except that $k$~takes the place of~$n$. Using the same
+notation as before we have therefore
+\[
+2a = n^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m},\quad
+2p = k^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m}.
+\Tag{(10)}
+\]
+For each of the stationary states which had previously been denoted
+by a given value of~$n$, we obtain therefore a set of stationary states
+corresponding to values of~$k$ from $1$ to~$n$. Instead of the simple
+formula~\Eq{(5)} Sommerfeld found a more complicated expression for
+the energy in the stationary states which depends on~$k$ as well as~$n$.
+Taking the variation of the mass of the electron with velocity
+into account and neglecting terms of higher order of magnitude he
+obtained
+\[
+E_{n,k} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}}
+ \left[1 + \frac{4\pi^{2} N^{2} e^{4}}{h^{2} c^{2}}\left(-\frac{3}{4n^{2}} + \frac{1}{nk}\right)\right],
+\Tag{(11)}
+\]
+where $c$~is the velocity of light.
+
+Corresponding to each of the energy values for the stationary
+states of the hydrogen atom given by the simple formula~\Eq{(5)} we
+obtain $n$~values differing only very little from one another, since
+the second term within the bracket is very small. With the aid of
+the general frequency relation~\Eq{(1)} we therefore obtain a number of
+components with nearly coincident frequencies instead of each
+hydrogen line given by the simple formula~\Eq{(2)}. Sommerfeld has
+now shown that this calculation actually agrees with measurements
+\PageSep{69}
+of the fine structure. This agreement applies not only to the fine
+structure of the hydrogen lines which is very difficult to measure
+on account of the extreme proximity of the components, but it is
+also possible to account in detail for the fine structure of the helium
+lines given by formula~\Eq{(7)} which has been very carefully investigated
+by Paschen. Sommerfeld in connection with this theory
+also pointed out that formula~\Eq{(11)} could be applied to the X-ray
+spectra. Thus he showed that in the $K$~and $L$ groups pairs of lines
+appeared the differences of whose frequencies could be determined
+by the expression~\Eq{(11)} for the energy in the stationary states which
+correspond to the binding of a single electron by a nucleus of
+charge~$Ne$.
+
+\Section{Periodic table.} In spite of the great formal similarity between
+the X-ray spectra and the hydrogen spectrum indicated by these
+results a far-reaching difference must be assumed to exist between
+the processes which give rise to the appearance of these two types
+of spectra. While the emission of the hydrogen spectrum, like the
+emission of the ordinary optical spectra of other elements, may be
+assumed to be connected with the binding of an electron by an
+atom, observations on the appearance and absorption of X-ray
+spectra clearly indicate that these spectra are connected with a
+process which may be described as a \emph{reorganization of the electronic
+arrangement} after a disturbance within the atom due to the effect
+of external agencies. We should therefore expect that the appearance
+of the X-ray spectra would depend not only upon the direct
+interaction between a single electron and the nucleus, but also on
+the manner in which the electrons are arranged in the completely
+formed atom.
+
+The peculiar manner in which the properties of the elements
+vary with the atomic number, as expressed in the periodic system,
+provides a guide of great value in considering this latter problem.
+A simple survey of this system is given in \Fig{1}. The number preceding
+each element indicates the atomic number, and the elements
+within the various vertical columns form the different ``periods'' of
+the system. The lines, which connect pairs of elements in successive
+columns, indicate homologous properties of such elements. Compared
+with usual representations of the periodic system, this method,
+\PageSep{70}
+proposed more than twenty years ago by Julius Thomsen, of indicating
+the periodic variations in the properties of the elements is
+more suited for comparison with theories of atomic constitution.
+The meaning of the frames round certain sequences of elements
+within the later periods of the table will be explained later. They
+refer to certain characteristic features of the theory of atomic
+constitution.
+\Figure{1}{70}
+
+In an explanation of the periodic system it is natural to assume
+a division of the electrons in the atom into distinct groups
+in such a manner that the grouping of the elements in the system
+is attributed to the gradual formation of the groups of electrons
+in the atoms as the atomic number increases. Such a grouping
+\PageSep{71}
+of the electrons in the atom has formed a prominent part of all
+more detailed views of atomic structure ever since J.~J. Thomson's
+famous attempt to explain the periodic system on the basis
+of an investigation of the stability of various electronic configurations.
+Although Thomson's assumption regarding the distribution
+of the positive electricity in the atom is not consistent with more
+recent experimental evidence, nevertheless his work has exerted
+great influence upon the later development of the atomic theory on
+account of the many original ideas which it contained.
+
+With the aid of the information concerning the binding of
+electrons by the nucleus obtained from the theory of the hydrogen
+spectrum I attempted in the same paper in which this theory was
+set forth to sketch in broad outlines a picture of the structure of
+the nucleus atom. In this it was assumed that each electron in its
+normal state moved in a manner analogous to the motion in
+the last stages of the binding of a single electron by a nucleus.
+As in Thomson's theory, it was assumed that the electrons moved
+in circular orbits and that the electrons in each separate group
+during this motion occupied positions with reference to one another
+corresponding to the vertices of plane regular polygons. Such an
+arrangement is frequently described as a distribution of the electrons
+in ``rings.'' By means of these assumptions it was possible to
+account for the orders of magnitude of the dimensions of the atoms
+as well as the firmness with which the electrons were bound by the
+atom, a measure of which may be obtained by means of experiments
+on the excitation of the various types of spectra. It was not
+possible, however, in this way to arrive at a detailed explanation
+of the characteristic properties of the elements even after it had
+become apparent from the results of Moseley and the work of
+Sommerfeld and others that this simple picture ought to be extended
+to include orbits in the fully formed atom characterized by
+higher quantum numbers corresponding to previous stages in the
+formation of the hydrogen atom. This point has been especially
+emphasized by Vegard.
+
+The difficulty of arriving at a satisfactory picture of the atom is
+intimately connected with the difficulty of accounting for the pronounced
+``stability'' which the properties of the elements demand.
+As I emphasized when considering the formation of the hydrogen
+\PageSep{72}
+atom, the postulates of the quantum theory aim directly at this
+point, but the results obtained in this way for an atom containing
+a single electron do not permit of a direct elucidation of problems
+like that of the distribution in groups of the electrons in an atom
+containing several electrons. If we imagine that the electrons in
+the groups of the atom are orientated relatively to one another at any
+moment, like the vertices of regular polygons, and rotating in either
+circles or ellipses, the postulates do not give sufficient information to
+determine the difference in the stability of electronic configurations
+with different numbers of electrons in the groups.
+
+The peculiar character of stability of the atomic structure, demanded
+by the properties of the elements, is brought out in an
+interesting way by Kossel in two important papers. In the first
+paper he shows that a more detailed explanation of the origin of
+the high frequency spectra can be obtained on the basis of the
+group structure of the atom. He assumes that a line in the X-ray
+spectrum is due to a process which may be described as follows: an
+electron is removed from the atom by some external action after
+which an electron in one of the other groups takes its place; this
+exchange of place may occur in as many ways as there are groups
+of more loosely bound electrons. This view of the origin of the
+characteristic X-rays afforded a simple explanation of the peculiar
+absorption phenomena observed. It has also led to the prediction
+of certain simple relations between the frequencies of the X-ray
+lines from one and the same element and has proved to be a suitable
+basis for the classification of the complete spectrum. However it has
+not been possible to develop a theory which reconciles in a satisfactory
+way Sommerfeld's work on the fine structure of the X-ray
+lines with Kossel's general scheme. As we shall see later the
+adoption of a new point of view when considering the stability of
+the atom renders it possible to bring the different results in a natural
+way in connection with one another.
+
+In his second paper Kossel investigates the possibilities for an
+explanation of the periodic system on the basis of the atomic theory.
+Without entering further into the problem of the causes of the
+division of the electrons into groups, or the reasons for the different
+stability of the various electronic configurations, he points out in
+connection with ideas which had already played a part in Thomson's
+\PageSep{73}
+theory, how the periodic system affords evidence of a periodic appearance
+of especially stable configurations of electrons. These configurations
+appear in the neutral atoms of elements occupying the
+final position in each period in \Fig{1}, and the stability in question is
+assumed in order to explain not only the inactive chemical properties
+of these elements but also the characteristic active properties of the
+immediately preceding or succeeding elements. If we consider for
+instance an inactive gas like argon, the atomic number of which is~$18$,
+we must assume that the $18$~electrons in the atom are arranged in
+an exceedingly regular configuration possessing a very marked
+stability. The pronounced electronegative character of the preceding
+element, chlorine, may then be explained by supposing the neutral
+atom which contains only $17$~electrons to possess a tendency to
+capture an additional electron. This gives rise to a negative chlorine
+ion with a configuration of $18$~electrons similar to that occurring
+in the neutral argon atom. On the other hand the marked electropositive
+character of potassium may be explained by supposing
+one of the $19$~electrons in the neutral atom to be as it were superfluous,
+and that this electron therefore is easily lost; the rest of the
+atom forming a positive ion of potassium having a constitution similar
+to that of the argon atom. In a corresponding manner it is possible
+to account for the electronegative and electropositive character of
+elements like sulphur and calcium, whose atomic numbers are $16$ and~$20$.
+In contrast to chlorine and potassium these elements are divalent,
+and the stable configuration of $18$~electrons is formed by the addition
+of two electrons to the sulphur atom and by the loss of two electrons
+from the calcium atom. Developing these ideas Kossel has succeeded
+not only in giving interesting explanations of a large number of
+chemical facts, but has also been led to certain general conclusions
+about the grouping of the electrons in elements belonging to the
+first periods of the periodic system, which in certain respects are
+in conformity with the results to be discussed in the following
+paragraphs. Kossel's\Pagelabel{73} work was later continued in an interesting
+manner by Ladenburg with special reference to the grouping of the
+electrons in atoms of elements belonging to the later periods of the
+periodic table. It will be seen that Ladenburg's conclusions also
+exhibit points of similarity with the results which we shall discuss
+later.
+\PageSep{74}
+
+\Section{Recent atomic models.} Up to the present time it has not been
+possible to obtain a satisfactory account based upon a consistent application
+of the quantum theory to the nuclear atom of the ultimate
+cause of the pronounced stability of certain arrangements of electrons.
+Nevertheless it has been apparent for some time that the solution
+should be sought for by investigating the possibilities of a \emph{spatial
+distribution of the electronic orbits} in the atom instead of limiting
+the investigation to configurations in which all electrons belonging
+to a particular group move in the same plane as was assumed for
+simplicity in my first papers on the structure of the atom. The
+necessity of assuming a spatial distribution of the configurations
+of electrons has been drawn attention to by various writers. Born
+and Landé, in connection with their investigations of the structure
+and properties of crystals, have pointed out that the assumption of
+spatial configurations appears necessary for an explanation of these
+properties. Landé has pursued this question still further, and as
+will be mentioned later has proposed a number of different ``spatial
+atomic models'' in which the electrons in each separate group of
+the atom at each moment form configurations possessing regular
+polyhedral symmetry. These models constitute in certain respects
+a distinct advance, although they have not led to decisive results
+on questions of the stability of atomic structure.
+
+The importance of spatial electronic configurations has, in addition,
+been pointed out by Lewis and Langmuir in connection with their
+atomic models. Thus Lewis, who in several respects independently
+came to the same conclusions as Kossel, suggested that the number~$8$
+characterizing the first groups of the periodic system might indicate
+a constitution of the outer atomic groups where the electrons
+within each group formed a configuration like the corners of a cube.
+He emphasized how a configuration of this kind leads to instructive
+models of the molecular structure of chemical combinations. It is
+to be remarked, however, that such a ``static'' model of electronic
+configuration will not be possible if we assume the forces within
+the atom to be due exclusively to the electric charges of the
+particles. Langmuir, who has attempted to develop Lewis' conceptions
+still further and to account not only for the occurrence of
+the first octaves, but also for the longer periods of the periodic
+system, supposes therefore the structure of the atoms to be governed
+\PageSep{75}
+by forces whose nature is unknown to us. He conceives the atom
+to possess a ``cellular structure,'' so that each electron is in advance
+assigned a place in a cell and these cells are arranged in shells in
+such a manner, that the various shells from the nucleus of the atom
+outward contain exactly the same number of places as the periods
+in the periodic system proceeding in the direction of increasing
+atomic number. Langmuir's work has attracted much attention
+among chemists, since it has to some extent thrown light on the
+conceptions with which empirical chemical science is concerned.
+On his theory the explanation of the properties of the various
+elements is based on a number of postulates about the structure of
+the atoms formulated for that purpose. Such a descriptive theory
+is sharply differentiated from one where an attempt is made to
+explain the specific properties of the elements with the aid of
+general laws applying to the interaction between the particles in
+each atom. The principal task of this lecture will consist in an
+attempt to show that an advance along these lines appears by no
+means hopeless, but on the contrary that with the aid of a consistent
+application of the postulates of the quantum theory it
+actually appears possible to obtain an insight into the structure
+and stability of the atom.
+
+
+\Chapter{II.}{Series Spectra and the Capture of Electrons
+by\protect~Atoms}
+
+We attack the problem of atomic constitution by asking the
+question: ``How may an atom be formed by the successive capture
+and binding of the electrons one by one in the field of force surrounding
+the nucleus?''
+
+Before attempting to answer this question it will first be
+necessary to consider in more detail what the quantum theory
+teaches us about the general character of the binding process. We
+have already seen how the hydrogen spectrum gives us definite
+information about the course of this process of binding the electron
+by the nucleus. In considering the formation of the atoms of other
+elements we have also in their spectra sources for the elucidation
+of the formation processes, but the direct information obtained in
+this way is not so complete as in the case of the hydrogen atom.
+For an element of atomic number~$N$ the process of formation may
+\PageSep{76}
+be regarded as occurring in $N$~stages, corresponding with the successive
+binding of $N$~electrons in the field of the nucleus. A spectrum
+must be assumed to correspond to each of these binding processes;
+but only for the first two elements, hydrogen and helium, do we
+possess a detailed knowledge of these spectra. For other elements
+of higher atomic number, where several spectra will be connected
+with the formation of the atom, we are at present acquainted with
+only two types, called the ``arc'' and ``spark'' spectra respectively,
+according to the experimental conditions of excitation. Although
+these spectra show a much more complicated structure than the
+hydrogen spectrum, given by formula~\Eq{(2)} and the helium spectrum
+given by formula~\Eq{(7)}, nevertheless in many cases it has been
+possible to find simple laws for the frequencies exhibiting a close
+analogy with the laws expressed by these formulae.
+
+\Section{Arc and spark spectra.} If for the sake of simplicity we disregard
+the complex structure shown by the lines of most spectra
+(occurrence of doublets, triplets etc.), the frequency of the lines of
+many arc spectra can be represented to a close approximation by
+the Rydberg formula
+\[
+\nu = \frac{K}{(n'' + \alpha_{k''})^{2}} - \frac{K}{(n' + \alpha_{k'})^{2}},
+\Tag{(12)}
+\]
+where $n'$~and $n''$ are integral numbers, $K$~the same constant as in
+the hydrogen spectrum, while $\alpha_{k'}$~and $\alpha_{k''}$ are two constants belonging
+to a set characteristic of the element. A spectrum with a
+structure of this kind is, like the hydrogen spectrum, called a series
+spectrum, since the lines can be arranged into series in which the
+frequencies converge to definite limiting values. These series are
+for example represented by formula~\Eq{(12)} if, using two definite
+constants for $\alpha_{k''}$~and~$\alpha_{k'}$, $n''$~remains unaltered, while $n'$~assumes a
+series of successive, gradually increasing integral values.
+
+Formula~\Eq{(12)} applies only approximately, but it is always found
+that the frequencies of the spectral lines can be written, as in
+formulae \Eq{(2)} and~\Eq{(12)}, as a difference of two functions of integral
+numbers. Thus the latter formula applies accurately, if the
+quantities~$\alpha_{k}$ are not considered as constants, but as representatives
+of a set of series of numbers~$\alpha_{k}(n)$ characteristic of the element,
+whose values for increasing~$n$ within each series quickly approach
+\PageSep{77}
+a constant limiting value. The fact that the frequencies of the
+spectra always appear as the difference of two terms, the so-called
+``spectral terms,'' from the combinations of which the complete
+spectrum is formed, has been pointed out by Ritz, who with the
+establishment of the combination principle has greatly advanced
+the study of the spectra. The quantum theory offers an immediate
+interpretation of this principle, since, according to the frequency
+relation we are led to consider the lines as due to transitions
+between stationary states of the atom, just as in the hydrogen
+spectrum, only in the spectra of the other elements we have to do
+not with a single series of stationary states, but with a set of such
+series. From formula~\Eq{(12)} we thus obtain for an arc spectrum---if
+we temporarily disregard the structure of the individual lines---information
+about an ensemble of stationary states, for which the
+energy of the atom in the $n$th~state of the $k$th~series is given by
+\[
+E_{k}(n) = -\frac{Kh}{(n + \alpha_{k})^{2}}
+\Tag{(13)}
+\]
+very similar to the simple formula~\Eq{(3)} for the energy in the stationary
+states of the hydrogen atom.
+
+As regards the spark spectra, the structure of which has been
+cleared up mainly by Fowler's investigations, it has been possible
+in the case of many elements to express the frequencies approximately
+by means of a formula of exactly the same type as~\Eq{(12)},
+only with the difference that~$K$, just as in the helium spectrum
+given by formula~\Eq{(7)}, is replaced by a constant, which is four times
+as large. For the spark spectra, therefore, the energy values in the
+corresponding stationary states of the atom will be given by an
+expression of the same type as~\Eq{(13)}, only with the difference that
+$K$~is replaced by~$4K$.
+
+This remarkable similarity between the structure of these types
+of spectra and the simple spectra given by \Eq{(2)}~and~\Eq{(7)} is explained
+simply by assuming the arc spectra to be connected with the \emph{last
+stage in the formation of the neutral atom} consisting in the capture
+and binding of the $N$th~electron. On the other hand the spark
+spectra are connected with the \emph{last stage but one in the formation
+of the atom}, namely the binding of the $(N - 1)$th~electron. In these
+cases the field of force in which the electron moves will be much
+\PageSep{78}
+the same as that surrounding the nucleus of a hydrogen or helium
+atom respectively, at least in the earlier stages of the binding
+process, where during the greater part of its revolution it moves
+at a distance from the nucleus which is large in proportion to the
+dimensions of the orbits of the electrons previously bound. From
+analogy with formula~\Eq{(3)} giving the stationary states of the
+hydrogen atom, we shall therefore assume that the numerical value
+of the expression on the right-hand side of~\Eq{(13)} will be equal to the
+work required to remove the last captured electron from the atom,
+the binding of which gives rise to the arc spectrum of the element.
+
+\Section{Series diagram.} While the origin of the arc and spark spectra
+was to this extent immediately interpreted on the basis of the
+original simple theory of the hydrogen spectrum, it was Sommerfeld's
+theory of the fine structure of the hydrogen lines which first gave
+us a clear insight into the characteristic difference between the
+hydrogen spectrum and the spark spectrum of helium on the one
+hand, and the arc and spark spectra of other elements on the other.
+When we consider the binding not of the first but of the subsequent
+electrons in the atom, the orbit of the electron under consideration---at
+any rate in the latter stages of the binding process where the
+electron last bound comes into intimate interaction with those
+previously bound---will no longer be to a near approximation a
+closed ellipse, but on the contrary will to a first approximation be a
+central orbit of the same type as in the hydrogen atom, when we
+take into account the change with velocity in the mass of the
+electron. This motion, as we have seen, may be resolved into a
+plane periodic motion upon which a uniform rotation is superposed
+in the plane of the orbit; only the superposed rotation will in this
+case be comparatively much more rapid and the deviation of the
+periodic orbit from an ellipse much greater than in the case of the
+hydrogen atom. For an orbit of this type the stationary states, just
+as in the theory of the fine structure, will be determined by two
+quantum numbers which we shall denote by $n$~and~$k$, connected in
+a very simple manner with the kinematic properties of the orbit.
+For brevity I shall only mention that while the quantum number~$k$
+is connected with the value of the constant angular momentum
+of the electron about the centre in the simple manner previously
+\PageSep{79}
+indicated, the determination of the principal quantum number~$n$
+requires an investigation of the whole course of the orbit and for
+an arbitrary central orbit will not be related in a simple way to
+the dimensions of the rotating periodic orbit if this deviates essentially
+from a Keplerian ellipse.
+\Figure{2}{79}
+
+These results are represented in \Fig{2} which is a reproduction
+of an illustration I have used on a previous occasion
+(see Essay~II, \PageRef{30}), and which gives a survey of the origin
+of the sodium spectrum. The black dots represent the stationary
+states corresponding to the various series of spectral terms,
+shown on the right by the letters $S$,~$P$,~$D$ and~$B$. These letters
+correspond to the usual notations employed in spectroscopic
+literature and indicate the nature of the series (sharp series,
+principal series, diffuse series, etc.)\ obtained by combinations of
+the corresponding spectral terms. The distances of the separate
+points from the vertical line at the right of the figure are proportional
+to the numerical value of the energy of the atom given
+by equation~\Eq{(13)}. The oblique, black arrows indicate finally the
+transitions between the stationary states giving rise to the
+appearance of the lines in the commonly observed sodium
+spectrum. The values of $n$~and $k$ attached to the various states
+indicate the quantum numbers, which, according to Sommerfeld's
+theory, from a preliminary consideration might be regarded as
+characterizing the orbit of the outer electron. For the sake of
+convenience the states which were regarded as corresponding to
+the same value of~$n$ are connected by means of dotted lines, and these
+are so drawn that their vertical asymptotes correspond to the
+\PageSep{80}
+terms in the hydrogen spectrum which belong to the same value
+of the principal quantum number. The course of the curves illustrates
+how the deviation from the hydrogen terms may be expected
+to decrease with increasing values of~$k$, corresponding to states,
+where the minimum distance between the electron in its revolution
+and the nucleus constantly increases.
+
+It should be noted that even though the theory represents the
+principal features of the structure of the series spectra it has not
+yet been possible to give a detailed account of the spectrum of any
+element by a closer investigation of the electronic orbits which may
+occur in a simple field of force possessing central symmetry. As
+I have mentioned already the lines of most spectra show a complex
+structure. In the sodium spectrum for instance the lines of the
+principal series are doublets indicating that to each $P$-term not
+one stationary state, but two such states correspond with slightly
+different values of the energy. This difference is so little that
+it would not be recognizable in a diagram on the same scale as
+\Fig{2}. The appearance of these doublets is undoubtedly due to
+the small deviations from central symmetry of the field of force
+originating from the inner system in consequence of which the
+general type of motion of the external electron will possess a
+more complicated character than that of a simple central motion.
+As a result the stationary states must be characterized by more
+than two quantum numbers, in the same way that the occurrence
+of deviations of the orbit of the electron in the hydrogen atom from
+a simple periodic orbit requires that the stationary states of this
+atom shall be characterized by more than one quantum number.
+Now the rules of the quantum theory lead to the introduction of
+a third quantum number through the condition that the resultant
+angular momentum of the atom, multiplied by~$2\pi$, is equal to an
+entire multiple of Planck's constant. This determines the orientation
+of the orbit of the outer electron relative to the axis of the
+inner system.
+
+In this way Sommerfeld, Landé and others have shown that it
+is possible not only to account in a formal way for the complex
+structure of the lines of the series spectra, but also to obtain a
+promising interpretation of the complicated effect of external
+magnetic fields on this structure. We shall not enter here on these
+\PageSep{81}
+problems but shall confine ourselves to the problem of the fixation
+of the two quantum numbers $n$~and~$k$, which to a first approximation
+describe the orbit of the outer electron in the stationary
+states, and whose determination is a matter of prime importance
+in the following discussion of the formation of the atom. In
+the determination of these numbers we at once encounter difficulties
+of a profound nature, which---as we shall see---are intimately
+connected with the question of the remarkable stability of atomic
+structure. I shall here only remark that the values of the quantum
+number~$n$, given in the figure, undoubtedly \Chg{can not}{cannot} be retained,
+neither for the~$S$ nor the $P$~series. On the other hand, so far as
+the values employed for the quantum number~$k$ are concerned, it
+may be stated with certainty, that the interpretation of the properties
+of the orbits, which they indicate, is correct. A starting
+point for the investigation of this question has been obtained from
+considerations of an entirely different kind from those previously
+mentioned, which have made it possible to establish a close connection
+between the motion in the atom and the appearance of
+spectral lines.
+
+\Section{Correspondence principle.} So far as the principles of the
+quantum theory are concerned, the point which has been emphasized
+hitherto is the radical departure of these principles from our
+usual conceptions of mechanical and electrodynamical phenomena.
+As I have attempted to show in recent years, it appears
+possible, however, to adopt a point of view which suggests that the
+quantum theory may, nevertheless, be regarded as a rational
+generalization of our ordinary conceptions. As may be seen from
+the postulates of the quantum theory, and particularly the frequency
+relation, a direct connection between the spectra and the motion
+of the kind required by the classical dynamics is excluded, but at
+the same time the form of these postulates leads us to another
+relation of a remarkable nature. Let us consider an electrodynamic
+system and inquire into the nature of the radiation which would
+result from the motion of the system on the basis of the ordinary
+conceptions. We imagine the motion to be decomposed into purely
+harmonic oscillations, and the radiation is assumed to consist of
+the simultaneous emission of series of electromagnetic waves
+\PageSep{82}
+possessing the same frequency as these harmonic components and
+intensities which depend upon the amplitudes of the components.
+An investigation of the formal basis of the quantum theory shows
+us now, that it is possible to trace the question of the origin of the
+radiation processes which accompany the various transitions back
+to an investigation of the various harmonic components, which
+appear in the motion of the atom. The possibility, that a particular
+transition shall occur, may be regarded as being due to the
+presence of a definitely assignable ``corresponding'' component in
+the motion. This principle of correspondence at the same time
+throws light upon a question mentioned several times previously,
+namely the relation between the number of quantum numbers,
+which must be used to describe the stationary states of an atom,
+and the types to which the orbits of the electrons belong. The
+classification of these types can be based very simply on a decomposition
+of the motion into its harmonic components. Time does
+not permit me to consider this question any further, and I shall
+confine myself to a statement of some simple conclusions, which
+the correspondence principle permits us to draw concerning the
+occurrence of transitions between various pairs of stationary states.
+These conclusions are of decisive importance in the subsequent
+argument.
+
+The simplest example of such a conclusion is obtained by
+considering an atomic system, which contains a particle describing
+a \emph{purely periodic orbit}, and where the stationary states are characterized
+by a single quantum number~$n$. In this case the motion
+can according to Fourier's theorem be decomposed into a simple
+series of harmonic oscillations whose frequency may be written~$\tau\omega$,
+where $\tau$~is a whole number, and $\omega$~is the frequency of revolution
+in the orbit. It can now be shown that a transition between two
+stationary states, for which the values of the quantum number are
+respectively equal to $n'$~and~$n''$, will correspond to a harmonic
+component, for which $\tau = n' - n''$. This throws at once light upon
+the remarkable difference which exists between the possibilities
+of transitions between the stationary states of a hydrogen atom
+on the one hand and of a simple system consisting of an electric
+particle capable of executing simple harmonic oscillations about a
+position of equilibrium on the other. For the latter system, which
+\PageSep{83}
+is frequently called a Planck oscillator, the energy in the stationary
+states is determined by the familiar formula $E = nh\omega$, and with the
+aid of the frequency relation we obtain therefore for the radiation
+which will be emitted during a transition between two stationary
+states $\nu = (n' - n'') \omega$. Now, an important assumption, which is not
+only essential in Planck's theory of temperature radiation, but
+which also appears necessary to account for the molecular absorption
+in the infra-red region of radiation, states that a harmonic oscillator
+will only emit and absorb radiation, for which the frequency~$\nu$ is
+equal to the frequency of oscillation~$\omega$ of the oscillator. We are
+therefore compelled to assume that in the case of the oscillator
+transitions can occur only between stationary states which are
+characterized by quantum numbers differing by only one unit,
+while in the hydrogen spectrum represented by formula~\Eq{(2)} all
+possible transitions could take place between the stationary states
+given by formula~\Eq{(5)}. From the point of view of the principle of
+correspondence it is seen, however, that this apparent difficulty is
+explained by the occurrence in the motion of the hydrogen atom,
+as opposed to the motion of the oscillator, of harmonic components
+corresponding to values of~$\tau$, which are different from~$1$; or using
+a terminology well known from acoustics, there appear overtones
+in the motion of the hydrogen atom.
+
+Another simple example of the application of the correspondence
+principle is afforded by a \emph{central motion}, to the investigation of
+which the explanation of the series spectra in the first approximation
+may be reduced. Referring once more to the figure of the
+sodium spectrum, we see that the black arrows, which correspond
+to the spectral lines appearing under the usual conditions of
+excitation, only connect pairs of points in consecutive rows. Now
+it is found that this remarkable limitation of the occurrence of
+combinations between spectral terms may quite naturally be
+explained by an investigation of the harmonic components into
+which a central motion can be resolved. It can readily be shown
+that such a motion can be decomposed into two series of harmonic
+components, whose frequencies can be expressed by $\tau\omega + \sigma$ and
+$\tau\omega - \sigma$ respectively, where $\tau$~is a whole number, $\omega$~the frequency of
+revolution in the rotating periodic orbit and $\sigma$~the frequency of the
+superposed rotation. These components correspond with transitions
+\PageSep{84}
+where the principal number~$n$ decreases by $\tau$~units, while the
+quantum number~$k$ decreases or increases, respectively, by one
+unit, corresponding exactly with the transitions indicated by the
+black arrows in the figure. This may be considered as a very
+important result, because we may say, that the quantum theory,
+which for the first time has offered a simple interpretation of the
+fundamental principle of combination of spectral lines has at the
+same time removed the mystery which has hitherto adhered
+to the application of this principle on account of the apparent
+capriciousness of the appearance of predicted combination lines.
+Especially attention may be drawn to the simple interpretation
+which the quantum theory offers of the appearance observed by
+Stark and his collaborators of certain new series of lines, which do
+not appear under ordinary circumstances, but which are excited
+when the emitting atoms are subject to intense external electric
+fields. In fact, on the correspondence principle this is immediately
+explained from an examination of the perturbations in the motion
+of the outer electron which give rise to the appearance in this
+motion---besides the harmonic components already present in a
+simple central orbit---of a number of constituent harmonic vibrations
+of new type and of amplitudes proportional to the intensity
+of the external forces.
+
+It may be of interest to note that an investigation of the
+limitation of the possibility of transitions between stationary
+states, based upon a simple consideration of conservation of angular
+momentum during the process of radiation, does not, contrary to
+what has previously been supposed (compare Essay~II, \PageRef{62}),
+suffice to throw light on the remarkably simple structure of series
+spectra illustrated by the figure. As mentioned above we must
+assume that the ``complexity'' of the spectral terms, corresponding
+to given values of $n$~and~$k$, which we witness in the fine
+structure of the spectral lines, may be ascribed to states, corresponding
+to different values of this angular momentum, in
+which the plane of the electronic orbit is orientated in a different
+manner, relative to the configuration of the previously bound
+electrons in the atom. Considerations of conservation of angular
+momentum can, in connection with the series spectra, therefore only
+contribute to an understanding of the limitation of the possibilities
+\PageSep{85}
+of combination observed in the peculiar laws applying to the
+number of components in the complex structure of the lines. So
+far as the last question is concerned, such considerations offer a
+direct support for the consequences of the correspondence principle.
+
+
+\Chapter{III.}{Formation of Atoms and the Periodic Table}
+
+A correspondence has been shown to exist between the motion
+of the electron last captured and the occurrence of transitions
+between the stationary states corresponding to the various stages
+of the binding process. This fact gives a point of departure for a
+choice between the numerous possibilities which present themselves
+when considering the formation of the atoms by the successive
+capture and binding of the electrons. Among the processes which
+are conceivable and which according to the quantum theory might
+occur in the atom we shall reject those whose occurrence \Chg{can not}{cannot} be
+regarded as consistent with a correspondence of the required nature.
+
+\Section{First Period. Hydrogen---Helium.} It will not be necessary to
+concern ourselves long with the question of the constitution of the
+hydrogen atom. From what has been said previously we may assume
+that the final result of the process of \emph{binding of the first electron} in
+any atom will be a stationary state, where the energy of the atom
+is given by~\Eq{(5)}, if we put $n = 1$, or more precisely by formula~\Eq{(11)},
+if we put $n = 1$ and $k = 1$. The orbit of the electron will be a circle
+whose radius will be given by formulae~\Eq{(10)}, if $n$~and $k$ are each
+put equal to~$1$. Such an orbit will be called a $1$-quantum orbit,
+and in general an orbit for which the principal quantum number
+has a given value~$n$ will be called an $n$-quantum orbit. Where it
+is necessary to differentiate between orbits corresponding to various
+values of the quantum number~$k$, a central orbit, characterized by
+given values of the quantum numbers $n$~and~$k$, will be referred to
+as an $n_{k}$~orbit.
+
+In the question of the constitution of the helium atom we meet
+the much more complicated problem of the \emph{binding of the second
+electron}. Information about this binding process may, however, be
+obtained from the arc spectrum of helium. This spectrum, as
+opposed to most other simple spectra, consists of two complete
+systems of lines with frequencies given by formulae of the type~\Eq{(12)}.
+\PageSep{86}
+On this account helium was at first assumed to be a mixture
+of two different gases, ``orthohelium'' and ``parhelium,'' but now we
+know that the two spectra simply mean that the binding of the second
+electron can occur in two different ways. A theoretical explanation of
+the main features of the helium spectrum has recently been attempted
+in an interesting paper by Landé. He supposes the emission of the
+orthohelium spectrum to be due to transitions between stationary
+states where both electrons move in the same plane and revolve
+in the same sense. The parhelium spectrum, on the other hand, is
+ascribed by him to stationary states where the planes of the orbits
+form an angle with each other. Dr~Kramers and I have made a
+closer investigation of the interaction between the two orbits in
+the different stationary states. The results of our investigation
+which was begun several years before the appearance of Landé's
+work have not yet been published. Without going into details
+I may say, that even though our results in several respects differ
+materially from those of Landé (compare Essay~II, \PageRef{56}), we agree
+with his general conclusions concerning the origin of the orthohelium
+and parhelium spectra.
+
+The final result of the binding of the second electron is intimately
+related to the origin of the two helium spectra. Important
+information on this point has been obtained recently by Franck
+and his co-workers. As is well known he has thrown light upon
+many features of the structure of the atom and of the origin
+of spectra by observing the effect of bombarding atoms by
+electrons of various velocities. A short time ago these experiments
+showed that the impact of electrons could bring helium into a
+``metastable'' state from which the atom cannot return to its
+normal state by means of a simple transition accompanied by the
+emission of radiation, but only by means of a process analogous to
+a chemical reaction involving interaction with atoms of other
+elements. This result is closely connected with the fact that the
+binding of the second electron can occur in two different ways, as
+is shown by the occurrence of two distinct spectra. Thus it is
+evident from Franck's experiments that the normal state of the
+atom is the last stage in the binding process involving the emission
+of the parhelium spectrum by which the electron last captured as
+well as the one first captured will be bound in a $1_{1}$~orbit. The
+\PageSep{87}
+metastable state, on the contrary, is the final stage of the process
+giving the orthohelium spectrum. In this case the second electron,
+as opposed to the first, will move in a $2_{1}$~orbit. This corresponds to
+a firmness of binding which is about six times less than for the
+electron in the normal state of the atom.
+
+If we now consider somewhat more closely this apparently
+surprising result, it is found that a clear grasp of it may be obtained
+from the point of view of correspondence. It can be shown that
+the coherent class of motions to which the orthohelium orbits
+belong does not contain a $1_{1}$~orbit. If on the whole we would claim
+the existence of a state where the two electrons move in $1_{1}$~orbits
+in the same plane, and if in addition it is claimed that the motion
+should possess the periodic properties necessary for the definition
+of stationary states, then there seems that no possibility is afforded
+other than the assumption that the two electrons move around the
+nucleus in one and the same orbit, in such a manner that at each
+moment they are situated at the ends of a diameter. This extremely
+simple ring-configuration might be expected to correspond to
+the firmest possible binding of the electrons in the atom, and it
+was on this account proposed as a model for the helium atom in
+my first paper on atomic structure. If, however, we inquire about
+the possibility of a transition from one of the orthohelium states
+to a configuration of this type we meet conditions which are very
+different from those which apply to transitions between two of
+the orthohelium orbits. In fact, the occurrence of each of these
+transitions is due to the existence of well-defined corresponding
+constituent harmonic vibration in the central orbits which the outer
+electron describes in the class of motions to which the stationary
+states belong. The transition we have to discuss, on the other
+hand, is one by which the last captured electron is transferred from
+a state in which it is moving ``outside'' the other to a state in which
+it moves round the nucleus on equal terms with the other electron.
+Now it is impossible to find a series of simple intermediate forms
+for the motion of those two electrons in which the orbit of the last
+captured electron exhibits a sufficient similarity to a central motion
+that for this transition there could be a correspondence of the
+necessary kind. It is therefore evident, that where the two electrons
+move in the same plane, the electron captured last \Chg{can not}{cannot} be
+\PageSep{88}
+bound firmer than in a $2_{1}$~orbit. If, on the other hand, we consider
+the binding process which accompanies the emission of the parhelium
+spectrum and where the electrons in the stationary states move in
+orbits whose planes form angles with one another we meet essentially
+different conditions. A corresponding intimate change in the
+interaction between the electron last captured and the one previously
+bound is not required here for the two electrons in the atom to
+become equivalent. We may therefore imagine the last stage of
+the binding process to take place in a manner similar to those
+stages corresponding to transitions between orbits characterized by
+greater values of $n$~and~$k$.
+
+In the \emph{normal state of the helium atom} the two electrons must
+be assumed to move in equivalent $1_{1}$~orbits. As a first approximation
+these may be described as two circular orbits, whose planes make
+an angle of~$120°$ with one another, in agreement with the conditions
+which the angular momentum of an atom according to the quantum
+theory must satisfy. On account of the interaction between the
+two electrons these planes at the same time turn slowly around
+the fixed impulse axis of the atom. Starting from a distinctly
+different point of view Kemble has recently suggested a similar
+model for the helium atom. He has at the same time directed
+attention to a possible type of motion of very marked symmetry
+in which the electrons during their entire revolution assume
+symmetrical positions with reference to a fixed axis. Kemble has
+not, however, investigated this motion further. Previous to the
+appearance of this paper Kramers had commenced a closer investigation
+of precisely this type of motion in order to find out to what
+extent it was possible from such a calculation to account for the
+firmness with which the electrons are bound in the helium atom,
+that is to account for the ionization potential. Early measurements
+of this potential had given values corresponding approximately to
+that which would result from the ring-configuration already mentioned.
+This requires $17/8$~as much work to remove a single
+electron as is necessary to remove an electron from the hydrogen
+atom in its normal state. As the theoretical value for the latter
+amount of work---which for the sake of simplicity will be represented
+by~$W$---corresponds to an ionization potential of $13.53$~volts,
+the ionization potential of helium would be expected to be $28.8$~volts.
+\PageSep{89}
+Recent and more accurate determinations, however, have
+given a value for the ionization potential of helium which is considerably
+lower and lies in the neighbourhood of $25$~volts. This
+showed therefore the untenability of the ring-configuration quite
+independently of any other considerations. A careful investigation of
+the spatial atomic configuration requires elaborate calculation, and
+Kramers has not yet obtained final results. With the approximation
+to which they have been so far completed the calculations point to
+the possibility of an agreement with the experimental results. The
+final result may be awaited with great interest, since it offers in
+the simplest case imaginable a test of the principles by which we
+are attempting to determine stationary states of atoms containing
+more than one electron.
+
+Hydrogen and helium, as seen in the survey of the periodic
+system given in \Fig{1}, together form the first period in the system
+of elements, since helium is the first of the inactive gases. The great
+difference in the chemical properties of hydrogen and helium is
+closely related to the great difference in the nature of the binding
+of the electron. This is directly indicated by the spectra and
+ionization potentials. While helium possesses the highest known
+ionization potential of all the elements, the binding of the electron
+in the hydrogen atom is sufficiently loose to account for the tendency
+of hydrogen to form positive ions in aqueous solutions and chemical
+combinations. Further consideration of this particular question
+requires, however, a comparison between the nature and firmness
+of the electronic configurations of other atoms, and it can therefore
+not be discussed at the moment.
+
+\Section{Second Period. Lithium---Neon.} When considering the atomic
+structure of elements which contain more than two electrons in the
+neutral atom, we shall assume first of all that what has previously
+been said about the formation of the helium atom will in the main
+features also apply to the capture and binding of the first two
+electrons. These electrons may, therefore, in the normal state of
+the atom be regarded as moving in equivalent orbits characterized
+by the quantum symbol~$1_{1}$. We obtain direct information about
+the \emph{binding of the third electron} from the spectrum of lithium.
+This spectrum shows the existence of a number of series of
+\PageSep{90}
+stationary states, where the firmness with which the last captured
+electron is bound is very nearly the same as in the stationary states
+of the hydrogen atom. These states correspond to orbits where $k$~is
+greater than or equal to~$2$, and where the last captured electron
+moves entirely outside the region where the first two electrons
+move. But in addition this spectrum gives us information about a
+series of states corresponding to $k = 1$ in which the energy differs
+essentially from the corresponding stationary states of the hydrogen
+atom. In these states the last captured electron, even if it remains
+at a considerable distance from the nucleus during the greater part
+of its revolution, will at certain moments during the revolution
+approach to a distance from the nucleus which is of the same order
+of magnitude as the dimensions of the orbits of the previously
+bound electrons. On this account the electrons will be bound with
+a firmness which is considerably greater than that with which the
+electrons are bound in the stationary states of the hydrogen atom
+corresponding to the same value of~$n$.
+
+Now as regards the lithium spectrum as well as the other alkali
+spectra we are so fortunate (see \PageRef{32}) as to possess definite evidence
+about the normal state of the atom from experiments on selective
+absorption. In fact these experiments tell us that the first member
+of the sequence of $S$-terms corresponds to this state. This term
+corresponds to a strength of binding which is only a little more than
+a third of that of the hydrogen atom. We must therefore conclude
+that the outer electron in the normal state of the lithium atom
+moves in a $2_{1}$~orbit, just as the outer electron in the metastable
+state of the helium atom. The reason why the binding of the
+outer electron \Chg{can not}{cannot} proceed to an orbit characterized by a smaller
+value for the total quantum number may also be considered as
+analogous in the two cases. In fact, a transition by which the third
+electron in the lithium atom was ultimately bound in a $1_{1}$~orbit
+would lead to a state in the atom in which the electron would play
+an equivalent part with the two electrons previously bound. Such
+a process would be of a type entirely different from the transitions
+between the stationary states connected with the emission of the
+lithium spectrum, and would, contrary to these, not exhibit a
+correspondence with a harmonic component in the motion of the
+atom.
+\PageSep{91}
+
+We obtain, therefore, a picture of the formation and structure of
+the lithium atom which offers a natural explanation of the great
+difference of the chemical properties of lithium from those of helium
+and hydrogen. This difference is at once explained by the fact that
+the firmness by which the last captured electron is bound in its
+$2_{1}$~orbit in the lithium atom is only about a third of that with which
+the electron in the hydrogen atom is held, and almost five times
+smaller than the firmness of the binding of the electrons in the
+helium atom.
+
+What has been said here applies not alone to the formation of
+the lithium atom, but may also be assumed to apply to the binding
+of the third electron in every atom, so that in contrast to the first
+two electrons which move in $1_{1}$~orbits this may be assumed to move
+in a $2_{1}$~orbit. As regards the \emph{binding of the fourth, fifth and sixth
+electrons} in the atom, we do not possess a similar guide as no simple
+series spectra are known of beryllium, boron and carbon. Although
+conclusions of the same degree of certainty \Chg{can not}{cannot} be reached it
+seems possible, however, to arrive at results consistent with general
+physical and chemical evidence by proceeding by means of considerations
+of the same kind as those applied to the binding of the
+first three electrons. In fact, we shall assume that the fourth, fifth
+and sixth electrons will be bound in $2_{1}$~orbits. The reason why the
+binding of a first electron in an orbit of this type will not prevent the
+capture of the others in two quanta orbits may be ascribed to the fact
+that $2_{1}$~orbits are not circular but very \Chg{excentric}{eccentric}; For example, the
+$3$rd~electron cannot keep the remaining electrons away from the inner
+system in the same way in which the first two electrons bound in
+the lithium atom prevent the third from being bound in a
+$1$-quantum orbit. Thus we shall expect that the $4$th, $5$th and $6$th
+electrons in a similar way to the $3$rd will at certain moments of
+their revolution enter into the region where the first two
+bound electrons move. We must not imagine, however, that these
+visits into the inner system take place at the same time, but
+that the four electrons visit the nucleus separately at equal
+intervals of time. In earlier work on atomic structure it was supposed
+that the electrons in the various groups in the atom moved
+in separate regions within the atom and that at each moment the
+electrons within each separate group were arranged in configurations
+\PageSep{92}
+possessing symmetry like that of a regular polygon or polyhedron.
+Among other things this involved that the electrons in each group
+were supposed to be at the point of the orbit nearest the nucleus
+at the same time. A structure of this kind may be described as one
+where the motions of the electrons within the groups are coupled
+together in a manner which is largely independent of the interaction
+between the various groups. On the contrary, the characteristic
+feature of a structure like that I have suggested is the \emph{intimate
+coupling between the motions of the electrons in the various groups}
+characterized by different quantum numbers, as well as the \emph{greater
+independence in the mode of binding within one and the same group
+of electrons} the orbits of which are characterized by the same
+quantum number. In emphasizing this last feature I have two
+points in mind. Firstly the smaller effect of the presence of previously
+bound electrons on the firmness of binding of succeeding
+electrons in the same group. Secondly the way in which the motions
+of the electrons within the group reflect the independence both of
+the processes by which the group can be formed and by which it
+can be reorganized by change of position of the different electrons
+in the atom after a disturbance by external forces. The last point
+will be considered more closely when we deal with the origin and
+nature of the X-ray spectra; for the present we shall continue the
+consideration of the structure of the atom to which we are led by
+the investigation of the processes connected with the successive
+capture of the electrons.
+
+The preceding considerations enable us to understand the fact
+that the two elements beryllium and boron immediately succeeding
+lithium can appear electropositively with $2$~and $3$~valencies respectively
+in combination with other substances. For like the third
+electron in the lithium atom, the last captured electrons in these
+elements will be much more lightly bound than the first two
+electrons. At the same time we understand why the electropositive
+character of these elements is less marked than in the case of
+lithium, since the electrons in the $2$-quanta orbits will be much
+more firmly bound on account of the stronger field in which they
+are moving. New conditions arise, however, in the case of the
+next element, carbon, as this element in its typical chemical combinations
+\Chg{can not}{cannot} be supposed to occur as an ion, but rather as a
+\PageSep{93}
+neutral atom. This must be assumed to be due not only to the great
+firmness in the binding of the electrons but also to be an essential
+consequence of the symmetrical configuration of the electrons.
+
+With the binding of the $4$th, $5$th and $6$th electrons in $2_{1}$~orbits,
+the spatial symmetry of the regular configuration of the orbits
+must be regarded as steadily increasing, until with the binding of
+the $6$th electron the orbits of the four last bound electrons may be
+expected to form an exceptionally symmetrical configuration in
+which the normals to the planes of the orbits occupy positions
+relative to one another nearly the same as the lines from the centre
+to the vertices of a regular tetrahedron. Such a configuration
+of groups of $2$-quanta orbits in the carbon atom seems capable
+of furnishing a suitable foundation for explaining the structure of
+organic compounds. I shall not discuss this question any further,
+for it would require a thorough study of the interaction between
+the motions of the electrons in the atoms forming the molecule.
+I might mention, however, that the types of molecular models to
+which we are led are very different from the molecular models
+which were suggested in my first papers. In these the chemical
+``valence bonds'' were represented by ``electron rings'' of the same
+type as those which were assumed to compose the groups of
+electrons within the individual atoms. It is nevertheless possible
+to give a general explanation of the chemical properties of the
+elements without touching on those matters at all. This is largely
+due to the fact that the structures of combinations of atoms of the
+same element and of many organic compounds do not have the
+same significance for our purpose as those molecular structures in
+which the individual atoms occur as electrically charged ions. The
+latter kind of compounds, to which the greater number of simple
+inorganic compounds belong, is frequently called ``heteropolar'' and
+possesses a far more typical character than the first compounds
+which are called ``homoeopolar,'' and whose properties to quite a
+different degree exhibit the individual peculiarities of the elements.
+My main purpose will therefore be to consider the fitness which
+the configurations of the electrons in the various atoms offer for
+the formation of ions.
+
+Before leaving the carbon atom I should mention, that a model
+of this atom in which the orbits of the four most lightly bound
+\PageSep{94}
+electrons possess a pronounced tetrahedric symmetry had already
+been suggested by Landé. In order to agree with the measurements
+of the size of the atoms he also assumed that these electrons moved
+in $2_{1}$~orbits. There is, however, this difference between Landé's
+view and that given here, that while Landé deduced the characteristic
+properties of the carbon atom solely from an investigation of
+the simplest form of motion which four electrons can execute
+employing spatial symmetry, our view originates from a consideration
+of the stability of the whole atom. For our assumptions about
+the orbits of the electrons are based directly on an investigation of
+the interaction between these electrons and the first two bound
+electrons. The result is that our model of the carbon atom has
+dynamic properties which are essentially different from the properties
+of Landé's model.
+
+In order to account for the properties of \emph{the elements in the second
+half of the second period} it will first of all be necessary to show
+why the configuration of ten electrons occurring in the neutral atom
+of neon possesses such a remarkable degree of stability. Previously
+it has been assumed that the properties of this configuration were
+due to the interaction between eight electrons which moved in
+equivalent orbits outside the nucleus and an inner group of two
+electrons like that in the helium atom. It will be seen, however,
+that the solution must be sought in an entirely different direction.
+It \Chg{can not}{cannot} be expected that \emph{the $7$th electron} will be bound in a $2_{1}$~orbit
+equivalent to the orbits of the four preceding electrons. The occurrence
+of five such orbits would so definitely destroy the symmetry
+in the interaction of these electrons that it is inconceivable that a
+process resulting in the accession of a fifth electron to this group
+would be in agreement with the correspondence principle. On the
+contrary it will be necessary to assume that the four electrons in
+their exceptionally symmetrical orbital configuration will keep out
+later captured electrons with the result that these electrons will be
+bound in orbits of other types.
+
+The orbits which come into consideration for the $7$th electron in
+the nitrogen atom and the $7$th, $8$th, $9$th and $10$th electrons in the
+atoms of the immediately following elements will be circular orbits
+of the type~$2_{2}$. The diameters of these orbits are considerably larger
+than those of the $l_{1}$~orbits of the first two electrons; on the other
+\PageSep{95}
+hand the outermost part of the \Chg{excentric}{eccentric} $2_{1}$~orbits will extend some
+distance beyond these circular $2_{2}$~orbits. I shall not here discuss the
+capture and binding of these electrons. This requires a further investigation
+of the interaction between the motions of the electrons
+in the two types of $2$-quanta orbits. I shall simply mention, that
+in the atom of neon in which we will assume that there are four
+electrons in $2_{2}$~orbits the planes of these orbits must be regarded not
+only as occupying a position relative to one another characterized
+by a high degree of spatial symmetry, but also as possessing a
+configuration harmonizing with the four elliptical $2_{1}$~orbits. An
+interaction of this kind in which the orbital planes do not
+coincide can be attained only if the configurations in both subgroups
+exhibit a systematic deviation from tetrahedral symmetry.
+This will have the result that the electron groups with $2$-quanta
+orbits in the neon atom will have only a single axis of symmetry
+which must be supposed to coincide with the axis of symmetry of
+the innermost group of two electrons.
+
+Before leaving the description of the elements within the second
+period it may be pointed out that the above considerations offer a
+basis for interpreting that tendency of the neutral atoms of oxygen
+and fluorine for capturing further electrons which is responsible for
+the marked electronegative character of these elements. In fact,
+this tendency may be ascribed to the fact that the orbits of
+the last captured electrons will find their place within the region,
+in which the previously captured electrons move in $2_{1}$~orbits. This
+suggests an explanation of the great difference between the properties
+of the elements in the latter half of the second period of the
+periodic system and those of the elements in the first half, in whose
+atoms there is only a single type of $2$-quanta orbits.
+
+\Section{Third Period. Sodium---Argon.} We shall now consider the
+structure of atoms of elements in the third period of the periodic
+system. This brings us immediately 'to the question of \emph{the binding
+of the $11$th electron} in the atom. Here we meet conditions which
+in some respects are analogous to those connected with the binding
+of the $7$th electron. The same type of argument that applied to
+the carbon atom shows that the symmetry of the configuration in
+the neon atom would be essentially, if not entirely, destroyed by
+\PageSep{96}
+the addition of another electron in an orbit of the same type as
+that in which the last captured electrons were bound. Just as in
+the case of the $3$rd~and $7$th electrons we may therefore expect to
+meet a new type of orbit for the 11th electron in the atom, and the
+orbits which present themselves this time are the $3_{1}$~orbits. An
+electron in such an orbit will for the greater part of the time remain
+outside the orbits of the first ten electrons. But at certain moments
+during the revolution it will penetrate not only into the region of
+the $2$-quanta orbits, but like the $2_{1}$~orbits it will penetrate to
+distances from the nucleus which are smaller than the radii of
+the $1$-quantum orbits of the two electrons first bound. This fact,
+which has a most important bearing on the stability of the atom,
+leads to a peculiar result as regards the binding of the $11$th electron.
+In the sodium atom this electron will move in a field which so far
+as the outer part of the orbit is concerned deviates only very little
+from that surrounding the nucleus in the hydrogen atom, but the
+dimensions of this part of the orbit will, nevertheless, be essentially
+different from the dimensions of the corresponding part of a $3_{1}$~orbit
+in the hydrogen atom. This arises from the fact, that even
+though the electron only enters the inner configuration of the first
+ten electrons for short intervals during its revolution, this part of
+the orbit will nevertheless exert an essential influence upon the
+determination of the principal quantum number. This is directly
+related to the fact that the motion of the electron in the first part
+of the orbit deviates only a little from the motion which each of
+the previously bound electrons in $2_{1}$~orbits executes during a complete
+revolution. The uncertainty which has prevailed in the
+determination of the quantum numbers for the stationary states
+corresponding to a spectrum like that of sodium is connected with
+this. This question has been discussed by several physicists. From
+a comparison of the spectral terms of the various alkali metals,
+Roschdestwensky has drawn the conclusion that the normal state
+does not, as we might be inclined to expect a~priori, correspond to
+a $1_{1}$~orbit as shown in \Fig{2} on \PageRef{79}, but that this state corresponds
+to a $2_{1}$~orbit. Schrödinger has arrived at a similar result
+in an attempt to account for the great difference between the
+$S$~terms and the terms in the $P$~and $D$ series of the alkali spectra.
+He assumes that the ``outer'' electron in the states corresponding
+\PageSep{97}
+to the $S$~terms---in contrast to those corresponding to the $P$~and
+$D$ terms---penetrates partly into the region of the orbits of the
+inner electrons during the course of its revolution. These investigations
+contain without doubt important hints, but in reality the
+conditions must be very different for the different alkali spectra.
+Instead of a $2_{1}$~orbit as in lithium we must thus assume for
+the spectrum of sodium not only that the first spectral term in
+the $S$~series corresponds to a $3_{1}$~orbit, but also, as a more detailed
+consideration shows, that the first term in the $P$~series corresponds
+not to a $2_{2}$~orbit as indicated in \Fig{2}, but to a $3_{2}$~orbit. If the
+numbers in this figure were correct, it would require among other
+things that the $P$~terms should be smaller than the hydrogen terms
+\Figure{3}{97}
+corresponding to the same principal quantum number. This would
+mean that the average effect of the inner electrons could be described
+as a repulsion greater than would occur if their total electrical charge
+were united in the nucleus. This, however, \Chg{can not}{cannot} be expected from
+our view of atomic structure. The fact that the last captured electron,
+at any rate for low values of~$k$, revolves partly inside the orbits of the
+previously bound electrons will on the contrary involve that the
+presence of these electrons will give rise to a virtual repulsion
+which is considerably smaller than that which would be due to
+their combined charges. Instead of the curves drawn between
+points in \Fig{2} which represent stationary states corresponding
+to the same value of the principal quantum number running from
+right to left, we obtain curves which run from left to right, as
+is indicated in \Fig{3}. The stationary states are labelled with
+\PageSep{98}
+quantum numbers corresponding to the structure I have described.
+According to the view underlying \Fig{2} the sodium spectrum
+might be described simply as a distorted hydrogen spectrum,
+whereas according to \Fig{3} there is not only distortion but also
+complete disappearance of certain terms of low quantum numbers.
+It may be stated, that this view not only appears to offer an explanation
+of the magnitude of the terms, but that the complexity
+of the terms in the $P$~and $D$ series finds a natural explanation in
+the deviation of the configuration of the ten electrons first bound
+from a purely central symmetry. This lack of symmetry has its
+origin in the configuration of the two innermost electrons and
+``transmits'' itself to the outer parts of the atomic structure, since
+the $2_{1}$~orbits penetrate partly into the region of these electrons.
+
+This view of the sodium spectrum provides at the same time an
+immediate explanation of the pronounced electropositive properties
+of sodium, since the last bound electron in the sodium atom is still
+more loosely bound than the last captured electron in the lithium
+atom. In this connection it might be mentioned that the increase
+in atomic volume with increasing atomic number in the family of
+the alkali metals finds a simple explanation in the successively
+looser binding of the valency electrons. In his work on the X-ray
+spectra Sommerfeld at an earlier period regarded this increase in
+the atomic volumes as supporting the assumption that the principal
+quantum number of the orbit of the valency electrons increases by
+unity as we pass from one metal to the next in the family. His
+later investigations on the series spectra have led him, however,
+definitely to abandon this assumption. At first sight it might also
+appear to entail a far greater increase in the atomic volume than
+that actually observed. A simple explanation of this fact is however
+afforded by realizing that the orbit of the electron will run
+partly inside the region of the inner orbit and that therefore the
+``effective'' quantum number which corresponds to the outer almost
+elliptical loop will be much smaller than the principal quantum
+number, by which the whole central orbit is described. It may
+be mentioned that Vegard in his investigations on the X-ray spectra
+has also proposed the assumption of successively increasing quantum
+numbers for the electronic orbits in the various groups of the atom,
+reckoned from the nucleus outward. He has introduced assumptions
+\PageSep{99}
+about the relations between the numbers of electrons in the various
+groups of the atom and the lengths of the periods in the periodic
+system which exhibit certain formal similarities with the results
+presented here. But Vegard's considerations do not offer points of
+departure for a further consideration of the evolution and stability
+of the groups, and consequently no basis for a detailed interpretation
+of the properties of the elements.
+
+When we consider the elements following sodium in the third
+period of the periodic system we meet in \emph{the binding of the $12$th,
+$13$th and $14$th electrons} conditions which are analogous to those
+we met in the binding of the $4$th, $5$th and $6$th electrons. In the
+elements of the third periods, however, we possess a far more
+detailed knowledge of the series spectra. Too little is known
+about the beryllium spectrum to draw conclusions about the
+binding of the fourth electron, but we may infer directly from the
+well-known arc spectrum of magnesium that the $12$th electron
+in the atom of this element is bound in a $3_{1}$~orbit. As regards
+the binding of the $13$th electron we meet in aluminium an
+absorption spectrum different in structure to that of the alkali
+metals. In fact here not the lines of the principal series but the
+lines of the sharp and diffuse series are absorption lines. Consequently
+it is the first member of the $P$~terms and not of the $S$~terms
+which corresponds to the normal state of the aluminium
+atom, and we must assume that the $13$th electron is bound in
+a $3_{2}$~orbit. This, however, would hardly seem to be a general
+property of the binding of the $13$th electron in atoms, but rather
+to arise from the special conditions for the binding of the last
+electron in an atom, where already there are two other electrons
+bound as loosely as the valency electron of aluminium. At the
+present state of the theory it seems best to assume that in the
+silicon atom the four last captured electrons will move in $3_{1}$~orbits
+forming a configuration possessing symmetrical properties
+similar to the outer configuration of the four electrons in $2_{1}$~orbits
+in carbon. Like what we assumed for the latter configuration we
+shall expect that the configuration of the $3_{1}$~orbits occurring for the
+first time in silicon possesses such a completion, that the addition
+of a further electron in a $3_{1}$~orbit to the atom of the following elements
+is impossible, and that \emph{the $15$th electron} in the elements of
+\PageSep{100}
+higher atomic number will be bound in a new type of orbit. In this
+case, however, the orbits with which we meet will not be circular,
+as in the capture of the $7$th electron, but will be rotating \Chg{excentric}{eccentric}
+orbits of the type~$3_{2}$. This is very closely related to the fact, mentioned
+above, that the non-circular orbits will correspond to a
+firmer binding than the circular orbits having the same value for
+the principal quantum number, since the electrons will at certain
+moments penetrate much farther into the interior of the atom.
+Even though a $3_{2}$~orbit will not penetrate into the innermost configuration
+of $1_{1}$~orbits, it will penetrate to distances from the nucleus
+which are considerably less than the radii of the circular $2_{}2$~orbits.
+In the case of the $16$th, $17$th and $18$th electrons the conditions are
+similar to those for the $15$th. So for argon we may expect a configuration
+in which the ten innermost electrons move in orbits of
+the same type as in the neon atom while the last eight electrons will
+form a configuration of four $3_{1}$~orbits and four $3_{2}$~orbits, whose
+symmetrical properties must be regarded as closely corresponding
+to the configuration of $2$-quanta orbits in the neon atom. At the
+same time, as this picture suggests a qualitative explanation of the
+similarity of the chemical properties of the elements in the latter
+part of the second and third periods, it also opens up the possibility
+of a natural explanation of the conspicuous difference from a
+quantitative aspect.
+
+\Section{Fourth Period. Potassium---Krypton.} In the fourth period
+we meet at first elements which resemble chemically those at the
+beginning of the two previous periods. This is also what we should
+expect. We must thus assume that \emph{the $19$th electron} is bound in
+a new type of orbit, and a closer consideration shows that this will
+be a $4_{1}$~orbit. The points which were emphasized in connection
+with the binding of the last electron in the sodium atom will be
+even more marked here on account of the larger quantum number
+by which the orbits of the inner electrons are characterized. In
+fact, in the potassium atom the $4_{1}$~orbit of the $19$th electron will,
+as far as inner loops are concerned, coincide closely with the shape
+of a $3_{1}$~orbit. On this account, therefore, the dimensions of the
+outer part of the orbit will not only deviate greatly from the
+dimensions of a $4_{1}$~orbit in the hydrogen atom, but will coincide
+\PageSep{101}
+closely with a hydrogen orbit of the type~$2_{1}$, the dimensions of
+which are about four times smaller than the $4_{1}$~hydrogen orbit.
+This result allows an immediate explanation of the main features of
+the chemical properties and the spectrum of potassium. Corresponding
+results apply to calcium, in the neutral atom of which
+there will be two valency electrons in equivalent $4_{1}$~orbits.
+
+After calcium the properties of the elements in the fourth period
+of the periodic system deviate, however, more and more from the
+corresponding elements in the previous periods, until in the family
+of the iron metals we meet elements whose properties are essentially
+different. Proceeding to still higher atomic numbers we again
+meet different conditions. Thus we find in the latter part of the
+fourth period a series of elements whose chemical properties approach
+more and more to the properties of the elements at the end
+of the preceding periods, until finally with atomic number~$36$ we
+again meet one of the inactive gases, namely krypton. This is
+exactly what we should expect. The formation and stability of the
+atoms of the elements in the first three periods require that each
+of the first $18$ electrons in the atom shall be bound in each succeeding
+element in an orbit of the same principal quantum number
+as that possessed by the particular electron, when it first appeared.
+It is readily seen that this is no longer the case for the $19$th
+electron. With increasing nuclear charge and the consequent
+decrease in the difference between the fields of force inside and
+outside the region of the orbits of the first $18$ bound electrons, the
+dimensions of those parts of a $4_{1}$~orbit which fall outside will
+approach more and more to the dimensions of a $4$-quantum orbit
+calculated on the assumption that the interaction between the
+electrons in the atom may be neglected. \emph{With increasing atomic
+number a point will therefore be reached where a $3_{3}$~orbit will correspond
+to a firmer binding of the $19$th electron than a $4_{1}$~orbit}, and
+this occurs as early as at the beginning of the fourth period. This
+cannot only be anticipated from a simple calculation but is confirmed
+in a striking way from an examination of the series spectra. While
+the spectrum of potassium indicates that the $4_{1}$~orbit corresponds
+to a binding which is more than twice as firm as in a $3_{3}$~orbit
+corresponding to the first spectral term in the $D$~series, the conditions
+are entirely different as soon as calcium is reached. We
+\PageSep{102}
+shall not consider the arc spectrum which is emitted during the
+capture of the $20$th electron but the spark spectrum which corresponds
+to the capture and binding of the $19$th electron. While the
+spark spectrum of magnesium exhibits great similarity with the
+sodium spectrum as regards the values of the spectral terms in the
+various series---apart from the fact that the constant appearing in
+formula~\Eq{(12)} is four times as large as the Rydberg constant---we
+meet in the spark spectrum of calcium the remarkable condition
+\Figure{4}{102}
+that the first term of the $D$~series is larger than the first term of
+the $P$~series and is only a little smaller than the first term of the
+$S$~series, which may be regarded as corresponding to the binding
+of the $19$th electron in the normal state of the calcium atom.
+These facts are shown in \Fig[figure]{4} which gives a survey of the
+stationary states corresponding to the arc spectra of sodium and
+potassium. As in figures \FigNum{2} and~\FigNum{3} of the sodium spectrum, we
+have disregarded the complexity of the spectral terms, and the
+numbers characterizing the stationary states are simply the quantum
+\PageSep{103}
+numbers $n$~and~$k$. For the sake of comparison the scale in which the
+energy of the different states is indicated is chosen four times as
+small for the spark spectra as for the arc spectra. Consequently
+the vertical lines indicated with various values of~$n$ correspond for
+the arc spectra to the spectral terms of hydrogen, for the spark
+spectra to the terms of the helium spectrum given by formula~\Eq{(7)}.
+Comparing the change in the relative firmness in the binding of
+the $19$th electron in a $4_{1}$~and $3_{3}$~orbit for potassium and calcium we
+see that we must be prepared already for the next element,
+scandium, to find that the $3_{3}$~orbit will correspond to a stronger
+binding of this electron than a $4_{1}$~orbit. On the other hand it
+follows from previous remarks that the binding will be much lighter
+than for the first $18$ electrons which agrees that in chemical combinations
+scandium appears electropositively with three valencies.
+
+If we proceed to the following elements, a still larger number of
+$3_{3}$~orbits will occur in the normal state of these atoms, since the
+number of such electron orbits will depend upon the firmness of
+their binding compared to the firmness with which an electron is
+bound in a $4_{1}$~orbit, in which type of orbit at least the last captured
+electron in the atom may be assumed to move. We therefore meet
+conditions which are essentially different from those which we have
+considered in connection with the previous periods, so that here
+we have to do with \emph{the successive development of one of the inner
+groups of electrons in the atom}, in this case with groups of electrons
+in $3$-quanta orbits. Only when the development of this group has
+been completed may we expect to find once more a corresponding
+change in the properties of the elements with increasing atomic
+number such as we find in the preceding periods. The properties
+of the elements in the latter part of the fourth period show
+immediately that the group, when completed, will possess $18$~electrons.
+Thus in krypton, for example, we may expect besides
+the groups of $1$,~$2$ and $3$-quanta orbits a markedly symmetrical
+configuration of $8$~electrons in $4$-quanta orbits consisting of four $4_{1}$~orbits
+and four $4_{2}$~orbits.
+
+The question now arises: In which way will the gradual formation
+of the group of electrons having $3$-quanta orbits take place?
+From analogy with the constitution of the groups of electrons with
+$2$-quanta orbits we might at first sight be inclined to suppose that
+\PageSep{104}
+the complete group of $3$-quanta orbits would consist of three subgroups
+of four electrons each in orbits of the types $3_{1}$,~$3_{2}$ and~$3_{3}$
+respectively, so that the total number of electrons would be $12$
+instead of~$18$. Further consideration shows, however, that such an
+expectation would not be justified. The stability of the configuration
+of eight electrons with $2$-quanta orbits occurring in neon must
+be ascribed not only to the symmetrical configuration of the electronic
+orbits in the two subgroups of $2_{1}$~and $2_{2}$ orbits respectively,
+but fully as much to the possibility of bringing the orbits inside these
+subgroups into harmonic relation with one another. The situation
+is different, however, for the groups of electrons with $3$-quanta
+orbits. Three subgroups of four orbits each \Chg{can not}{cannot} in this case be
+expected to come into interaction with one another in a correspondingly
+simple manner. On the contrary we must assume that
+the presence of electrons in $3_{3}$~orbits will diminish the harmony of
+the orbits within the first two $3$-quanta subgroups, at any rate
+when a point is reached where the $19$th electron is no longer, as
+was the case with scandium, bound considerably more lightly than
+the previously bound electrons in $3$-quanta orbits, but has been
+drawn so far into the atom that it revolves within essentially
+the same region of the atom where these electrons move. We
+shall now assume that this decrease in the harmony will so to
+say ``open'' the previously ``closed'' configuration of electrons
+in orbits of these types. As regards the final result, the number~$18$
+indicates that after the group is finally formed there will
+be three subgroups containing six electrons each. Even if it has
+not at present been possible to follow in detail the various
+steps in the formation of the group this result is nevertheless
+confirmed in an interesting manner by the fact that it is possible
+to arrange three configurations having six electrons each in a simple
+manner relative to one another. The configuration of the subgroups
+does not exhibit a tetrahedral symmetry like the groups of $2$-quanta
+orbits in carbon, but a symmetry which, so far as the relative
+orientation of the normals to the planes of the orbits is concerned,
+may be described as trigonal.
+
+In spite of the great difference in the properties of the elements
+of this period, compared with those of the preceding period, the
+completion of the group of $18$~electrons in $3$-quanta orbits in the
+\PageSep{105}
+fourth period may to a certain extent be said to have the same
+characteristic results as the completion of the group of $2$-quanta
+orbits in the second period. As we have seen, this determined not
+only the properties of neon as an inactive gas, but in addition the
+electronegative properties of the preceding elements and the
+electropositive properties of the elements which follow. The fact
+that there is no inactive gas possessing an outer group of $18$~electrons
+is very easily accounted for by the much larger dimensions
+which a $3_{3}$~orbit has in comparison with a $2_{2}$~orbit revolving in the
+same field of force. On this account a complete $3$-quanta group
+\Chg{can not}{cannot} occur as the outermost group in a neutral atom, but only
+in positively charged ions. The characteristic decrease in valency
+which we meet in copper, shown by the appearance of the singly
+charged cuprous ions, indicates the same tendency towards the
+completion of a symmetrical configuration of electrons that we
+found in the marked electronegative character of an element like
+fluorine. Direct evidence that a complete group of $3$-quanta orbits
+is present in the cuprous ion is given by the spectrum of copper
+which, in contrast to the extremely complicated spectra of the
+preceding elements resulting from the unsymmetrical character of
+the inner system, possesses a simple structure very much like that
+of the sodium spectrum. This may no doubt be ascribed to a
+simple symmetrical structure present in the cuprous ion similar to
+that in the sodium ion, although the great difference in the constitution
+of the outer group of electrons in these ions is shown
+both by the considerable difference in the values of the spectral
+terms and in the separation of the doublets in the $P$~terms of the
+two spectra. The occurrence of the cupric compounds shows, however,
+that the firmness of binding in the group of $3$-quanta orbits
+in the copper atom is not as great as the firmness with which the
+electrons are bound in the group of $2$-quanta orbits in the sodium
+atom. Zinc, which is always divalent, is the first element in which
+the groups of the electrons are so firmly bound that they \Chg{can not}{cannot}
+be removed by ordinary chemical processes.
+
+The picture I have given of the formation and structure of the
+atoms of the elements in the fourth period gives an explanation of
+the chemical and spectral properties. In addition it is supported
+by evidence of a different nature to that which we have hitherto
+\PageSep{106}
+used. It is a familiar fact, that the elements in the fourth period
+differ markedly from the elements in the preceding periods
+partly in their \emph{magnetic properties} and partly in the \emph{characteristic
+colours} of their compounds. Paramagnetism and colours do occur
+in elements belonging to the foregoing periods, but not in simple
+compounds where the atoms considered enter as ions. Many
+elements of the fourth period, on the contrary, exhibit paramagnetic
+properties and characteristic colours even in dissociated
+aqueous solutions. The importance of this has been emphasized
+by Ladenburg in his attempt to explain the properties of the
+elements in the long periods of the periodic system (see \PageRef{73}).
+Langmuir in order to account for the difference between the fourth
+period and the preceding periods simply assumed that the atom,
+in addition to the layers of cells containing $8$~electrons each, possesses
+an outer layer of cells with room for $18$~electrons which is completely
+filled for the first time in the case of krypton. Ladenburg,
+on the other hand, assumes that for some reason or other an
+intermediate layer is developed between the inner electronic
+configuration in the atom appearing already in argon, and the
+external group of valency electrons. This layer commences with
+scandium and is completed exactly at the end of the family of iron
+metals. In support of this assumption Ladenburg not only mentions
+the chemical properties of the elements in the fourth period, but
+also refers to the paramagnetism and colours which occur exactly
+in the elements, where this intermediate layer should be in
+development. It is seen that Ladenburg's ideas exhibit certain
+formal similarities with the interpretation I have given above of
+the appearance of the fourth period, and it is interesting to note that
+our view, based on a direct investigation of the conditions for the
+formation of the atoms, enables us to understand the relation
+emphasized by Ladenburg.
+
+Our ordinary electrodynamic conceptions are probably insufficient
+to form a basis for an explanation of atomic magnetism. This is
+hardly to be wondered at when we remember that they have not
+proved adequate to account for the phenomena of radiation which
+are connected with the intimate interaction between the electric
+and magnetic forces arising from the motion of the electrons. In
+whatever way these difficulties may be solved it seems simplest to
+\PageSep{107}
+assume that the occurrence of magnetism, such as we meet in the
+elements of the fourth period, results from a lack of symmetry in
+the internal structure of the atom, thus preventing the magnetic
+forces arising from the motion of the electrons from forming a
+system of closed lines of force running wholly within the atom.
+While it has been assumed that the ions of the elements in the
+previous periods, whether positively or negatively charged, contain
+configurations of marked symmetrical character, we must, however,
+be prepared to encounter a definite lack of symmetry in the
+electronic configurations in ions of those elements within the fourth
+period which contain a group of electrons in $3$-quanta orbits in the
+transition stage between symmetrical configurations of $8$~and $18$
+electrons respectively. As pointed out by Kossel, the experimental
+results exhibit an extreme simplicity, the magnetic moment of the
+ions depending only on the number of electrons in the ion. Ferric
+ions, for example, exhibit the same atomic magnetism as manganous
+ions, while manganic ions exhibit the same atomic magnetism as
+chromous ions. It is in beautiful agreement with what we have
+assumed about the structure of the atoms of copper and zinc, that
+the magnetism disappears with those ions containing $28$~electrons
+which, as I stated, must be assumed to contain a complete group
+of $3$-quanta orbits. On the whole a consideration of the magnetic
+properties of the elements within the fourth period gives us a vivid
+impression of how a wound in the otherwise symmetrical inner
+structure is first developed and then healed as we pass from element
+to element. It is to be hoped that a further investigation of the
+magnetic properties will give us a clue to the way in which the
+group of electrons in $3$-quanta orbits is developed step by step.
+
+Also the colours of the ions directly support our view of atomic
+structure. According to the postulates of the quantum theory
+absorption as well as emission of radiation is regarded as taking
+place during transitions between stationary states. The occurrence
+of colours, that is to say the absorption of light in the visible region
+of the spectrum, is evidence of transitions involving energy changes
+of the same order of magnitude as those giving the usual optical
+spectra of the elements. In contrast to the ions of the elements of
+the preceding periods where all the electrons are assumed to be very
+firmly bound, the occurrence of such processes in the fourth period
+\PageSep{108}
+is exactly what we should expect. For the development and completion
+of the electronic groups with $3$-quanta orbits will proceed,
+so to say, in competition with the binding of electrons in orbits of
+higher quanta, since the binding of electrons in $3$-quanta orbits
+occurs when the electrons in these orbits are bound more firmly
+than electrons in $4_{1}$~orbits. The development of the group will
+therefore proceed to the point where we may say there is equilibrium
+between the two kinds of orbits. This condition may be
+assumed to be intimately connected not only with the colour of the
+ions, but also with the tendency of the elements to form ions with
+different valencies. This is in contrast to the elements of the first
+periods where the charge of the ions in aqueous solutions is always
+the same for one and the same element.
+
+\Section{Fifth Period. Rubidium---Xenon.} The structure of the atoms
+in the remaining periods may be followed up in complete analogy
+with what has already been said. Thus we shall assume that the
+$37$th and $38$th electrons in the elements of the fifth period are
+bound in $5_{1}$~orbits. This is supported by the measurements of the
+arc spectrum of rubidium and the spark spectrum of strontium.
+The latter spectrum indicates at the same time that $4_{3}$~orbits will
+soon appear, and therefore in this period, which like the $4$th
+contains $18$~elements, we must assume that we are witnessing a
+\emph{further stage in the development of the electronic group of $4$-quanta
+orbits}. The first stage in the formation of this group may be said
+to have been attained in krypton with the appearance of a symmetrical
+configuration of eight electrons consisting of two subgroups
+each of four electrons in $4_{1}$~and $4_{2}$~orbits. A second preliminary
+completion must be regarded as having been reached with the
+appearance of a symmetrical configuration of $18$~electrons in the
+case of silver, consisting of three subgroups with six electrons each
+in orbits of the types $4_{1}$,~$4_{2}$ and~$4_{3}$. Everything that has been said
+about the successive formation of the group of electrons with $3$-quanta
+orbits applies unchanged to this stage in the transformation
+of the group with $4$-quanta orbits. For in no case have we made
+use of the absolute values of the quantum numbers nor of assumptions
+concerning the form of the orbits but only of the number of
+possible types of orbits which might come into consideration. At
+\PageSep{109}
+the same time it may be of interest to mention that the properties
+of these elements compared with those of the foregoing period
+nevertheless show a difference corresponding exactly to what would
+be expected from the difference in the types of orbits. For instance,
+the divergencies from the characteristic valency conditions of the
+elements in the second and third periods appear later in the fifth
+period than for elements in the fourth period. While an element
+like titanium in the fourth period already shows a marked tendency
+to occur with various valencies, on the other hand an element like
+zirconium is still quadri-valent like carbon in the second period
+and silicon in the third. A simple investigation of the kinematic
+properties of the orbits of the electrons shows in fact that an
+electron in an \Chg{excentric}{eccentric} $4_{3}$~orbit of an element in the fifth
+period will be considerably more loosely bound than an electron in
+a circular $3_{3}$~orbit of the corresponding element in the fourth
+period, while electrons which are bound in \Chg{excentric}{eccentric} orbits of the
+types $5_{1}$~and $4_{1}$ respectively will correspond to a binding of about
+the same firmness.
+
+At the end of the fifth period we may assume that xenon, the
+atomic number of which is~$54$, has a structure which in addition to
+the two $1$-quantum, eight $2$-quanta, eighteen $3$-quanta and eighteen
+$4$-quanta orbits already mentioned contains a symmetrical
+configuration of eight electrons in $5$-quanta orbits consisting of two
+subgroups with four electrons each in $5_{1}$~and $5_{2}$ orbits respectively.
+
+\Section{Sixth Period. Caesium---Niton.} If we now consider the atoms
+of elements of still higher atomic number, we must first of all
+assume that the $55$th and $56$th electrons in the atoms of caesium
+and barium are bound in $6_{1}$~orbits. This is confirmed by the spectra
+of these elements. It is clear, however, that we must be prepared
+shortly to meet entirely new conditions. With increasing nuclear
+charge we shall have to expect not only that an electron in a $5_{3}$~orbit
+will be bound more firmly than in a $6_{1}$~orbit, but we must also
+expect that a moment will arrive when during the formation of the
+atom a $4_{4}$~orbit will represent a firmer binding of the electron than
+an orbit of $5$~or $6$-quanta, in much the same way as in the elements
+of the fourth period a new stage in the development of the $3$-quanta
+group was started when a point was reached where for the first
+\PageSep{110}
+time the $19$th electron was bound in a $3_{3}$~orbit instead of in a $4_{1}$~orbit.
+We shall thus expect in the sixth period to meet with a new
+stage in the development of the group with $4$-quanta orbits. Once
+this point has been reached we must be prepared to find with increasing
+atomic number a number of elements following one another,
+which as in the family of the iron metals have very nearly the same
+properties. The similarity will, however, be still more pronounced,
+since in this case we are concerned with the successive transformation
+of a configuration of electrons which lies deeper in the interior
+of the atom. You will have already guessed that what I have in view
+is a simple explanation of the occurrence of the \emph{family of rare earths}
+at the beginning of the sixth period. As in the case of the transformation
+and completion of the group of $3$-quanta orbits in the fourth
+period and the partial completion of groups of $4$-quanta orbits in
+the fifth period, we may immediately deduce from the length of the
+sixth period the number of electrons, namely~$32$, which are finally
+contained in the $4$-quanta group of orbits. Analogous to what
+applied to the group of $3$-quanta orbits it is probable that, when
+the group is completed, it will contain eight electrons in each of the
+four subgroups. Even though it has not yet been possible to follow
+the development of the group step by step, we can even here give
+some theoretical evidence in favour of the occurrence of a symmetrical
+configuration of exactly this number of electrons. I shall
+simply mention that it is not possible without coincidence of the
+planes of the orbits to arrive at an interaction between four subgroups
+of six electrons each in a configuration of simple trigonal
+symmetry, which is equally simple as that shown by three subgroups.
+The difficulties which we meet make it probable that a harmonic
+interaction can be attained precisely by four groups each containing
+eight electrons the orbital configurations of which exhibit axial
+symmetry.
+
+Just as in the case of the family of the iron metals in the fourth
+period, the proposed explanation of the occurrence of the family of
+rare earths in the sixth period is supported in an interesting
+manner by an investigation of the magnetic properties of these
+elements. In spite of the great chemical similarity the members
+of this family exhibit very different magnetic properties, so that
+while some of them exhibit but very little magnetism others exhibit
+\PageSep{111}
+a greater magnetic moment per atom than any other element which
+has been investigated. It is also possible to give a simple interpretation
+of the peculiar colours exhibited by the compounds of these
+elements in much the same way as in the case of the family of iron
+metals in the fourth period. The idea that the appearance of the
+group of the rare earths is connected with the development of inner
+groups in the atom is not in itself new and has for instance been
+considered by Vegard in connection with his work on X-ray spectra.
+The new feature of the present considerations lies, however, in the
+emphasis laid on the peculiar way in which the relative strength of
+the binding for two orbits of the same principal quantum number
+but of different shapes varies with the nuclear charge and with the
+number of electrons previously bound. Due to this fact the presence
+of a group like that of the rare earths in the sixth period may be
+considered as a direct consequence of the theory and might actually
+have been predicted on a quantum theory, adapted to the explanation
+of the properties of the elements within the preceding periods
+in the way I have shown.
+
+Besides \emph{the final development of the group of $4$-quanta orbits} we
+observe in the sixth period in the family of the platinum metals \emph{the
+second stage in the development of the group of $5$-quanta orbits}.
+Also in the radioactive, chemically inactive gas niton, which completes
+this period, we observe the first preliminary step in the
+development of a group of electrons with $6$-quanta orbits. In the
+atom of this element, in addition to the groups of electrons of two
+$1$-quantum, eight $2$-quanta, eighteen $3$-quanta, thirty-two $4$-quanta
+and eighteen $5$-quanta orbits respectively, there is also an outer
+symmetrical configuration of eight electrons in $6$-quanta orbits,
+which we shall assume to consist of two subgroups with four electrons
+each in $6_{1}$~and $6_{2}$ orbits respectively.
+
+\Section{Seventh Period.} In the seventh and last period of the periodic
+system we may expect the appearance of $7$-quanta orbits in the
+normal state of the atom. Thus in the neutral atom of radium in
+addition to the electronic structure of niton there will be two
+electrons in $7_{1}$~orbits which will penetrate during their revolution
+not only into the region of the orbits of electrons possessing lower
+values for the principal quantum number, but even to distances
+\PageSep{112}
+from the nucleus which are less than the radii of the orbits of the
+innermost $1$-quantum orbits. The properties of the elements in the
+seventh period are very similar to the properties of the elements in the
+fifth period. Thus, in contrast to the conditions in the sixth period,
+there are no elements whose properties resemble one another like
+those of the rare earths. In exact analogy with what has already
+been said about the relations between the properties of the elements
+in the fourth and fifth periods this may be very simply explained by
+the fact that an \Chg{excentric}{eccentric} $5_{4}$~orbit will correspond to a considerably
+looser binding of an electron in the atom of an element of the
+seventh period than the binding of an electron in a circular $4_{4}$~orbit
+in the corresponding element of the sixth period, while there will be
+a much smaller difference in the firmness of the binding of these
+electrons in orbits of the types $7_{1}$~and $6_{1}$ respectively.
+
+It is well known that the seventh period is not complete, for no atom
+has been found having an atomic number greater than~$92$. This is
+probably connected with the fact that the last elements in the
+system are radioactive and that nuclei of atoms with a total charge
+greater than~$92$ will not be sufficiently stable to exist under conditions
+where the elements can be observed. It is tempting to
+sketch a picture of the atoms formed by the capture and binding
+of electrons around nuclei having higher charges, and thus to
+obtain some idea of the properties which the corresponding hypothetical
+elements might be expected to exhibit. I shall not develop
+this matter further, however, since the general results we should
+get will be evident to you from the views I have developed to
+explain the properties of the elements actually observed. A survey
+of these results is given in the following table, which gives a symbolical
+representation of the atomic structure of the inactive gases
+which complete the first six periods in the periodic system. In
+order to emphasize the progressive change the table includes the
+probable arrangement of electrons in the next atom which would
+possess properties like the inactive gases.
+
+The view of atomic constitution underlying this table, which
+involves configurations of electrons moving with large velocities
+between each other, so that the electrons in the ``outer'' groups
+penetrate into the region of the orbits of the electrons of the ``inner''
+groups, is of course completely different from such statical models
+\PageSep{113}
+of the atom as are proposed by Langmuir. But quite apart from this
+it will be seen that the arrangement of the electronic groups in
+the atom, to which we have been lead by tracing the way in which
+each single electron has been bound, is essentially different from
+the arrangement of the groups in Langmuir's theory. In order to
+explain the properties of the elements of the sixth period Langmuir
+assumes for instance that, in addition to the inner layers of cells
+containing $2$,~$8$, $8$, $18$ and $18$ electrons respectively, which are
+employed to account for the properties of the elements in the
+earlier periods, the atom also possesses a layer of cells with room
+for $32$~electrons which is just completed in the case of niton.
+
+\Figure{}{113}
+
+In this connection it may be of interest to mention a recent
+paper by Bury, to which my attention was first drawn after the
+deliverance of this address, and which contains an interesting
+survey of the chemical properties of the elements based on similar
+conceptions of atomic structure as those applied by Lewis and
+Langmuir. From purely chemical considerations Bury arrives at
+conclusions which as regards the arrangement and completion of
+the groups in the main coincide with those of the present theory,
+the outlines of which were given in my letters to Nature mentioned
+in the introduction.
+
+\Section{Survey of the periodic table.} The results given in this address
+are also illustrated by means of the representation of the periodic
+system given in \Fig{1}. In this figure the frames are meant to
+indicate such elements in which one of the ``inner'' groups is
+in a stage of development. Thus there will be found in the
+\PageSep{114}
+fourth and fifth periods a single frame indicating the final completion
+of the electronic group with $3$-quanta orbits, and the
+last stage but one in the development of the group with $4$-quanta
+orbits respectively. In the sixth period it has been necessary to
+introduce two frames, of which the inner one indicates the last
+stage of the evolution of the group with $4$-quanta orbits, giving rise
+to the rare earths. This occurs at a place in the periodic system
+where the third stage in the development of an electronic group
+with $5$-quanta orbits, indicated by the outer frame, has already
+begun. In this connection it will be seen that the inner frame
+encloses a smaller number of elements than is usually attributed
+to the family of the rare earths. At the end of this group an
+uncertainty exists, due to the fact that no element of atomic
+number~$72$ is known with certainty. However, as indicated in
+\Fig{1}, we must conclude from the theory that the group with
+$4$-quanta orbits is finally completed in lutetium~($71$). This element
+therefore ought to be the last in the sequence of consecutive
+elements with similar properties in the first half of the sixth period,
+and at the place~$72$ an element must be expected which in its
+chemical and physical properties is homologous with zirconium and
+thorium. This, which is already indited on Julius Thomsen's old
+table, has also been pointed out by Bury. [Quite recently Dauvillier
+has in an investigation of the X-ray spectrum excited in preparations
+containing rare earths, observed certain faint lines which he ascribes
+to an element of atomic number~$72$. This element is identified by
+him as the element celtium, belonging to the family of rare earths,
+the existence of which had previously been suspected by Urbain.
+Quite apart from the difficulties which this result, if correct, might
+entail for atomic theories, it would, since the rare earths according
+to chemical view possess three valencies, imply a rise in positive
+valency of two units when passing from the element~$72$ to the
+next element~$73$, tantalum. This would mean an exception from
+the otherwise general rule, that the valency never increases by
+more than one unit when passing from one element to the next in
+the periodic table\Add{.}] In the case of the incomplete seventh period
+the full drawn frame indicates the third stage in the development
+of the electronic group with $6$-quanta orbits, which must begin in
+actinium. The dotted frame indicates the last stage but one in
+\PageSep{115}
+the development of the group with $5$-quanta orbits, which hitherto
+has not been observed, but which ought to begin shortly after
+uranium, if it has not already begun in this element.
+
+With reference to the homology of the elements the exceptional
+position of the elements enclosed by frames in \Fig{1} is further
+emphasized by taking care that, in spite of the large similarity
+many elements exhibit, no connecting lines are drawn between
+two elements which occupy different positions in the system with
+respect to framing. In fact, the large chemical similarity between,
+for instance, aluminium and scandium, both of which are trivalent
+and pronounced electropositive elements, is directly or indirectly
+emphasized in the current representations of the periodic table.
+While this procedure is justified by the analogous structure of the
+trivalent ions of these elements, our more detailed ideas of atomic
+structure suggest, however, marked differences in the physical
+properties of aluminium and scandium, originating in the essentially
+different character of the way in which the last three electrons
+in the neutral atom are bound. This fact gives probably a direct
+explanation of the marked difference existing between the spectra
+of aluminium and scandium. Even if the spectrum of scandium is
+not yet sufficiently cleared up, this difference seems to be of a much
+more fundamental character than for instance the difference between
+the arc spectra of sodium and copper, which apart from the large
+difference in the absolute values of the spectral terms possess a
+completely analogous structure, as previously mentioned in this
+essay. On the whole we must expect that the spectra of elements
+in the later periods lying inside a frame will show new features
+compared with the spectra of the elements in the first three periods.
+This expectation seems supported by recent work on the spectrum
+of manganese by Catalan, which appeared just before the printing
+of this essay.
+
+Before I leave the interpretation of the chemical properties by
+means of this atomic model I should like to remind you once again
+of the fundamental principles which we have used. The whole
+theory has evolved from an investigation of the way in which
+electrons can be captured by an atom. The formation of an atom
+was held to consist in the successive binding of electrons, this
+binding resulting in radiation according to the quantum theory.
+\PageSep{116}
+According to the fundamental postulates of the theory this binding
+takes place in stages by transitions between stationary states
+accompanied by emission of radiation. For the problem of the
+stability of the atom the essential problem is at what stage such a
+process comes to an end. As regards this point the postulates give
+no direct information, but here the correspondence principle is
+brought in. Even though it has been possible to penetrate considerably
+further at many points than the time has permitted me
+to indicate to you, still it has not yet been possible to follow in
+detail all stages in the formation of the atoms. We cannot say, for
+instance, that the above table of the atomic constitution of the
+inert gases may in every detail be considered as the unambiguous
+result of applying the correspondence principle. On the other hand
+it appears that our considerations already place the empirical data
+in a light which scarcely permits of an essentially different interpretation
+of the properties of the elements based upon the postulates of
+the quantum theory. This applies not only to the series spectra
+and the close relationship of these to the chemical properties of the
+elements, but also to the X-ray spectra, the consideration of which
+leads us into an investigation of interatomic processes of an entirely
+different character. As we have already mentioned, it is necessary
+to assume that the emission of the latter spectra is connected with
+processes which may be described as a reorganization of the completely
+formed atom after a disturbance produced in the interior
+of the atom by the action of external forces.
+
+
+\Chapter{IV.}{Reorganization of Atoms and X-Ray Spectra}
+
+As in the case of the series spectra it has also been possible to represent
+the frequency of each line in the X-ray spectrum of an element
+as the difference of two of a set of spectral terms. We shall therefore
+assume that each X-ray line is due to a transition between
+two stationary states of the atom. The values of the atomic energy
+corresponding to these states are frequently referred to as the
+``energy levels'' of the X-ray spectra. The great difference between
+the origin of the X-ray and the series spectra is clearly seen, however,
+in the difference of the laws applying to the absorption of
+radiation in the X-ray and the optical regions of the spectra. The
+absorption by non-excited atoms in the latter case is connected
+\PageSep{117}
+with those lines in the series spectrum which correspond to combinations
+of the various spectral terms with the largest of these
+terms. As has been shown, especially by the investigations of
+Wagner and de~Broglie, the absorption in the X-ray region, on
+the other hand, is connected not with the X-ray lines but with
+certain spectral regions commencing at the so-called ``absorption
+edges.'' The frequencies of these edges agree very closely with the
+spectral terms used to account for the X-ray lines. We shall now
+see how the conception of atomic structure developed in the preceding
+pages offers a simple interpretation of these facts. Let us
+consider the following question: What changes in the state of the
+atom can be produced by the absorption of radiation, and which
+processes of emission can be initiated by such changes?
+
+\Section{Absorption and emission of X-rays and correspondence
+principle.} The possibility of producing a change at all in the
+motion of an electron in the interior of an atom by means of radiation
+must in the first place be regarded as intimately connected
+with the character of the interaction between the electrons within
+the separate groups. In contrast to the forms of motion where at
+every moment the position of the electrons exhibits polygonal or
+polyhedral symmetry, the conception of this interaction evolved from
+a consideration of the possible formation of atoms by successive
+binding of electrons has such a character that the harmonic components
+in the motion of an electron are in general represented in
+the resulting electric moment of the atom. As a result of this it
+will be possible to release a single electron from the interaction
+with the other electrons in the same group by a process which
+possesses the necessary analogy with an absorption process on
+the ordinary electrodynamic view claimed by the correspondence
+principle. The points of view on which we based the interpretation
+of the development and completion of the groups during the
+formation of an atom imply, on the other hand, that just as no
+additional electron can be taken up into a previously completed
+group in the atom by a change involving emission of radiation,
+similarly it will not be possible for a new electron to be added
+to such a group, when the state of the atom is changed by
+absorption of radiation. This means that an electron which belongs
+\PageSep{118}
+to one of the inner groups of the atom, as a consequence of an
+absorption process---besides the case where it leaves the atom
+completely---can only go over either to an incompleted group, or
+to an orbit where the electron during the greater part of its revolution
+moves at a distance from the nucleus large compared to the
+distance of the other electrons. On account of the peculiar conditions
+of stability which control the occurrence of incomplete groups in
+the interior of the atom, the energy which is necessary to bring
+about a transition to such a group will in general differ very little
+from that required to remove the particular electron completely
+from the atom. We must therefore assume that the energy levels
+corresponding to the absorption edges indicate to a first approximation
+the amount of work that is required to remove an electron
+in one of the inner groups completely from the atom. The
+correspondence principle also provides a basis for understanding
+the experimental evidence about the appearance of the emission
+lines of the X-ray spectra due to transitions between the stationary
+states corresponding to these energy levels. Thus the nature of the
+interaction between the electrons in the groups of the atom implies
+that each electron in the atom is so to say prepared, independently
+of the other electrons in the same group, to seize any opportunity
+which is offered to become more firmly bound by being taken up
+into a group of electrons with orbits corresponding to smaller values
+of the principal quantum number. It is evident, however, that on
+the basis of our views of atomic structure, such an opportunity is
+always at hand as soon as an electron has been removed from one
+of these groups.
+
+At the same time that our view of the atom leads to a natural
+conception of the phenomena of emission and absorption of X-rays,
+agreeing closely with that by which Kossel has attempted to give
+a formal explanation of the experimental observations, it also suggests
+a simple explanation of those quantitative relations holding for the
+frequencies of the lines which have been discovered by Moseley and
+Sommerfeld. These researches brought to light a remarkable and
+far-reaching similarity between the Röntgen spectrum of a given
+element and the spectrum which would be expected to appear upon
+the binding of a single electron by the nucleus. This similarity we
+immediately understand if we recall that in the normal state of the
+\PageSep{119}
+atom there are electrons moving in orbits which, with certain
+limitations, correspond to all stages of such a binding process and
+that, when an electron is removed from its original place in the
+atom, processes may be started within the atom which will correspond
+to all transitions between these stages permitted by the
+correspondence principle. This brings us at once out of those
+difficulties which apparently arise, when one attempts to account
+for the origin of the X-ray spectra by means of an atomic structure,
+suited to explain the periodic system. This difficulty has been felt
+to such an extent that it has led Sommerfeld for example in his
+recent work to assume that the configurations of the electrons in
+the various atoms of one and the same element may be different
+even under usual conditions. Since, in contrast to our ideas, he
+supposed all electrons in the principal groups of the atom to move
+in equivalent orbits, he is compelled to assume that these groups
+are different in the different atoms, corresponding to different
+possible types of orbital shapes. Such an assumption, however, seems
+inconsistent with an interpretation of the definite character of the
+physical and chemical properties of the elements, and stands in marked
+contradiction with the points of view about the stability of the atoms
+which form the basis of the view of atomic structure here proposed.
+
+\Section{X-ray spectra and atomic structure.} In this connection it is
+of interest to emphasize that the group distribution of the electrons
+in the atom, on which we have based both the explanation of the
+periodic system and the classification of the lines in the X-ray
+spectra, shows itself in an entirely different manner in these two
+phenomena. While the characteristic change of the chemical
+properties with atomic number is due to the gradual development
+and completion of the groups of the loosest bound electrons, the
+characteristic absence of almost every trace of a periodic change in
+the X-ray spectra is due to two causes. Firstly the electronic
+configuration of the completed groups is repeated unchanged for
+increasing atomic number, and secondly the gradual way in which
+the incompleted groups are developed implies that a type of orbit,
+from the moment when it for the first time appears in the normal
+state of the neutral atom, always will occur in this state and will
+correspond to a steadily increasing firmness of binding. The development
+\PageSep{120}
+of the groups in the atom with increasing atomic number,
+which governs the chemical properties of the elements shows itself
+in the X-ray spectra mainly in the appearance of new lines. Swinne
+has already referred to a connection of this kind between the periodic
+system and the X-ray spectra in connection with Kossel's theory.
+We can only expect a closer connection between the X-ray phenomena
+and the chemical properties of the elements, when the conditions
+on the surface of the atom are concerned. In agreement
+with what has been brought to light by investigations on absorption
+of X-rays in elements of lower atomic number, such as have
+been performed in recent years in the physical laboratory at Lund,
+we understand immediately that the position and eventual structure
+of the absorption edges will to a certain degree depend upon
+the physical and chemical conditions under which the element
+investigated exists, while such a dependence does not appear in
+the characteristic emission lines.
+
+If we attempt to obtain a more detailed explanation of the
+experimental observations, we meet the question of the influence
+of the presence of the other electrons in the atom upon the firmness
+of the binding of an electron in a given type of orbit. This influence
+will, as we at once see, be least for the inner parts of the atom,
+where for each electron the attraction of the nucleus is large in
+proportion to the repulsion of the other electrons. It should also
+be recalled, that while the relative influence of the presence of the
+other electrons upon the firmness of the binding will decrease with
+increasing charge of the nucleus, the effect of the variation in the
+mass of the electron with the velocity upon the firmness of the
+binding will increase strongly. This may be seen from Sommerfeld's
+formula~\Eq{(11)}. While we obtain a fairly good agreement for the
+levels corresponding to the removal of one of the innermost electrons
+in the atom by using the simple formula~\Eq{(11)}, it is, however, already
+necessary to take the influence of the other electrons into consideration
+in making an approximate calculation of the levels corresponding
+to a removal of an electron from one of the outer groups in the
+atom. Just this circumstance offers us, however, a possibility of
+obtaining information about the configurations of the electrons in
+the interior of the atoms from the X-ray spectra. Numerous
+investigations have been directed at this question both by
+\PageSep{121}
+Sommerfeld and his pupils and by Debye, Vegard and others. It
+may also be remarked that de~Broglie and Dauvillier in a recent
+paper have thought it possible to find support in the experimental
+material for certain assumptions about the numbers of electrons in
+the groups of the atom to which Dauvillier had been led by considerations
+about the periodic system similar to those proposed by
+Langmuir and Ladenburg. In calculations made in connection with
+these investigations it is assumed that the electrons in the various
+groups move in separate concentric regions of the atom, so that
+the effect of the presence of the electrons in inner groups upon the
+motion of the electrons in outer groups as a first approximation
+may be expected to consist in a simple screening of the nucleus.
+On our view, however, the conditions are essentially different, since
+for the calculation of the firmness of the binding of the electrons
+it is necessary to take into consideration that the electrons in the
+more lightly bound groups in general during a certain fraction of
+their revolution will penetrate into the region of the orbits of
+electrons in the more firmly bound groups. On account of this
+fact, many examples of which we saw in the series spectra, we \Chg{can not}{cannot}
+expect to give an account of the firmness of the binding of the
+separate electrons, simply by means of a ``screening correction''
+consisting in the subtraction of a constant quantity from the value
+for~$N$ in such formulae as \Eq{(5)} and~\Eq{(11)}. Furthermore in the calculation
+of the work corresponding to the energy levels we must take
+account not only of the interaction between, the electrons in the
+normal state of the atom, but also of the changes in the configuration
+and interaction of the remaining electrons, which establish
+themselves automatically without emission of radiation during the
+removal of the electron. Even though such calculations have not
+yet been made very accurately, a preliminary investigation has
+already shown that it is possible approximately to account for the
+experimental results.
+
+\Section{Classification of X-ray spectra.} Independently of a definite
+view of atomic structure it has been possible by means of a formal
+application of Kossel's and Sommerfeld's theories to disentangle
+the large amount of experimental material on X-ray spectra. This
+material is drawn mainly from the accurate measurements of
+\PageSep{122}
+Siegbahn and his collaborators. From this disentanglement of the
+experimental observations, in which besides Sommerfeld and his
+students especially Smekal and Coster have taken part, we have
+obtained a nearly complete classification of the energy levels corresponding
+to the X-ray spectra. These levels are formally referred
+to types of orbits characterized by two quantum numbers $n$ and~$k$,
+and certain definite rules for the possibilities of combination
+between the various levels have also been found. In this way a
+number of results of great interest for the further elucidation of
+the origin of the X-ray spectra have been attained. First it has
+not only been possible to find levels, which within certain limits
+correspond to all possible pairs of numbers for $n$ and~$k$, but it has
+been found that in general to each such pair more than one level
+must be assigned. This result, which at first may appear very
+surprising, upon further consideration can be given a simple
+interpretation. We must remember that the levels depend not
+only upon the constitution of the atom in the normal state, but
+also upon the configurations which appear after the removal
+of one of the inner electrons and which in contrast to the normal
+state do not possess a uniquely completed character. If we thus
+consider a process in which one of the electrons in a group
+(subgroup) is removed we must be prepared to find that after the
+process the orbits of the remaining electrons in this group may be
+orientated in more than one way in relation to one another, and
+still fulfil the conditions required of the stationary states by the
+quantum theory. Such a view of the ``complexity'' of the levels, as
+further consideration shows, just accounts for the manner in which
+the energy difference of the two levels varies with the atomic
+number. Without attempting to develop a more detailed picture
+of atomic structure, Smekal has already discussed the possibility
+of accounting for the multiplicity of levels. Besides referring to
+the possibility that the separate electrons in the principal groups
+do not move in equivalent orbits, Smekal suggests the introduction
+of three quantum numbers for the description of the various groups,
+but does not further indicate to what extent these quantum
+numbers shall be regarded as characterizing a complexity in the
+structure of the groups in the normal state itself or on the
+contrary characterizing the incompleted groups which appear
+when an electron is removed.
+\PageSep{123}
+
+It will be seen that the complexity of the X-ray levels exhibits a
+close analogy with the explanation of the complexity of the terms
+of the series spectra. There exists, however, this difference between
+the complex structure of the X-ray spectra and the complex
+structure of the lines in the series spectra, that in the X-ray
+spectra there occur not only combinations between spectral terms,
+for which $k$~varies by unity, but also between terms corresponding
+to the same value of~$k$. This may be assumed to be
+due to the fact, that in the X-ray spectra in contrast to the series
+\Figure{5}{123}
+spectra we have to do with transitions between stationary states
+where, both before and after the transition, the electron concerned
+takes part in an intimate interaction with other electrons in orbits
+with the same principal quantum number. Even though this
+interaction may be assumed to be of such a nature that the
+harmonic components which would appear in the motion of an
+electron in the absence of the others will in general also appear
+in the resulting moment of the atom, we must expect that the
+interaction between the electrons will give rise to the appearance
+in this moment of new types of harmonic components.
+\PageSep{124}
+
+It may be of interest to insert here a few words about a new
+paper of Coster which appeared after this address was given,
+and in which he has succeeded in obtaining an extended and
+detailed connection between the X-ray spectra and the ideas
+of atomic structure given in this essay. The classification mentioned
+above was based on measurements of the spectra of the
+heaviest elements, and the results in their complete form, which
+were principally due to independent work of Coster and Wentzel,
+may be represented by the diagram in \Fig{5}, which refers to
+elements in the neighbourhood of niton. The vertical arrows
+\Figure{6}{124}
+represent the observed lines arising from combinations between
+the different energy levels which are represented by horizontal lines.
+In each group the levels are arranged in the same succession as
+their energy values, but their distances do not give a quantitative
+picture of the actual energy-differences, since this would require a
+much larger figure. The numbers~$n_{k}$ attached to the different levels
+indicate the type of the corresponding orbit. The letters $a$ and~$b$
+refer to the rules of combination which I mentioned. According
+to these rules the possibility of combination is limited (1)~by the
+exclusion of combinations, for which $k$~changes by more than one
+unit, (2)~by the condition that only combinations between an $a$-
+and a $b$-level can take place. The latter rule was given in this
+\PageSep{125}
+form by Coster; Wentzel formulated it in a somewhat different
+way by the formal introduction of a third quantum number. In
+his new paper Coster has established a similar classification for the
+lighter elements. For the elements in the neighbourhood of xenon
+and krypton he has obtained results illustrated by the diagrams
+given in \Fig{6}. Just as in \Fig{5} the levels correspond exactly to
+those types of orbits which, as seen from the table on \PageRef[page]{113},
+according to the theory will be present in the atoms of these elements.
+In xenon several of the levels present in niton have disappeared,
+and in krypton still more levels have fallen away. Coster
+has also investigated in which elements these particular levels
+appear for the last time, when passing from higher to lower atomic
+number. His results concerning this point confirm in detail the
+predictions of the theory. Further he proves that the change in
+the firmness of binding of the electrons in the outer groups in
+the elements of the family of the rare earths shows a dependence
+on the atomic number which strongly supports the assumption that
+in these elements a completion of an inner group of $4$-quanta
+orbits takes place. For details the reader is referred to Coster's
+paper in the \Title{Philosophical Magazine}. Another important contribution
+to our systematic knowledge of the X-ray spectra is
+contained in a recent paper by Wentzel. He shows that various
+lines, which find no place in the classification hitherto considered,
+can be ascribed in a natural manner to processes of reorganization,
+initiated by the removal of more than one electron from the
+atom; these lines are therefore in a certain sense analogous to
+the enhanced lines in the optical spectra.
+
+\Chapter{}{Conclusion}
+
+Before bringing this address to a close I wish once more to
+emphasize the complete analogy in the application of the
+quantum theory to the stability of the atom, used in explaining
+two so different phenomena as the periodic system and X-ray
+spectra. This point is of the greatest importance in judging the
+reality of the theory, since the justification for employing considerations,
+relating to the formation of atoms by successive capture
+of electrons, as a guiding principle for the investigation of atomic
+\PageSep{126}
+structure might appear doubtful if such considerations could not
+be brought into natural agreement with views on the reorganization
+of the atom after a disturbance in the normal electronic
+arrangement. Even though a certain inner consistency in this
+view of atomic structure will be recognized, it is, however, hardly
+necessary for me to emphasize the incomplete character of the
+theory, not only as regards the elaboration of details, but also so
+far as the foundation of the general points of view is concerned.
+There seems, however, to be no other way of advance in atomic
+problems than that which hitherto has been followed, namely to let
+the work in these two directions go hand in hand.
+
+%%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%%
+\PGLicense
+\begin{PGtext}
+End of the Project Gutenberg EBook of The Theory of Spectra and Atomic
+Constitution, by Niels (Niels Henrik David) Bohr
+
+*** END OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA ***
+
+***** This file should be named 47464-pdf.pdf or 47464-pdf.zip *****
+This and all associated files of various formats will be found in:
+ http://www.gutenberg.org/4/7/4/6/47464/
+
+Produced by Andrew D. Hwang
+
+Updated editions will replace the previous one--the old editions
+will be renamed.
+
+Creating the works from public domain print editions means that no
+one owns a United States copyright in these works, so the Foundation
+(and you!) can copy and distribute it in the United States without
+permission and without paying copyright royalties. Special rules,
+set forth in the General Terms of Use part of this license, apply to
+copying and distributing Project Gutenberg-tm electronic works to
+protect the PROJECT GUTENBERG-tm concept and trademark. Project
+Gutenberg is a registered trademark, and may not be used if you
+charge for the eBooks, unless you receive specific permission. If you
+do not charge anything for copies of this eBook, complying with the
+rules is very easy. You may use this eBook for nearly any purpose
+such as creation of derivative works, reports, performances and
+research. They may be modified and printed and given away--you may do
+practically ANYTHING with public domain eBooks. Redistribution is
+subject to the trademark license, especially commercial
+redistribution.
+
+
+
+*** START: FULL LICENSE ***
+
+THE FULL PROJECT GUTENBERG LICENSE
+PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
+
+To protect the Project Gutenberg-tm mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase "Project
+Gutenberg"), you agree to comply with all the terms of the Full Project
+Gutenberg-tm License available with this file or online at
+ www.gutenberg.org/license.
+
+
+Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
+electronic works
+
+1.A. By reading or using any part of this Project Gutenberg-tm
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or destroy
+all copies of Project Gutenberg-tm electronic works in your possession.
+If you paid a fee for obtaining a copy of or access to a Project
+Gutenberg-tm electronic work and you do not agree to be bound by the
+terms of this agreement, you may obtain a refund from the person or
+entity to whom you paid the fee as set forth in paragraph 1.E.8.
+
+1.B. "Project Gutenberg" is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenberg-tm electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenberg-tm electronic works if you follow the terms of this agreement
+and help preserve free future access to Project Gutenberg-tm electronic
+works. See paragraph 1.E below.
+
+1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
+or PGLAF), owns a compilation copyright in the collection of Project
+Gutenberg-tm electronic works. Nearly all the individual works in the
+collection are in the public domain in the United States. If an
+individual work is in the public domain in the United States and you are
+located in the United States, we do not claim a right to prevent you from
+copying, distributing, performing, displaying or creating derivative
+works based on the work as long as all references to Project Gutenberg
+are removed. Of course, we hope that you will support the Project
+Gutenberg-tm mission of promoting free access to electronic works by
+freely sharing Project Gutenberg-tm works in compliance with the terms of
+this agreement for keeping the Project Gutenberg-tm name associated with
+the work. You can easily comply with the terms of this agreement by
+keeping this work in the same format with its attached full Project
+Gutenberg-tm License when you share it without charge with others.
+
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are in
+a constant state of change. If you are outside the United States, check
+the laws of your country in addition to the terms of this agreement
+before downloading, copying, displaying, performing, distributing or
+creating derivative works based on this work or any other Project
+Gutenberg-tm work. The Foundation makes no representations concerning
+the copyright status of any work in any country outside the United
+States.
+
+1.E. Unless you have removed all references to Project Gutenberg:
+
+1.E.1. The following sentence, with active links to, or other immediate
+access to, the full Project Gutenberg-tm License must appear prominently
+whenever any copy of a Project Gutenberg-tm work (any work on which the
+phrase "Project Gutenberg" appears, or with which the phrase "Project
+Gutenberg" is associated) is accessed, displayed, performed, viewed,
+copied or distributed:
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.org
+
+1.E.2. If an individual Project Gutenberg-tm electronic work is derived
+from the public domain (does not contain a notice indicating that it is
+posted with permission of the copyright holder), the work can be copied
+and distributed to anyone in the United States without paying any fees
+or charges. If you are redistributing or providing access to a work
+with the phrase "Project Gutenberg" associated with or appearing on the
+work, you must comply either with the requirements of paragraphs 1.E.1
+through 1.E.7 or obtain permission for the use of the work and the
+Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
+1.E.9.
+
+1.E.3. If an individual Project Gutenberg-tm electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
+terms imposed by the copyright holder. Additional terms will be linked
+to the Project Gutenberg-tm License for all works posted with the
+permission of the copyright holder found at the beginning of this work.
+
+1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenberg-tm.
+
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenberg-tm License.
+
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including any
+word processing or hypertext form. However, if you provide access to or
+distribute copies of a Project Gutenberg-tm work in a format other than
+"Plain Vanilla ASCII" or other format used in the official version
+posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
+you must, at no additional cost, fee or expense to the user, provide a
+copy, a means of exporting a copy, or a means of obtaining a copy upon
+request, of the work in its original "Plain Vanilla ASCII" or other
+form. Any alternate format must include the full Project Gutenberg-tm
+License as specified in paragraph 1.E.1.
+
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenberg-tm works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenberg-tm electronic works provided
+that
+
+- You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenberg-tm works calculated using the method
+ you already use to calculate your applicable taxes. The fee is
+ owed to the owner of the Project Gutenberg-tm trademark, but he
+ has agreed to donate royalties under this paragraph to the
+ Project Gutenberg Literary Archive Foundation. Royalty payments
+ must be paid within 60 days following each date on which you
+ prepare (or are legally required to prepare) your periodic tax
+ returns. Royalty payments should be clearly marked as such and
+ sent to the Project Gutenberg Literary Archive Foundation at the
+ address specified in Section 4, "Information about donations to
+ the Project Gutenberg Literary Archive Foundation."
+
+- You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenberg-tm
+ License. You must require such a user to return or
+ destroy all copies of the works possessed in a physical medium
+ and discontinue all use of and all access to other copies of
+ Project Gutenberg-tm works.
+
+- You provide, in accordance with paragraph 1.F.3, a full refund of any
+ money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days
+ of receipt of the work.
+
+- You comply with all other terms of this agreement for free
+ distribution of Project Gutenberg-tm works.
+
+1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
+electronic work or group of works on different terms than are set
+forth in this agreement, you must obtain permission in writing from
+both the Project Gutenberg Literary Archive Foundation and Michael
+Hart, the owner of the Project Gutenberg-tm trademark. Contact the
+Foundation as set forth in Section 3 below.
+
+1.F.
+
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+public domain works in creating the Project Gutenberg-tm
+collection. Despite these efforts, Project Gutenberg-tm electronic
+works, and the medium on which they may be stored, may contain
+"Defects," such as, but not limited to, incomplete, inaccurate or
+corrupt data, transcription errors, a copyright or other intellectual
+property infringement, a defective or damaged disk or other medium, a
+computer virus, or computer codes that damage or cannot be read by
+your equipment.
+
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
+of Replacement or Refund" described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenberg-tm trademark, and any other party distributing a Project
+Gutenberg-tm electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium with
+your written explanation. The person or entity that provided you with
+the defective work may elect to provide a replacement copy in lieu of a
+refund. If you received the work electronically, the person or entity
+providing it to you may choose to give you a second opportunity to
+receive the work electronically in lieu of a refund. If the second copy
+is also defective, you may demand a refund in writing without further
+opportunities to fix the problem.
+
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER
+WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
+
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of damages.
+If any disclaimer or limitation set forth in this agreement violates the
+law of the state applicable to this agreement, the agreement shall be
+interpreted to make the maximum disclaimer or limitation permitted by
+the applicable state law. The invalidity or unenforceability of any
+provision of this agreement shall not void the remaining provisions.
+
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenberg-tm electronic works in accordance
+with this agreement, and any volunteers associated with the production,
+promotion and distribution of Project Gutenberg-tm electronic works,
+harmless from all liability, costs and expenses, including legal fees,
+that arise directly or indirectly from any of the following which you do
+or cause to occur: (a) distribution of this or any Project Gutenberg-tm
+work, (b) alteration, modification, or additions or deletions to any
+Project Gutenberg-tm work, and (c) any Defect you cause.
+
+
+Section 2. Information about the Mission of Project Gutenberg-tm
+
+Project Gutenberg-tm is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of computers
+including obsolete, old, middle-aged and new computers. It exists
+because of the efforts of hundreds of volunteers and donations from
+people in all walks of life.
+
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg-tm's
+goals and ensuring that the Project Gutenberg-tm collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenberg-tm and future generations.
+To learn more about the Project Gutenberg Literary Archive Foundation
+and how your efforts and donations can help, see Sections 3 and 4
+and the Foundation information page at www.gutenberg.org
+
+
+Section 3. Information about the Project Gutenberg Literary Archive
+Foundation
+
+The Project Gutenberg Literary Archive Foundation is a non profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation's EIN or federal tax identification
+number is 64-6221541. Contributions to the Project Gutenberg
+Literary Archive Foundation are tax deductible to the full extent
+permitted by U.S. federal laws and your state's laws.
+
+The Foundation's principal office is located at 4557 Melan Dr. S.
+Fairbanks, AK, 99712., but its volunteers and employees are scattered
+throughout numerous locations. Its business office is located at 809
+North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email
+contact links and up to date contact information can be found at the
+Foundation's web site and official page at www.gutenberg.org/contact
+
+For additional contact information:
+ Dr. Gregory B. Newby
+ Chief Executive and Director
+ gbnewby@pglaf.org
+
+Section 4. Information about Donations to the Project Gutenberg
+Literary Archive Foundation
+
+Project Gutenberg-tm depends upon and cannot survive without wide
+spread public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To
+SEND DONATIONS or determine the status of compliance for any
+particular state visit www.gutenberg.org/donate
+
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+
+Please check the Project Gutenberg Web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including checks, online payments and credit card donations.
+To donate, please visit: www.gutenberg.org/donate
+
+
+Section 5. General Information About Project Gutenberg-tm electronic
+works.
+
+Professor Michael S. Hart was the originator of the Project Gutenberg-tm
+concept of a library of electronic works that could be freely shared
+with anyone. For forty years, he produced and distributed Project
+Gutenberg-tm eBooks with only a loose network of volunteer support.
+
+Project Gutenberg-tm eBooks are often created from several printed
+editions, all of which are confirmed as Public Domain in the U.S.
+unless a copyright notice is included. Thus, we do not necessarily
+keep eBooks in compliance with any particular paper edition.
+
+Most people start at our Web site which has the main PG search facility:
+
+ www.gutenberg.org
+
+This Web site includes information about Project Gutenberg-tm,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+\end{PGtext}
+
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% End of the Project Gutenberg EBook of The Theory of Spectra and Atomic %
+% Constitution, by Niels (Niels Henrik David) Bohr %
+% %
+% *** END OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA *** %
+% %
+% ***** This file should be named 47464-t.tex or 47464-t.zip ***** %
+% This and all associated files of various formats will be found in: %
+% http://www.gutenberg.org/4/7/4/6/47464/ %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\end{document}
+###
+@ControlwordReplace = (
+ ['\\ie', 'i.e.']
+ );
+
+@ControlwordArguments = (
+ ['\\Signature', 1, 1, '', ' ', 1, 1, '', ' ', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Figure', 0, 0, '', '', 1, 0, '', '', 1, 0, '<GRAPHIC>', ''],
+ ['\\BookMark', 1, 0, '', '', 1, 0, '', ''],
+ ['\\First', 1, 1, '', ''],
+ ['\\Essay', 1, 1, 'Essay ', ' ', 1, 1, '', '', 1, 0, '', ''],
+ ['\\Chapter', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Section', 1, 1, '', ''],
+ ['\\Fig', 0, 0, '', '', 1, 1, 'figure ', ''],
+ ['\\FigNum', 1, 1, '', ''],
+ ['\\Pagelabel', 1, 0, '', ''],
+ ['\\PageRef', 1, 1, 'p. ', ''],
+ ['\\PageNum', 1, 1, '', ''],
+ ['\\Eq', 0, 0, '', '', 1, 1, '', ''],
+ ['\\Add', 1, 1, '', ''],
+ ['\\Chg', 1, 0, '', '', 1, 1, '', '']
+ );
+$PageSeparator = qr/^\\PageSep/;
+$CustomClean = 'print "\\nCustom cleaning in progress...";
+my $cline = 0;
+ while ($cline <= $#file) {
+ $file[$cline] =~ s/--------[^\n]*\n//; # strip page separators
+ $cline++
+ }
+ print "done\\n";';
+###
+This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) (format=pdflatex 2014.9.6) 26 NOV 2014 07:10
+entering extended mode
+ %&-line parsing enabled.
+**47464-t.tex
+(./47464-t.tex
+LaTeX2e <2011/06/27>
+Babel <3.9h> and hyphenation patterns for 78 languages loaded.
+(/usr/share/texlive/texmf-dist/tex/latex/base/book.cls
+Document Class: book 2007/10/19 v1.4h Standard LaTeX document class
+(/usr/share/texlive/texmf-dist/tex/latex/base/bk12.clo
+File: bk12.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@chapter=\count80
+\c@section=\count81
+\c@subsection=\count82
+\c@subsubsection=\count83
+\c@paragraph=\count84
+\c@subparagraph=\count85
+\c@figure=\count86
+\c@table=\count87
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+Package: inputenc 2008/03/30 v1.1d Input encoding file
+\inpenc@prehook=\toks14
+\inpenc@posthook=\toks15
+(/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def
+File: latin1.def 2008/03/30 v1.1d Input encoding file
+)) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+Package: amsmath 2013/01/14 v2.14 AMS math features
+\@mathmargin=\skip43
+For additional information on amsmath, use the `?' option.
+(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+Package: amstext 2000/06/29 v2.01
+(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+File: amsgen.sty 1999/11/30 v2.0
+\@emptytoks=\toks16
+\ex@=\dimen103
+)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+Package: amsbsy 1999/11/29 v1.2d
+\pmbraise@=\dimen104
+) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+Package: amsopn 1999/12/14 v2.01 operator names
+)
+\inf@bad=\count88
+LaTeX Info: Redefining \frac on input line 210.
+\uproot@=\count89
+\leftroot@=\count90
+LaTeX Info: Redefining \overline on input line 306.
+\classnum@=\count91
+\DOTSCASE@=\count92
+LaTeX Info: Redefining \ldots on input line 378.
+LaTeX Info: Redefining \dots on input line 381.
+LaTeX Info: Redefining \cdots on input line 466.
+\Mathstrutbox@=\box26
+\strutbox@=\box27
+\big@size=\dimen105
+LaTeX Font Info: Redeclaring font encoding OML on input line 566.
+LaTeX Font Info: Redeclaring font encoding OMS on input line 567.
+\macc@depth=\count93
+\c@MaxMatrixCols=\count94
+\dotsspace@=\muskip10
+\c@parentequation=\count95
+\dspbrk@lvl=\count96
+\tag@help=\toks17
+\row@=\count97
+\column@=\count98
+\maxfields@=\count99
+\andhelp@=\toks18
+\eqnshift@=\dimen106
+\alignsep@=\dimen107
+\tagshift@=\dimen108
+\tagwidth@=\dimen109
+\totwidth@=\dimen110
+\lineht@=\dimen111
+\@envbody=\toks19
+\multlinegap=\skip44
+\multlinetaggap=\skip45
+\mathdisplay@stack=\toks20
+LaTeX Info: Redefining \[ on input line 2665.
+LaTeX Info: Redefining \] on input line 2666.
+) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+Package: amssymb 2013/01/14 v3.01 AMS font symbols
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
+\symAMSa=\mathgroup4
+\symAMSb=\mathgroup5
+LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
+(Font) U/euf/m/n --> U/euf/b/n on input line 106.
+)) (/usr/share/texlive/texmf-dist/tex/latex/base/alltt.sty
+Package: alltt 1997/06/16 v2.0g defines alltt environment
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/indentfirst.sty
+Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
+\col@sep=\dimen112
+\extrarowheight=\dimen113
+\NC@list=\toks21
+\extratabsurround=\skip46
+\backup@length=\skip47
+) (/usr/share/texlive/texmf-dist/tex/latex/footmisc/footmisc.sty
+Package: footmisc 2011/06/06 v5.5b a miscellany of footnote facilities
+\FN@temptoken=\toks22
+\footnotemargin=\dimen114
+\c@pp@next@reset=\count100
+\c@@fnserial=\count101
+Package footmisc Info: Declaring symbol style bringhurst on input line 855.
+Package footmisc Info: Declaring symbol style chicago on input line 863.
+Package footmisc Info: Declaring symbol style wiley on input line 872.
+Package footmisc Info: Declaring symbol style lamport-robust on input line 883.
+
+Package footmisc Info: Declaring symbol style lamport* on input line 903.
+Package footmisc Info: Declaring symbol style lamport*-robust on input line 924
+.
+) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
+Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
+\KV@toks@=\toks23
+) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
+File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
+)
+Package graphics Info: Driver file: pdftex.def on input line 91.
+(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
+File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
+Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
+) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
+Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
+)
+\Gread@gobject=\count102
+))
+\Gin@req@height=\dimen115
+\Gin@req@width=\dimen116
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+Package: calc 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
+\calc@Acount=\count103
+\calc@Bcount=\count104
+\calc@Adimen=\dimen117
+\calc@Bdimen=\dimen118
+\calc@Askip=\skip48
+\calc@Bskip=\skip49
+LaTeX Info: Redefining \setlength on input line 76.
+LaTeX Info: Redefining \addtolength on input line 77.
+\calc@Ccount=\count105
+\calc@Cskip=\skip50
+) (/usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+\fancy@headwidth=\skip51
+\f@ncyO@elh=\skip52
+\f@ncyO@erh=\skip53
+\f@ncyO@olh=\skip54
+\f@ncyO@orh=\skip55
+\f@ncyO@elf=\skip56
+\f@ncyO@erf=\skip57
+\f@ncyO@olf=\skip58
+\f@ncyO@orf=\skip59
+) (/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+Package: geometry 2010/09/12 v5.6 Page Geometry
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
+Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
+Package ifpdf Info: pdfTeX in PDF mode is detected.
+) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifvtex.sty
+Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
+Package ifvtex Info: VTeX not detected.
+) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
+Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
+)
+\Gm@cnth=\count106
+\Gm@cntv=\count107
+\c@Gm@tempcnt=\count108
+\Gm@bindingoffset=\dimen119
+\Gm@wd@mp=\dimen120
+\Gm@odd@mp=\dimen121
+\Gm@even@mp=\dimen122
+\Gm@layoutwidth=\dimen123
+\Gm@layoutheight=\dimen124
+\Gm@layouthoffset=\dimen125
+\Gm@layoutvoffset=\dimen126
+\Gm@dimlist=\toks24
+) (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+Package: hyperref 2012/11/06 v6.83m Hypertext links for LaTeX
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
+Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
+
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
+Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
+Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
+Package hobsub Info: Skipping package `infwarerr' (already loaded).
+Package hobsub Info: Skipping package `ltxcmds' (already loaded).
+Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
+Package ifluatex Info: LuaTeX not detected.
+Package hobsub Info: Skipping package `ifvtex' (already loaded).
+Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
+Package hobsub Info: Skipping package `ifpdf' (already loaded).
+Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
+Package etexcmds Info: Could not find \expanded.
+(etexcmds) That can mean that you are not using pdfTeX 1.50 or
+(etexcmds) that some package has redefined \expanded.
+(etexcmds) In the latter case, load this package earlier.
+Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
+Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
+Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
+)
+Package pdftexcmds Info: LuaTeX not detected.
+Package pdftexcmds Info: \pdf@primitive is available.
+Package pdftexcmds Info: \pdf@ifprimitive is available.
+Package pdftexcmds Info: \pdfdraftmode found.
+Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
+Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
+)
+Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
+Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
+)
+Package hobsub Info: Skipping package `hobsub' (already loaded).
+Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
+Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
+Package: xcolor-patch 2011/01/30 xcolor patch
+Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
+Package atveryend Info: \enddocument detected (standard20110627).
+Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
+Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
+Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
+) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/auxhook.sty
+Package: auxhook 2011/03/04 v1.3 Hooks for auxiliary files (HO)
+) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
+Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
+)
+\@linkdim=\dimen127
+\Hy@linkcounter=\count109
+\Hy@pagecounter=\count110
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+File: pd1enc.def 2012/11/06 v6.83m Hyperref: PDFDocEncoding definition (HO)
+)
+\Hy@SavedSpaceFactor=\count111
+(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
+File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+)
+Package hyperref Info: Option `hyperfootnotes' set `false' on input line 4319.
+Package hyperref Info: Option `bookmarks' set `true' on input line 4319.
+Package hyperref Info: Option `linktocpage' set `false' on input line 4319.
+Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 431
+9.
+Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4319.
+Package hyperref Info: Option `bookmarksopen' set `true' on input line 4319.
+Package hyperref Info: Option `colorlinks' set `true' on input line 4319.
+Package hyperref Info: Hyper figures OFF on input line 4443.
+Package hyperref Info: Link nesting OFF on input line 4448.
+Package hyperref Info: Hyper index ON on input line 4451.
+Package hyperref Info: Plain pages OFF on input line 4458.
+Package hyperref Info: Backreferencing OFF on input line 4463.
+Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
+Package hyperref Info: Bookmarks ON on input line 4688.
+\c@Hy@tempcnt=\count112
+(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+\Urlmuskip=\muskip11
+Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
+)
+LaTeX Info: Redefining \url on input line 5041.
+\XeTeXLinkMargin=\dimen128
+\Fld@menulength=\count113
+\Field@Width=\dimen129
+\Fld@charsize=\dimen130
+Package hyperref Info: Hyper figures OFF on input line 6295.
+Package hyperref Info: Link nesting OFF on input line 6300.
+Package hyperref Info: Hyper index ON on input line 6303.
+Package hyperref Info: backreferencing OFF on input line 6310.
+Package hyperref Info: Link coloring ON on input line 6313.
+Package hyperref Info: Link coloring with OCG OFF on input line 6320.
+Package hyperref Info: PDF/A mode OFF on input line 6325.
+LaTeX Info: Redefining \ref on input line 6365.
+LaTeX Info: Redefining \pageref on input line 6369.
+\Hy@abspage=\count114
+\c@Item=\count115
+)
+
+Package hyperref Message: Driver: hpdftex.
+
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+File: hpdftex.def 2012/11/06 v6.83m Hyperref driver for pdfTeX
+\Fld@listcount=\count116
+\c@bookmark@seq@number=\count117
+(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
+Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
+Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
+82.
+)
+\Hy@SectionHShift=\skip60
+)
+\TmpLen=\skip61
+\c@SecNo=\count118
+(./47464-t.aux)
+\openout1 = `47464-t.aux'.
+
+LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
+[Loading MPS to PDF converter (version 2006.09.02).]
+\scratchcounter=\count119
+\scratchdimen=\dimen131
+\scratchbox=\box28
+\nofMPsegments=\count120
+\nofMParguments=\count121
+\everyMPshowfont=\toks25
+\MPscratchCnt=\count122
+\MPscratchDim=\dimen132
+\MPnumerator=\count123
+\makeMPintoPDFobject=\count124
+\everyMPtoPDFconversion=\toks26
+)
+*geometry* driver: auto-detecting
+*geometry* detected driver: pdftex
+*geometry* verbose mode - [ preamble ] result:
+* driver: pdftex
+* paper: <default>
+* layout: <same size as paper>
+* layoutoffset:(h,v)=(0.0pt,0.0pt)
+* hratio: 1:1
+* modes: includehead includefoot twoside
+* h-part:(L,W,R)=(9.03375pt, 307.14749pt, 9.03375pt)
+* v-part:(T,H,B)=(1.26749pt, 466.58623pt, 1.90128pt)
+* \paperwidth=325.215pt
+* \paperheight=469.75499pt
+* \textwidth=307.14749pt
+* \textheight=404.71243pt
+* \oddsidemargin=-63.23624pt
+* \evensidemargin=-63.23624pt
+* \topmargin=-71.0025pt
+* \headheight=12.0pt
+* \headsep=19.8738pt
+* \topskip=12.0pt
+* \footskip=30.0pt
+* \marginparwidth=98.0pt
+* \marginparsep=7.0pt
+* \columnsep=10.0pt
+* \skip\footins=10.8pt plus 4.0pt minus 2.0pt
+* \hoffset=0.0pt
+* \voffset=0.0pt
+* \mag=1000
+* \@twocolumnfalse
+* \@twosidetrue
+* \@mparswitchtrue
+* \@reversemarginfalse
+* (1in=72.27pt=25.4mm, 1cm=28.453pt)
+
+\AtBeginShipoutBox=\box29
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty
+Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
+File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+)
+Package color Info: Driver file: pdftex.def on input line 130.
+)
+Package hyperref Info: Link coloring ON on input line 465.
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+Package: nameref 2012/10/27 v2.43 Cross-referencing by name of section
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
+Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
+)
+\c@section@level=\count125
+)
+LaTeX Info: Redefining \ref on input line 465.
+LaTeX Info: Redefining \pageref on input line 465.
+LaTeX Info: Redefining \nameref on input line 465.
+(./47464-t.out) (./47464-t.out)
+\@outlinefile=\write3
+\openout3 = `47464-t.out'.
+
+
+Overfull \hbox (7.35703pt too wide) in paragraph at lines 475--475
+[]\OT1/cmtt/m/n/8 This eBook is for the use of anyone anywhere in the United St
+ates and most[]
+ []
+
+
+Overfull \hbox (7.35703pt too wide) in paragraph at lines 477--477
+[]\OT1/cmtt/m/n/8 whatsoever. You may copy it, give it away or re-use it under
+ the terms of[]
+ []
+
+
+Overfull \hbox (15.85715pt too wide) in paragraph at lines 479--479
+[]\OT1/cmtt/m/n/8 www.gutenberg.org. If you are not located in the United Stat
+es, you'll have[]
+ []
+
+
+Overfull \hbox (28.60733pt too wide) in paragraph at lines 480--480
+[]\OT1/cmtt/m/n/8 to check the laws of the country where you are located before
+ using this ebook.[]
+ []
+
+LaTeX Font Info: Try loading font information for U+msa on input line 497.
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
+File: umsa.fd 2013/01/14 v3.01 AMS symbols A
+)
+LaTeX Font Info: Try loading font information for U+msb on input line 497.
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
+File: umsb.fd 2013/01/14 v3.01 AMS symbols B
+) [1
+
+{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2] [3] [1
+
+
+
+
+] [2]
+LaTeX Font Info: Try loading font information for OMS+cmr on input line 664.
+
+(/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
+File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+)
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <8> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 664.
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <7> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 664.
+[3] [4] (./47464-t.toc
+Underfull \hbox (badness 1917) in paragraph at lines 18--18
+[][]| \OT1/cmr/m/sc/10.95 De-vel-op-ment of the Quan-tum The-ory of
+ []
+
+[5
+
+
+
+])
+\tf@toc=\write4
+\openout4 = `47464-t.toc'.
+
+[6] [7] [8]
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 788.
+[1
+
+
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
+[19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30
+
+
+] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] <./imag
+es/fig_p30.pdf, id=538, 154.17601pt x 62.8749pt>
+File: ./images/fig_p30.pdf Graphic file (type pdf)
+<use ./images/fig_p30.pdf>
+Package pdftex.def Info: ./images/fig_p30.pdf used on input line 2042.
+(pdftex.def) Requested size: 291.78917pt x 119.00972pt.
+[45] [46 <./images/fig_p30.pdf>] [47] [48] [49] [50] [51] [52] [53] [54] [55] [
+56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]
+[72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87]
+[88] [89] [90] [91] [92
+
+
+] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] <./images/fi
+g_p70.pdf, id=936, 154.17601pt x 157.5486pt>
+File: ./images/fig_p70.pdf Graphic file (type pdf)
+<use ./images/fig_p70.pdf>
+Package pdftex.def Info: ./images/fig_p70.pdf used on input line 3686.
+(pdftex.def) Requested size: 291.78917pt x 298.20833pt.
+[105] [106 <./images/fig_p70.pdf>] [107] [108] [109] [110] [111] [112] [113] [1
+14] [115] [116] [117] <./images/fig_p79.pdf, id=1023, 154.17601pt x 62.8749pt>
+File: ./images/fig_p79.pdf Graphic file (type pdf)
+<use ./images/fig_p79.pdf>
+Package pdftex.def Info: ./images/fig_p79.pdf used on input line 4026.
+(pdftex.def) Requested size: 291.78917pt x 119.00972pt.
+[118] [119 <./images/fig_p79.pdf>] [120] [121] [122] [123] [124] [125] [126] [1
+27] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [14
+0] [141] [142] [143] <./images/fig_p97.pdf, id=1170, 154.17601pt x 64.3203pt>
+File: ./images/fig_p97.pdf Graphic file (type pdf)
+<use ./images/fig_p97.pdf>
+Package pdftex.def Info: ./images/fig_p97.pdf used on input line 4747.
+(pdftex.def) Requested size: 291.78917pt x 121.74559pt.
+[144] [145] [146 <./images/fig_p97.pdf>] [147] [148] [149] [150]
+Underfull \hbox (badness 1292) in paragraph at lines 4867--4888
+ [][]\OT1/cmr/bx/n/12 Fourth Pe-riod. Potassium---Krypton. \OT1/cmr/m/n/12 In t
+he
+ []
+
+<./images/fig_p102.pdf, id=1215, 154.17601pt x 133.2177pt>
+File: ./images/fig_p102.pdf Graphic file (type pdf)
+<use ./images/fig_p102.pdf>
+Package pdftex.def Info: ./images/fig_p102.pdf used on input line 4930.
+(pdftex.def) Requested size: 291.78917pt x 252.15475pt.
+[151] [152] [153] [154 <./images/fig_p102.pdf>] [155] [156] [157] [158] [159] [
+160] [161] [162] [163] [164] [165] [166] [167] [168] [169] <./images/fig_p113.p
+df, id=1314, 154.17601pt x 69.6201pt>
+File: ./images/fig_p113.pdf Graphic file (type pdf)
+<use ./images/fig_p113.pdf>
+Package pdftex.def Info: ./images/fig_p113.pdf used on input line 5354.
+(pdftex.def) Requested size: 291.78917pt x 131.77707pt.
+[170 <./images/fig_p113.pdf>] [171] [172] [173] [174] [175] [176] [177] [178] [
+179] [180] [181] [182] [183] <./images/fig_p123.pdf, id=1395, 154.17601pt x 137
+.5539pt>
+File: ./images/fig_p123.pdf Graphic file (type pdf)
+<use ./images/fig_p123.pdf>
+Package pdftex.def Info: ./images/fig_p123.pdf used on input line 5741.
+(pdftex.def) Requested size: 291.78917pt x 260.3623pt.
+[184] [185 <./images/fig_p123.pdf>] <./images/fig_p124.pdf, id=1420, 154.17601p
+t x 93.951pt>
+File: ./images/fig_p124.pdf Graphic file (type pdf)
+<use ./images/fig_p124.pdf>
+Package pdftex.def Info: ./images/fig_p124.pdf used on input line 5764.
+(pdftex.def) Requested size: 291.78917pt x 177.83067pt.
+[186 <./images/fig_p124.pdf>] [187] [188] [189] [1
+
+
+]
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5902--5902
+[]\OT1/cmtt/m/n/8 1.C. The Project Gutenberg Literary Archive Foundation ("the
+ Foundation"[]
+ []
+
+
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5907--5907
+[]\OT1/cmtt/m/n/8 located in the United States, we do not claim a right to prev
+ent you from[]
+ []
+
+
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5912--5912
+[]\OT1/cmtt/m/n/8 freely sharing Project Gutenberg-tm works in compliance with
+the terms of[]
+ []
+
+[2] [3]
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5975--5975
+[]\OT1/cmtt/m/n/8 posted on the official Project Gutenberg-tm web site (www.gut
+enberg.org),[]
+ []
+
+[4] [5] [6] [7] [8]
+Package atveryend Info: Empty hook `BeforeClearDocument' on input line 6204.
+[9]
+Package atveryend Info: Empty hook `AfterLastShipout' on input line 6204.
+(./47464-t.aux)
+Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 6204.
+
+ *File List*
+ book.cls 2007/10/19 v1.4h Standard LaTeX document class
+ bk12.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
+inputenc.sty 2008/03/30 v1.1d Input encoding file
+ latin1.def 2008/03/30 v1.1d Input encoding file
+ ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+ amsmath.sty 2013/01/14 v2.14 AMS math features
+ amstext.sty 2000/06/29 v2.01
+ amsgen.sty 1999/11/30 v2.0
+ amsbsy.sty 1999/11/29 v1.2d
+ amsopn.sty 1999/12/14 v2.01 operator names
+ amssymb.sty 2013/01/14 v3.01 AMS font symbols
+amsfonts.sty 2013/01/14 v3.01 Basic AMSFonts support
+ alltt.sty 1997/06/16 v2.0g defines alltt environment
+indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC)
+ array.sty 2008/09/09 v2.4c Tabular extension package (FMi)
+footmisc.sty 2011/06/06 v5.5b a miscellany of footnote facilities
+graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+ keyval.sty 1999/03/16 v1.13 key=value parser (DPC)
+graphics.sty 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+ trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
+graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
+ pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
+infwarerr.sty 2010/04/08 v1.3 Providing info/warning/error messages (HO)
+ ltxcmds.sty 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
+ calc.sty 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
+fancyhdr.sty
+geometry.sty 2010/09/12 v5.6 Page Geometry
+ ifpdf.sty 2011/01/30 v2.3 Provides the ifpdf switch (HO)
+ ifvtex.sty 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
+ ifxetex.sty 2010/09/12 v0.6 Provides ifxetex conditional
+hyperref.sty 2012/11/06 v6.83m Hypertext links for LaTeX
+hobsub-hyperref.sty 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
+hobsub-generic.sty 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
+ hobsub.sty 2012/05/28 v1.13 Construct package bundles (HO)
+ifluatex.sty 2010/03/01 v1.3 Provides the ifluatex switch (HO)
+ intcalc.sty 2007/09/27 v1.1 Expandable calculations with integers (HO)
+etexcmds.sty 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
+kvsetkeys.sty 2012/04/25 v1.16 Key value parser (HO)
+kvdefinekeys.sty 2011/04/07 v1.3 Define keys (HO)
+pdftexcmds.sty 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO)
+pdfescape.sty 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
+bigintcalc.sty 2012/04/08 v1.3 Expandable calculations on big integers (HO)
+ bitset.sty 2011/01/30 v1.1 Handle bit-vector datatype (HO)
+uniquecounter.sty 2011/01/30 v1.2 Provide unlimited unique counter (HO)
+letltxmacro.sty 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
+ hopatch.sty 2012/05/28 v1.2 Wrapper for package hooks (HO)
+xcolor-patch.sty 2011/01/30 xcolor patch
+atveryend.sty 2011/06/30 v1.8 Hooks at the very end of document (HO)
+atbegshi.sty 2011/10/05 v1.16 At begin shipout hook (HO)
+refcount.sty 2011/10/16 v3.4 Data extraction from label references (HO)
+ hycolor.sty 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
+ auxhook.sty 2011/03/04 v1.3 Hooks for auxiliary files (HO)
+kvoptions.sty 2011/06/30 v3.11 Key value format for package options (HO)
+ pd1enc.def 2012/11/06 v6.83m Hyperref: PDFDocEncoding definition (HO)
+hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+ url.sty 2013/09/16 ver 3.4 Verb mode for urls, etc.
+ hpdftex.def 2012/11/06 v6.83m Hyperref driver for pdfTeX
+rerunfilecheck.sty 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
+supp-pdf.mkii
+ color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+ color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+ nameref.sty 2012/10/27 v2.43 Cross-referencing by name of section
+gettitlestring.sty 2010/12/03 v1.4 Cleanup title references (HO)
+ 47464-t.out
+ 47464-t.out
+ umsa.fd 2013/01/14 v3.01 AMS symbols A
+ umsb.fd 2013/01/14 v3.01 AMS symbols B
+ omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+./images/fig_p30.pdf
+./images/fig_p70.pdf
+./images/fig_p79.pdf
+./images/fig_p97.pdf
+./images/fig_p102.pdf
+./images/fig_p113.pdf
+./images/fig_p123.pdf
+./images/fig_p124.pdf
+ ***********
+
+Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 6204.
+
+Package rerunfilecheck Info: File `47464-t.out' has not changed.
+(rerunfilecheck) Checksum: 941BAAB177EAA6E2EBF87B376707898A;1582.
+Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 6204.
+ )
+Here is how much of TeX's memory you used:
+ 7604 strings out of 493304
+ 106244 string characters out of 6139872
+ 214221 words of memory out of 5000000
+ 10478 multiletter control sequences out of 15000+600000
+ 17658 words of font info for 68 fonts, out of 8000000 for 9000
+ 959 hyphenation exceptions out of 8191
+ 28i,12n,44p,345b,485s stack positions out of 5000i,500n,10000p,200000b,80000s
+</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></us
+r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/sha
+re/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/tex
+live/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb></usr/share/texlive/t
+exmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/share/texlive/texmf-di
+st/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/font
+s/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1
+/public/amsfonts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public
+/amsfonts/cm/cmr8.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfont
+s/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/c
+msy6.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pf
+b></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb></usr
+/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share
+/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti12.pfb></usr/share/texli
+ve/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb></usr/share/texlive/tex
+mf-dist/fonts/type1/public/amsfonts/cm/cmtt8.pfb>
+Output written on 47464-t.pdf (209 pages, 1116135 bytes).
+PDF statistics:
+ 1651 PDF objects out of 1728 (max. 8388607)
+ 1379 compressed objects within 14 object streams
+ 479 named destinations out of 1000 (max. 500000)
+ 193 words of extra memory for PDF output out of 10000 (max. 10000000)
+
diff --git a/47464-t/images/fig_p102.pdf b/47464-t/images/fig_p102.pdf
new file mode 100644
index 0000000..3041ac5
--- /dev/null
+++ b/47464-t/images/fig_p102.pdf
Binary files differ
diff --git a/47464-t/images/fig_p113.pdf b/47464-t/images/fig_p113.pdf
new file mode 100644
index 0000000..387af53
--- /dev/null
+++ b/47464-t/images/fig_p113.pdf
Binary files differ
diff --git a/47464-t/images/fig_p123.pdf b/47464-t/images/fig_p123.pdf
new file mode 100644
index 0000000..a4d6245
--- /dev/null
+++ b/47464-t/images/fig_p123.pdf
Binary files differ
diff --git a/47464-t/images/fig_p124.pdf b/47464-t/images/fig_p124.pdf
new file mode 100644
index 0000000..f3a82d3
--- /dev/null
+++ b/47464-t/images/fig_p124.pdf
Binary files differ
diff --git a/47464-t/images/fig_p30.pdf b/47464-t/images/fig_p30.pdf
new file mode 100644
index 0000000..46a2ab7
--- /dev/null
+++ b/47464-t/images/fig_p30.pdf
Binary files differ
diff --git a/47464-t/images/fig_p70.pdf b/47464-t/images/fig_p70.pdf
new file mode 100644
index 0000000..e7a4408
--- /dev/null
+++ b/47464-t/images/fig_p70.pdf
Binary files differ
diff --git a/47464-t/images/fig_p79.pdf b/47464-t/images/fig_p79.pdf
new file mode 100644
index 0000000..46a2ab7
--- /dev/null
+++ b/47464-t/images/fig_p79.pdf
Binary files differ
diff --git a/47464-t/images/fig_p97.pdf b/47464-t/images/fig_p97.pdf
new file mode 100644
index 0000000..5baf266
--- /dev/null
+++ b/47464-t/images/fig_p97.pdf
Binary files differ
diff --git a/47464-t/old/47464-t.tex b/47464-t/old/47464-t.tex
new file mode 100644
index 0000000..9c25755
--- /dev/null
+++ b/47464-t/old/47464-t.tex
@@ -0,0 +1,6908 @@
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% The Project Gutenberg EBook of The Theory of Spectra and Atomic %
+% Constitution, by Niels (Niels Henrik David) Bohr %
+% %
+% This eBook is for the use of anyone anywhere in the United States and most
+% other parts of the world at no cost and with almost no restrictions %
+% whatsoever. You may copy it, give it away or re-use it under the terms of
+% the Project Gutenberg License included with this eBook or online at %
+% www.gutenberg.org. If you are not located in the United States, you'll have
+% to check the laws of the country where you are located before using this ebook.
+% %
+% %
+% %
+% Title: The Theory of Spectra and Atomic Constitution %
+% Three Essays %
+% %
+% Author: Niels (Niels Henrik David) Bohr %
+% %
+% Release Date: November 26, 2014 [EBook #47464] %
+% %
+% Language: English %
+% %
+% Character set encoding: ISO-8859-1 %
+% %
+% *** START OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA *** %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\def\ebook{47464}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %%
+%% Packages and substitutions: %%
+%% %%
+%% book: Required. %%
+%% inputenc: Latin-1 text encoding. Required. %%
+%% %%
+%% ifthen: Logical conditionals. Required. %%
+%% %%
+%% amsmath: AMS mathematics enhancements. Required. %%
+%% amssymb: Additional mathematical symbols. Required. %%
+%% %%
+%% alltt: Fixed-width font environment. Required. %%
+%% %%
+%% indentfirst: Indent first paragraph of each section. Optional. %%
+%% array: Array enhancements. Required. %%
+%% %%
+%% footmisc: Start footnote numbering on each page. Required. %%
+%% %%
+%% graphicx: Standard interface for graphics inclusion. Required. %%
+%% %%
+%% calc: Length calculations. Required. %%
+%% %%
+%% fancyhdr: Enhanced running headers and footers. Required. %%
+%% %%
+%% geometry: Enhanced page layout package. Required. %%
+%% hyperref: Hypertext embellishments for pdf output. Required. %%
+%% %%
+%% %%
+%% Producer's Comments: %%
+%% %%
+%% OCR text for this ebook was obtained on Nov. 21, 2014, from %%
+%% http://www.archive.org/details/theoryofspectraa00bohr. %%
+%% %%
+%% Minor changes to the original are noted in this file in two %%
+%% ways: %%
+%% 1. \Chg{}{} and \Add{} for modernization and consistency: %%
+%% * "excentric" modernized to "eccentric". %%
+%% * "can not" uniformized to "cannot". %%
+%% * "ultra-violet" and "infra-red" hyphenated uniformly. %%
+%% %%
+%% 2. [** TN: Note]s for other remarks. %%
+%% %%
+%% Compilation Flags: %%
+%% %%
+%% The following behavior may be controlled by a boolean flag. %%
+%% %%
+%% ForPrinting (false by default): %%
+%% If false, compile a screen optimized file (one-sided layout, %%
+%% blue hyperlinks). If true, print-optimized PDF file: Larger %%
+%% text block, two-sided layout, black hyperlinks. %%
+%% %%
+%% %%
+%% PDF pages: 209 (if ForPrinting set to false) %%
+%% PDF page size: 4.5 x 6.5" (non-standard) %%
+%% %%
+%% Summary of log file: %%
+%% * Two underfull hboxes. (No visual problems.) %%
+%% %%
+%% Compile History: %%
+%% %%
+%% November, 2014: (Andrew D. Hwang) %%
+%% texlive2012, GNU/Linux %%
+%% %%
+%% Command block: %%
+%% %%
+%% pdflatex x4 %%
+%% %%
+%% %%
+%% November 2014: pglatex. %%
+%% Compile this project with: %%
+%% pdflatex 47464-t.tex ..... FOUR times %%
+%% %%
+%% pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) %%
+%% %%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\listfiles
+\documentclass[12pt]{book}[2005/09/16]
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\usepackage[latin1]{inputenc}[2006/05/05]
+
+\usepackage{ifthen}[2001/05/26] %% Logical conditionals
+
+\usepackage{amsmath}[2000/07/18] %% Displayed equations
+\usepackage{amssymb}[2002/01/22] %% and additional symbols
+
+\usepackage{alltt}[1997/06/16] %% boilerplate, credits, license
+
+\IfFileExists{indentfirst.sty}{%
+ \usepackage{indentfirst}[1995/11/23]
+}{}
+
+\usepackage{array}[2008/09/09]
+
+\usepackage[perpage,symbol]{footmisc}[2005/03/17]
+
+\usepackage{graphicx}[1999/02/16]%% For diagrams
+
+\usepackage{calc}[2005/08/06]
+
+\usepackage{fancyhdr} %% For running heads
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% ForPrinting=true false (default)
+% Asymmetric margins Symmetric margins
+% 1 : 1.6 text block aspect ratio 3 : 4 text block aspect ratio
+% Black hyperlinks Blue hyperlinks
+% Start major marker pages recto No blank verso pages
+%
+\newboolean{ForPrinting}
+
+%% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %%
+%\setboolean{ForPrinting}{true}
+
+%% Initialize values to ForPrinting=false
+\newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins
+\newcommand{\HLinkColor}{blue} % Hyperlink color
+\newcommand{\PDFPageLayout}{SinglePage}
+\newcommand{\TransNote}{Transcriber's Note}
+\newcommand{\TransNoteCommon}{%
+ The camera-quality files for this public-domain ebook may be
+ downloaded \textit{gratis} at
+ \begin{center}
+ \texttt{www.gutenberg.org/ebooks/\ebook}.
+ \end{center}
+
+ This ebook was produced using scanned images and OCR text generously
+ provided by the Brandeis University Library through the Internet Archive.
+ \bigskip
+
+ Minor typographical corrections and presentational changes have been
+ made without comment.
+ \bigskip
+}
+
+\newcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for screen viewing, but may be recompiled
+ for printing. Please consult the preamble of the \LaTeX\ source file
+ for instructions and other particulars.
+}
+%% Re-set if ForPrinting=true
+\ifthenelse{\boolean{ForPrinting}}{%
+ \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins
+ \renewcommand{\HLinkColor}{black} % Hyperlink color
+ \renewcommand{\PDFPageLayout}{TwoPageRight}
+ \renewcommand{\TransNote}{Transcriber's Note}
+ \renewcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for printing, but may be recompiled for
+ screen viewing. Please consult the preamble of the \LaTeX\ source
+ file for instructions and other particulars.
+ }
+}{% If ForPrinting=false, don't skip to recto
+ \renewcommand{\cleardoublepage}{\clearpage}
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\ifthenelse{\boolean{ForPrinting}}{%
+ \setlength{\paperwidth}{8.5in}%
+ \setlength{\paperheight}{11in}%
+% 1:1.6
+ \usepackage[body={5in,8in},\Margins]{geometry}[2002/07/08]
+}{%
+ \setlength{\paperwidth}{4.5in}%
+ \setlength{\paperheight}{6.5in}%
+ \raggedbottom
+% 3:4
+ \usepackage[body={4.25in,5.6in},\Margins,includeheadfoot]{geometry}[2002/07/08]
+}
+
+\providecommand{\ebook}{00000} % Overridden during white-washing
+\usepackage[pdftex,
+ hyperfootnotes=false,
+ pdfauthor={Niels Henrik David Bohr},
+ pdftitle={The Project Gutenberg eBook \#\ebook: The Theory of Spectra and Atomic Constitution.},
+ pdfkeywords={Brandeis University, The Internet Archive, Andrew D. Hwang},
+ pdfstartview=Fit, % default value
+ pdfstartpage=1, % default value
+ pdfpagemode=UseNone, % default value
+ bookmarks=true, % default value
+ linktocpage=false, % default value
+ pdfpagelayout=\PDFPageLayout,
+ pdfdisplaydoctitle,
+ pdfpagelabels=true,
+ bookmarksopen=true,
+ bookmarksopenlevel=0,
+ colorlinks=true,
+ linkcolor=\HLinkColor]{hyperref}[2007/02/07]
+
+
+%% Fixed-width environment to format PG boilerplate %%
+\newenvironment{PGtext}{%
+\begin{alltt}
+\fontsize{8.1}{10}\ttfamily\selectfont}%
+{\end{alltt}}
+
+% Stylistic changes made for consistency
+\newcommand{\Chg}[2]{#2}
+%\newcommand{\Chg}[2]{#1} % Use this to revert inconsistencies in the original
+\newcommand{\Add}[1]{\Chg{}{#1}}
+
+%% Miscellaneous global parameters %%
+% No hrule in page header
+\renewcommand{\headrulewidth}{0pt}
+
+% Loosen spacing
+\setlength{\emergencystretch}{1em}
+
+\hyphenation{electro-dynamics electro-magnetic}
+
+% Scratch pad for length calculations
+\newlength{\TmpLen}
+
+%% Running heads %%
+\newcommand{\FlushRunningHeads}{%
+ \clearpage\fancyhf{}%
+ \ifthenelse{\boolean{ForPrinting}}{\cleardoublepage}{\clearpage}%
+}
+\newcommand{\InitRunningHeads}{%
+ \setlength{\headheight}{15pt}
+ \pagestyle{fancy}
+ \thispagestyle{empty}
+ \ifthenelse{\boolean{ForPrinting}}
+ {\fancyhead[RO,LE]{\thepage}}
+ {\fancyhead[R]{\thepage}}
+}
+
+% Uniform style for running heads
+\newcommand{\RHeads}[1]{\textsc{\MakeLowercase{#1}}}
+
+\newcommand{\SetRunningHeads}[2][C]{\fancyhead[#1]{\RHeads{#2}}}
+
+\newcommand{\BookMark}[2]{\phantomsection\pdfbookmark[#1]{#2}{#2}}
+
+%% Major document divisions %%
+\newcommand{\PGBoilerPlate}{%
+ \pagenumbering{Alph}
+ \pagestyle{empty}
+ \BookMark{0}{PG Boilerplate.}
+}
+\newcommand{\FrontMatter}{%
+ \cleardoublepage
+ \FlushRunningHeads
+ \frontmatter
+ \BookMark{-1}{Front Matter.}
+}
+\newcommand{\MainMatter}{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \mainmatter
+ \BookMark{-1}{Main Matter.}
+}
+\newcommand{\PGLicense}{%
+ \FlushRunningHeads
+ \pagenumbering{Roman}
+ \InitRunningHeads
+ \BookMark{-1}{PG License.}
+ \SetRunningHeads{License}
+}
+
+%% ToC formatting %%
+\AtBeginDocument{\renewcommand{\contentsname}%
+ {\protect\thispagestyle{empty}%
+ \protect\SectTitle[\Large]{\textbf{CONTENTS}}\protect\vspace{-1.5\baselineskip}}
+}
+
+\newcommand{\TableofContents}{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \SetRunningHeads{Contents}
+ \BookMark{0}{Contents.}
+ \tableofcontents
+}
+
+% Set the section number in a fixed-width box
+\newcommand{\ToCBox}[1]{\settowidth{\TmpLen}{III.}%
+ \makebox[\TmpLen][r]{#1}\hspace*{1em}%
+}
+% For internal use, to determine if we need the Sect./Page line
+\newcommand{\ToCAnchor}{}
+
+% \ToCBox{Label}{Anchor}{Title}
+\newcommand{\ToCLine}[3]{%
+ \label{toc:#2}%
+ \ifthenelse{\not\equal{\pageref{toc:#2}}{\ToCAnchor}}{%
+ \renewcommand{\ToCAnchor}{\pageref{toc:#2}}%
+ \noindent\makebox[\textwidth][r]{\null\hfill\scriptsize PAGE}\\[8pt]%
+ }{}%
+ \settowidth{\TmpLen}{9999}%
+ \noindent\strut\parbox[b]{\textwidth-\TmpLen}{\small%
+ \ToCBox{#1}\hangindent4em#3\dotfill}%
+ \makebox[\TmpLen][r]{\pageref{#2}}%
+ \smallskip
+}
+
+%% Sectional units %%
+% Typographical abstraction
+\newcommand{\SectTitle}[2][\large]{%
+ \section*{\centering#1\normalfont #2}
+}
+\newcommand{\SubsectTitle}[2][\normalsize]{%
+ \subsection*{\centering#1\normalfont #2}
+}
+\newcommand{\SubsubsectTitle}[2][\small]{%
+ \subsubsection*{\centering#1\normalfont #2}
+}
+
+% For internal cross-referencing
+\newcommand{\EssayNo}{}
+\newcounter{SecNo}
+
+% \Essay{Number}{Title}{Footnote}
+\newcommand{\Essay}[3]{%
+ \FlushRunningHeads
+ \InitRunningHeads
+ \ifthenelse{\equal{#1}{III}}{% [** TN: Hack to handle long running head]
+ \ifthenelse{\boolean{ForPrinting}}{%
+ \fancyhead[CE]{\RHeads{The Structure of the Atom and the}}%
+ \fancyhead[CO]{\RHeads{Physical and Chemical Properties of the Elements}}%
+ }{% Not ForPrinting
+ \SetRunningHeads{The Structure of the Atom}%
+ }%
+ }{% Not Essay III
+ \SetRunningHeads{#2}%
+ }
+ \BookMark{0}{Essay #1.}
+ \renewcommand{\EssayNo}{#1}% For \Eq and \Tag
+ \addtocontents{toc}{\protect\SectTitle{ESSAY #1}}
+ \addtocontents{toc}{\protect\SubsectTitle[\protect\small]{\MakeUppercase{#2}}}
+ \SectTitle[\Large]{ESSAY #1\footnotemark}
+ \SubsectTitle{\MakeUppercase{#2}}
+ \footnotetext{#3}%
+}
+
+% \Chapter{Number}{Title}
+\newcommand{\Chapter}[2]{%
+ \BookMark{1}{#1 #2.}
+ \label{chapter:\EssayNo.#1}
+ \addtocontents{toc}{\protect\ToCLine{#1}{chapter:\EssayNo.#1}{\textsc{#2}}}
+ \SubsubsectTitle{#1 \MakeUppercase{#2}}
+}
+
+\newcommand{\Section}[1]{
+ \paragraph*{\indent #1}
+ \refstepcounter{SecNo}
+ \label{section:\theSecNo}
+ \addtocontents{toc}{\protect\ToCLine{}{section:\theSecNo}{#1}}
+}
+
+\newcommand{\Preface}{%
+ \InitRunningHeads
+ \SetRunningHeads{Preface}
+ \BookMark{0}{Preface.}
+ \SectTitle[\Large]{\textbf{PREFACE}}
+}
+
+\newcommand{\Signature}[4]{%
+ \par\null\hfill#1\hspace{\parindent}
+
+ \settowidth{\TmpLen}{\small\textsc{#2}}%
+ \parbox{\TmpLen}{\centering\small\textsc{#2} \\
+ \textit{#3} #4}
+ \normalsize
+}
+
+%% Diagrams %%
+\newcommand{\DefWidth}{0.95\textwidth}% Default figure width
+\newcommand{\Graphic}[1]{%
+ \includegraphics[width=\DefWidth]{./images/fig_p#1.pdf}%
+}
+% \Figure[caption]{label}{page}
+\newcommand{\Figure}[3][]{%
+ \begin{figure}[hbt!]
+ \centering
+ \phantomsection\Pagelabel{#3}%
+ \Graphic{#3}%
+ \ifthenelse{\not\equal{#1}{}}{%
+ \\
+ #1%
+ }{% #1=[]
+ \ifthenelse{\not\equal{#2}{}}{%
+ \\
+ \label{fig:#2}%
+ Fig.~#2.%
+ }{}%
+ }%
+ \end{figure}\ignorespaces%
+}
+
+% \Fig[figure]{Number}
+\newcommand{\Fig}[2][fig.]{\hyperref[fig:#2]{#1~#2}}
+\newcommand{\FigNum}[1]{\hyperref[fig:#1]{#1}}
+
+\newcommand{\Pagelabel}[1]{\phantomsection\label{page:#1}}
+
+% Page separators
+\newcommand{\PageSep}[1]{\ignorespaces}
+\newcommand{\PageRef}[2][page]{\hyperref[page:#2]{#1~\pageref*{page:#2}}}
+\newcommand{\PageNum}[1]{\hyperref[page:#1]{\pageref*{page:#1}}}
+
+% Miscellaneous textual conveniences (N.B. \emph, not \textit)
+\newcommand{\ie}{i.e.}
+
+\newcommand{\First}[1]{\textsc{#1}}
+\newcommand{\Title}[1]{\textit{#1}}% Journal title
+\newcommand{\No}[1]{\textsc{#1}}% Journal number
+
+%% Miscellaneous mathematical formatting %%
+\DeclareInputMath{176}{{}^{\circ}}
+\DeclareInputMath{183}{\cdot}
+
+% Centered column heading in left-aligned array column
+\newcommand{\ColHead}[1]{\multicolumn{1}{c}{#1}}
+% Conditional (ForPrinting-dependent) breaking for wide math
+\newcommand{\BreakMath}[2]{\ifthenelse{\boolean{ForPrinting}}{#1}{#2}}
+
+% Cross-ref-able equation tags
+\newcommand{\Tag}[1]{%
+ \phantomsection\label{eqn:\EssayNo#1}\tag*{\ensuremath{#1}}%
+}
+\newcommand{\Eq}[1]{%
+ \hyperref[eqn:\EssayNo#1]{\ensuremath{#1}}%
+}
+
+%%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{document}
+%% PG BOILERPLATE %%
+\PGBoilerPlate
+\begin{center}
+\begin{minipage}{\textwidth}
+\small
+\begin{PGtext}
+The Project Gutenberg EBook of The Theory of Spectra and Atomic
+Constitution, by Niels (Niels Henrik David) Bohr
+
+This eBook is for the use of anyone anywhere in the United States and most
+other parts of the world at no cost and with almost no restrictions
+whatsoever. You may copy it, give it away or re-use it under the terms of
+the Project Gutenberg License included with this eBook or online at
+www.gutenberg.org. If you are not located in the United States, you'll have
+to check the laws of the country where you are located before using this ebook.
+
+
+
+Title: The Theory of Spectra and Atomic Constitution
+ Three Essays
+
+Author: Niels (Niels Henrik David) Bohr
+
+Release Date: November 26, 2014 [EBook #47464]
+
+Language: English
+
+Character set encoding: ISO-8859-1
+
+*** START OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA ***
+\end{PGtext}
+\end{minipage}
+\end{center}
+\newpage
+%% Credits and transcriber's note %%
+\begin{center}
+\begin{minipage}{\textwidth}
+\begin{PGtext}
+Produced by Andrew D. Hwang
+\end{PGtext}
+\end{minipage}
+\vfill
+\end{center}
+
+\begin{minipage}{0.85\textwidth}
+\small
+\BookMark{0}{Transcriber's Note.}
+\subsection*{\centering\normalfont\scshape%
+\normalsize\MakeLowercase{\TransNote}}%
+
+\raggedright
+\TransNoteText
+\end{minipage}
+%%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%
+\PageSep{i}
+\iffalse
+% [** TN: Omitting half-title page and verso]
+The Theory of Spectra
+and
+Atomic Constitution
+\PageSep{ii}
+%[** TN: Publisher's information]
+
+CAMBRIDGE UNIVERSITY PRESS
+C. F. CLAY, Manager
+LONDON : FETTER LANE, E.C. 4
+
+%[** TN: Publisher's device]
+
+LONDON : H. K. LEWIS AND CO., Ltd.,
+136 Gower Street, W.C. 1
+NEW YORK : THE MACMILLAN CO.
+BOMBAY }
+CALCUTTA } MACMILLAN AND CO., Ltd.
+MADRAS }
+TORONTO : THE MACMILLAN CO. OF
+CANADA, Ltd.
+TOKYO : MARUZEN-KABUSHIKI-KAISHA
+
+ALL RIGHTS RESERVED
+\fi
+%[** TN: End of omitted half-title]
+\PageSep{iii}
+\newpage
+\begin{center}
+\Huge\bfseries
+The Theory of Spectra \\
+and \\
+Atomic Constitution
+\bigskip
+
+\large\normalfont
+THREE ESSAYS \\
+BY \\
+\Large
+NIELS BOHR
+\medskip
+
+\normalsize
+Professor of Theoretical Physics in~the~University~of~Copenhagen
+\vfill
+
+\Large
+CAMBRIDGE \\
+AT THE UNIVERSITY PRESS \\
+1922
+\end{center}
+\newpage
+\PageSep{iv}
+\ifthenelse{\boolean{ForPrinting}}{% Publisher's verso
+\begin{center}
+\null\vfill
+\footnotesize
+PRINTED IN GREAT BRITAIN \\
+AT THE CAMBRIDGE UNIVERSITY PRESS
+\end{center}
+}{}% Omit for screen-formatted version
+\PageSep{v}
+
+\FrontMatter
+
+\Preface
+
+\First{The} three essays which here appear in English all deal with
+the application of the quantum theory to problems of atomic
+structure, and refer to the different stages in the development of
+this theory.
+
+The first essay ``On the spectrum of hydrogen'' is a translation of
+a Danish address given before the Physical Society of Copenhagen
+on the 20th~of December 1913, and printed in \Title{Fysisk Tidsskrift},
+\No{xii.}\ p.~97, 1914. Although this address was delivered at a time
+when the formal development of the quantum theory was only at
+its beginning, the reader will find the general trend of thought
+very similar to that expressed in the later addresses, which
+form the other two essays. As emphasized at several points the
+theory does not attempt an ``explanation'' in the usual sense of
+this word, but only the establishment of a connection between facts
+which in the present state of science are unexplained, that is to
+say the usual physical conceptions do not offer sufficient basis for
+a detailed description.
+
+The second essay ``On the series spectra of the elements'' is a
+translation of a German address given before the Physical Society
+of Berlin on the 27th~of April 1920, and printed in \Title{Zeitschrift für
+Physik}, \No{vi.}\ p.~423, 1920. This address falls into two main parts.
+The considerations in the first part are closely related to the contents
+of the first essay; especially no use is made of the new
+formal conceptions established through the later development of
+the quantum theory. The second part contains a survey of the
+results reached by this development. An attempt is made to
+elucidate the problems by means of a general principle which postulates
+a formal correspondence between the fundamentally different
+conceptions of the classical electrodynamics and those of the
+quantum theory. The first germ of this correspondence principle
+may be found in the first essay in the deduction of the expression
+for the constant of the hydrogen spectrum in terms of
+Planck's constant and of the quantities which in Rutherford's
+\PageSep{vi}
+atomic model are necessary for the description of the hydrogen
+atom.
+
+The third essay ``The structure of the atom and the physical
+and chemical properties of the elements'' is based on a Danish
+address, given before a joint meeting of the Physical and Chemical
+Societies of Copenhagen on the 18th~of October 1921, and printed
+in \Title{Fysisk Tidsskrift}, \No{xix.}\ p.~153, 1921. While the first two essays
+form verbal translations of the respective addresses, this essay
+differs from the Danish original in certain minor points. Besides
+the addition of a few new figures with explanatory text, certain
+passages dealing with problems discussed in the second essay are
+left out, and some remarks about recent contributions to the
+subject are inserted. Where such insertions have been introduced
+will clearly appear from the text. This essay is divided into
+four parts. The first two parts contain a survey of previous results
+concerning atomic problems and a short account of the theoretical
+ideas of the quantum theory. In the following parts it is shown
+how these ideas lead to a view of atomic constitution which seems
+to offer an explanation of the observed physical and chemical
+properties of the elements, and especially to bring the characteristic
+features of the periodic table into close connection with the
+interpretation of the optical and high frequency spectra of the
+elements.
+
+For the convenience of the reader all three essays are subdivided
+into smaller paragraphs, each with a headline. Conforming to the
+character of the essays there is, however, no question of anything
+like a full account or even a proportionate treatment of the subject
+stated in these headlines, the principal object being to emphasize
+certain general views in a freer form than is usual in scientific
+treatises or text books. For the same reason no detailed references
+to the literature are given, although an attempt is made to mention
+the main contributions to the development of the subject. As
+regards further information the reader in the case of the second
+essay is referred to a larger treatise ``On the quantum theory of
+line spectra,'' two parts of which have appeared in the Transactions of
+the Copenhagen Academy (\Title{D.\ Kgl.\ Danske Vidensk.\ Selsk.\ Skrifter},
+8.\ Række, \No{iv.}~1, I~and~II, 1918),\footnote
+ {See \href{http://www.gutenberg.org/ebooks/47167}{www.gutenberg.org/ebooks/47167}.---\textit{Trans.}}
+where full references to the literature
+may be found. The proposed continuation of this treatise, mentioned
+\PageSep{vii}
+at several places in the second essay, has for various reasons been
+delayed, but in the near future the work will be completed by the
+publication of a third part. It is my intention to deal more fully
+with the problems discussed in the third essay by a larger systematic
+account of the application of the quantum theory to atomic
+problems, which is under preparation.
+
+As mentioned both in the beginning and at the end of the
+third essay, the considerations which it contains are clearly still
+incomplete in character. This holds not only as regards the
+elaboration of details, but also as regards the development of the
+theoretical ideas. It may be useful once more to emphasize,
+that---although the word ``explanation'' has been used more
+liberally than for instance in the first essay---we are not concerned
+with a description of the phenomena, based on a well-defined
+physical picture. It may rather be said that hitherto every
+progress in the problem of atomic structure has tended to emphasize
+the well-known ``mysteries'' of the quantum theory more and more.
+I hope the exposition in these essays is sufficiently clear, nevertheless,
+to give the reader an impression of the peculiar charm
+which the study of atomic physics possesses just on this account.
+
+I wish to express my best thanks to Dr~A.~D. Udden, University
+of Pennsylvania, who has undertaken the translation of the
+original addresses into English, and to Mr~C.~D. Ellis, Trinity
+College, Cambridge, who has looked through the manuscript and
+suggested many valuable improvements in the exposition of the
+subject.
+\Signature{N. BOHR.}{Copenhagen,}{May}{1922.}
+\PageSep{viii}
+
+\TableofContents
+
+\iffalse
+%[** TN: Original ToC text (not manually verified)]
+CONTENTS
+
+ESSAY I
+ON THE SPECTRUM OF HYDROGEN
+
+PAGE
+
+Empirical Spectral Laws 1
+Laws of Temperature Radiation 4
+The Nuclear Theory of the Atom 7
+Quantum Theory of Spectra 10
+Hydrogen Spectrum 12
+The Pickering Lines 15
+Other Spectra 18
+
+
+ESSAY II
+ON THE SERIES SPECTRA OF THE ELEMENTS
+
+I. Introduction .20
+
+II. General Principles of the Quantum Theory of Spectra . 23
+Hydrogen Spectrum 24
+The Correspondence Principle 27
+General Spectral Laws 29
+Absorption and Excitation of Radiation 32
+
+III. Development of the Quantum Theory of Spectra . . 36
+Effect of External Forces on the Hydrogen Spectrum . . 37
+The Stark Effect 39
+The Zeeman Effect 42
+Central Perturbations . 44
+Relativity Effect on Hydrogen Lines 46
+Theory of Series Spectra 48
+Correspondence Principle and Conservation of Angular Momentum 50
+The Spectra of Helium and Lithium 54
+Complex Structure of Series Lines 58
+
+IV. Conclusion 59
+
+\PageSep{ix}
+CONTENTS
+
+ESSAY III
+
+THE STRUCTURE OF THE ATOM AND THE PHYSICAL
+AND CHEMICAL PROPERTIES OF THE ELEMENTS
+
+PAGE
+
+I. Preliminary 61
+The Nuclear Atom 61
+The Postulates of the Quantum Theory 62
+Hydrogen Atom 63
+Hydrogen Spectrum and X-ray Spectra 65
+The Fine Structure of the Hydrogen Lines .... 67
+Periodic Table 69
+Recent Atomic Models 74
+
+II. Series Spectra and the Capture of Electrons by Atoms . 75
+Arc and Spark Spectra 76
+Series Diagram 78
+Correspondence Principle 81
+
+III. Formation of Atoms and the Periodic Table ... 85
+First Period. Hydrogen---Helium 85
+Second Period. Lithium---Neon 89
+Third Period. Sodium---Argon 95
+Fourth Period. Potassium---Krypton 100
+Fifth Period. Rubidium--- Xenon 108
+Sixth Period. Caesium---Niton 109
+Seventh Period 111
+Survey of the Periodic Table 113
+
+IV. Reorganization of Atoms and X-ray Spectra . . .116
+Absorption and Emission of X-rays and Correspondence Principle 117
+X-ray Spectra and Atomic Structure 119
+Classification of X-ray Spectra 121
+Conclusion 125
+\fi
+%[** TN: End of original ToC text]
+\PageSep{1}
+\MainMatter
+
+\Essay{I}{On the Spectrum of Hydrogen}
+ {Address delivered before the Physical Society in Copenhagen, Dec.~20, 1913.}
+
+\Section{Empirical spectral laws.} Hydrogen possesses not only the
+smallest atomic weight of all the elements, but it also occupies a
+peculiar position both with regard to its physical and its chemical
+properties. One of the points where this becomes particularly apparent
+is the hydrogen line spectrum.
+
+The spectrum of hydrogen observed in an ordinary Geissler tube
+consists of a series of lines, the strongest of which lies at the red
+end of the spectrum, while the others extend out into the ultra\Add{-}violet,
+the distance between the various lines, as well as their intensities,
+constantly decreasing. In the ultra\Add{-}violet the series converges
+to a limit.
+
+Balmer, as we know, discovered (1885) that it was possible to
+represent the wave lengths of these lines very accurately by the
+simple law
+\[
+\frac{1}{\lambda_{n}} = R \left(\frac{1}{4} - \frac{1}{n^{2}}\right),
+\Tag{(1)}
+\]
+where $R$~is a constant and $n$~is a whole number. The wave lengths
+of the five strongest hydrogen lines, corresponding to $n = 3$, $4$,~$5$, $6$,~$7$,
+measured in air at ordinary pressure and temperature, and the
+values of these wave lengths multiplied by $\left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right)$ are given in
+the following table:\Pagelabel{1}
+\[
+%[** TN: Original uses a period for multiplication and a center dot as a decimal point]
+\begin{array}{*{2}{c<{\qquad\qquad}}c}
+n & \lambda · 10^{8} & \lambda · \left(\dfrac{1}{4} - \dfrac{1}{n^{2}}\right) · 10^{10} \\
+3 & 6563.04 & 91153.3 \\
+4 & 4861.49 & 91152.9 \\
+5 & 4340.66 & 91153.9 \\
+6 & 4101.85 & 91152.2 \\
+7 & 3970.25 & 91153.7 \\
+\end{array}
+\]
+The table shows that the product is nearly constant, while the deviations
+are not greater than might be ascribed to experimental errors.
+
+As you already know, Balmer's discovery of the law relating to
+the hydrogen spectrum led to the discovery of laws applying to
+the spectra of other elements. The most important work in this
+\PageSep{2}
+connection was done by Rydberg (1890) and Ritz (1908). Rydberg
+pointed out that the spectra of many elements contain series of
+lines whose wave lengths are given approximately by the formula
+\[
+\frac{1}{\lambda_{n}} = A - \frac{R}{(n + \alpha)^{2}},
+\]
+where $A$~and~$\alpha$ are constants having different values for the various
+series, while $R$~is a universal constant equal to the constant in the
+spectrum of hydrogen. If the wave lengths are measured in vacuo
+Rydberg calculated the value of~$R$ to be~$109675$. In the spectra of
+many elements, as opposed to the simple spectrum of hydrogen, there
+are several series of lines whose wave lengths are to a close approximation
+given by Rydberg's formula if different values are assigned to
+the constants $A$~and~$\alpha$. Rydberg showed, however, in his earliest
+work, that certain relations existed between the constants in the
+various series of the spectrum of one and the same element. These
+relations were later very successfully generalized by Ritz through
+the establishment of the ``combination principle.'' According to
+this principle, the wave lengths of the various lines in the spectrum
+of an element may be expressed by the formula
+\[
+\frac{1}{\lambda} = F_{r}(n_{1}) - F_{s}(n_{2}).
+\Tag{(2)}
+\]
+In this formula $n_{1}$~and~$n_{2}$ are whole numbers, and $F_{1}(n)$, $F_{2}(n)$,~\dots\ is
+a series of functions of~$n$, which may be written approximately
+\[
+F_{r}(n) = \frac{R}{(n + \alpha_{r})^{2}},
+\]
+where $R$~is Rydberg's universal constant and $\alpha_{r}$ is a constant which
+is different for the different functions. A particular spectral line will,
+according to this principle, correspond to each combination of $n_{1}$~and~$n_{2}$,
+as well as to the functions $F_{1}$, $F_{2}$,~\dots. The establishment of
+this principle led therefore to the prediction of a great number of
+lines which were not included in the spectral formulae previously
+considered, and in a large number of cases the calculations were
+found to be in close agreement with the experimental observations.
+In the case of hydrogen Ritz assumed that formula~\Eq{(1)} was a special
+case of the general formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right),
+\Tag{(3)}
+\]
+\PageSep{3}
+and therefore predicted among other things a series of lines in the
+infra\Add{-}red given by the formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{9} - \frac{1}{n^{2}}\right).
+\]
+In 1909 Paschen succeeded in observing the first two lines of this
+series corresponding to $n = 4$ and $n = 5$.
+
+The part played by hydrogen in the development of our
+knowledge of the spectral laws is not solely due to its ordinary
+simple spectrum, but it can also be traced in other less direct
+ways. At a time when Rydberg's laws were still in want of
+further confirmation Pickering (1897) found in the spectrum of a
+star a series of lines whose wave lengths showed a very simple relation
+to the ordinary hydrogen spectrum, since to a very close
+approximation they could be expressed by the formula
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{(n + \frac{1}{2})^{2}}\right).
+\]
+Rydberg considered these lines to represent a new series of lines
+in the spectrum of hydrogen, and predicted according to his theory
+the existence of still another series of hydrogen lines the wave
+lengths of which would be given by
+\[
+\frac{1}{\lambda} = R\left(\frac{1}{(\frac{3}{2})^{2}} - \frac{1}{n^{2}}\right).
+\]
+By examining earlier observations it was actually found that a line
+had been observed in the spectrum of certain stars which coincided
+closely with the first line in this series (corresponding to $n = 2$);
+from analogy with other spectra it was also to be expected that this
+would be the strongest line. This was regarded as a great triumph
+for Rydberg's theory and tended to remove all doubt that the new
+spectrum was actually due to hydrogen. Rydberg's view has therefore
+been generally accepted by physicists up to the present moment.
+Recently however the question has been reopened and Fowler
+(1912) has succeeded in observing the Pickering lines in ordinary
+laboratory experiments. We shall return to this question again
+later.
+
+The discovery of these beautiful and simple laws concerning the
+line spectra of the elements has naturally resulted in many attempts
+at a theoretical explanation. Such attempts are very alluring
+\PageSep{4}
+because the simplicity of the spectral laws and the exceptional accuracy
+with which they apply appear to promise that the correct explanation
+will be very simple and will give valuable information
+about the properties of matter. I should like to consider some of
+these theories somewhat more closely, several of which are extremely
+interesting and have been developed with the greatest keenness
+and ingenuity, but unfortunately space does not permit me to do
+so here. I shall have to limit myself to the statement that not
+one of the theories so far proposed appears to offer a satisfactory or
+even a plausible way of explaining the laws of the line spectra.
+Considering our deficient knowledge of the laws which determine
+the processes inside atoms it is scarcely possible to give an explanation
+of the kind attempted in these theories. The inadequacy of
+our ordinary theoretical conceptions has become especially apparent
+from the important results which have been obtained in recent years
+from the theoretical and experimental study of the laws of temperature
+radiation. You will therefore understand that I shall not
+attempt to propose an explanation of the spectral laws; on the
+contrary I shall try to indicate a way in which it appears possible
+to bring the spectral laws into close connection with other properties
+of the elements, which appear to be equally inexplicable on
+the basis of the present state of the science. In these considerations
+I shall employ the results obtained from the study of temperature
+radiation as well as the view of atomic structure which has been
+reached by the study of the radioactive elements.
+
+\Section{Laws of temperature radiation.} I shall commence by mentioning
+the conclusions which have been drawn from experimental
+and theoretical work on temperature radiation.
+
+Let us consider an enclosure surrounded by bodies which are in
+temperature equilibrium. In this space there will be a certain
+amount of energy contained in the rays emitted by the surrounding
+substances and crossing each other in every direction. By making
+the assumption that the temperature equilibrium will not be disturbed
+by the mutual radiation of the various bodies Kirchhoff
+(1860) showed that the amount of energy per unit volume as well
+as the distribution of this energy among the various wave lengths
+is independent of the form and size of the space and of the nature
+\PageSep{5}
+of the surrounding bodies and depends only on the temperature.
+Kirchhoff's result has been confirmed by experiment, and the
+amount of energy and its distribution among the various wave
+lengths and the manner in which it depends on the temperature
+are now fairly well known from a great amount of experimental
+work; or, as it is usually expressed, we have a fairly
+accurate experimental knowledge of the ``laws of temperature
+radiation.''
+
+Kirchhoff's considerations were only capable of predicting the
+existence of a law of temperature radiation, and many physicists
+have subsequently attempted to find a more thorough explanation
+of the experimental results. You will perceive that the electromagnetic
+theory of light together with the electron theory suggests
+a method of solving this problem. According to the electron theory
+of matter a body consists of a system of electrons. By making
+certain definite assumptions concerning the forces acting on the
+electrons it is possible to calculate their motion and consequently
+the energy radiated from the body per second in the form of
+electromagnetic oscillations of various wave lengths. In a similar
+manner the absorption of rays of a given wave length by a substance
+can be determined by calculating the effect of electromagnetic
+oscillations upon the motion of the electrons. Having investigated
+the emission and absorption of a body at all temperatures, and for
+rays of all wave lengths, it is possible, as Kirchhoff has shown, to
+determine immediately the laws of temperature radiation. Since
+the result is to be independent of the nature of the body we are
+justified in expecting an agreement with experiment, even though
+very special assumptions are made about the forces acting upon
+the electrons of the hypothetical substance. This naturally
+simplifies the problem considerably, but it is nevertheless sufficiently
+difficult and it is remarkable that it has been possible
+to make any advance at all in this direction. As is well known
+this has been done by Lorentz (1903). He calculated the
+emissive as well as the absorptive power of a metal for long
+wave lengths, using the same assumptions about the motions
+of the electrons in the metal that Drude (1900) employed in
+his calculation of the ratio of the electrical and thermal conductivities.
+Subsequently, by calculating the ratio of the emissive
+\PageSep{6}
+to the absorptive power, Lorentz really obtained an expression
+for the law of temperature radiation which for long wave lengths
+agrees remarkably well with experimental facts. In spite of this
+beautiful and promising result, it has nevertheless become apparent
+that the electromagnetic theory is incapable of explaining the law
+of temperature radiation. For, it is possible to show, that, if the
+investigation is not confined to oscillations of long wave lengths,
+as in Lorentz's work, but is also extended to oscillations corresponding
+to small wave lengths, results are obtained which are
+contrary to experiment. This is especially evident from Jeans'
+investigations (1905) in which he employed a very interesting
+statistical method first proposed by Lord Rayleigh.
+
+We are therefore compelled to assume, that the classical electrodynamics
+does not agree with reality, or expressed more carefully,
+that it \Chg{can not}{cannot} be employed in calculating the absorption and
+emission of radiation by atoms. Fortunately, the law of temperature
+radiation has also successfully indicated the direction in which the
+necessary changes in the electrodynamics are to be sought. Even
+before the appearance of the papers by Lorentz and Jeans, Planck
+(1900) had derived theoretically a formula for the black body radiation
+which was in good agreement with the results of experiment.
+Planck did not limit himself exclusively to the classical electrodynamics,
+but introduced the further assumption that a system of
+oscillating electrical particles (elementary resonators) will neither
+radiate nor absorb energy continuously, as required by the ordinary
+electrodynamics, but on the contrary will radiate and absorb discontinuously.
+The energy contained within the system at any
+moment is always equal to a whole multiple of the so-called
+quantum of energy the magnitude of which is equal to~$h\nu$, where
+$h$~is Planck's constant and $\nu$~is the frequency of oscillation of the
+system per second. In formal respects Planck's theory leaves much
+to be desired; in certain calculations the ordinary electrodynamics
+is used, while in others assumptions distinctly at variance with it
+are introduced without any attempt being made to show that it
+is possible to give a consistent explanation of the procedure used.
+Planck's theory would hardly have acquired general recognition
+merely on the ground of its agreement with experiments on black
+body radiation, but, as you know, the theory has also contributed
+\PageSep{7}
+quite remarkably to the elucidation of many different physical
+phenomena, such as specific heats, photoelectric effect, X-rays and
+the absorption of heat rays by gases. These explanations involve
+more than the qualitative assumption of a discontinuous transformation
+of energy, for with the aid of Planck's constant~$h$ it
+seems to be possible, at least approximately, to account for a great
+number of phenomena about which nothing could be said previously.
+It is therefore hardly too early to express the opinion that, whatever
+the final explanation will be, the discovery of ``energy quanta''
+must be considered as one of the most important results arrived at
+in physics, and must be taken into consideration in investigations
+of the properties of atoms and particularly in connection with any
+explanation of the spectral laws in which such phenomena as
+the emission and absorption of electromagnetic radiation are
+concerned.
+
+\Section{The nuclear theory of the atom.} We shall now consider the
+second part of the foundation on which we shall build, namely the
+conclusions arrived at from experiments with the rays emitted by
+radioactive substances. I have previously here in the Physical
+Society had the opportunity of speaking of the scattering of $\alpha$~rays
+in passing through thin plates, and to mention how Rutherford
+(1911) has proposed a theory for the structure of the atom in
+order to explain the remarkable and unexpected results of these
+experiments. I shall, therefore, only remind you that the characteristic
+feature of Rutherford's theory is the assumption of the
+existence of a positively charged nucleus inside the atom. A number
+of electrons are supposed to revolve in closed orbits around the
+nucleus, the number of these electrons being sufficient to neutralize
+the positive charge of the nucleus. The dimensions of the nucleus
+are supposed to be very small in comparison with the dimensions
+of the orbits of the electrons, and almost the entire mass of the
+atom is supposed to be concentrated in the nucleus.
+
+According to Rutherford's calculation the positive charge of the
+nucleus corresponds to a number of electrons equal to about half
+the atomic weight. This number coincides approximately with the
+number of the particular element in the periodic system and it is
+therefore natural to assume that the number of electrons in the
+\PageSep{8}
+atom is exactly equal to this number. This hypothesis, which was
+first stated by van~den Broek (1912), opens the possibility of
+obtaining a simple explanation of the periodic system. This assumption
+is strongly confirmed by experiments on the elements
+of small atomic weight. In the first place, it is evident that according
+to Rutherford's theory the $\alpha$~particle is the same as the
+nucleus of a helium atom. Since the $\alpha$~particle has a double positive
+charge it follows immediately that a neutral helium atom contains
+two electrons. Further the concordant results obtained from calculations
+based on experiments as different as the diffuse scattering
+of X-rays and the decrease in velocity of $\alpha$~rays in passing
+through matter render the conclusion extremely likely that a
+hydrogen atom contains only a single electron. This agrees most
+beautifully with the fact that J.~J. Thomson in his well-known
+experiments on rays of positive electricity has never observed a
+hydrogen atom with more than a single positive charge, while all
+other elements investigated may have several charges.
+
+Let us now assume that a hydrogen atom simply consists of an
+electron revolving around a nucleus of equal and opposite charge,
+and of a mass which is very large in comparison with that of the
+electron. It is evident that this assumption may explain the peculiar
+position already referred to which hydrogen occupies among the
+elements, but it appears at the outset completely hopeless to attempt
+to explain anything at all of the special properties of hydrogen,
+still less its line spectrum, on the basis of considerations relating
+to such a simple system.
+
+Let us assume for the sake of brevity that the mass of the nucleus
+is infinitely large in proportion to that of the electron, and that the
+velocity of the electron is very small in comparison with that of
+light. If we now temporarily disregard the energy radiation, which,
+according to the ordinary electrodynamics, will accompany the accelerated
+motion of the electron, the latter in accordance with
+Kepler's first law will describe an ellipse with the nucleus in one
+of the foci. Denoting the frequency of revolution by~$\omega$, and the
+major axis of the ellipse by~$2a$ we find that
+\[
+\omega^{2} = \frac{2W^{3}}{\pi^{2} e^{4} m},\quad
+2a = \frac{e^{2}}{W},
+\Tag{(4)}
+\]
+\PageSep{9}
+where $e$~is the charge of the electron and $m$~its mass, while $W$~is
+the work which must be added to the system in order to remove
+the electron to an infinite distance from the nucleus.
+
+These expressions are extremely simple and they show that the
+magnitude of the frequency of revolution as well as the length of
+the major axis depend only on~$W$, and are independent of the
+\Chg{excentricity}{eccentricity} of the orbit. By varying~$W$ we may obtain all possible
+values for $\omega$~and~$2a$. This condition shows, however, that it is not
+possible to employ the above formulae directly in calculating the
+orbit of the electron in a hydrogen atom. For this it will be necessary
+to assume that the orbit of the electron \Chg{can not}{cannot} take on all values,
+and in any event, the line spectrum clearly indicates that the
+oscillations of the electron cannot vary continuously between wide
+limits. The impossibility of making any progress with a simple
+system like the one considered here might have been foretold from
+a consideration of the dimensions involved; for with the aid of $e$~and
+$m$~alone it is impossible to obtain a quantity which can be
+interpreted as a diameter of an atom or as a frequency.
+
+If we attempt to account for the radiation of energy in the manner
+required by the ordinary electrodynamics it will only make matters
+worse. As a result of the radiation of energy~$W$ would continually
+increase, and the above expressions~\Eq{(4)} show that at the same time
+the frequency of revolution of the system would increase, and the
+dimensions of the orbit decrease. This process would not stop until
+the particles had approached so closely to one another that they no
+longer attracted each other. The quantity of energy which would
+be radiated away before this happened would be very great. If we
+were to treat these particles as geometrical points this energy would
+be infinitely great, and with the dimensions of the electrons as
+calculated from their mass (about $10^{-13}$~cm.), and of the nucleus as
+calculated by Rutherford (about $10^{-12}$~cm.), this energy would be
+many times greater than the energy changes with which we are
+familiar in ordinary atomic processes.
+
+It can be seen that it is impossible to employ Rutherford's atomic
+model so long as we confine ourselves exclusively to the ordinary
+electrodynamics. But this is nothing more than might have been
+expected. As I have mentioned we may consider it to be an
+established fact that it is impossible to obtain a satisfactory
+\PageSep{10}
+explanation of the experiments on temperature radiation with the
+aid of electrodynamics, no matter what atomic model be employed.
+The fact that the deficiencies of the atomic model we are
+considering stand out so plainly is therefore perhaps no serious
+drawback; even though the defects of other atomic models are
+much better concealed they must nevertheless be present and will
+be just as serious.
+
+\Section{Quantum theory of spectra.} Let us now try to overcome these
+difficulties by applying Planck's theory to the problem.
+
+It is readily seen that there can be no question of a direct application
+of Planck's theory. This theory is concerned with the emission
+and absorption of energy in a system of electrical particles, which
+oscillate with a given frequency per second, dependent only on the
+nature of the system and independent of the amount of energy
+contained in the system. In a system consisting of an electron and
+a nucleus the period of oscillation corresponds to the period of
+revolution of the electron. But the formula~\Eq{(4)} for~$\omega$ shows that the
+frequency of revolution depends upon~$W$, \ie\ on the energy of the
+system. Still the fact that we \Chg{can not}{cannot} immediately apply Planck's
+theory to our problem is not as serious as it might seem to be, for
+in assuming Planck's theory we have manifestly acknowledged the
+inadequacy of the ordinary electrodynamics and have definitely
+parted with the coherent group of ideas on which the latter theory
+is based. In fact in taking such a step we \Chg{can not}{cannot} expect that all
+cases of disagreement between the theoretical conceptions hitherto
+employed and experiment will be removed by the use of Planck's
+assumption regarding the quantum of the energy momentarily
+present in an oscillating system. We stand here almost entirely on
+virgin ground, and upon introducing new assumptions we need only
+take care not to get into contradiction with experiment. Time will
+have to show to what extent this can be avoided; but the safest
+way is, of course, to make as few assumptions as possible.
+
+With this in mind let us first examine the experiments on
+temperature radiation. The subject of direct observation is the
+distribution of radiant energy over oscillations of the various wave
+lengths. Even though we may assume that this energy comes from
+systems of oscillating particles, we know little or nothing about
+\PageSep{11}
+these systems. No one has ever seen a Planck's resonator, nor
+indeed even measured its frequency of oscillation; we can observe
+only the period of oscillation of the radiation which is emitted. It
+is therefore very convenient that it is possible to show that to
+obtain the laws of temperature radiation it is not necessary to
+make any assumptions about the systems which emit the radiation
+except that the amount of energy emitted each time shall be equal
+to~$h\nu$, where $h$~is Planck's constant and $\nu$~is the frequency of the
+radiation. Indeed, it is possible to derive Planck's law of radiation
+from this assumption alone, as shown by Debye, who employed a
+method which is a combination of that of Planck and of Jeans.
+Before considering any further the nature of the oscillating systems
+let us see whether it is possible to bring this assumption about the
+emission of radiation into agreement with the spectral laws.
+
+If the spectrum of some element contains a spectral line corresponding
+to the frequency~$\nu$ it will be assumed that one of the
+atoms of the element (or some other elementary system) can emit
+an amount of energy~$h\nu$. Denoting the energy of the atom before
+and after the emission of the radiation by $E_{1}$ and~$E_{2}$ we have
+\[
+h\nu = E_{1} - E_{2} \text{ or }
+\nu = \frac{E_{1}}{h} - \frac{E_{2}}{h}.
+\Tag{(5)}
+\]
+
+During the emission of the radiation the system may be regarded
+as passing from one state to another; in order to introduce a name
+for these states, we shall call them ``stationary'' states, simply
+indicating thereby that they form some kind of waiting places
+between which occurs the emission of the energy corresponding to
+the various spectral lines. As previously mentioned the spectrum
+of an element consists of a series of lines whose wave lengths may
+be expressed by the formula~\Eq{(2)}. By comparing this expression
+with the relation given above it is seen that---since $\nu = \dfrac{c}{\lambda}$, where $c$~is
+the velocity of light---each of the spectral lines may be regarded
+as being emitted by the transition of a system between two stationary
+states in which the energy apart from an additive arbitrary
+constant is given by $-ch F_{r}(n_{1})$ and $-ch F_{s}(n_{2})$ respectively. Using
+this interpretation the combination principle asserts that a series
+of stationary states exists for the given system, and that it can
+\PageSep{12}
+pass from one to any other of these states with the emission of
+a monochromatic radiation. We see, therefore, that with a simple
+extension of our first assumption it is possible to give a formal
+explanation of the most general law of line spectra.
+
+\Section{Hydrogen spectrum.} This result encourages us to make an
+attempt to obtain a clear conception of the stationary states which
+have so far only been regarded as formal. With this end in view,
+we naturally turn to the spectrum of hydrogen. The formula
+applying to this spectrum is given by the expression
+\[
+\frac{1}{\lambda} = \frac{R}{n_{1}^{2}} - \frac{R}{n_{2}^{2}}.
+\]
+According to our assumption this spectrum is produced by transitions
+between a series of stationary states of a system, concerning
+which we can for the present only say that the energy of the system
+in the $n$th~state, apart from an additive constant, is given by
+$-\dfrac{Rhc}{n^{2}}$. Let us now try to find a connection between this and the
+model of the hydrogen atom. We assume that in the calculation
+of the frequency of revolution of the electron in the stationary states
+of the atom it will be possible to employ the above formula for~$\omega$.
+It is quite natural to make this assumption; since, in trying to
+form a reasonable conception of the stationary states, there is, for
+the present at least, no other means available besides the ordinary
+mechanics.
+
+Corresponding to the $n$th~stationary state in formula~\Eq{(4)} for~$\omega$,
+let us by way of experiment put $W = \dfrac{Rhc}{n^{2}}$. This gives us
+\[
+\omega_{n}^{2} = \frac{2}{\pi^{2}}\, \frac{R^{3} h^{3} c^{3}}{e^{4} mn^{6}}.
+\Tag{(6)}
+\]
+
+The radiation of light corresponding to a particular spectral line
+is according to our assumption emitted by a transition between
+two stationary states, corresponding to two different frequencies of
+revolution, and we are not justified in expecting any simple relation
+between these frequencies of revolution of the electron and
+the frequency of the emitted radiation. You understand, of course,
+that I am by no means trying to give what might ordinarily be
+described as an explanation; nothing has been said here about
+\PageSep{13}
+how or why the radiation is emitted. On one point, however, we
+may expect a connection with the ordinary conceptions; namely,
+that it will be possible to calculate the emission of slow electromagnetic
+oscillations on the basis of the classical electrodynamics.
+This assumption is very strongly supported by the result of
+Lorentz's calculations which have already been described. From
+the formula for~$\omega$ it is seen that the frequency of revolution decreases
+as $n$~increases, and that the expression~$\dfrac{\omega_{n}}{\omega_{n+1}}$ approaches the
+value~$1$.
+
+According to what has been said above, the frequency of the
+radiation corresponding to the transition between the $(n + 1)$th
+and the $n$th~stationary state is given by
+\[
+\nu = Rc \left(\frac{1}{n^{2}} - \frac{1}{(n + 1)^{2}}\right).
+\]
+If $n$~is very large this expression is approximately equal to
+\[
+\nu = 2Rc/n^{3}.
+\]
+In order to obtain a connection with the ordinary electrodynamics
+let us now place this frequency equal to the frequency of revolution,
+that is
+\[
+\omega_{n} = 2Rc/n^{3}.
+\]
+Introducing this value of~$\omega_{n}$ in~\Eq{(6)} we see that $n$~disappears from
+the equation, and further that the equation will be satisfied only if
+\[
+R = \frac{2\pi^{2} e^{4} m}{ch^{3}}.
+\Tag{(7)}
+\]
+The constant~$R$ is very accurately known, and is, as I have said
+before, equal to~$109675$. By introducing the most recent values
+for $e$,~$m$ and~$h$ the expression on the right-hand side of the equation
+becomes equal to $1.09 · 10^{5}$. The agreement is as good as
+could be expected, considering the uncertainty in the experimental
+determination of the constants $e$,~$m$ and~$h$. The agreement between
+our calculations and the classical electrodynamics is, therefore,
+fully as good as we are justified in expecting.
+
+We \Chg{can not}{cannot} expect to obtain a corresponding explanation of the
+frequency values of the other stationary states. Certain simple
+formal relations apply, however, to all the stationary states. By
+introducing the expression, which has been found for~$R$, we
+get for the $n$th~state $W_{n} = \frac{1}{2}nh\omega_{n}$. This equation is entirely
+\PageSep{14}
+analogous to Planck's assumption concerning the energy of a
+resonator. $W$~in our system is readily shown to be equal to the
+average value of the kinetic energy of the electron during a
+single revolution. The energy of a resonator was shown by Planck
+you may remember to be always equal to~$nh\nu$. Further the average
+value of the kinetic energy of Planck's resonator is equal to its
+potential energy, so that the average value of the kinetic energy
+of the resonator, according to Planck, is equal to~$\frac{1}{2}nh\omega$. This
+analogy suggests another manner of presenting the theory, and it
+was just in this way that I was originally led into these considerations.
+When we consider how differently the equation is
+employed here and in Planck's theory it appears to me misleading
+to use this analogy as a foundation, and in the account I have
+given I have tried to free myself as much as possible from it.
+
+Let us continue with the elucidation of the calculations, and in
+the expression for~$2a$ introduce the value of~$W$ which corresponds
+to the $n$th~stationary state. This gives us
+\[
+2a = n^{2} · \frac{e^{2}}{chR}
+ = n^{2} · \frac{h^{2}}{2\pi^{2} me^{2}}
+ = n^{2} · 1.1 · 10^{-8}.
+\Tag{(8)}
+\]
+
+It is seen that for small values of~$n$, we obtain values for the
+major axis of the orbit of the electron which are of the same
+order of magnitude as the values of the diameters of the atoms
+calculated from the kinetic theory of gases. For large values of~$n$,
+$2a$~becomes very large in proportion to the calculated dimensions
+of the atoms. This, however, does not necessarily disagree with
+experiment. Under ordinary circumstances a hydrogen atom will
+probably exist only in the state corresponding to $n = 1$. For this
+state $W$~will have its greatest value and, consequently, the atom
+will have emitted the largest amount of energy possible; this will
+therefore represent the most stable state of the atom from which
+the system \Chg{can not}{cannot} be transferred except by adding energy to it
+from without. The large values for~$2a$ corresponding to large~$n$ need
+not, therefore, be contrary to experiment; indeed, we may in these
+large values seek an explanation of the fact, that in the laboratory
+it has hitherto not been possible to observe the hydrogen lines
+corresponding to large values of~$n$ in Balmer's formula, while they
+have been observed in the spectra of certain stars. In order that
+the large orbits of the electrons may not be disturbed by electrical
+\PageSep{15}
+forces from the neighbouring atoms the pressure will have to be
+very low, so low, indeed, that it is impossible to obtain sufficient
+light from a Geissler tube of ordinary dimensions. In the stars,
+however, we may assume that we have to do with hydrogen which
+is exceedingly attenuated and distributed throughout an enormously
+large region of space.
+
+\Section{The Pickering lines.} You have probably noticed that we have
+not mentioned at all the spectrum found in certain stars which
+according to the opinion then current was assigned to hydrogen,
+and together with the ordinary hydrogen spectrum was considered
+by Rydberg to form a connected system of lines completely
+analogous to the spectra of other elements. You have probably
+also perceived that difficulties would arise in interpreting this
+spectrum by means of the assumptions which have been employed.
+If such an attempt were to be made it would be necessary to give
+up the simple considerations which lead to the expression~\Eq{(7)} for
+the constant~$R$. We shall see, however, that it appears possible to
+explain the occurrence of this spectrum in another way. Let us
+suppose that it is not due to hydrogen, but to some other simple
+system consisting of a single electron revolving about a nucleus
+with an electrical charge~$Ne$. The expression for~$\omega$ becomes then
+\[
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3}}{N^{2} e^{4} m}.
+\]
+Repeating the same calculations as before only in the inverse
+order we find, that this system will emit a line spectrum given by
+the expression
+\[
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} m}{ch^{3}}\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)
+ = R\raisebox{-4pt}{$\Biggl($}\frac{1}{\left(\dfrac{n_{1}}{N}\right)^{2}} - \frac{1}{\left(\dfrac{n_{2}}{N}\right)^{2}}\raisebox{-4pt}{$\Biggr)$}.
+\Tag{(9)}
+\]
+
+By comparing this formula with the formula for Pickering's and
+Rydberg's series, we see that the observed lines can be explained
+on the basis of the theory, if it be assumed that the spectrum is
+due to an electron revolving about a nucleus with a charge~$2e$, or
+according to Rutherford's theory around the nucleus of a helium
+atom. The fact that the spectrum in question is not observed in
+an ordinary helium tube, but only in stars, may be accounted for
+\PageSep{16}
+by the high degree of ionization which is required for the production
+of this spectrum; a neutral helium atom contains of course
+two electrons while the system under consideration contains
+only one.
+
+These conclusions appear to be supported by experiment.
+Fowler, as I have mentioned, has recently succeeded in observing
+Pickering's and Rydberg's lines in a laboratory experiment. By
+passing a very heavy current through a mixture of hydrogen and
+helium Fowler observed not only these lines but also a new series
+of lines. This new series was of the same general type, the wave
+length being given approximately by
+\[
+\frac{1}{\lambda}
+ = R\left(\frac{1}{(\frac{3}{2})^{2}} - \frac{1}{(n + \frac{1}{2})^{2}}\right).
+\]
+Fowler interpreted all the observed lines as the hydrogen spectrum
+sought for. With the observation of the latter series of lines,
+however, the basis of the analogy between the hypothetical
+hydrogen spectrum and the other spectra disappeared, and thereby
+also the foundation upon which Rydberg had founded his conclusions;
+on the contrary it is seen, that the occurrence of the lines
+was exactly what was to be expected on our view.
+
+In the following table the first column contains the wave
+lengths measured by Fowler, while the second contains the limiting
+values of the experimental errors given by him; in the third
+column we find the products of the wave lengths by the quantity
+$\left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) \Add{·} 10^{10}$; the values employed for $n_{1}$~and~$n_{2}$ are enclosed in
+parentheses in the last column.
+\begin{table}[hbt]
+\Pagelabel{16}
+\[
+\begin{array}{l*{2}{>{\qquad}l}l}
+\ColHead{\lambda · 10^{8}} &
+\ColHead{\text{Limit of error}} &
+\ColHead{\lambda · \left(\dfrac{1}{n_{1}^{2}} - \dfrac{1}{n_{2}^{2}}\right) · 10^{10}} & \\
+4685.98 & 0.01 & 22779.1 & (3 : 4) \\
+3203.30 & 0.05 & 22779.0 & (3 : 5) \\
+2733.34 & 0.05 & 22777.8 & (3 : 6) \\
+2511.31 & 0.05 & 22778.3 & (3 : 7) \\
+2385.47 & 0.05 & 22777.9 & (3 : 8) \\
+2306.20 & 0.10 & 22777.3 & (3 : 9) \\
+2252.88 & 0.10 & 22779.1 & (3 : 10) \\
+5410.5 & 1.0 & 22774 & (4 : 7) \\
+4541.3 & 0.25 & 22777 & (4 : 9) \\
+4200.3 & 0.5 & 22781 & (4 : 11) \\
+\end{array}
+\]
+\end{table}
+\PageSep{17}
+
+The values of the products are seen to be very nearly equal,
+while the deviations are of the same order of magnitude as the
+limits of experimental error. The value of the product
+\[
+\lambda \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)
+\]
+should for this spectrum, according to the formula~\Eq{(9)}, be exactly
+$\frac{1}{4}$~of the corresponding product for the hydrogen spectrum. From
+the tables on pages \PageNum{1} and~\PageNum{16} we find for these products $91153$
+and $22779$, and dividing the former by the latter we get $4.0016$.
+This value is very nearly equal to~$4$; the deviation is, however,
+much greater than can be accounted for in any way by the errors
+of the experiments. It has been easy, however, to find a theoretical
+explanation of this point. In all the foregoing calculations
+we have assumed that the mass of the nucleus is infinitely great
+compared to that of the electron. This is of course not the
+case, even though it holds to a very close approximation; for a
+hydrogen atom the ratio of the mass of the nucleus to that of the
+electron will be about $1850$ and for a helium atom four times as
+great.
+
+If we consider a system consisting of an electron revolving about
+a nucleus with a charge~$Ne$ and a mass~$M$, we find the following
+expression for the frequency of revolution of the system:
+\[
+\omega^{2} = \frac{2}{\pi^{2}}\, \frac{W^{3} (M + m)}{N^{2} e^{4} Mm}.
+\]
+
+From this formula we find in a manner quite similar to that
+previously employed that the system will emit a line spectrum,
+the wave lengths of which are given by the formula
+\[
+\frac{1}{\lambda}
+ = \frac{2\pi^{2} N^{2} e^{4} mM}{ch^{3} (M + m)}
+ \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right).
+\Tag{(10)}
+\]
+
+If with the aid of this formula we try to find the ratio of the
+product for the hydrogen spectrum, to that of the hypothetical
+helium spectrum we get the value $4.00163$ which is in complete
+agreement with the preceding value calculated from the experimental
+observations.
+
+I must further mention that Evans has made some experiments
+to determine whether the spectrum in question is due to hydrogen
+or helium. He succeeded in observing one of the lines in very
+\PageSep{18}
+pure helium; there was, at any rate, not enough hydrogen present
+to enable the hydrogen lines to be observed. Since in any event
+Fowler does not seem to consider such evidence as conclusive it is
+to be hoped that these experiments will be continued. There is,
+however, also another possibility of deciding this question. As is
+evident from the formula~\Eq{(10)}, the helium spectrum under consideration
+should contain, besides the lines observed by Fowler, a
+series of lines lying close to the ordinary hydrogen lines. These
+lines may be obtained by putting $n_{1} = 4$, $n_{2} = 6$, $8$, $10$,~etc. Even
+if these lines were present, it would be extremely difficult to
+observe them on account of their position with regard to the
+hydrogen lines, but should they be observed this would probably
+also settle the question of the origin of the spectrum, since no
+reason would seem to be left to assume the spectrum to be due to
+hydrogen.
+
+\Section{Other spectra.} For the spectra of other elements the problem
+becomes more complicated, since the atoms contain a larger
+number of electrons. It has not yet been possible on the basis of
+this theory to explain any other spectra besides those which I
+have already mentioned. On the other hand it ought to be
+mentioned that the general laws applying to the spectra are very
+simply interpreted on the basis of our assumptions. So far as the
+combination principle is concerned its explanation is obvious. In
+the method we have employed our point of departure was largely
+determined by this particular principle. But a simple explanation
+can be also given of the other general law, namely, the occurrence
+of Rydberg's constant in all spectral formulae. Let us assume
+that the spectra under consideration, like the spectrum of hydrogen,
+are emitted by a neutral system, and that they are produced by
+the binding of an electron previously removed from the system.
+If such an electron revolves about the nucleus in an orbit which
+is large in proportion to that of the other electrons it will be
+subjected to forces much the same as the electron in a hydrogen
+atom, since the inner electrons individually will approximately
+neutralize the effect of a part of the positive charge of the nucleus.
+We may therefore assume that for this system there will exist a
+series of stationary states in which the motion of the outermost
+\PageSep{19}
+electron is approximately the same as in the stationary states of a
+hydrogen atom. I shall not discuss these matters any further,
+but shall only mention that they lead to the conclusion that
+Rydberg's constant is not exactly the same for all elements.
+The expression for this constant will in fact contain the factor
+$\dfrac{M}{M + m}$, where $M$~is the mass of the nucleus. The correction is
+exceedingly small for elements of large atomic weight, but for
+hydrogen it is, from the point of view of spectrum analysis, very
+considerable. If the procedure employed leads to correct results, it
+is not therefore permissible to calculate Rydberg's constant directly
+from the hydrogen spectrum; the value of the universal constant
+should according to the theory be~$109735$ and not~$109675$.
+
+I shall not tire you any further with more details; I hope to
+return to these questions here in the Physical Society, and to
+show how, on the basis of the underlying ideas, it is possible
+to develop a theory for the structure of atoms and molecules.
+Before closing I only wish to say that I hope I have expressed
+myself sufficiently clearly so that you have appreciated the extent
+to which these considerations conflict with the admirably coherent
+group of conceptions which have been rightly termed the classical
+theory of electrodynamics. On the other hand, by emphasizing
+this conflict, I have tried to convey to you the impression that it
+may be also possible in the course of time to discover a certain
+coherence in the new ideas.
+\PageSep{20}
+
+
+\Essay{II}{On the Series Spectra of the Elements}
+ {Address delivered before the Physical Society in Berlin, April~27, 1920.}
+
+\Chapter{I.}{Introduction}
+
+The subject on which I have the honour to speak here, at the
+kind invitation of the Council of your society, is very extensive and
+it would be impossible in a single address to give a comprehensive
+survey of even the most important results obtained in the theory
+of spectra. In what follows I shall try merely to emphasize some
+points of view which seem to me important when considering the
+present state of the theory of spectra and the possibilities of its
+development in the near future. I regret in this connection not to
+have time to describe the history of the development of spectral
+theories, although this would be of interest for our purpose. No
+difficulty, however, in understanding this lecture need be experienced
+on this account, since the points of view underlying previous
+attempts to explain the spectra differ fundamentally from those upon
+which the following considerations rest. This difference exists both
+in the development of our ideas about the structure of the atom
+and in the manner in which these ideas are used in explaining the
+spectra.
+
+We shall assume, according to Rutherford's theory, that an atom
+consists of a positively charged nucleus with a number of electrons
+revolving about it. Although the nucleus is assumed to be very
+small in proportion to the size of the whole atom, it will contain
+nearly the entire mass of the atom. I shall not state the reasons
+which led to the establishment of this nuclear theory of the atom,
+nor describe the very strong support which this theory has received
+from very different sources. I shall mention only that result
+which lends such charm and simplicity to the modern development
+of the atomic theory. I refer to the idea that the number of electrons
+in a neutral atom is exactly equal to the number, giving the
+position of the element in the periodic table, the so-called ``atomic
+number.'' This assumption, which was first proposed by van~den
+Broek, immediately suggests the possibility ultimately of deriving
+\PageSep{21}
+the explanation of the physical and chemical properties of the
+elements from their atomic numbers. If, however, an explanation
+of this kind is attempted on the basis of the classical laws of
+mechanics and electrodynamics, insurmountable difficulties are encountered.
+These difficulties become especially apparent when we
+consider the spectra of the elements. In fact, the difficulties are
+here so obvious that it would be a waste of time to discuss them in
+detail. It is evident that systems like the nuclear atom, if based
+upon the usual mechanical and electrodynamical conceptions,
+would not even possess sufficient stability to give a spectrum consisting
+of sharp lines.
+
+In this lecture I shall use the ideas of the quantum theory. It
+will not be necessary, particularly here in Berlin, to consider in
+detail how Planck's fundamental work on temperature radiation
+has given rise to this theory, according to which the laws governing
+atomic processes exhibit a definite element of discontinuity. I shall
+mention only Planck's chief result about the properties of an exceedingly
+simple kind of atomic system, the Planck ``oscillator.''
+This consists of an electrically charged particle which can execute
+harmonic oscillations about its position of equilibrium with a frequency
+independent of the amplitude. By studying the statistical
+equilibrium of a number of such systems in a field of radiation
+Planck was led to the conclusion that the emission and absorption
+of radiation take place in such a manner, that, so far as a statistical
+equilibrium is concerned only certain distinctive states of the
+oscillator are to be taken into consideration. In these states the
+energy of the system is equal to a whole multiple of a so-called
+``energy quantum,'' which was found to be proportional to the frequency
+of the oscillator. The particular energy values are therefore
+given by the well-known formula
+\[
+E_{n} = nh\omega,
+\Tag{(1)}
+\]
+where $n$~is a whole number, $\omega$~the frequency of vibration of the
+oscillator, and $h$~is Planck's constant.
+
+If we attempt to use this result to explain the spectra of the
+elements, however, we encounter difficulties, because the motion of
+the particles in the atom, in spite of its simple structure, is in general
+exceedingly complicated compared with the motion of a Planck
+\PageSep{22}
+oscillator. The question then arises, how Planck's result ought to
+be generalized in order to make its application possible. Different
+points of view immediately suggest themselves. Thus we might
+regard this equation as a relation expressing certain characteristic
+properties of the distinctive motions of an atomic system and try
+to obtain the general form of these properties. On the other hand,
+we may also regard equation~\Eq{(1)} as a statement about a property
+of the process of radiation and inquire into the general laws which
+control this process.
+
+In Planck's theory it is taken for granted that the frequency of
+the radiation emitted and absorbed by the oscillator is equal to its
+own frequency, an assumption which may be written
+\[
+\nu \equiv \omega,
+\Tag{(2)}
+\]
+if in order to make a sharp distinction between the frequency of
+the emitted radiation and the frequency of the particles in the atoms,
+we here and in the following denote the former by~$\nu$ and the latter
+by~$\omega$. We see, therefore, that Planck's result may be interpreted to
+mean, that the oscillator can emit and absorb radiation only in
+``radiation quanta'' of magnitude
+\[
+\Delta E = h\nu.
+\Tag{(3)}
+\]
+It is well known that ideas of this kind led Einstein to a theory
+of the photoelectric effect. This is of great importance, since it
+represents the first instance in which the quantum theory was
+applied to a phenomenon of non-statistical character. I shall not
+here discuss the familiar difficulties to which the ``hypothesis of
+light quanta'' leads in connection with the phenomena of interference,
+for the explanation of which the classical theory of radiation
+has shown itself to be so remarkably suited. Above all I shall not
+consider the problem of the nature of radiation, I shall only attempt
+to show how it has been possible in a purely formal manner to
+develop a spectral theory, the essential elements of which may be
+considered as a simultaneous rational development of the two ways
+of interpreting Planck's result.
+\PageSep{23}
+
+
+\Chapter{II.}{General Principles of the Quantum Theory
+of\protect~Spectra}
+
+In order to explain the appearance of line spectra we are compelled
+to assume that the emission of radiation by an atomic system
+takes place in such a manner that it is not possible to follow the
+emission in detail by means of the usual conceptions. Indeed, these
+do not even offer us the means of calculating the frequency of the
+emitted radiation. We shall see, however, that it is possible to give
+a very simple explanation of the general empirical laws for the
+frequencies of the spectral lines, if for each emission of radiation
+by the atom we assume the fundamental law to hold, that during
+the entire period of the emission the radiation possesses one and
+the same frequency~$\nu$, connected with the total energy emitted by
+the \emph{frequency relation}
+\[
+h\nu = E' - E''.
+\Tag{(4)}
+\]
+Here $E'$~and $E''$ represent the energy of the system before and
+after the emission.
+
+If this law is assumed, the spectra do not give us information
+about the motion of the particles in the atom, as is supposed in the
+usual theory of radiation, but only a knowledge of the energy
+changes in the various processes which can occur in the atom.
+From this point of view the spectra show the existence of certain,
+definite energy values corresponding to certain distinctive states
+of the atoms. These states will be called the \emph{stationary states} of
+the atoms, since we shall assume that the atom can remain a finite
+time in each state, and can leave this state only by a process of
+transition to another stationary state. Notwithstanding the fundamental
+departure from the ordinary mechanical and electrodynamical
+conceptions, we shall see, however, that it is possible to give a
+rational interpretation of the evidence provided by the spectra on
+the basis of these ideas.
+
+Although we must assume that the ordinary mechanics \Chg{can not}{cannot}
+be used to describe the transitions between the stationary states,
+nevertheless, it has been found possible to develop a consistent
+theory on the assumption that the motion in these states can be
+described by the use of the ordinary mechanics. Moreover, although
+the process of radiation \Chg{can not}{cannot} be described on the basis of the
+\PageSep{24}
+ordinary theory of electrodynamics, according to which the nature
+of the radiation emitted by an atom is directly related to the harmonic
+components occurring in the motion of the system, there is
+found, nevertheless, to exist a far-reaching \emph{correspondence} between
+the various types of possible transitions between the stationary
+states on the one hand and the various harmonic components of the
+motion on the other hand. This correspondence is of such a nature,
+that the present theory of spectra is in a certain sense to be regarded
+as a rational generalization of the ordinary theory of radiation.
+
+\Section{Hydrogen spectrum.} In order that the principal points may
+stand out as clearly as possible I shall, before considering the more
+complicated types of series spectra, first consider the simplest spectrum,
+namely, the series spectrum of hydrogen. This spectrum
+consists of a number of lines whose frequencies are given with great
+exactness by Balmer's formula
+\[
+\nu = \frac{K}{(n'')^{2}} - \frac{K}{(n')^{2}},
+\Tag{(5)}
+\]
+where $K$~is a constant, and $n'$~and $n''$ are whole numbers. If we put
+$n'' = 2$ and give to~$n'$ the values $3$,~$4$,~etc., we get the well-known
+Balmer series of hydrogen. If we put $n'' = 1$ or $n'' = 3$ we obtain
+respectively the ultra-violet and infra-red series. We shall assume
+the hydrogen atom simply to consist of a positively charged nucleus
+with a single electron revolving about it. For the sake of simplicity
+we shall suppose the mass of the nucleus to be infinite in comparison
+with the mass of the electron, and further we shall disregard the
+small variations in the motion due to the change in mass of the
+electron with its velocity. With these simplifications the electron
+will describe a closed elliptical orbit with the nucleus at one of the
+foci. The frequency of revolution~$\omega$ and the major axis~$2a$ of the
+orbit will be connected with the energy of the system by the following
+equations:
+\[
+\omega = \sqrt{\frac{2W^{3}}{\pi^{2} e^{4} m}},\quad
+2a = \frac{e^{2}}{W}.
+\Tag{(6)}
+\]
+Here $e$~is the charge of the electron and $m$~its mass, while $W$~is the
+work required to remove the electron to infinity.
+
+The simplicity of these formulae suggests the possibility of using
+them in an attempt to explain the spectrum of hydrogen. This,
+\PageSep{25}
+however, is not possible so long as we use the classical theory of
+radiation. It would not even be possible to understand how hydrogen
+could emit a spectrum consisting of sharp lines; for since $\omega$~varies
+with~$W$, the frequency of the emitted radiation would vary continuously
+during the emission. We can avoid these difficulties if
+we use the ideas of the quantum theory. If for each line we form
+the product~$h\nu$ by multiplying both sides of~\Eq{(5)} by~$h$, then, since
+the right-hand side of the resulting relation may be written as
+the difference of two simple expressions, we are led by comparison
+with formula~\Eq{(4)} to the assumption that the separate lines of the
+spectrum will be emitted by transitions between two stationary
+states, forming members of an infinite series of states, in which the
+energy in the $n$th~state apart from an arbitrary additive constant is
+determined by the expression
+\[
+E_{n} = -\frac{Kh}{n^{2}}.
+\Tag{(7)}
+\]
+The negative sign has been chosen because the energy of the atom
+will be most simply characterized by the work~$W$ required to remove
+the electron completely from the atom. If we now substitute $\dfrac{Kh}{n^{2}}$
+for~$W$ in formula~\Eq{(6)}, we obtain the following expression for the frequency
+and the major axis in the $n$th~stationary state:
+\[
+\omega_{n} = \frac{1}{n^{3}} \sqrt{\frac{2h^{3} K^{3}}{\pi^{2} e^{4} m}},\quad
+2a_{n} = \frac{n^{2} e^{2}}{hK}.
+\Tag{(8)}
+\]
+A comparison between the motions determined by these equations
+and the distinctive states of a Planck resonator may be shown to
+offer a theoretical determination of the constant~$K$. Instead of
+doing this I shall show how the value of~$K$ can be found by a simple
+comparison of the spectrum emitted with the motion in the stationary
+states, a comparison which at the same time will lead us to the
+principle of correspondence.
+
+We have assumed that each hydrogen line is the result of a
+transition between two stationary states of the atom corresponding
+to different values of~$n$. Equations~\Eq{(8)} show that the frequency of
+revolution and the major axis of the orbit can be entirely different
+in the two states, since, as the energy decreases, the major axis of
+the orbit becomes smaller and the frequency of revolution increases.
+\PageSep{26}
+In general, therefore, it will be impossible to obtain a relation between
+the frequency of revolution of the electrons and the frequency
+of the radiation as in the ordinary theory of radiation. If, however,
+we consider the ratio of the frequencies of revolution in two stationary
+states corresponding to given values of $n'$~and~$n''$, we see that this
+ratio approaches unity as $n'$~and $n''$ gradually increase, if at the
+same time the difference $n' - n''$ remains unchanged. By considering
+transitions corresponding to large values of $n'$~and~$n''$ we may
+therefore hope to establish a certain connection with the ordinary
+theory. For the frequency of the radiation emitted by a transition,
+we get according to~\Eq{(5)}
+\[
+\nu = \frac{K}{(n'')^{2}} - \frac{K}{(n')^{2}}
+ = (n' - n'') K\, \frac{n' + n''}{(n')^{2} (n'')^{2}}.
+\Tag{(9)}
+\]
+If now the numbers $n'$~and $n''$ are large in proportion to their difference,
+we see that by equations~\Eq{(8)} this expression may be written
+approximately,
+\[
+\nu \sim (n' - n'') \omega \sqrt{\frac{2\pi^{2} e^{4} m}{Kh^{3}}},
+\Tag{(10)}
+\]
+where $\omega$~represents the frequency of revolution in the one or the
+other of the two stationary states. Since $n' - n''$ is a whole number,
+we see that the first part of this expression, \ie\ $(n' - n'')\omega$, is the
+same as the frequency of one of the harmonic components into
+which the elliptical motion may be decomposed. This involves the
+well-known result that for a system of particles having a periodic
+motion of frequency~$\omega$, the displacement~$\xi$ of the particles in a given
+direction in space may be represented as a function of the time by
+a trigonometric series of the form
+\[
+\xi = \sum C_{\tau} \cos 2\pi(\tau\omega t + c_{\tau}),
+\Tag{(11)}
+\]
+where the summation is to be extended over all positive integral
+values of~$\tau$.
+
+We see, therefore, that the frequency of the radiation emitted
+by a transition between two stationary states, for which the numbers
+$n'$~and $n''$ are large in proportion to their difference, will coincide
+with the frequency of one of the components of the radiation, which
+according to the ordinary ideas of radiation would be expected from
+the motion of the atom in these states, provided the last factor on
+\PageSep{27}
+the right-hand side of equation~\Eq{(10)} is equal to~$1$. This condition,
+which is identical to the condition
+\[
+K = \frac{2\pi^{2} e^{4} m}{h^{3}},
+\Tag{(12)}
+\]
+is in fact fulfilled, if we give to~$K$ its value as found from measurements
+on the hydrogen spectrum, and if for $e$,~$m$ and~$h$ we use the
+values obtained directly from experiment. This agreement clearly
+gives us a \emph{connection between the spectrum and the atomic model of
+hydrogen}, which is as close as could reasonably be expected considering
+the fundamental difference between the ideas of the quantum
+theory and of the ordinary theory of radiation.
+
+\Section{The correspondence principle.} Let us now consider somewhat
+more closely this relation between the spectra one would expect on
+the basis of the quantum theory, and on the ordinary theory of
+radiation. The frequencies of the spectral lines calculated according
+to both methods agree completely in the region where the stationary
+states deviate only little from one another. We must not forget,
+however, that the mechanism of emission in both cases is different.
+The different frequencies corresponding to the various harmonic
+components of the motion are emitted simultaneously according to
+the ordinary theory of radiation and with a relative intensity depending
+directly upon the ratio of the amplitudes of these oscillations.
+But according to the quantum theory the various spectral
+lines are emitted by entirely distinct processes, consisting of transitions
+from one stationary state to various adjacent states, so that
+the radiation corresponding to the $\tau$th~``harmonic'' will be emitted
+by a transition for which $n' - n'' = \tau$. The relative intensity
+with which each particular line is emitted depends consequently
+upon the relative probability of the occurrence of the different
+transitions.
+
+This correspondence between the frequencies determined by the
+two methods must have a deeper significance and we are led to
+anticipate that it will also apply to the intensities. This is equivalent
+to the statement that, when the quantum numbers are large,
+the relative probability of a particular transition is connected in a
+simple manner with the amplitude of the corresponding harmonic
+component in the motion.
+\PageSep{28}
+
+This peculiar relation suggests a \emph{general law for the occurrence
+of transitions between stationary states}. Thus we shall assume that
+even when the quantum numbers are small the possibility of
+transition between two stationary states is connected with the
+presence of a certain harmonic component in the motion of the
+system. If the numbers $n'$~and $n''$ are not large in proportion to
+their difference, the numerical value of the amplitudes of these
+components in the two stationary states may be entirely different.
+We must be prepared to find, therefore, that the exact connection
+between the probability of a transition and the amplitude of the
+corresponding harmonic component in the motion is in general
+complicated like the connection between the frequency of the radiation
+and that of the component. From this point of view, for
+example, the green line~$H_{\beta}$ of the hydrogen spectrum which corresponds
+to a transition from the fourth to the second stationary
+state may be considered in a certain sense to be an ``octave'' of the
+red line~$H_{\alpha}$, corresponding to a transition from the third to the
+second state, even though the frequency of the first line is by no
+means twice as great as that of the latter. In fact, the transition
+giving rise to~$H_{\beta}$ may be regarded as due to the presence of a harmonic
+oscillation in the motion of the atom, which is an octave
+higher than the oscillation giving rise to the emission of~$H_{\alpha}$.
+
+Before considering other spectra, where numerous opportunities
+will be found to use this point of view, I shall briefly mention an
+interesting application to the Planck oscillator. If from \Eq{(1)}~and \Eq{(4)}
+we calculate the frequency, which would correspond to a transition
+between two particular states of such an oscillator, we find
+\[
+\nu = (n' - n'')\omega,
+\Tag{(13)}
+\]
+where $n'$~and $n''$ are the numbers characterizing the states. It was
+an essential assumption in Planck's theory that the frequency of
+the radiation emitted and absorbed by the oscillator is always equal
+to~$\omega$. We see that this assumption is equivalent to the assertion
+that transitions occur only between two successive stationary states
+in sharp contrast to the hydrogen atom. According to our view,
+however, this was exactly what might have been expected, for we
+must assume that the essential difference between the oscillator
+and the hydrogen atom is that the motion of the oscillator is simple
+\PageSep{29}
+harmonic. We can see that it is possible to develop a formal theory
+of radiation, in which the spectrum of hydrogen and the simple
+spectrum of a Planck oscillator appear completely analogous. This
+theory can only be formulated by one and the same condition for
+a system as simple as the oscillator. In general this condition
+breaks up into two parts, one concerning the fixation of the stationary
+states, and the other relating to the frequency of the radiation
+emitted by a transition between these states.
+
+\Section{General spectral laws.} Although the series spectra of the
+elements of higher atomic number have a more complicated structure
+than the hydrogen spectrum, simple laws have been discovered
+showing a remarkable analogy to the Balmer formula. Rydberg
+and Ritz showed that the frequencies in the series spectra of many
+elements can be expressed by a formula of the type
+\[
+\nu = f_{k''}(n'') - f_{k'}(n'),
+\Tag{(14)}
+\]
+where $n'$~and $n''$ are two whole numbers and $f_{k'}$~and $f_{k''}$ are two
+functions belonging to a series of functions characteristic of the
+element. These functions vary in a simple manner with~$n$ and in
+particular converge to zero for increasing values of~$n$. The various
+series of lines are obtained from this formula by allowing the first
+term~$f_{k''}(n'')$ to remain constant, while a series of consecutive whole
+numbers are substituted for~$n'$ in the second term~$f_{k'}(n')$. According
+to the Ritz \emph{combination principle} the entire spectrum may then
+be obtained by forming every possible combination of two values
+among all the quantities~$f_{k}(n)$.
+
+The fact that the frequency of each line of the spectrum may be
+written as the difference of two simple expressions depending upon
+whole numbers suggests at once that the terms on the right-hand
+side multiplied by~$h$ may be placed equal to the energy in the
+various stationary states of the atom. The existence in the spectra
+of the other elements of a number of separate functions of~$n$ compels
+us to assume the presence not of one but of a number of series of
+stationary states, the energy of the $n$th~state of the $k$th~series apart
+from an arbitrary additive constant being given by
+\[
+E_{k}(n) = -h f_{k}(n).
+\Tag{(15)}
+\]
+This complicated character of the ensemble of stationary states of
+atoms of higher atomic number is exactly what was to be expected
+\PageSep{30}
+from the relation between the spectra calculated on the quantum
+theory, and the decomposition of the motions of the atoms into
+harmonic oscillations. From this point of view we may regard the
+simple character of the stationary states of the hydrogen atom as
+intimately connected with the simple periodic character of this
+atom. Where the neutral atom contains more than one electron, we
+find much more complicated motions with correspondingly complicated
+harmonic components. We must therefore expect a more
+complicated ensemble of stationary states, if we are still to have a
+corresponding relation between the motions in the atom and the
+spectrum. In the course of the lecture we shall trace this correspondence
+in detail, and we shall be led to a simple explanation of
+the apparent capriciousness in the occurrence of lines predicted by
+the combination principle.
+
+The following figure gives a survey of the stationary states of
+the sodium atom deduced from the series terms.
+\Figure[Diagram of the series spectrum of sodium.]{}{30}
+
+The stationary states are represented by black dots whose distance
+from the vertical line a---a is proportional to the numerical value
+of the energy in the states. The arrows in the figure indicate the
+transitions giving those lines of the sodium spectrum which appear
+under the usual conditions of excitation. The arrangement of the
+states in horizontal rows corresponds to the ordinary arrangement
+of the ``spectral terms'' in the spectroscopic tables. Thus, the states
+in the first row~($S$) correspond to the variable term in the ``sharp
+series,'' the lines of which are emitted by transitions from these
+states to the first state in the second row. The states in the second
+\PageSep{31}
+row~($P$) correspond to the variable term in the ``principal series''
+which is emitted by transitions from these states to the first state
+in the $S$~row. The $D$~states correspond to the variable term in the
+``diffuse series,'' which like the sharp series is emitted by transitions
+to the first state in the $P$~row, and finally the $B$~states correspond
+to the variable term in the ``Bergmann'' series (fundamental series),
+in which transitions take place to the first state in the $D$~row. The
+manner in which the various rows are arranged with reference to
+one another will be used to illustrate the more detailed theory
+which will be discussed later. The apparent capriciousness of the
+combination principle, which I mentioned, consists in the fact that
+under the usual conditions of excitation not all the lines belonging
+to possible combinations of the terms of the sodium spectrum appear,
+but only those indicated in the figure by arrows.
+
+The general question of the fixation of the stationary states of
+an atom containing several electrons presents difficulties of a profound
+character which are perhaps still far from completely solved.
+It is possible, however, to obtain an immediate insight into the
+stationary states involved in the emission of the series spectra by
+considering the empirical laws which have been discovered about
+the spectral terms. According to the well-known law discovered by
+Rydberg for the spectra of elements emitted under the usual conditions
+of excitation the functions~$f_{k}(n)$ appearing in formula~\Eq{(14)}
+can be written in the form
+\[
+f_{k}(n) = \frac{K}{n^{2}} \phi_{k}(n),
+\Tag{(16)}
+\]
+where $\phi_{k}(n)$~represents a function which converges to unity for
+large values of~$n$. $K$~is the same constant which appears in formula~\Eq{(5)}
+for the spectrum of hydrogen. This result must evidently be
+explained by supposing the atom to be electrically neutral in these
+states and one electron to be moving round the nucleus in an orbit
+the dimensions of which are very large in proportion to the distance
+of the other electrons from the nucleus. We see, indeed, that in
+this case the electric force acting on the outer electron will to a
+first approximation be the same as that acting upon the electron
+in the hydrogen atom, and the approximation will be the better
+the larger the orbit.
+\PageSep{32}
+
+On account of the limited time I shall not discuss how this
+explanation of the universal appearance of Rydberg's constant in
+the arc spectra is convincingly supported by the investigation of
+the ``spark spectra.'' These are emitted by the elements under the
+influence of very strong electrical discharges, and come from ionized
+not neutral atoms. It is important, however, that I should indicate
+briefly how the fundamental ideas of the theory and the assumption
+that in the states corresponding to the spectra one electron moves
+in an orbit around the others, are both supported by investigations
+on selective absorption and the excitation of spectral lines by
+bombardment by electrons.
+
+\Section{Absorption and excitation of radiation.}\Pagelabel{32} Just as we have
+assumed that each emission of radiation is due to a transition from
+a stationary state of higher to one of lower energy, so also we must
+assume absorption of radiation by the atom to be due to a transition
+in the opposite direction. For an element to absorb light corresponding
+to a given line in its series spectrum, it is therefore
+necessary for the atom of this element to be in that one of the two
+states connected with the line possessing the smaller energy value.
+If we now consider an element whose atoms in the gaseous state
+do not combine into molecules, it will be necessary to assume that
+under ordinary conditions nearly all the atoms exist in that stationary
+state in which the value of the energy is a minimum. This state
+I shall call the \emph{normal state}. We must therefore expect that the
+absorption spectrum of a monatomic gas will contain only those
+lines of the series spectrum, whose emission corresponds to transitions
+to the normal state. This expectation is completely confirmed
+by the spectra of the alkali metals. The absorption spectrum of
+sodium vapour, for example, exhibits lines corresponding only to
+the principal series, which as mentioned in the description of the
+figure corresponds with transitions to the state of minimum energy.
+Further confirmation of this view of the process of absorption is
+given by experiments on \emph{resonance radiation}. Wood first showed
+that sodium vapour subjected to light corresponding to the first
+line of the principal series---the familiar yellow line---acquires the
+ability of again emitting a radiation consisting only of the light of
+this line. We can explain this by supposing the sodium atom to
+\PageSep{33}
+have been transferred from the normal state to the first state in
+the second row. The fact that the resonance radiation does not
+exhibit the same degree of polarization as the incident light is
+in perfect agreement with our assumption that the radiation from
+the excited vapour is not a resonance phenomenon in the sense of
+the ordinary theory of radiation, but on the contrary depends on a
+process which is not directly connected with the incident radiation.
+
+The phenomenon of the resonance radiation of the yellow sodium
+line is, however, not quite so simple as I have indicated, since, as
+you know, this line is really a doublet. This means that the variable
+terms of the principal series are not simple but are represented by
+two values slightly different from one another. According to our
+picture of the origin of the sodium spectrum this means that the
+$P$~states in the second row in the figure---as opposed to the $S$~states
+in the first row---are not simple, but that for each place in this row
+there are two stationary states. The energy values differ so little
+from one another that it is impossible to represent them in the
+figure as separate dots. The emission (and absorption) of the two
+components of the yellow line are, therefore, connected with two
+different processes. This was beautifully shown by some later researches
+of Wood and Dunoyer. They found that if sodium vapour
+is subjected to radiation from only one of the two components of
+the yellow line, the resonance radiation, at least at low pressures,
+consists only of this component. These experiments were later
+continued by Strutt, and were extended to the case where the
+exciting line corresponded to the second line in the principal series.
+Strutt found that the resonance radiation consisted apparently only
+to a small extent of light of the same frequency as the incident
+light, while the greater part consisted of the familiar yellow line.
+This result must appear very astonishing on the ordinary ideas of
+resonance, since, as Strutt pointed out, no rational connection exists
+between the frequencies of the first and second lines of the principal
+series. It is however easily explained from our point of view. From
+the figure it can be seen that when an atom has been transferred
+into the second state in the second row, in addition to the direct
+return to the normal state, there are still two other transitions
+which may give rise to radiation, namely the transitions to the
+second state in the first row and to the first state in the third row.
+\PageSep{34}
+The experiments seem to indicate that the second of these three
+transitions is most probable, and I shall show later that there is
+some theoretical justification for this conclusion. By this transition,
+which results in the emission of an infra-red line which could not
+be observed with the experimental arrangement, the atom is taken
+to the second state of the first row, and from this state only
+one transition is possible, which again gives an infra-red line. This
+transition takes the atom to the first state in the second row, and
+the subsequent transition to the normal state then gives rise to the
+yellow line. Strutt discovered another equally surprising result,
+that this yellow resonance radiation seemed to consist of both
+components of the first line of the principal series, even when the
+incident light consisted of only one component of the second line
+of the principal series. This is in beautiful agreement with our
+picture of the phenomenon. We must remember that the states in
+the first row are simple, so when the atom has arrived in one of
+these it has lost every possibility of later giving any indication
+from which of the two states in the second row it originally came.
+
+Sodium vapour, in addition to the absorption corresponding to
+the lines of the principal series, exhibits a \emph{selective absorption in a
+continuous spectral region} beginning at the limit of this series and
+extending into the ultra\Add{-}violet. This confirms in a striking manner
+our assumption that the absorption of the lines of the principal
+series of sodium results in final states of the atom in which one of
+the electrons revolves in larger and larger orbits. For we must
+assume that this continuous absorption corresponds to transitions
+from the normal state to states in which the electron is in a position
+to remove itself infinitely far from the nucleus. This phenomenon
+exhibits a complete analogy with the \emph{photoelectric effect} from an
+illuminated metal plate in which, by using light of a suitable
+frequency, electrons of any velocity can be obtained. The frequency,
+however, must always lie above a certain limit connected according
+to Einstein's theory in a simple manner with the energy necessary
+to bring an electron out of the metal.
+
+This view of the origin of the emission and absorption spectra
+has been confirmed in a very interesting manner by experiments
+on the \emph{excitation of spectral lines and production of ionization by
+electron bombardment}. The chief advance in this field is due to the
+\PageSep{35}
+well-known experiments of Franck and Hertz. These investigators
+obtained their first important results from their experiments on
+mercury vapour, whose properties particularly facilitate such experiments.
+On account of the great importance of the results, these
+experiments have been extended to most gases and metals that can
+be obtained in a gaseous state. With the aid of the figure I shall
+briefly illustrate the results for the case of sodium vapour. It was
+found that the electrons upon colliding with the atoms were thrown
+back with undiminished velocity when their energy was less than
+that required to transfer the atom from the normal state to the
+next succeeding stationary state of higher energy value. In the
+case of sodium vapour this means from the first state in the first
+row to the first state in the second row. As soon, however, as the
+energy of the electron reaches this critical value, a new type of
+collision takes place, in which the electron loses all its kinetic
+energy, while at the same time the vapour is excited and emits a
+radiation corresponding to the yellow line. This is what would be
+expected, if by the collision the atom was transferred from the
+normal state to the first one in the second row. For some time it
+was uncertain to what extent this explanation was correct, since
+in the experiments on mercury vapour it was found that, together
+with the occurrence of non-elastic impacts, ions were always formed
+in the vapour. From our figure, however, we would expect ions
+to be produced only when the kinetic energy of the electrons is
+sufficiently great to bring the atom out of the normal state to the
+common limit of the states. Later experiments, especially by Davis
+and Goucher, have settled this point. It has been shown that ions
+can only be directly produced by collisions when the kinetic energy
+of the electrons corresponds to the limit of the series, and that the
+ionization found at first was an indirect effect arising from the
+photoelectric effect produced at the metal walls of the apparatus
+by the radiation arising from the return of the mercury atoms to
+the normal state. These experiments provide a direct and independent
+proof of the reality of the distinctive stationary states,
+whose existence we were led to infer from the series spectra. At
+the same time we get a striking impression of the insufficiency of
+the ordinary electrodynamical and mechanical conceptions for the
+description of atomic processes, not only as regards the emission
+\PageSep{36}
+of radiation but also in such phenomena as the collision of free
+electrons with atoms.
+
+
+\Chapter{III.}{Development of the Quantum Theory
+of Spectra}
+
+We see that it is possible by making use of a few simple ideas
+to obtain a certain insight into the origin of the series spectra.
+But when we attempt to penetrate more deeply, difficulties arise.
+In fact, for systems which are not simply periodic it is not possible
+to obtain sufficient information about the motions of these systems
+in the stationary states from the numerical values of the energy
+alone; more determining factors are required for the fixation of
+the motion. We meet the same difficulties when we try to explain
+in detail the characteristic effect of external forces upon the spectrum
+of hydrogen. A foundation for further advances in this field has
+been made in recent years through a development of the quantum
+theory, which allows a fixation of the stationary states not only in
+the case of simple periodic systems, but also for certain classes of
+non-periodic systems. These are the \emph{conditionally periodic systems}
+whose equations of motion can be solved by a ``separation of the
+variables.'' If generalized coordinates are used the description of
+the motion of these systems can be reduced to the consideration
+of a number of generalized ``components of motion.'' Each of these
+corresponds to the change of only one of the coordinates and may
+therefore in a certain sense be regarded as ``independent.'' The
+method for the fixation of the stationary states consists in fixing
+the motion of each of these components by a condition, which can
+be considered as a direct generalization of condition~\Eq{(1)} for a
+Planck oscillator, so that the stationary states are in general
+characterized by as many whole numbers as the number of the
+degrees of freedom which the system possesses. A considerable
+number of physicists have taken part in this development of the
+quantum theory, including Planck himself. I also wish to mention
+the important contribution made by Ehrenfest to this subject on
+the limitations of the applicability of the laws of mechanics to
+atomic processes. The decisive advance in the application of the
+quantum theory to spectra, however, is due to Sommerfeld and his
+followers. However, I shall not further discuss the systematic form
+\PageSep{37}
+in which these authors have presented their results. In a paper which
+appeared some time ago in the Transactions of the Copenhagen
+Academy, I have shown that the spectra, calculated with the aid
+of this method for the fixation of the stationary states, exhibit a
+correspondence with the spectra which should correspond to the
+motion of the system similar to that which we have already considered
+in the case of hydrogen. With the aid of this general
+correspondence I shall try in the remainder of this lecture to
+show how it is possible to present the theory of series spectra
+and the effects produced by external fields of force upon these
+spectra in a form which may be considered as the natural generalization
+of the foregoing considerations. This form appears to me
+to be especially suited for future work in the theory of spectra,
+since it allows of an immediate insight into problems for which
+the methods mentioned above fail on account of the complexity of
+the motions in the atom.
+
+\Section{Effect of external forces on the hydrogen spectrum.} We
+shall now proceed to investigate the effect of small perturbing
+forces upon the spectrum of the simple system consisting of a single
+electron revolving about a nucleus. For the sake of simplicity we
+shall for the moment disregard the variation of the mass of the
+electron with its velocity. The consideration of the small changes
+in the motion due to this variation has been of great importance
+in the development of Sommerfeld's theory which originated in the
+explanation of the \emph{fine structure of the hydrogen lines}. This fine
+structure is due to the fact, that taking into account the variation
+of mass with velocity the orbit of the electron deviates a little
+from a simple ellipse and is no longer exactly periodic. This deviation
+from a Keplerian motion is, however, very small compared
+with the perturbations due to the presence of external forces, such
+as occur in experiments on the Zeeman and Stark effects. In atoms
+of higher atomic number it is also negligible compared with the
+disturbing effect of the inner electrons on the motion of the outer
+electron. The neglect of the change in mass will therefore have no
+important influence upon the explanation of the Zeeman and Stark
+effects, or upon the explanation of the difference between the
+hydrogen spectrum and the spectra of other elements.
+\PageSep{38}
+
+We shall therefore as before consider the motion of the unperturbed
+hydrogen atom as simply periodic and inquire in the
+first place about the stationary states corresponding to this motion.
+The energy in these states will then be determined by expression~\Eq{(7)}
+which was derived from the spectrum of hydrogen. The energy of
+the system being given, the major axis of the elliptical orbit of the
+electron and its frequency of revolution are also determined. Substituting
+in formulae \Eq{(7)} and~\Eq{(8)} the expression for~$K$ given in~\Eq{(12)},
+we obtain for the energy, major axis and frequency of revolution
+in the $n$th~state of the unperturbed atom the expressions
+\[
+\BreakMath{%
+E_{n} = -W_{n} = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}},\quad
+2a_{n} = n^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m},\quad
+\omega_{n} = \frac{1}{n^{3}}\, \frac{4\pi^{2} e^{4} m}{h^{3}}.
+}{%
+\begin{gathered}
+E_{n} = -W_{n} = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}}, \\
+2a_{n} = n^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m},\qquad
+\omega_{n} = \frac{1}{n^{3}}\, \frac{4\pi^{2} e^{4} m}{h^{3}}.
+\end{gathered}
+}
+\Tag{(17)}
+\]
+
+We must further assume that in the stationary states of the
+unperturbed system the form of the orbit is so far undetermined
+that the \Chg{excentricity}{eccentricity} can vary continuously. This is not only immediately
+indicated by the principle of correspondence,---since the
+frequency of revolution is determined only by the energy and not
+by the \Chg{excentricity}{eccentricity},---but also by the fact that the presence of any
+small external forces will in general, in the course of time, produce
+a finite change in the position as well as in the \Chg{excentricity}{eccentricity} of the
+periodic orbit, while in the major axis it can produce only small
+changes proportional to the intensity of the perturbing forces.
+
+In order to fix the stationary states of systems in the presence
+of a given conservative external field of force, we shall have to
+investigate, on the basis of the principle of correspondence, how
+these forces affect the decomposition of the motion into harmonic
+oscillations. Owing to the external forces the form and position of
+the orbit will vary continuously. In the general case these changes
+will be so complicated that it will not be possible to decompose the
+perturbed motion into discrete harmonic oscillations. In such a
+case we must expect that the perturbed system will not possess
+any sharply separated stationary states. Although each emission
+of radiation must be assumed to be monochromatic and to proceed
+according to the general frequency condition we shall therefore
+expect the final effect to be a broadening of the sharp spectral lines
+of the unperturbed system. In certain cases, however, the perturbations
+\PageSep{39}
+will be of such a regular character that the perturbed system
+can be decomposed into harmonic oscillations, although the ensemble
+of these oscillations will naturally be of a more complicated kind
+than in the unperturbed system. This happens, for example, when
+the variations of the orbit with respect to time are periodic. In
+this case harmonic oscillations will appear in the motion of the
+system the frequencies of which are equal to whole multiples of the
+period of the orbital perturbations, and in the spectrum to be
+expected on the basis of the ordinary theory of radiation we would
+expect components corresponding to these frequencies. According
+to the principle of correspondence we are therefore immediately
+led to the conclusion, that to each stationary state in the unperturbed
+system there corresponds a number of stationary states in
+the perturbed system in such a manner, that for a transition
+between two of these states a radiation is emitted, whose frequency
+stands in the same relationship to the periodic course of the
+variations in the orbit, as the spectrum of a simple periodic system
+does to its motion in the stationary states.
+
+\Section{The Stark effect.} An instructive example of the appearance of
+periodic perturbations is obtained when hydrogen is subjected to
+the effect of a homogeneous electric field. The \Chg{excentricity}{eccentricity} and
+the position of the orbit vary continuously under the influence of
+the field. During these changes, however, it is found that the
+centre of the orbit remains in a plane perpendicular to the direction
+of the electric force and that its motion in this plane is
+simply periodic. When the centre has returned to its starting
+point, the orbit will resume its original \Chg{excentricity}{eccentricity} and position,
+and from this moment the entire cycle of orbits will be repeated.
+In this case the determination of the energy of the stationary
+states of the disturbed system is extremely simple, since it is found
+that the period of the disturbance does not depend upon the
+original configuration of the orbits nor therefore upon the position
+of the plane in which the centre of the orbit moves, but only upon
+the major axis and the frequency of revolution. From a simple
+calculation it is found that the period a is given by the following
+formula
+\[
+\sigma = \frac{3eF}{8\pi^{2} ma\omega},
+\Tag{(18)}
+\]
+\PageSep{40}
+where $F$~is the intensity of the external electric field. From
+analogy with the fixation of the distinctive energy values of a
+Planck oscillator we must therefore expect that the energy difference
+between two different states, corresponding to the same stationary
+state of the unperturbed system, will simply be equal to a whole
+multiple of the product of $h$~by the period~$\sigma$ of the perturbations.
+We are therefore immediately led to the following expression for
+the energy of the stationary states of the perturbed system,
+\[
+E = E_{n} + kh\sigma,
+\Tag{(19)}
+\]
+where $E_{n}$~depends only upon the number~$n$ characterizing the
+stationary state of the unperturbed system, while $k$~is a new whole
+number which in this case may be either positive or negative. As
+we shall see below, consideration of the relation between the energy
+and the motion of the system shows that $k$~must be numerically
+less than~$n$, if, as before, we place the quantity~$E_{n}$ equal to the
+energy~$-W_{n}$ of the $n$th~stationary state of the undisturbed atom.
+Substituting the values of $W_{n}$,~$\omega_{n}$ and~$a_{n}$ given by~\Eq{(17)} in formula~\Eq{(19)}
+we get
+\[
+E = -\frac{1}{n^{2}}\, \frac{2\pi^{2} e^{4} m}{h^{2}} + nk\, \frac{3h^{2} F}{8\pi^{2} em}.
+\Tag{(20)}
+\]
+To find the effect of an electric field upon the lines of the hydrogen
+spectrum, we use the frequency condition~\Eq{(4)} and obtain for the
+frequency~$\nu$ of the radiation emitted by a transition between two
+stationary states defined by the numbers $n'$,~$k'$ and $n''$,~$k''$
+\[
+\nu = \frac{2\pi^{2} e^{4} m}{h^{3}} \left(\frac{1}{(n'')^{2}} - \frac{1}{(n'')^{2}}\right)
+ + \frac{3h · F}{8\pi^{2} em} (n'k' - n''k'').
+\Tag{(21)}
+\]
+
+It is well known that this formula provides a complete explanation
+of the Stark effect of the hydrogen lines. It corresponds
+exactly with the one obtained by a different method by Epstein
+and Schwarzschild. They used the fact that the hydrogen atom in
+a homogeneous electric field is a conditionally periodic system
+permitting a separation of variables by the use of parabolic coordinates.
+The stationary states were fixed by applying quantum
+conditions to each of these variables.
+
+We shall now consider more closely the correspondence between
+the changes in the spectrum of hydrogen due to the presence of
+\PageSep{41}
+an electric field and the decomposition of the perturbed motion
+of the atom into its harmonic components. Instead of the simple
+decomposition into harmonic components corresponding to a simple
+Kepler motion, the displacement~$\xi$ of the electron in a given
+direction in space can be expressed in the present case by the
+formula
+\[
+\xi = \sum C_{\tau,\kappa} \cos 2\pi \bigl\{t(\tau\omega + \kappa\sigma) + c_{\tau,\kappa}\bigr\},
+\Tag{(22)}
+\]
+where $\omega$~is the average frequency of revolution in the perturbed
+orbit and $\sigma$~is the period of the orbital perturbations, while $C_{\tau,\kappa}$~and
+$c_{\tau,\kappa}$ are constants. The summation is to be extended over all integral
+values for $\tau$~and~$\kappa$.
+
+If we now consider a transition between two stationary states
+characterized by certain numbers $n'$,~$k'$ and $n''$,~$k''$, we find that in
+the region where these numbers are large compared with their
+differences $n' - n''$ and $k' - k''$, the frequency of the spectral line
+which is emitted will be given approximately by the formula
+\[
+\nu \sim (n' - n'')\omega + (k' - k'')\sigma.
+\Tag{(23)}
+\]
+We see, therefore, that we have obtained a relation between the
+spectrum and the motion of precisely the same character as in the
+simple case of the unperturbed hydrogen atom. We have here a
+similar correspondence between the harmonic component in the
+motion, corresponding to definite values for $\tau$~and $\kappa$ in formula~\Eq{(22)},
+and the transition between two stationary states for which $n' - n'' = \tau$
+and $k' - k'' = \kappa$.
+
+A number of interesting results can be obtained from this
+correspondence by considering the motion in more detail. Each
+harmonic component in expression~\Eq{(22)} for which $\tau + \kappa$ is an even
+number corresponds to a linear oscillation parallel to the direction
+of the electric field, while each component for which $\tau + \kappa$ is odd
+corresponds to an elliptical oscillation perpendicular to this direction.
+The correspondence principle suggests at once that these
+facts are connected with the \emph{characteristic polarization} observed in
+the Stark effect. We would anticipate that a transition for which
+$(n' - n'') + (k' - k'')$ is even would give rise to a component with an
+electric vector parallel to the field, while a transition for which
+$(n' - n'') + (k' - k'')$ is odd would correspond to a component with an
+\PageSep{42}
+electric vector perpendicular to the field. These results have been
+fully confirmed by experiment and correspond to the empirical rule
+of polarization, which Epstein proposed in his first paper on the
+Stark effect.
+
+The applications of the correspondence principle that have so
+far been described have been purely qualitative in character. It is
+possible however to obtain a quantitative estimate of the relative
+intensity of the various components of the Stark effect of hydrogen,
+by correlating the numerical values of the coefficients~$C_{\tau,\kappa}$ in formula~\Eq{(22)}
+with the probability of the corresponding transitions between
+the stationary states. This problem has been treated in detail by
+Kramers in a recently published dissertation. In this he gives a
+thorough discussion of the application of the correspondence principle
+to the question of the intensity of spectral lines.
+
+\Section{The Zeeman effect.} The problem of the effect of a homogeneous
+magnetic field upon the hydrogen lines may be treated in an
+entirely analogous manner. The effect on the motion of the hydrogen
+atom consists simply of the superposition of a uniform rotation
+upon the motion of the electron in the unperturbed atom.
+The axis of rotation is parallel with the direction of the magnetic
+force, while the frequency of revolution is given by the formula
+\[
+\sigma = \frac{eH}{4\pi mc},
+\Tag{(24)}
+\]
+where $H$~is the intensity of the field and $c$~the velocity of light.
+
+Again we have a case where the perturbations are simply
+periodic and where the period of the perturbations is independent
+of the form and position of the orbit, and in the present case, even
+of the major axis. Similar considerations apply therefore as in the
+case of the Stark effect, and we must expect that the energy in the
+stationary states will again be given by formula~\Eq{(19)}, if we substitute
+for~$\sigma$ the value given in expression~\Eq{(24)}. This result is
+also in complete agreement with that obtained by Sommerfeld and
+Debye. The method they used involved the solution of the equations
+of motion by the method of the separation of the variables. The
+appropriate coordinates are polar ones about an axis parallel to
+the field.
+
+If we try, however, to calculate directly the effect of the field by
+\PageSep{43}
+means of the frequency condition~\Eq{(4)}, we immediately meet with
+an apparent disagreement which for some time was regarded as a
+grave difficulty for the theory. As both Sommerfeld and Debye
+have pointed out, lines are not observed corresponding to every
+transition between the stationary states included in the formula.
+We overcome this difficulty, however, as soon as we apply the
+principle of correspondence. If we consider the harmonic components
+of the motion we obtain a simple explanation both of the
+non-occurrence of certain transitions and of the observed polarization.
+In the magnetic field each elliptic harmonic component having
+the frequency~$\tau\omega$ splits up into three harmonic components owing
+to the uniform rotation of the orbit. Of these one is rectilinear
+with frequency~$\tau\omega$ oscillating parallel to the magnetic field, and
+two are circular with frequencies $\tau\omega + \sigma$ and $\tau\omega - \sigma$ oscillating in
+opposite directions in a plane perpendicular to the direction of the
+field. Consequently the motion represented by formula~\Eq{(22)} contains
+no components for which $\kappa$~is numerically greater than~$1$, in contrast
+to the Stark effect, where components corresponding to all values
+of~$\kappa$ are present. Now formula~\Eq{(23)} again applies for large values
+of $n$~and~$k$, and shows the asymptotic agreement between the
+frequency of the radiation and the frequency of a harmonic component
+in the motion. We arrive, therefore, at the conclusion that
+transitions for which $k$~changes by more than unity \Chg{can not}{cannot} occur.
+The argument is similar to that by which transitions between two
+distinctive states of a Planck oscillator for which the values of~$n$
+in~\Eq{(1)} differ by more than unity are excluded. We must further
+conclude that the various possible transitions consist of two types.
+For the one type corresponding to the rectilinear component, $k$~remains
+unchanged, and in the emitted radiation which possesses
+the same frequency~$\nu_{0}$ as the original hydrogen line, the electric
+vector will oscillate parallel with the field. For the second type,
+corresponding to the circular components, $k$~will increase or decrease
+by unity, and the radiation viewed in the direction of the field will
+be circularly polarized and have frequencies $\nu_{0} + \sigma$ and $\nu_{0} - \sigma$ respectively.
+These results agree with those of the familiar Lorentz
+theory. The similarity in the two theories is remarkable, when we
+recall the fundamental difference between the ideas of the quantum
+theory and the ordinary theories of radiation.
+\PageSep{44}
+
+\Section{Central perturbations.} An illustration based on similar considerations
+which will throw light upon the spectra of other elements
+consists in finding the effect of a small perturbing field of
+force radially symmetrical with respect to the nucleus. In this case
+neither the form of the orbit nor the position of its plane will
+change with time, and the perturbing effect of the field will simply
+consist of a uniform rotation of the major axis of the orbit. The
+perturbations are periodic, so that we may assume that to each
+energy value of a stationary state of the unperturbed system there
+belongs a series of discrete energy values of the perturbed system,
+characterized by different values of a whole number~$k$. The frequency~$\sigma$
+of the perturbations is equal to the frequency of rotation
+of the major axis. For a given law of force for the perturbing
+field we find that $\sigma$~depends both on the major axis and on the
+\Chg{excentricity}{eccentricity}. The change in the energy of the stationary states,
+therefore, will not be given by an expression as simple as the
+second term in formula~\Eq{(19)}, but will be a function of~$k$, which is
+different for different fields. It is possible, however, to characterize
+by one and the same condition the motion in the stationary states
+of a hydrogen atom which is perturbed by any central field. In
+order to show this we must consider more closely the fixation of
+the motion of a perturbed hydrogen atom.
+
+In the stationary states of the unperturbed hydrogen atom
+only the major axis of the orbit is to be regarded as fixed,
+while the \Chg{excentricity}{eccentricity} may assume any value. Since the change
+in the energy of the atom due to the external field of force depends
+upon the form and position of its orbit, the fixation of the
+energy of the atom in the presence of such a field naturally
+involves a closer determination of the orbit of the perturbed
+system.
+
+Consider, for the sake of illustration, the change in the hydrogen
+spectrum due to the presence of homogeneous electric and magnetic
+fields which was described by equation~\Eq{(19)}. It is found that
+this energy condition can be given a simple geometrical interpretation.
+In the case of an electric field the distance from the
+nucleus to the plane in which the centre of the orbit moves determines
+the change in the energy of the system due to the presence
+of the field. In the stationary states this distance is simply equal
+\PageSep{45}
+to $\dfrac{k}{n}$~times half the major axis of the orbit. In the case of a magnetic
+field it is found that the quantity which determines the change
+of energy of the system is the area of the projection of the orbit
+upon a plane perpendicular to the magnetic force. In the various
+stationary states this area is equal to $\dfrac{k}{n}$~times the area of a circle
+whose radius is equal to half the major axis of the orbit. In the
+case of a perturbing central force the correspondence between
+the spectrum and the motion which is required by the quantum
+theory leads now to the simple condition that in the stationary
+states of the perturbed system the minor axis of the rotating orbit
+is simply equal to $\dfrac{k}{n}$~times the major axis. This condition was first
+derived by Sommerfeld from his general theory for the determination
+of the stationary states of a central motion. It is easily shown
+that this fixation of the value of the minor axis is equivalent to
+the statement that the parameter~$2p$ of the elliptical orbit is given
+by an expression of exactly the same form as that which gives the
+major axis~$2a$ in the unperturbed atom. The only difference from
+the expression for~$2a_{n}$ in~\Eq{(17)} is that $n$~is replaced by~$k$, so that
+the value of the parameter in the stationary states of the perturbed
+atom is given by
+\[
+2p_{k} = k^{2}\, \frac{h^{2}}{2\pi^{2} e^{2} m}.
+\Tag{(25)}
+\]
+The frequency of the radiation emitted by a transition between
+two stationary states determined in this way for which $n'$~and~$n''$ are
+large in proportion to their difference is given by an expression
+which is the same as that in equation~\Eq{(23)}, if in this case $\omega$~is the
+frequency of revolution of the electron in the slowly rotating orbit
+and $\sigma$~represents the frequency of rotation of the major axis.
+
+Before proceeding further, it might be of interest to note that
+this fixation of the stationary states of the hydrogen atom perturbed
+by external electric and magnetic forces does not coincide in certain
+respects with the theories of Sommerfeld, Epstein and Debye.
+According to the theory of conditionally periodic systems the stationary
+states for a system of three degrees of freedom will in general
+be determined by three conditions, and therefore in these theories
+\PageSep{46}
+each state is characterized by three whole numbers. This would
+mean that the stationary states of the perturbed hydrogen atom
+corresponding to a certain stationary state of the unperturbed
+hydrogen atom, fixed by one condition, should be subject to two
+further conditions and should therefore be characterized by two
+new whole numbers in addition to the number~$n$. But the perturbations
+of the Keplerian motion are simply periodic and the
+energy of the perturbed atom will therefore be fixed completely
+by one additional condition. The introduction of a second condition
+will add nothing further to the explanation of the phenomenon,
+since with the appearance of new perturbing forces, even if
+these are too small noticeably to affect the observed Zeeman and
+Stark effects, the forms of motion characterized by such a condition
+may be entirely changed. This is completely analogous to the
+fact that the hydrogen spectrum as it is usually observed is not
+noticeably affected by small forces, even when they are large enough
+to produce a great change in the form and position of the orbit of
+the electron.
+
+\Section{Relativity effect on hydrogen lines.} Before leaving the hydrogen
+spectrum I shall consider briefly the effect of the variation of
+the mass of the electron with its velocity. In the preceding sections
+I have described how external fields of force split up the hydrogen
+lines into several components, but it should be noticed that these
+results are only accurate when the perturbations are large in comparison
+with the small deviations from a pure Keplerian motion
+due to the variation of the mass of the electron with its velocity.
+When the variation of the mass is taken into account the motion
+of the unperturbed atom will not be exactly periodic. Instead we
+obtain a motion of precisely the same kind as that occurring in the
+hydrogen atom perturbed by a small central field. According to
+the correspondence principle an intimate connection is to be expected
+between the frequency of revolution of the major axis of the
+orbit and the difference of the frequencies of the fine structure
+components, and the stationary states will be those orbits whose
+parameters are given by expression~\Eq{(25)}. If we now consider the
+effect of external forces upon the fine structure components of the
+hydrogen lines it is necessary to keep in mind that this fixation of
+\PageSep{47}
+the stationary states only applies to the unperturbed hydrogen
+atom, and that, as mentioned, the orbits in these states are in
+general already strongly influenced by the presence of external
+forces, which are small compared with those with which we are
+concerned in experiments on the Stark and Zeeman effects. In
+general the presence of such forces will lead to a great complexity
+of perturbations, and the atom will no longer possess a group of
+sharply defined stationary states. The fine structure components
+of a given hydrogen line will therefore become diffuse and merged
+together. There are, however, several important cases where this
+does not happen on account of the simple character of the perturbations.
+The simplest example is a hydrogen atom perturbed
+by a central force acting from the nucleus. In this case it is evident
+that the motion of the system will retain its centrally symmetrical
+character, and that the perturbed motion will differ from the unperturbed
+motion only in that the frequency of rotation of the major
+axis will be different for different values of this axis and of the
+parameter. This point is of importance in the theory of the
+spectra of elements of higher atomic number, since, as we shall see,
+the effect of the forces originating from the inner electrons may
+to a first approximation be compared with that of a perturbing
+central field. We \Chg{can not}{cannot} therefore expect these spectra to exhibit
+a separate effect due to the variation of the mass of the electron
+of the same kind as that found in the case of the hydrogen lines.
+This variation will not give rise to a splitting up into separate
+components but only to small displacements in the position of the
+various lines.
+
+We obtain still another simple example in which the hydrogen
+atom possesses sharp stationary states, although the change of mass
+of the electron is considered, if we take an atom subject to a homogeneous
+magnetic field. The effect of such a field will consist in
+the superposition of a rotation of the entire system about an axis
+through the nucleus and parallel with the magnetic force. It follows
+immediately from this result according to the principle of correspondence
+that each fine structure component must be expected
+to split up into a normal Zeeman effect (Lorentz triplet). The
+problem may also be solved by means of the theory of conditionally
+periodic systems, since the equations of motion in the presence
+\PageSep{48}
+of a magnetic field, even when the change in the mass is considered,
+will allow of a separation of the variables using polar
+coordinates in space. This has been pointed out by Sommerfeld
+and Debye.
+
+A more complicated case arises when the atom is exposed to a
+homogeneous electric field which is not so strong that the effect
+due to the change in the mass may be neglected. In this case there
+is no system of coordinates by which the equations of motion can
+be solved by separation of the variables, and the problem, therefore,
+\Chg{can not}{cannot} be treated by the theory of the stationary states of conditionally
+periodic systems. A closer investigation of the perturbations,
+however, shows them to be of such a character that the motion
+of the electrons may be decomposed into a number of separate harmonic
+components. These fall into two groups for which the direction
+of oscillation is either parallel with or perpendicular to the
+field. According to the principle of correspondence, therefore, we
+must expect that also in this case in the presence of the field each
+hydrogen line will consist of a number of sharp, polarized components.
+In fact by means of the principles I have described, it is
+possible to give a unique fixation of the stationary states. The
+problem of the effect of a homogeneous electric field upon the fine
+structure components of the hydrogen lines has been treated in
+detail from this point of view by Kramers in a paper which will
+soon be published. In this paper it will be shown how it appears
+possible to predict in detail the manner in which the fine structure
+of the hydrogen lines gradually changes into the ordinary Stark
+effect as the electric intensity increases.
+
+\Section{Theory of series spectra.} Let us now turn our attention once
+more to the problem of the series spectra of elements of higher
+atomic number. The general appearance of the Rydberg constant
+in these spectra is to be explained by assuming that the atom is
+neutral and that one electron revolves in an orbit the dimensions
+of which are large in comparison with the distance of the inner electrons
+from the nucleus. In a certain sense, therefore, the motion of
+the outer electron may be compared with the motion of the electron
+of the hydrogen atom perturbed by external forces, and the appearance
+of the various series in the spectra of the other elements is
+\PageSep{49}
+from this point of view to be regarded as analogous to the splitting
+up of the hydrogen lines into components on account of such forces.
+
+In his theory of the structure of series spectra of the type exhibited
+by the alkali metals, Sommerfeld has made the assumption
+that the orbit of the outer electron to a first approximation possesses
+the same character as that produced by a simple perturbing
+central field whose intensity diminishes rapidly with increasing
+distance from the nucleus. He fixed the motion of the external
+electron by means of his general theory for the fixation of the
+stationary states of a central motion. The application of this
+method depends on the possibility of separating the variables in
+the equations of motion. In this manner Sommerfeld was able to
+calculate a number of energy values which can be arranged in rows
+just like the empirical spectral terms shown in the diagram of the
+sodium spectrum (\PageRef[p.]{30}). The states grouped together by Sommerfeld
+in the separate rows are exactly those which were characterized
+by one and the same value of~$k$ in our investigation of the
+hydrogen atom perturbed by a central force. The states in the
+first row of the figure (row~$S$) correspond to the value $k = 1$, those
+of the second row~($P$) correspond to $k = 2$, etc. The states corresponding
+to one and the same value of~$n$ are connected by dotted
+lines which are continued so that their vertical asymptotes correspond
+to the energy value of the stationary states of the hydrogen
+atom. The fact that for a constant~$n$ and increasing values of~$k$
+the energy values approach the corresponding values for the unperturbed
+hydrogen atom is immediately evident from the theory
+since the outer electron, for large values of the parameter of its
+orbit, remains at a great distance from the inner system during the
+whole revolution. The orbit will become almost elliptical and the
+period of rotation of the major axis will be very large. It can be
+seen, therefore, that the effect of the inner system on the energy
+necessary to remove this electron from the atom must become less
+for increasing values of~$k$.
+
+These beautiful results suggest the possibility of finding laws of
+force for the perturbing central field which would account for the
+spectra observed. Although Sommerfeld in this way has in fact
+succeeded in deriving formulae for the spectral terms which vary
+with~$n$ for a constant~$k$ in agreement with Rydberg's formulae, it
+\PageSep{50}
+has not been possible to explain the simultaneous variation with
+both $k$~and~$n$ in any actual case. This is not surprising, since it is
+to be anticipated that the effect of the inner electrons on the spectrum
+could not be accounted for in such a simple manner. Further
+consideration shows that it is necessary to consider not only the
+forces which originate from the inner electrons but also to consider
+the effect of the presence of the outer electron upon the motion of
+the inner electrons.
+
+Before considering the series spectra of elements of low atomic
+number I shall point out how the occurrence or non-occurrence of
+certain transitions can be shown by the correspondence principle
+to furnish convincing evidence in favour of Sommerfeld's assumption
+about the orbit of the outer electron. For this purpose we
+must describe the motion of the outer electron in terms of its harmonic
+components. This is easily performed if we assume that the
+presence of the inner electrons simply produces a uniform rotation
+of the orbit of the outer electron in its plane. On account of this
+rotation, the frequency of which we will denote by~$\sigma$, two circular
+rotations with the periods $\tau\omega + \sigma$ and $\tau\omega - \sigma$ will appear in the
+motion of the perturbed electron, instead of each of the harmonic
+elliptical components with a period $\tau\omega$ in the unperturbed motion.
+The decomposition of the perturbed motion into harmonic components
+consequently will again be represented by a formula of the
+type~\Eq{(22)}, in which only such terms appear for which $\kappa$~is equal
+to $+1$ or~$-1$. Since the frequency of the emitted radiation in the
+regions where $n$~and $k$ are large is again given by the asymptotic
+formula~\Eq{(23)}, we at once deduce from the correspondence principle
+that the only transitions which can take place are those for which
+the values of~$k$ differ by unity. A glance at the figure for the sodium
+spectrum shows that this agrees exactly with the experimental
+results. This fact is all the more remarkable, since in Sommerfeld's
+theory the arrangement of the energy values of the stationary
+states in rows has no special relation to the possibility of transition
+between these states.
+
+\Section{Correspondence principle and conservation of angular momentum.}
+Besides these results the correspondence principle suggests
+that the radiation emitted by the perturbed atom must
+\PageSep{51}
+exhibit circular polarization. On account of the indeterminateness
+of the plane of the orbit, however, this polarization \Chg{can not}{cannot} be
+directly observed. The assumption of such a polarization is a matter
+of particular interest for the theory of radiation emission. On
+account of the general correspondence between the spectrum of
+an atom and the decomposition of its motion into harmonic
+components, we are led to compare the radiation emitted during
+the transition between two stationary states with the radiation
+which would be emitted by a harmonically oscillating
+electron on the basis of the classical electrodynamics. In particular
+the radiation emitted according to the classical theory
+by an electron revolving in a circular orbit possesses an angular
+momentum and the energy~$\Delta E$ and the angular momentum~$\Delta P$ of
+the radiation emitted during a certain time are connected by the
+relation
+\[
+\Delta E = 2\pi\omega · \Delta P.
+\Tag{(26)}
+\]
+
+Here $\omega$~represents the frequency of revolution of the electron,
+and according to the classical theory this is equal to the frequency~$\nu$
+of the radiation. If we now assume that the total energy emitted
+is equal to~$h\nu$ we obtain for the total angular momentum of the
+radiation
+\[
+\Delta P = \frac{h}{2\pi}.
+\Tag{(27)}
+\]
+
+It is extremely interesting to note that this expression is equal
+to the change in the angular momentum which the atom suffers in
+a transition where $k$~varies by unity. For in Sommerfeld's theory
+the general condition for the fixation of the stationary states of a
+central system, which in the special case of an approximately
+Keplerian motion is equivalent to the relation~\Eq{(25)}, asserts that
+the angular momentum of the system must be equal to a whole
+multiple of~$\dfrac{h}{2\pi}$, a condition which may be written in our notation
+\[
+P = k\, \frac{h}{2\pi}.
+\Tag{(28)}
+\]
+We see, therefore, that this condition has obtained direct support
+from a simple consideration of the conservation of angular momentum
+during the emission of the radiation. I wish to emphasize
+that this equation is to be regarded as a rational generalization of
+\PageSep{52}
+Planck's original statement about the distinctive states of a harmonic
+oscillator. It may be of interest to recall that the possible
+significance of the angular momentum in applications of the
+quantum theory to atomic processes was first pointed out by
+Nicholson on the basis of the fact that for a circular motion the
+angular momentum is simply proportional to the ratio of the
+kinetic energy to the frequency of revolution.
+
+In a previous paper which I presented to the Copenhagen
+Academy I pointed out that these results confirm the conclusions
+obtained by the application of the correspondence principle to
+atomic systems possessing radial or axial symmetry. Rubinowicz
+has independently indicated the conclusions which may be obtained
+directly from a consideration of conservation of angular momentum
+during the radiation process. In this way he has obtained several
+of our results concerning the various types of possible transitions
+and the polarization of the emitted radiation. Even for systems
+possessing radial or axial symmetry, however, the conclusions which
+we can draw by means of the correspondence principle are of a
+more detailed character than can be obtained solely from a consideration
+of the conservation of angular momentum. For example,
+in the case of the hydrogen atom perturbed by a central force we
+can only conclude that $k$~\Chg{can not}{cannot} change by more than unity, while
+the correspondence principle requires that $k$~shall vary by unity
+for every possible transition and that its value cannot remain unchanged.
+Further, this principle enables us not only to exclude
+certain transitions as being impossible---and can from this point of
+view be considered as a ``selection principle''---but it also enables
+us to draw conclusions about the relative probabilities of the various
+possible types of transitions from the values of the amplitudes of
+the harmonic components. In the present case, for example, the
+fact that the amplitudes of those circular components which rotate
+in the same sense as the electron are in general greater than the
+amplitudes of those which rotate in the opposite sense leads us to
+expect that lines corresponding to transitions for which $k$~decreases
+by unity will in general possess greater intensity than lines during
+the emission of which $k$~increases by unity. Simple considerations
+like this, however, apply only to spectral lines corresponding to
+transitions from one and the same stationary state. In other
+\PageSep{53}
+cases when we wish to estimate the relative intensities of two
+spectral lines it is clearly necessary to take into consideration the
+relative number of atoms which are present in each of the two
+stationary states from which the transitions start. While the intensity
+naturally \Chg{can not}{cannot} depend upon the number of atoms in the
+final state, it is to be noticed, however, that in estimating the
+probability of a transition between two stationary states it is necessary
+to consider the character of the motion in the final as well as
+in the initial state, since the values of the amplitudes of the components
+of oscillation of both states are to be regarded as decisive
+for the probability.
+
+To show how this method can be applied I shall return for a
+moment to the problem which I mentioned in connection with
+Strutt's experiment on the resonance radiation of sodium vapour.
+This involved the discussion of the relative probability of the various
+possible transitions which can start from that state corresponding
+to the second term in the second row of the figure on \PageRef[p.]{30}. These
+were transitions to the first and second states in the first row and
+to the first state in the third row, and the results of experiment
+indicate, as we saw, that the probability is greatest for the second
+transitions. These transitions correspond to those harmonic components
+having frequencies $2\omega + \sigma$, $\omega + \sigma$ and~$\sigma$, and it is seen
+that only for the second transition do the amplitudes of the corresponding
+harmonic component differ from zero in the initial as
+well as in the final state. [In the next essay the reader will find
+that the values of quantum number~$n$ assigned in \Fig{1} to the
+various stationary states must be altered. While this correction
+in no way influences the other conclusions in this essay it involves
+that the reasoning in this passage \Chg{can not}{cannot} be maintained.]
+
+I have shown how the correspondence between the spectrum of
+an element and the motion of the atom enables us to understand
+the limitations in the direct application of the combination principle
+in the prediction of spectral lines. The same ideas give an immediate
+explanation of the interesting discovery made in recent years
+by Stark and his collaborators, that certain \emph{new series of combination
+lines} appear with considerable intensity when the radiating
+atoms are subject to a strong external electric field. This phenomenon
+is entirely analogous to the appearance of the so-called
+\PageSep{54}
+combination tones in acoustics. It is due to the fact that the
+perturbation of the motion will not only consist in an effect upon
+the components originally present, but in addition will give rise to
+new components. The frequencies of these new components may be
+$\tau\omega + \kappa\sigma$, where $\kappa$~is different from~$±1$. According to the correspondence
+principle we must therefore expect that the electric field will
+not only influence the lines appearing under ordinary circumstances,
+but that it will also render possible new types of transitions which
+give rise to the ``new'' combination lines observed. From an estimate
+of the amplitudes of the particular components in the initial
+and final states it has even been found possible to account for the
+varying facility with which the new lines are brought up by the
+external field.
+
+The general problem of the effect of an electric field on the spectra
+of elements of higher atomic number differs essentially from the
+simple Stark effect of the hydrogen lines, since we are here concerned
+not with the perturbation of a purely periodic system, but
+with the effect of the field on a periodic motion already subject to
+a perturbation. The problem to a certain extent resembles the
+effect of a weak electric force on the fine structure components of
+the hydrogen atom. In much the same way the effect of an electric
+field upon the series spectra of the elements may be treated directly
+by investigating the perturbations of the external electron. A
+continuation of my paper in the Transactions of the Copenhagen
+Academy will soon appear in which I shall show how this method
+enables us to understand the interesting observations Stark and
+others have made in this field.
+
+\Section{The spectra of helium and lithium.} We see that it has been
+possible to obtain a certain general insight into the origin of the
+series spectra of a type like that of sodium. The difficulties encountered
+in an attempt to give a detailed explanation of the
+spectrum of a particular element, however, become very serious,
+even when we consider the spectrum of helium whose neutral atom
+contains only two electrons. The spectrum of this element has a
+simple structure in that it consists of single lines or at any rate of
+double lines whose components are very close together. We find,
+however, that the lines fall into two groups each of which can be
+\PageSep{55}
+described by a formula of the type~\Eq{(14)}. These are usually called
+the (ortho) helium and parhelium spectra. While the latter consists
+of simple lines, the former possesses narrow doublets. The
+discovery that helium, as opposed to the alkali metals, possesses
+two complete spectra of the Rydberg type which do not exhibit any
+mutual combinations was so surprising that at times there has been
+a tendency to believe that helium consisted of two elements. This
+way out of the difficulty is no longer open, since there is no room
+for another element in this region of the periodic system, or more
+correctly expressed, for an element possessing a new spectrum. The
+existence of the two spectra can, however, be traced back to the fact
+that in the stationary states corresponding to the series spectra we
+have to do with a system possessing only one inner electron and in
+consequence the motion of the inner system, in the absence of the
+outer electron, will be simply periodic and therefore easily perturbed
+by external forces.
+
+In order to illustrate this point we shall have to consider more
+carefully the stationary states connected with the origin of a series
+spectrum. We must assume that in these states one electron revolves
+in an orbit outside the nucleus and the other electrons. We
+might now suppose that in general a number of different groups of
+such states might exist, each group corresponding to a different
+stationary state of the inner system considered by itself. Further
+consideration shows, however, that under the usual conditions of
+excitation those groups have by far the greatest probability for which
+the motion of the inner electrons corresponds to the ``normal'' state
+of the inner system, \ie\ to that stationary state having the least
+energy. Further the energy required to transfer the inner system
+from its normal state to another stationary state is in general very
+large compared with the energy which is necessary to transfer an
+electron from the normal state of the neutral atom to a stationary
+orbit of greater dimensions. Lastly the inner system is in general
+capable of a permanent existence only in its normal state. Now,
+the configuration of an atomic system in its stationary states and
+also in the normal state will, in general, be completely determined.
+We may therefore expect that the inner system under the influence
+of the forces arising from the presence of the outer electron can in
+the course of time suffer only small changes. For this reason we
+\PageSep{56}
+must assume that the influence of the inner system upon the motion
+of the external electron will, in general, be of the same character
+as the perturbations produced by a constant external field upon
+the motion of the electron in the hydrogen atom. We must therefore
+expect a spectrum consisting of an ensemble of spectral terms,
+which in general form a connected group, even though in the
+absence of external perturbing forces not every combination actually
+occurs. The case of the helium spectrum, however, is quite different
+since here the inner system contains only one electron the motion
+of which in the absence of the external electron is simple periodic
+provided the small changes due to the variation in the mass of the
+electron with its velocity are neglected. For this reason the form of
+the orbit in the stationary states of the inner system considered by
+itself will not be determined. In other words, the stability of the
+orbit is so slight, even if the variation in the mass is taken into
+account, that small external forces are in a position to change the
+\Chg{excentricity}{eccentricity} in the course of time to a finite extent. In this case,
+therefore, it is possible to have several groups of stationary states,
+for which the energy of the inner system is approximately the same
+while the form of the orbit of the inner electron and its position
+relative to the motion of the other electrons are so essentially
+different, that no transitions between the states of different groups
+can occur even in the presence of external forces. It can be seen
+that these conclusions summarize the experimental observations
+on the helium spectra.
+
+These\Pagelabel{56} considerations suggest an investigation of the nature of
+the perturbations in the orbit of the inner electron of the helium
+atom, due to the presence of the external electron. A discussion
+of the helium spectrum from this point of view has recently been
+given by Landé. The results of this work are of great interest particularly
+in the demonstration of the large back effect on the outer
+electron due to the perturbations of the inner orbit which themselves
+arise from the presence of the outer electron. Nevertheless, it can
+scarcely be regarded as a satisfactory explanation of the helium
+spectrum. Apart from the serious objections which may be raised
+against his calculation of the perturbations, difficulties arise if we
+try to apply the correspondence principle to Landé's results in
+order to account for the occurrence of two distinct spectra showing
+\PageSep{57}
+no mutual combinations. To explain this fact it seems necessary
+to base the discussion on a more thorough investigation of the
+mutual perturbations of the outer and the inner orbits. As a
+result of these perturbations both electrons move in such an
+extremely complicated way that the stationary states \Chg{can not}{cannot} be
+fixed by the methods developed for conditionally periodic systems.
+Dr~Kramers and I have in the last few years been engaged in such
+an investigation, and in an address on atomic problems at the
+meeting of the Dutch Congress of Natural and Medical Sciences
+held in Leiden, April 1919, I gave a short communication of our
+results. For various reasons we have up to the present time been
+prevented from publishing, but in the very near future we hope to
+give an account of these results and of the light which they seem
+to throw upon the helium spectrum.
+
+The problem presented by the spectra of elements of higher
+atomic number is simpler, since the inner system is better defined
+in its normal state. On the other hand the difficulty of the mechanical
+problem of course increases with the number of the particles in
+the atom. We obtain an example of this in the case of lithium
+with three electrons. The differences between the spectral terms
+of the lithium spectrum and the corresponding spectral terms of
+hydrogen are very small for the variable term of the principal series
+($k = 2$) and for the diffuse series ($k = 3$), on the other hand it is very
+considerable for the variable term of the sharp series ($k = 1$). This
+is very different from what would be expected if it were possible to
+describe the effect of the inner electron by a central force varying
+in a simple manner with the distance. This must be because the
+parameter of the orbit of the outer electron in the stationary states
+corresponding to the terms of the sharp series is not much greater
+than the linear dimensions of the orbits of the inner electrons.
+According to the principle of correspondence the frequency of rotation
+of the major axis of the orbit of the outer electron is to be regarded
+as a measure of the deviation of the spectral terms from the corresponding
+hydrogen terms. In order to calculate this frequency it
+appears necessary to consider in detail the mutual effect of all three
+electrons, at all events for that part of the orbit where the outer
+electron is very close to the other two electrons. Even if we assumed
+that we were fully acquainted with the normal state of the inner
+\PageSep{58}
+system in the absence of the outer electron---which would be
+expected to be similar to the normal state of the neutral helium
+atom---the exact calculation of this mechanical problem would
+evidently form an exceedingly difficult task.
+
+\Section{Complex structure of series lines.} For the spectra of elements
+of still higher atomic number the mechanical problem which has to
+be solved in order to describe the motion in the stationary states
+becomes still more difficult. This is indicated by the extraordinarily
+complicated structure of many of the observed spectra. The fact that
+the series spectra of the alkali metals, which possess the simplest
+structure, consist of double lines whose separation increases with
+the atomic number, indicates that here we have to do with systems
+in which the motion of the outer electron possesses in general a
+somewhat more complicated character than that of a simple central
+motion. This gives rise to a more complicated ensemble of stationary
+states. It would, however, appear that in the sodium atom the major
+axis and the parameter of the stationary states corresponding to
+each pair of spectral terms are given approximately by formulae
+\Eq{(17)} and~\Eq{(25)}. This is indicated not only by the similar part played
+by the two states in the experiments on the resonance radiation of
+sodium vapour, but is also shown in a very instructive manner by
+the peculiar effect of magnetic fields on the doublets. For small
+fields each component splits up into a large number of sharp lines
+instead of into the normal Lorentz triplet. With increasing field
+strength Paschen and Back found that this \emph{anomalous Zeeman effect}
+changed into the normal Lorentz triplet of a single line by a gradual
+fusion of the components.
+
+This effect of a magnetic field upon the doublets of the alkali
+spectrum is of interest in showing the intimate relation of the components
+and confirms the reality of the simple explanation of the
+general structure of the spectra of the alkali metals. If we may
+again here rely upon the correspondence principle we have unambiguous
+evidence that the effect of a magnetic field on the motion
+of the electrons simply consists in the superposition of a uniform
+rotation with a frequency given by equation~\Eq{(24)} as in the case of
+the hydrogen atom. For if this were the case the correspondence
+principle would indicate under all conditions a normal Zeeman effect
+\PageSep{59}
+for each component of the doublets. I want to emphasize that the
+difference between the simple effect of a magnetic field, which the
+theory predicts for the fine structure of components of the hydrogen
+lines, and the observed effect on the alkali doublets is in no way to
+be considered as a contradiction. The fine structure components
+are not analogous to the individual doublet components, but each
+single fine structure component corresponds to the ensemble of
+components (doublet, triplet) which makes up one of the series lines
+in Rydberg's scheme. The occurrence in strong fields of the effect
+observed by Paschen and Back must therefore be regarded as a
+strong support for the theoretical prediction of the effect of a magnetic
+field on the fine structure components of the hydrogen lines.
+
+It does not appear necessary to assume the ``anomalous'' effect
+of small fields on the doublet components to be due to a failure of
+the ordinary electrodynamical laws for the description of the motion
+of the outer electron, but rather to be connected with an effect of
+the magnetic field on that intimate interaction between the motion
+of the inner and outer electrons which is responsible for the occurrence
+of the doublets. Such a view is probably not very different
+from the ``coupling theory'' by which Voigt was able to account
+formally for the details of the anomalous Zeeman effect. We might
+even expect it to be possible to construct a theory of these effects
+which would exhibit a formal analogy with the Voigt theory similar
+to that between the quantum theory of the normal Zeeman effect and
+the theory originally developed by Lorentz. Time unfortunately
+does not permit me to enter further into this interesting problem, so
+I must refer you to the continuation of my paper in the Transactions
+of the Copenhagen Academy, which will contain a general discussion
+of the origin of series spectra and of the effects of electric and
+magnetic fields.
+
+
+\Chapter{IV.}{Conclusion}
+
+In this lecture I have purposely not considered the question of
+the structure of atoms and molecules although this is of course most
+intimately connected with the kind of spectral theory I have developed.
+We are encouraged to use results obtained from the spectra,
+since even the simple theory of the hydrogen spectrum gives a
+value for the major axis of the orbit of the electron in the normal
+\PageSep{60}
+state ($n = 1$) of the same order of magnitude as that derived from
+the kinetic theory of gases. In my first paper on the subject I
+attempted to sketch a theory of the structure of atoms and of
+molecules of chemical compounds. This theory was based on a
+simple generalization of the results for the stationary states of the
+hydrogen atom. In several respects the theory was supported by
+experiment, especially in the general way in which the properties
+of the elements change with increasing atomic number, shown most
+clearly by Moseley's results. I should like, however, to use this
+occasion to state, that in view of the recent development of the
+quantum theory, many of the special assumptions will certainly have
+to be changed in detail. This has become clear from various sides
+by the lack of agreement of the theory with experiment. It appears
+no longer possible to justify the assumption that in the normal
+states the electrons move in orbits of special geometrical simplicity,
+like ``electronic rings.'' Considerations relating to the stability of
+atoms and molecules against external influences and concerning the
+possibility of the formation of an atom by successive addition of
+the individual electrons compel us to claim, first that the configurations
+of electrons are not only in mechanical equilibrium
+but also possess a certain stability in the sense required by
+ordinary mechanics, and secondly that the configurations employed
+must be of such a nature that transitions to these from other
+stationary states of the atom are possible. These requirements are
+not in general fulfilled by such simple configurations as electronic
+rings and they force us to look about for possibilities of more complicated
+motions. It will not be possible here to consider further
+these still open questions and I must content myself by referring
+to the discussion in my forthcoming paper. In closing, however,
+I should like to emphasize once more that in this lecture I have
+only intended to bring out certain general points of view lying at
+the basis of the spectral theory. In particular it was my intention
+to show that, in spite of the fundamental differences between these
+points of view and the ordinary conceptions of the phenomena of
+radiation, it still appears possible on the basis of the general correspondence
+between the spectrum and the motion in the atom to
+employ these conceptions in a certain sense as guides in the investigation
+of the spectra.
+\PageSep{61}
+
+
+\Essay{III}{The Structure of~the~Atom and the~Physical
+and~Chemical~Properties of~the~Elements}
+{Address delivered before a joint meeting of the Physical and Chemical
+Societies in Copenhagen, October~18, 1921.}
+
+\Chapter{I.}{Preliminary}
+
+In an address which I delivered to you about a year ago I
+described the main features of a theory of atomic structure which
+I shall attempt to develop this evening. In the meantime this
+theory has assumed more definite form, and in two recent letters
+%[** TN: Footnote mark before punctuation in the original]
+to \Title{Nature} I have given a somewhat further sketch of the development.\footnote
+ {\Title{Nature}, March~24, and October~13, 1921.}
+The results which I am about to present to you are
+of no final character; but I hope to be able to show you how this
+view renders a correlation of the various properties of the elements
+in such a way, that we avoid the difficulties which previously
+appeared to stand in the way of a simple and consistent explanation.
+Before proceeding, however, I must ask your forbearance if initially
+I deal with matters already known to you, but in order to introduce
+you to the subject it will first be necessary to give a brief
+description of the most important results which have been obtained
+in recent years in connection with the work on atomic structure.
+
+\Section{The nuclear atom.} The conception of atomic structure which
+will form the basis of all the following remarks is the so-called
+nuclear atom according to which an atom is assumed to consist of
+a nucleus surrounded by a number of electrons whose distances
+from one another and from the nucleus are very large compared
+to the dimensions of the particles themselves. The nucleus
+possesses almost the entire mass of the atom and has a positive
+charge of such a magnitude that the number of electrons in a
+neutral atom is equal to the number of the element in the periodic
+system, the so-called \emph{atomic number}. This idea of the atom, which
+is due principally to Rutherford's fundamental researches on radioactive
+substances, exhibits extremely simple features, but just this
+simplicity appears at first sight to present difficulties in explaining
+the properties of the elements. When we treat this question on
+\PageSep{62}
+the basis of the ordinary mechanical and electrodynamical theories
+it is impossible to find a starting point for an explanation of the
+marked properties exhibited by the various elements, indeed not
+even of their permanency. On the one hand the particles of the
+atom apparently could not be at rest in a state of stable equilibrium,
+and on the other hand we should have to expect that every motion
+which might be present would give rise to the emission of electromagnetic
+radiation which would not cease until all the energy of
+the system had been emitted and all the electrons had fallen into
+the nucleus. A method of escaping from these difficulties has now
+been found in the application of ideas belonging to the quantum
+theory, the basis of which was laid by Planck in his celebrated
+work on the law of temperature radiation. This represented a
+radical departure from previous conceptions since it was the first
+instance in which the assumption of a discontinuity was employed
+in the formulation of the general laws of nature.
+
+\Section{The postulates of the quantum theory.}\Pagelabel{62} The quantum theory
+in the form in which it has been applied to the problems of atomic
+structure rests upon two postulates which have a direct bearing
+on the difficulties mentioned above. According to the first postulate
+there are certain states in which the atom can exist without
+emitting radiation, although the particles are supposed to have an
+accelerated motion relative to one another. These \emph{stationary states}
+are, in addition, supposed to possess a peculiar kind of stability, so
+that it is impossible either to add energy to or remove energy from
+the atom except by a process involving a transition of the atom
+into another of these states. According to the second postulate
+each emission of radiation from the atom resulting from such a
+transition always consists of a train of purely harmonic waves.
+The frequency of these waves does not depend directly upon the
+motion of the atom, but is determined by a \emph{frequency relation},
+according to which the frequency multiplied by the universal constant
+introduced by Planck is equal to the total energy emitted
+during the process. For a transition between two stationary states
+for which the values of the energy of the atom before and after the
+emission of radiation are $E'$~and $E''$ respectively, we have therefore
+\[
+h\nu = E' - E'',
+\Tag{(1)}
+\]
+\PageSep{63}
+where $h$~is Planck's constant and $\nu$~is the frequency of the emitted
+radiation. Time does not permit me to give a systematic survey
+of the quantum theory, the recent development of which has gone
+hand in hand with its applications to atomic structure. I shall
+therefore immediately proceed to the consideration of those applications
+of the theory which are of direct importance in connection
+with our subject.
+
+\Section{Hydrogen atom.} We shall commence by considering the
+simplest atom conceivable, namely, an atom consisting of a nucleus
+and one electron. If the charge on the nucleus corresponds to that
+of a single electron and the system consequently is neutral we have
+a hydrogen atom. Those developments of the quantum theory which
+have made possible its application to atomic structure started with
+the interpretation of the well-known simple spectrum emitted by
+hydrogen. This spectrum consists of a series of lines, the frequencies
+of which are given by the extremely simple Balmer formula
+\[
+\nu = K\left(\frac{1}{(n'')^{2}} - \frac{1}{(n')^{2}}\right),
+\Tag{(2)}
+\]
+where $n''$~and $n'$ are integers. According to the quantum theory
+we shall now assume that the atom possesses a series of stationary
+states characterized by a series of integers, and it can be seen how
+the frequencies given by formula~\Eq{(2)} may be derived from the
+frequency relation if it is assumed that a hydrogen line is connected
+with a radiation emitted during a transition between two
+of these states corresponding to the numbers $n'$~and~$n''$, and if the
+energy in the $n$th~state apart from an arbitrary additive constant
+is supposed to be given by the formula
+\[
+E_{n} = -\frac{Kh}{n^{2}}.
+\Tag{(3)}
+\]
+The negative sign is used because the energy of the atom is
+measured most simply by the work required to remove the electron
+to infinite distance from the nucleus, and we shall assume that the
+numerical value of the expression on the right-hand side of formula~\Eq{(3)}
+is just equal to this work.
+
+As regards the closer description of the stationary states we find
+that the electron will very nearly describe an ellipse with the
+nucleus in the focus. The major axis of this ellipse is connected
+\PageSep{64}
+with the energy of the atom in a simple way, and corresponding to
+the energy values of the stationary states given by formula~\Eq{(3)}
+there are a series of values for the major axis~$2a$ of the orbit of the
+electron given by the formula
+\[
+2a_{n} = \frac{n^{2} e^{2}}{hK},
+\Tag{(4)}
+\]
+where $e$~is the numerical value of the charge of the electron and
+the nucleus.
+
+On the whole we may say that the spectrum of hydrogen shows
+us the \emph{formation of the hydrogen atom}, since the stationary states
+may be regarded as different stages of a process by which the electron
+under the emission of radiation is bound in orbits of smaller
+and smaller dimensions corresponding to states with decreasing
+values of~$n$. It will be seen that this view has certain characteristic
+features in common with the binding process of an electron
+to the nucleus if this were to take place according to the ordinary
+electrodynamics, but that our view differs from it in just such a
+way that it is possible to account for the observed properties of
+hydrogen. In particular it is seen that the final result of the
+binding process leads to a quite definite stationary state of the
+atom, namely that state for which $n = 1$. This state which corresponds
+to the minimum energy of the atom will be called the
+\emph{normal state} of the atom. It may be stated here that the values of
+the energy of the atom and the major axis of the orbit of the
+electron which are found if we put $n = 1$ in formulae \Eq{(3)} and~\Eq{(4)}
+are of the same order of magnitude as the values of the firmness
+of binding of electrons and of the dimensions of the atoms which
+have been obtained from experiments on the electrical and mechanical
+properties of gases. A more accurate check of formulae
+\Eq{(3)} and~\Eq{(4)} can however not be obtained from such a comparison,
+because in such experiments hydrogen is not present in the form
+of simple atoms but as molecules.
+
+The formal basis of the quantum theory consists not only of the
+frequency relation, but also of conditions which permit the determination
+of the stationary states of atomic systems. The latter
+conditions, like that assumed for the frequency, may be regarded as
+natural generalizations of that assumption regarding the interaction
+between simple electrodynamic systems and a surrounding field of
+\PageSep{65}
+electromagnetic radiation which forms the basis of Planck's theory
+of temperature radiation. I shall not here go further into the
+nature of these conditions but only mention that by their means
+the stationary states are characterized by a number of integers,
+the so-called \emph{quantum numbers}. For a purely periodic motion like
+that assumed in the case of the hydrogen atom only a single
+quantum number is necessary for the determination of the stationary
+states. This number determines the energy of the atom and also
+the major axis of the orbit of the electron, but not its \Chg{excentricity}{eccentricity}.
+The energy in the various stationary states, if the small influence
+of the motion of the nucleus is neglected, is given by the following
+formula:
+\[
+E_{n} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}},
+\Tag{(5)}
+\]
+where $e$~and $m$ are respectively the charge and the mass of the
+electron, and where for the sake of subsequent applications the
+charge on the nucleus has been designated by~$Ne$.
+
+For the atom of hydrogen $N = 1$, and a comparison with
+equation~\Eq{(3)} leads to the following theoretical expression for~$K$ in
+formula~\Eq{(2)}, namely
+\[
+K = \frac{2\pi^{2} e^{4} m}{h^{3}}.
+\Tag{(6)}
+\]
+This agrees with the empirical value of the constant for the spectrum
+of hydrogen within the limit of accuracy with which the various
+quantities can be determined.
+
+\Section{Hydrogen spectrum and X-ray spectra.} If in the above
+formula we put $N = 2$ which corresponds to an atom consisting of
+an electron revolving around a nucleus with a double charge, we
+get values for the energies in the stationary states, which are four
+times larger than the energies in the corresponding states of the
+hydrogen atom, and we obtain the following formula for the
+spectrum which would be emitted by such an atom:
+\[
+\nu = 4K \left(\frac{1}{(n'')^{2}} - \frac{1}{(n')^{2}}\right).
+\Tag{(7)}
+\]
+This formula represents certain lines which have been known for
+some time and which had been attributed to hydrogen on account
+of the great similarity between formulae \Eq{(2)} and~\Eq{(7)} since it had
+\PageSep{66}
+never been anticipated that two different substances could exhibit
+properties so closely resembling each other. According to the theory
+we may, however, expect that the emission of the spectrum given by~\Eq{(7)}
+corresponds to the \emph{first stage of the formation of the helium atom},
+\ie\ to the binding of a first electron by the doubly charged nucleus
+of this atom. This interpretation has been found to agree with
+more recent information. For instance it has been possible to
+obtain this spectrum from pure helium. I have dwelt on this point
+in order to show how this intimate connection between the properties
+of two elements, which at first sight might appear quite
+surprising, is to be regarded as an immediate expression of the
+characteristic simple structure of the nuclear atom. A short time
+after the elucidation of this question, new evidence of extraordinary
+interest was obtained of such a similarity between the properties of
+the elements. I refer to Moseley's fundamental researches on the
+X-ray spectra of the elements. Moseley found that these spectra
+varied in an extremely simple manner from one element to the
+next in the periodic system. It is well known that the lines of
+the X-ray spectra may be divided into groups corresponding to the
+different characteristic absorption regions for X-rays discovered by
+Barkla. As regards the $K$~group which contains the most penetrating
+X-rays, Moseley found that the strongest line for all elements
+investigated could be represented by a formula which with
+a small simplification can be written
+\[
+\nu = N^{2} K \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right).
+\Tag{(8)}
+\]
+$K$~is the same constant as in the hydrogen spectrum, and $N$~the
+atomic number. The great significance of this discovery lies in
+the fact that it would seem firmly to establish the view that this
+atomic number is equal to the number of electrons in the atom.
+This assumption had already been used as a basis for work on
+atomic structure and was first stated by van~den Broek. While
+the significance of this aspect of Moseley's discovery was at once
+clear to all, it has on the other hand been more difficult to understand
+the very great similarity between the spectrum of hydrogen
+and the X-ray spectra. This similarity is shown, not only by the
+lines of the $K$~group, but also by groups of less penetrating X-rays.
+\PageSep{67}
+Thus Moseley found for all the elements he investigated that the
+frequencies of the strongest line in the $L$~group may be represented
+by a formula which with a simplification similar to that employed
+in formula~\Eq{(8)} can be written
+\[
+\nu = N^{2} K \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right).
+\Tag{(9)}
+\]
+Here again we obtain an expression for the frequency which corresponds
+to a line in the spectrum which would be emitted by the
+\emph{binding of an electron to a nucleus, whose charge is~$Ne$}.
+
+\Section{The fine structure of the hydrogen lines.} This similarity between
+the structure of the X-ray spectra and the hydrogen spectrum
+was still further extended in a very interesting manner by Sommerfeld's
+important theory of the fine structure of the hydrogen lines.
+The calculation given above of the energy in the stationary states
+of the hydrogen system, where each state is characterized by a
+single quantum number, rests upon the assumption that the orbit
+of the electron in the atom is simply periodic. This is, however,
+only approximately true. It is found that if the change in the mass
+of the electron due to its velocity is taken into consideration the
+orbit of the electron no longer remains a simple ellipse, but its
+motion may be described as a \emph{central motion} obtained by superposing
+a slow and uniform rotation upon a simple periodic motion in a
+very nearly elliptical orbit. For a central motion of this kind the
+stationary states are characterized by \emph{two quantum numbers}. In the
+case under consideration one of these may be so chosen that to a
+very close approximation it will determine the energy of the atom
+in the same manner as the quantum number previously used
+determined the energy in the case of a simple elliptical orbit. This
+quantum number which will always be denoted by~$n$ will therefore
+be called the ``principal quantum number.'' Besides this condition,
+which to a very close approximation determines the major axis in the
+rotating and almost elliptical orbit, a second condition will be imposed
+upon the stationary states of a central orbit, namely that the angular
+momentum of the electron about the centre shall be equal to a whole
+multiple of Planck's constant divided by~$2\pi$. The whole number, which
+occurs as a factor in this expression, may be regarded as the second
+quantum number and will be denoted by~$k$. The latter condition fixes
+\PageSep{68}
+the \Chg{excentricity}{eccentricity} of the rotating orbit which in the case of a simple
+periodic orbit was undetermined. It should be mentioned that the
+possible importance of the angular momentum in the quantum theory
+was pointed out by Nicholson before the application of this theory to
+the spectrum of hydrogen, and that a determination of the stationary
+states for the hydrogen atom similar to that employed by Sommerfeld
+was proposed almost simultaneously by Wilson, although the
+latter did not succeed in giving a physical application to his results.
+
+The simplest description of the form of the rotating nearly
+elliptical electronic orbit in the hydrogen atom is obtained by
+considering the chord which passes through the focus and is
+perpendicular to the major axis, the so-called ``parameter.'' The
+length~$2p$ of this parameter is given to a very close approximation
+by an expression of exactly the same form as the expression for the
+major axis, except that $k$~takes the place of~$n$. Using the same
+notation as before we have therefore
+\[
+2a = n^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m},\quad
+2p = k^{2}\, \frac{h^{2}}{2\pi^{2} N e^{2} m}.
+\Tag{(10)}
+\]
+For each of the stationary states which had previously been denoted
+by a given value of~$n$, we obtain therefore a set of stationary states
+corresponding to values of~$k$ from $1$ to~$n$. Instead of the simple
+formula~\Eq{(5)} Sommerfeld found a more complicated expression for
+the energy in the stationary states which depends on~$k$ as well as~$n$.
+Taking the variation of the mass of the electron with velocity
+into account and neglecting terms of higher order of magnitude he
+obtained
+\[
+E_{n,k} = -\frac{2\pi^{2} N^{2} e^{4} m}{n^{2} h^{2}}
+ \left[1 + \frac{4\pi^{2} N^{2} e^{4}}{h^{2} c^{2}}\left(-\frac{3}{4n^{2}} + \frac{1}{nk}\right)\right],
+\Tag{(11)}
+\]
+where $c$~is the velocity of light.
+
+Corresponding to each of the energy values for the stationary
+states of the hydrogen atom given by the simple formula~\Eq{(5)} we
+obtain $n$~values differing only very little from one another, since
+the second term within the bracket is very small. With the aid of
+the general frequency relation~\Eq{(1)} we therefore obtain a number of
+components with nearly coincident frequencies instead of each
+hydrogen line given by the simple formula~\Eq{(2)}. Sommerfeld has
+now shown that this calculation actually agrees with measurements
+\PageSep{69}
+of the fine structure. This agreement applies not only to the fine
+structure of the hydrogen lines which is very difficult to measure
+on account of the extreme proximity of the components, but it is
+also possible to account in detail for the fine structure of the helium
+lines given by formula~\Eq{(7)} which has been very carefully investigated
+by Paschen. Sommerfeld in connection with this theory
+also pointed out that formula~\Eq{(11)} could be applied to the X-ray
+spectra. Thus he showed that in the $K$~and $L$ groups pairs of lines
+appeared the differences of whose frequencies could be determined
+by the expression~\Eq{(11)} for the energy in the stationary states which
+correspond to the binding of a single electron by a nucleus of
+charge~$Ne$.
+
+\Section{Periodic table.} In spite of the great formal similarity between
+the X-ray spectra and the hydrogen spectrum indicated by these
+results a far-reaching difference must be assumed to exist between
+the processes which give rise to the appearance of these two types
+of spectra. While the emission of the hydrogen spectrum, like the
+emission of the ordinary optical spectra of other elements, may be
+assumed to be connected with the binding of an electron by an
+atom, observations on the appearance and absorption of X-ray
+spectra clearly indicate that these spectra are connected with a
+process which may be described as a \emph{reorganization of the electronic
+arrangement} after a disturbance within the atom due to the effect
+of external agencies. We should therefore expect that the appearance
+of the X-ray spectra would depend not only upon the direct
+interaction between a single electron and the nucleus, but also on
+the manner in which the electrons are arranged in the completely
+formed atom.
+
+The peculiar manner in which the properties of the elements
+vary with the atomic number, as expressed in the periodic system,
+provides a guide of great value in considering this latter problem.
+A simple survey of this system is given in \Fig{1}. The number preceding
+each element indicates the atomic number, and the elements
+within the various vertical columns form the different ``periods'' of
+the system. The lines, which connect pairs of elements in successive
+columns, indicate homologous properties of such elements. Compared
+with usual representations of the periodic system, this method,
+\PageSep{70}
+proposed more than twenty years ago by Julius Thomsen, of indicating
+the periodic variations in the properties of the elements is
+more suited for comparison with theories of atomic constitution.
+The meaning of the frames round certain sequences of elements
+within the later periods of the table will be explained later. They
+refer to certain characteristic features of the theory of atomic
+constitution.
+\Figure{1}{70}
+
+In an explanation of the periodic system it is natural to assume
+a division of the electrons in the atom into distinct groups
+in such a manner that the grouping of the elements in the system
+is attributed to the gradual formation of the groups of electrons
+in the atoms as the atomic number increases. Such a grouping
+\PageSep{71}
+of the electrons in the atom has formed a prominent part of all
+more detailed views of atomic structure ever since J.~J. Thomson's
+famous attempt to explain the periodic system on the basis
+of an investigation of the stability of various electronic configurations.
+Although Thomson's assumption regarding the distribution
+of the positive electricity in the atom is not consistent with more
+recent experimental evidence, nevertheless his work has exerted
+great influence upon the later development of the atomic theory on
+account of the many original ideas which it contained.
+
+With the aid of the information concerning the binding of
+electrons by the nucleus obtained from the theory of the hydrogen
+spectrum I attempted in the same paper in which this theory was
+set forth to sketch in broad outlines a picture of the structure of
+the nucleus atom. In this it was assumed that each electron in its
+normal state moved in a manner analogous to the motion in
+the last stages of the binding of a single electron by a nucleus.
+As in Thomson's theory, it was assumed that the electrons moved
+in circular orbits and that the electrons in each separate group
+during this motion occupied positions with reference to one another
+corresponding to the vertices of plane regular polygons. Such an
+arrangement is frequently described as a distribution of the electrons
+in ``rings.'' By means of these assumptions it was possible to
+account for the orders of magnitude of the dimensions of the atoms
+as well as the firmness with which the electrons were bound by the
+atom, a measure of which may be obtained by means of experiments
+on the excitation of the various types of spectra. It was not
+possible, however, in this way to arrive at a detailed explanation
+of the characteristic properties of the elements even after it had
+become apparent from the results of Moseley and the work of
+Sommerfeld and others that this simple picture ought to be extended
+to include orbits in the fully formed atom characterized by
+higher quantum numbers corresponding to previous stages in the
+formation of the hydrogen atom. This point has been especially
+emphasized by Vegard.
+
+The difficulty of arriving at a satisfactory picture of the atom is
+intimately connected with the difficulty of accounting for the pronounced
+``stability'' which the properties of the elements demand.
+As I emphasized when considering the formation of the hydrogen
+\PageSep{72}
+atom, the postulates of the quantum theory aim directly at this
+point, but the results obtained in this way for an atom containing
+a single electron do not permit of a direct elucidation of problems
+like that of the distribution in groups of the electrons in an atom
+containing several electrons. If we imagine that the electrons in
+the groups of the atom are orientated relatively to one another at any
+moment, like the vertices of regular polygons, and rotating in either
+circles or ellipses, the postulates do not give sufficient information to
+determine the difference in the stability of electronic configurations
+with different numbers of electrons in the groups.
+
+The peculiar character of stability of the atomic structure, demanded
+by the properties of the elements, is brought out in an
+interesting way by Kossel in two important papers. In the first
+paper he shows that a more detailed explanation of the origin of
+the high frequency spectra can be obtained on the basis of the
+group structure of the atom. He assumes that a line in the X-ray
+spectrum is due to a process which may be described as follows: an
+electron is removed from the atom by some external action after
+which an electron in one of the other groups takes its place; this
+exchange of place may occur in as many ways as there are groups
+of more loosely bound electrons. This view of the origin of the
+characteristic X-rays afforded a simple explanation of the peculiar
+absorption phenomena observed. It has also led to the prediction
+of certain simple relations between the frequencies of the X-ray
+lines from one and the same element and has proved to be a suitable
+basis for the classification of the complete spectrum. However it has
+not been possible to develop a theory which reconciles in a satisfactory
+way Sommerfeld's work on the fine structure of the X-ray
+lines with Kossel's general scheme. As we shall see later the
+adoption of a new point of view when considering the stability of
+the atom renders it possible to bring the different results in a natural
+way in connection with one another.
+
+In his second paper Kossel investigates the possibilities for an
+explanation of the periodic system on the basis of the atomic theory.
+Without entering further into the problem of the causes of the
+division of the electrons into groups, or the reasons for the different
+stability of the various electronic configurations, he points out in
+connection with ideas which had already played a part in Thomson's
+\PageSep{73}
+theory, how the periodic system affords evidence of a periodic appearance
+of especially stable configurations of electrons. These configurations
+appear in the neutral atoms of elements occupying the
+final position in each period in \Fig{1}, and the stability in question is
+assumed in order to explain not only the inactive chemical properties
+of these elements but also the characteristic active properties of the
+immediately preceding or succeeding elements. If we consider for
+instance an inactive gas like argon, the atomic number of which is~$18$,
+we must assume that the $18$~electrons in the atom are arranged in
+an exceedingly regular configuration possessing a very marked
+stability. The pronounced electronegative character of the preceding
+element, chlorine, may then be explained by supposing the neutral
+atom which contains only $17$~electrons to possess a tendency to
+capture an additional electron. This gives rise to a negative chlorine
+ion with a configuration of $18$~electrons similar to that occurring
+in the neutral argon atom. On the other hand the marked electropositive
+character of potassium may be explained by supposing
+one of the $19$~electrons in the neutral atom to be as it were superfluous,
+and that this electron therefore is easily lost; the rest of the
+atom forming a positive ion of potassium having a constitution similar
+to that of the argon atom. In a corresponding manner it is possible
+to account for the electronegative and electropositive character of
+elements like sulphur and calcium, whose atomic numbers are $16$ and~$20$.
+In contrast to chlorine and potassium these elements are divalent,
+and the stable configuration of $18$~electrons is formed by the addition
+of two electrons to the sulphur atom and by the loss of two electrons
+from the calcium atom. Developing these ideas Kossel has succeeded
+not only in giving interesting explanations of a large number of
+chemical facts, but has also been led to certain general conclusions
+about the grouping of the electrons in elements belonging to the
+first periods of the periodic system, which in certain respects are
+in conformity with the results to be discussed in the following
+paragraphs. Kossel's\Pagelabel{73} work was later continued in an interesting
+manner by Ladenburg with special reference to the grouping of the
+electrons in atoms of elements belonging to the later periods of the
+periodic table. It will be seen that Ladenburg's conclusions also
+exhibit points of similarity with the results which we shall discuss
+later.
+\PageSep{74}
+
+\Section{Recent atomic models.} Up to the present time it has not been
+possible to obtain a satisfactory account based upon a consistent application
+of the quantum theory to the nuclear atom of the ultimate
+cause of the pronounced stability of certain arrangements of electrons.
+Nevertheless it has been apparent for some time that the solution
+should be sought for by investigating the possibilities of a \emph{spatial
+distribution of the electronic orbits} in the atom instead of limiting
+the investigation to configurations in which all electrons belonging
+to a particular group move in the same plane as was assumed for
+simplicity in my first papers on the structure of the atom. The
+necessity of assuming a spatial distribution of the configurations
+of electrons has been drawn attention to by various writers. Born
+and Landé, in connection with their investigations of the structure
+and properties of crystals, have pointed out that the assumption of
+spatial configurations appears necessary for an explanation of these
+properties. Landé has pursued this question still further, and as
+will be mentioned later has proposed a number of different ``spatial
+atomic models'' in which the electrons in each separate group of
+the atom at each moment form configurations possessing regular
+polyhedral symmetry. These models constitute in certain respects
+a distinct advance, although they have not led to decisive results
+on questions of the stability of atomic structure.
+
+The importance of spatial electronic configurations has, in addition,
+been pointed out by Lewis and Langmuir in connection with their
+atomic models. Thus Lewis, who in several respects independently
+came to the same conclusions as Kossel, suggested that the number~$8$
+characterizing the first groups of the periodic system might indicate
+a constitution of the outer atomic groups where the electrons
+within each group formed a configuration like the corners of a cube.
+He emphasized how a configuration of this kind leads to instructive
+models of the molecular structure of chemical combinations. It is
+to be remarked, however, that such a ``static'' model of electronic
+configuration will not be possible if we assume the forces within
+the atom to be due exclusively to the electric charges of the
+particles. Langmuir, who has attempted to develop Lewis' conceptions
+still further and to account not only for the occurrence of
+the first octaves, but also for the longer periods of the periodic
+system, supposes therefore the structure of the atoms to be governed
+\PageSep{75}
+by forces whose nature is unknown to us. He conceives the atom
+to possess a ``cellular structure,'' so that each electron is in advance
+assigned a place in a cell and these cells are arranged in shells in
+such a manner, that the various shells from the nucleus of the atom
+outward contain exactly the same number of places as the periods
+in the periodic system proceeding in the direction of increasing
+atomic number. Langmuir's work has attracted much attention
+among chemists, since it has to some extent thrown light on the
+conceptions with which empirical chemical science is concerned.
+On his theory the explanation of the properties of the various
+elements is based on a number of postulates about the structure of
+the atoms formulated for that purpose. Such a descriptive theory
+is sharply differentiated from one where an attempt is made to
+explain the specific properties of the elements with the aid of
+general laws applying to the interaction between the particles in
+each atom. The principal task of this lecture will consist in an
+attempt to show that an advance along these lines appears by no
+means hopeless, but on the contrary that with the aid of a consistent
+application of the postulates of the quantum theory it
+actually appears possible to obtain an insight into the structure
+and stability of the atom.
+
+
+\Chapter{II.}{Series Spectra and the Capture of Electrons
+by\protect~Atoms}
+
+We attack the problem of atomic constitution by asking the
+question: ``How may an atom be formed by the successive capture
+and binding of the electrons one by one in the field of force surrounding
+the nucleus?''
+
+Before attempting to answer this question it will first be
+necessary to consider in more detail what the quantum theory
+teaches us about the general character of the binding process. We
+have already seen how the hydrogen spectrum gives us definite
+information about the course of this process of binding the electron
+by the nucleus. In considering the formation of the atoms of other
+elements we have also in their spectra sources for the elucidation
+of the formation processes, but the direct information obtained in
+this way is not so complete as in the case of the hydrogen atom.
+For an element of atomic number~$N$ the process of formation may
+\PageSep{76}
+be regarded as occurring in $N$~stages, corresponding with the successive
+binding of $N$~electrons in the field of the nucleus. A spectrum
+must be assumed to correspond to each of these binding processes;
+but only for the first two elements, hydrogen and helium, do we
+possess a detailed knowledge of these spectra. For other elements
+of higher atomic number, where several spectra will be connected
+with the formation of the atom, we are at present acquainted with
+only two types, called the ``arc'' and ``spark'' spectra respectively,
+according to the experimental conditions of excitation. Although
+these spectra show a much more complicated structure than the
+hydrogen spectrum, given by formula~\Eq{(2)} and the helium spectrum
+given by formula~\Eq{(7)}, nevertheless in many cases it has been
+possible to find simple laws for the frequencies exhibiting a close
+analogy with the laws expressed by these formulae.
+
+\Section{Arc and spark spectra.} If for the sake of simplicity we disregard
+the complex structure shown by the lines of most spectra
+(occurrence of doublets, triplets etc.), the frequency of the lines of
+many arc spectra can be represented to a close approximation by
+the Rydberg formula
+\[
+\nu = \frac{K}{(n'' + \alpha_{k''})^{2}} - \frac{K}{(n' + \alpha_{k'})^{2}},
+\Tag{(12)}
+\]
+where $n'$~and $n''$ are integral numbers, $K$~the same constant as in
+the hydrogen spectrum, while $\alpha_{k'}$~and $\alpha_{k''}$ are two constants belonging
+to a set characteristic of the element. A spectrum with a
+structure of this kind is, like the hydrogen spectrum, called a series
+spectrum, since the lines can be arranged into series in which the
+frequencies converge to definite limiting values. These series are
+for example represented by formula~\Eq{(12)} if, using two definite
+constants for $\alpha_{k''}$~and~$\alpha_{k'}$, $n''$~remains unaltered, while $n'$~assumes a
+series of successive, gradually increasing integral values.
+
+Formula~\Eq{(12)} applies only approximately, but it is always found
+that the frequencies of the spectral lines can be written, as in
+formulae \Eq{(2)} and~\Eq{(12)}, as a difference of two functions of integral
+numbers. Thus the latter formula applies accurately, if the
+quantities~$\alpha_{k}$ are not considered as constants, but as representatives
+of a set of series of numbers~$\alpha_{k}(n)$ characteristic of the element,
+whose values for increasing~$n$ within each series quickly approach
+\PageSep{77}
+a constant limiting value. The fact that the frequencies of the
+spectra always appear as the difference of two terms, the so-called
+``spectral terms,'' from the combinations of which the complete
+spectrum is formed, has been pointed out by Ritz, who with the
+establishment of the combination principle has greatly advanced
+the study of the spectra. The quantum theory offers an immediate
+interpretation of this principle, since, according to the frequency
+relation we are led to consider the lines as due to transitions
+between stationary states of the atom, just as in the hydrogen
+spectrum, only in the spectra of the other elements we have to do
+not with a single series of stationary states, but with a set of such
+series. From formula~\Eq{(12)} we thus obtain for an arc spectrum---if
+we temporarily disregard the structure of the individual lines---information
+about an ensemble of stationary states, for which the
+energy of the atom in the $n$th~state of the $k$th~series is given by
+\[
+E_{k}(n) = -\frac{Kh}{(n + \alpha_{k})^{2}}
+\Tag{(13)}
+\]
+very similar to the simple formula~\Eq{(3)} for the energy in the stationary
+states of the hydrogen atom.
+
+As regards the spark spectra, the structure of which has been
+cleared up mainly by Fowler's investigations, it has been possible
+in the case of many elements to express the frequencies approximately
+by means of a formula of exactly the same type as~\Eq{(12)},
+only with the difference that~$K$, just as in the helium spectrum
+given by formula~\Eq{(7)}, is replaced by a constant, which is four times
+as large. For the spark spectra, therefore, the energy values in the
+corresponding stationary states of the atom will be given by an
+expression of the same type as~\Eq{(13)}, only with the difference that
+$K$~is replaced by~$4K$.
+
+This remarkable similarity between the structure of these types
+of spectra and the simple spectra given by \Eq{(2)}~and~\Eq{(7)} is explained
+simply by assuming the arc spectra to be connected with the \emph{last
+stage in the formation of the neutral atom} consisting in the capture
+and binding of the $N$th~electron. On the other hand the spark
+spectra are connected with the \emph{last stage but one in the formation
+of the atom}, namely the binding of the $(N - 1)$th~electron. In these
+cases the field of force in which the electron moves will be much
+\PageSep{78}
+the same as that surrounding the nucleus of a hydrogen or helium
+atom respectively, at least in the earlier stages of the binding
+process, where during the greater part of its revolution it moves
+at a distance from the nucleus which is large in proportion to the
+dimensions of the orbits of the electrons previously bound. From
+analogy with formula~\Eq{(3)} giving the stationary states of the
+hydrogen atom, we shall therefore assume that the numerical value
+of the expression on the right-hand side of~\Eq{(13)} will be equal to the
+work required to remove the last captured electron from the atom,
+the binding of which gives rise to the arc spectrum of the element.
+
+\Section{Series diagram.} While the origin of the arc and spark spectra
+was to this extent immediately interpreted on the basis of the
+original simple theory of the hydrogen spectrum, it was Sommerfeld's
+theory of the fine structure of the hydrogen lines which first gave
+us a clear insight into the characteristic difference between the
+hydrogen spectrum and the spark spectrum of helium on the one
+hand, and the arc and spark spectra of other elements on the other.
+When we consider the binding not of the first but of the subsequent
+electrons in the atom, the orbit of the electron under consideration---at
+any rate in the latter stages of the binding process where the
+electron last bound comes into intimate interaction with those
+previously bound---will no longer be to a near approximation a
+closed ellipse, but on the contrary will to a first approximation be a
+central orbit of the same type as in the hydrogen atom, when we
+take into account the change with velocity in the mass of the
+electron. This motion, as we have seen, may be resolved into a
+plane periodic motion upon which a uniform rotation is superposed
+in the plane of the orbit; only the superposed rotation will in this
+case be comparatively much more rapid and the deviation of the
+periodic orbit from an ellipse much greater than in the case of the
+hydrogen atom. For an orbit of this type the stationary states, just
+as in the theory of the fine structure, will be determined by two
+quantum numbers which we shall denote by $n$~and~$k$, connected in
+a very simple manner with the kinematic properties of the orbit.
+For brevity I shall only mention that while the quantum number~$k$
+is connected with the value of the constant angular momentum
+of the electron about the centre in the simple manner previously
+\PageSep{79}
+indicated, the determination of the principal quantum number~$n$
+requires an investigation of the whole course of the orbit and for
+an arbitrary central orbit will not be related in a simple way to
+the dimensions of the rotating periodic orbit if this deviates essentially
+from a Keplerian ellipse.
+\Figure{2}{79}
+
+These results are represented in \Fig{2} which is a reproduction
+of an illustration I have used on a previous occasion
+(see Essay~II, \PageRef{30}), and which gives a survey of the origin
+of the sodium spectrum. The black dots represent the stationary
+states corresponding to the various series of spectral terms,
+shown on the right by the letters $S$,~$P$,~$D$ and~$B$. These letters
+correspond to the usual notations employed in spectroscopic
+literature and indicate the nature of the series (sharp series,
+principal series, diffuse series, etc.)\ obtained by combinations of
+the corresponding spectral terms. The distances of the separate
+points from the vertical line at the right of the figure are proportional
+to the numerical value of the energy of the atom given
+by equation~\Eq{(13)}. The oblique, black arrows indicate finally the
+transitions between the stationary states giving rise to the
+appearance of the lines in the commonly observed sodium
+spectrum. The values of $n$~and $k$ attached to the various states
+indicate the quantum numbers, which, according to Sommerfeld's
+theory, from a preliminary consideration might be regarded as
+characterizing the orbit of the outer electron. For the sake of
+convenience the states which were regarded as corresponding to
+the same value of~$n$ are connected by means of dotted lines, and these
+are so drawn that their vertical asymptotes correspond to the
+\PageSep{80}
+terms in the hydrogen spectrum which belong to the same value
+of the principal quantum number. The course of the curves illustrates
+how the deviation from the hydrogen terms may be expected
+to decrease with increasing values of~$k$, corresponding to states,
+where the minimum distance between the electron in its revolution
+and the nucleus constantly increases.
+
+It should be noted that even though the theory represents the
+principal features of the structure of the series spectra it has not
+yet been possible to give a detailed account of the spectrum of any
+element by a closer investigation of the electronic orbits which may
+occur in a simple field of force possessing central symmetry. As
+I have mentioned already the lines of most spectra show a complex
+structure. In the sodium spectrum for instance the lines of the
+principal series are doublets indicating that to each $P$-term not
+one stationary state, but two such states correspond with slightly
+different values of the energy. This difference is so little that
+it would not be recognizable in a diagram on the same scale as
+\Fig{2}. The appearance of these doublets is undoubtedly due to
+the small deviations from central symmetry of the field of force
+originating from the inner system in consequence of which the
+general type of motion of the external electron will possess a
+more complicated character than that of a simple central motion.
+As a result the stationary states must be characterized by more
+than two quantum numbers, in the same way that the occurrence
+of deviations of the orbit of the electron in the hydrogen atom from
+a simple periodic orbit requires that the stationary states of this
+atom shall be characterized by more than one quantum number.
+Now the rules of the quantum theory lead to the introduction of
+a third quantum number through the condition that the resultant
+angular momentum of the atom, multiplied by~$2\pi$, is equal to an
+entire multiple of Planck's constant. This determines the orientation
+of the orbit of the outer electron relative to the axis of the
+inner system.
+
+In this way Sommerfeld, Landé and others have shown that it
+is possible not only to account in a formal way for the complex
+structure of the lines of the series spectra, but also to obtain a
+promising interpretation of the complicated effect of external
+magnetic fields on this structure. We shall not enter here on these
+\PageSep{81}
+problems but shall confine ourselves to the problem of the fixation
+of the two quantum numbers $n$~and~$k$, which to a first approximation
+describe the orbit of the outer electron in the stationary
+states, and whose determination is a matter of prime importance
+in the following discussion of the formation of the atom. In
+the determination of these numbers we at once encounter difficulties
+of a profound nature, which---as we shall see---are intimately
+connected with the question of the remarkable stability of atomic
+structure. I shall here only remark that the values of the quantum
+number~$n$, given in the figure, undoubtedly \Chg{can not}{cannot} be retained,
+neither for the~$S$ nor the $P$~series. On the other hand, so far as
+the values employed for the quantum number~$k$ are concerned, it
+may be stated with certainty, that the interpretation of the properties
+of the orbits, which they indicate, is correct. A starting
+point for the investigation of this question has been obtained from
+considerations of an entirely different kind from those previously
+mentioned, which have made it possible to establish a close connection
+between the motion in the atom and the appearance of
+spectral lines.
+
+\Section{Correspondence principle.} So far as the principles of the
+quantum theory are concerned, the point which has been emphasized
+hitherto is the radical departure of these principles from our
+usual conceptions of mechanical and electrodynamical phenomena.
+As I have attempted to show in recent years, it appears
+possible, however, to adopt a point of view which suggests that the
+quantum theory may, nevertheless, be regarded as a rational
+generalization of our ordinary conceptions. As may be seen from
+the postulates of the quantum theory, and particularly the frequency
+relation, a direct connection between the spectra and the motion
+of the kind required by the classical dynamics is excluded, but at
+the same time the form of these postulates leads us to another
+relation of a remarkable nature. Let us consider an electrodynamic
+system and inquire into the nature of the radiation which would
+result from the motion of the system on the basis of the ordinary
+conceptions. We imagine the motion to be decomposed into purely
+harmonic oscillations, and the radiation is assumed to consist of
+the simultaneous emission of series of electromagnetic waves
+\PageSep{82}
+possessing the same frequency as these harmonic components and
+intensities which depend upon the amplitudes of the components.
+An investigation of the formal basis of the quantum theory shows
+us now, that it is possible to trace the question of the origin of the
+radiation processes which accompany the various transitions back
+to an investigation of the various harmonic components, which
+appear in the motion of the atom. The possibility, that a particular
+transition shall occur, may be regarded as being due to the
+presence of a definitely assignable ``corresponding'' component in
+the motion. This principle of correspondence at the same time
+throws light upon a question mentioned several times previously,
+namely the relation between the number of quantum numbers,
+which must be used to describe the stationary states of an atom,
+and the types to which the orbits of the electrons belong. The
+classification of these types can be based very simply on a decomposition
+of the motion into its harmonic components. Time does
+not permit me to consider this question any further, and I shall
+confine myself to a statement of some simple conclusions, which
+the correspondence principle permits us to draw concerning the
+occurrence of transitions between various pairs of stationary states.
+These conclusions are of decisive importance in the subsequent
+argument.
+
+The simplest example of such a conclusion is obtained by
+considering an atomic system, which contains a particle describing
+a \emph{purely periodic orbit}, and where the stationary states are characterized
+by a single quantum number~$n$. In this case the motion
+can according to Fourier's theorem be decomposed into a simple
+series of harmonic oscillations whose frequency may be written~$\tau\omega$,
+where $\tau$~is a whole number, and $\omega$~is the frequency of revolution
+in the orbit. It can now be shown that a transition between two
+stationary states, for which the values of the quantum number are
+respectively equal to $n'$~and~$n''$, will correspond to a harmonic
+component, for which $\tau = n' - n''$. This throws at once light upon
+the remarkable difference which exists between the possibilities
+of transitions between the stationary states of a hydrogen atom
+on the one hand and of a simple system consisting of an electric
+particle capable of executing simple harmonic oscillations about a
+position of equilibrium on the other. For the latter system, which
+\PageSep{83}
+is frequently called a Planck oscillator, the energy in the stationary
+states is determined by the familiar formula $E = nh\omega$, and with the
+aid of the frequency relation we obtain therefore for the radiation
+which will be emitted during a transition between two stationary
+states $\nu = (n' - n'') \omega$. Now, an important assumption, which is not
+only essential in Planck's theory of temperature radiation, but
+which also appears necessary to account for the molecular absorption
+in the infra-red region of radiation, states that a harmonic oscillator
+will only emit and absorb radiation, for which the frequency~$\nu$ is
+equal to the frequency of oscillation~$\omega$ of the oscillator. We are
+therefore compelled to assume that in the case of the oscillator
+transitions can occur only between stationary states which are
+characterized by quantum numbers differing by only one unit,
+while in the hydrogen spectrum represented by formula~\Eq{(2)} all
+possible transitions could take place between the stationary states
+given by formula~\Eq{(5)}. From the point of view of the principle of
+correspondence it is seen, however, that this apparent difficulty is
+explained by the occurrence in the motion of the hydrogen atom,
+as opposed to the motion of the oscillator, of harmonic components
+corresponding to values of~$\tau$, which are different from~$1$; or using
+a terminology well known from acoustics, there appear overtones
+in the motion of the hydrogen atom.
+
+Another simple example of the application of the correspondence
+principle is afforded by a \emph{central motion}, to the investigation of
+which the explanation of the series spectra in the first approximation
+may be reduced. Referring once more to the figure of the
+sodium spectrum, we see that the black arrows, which correspond
+to the spectral lines appearing under the usual conditions of
+excitation, only connect pairs of points in consecutive rows. Now
+it is found that this remarkable limitation of the occurrence of
+combinations between spectral terms may quite naturally be
+explained by an investigation of the harmonic components into
+which a central motion can be resolved. It can readily be shown
+that such a motion can be decomposed into two series of harmonic
+components, whose frequencies can be expressed by $\tau\omega + \sigma$ and
+$\tau\omega - \sigma$ respectively, where $\tau$~is a whole number, $\omega$~the frequency of
+revolution in the rotating periodic orbit and $\sigma$~the frequency of the
+superposed rotation. These components correspond with transitions
+\PageSep{84}
+where the principal number~$n$ decreases by $\tau$~units, while the
+quantum number~$k$ decreases or increases, respectively, by one
+unit, corresponding exactly with the transitions indicated by the
+black arrows in the figure. This may be considered as a very
+important result, because we may say, that the quantum theory,
+which for the first time has offered a simple interpretation of the
+fundamental principle of combination of spectral lines has at the
+same time removed the mystery which has hitherto adhered
+to the application of this principle on account of the apparent
+capriciousness of the appearance of predicted combination lines.
+Especially attention may be drawn to the simple interpretation
+which the quantum theory offers of the appearance observed by
+Stark and his collaborators of certain new series of lines, which do
+not appear under ordinary circumstances, but which are excited
+when the emitting atoms are subject to intense external electric
+fields. In fact, on the correspondence principle this is immediately
+explained from an examination of the perturbations in the motion
+of the outer electron which give rise to the appearance in this
+motion---besides the harmonic components already present in a
+simple central orbit---of a number of constituent harmonic vibrations
+of new type and of amplitudes proportional to the intensity
+of the external forces.
+
+It may be of interest to note that an investigation of the
+limitation of the possibility of transitions between stationary
+states, based upon a simple consideration of conservation of angular
+momentum during the process of radiation, does not, contrary to
+what has previously been supposed (compare Essay~II, \PageRef{62}),
+suffice to throw light on the remarkably simple structure of series
+spectra illustrated by the figure. As mentioned above we must
+assume that the ``complexity'' of the spectral terms, corresponding
+to given values of $n$~and~$k$, which we witness in the fine
+structure of the spectral lines, may be ascribed to states, corresponding
+to different values of this angular momentum, in
+which the plane of the electronic orbit is orientated in a different
+manner, relative to the configuration of the previously bound
+electrons in the atom. Considerations of conservation of angular
+momentum can, in connection with the series spectra, therefore only
+contribute to an understanding of the limitation of the possibilities
+\PageSep{85}
+of combination observed in the peculiar laws applying to the
+number of components in the complex structure of the lines. So
+far as the last question is concerned, such considerations offer a
+direct support for the consequences of the correspondence principle.
+
+
+\Chapter{III.}{Formation of Atoms and the Periodic Table}
+
+A correspondence has been shown to exist between the motion
+of the electron last captured and the occurrence of transitions
+between the stationary states corresponding to the various stages
+of the binding process. This fact gives a point of departure for a
+choice between the numerous possibilities which present themselves
+when considering the formation of the atoms by the successive
+capture and binding of the electrons. Among the processes which
+are conceivable and which according to the quantum theory might
+occur in the atom we shall reject those whose occurrence \Chg{can not}{cannot} be
+regarded as consistent with a correspondence of the required nature.
+
+\Section{First Period. Hydrogen---Helium.} It will not be necessary to
+concern ourselves long with the question of the constitution of the
+hydrogen atom. From what has been said previously we may assume
+that the final result of the process of \emph{binding of the first electron} in
+any atom will be a stationary state, where the energy of the atom
+is given by~\Eq{(5)}, if we put $n = 1$, or more precisely by formula~\Eq{(11)},
+if we put $n = 1$ and $k = 1$. The orbit of the electron will be a circle
+whose radius will be given by formulae~\Eq{(10)}, if $n$~and $k$ are each
+put equal to~$1$. Such an orbit will be called a $1$-quantum orbit,
+and in general an orbit for which the principal quantum number
+has a given value~$n$ will be called an $n$-quantum orbit. Where it
+is necessary to differentiate between orbits corresponding to various
+values of the quantum number~$k$, a central orbit, characterized by
+given values of the quantum numbers $n$~and~$k$, will be referred to
+as an $n_{k}$~orbit.
+
+In the question of the constitution of the helium atom we meet
+the much more complicated problem of the \emph{binding of the second
+electron}. Information about this binding process may, however, be
+obtained from the arc spectrum of helium. This spectrum, as
+opposed to most other simple spectra, consists of two complete
+systems of lines with frequencies given by formulae of the type~\Eq{(12)}.
+\PageSep{86}
+On this account helium was at first assumed to be a mixture
+of two different gases, ``orthohelium'' and ``parhelium,'' but now we
+know that the two spectra simply mean that the binding of the second
+electron can occur in two different ways. A theoretical explanation of
+the main features of the helium spectrum has recently been attempted
+in an interesting paper by Landé. He supposes the emission of the
+orthohelium spectrum to be due to transitions between stationary
+states where both electrons move in the same plane and revolve
+in the same sense. The parhelium spectrum, on the other hand, is
+ascribed by him to stationary states where the planes of the orbits
+form an angle with each other. Dr~Kramers and I have made a
+closer investigation of the interaction between the two orbits in
+the different stationary states. The results of our investigation
+which was begun several years before the appearance of Landé's
+work have not yet been published. Without going into details
+I may say, that even though our results in several respects differ
+materially from those of Landé (compare Essay~II, \PageRef{56}), we agree
+with his general conclusions concerning the origin of the orthohelium
+and parhelium spectra.
+
+The final result of the binding of the second electron is intimately
+related to the origin of the two helium spectra. Important
+information on this point has been obtained recently by Franck
+and his co-workers. As is well known he has thrown light upon
+many features of the structure of the atom and of the origin
+of spectra by observing the effect of bombarding atoms by
+electrons of various velocities. A short time ago these experiments
+showed that the impact of electrons could bring helium into a
+``metastable'' state from which the atom cannot return to its
+normal state by means of a simple transition accompanied by the
+emission of radiation, but only by means of a process analogous to
+a chemical reaction involving interaction with atoms of other
+elements. This result is closely connected with the fact that the
+binding of the second electron can occur in two different ways, as
+is shown by the occurrence of two distinct spectra. Thus it is
+evident from Franck's experiments that the normal state of the
+atom is the last stage in the binding process involving the emission
+of the parhelium spectrum by which the electron last captured as
+well as the one first captured will be bound in a $1_{1}$~orbit. The
+\PageSep{87}
+metastable state, on the contrary, is the final stage of the process
+giving the orthohelium spectrum. In this case the second electron,
+as opposed to the first, will move in a $2_{1}$~orbit. This corresponds to
+a firmness of binding which is about six times less than for the
+electron in the normal state of the atom.
+
+If we now consider somewhat more closely this apparently
+surprising result, it is found that a clear grasp of it may be obtained
+from the point of view of correspondence. It can be shown that
+the coherent class of motions to which the orthohelium orbits
+belong does not contain a $1_{1}$~orbit. If on the whole we would claim
+the existence of a state where the two electrons move in $1_{1}$~orbits
+in the same plane, and if in addition it is claimed that the motion
+should possess the periodic properties necessary for the definition
+of stationary states, then there seems that no possibility is afforded
+other than the assumption that the two electrons move around the
+nucleus in one and the same orbit, in such a manner that at each
+moment they are situated at the ends of a diameter. This extremely
+simple ring-configuration might be expected to correspond to
+the firmest possible binding of the electrons in the atom, and it
+was on this account proposed as a model for the helium atom in
+my first paper on atomic structure. If, however, we inquire about
+the possibility of a transition from one of the orthohelium states
+to a configuration of this type we meet conditions which are very
+different from those which apply to transitions between two of
+the orthohelium orbits. In fact, the occurrence of each of these
+transitions is due to the existence of well-defined corresponding
+constituent harmonic vibration in the central orbits which the outer
+electron describes in the class of motions to which the stationary
+states belong. The transition we have to discuss, on the other
+hand, is one by which the last captured electron is transferred from
+a state in which it is moving ``outside'' the other to a state in which
+it moves round the nucleus on equal terms with the other electron.
+Now it is impossible to find a series of simple intermediate forms
+for the motion of those two electrons in which the orbit of the last
+captured electron exhibits a sufficient similarity to a central motion
+that for this transition there could be a correspondence of the
+necessary kind. It is therefore evident, that where the two electrons
+move in the same plane, the electron captured last \Chg{can not}{cannot} be
+\PageSep{88}
+bound firmer than in a $2_{1}$~orbit. If, on the other hand, we consider
+the binding process which accompanies the emission of the parhelium
+spectrum and where the electrons in the stationary states move in
+orbits whose planes form angles with one another we meet essentially
+different conditions. A corresponding intimate change in the
+interaction between the electron last captured and the one previously
+bound is not required here for the two electrons in the atom to
+become equivalent. We may therefore imagine the last stage of
+the binding process to take place in a manner similar to those
+stages corresponding to transitions between orbits characterized by
+greater values of $n$~and~$k$.
+
+In the \emph{normal state of the helium atom} the two electrons must
+be assumed to move in equivalent $1_{1}$~orbits. As a first approximation
+these may be described as two circular orbits, whose planes make
+an angle of~$120°$ with one another, in agreement with the conditions
+which the angular momentum of an atom according to the quantum
+theory must satisfy. On account of the interaction between the
+two electrons these planes at the same time turn slowly around
+the fixed impulse axis of the atom. Starting from a distinctly
+different point of view Kemble has recently suggested a similar
+model for the helium atom. He has at the same time directed
+attention to a possible type of motion of very marked symmetry
+in which the electrons during their entire revolution assume
+symmetrical positions with reference to a fixed axis. Kemble has
+not, however, investigated this motion further. Previous to the
+appearance of this paper Kramers had commenced a closer investigation
+of precisely this type of motion in order to find out to what
+extent it was possible from such a calculation to account for the
+firmness with which the electrons are bound in the helium atom,
+that is to account for the ionization potential. Early measurements
+of this potential had given values corresponding approximately to
+that which would result from the ring-configuration already mentioned.
+This requires $17/8$~as much work to remove a single
+electron as is necessary to remove an electron from the hydrogen
+atom in its normal state. As the theoretical value for the latter
+amount of work---which for the sake of simplicity will be represented
+by~$W$---corresponds to an ionization potential of $13.53$~volts,
+the ionization potential of helium would be expected to be $28.8$~volts.
+\PageSep{89}
+Recent and more accurate determinations, however, have
+given a value for the ionization potential of helium which is considerably
+lower and lies in the neighbourhood of $25$~volts. This
+showed therefore the untenability of the ring-configuration quite
+independently of any other considerations. A careful investigation of
+the spatial atomic configuration requires elaborate calculation, and
+Kramers has not yet obtained final results. With the approximation
+to which they have been so far completed the calculations point to
+the possibility of an agreement with the experimental results. The
+final result may be awaited with great interest, since it offers in
+the simplest case imaginable a test of the principles by which we
+are attempting to determine stationary states of atoms containing
+more than one electron.
+
+Hydrogen and helium, as seen in the survey of the periodic
+system given in \Fig{1}, together form the first period in the system
+of elements, since helium is the first of the inactive gases. The great
+difference in the chemical properties of hydrogen and helium is
+closely related to the great difference in the nature of the binding
+of the electron. This is directly indicated by the spectra and
+ionization potentials. While helium possesses the highest known
+ionization potential of all the elements, the binding of the electron
+in the hydrogen atom is sufficiently loose to account for the tendency
+of hydrogen to form positive ions in aqueous solutions and chemical
+combinations. Further consideration of this particular question
+requires, however, a comparison between the nature and firmness
+of the electronic configurations of other atoms, and it can therefore
+not be discussed at the moment.
+
+\Section{Second Period. Lithium---Neon.} When considering the atomic
+structure of elements which contain more than two electrons in the
+neutral atom, we shall assume first of all that what has previously
+been said about the formation of the helium atom will in the main
+features also apply to the capture and binding of the first two
+electrons. These electrons may, therefore, in the normal state of
+the atom be regarded as moving in equivalent orbits characterized
+by the quantum symbol~$1_{1}$. We obtain direct information about
+the \emph{binding of the third electron} from the spectrum of lithium.
+This spectrum shows the existence of a number of series of
+\PageSep{90}
+stationary states, where the firmness with which the last captured
+electron is bound is very nearly the same as in the stationary states
+of the hydrogen atom. These states correspond to orbits where $k$~is
+greater than or equal to~$2$, and where the last captured electron
+moves entirely outside the region where the first two electrons
+move. But in addition this spectrum gives us information about a
+series of states corresponding to $k = 1$ in which the energy differs
+essentially from the corresponding stationary states of the hydrogen
+atom. In these states the last captured electron, even if it remains
+at a considerable distance from the nucleus during the greater part
+of its revolution, will at certain moments during the revolution
+approach to a distance from the nucleus which is of the same order
+of magnitude as the dimensions of the orbits of the previously
+bound electrons. On this account the electrons will be bound with
+a firmness which is considerably greater than that with which the
+electrons are bound in the stationary states of the hydrogen atom
+corresponding to the same value of~$n$.
+
+Now as regards the lithium spectrum as well as the other alkali
+spectra we are so fortunate (see \PageRef{32}) as to possess definite evidence
+about the normal state of the atom from experiments on selective
+absorption. In fact these experiments tell us that the first member
+of the sequence of $S$-terms corresponds to this state. This term
+corresponds to a strength of binding which is only a little more than
+a third of that of the hydrogen atom. We must therefore conclude
+that the outer electron in the normal state of the lithium atom
+moves in a $2_{1}$~orbit, just as the outer electron in the metastable
+state of the helium atom. The reason why the binding of the
+outer electron \Chg{can not}{cannot} proceed to an orbit characterized by a smaller
+value for the total quantum number may also be considered as
+analogous in the two cases. In fact, a transition by which the third
+electron in the lithium atom was ultimately bound in a $1_{1}$~orbit
+would lead to a state in the atom in which the electron would play
+an equivalent part with the two electrons previously bound. Such
+a process would be of a type entirely different from the transitions
+between the stationary states connected with the emission of the
+lithium spectrum, and would, contrary to these, not exhibit a
+correspondence with a harmonic component in the motion of the
+atom.
+\PageSep{91}
+
+We obtain, therefore, a picture of the formation and structure of
+the lithium atom which offers a natural explanation of the great
+difference of the chemical properties of lithium from those of helium
+and hydrogen. This difference is at once explained by the fact that
+the firmness by which the last captured electron is bound in its
+$2_{1}$~orbit in the lithium atom is only about a third of that with which
+the electron in the hydrogen atom is held, and almost five times
+smaller than the firmness of the binding of the electrons in the
+helium atom.
+
+What has been said here applies not alone to the formation of
+the lithium atom, but may also be assumed to apply to the binding
+of the third electron in every atom, so that in contrast to the first
+two electrons which move in $1_{1}$~orbits this may be assumed to move
+in a $2_{1}$~orbit. As regards the \emph{binding of the fourth, fifth and sixth
+electrons} in the atom, we do not possess a similar guide as no simple
+series spectra are known of beryllium, boron and carbon. Although
+conclusions of the same degree of certainty \Chg{can not}{cannot} be reached it
+seems possible, however, to arrive at results consistent with general
+physical and chemical evidence by proceeding by means of considerations
+of the same kind as those applied to the binding of the
+first three electrons. In fact, we shall assume that the fourth, fifth
+and sixth electrons will be bound in $2_{1}$~orbits. The reason why the
+binding of a first electron in an orbit of this type will not prevent the
+capture of the others in two quanta orbits may be ascribed to the fact
+that $2_{1}$~orbits are not circular but very \Chg{excentric}{eccentric}; For example, the
+$3$rd~electron cannot keep the remaining electrons away from the inner
+system in the same way in which the first two electrons bound in
+the lithium atom prevent the third from being bound in a
+$1$-quantum orbit. Thus we shall expect that the $4$th, $5$th and $6$th
+electrons in a similar way to the $3$rd will at certain moments of
+their revolution enter into the region where the first two
+bound electrons move. We must not imagine, however, that these
+visits into the inner system take place at the same time, but
+that the four electrons visit the nucleus separately at equal
+intervals of time. In earlier work on atomic structure it was supposed
+that the electrons in the various groups in the atom moved
+in separate regions within the atom and that at each moment the
+electrons within each separate group were arranged in configurations
+\PageSep{92}
+possessing symmetry like that of a regular polygon or polyhedron.
+Among other things this involved that the electrons in each group
+were supposed to be at the point of the orbit nearest the nucleus
+at the same time. A structure of this kind may be described as one
+where the motions of the electrons within the groups are coupled
+together in a manner which is largely independent of the interaction
+between the various groups. On the contrary, the characteristic
+feature of a structure like that I have suggested is the \emph{intimate
+coupling between the motions of the electrons in the various groups}
+characterized by different quantum numbers, as well as the \emph{greater
+independence in the mode of binding within one and the same group
+of electrons} the orbits of which are characterized by the same
+quantum number. In emphasizing this last feature I have two
+points in mind. Firstly the smaller effect of the presence of previously
+bound electrons on the firmness of binding of succeeding
+electrons in the same group. Secondly the way in which the motions
+of the electrons within the group reflect the independence both of
+the processes by which the group can be formed and by which it
+can be reorganized by change of position of the different electrons
+in the atom after a disturbance by external forces. The last point
+will be considered more closely when we deal with the origin and
+nature of the X-ray spectra; for the present we shall continue the
+consideration of the structure of the atom to which we are led by
+the investigation of the processes connected with the successive
+capture of the electrons.
+
+The preceding considerations enable us to understand the fact
+that the two elements beryllium and boron immediately succeeding
+lithium can appear electropositively with $2$~and $3$~valencies respectively
+in combination with other substances. For like the third
+electron in the lithium atom, the last captured electrons in these
+elements will be much more lightly bound than the first two
+electrons. At the same time we understand why the electropositive
+character of these elements is less marked than in the case of
+lithium, since the electrons in the $2$-quanta orbits will be much
+more firmly bound on account of the stronger field in which they
+are moving. New conditions arise, however, in the case of the
+next element, carbon, as this element in its typical chemical combinations
+\Chg{can not}{cannot} be supposed to occur as an ion, but rather as a
+\PageSep{93}
+neutral atom. This must be assumed to be due not only to the great
+firmness in the binding of the electrons but also to be an essential
+consequence of the symmetrical configuration of the electrons.
+
+With the binding of the $4$th, $5$th and $6$th electrons in $2_{1}$~orbits,
+the spatial symmetry of the regular configuration of the orbits
+must be regarded as steadily increasing, until with the binding of
+the $6$th electron the orbits of the four last bound electrons may be
+expected to form an exceptionally symmetrical configuration in
+which the normals to the planes of the orbits occupy positions
+relative to one another nearly the same as the lines from the centre
+to the vertices of a regular tetrahedron. Such a configuration
+of groups of $2$-quanta orbits in the carbon atom seems capable
+of furnishing a suitable foundation for explaining the structure of
+organic compounds. I shall not discuss this question any further,
+for it would require a thorough study of the interaction between
+the motions of the electrons in the atoms forming the molecule.
+I might mention, however, that the types of molecular models to
+which we are led are very different from the molecular models
+which were suggested in my first papers. In these the chemical
+``valence bonds'' were represented by ``electron rings'' of the same
+type as those which were assumed to compose the groups of
+electrons within the individual atoms. It is nevertheless possible
+to give a general explanation of the chemical properties of the
+elements without touching on those matters at all. This is largely
+due to the fact that the structures of combinations of atoms of the
+same element and of many organic compounds do not have the
+same significance for our purpose as those molecular structures in
+which the individual atoms occur as electrically charged ions. The
+latter kind of compounds, to which the greater number of simple
+inorganic compounds belong, is frequently called ``heteropolar'' and
+possesses a far more typical character than the first compounds
+which are called ``homoeopolar,'' and whose properties to quite a
+different degree exhibit the individual peculiarities of the elements.
+My main purpose will therefore be to consider the fitness which
+the configurations of the electrons in the various atoms offer for
+the formation of ions.
+
+Before leaving the carbon atom I should mention, that a model
+of this atom in which the orbits of the four most lightly bound
+\PageSep{94}
+electrons possess a pronounced tetrahedric symmetry had already
+been suggested by Landé. In order to agree with the measurements
+of the size of the atoms he also assumed that these electrons moved
+in $2_{1}$~orbits. There is, however, this difference between Landé's
+view and that given here, that while Landé deduced the characteristic
+properties of the carbon atom solely from an investigation of
+the simplest form of motion which four electrons can execute
+employing spatial symmetry, our view originates from a consideration
+of the stability of the whole atom. For our assumptions about
+the orbits of the electrons are based directly on an investigation of
+the interaction between these electrons and the first two bound
+electrons. The result is that our model of the carbon atom has
+dynamic properties which are essentially different from the properties
+of Landé's model.
+
+In order to account for the properties of \emph{the elements in the second
+half of the second period} it will first of all be necessary to show
+why the configuration of ten electrons occurring in the neutral atom
+of neon possesses such a remarkable degree of stability. Previously
+it has been assumed that the properties of this configuration were
+due to the interaction between eight electrons which moved in
+equivalent orbits outside the nucleus and an inner group of two
+electrons like that in the helium atom. It will be seen, however,
+that the solution must be sought in an entirely different direction.
+It \Chg{can not}{cannot} be expected that \emph{the $7$th electron} will be bound in a $2_{1}$~orbit
+equivalent to the orbits of the four preceding electrons. The occurrence
+of five such orbits would so definitely destroy the symmetry
+in the interaction of these electrons that it is inconceivable that a
+process resulting in the accession of a fifth electron to this group
+would be in agreement with the correspondence principle. On the
+contrary it will be necessary to assume that the four electrons in
+their exceptionally symmetrical orbital configuration will keep out
+later captured electrons with the result that these electrons will be
+bound in orbits of other types.
+
+The orbits which come into consideration for the $7$th electron in
+the nitrogen atom and the $7$th, $8$th, $9$th and $10$th electrons in the
+atoms of the immediately following elements will be circular orbits
+of the type~$2_{2}$. The diameters of these orbits are considerably larger
+than those of the $l_{1}$~orbits of the first two electrons; on the other
+\PageSep{95}
+hand the outermost part of the \Chg{excentric}{eccentric} $2_{1}$~orbits will extend some
+distance beyond these circular $2_{2}$~orbits. I shall not here discuss the
+capture and binding of these electrons. This requires a further investigation
+of the interaction between the motions of the electrons
+in the two types of $2$-quanta orbits. I shall simply mention, that
+in the atom of neon in which we will assume that there are four
+electrons in $2_{2}$~orbits the planes of these orbits must be regarded not
+only as occupying a position relative to one another characterized
+by a high degree of spatial symmetry, but also as possessing a
+configuration harmonizing with the four elliptical $2_{1}$~orbits. An
+interaction of this kind in which the orbital planes do not
+coincide can be attained only if the configurations in both subgroups
+exhibit a systematic deviation from tetrahedral symmetry.
+This will have the result that the electron groups with $2$-quanta
+orbits in the neon atom will have only a single axis of symmetry
+which must be supposed to coincide with the axis of symmetry of
+the innermost group of two electrons.
+
+Before leaving the description of the elements within the second
+period it may be pointed out that the above considerations offer a
+basis for interpreting that tendency of the neutral atoms of oxygen
+and fluorine for capturing further electrons which is responsible for
+the marked electronegative character of these elements. In fact,
+this tendency may be ascribed to the fact that the orbits of
+the last captured electrons will find their place within the region,
+in which the previously captured electrons move in $2_{1}$~orbits. This
+suggests an explanation of the great difference between the properties
+of the elements in the latter half of the second period of the
+periodic system and those of the elements in the first half, in whose
+atoms there is only a single type of $2$-quanta orbits.
+
+\Section{Third Period. Sodium---Argon.} We shall now consider the
+structure of atoms of elements in the third period of the periodic
+system. This brings us immediately 'to the question of \emph{the binding
+of the $11$th electron} in the atom. Here we meet conditions which
+in some respects are analogous to those connected with the binding
+of the $7$th electron. The same type of argument that applied to
+the carbon atom shows that the symmetry of the configuration in
+the neon atom would be essentially, if not entirely, destroyed by
+\PageSep{96}
+the addition of another electron in an orbit of the same type as
+that in which the last captured electrons were bound. Just as in
+the case of the $3$rd~and $7$th electrons we may therefore expect to
+meet a new type of orbit for the 11th electron in the atom, and the
+orbits which present themselves this time are the $3_{1}$~orbits. An
+electron in such an orbit will for the greater part of the time remain
+outside the orbits of the first ten electrons. But at certain moments
+during the revolution it will penetrate not only into the region of
+the $2$-quanta orbits, but like the $2_{1}$~orbits it will penetrate to
+distances from the nucleus which are smaller than the radii of
+the $1$-quantum orbits of the two electrons first bound. This fact,
+which has a most important bearing on the stability of the atom,
+leads to a peculiar result as regards the binding of the $11$th electron.
+In the sodium atom this electron will move in a field which so far
+as the outer part of the orbit is concerned deviates only very little
+from that surrounding the nucleus in the hydrogen atom, but the
+dimensions of this part of the orbit will, nevertheless, be essentially
+different from the dimensions of the corresponding part of a $3_{1}$~orbit
+in the hydrogen atom. This arises from the fact, that even
+though the electron only enters the inner configuration of the first
+ten electrons for short intervals during its revolution, this part of
+the orbit will nevertheless exert an essential influence upon the
+determination of the principal quantum number. This is directly
+related to the fact that the motion of the electron in the first part
+of the orbit deviates only a little from the motion which each of
+the previously bound electrons in $2_{1}$~orbits executes during a complete
+revolution. The uncertainty which has prevailed in the
+determination of the quantum numbers for the stationary states
+corresponding to a spectrum like that of sodium is connected with
+this. This question has been discussed by several physicists. From
+a comparison of the spectral terms of the various alkali metals,
+Roschdestwensky has drawn the conclusion that the normal state
+does not, as we might be inclined to expect a~priori, correspond to
+a $1_{1}$~orbit as shown in \Fig{2} on \PageRef{79}, but that this state corresponds
+to a $2_{1}$~orbit. Schrödinger has arrived at a similar result
+in an attempt to account for the great difference between the
+$S$~terms and the terms in the $P$~and $D$ series of the alkali spectra.
+He assumes that the ``outer'' electron in the states corresponding
+\PageSep{97}
+to the $S$~terms---in contrast to those corresponding to the $P$~and
+$D$ terms---penetrates partly into the region of the orbits of the
+inner electrons during the course of its revolution. These investigations
+contain without doubt important hints, but in reality the
+conditions must be very different for the different alkali spectra.
+Instead of a $2_{1}$~orbit as in lithium we must thus assume for
+the spectrum of sodium not only that the first spectral term in
+the $S$~series corresponds to a $3_{1}$~orbit, but also, as a more detailed
+consideration shows, that the first term in the $P$~series corresponds
+not to a $2_{2}$~orbit as indicated in \Fig{2}, but to a $3_{2}$~orbit. If the
+numbers in this figure were correct, it would require among other
+things that the $P$~terms should be smaller than the hydrogen terms
+\Figure{3}{97}
+corresponding to the same principal quantum number. This would
+mean that the average effect of the inner electrons could be described
+as a repulsion greater than would occur if their total electrical charge
+were united in the nucleus. This, however, \Chg{can not}{cannot} be expected from
+our view of atomic structure. The fact that the last captured electron,
+at any rate for low values of~$k$, revolves partly inside the orbits of the
+previously bound electrons will on the contrary involve that the
+presence of these electrons will give rise to a virtual repulsion
+which is considerably smaller than that which would be due to
+their combined charges. Instead of the curves drawn between
+points in \Fig{2} which represent stationary states corresponding
+to the same value of the principal quantum number running from
+right to left, we obtain curves which run from left to right, as
+is indicated in \Fig{3}. The stationary states are labelled with
+\PageSep{98}
+quantum numbers corresponding to the structure I have described.
+According to the view underlying \Fig{2} the sodium spectrum
+might be described simply as a distorted hydrogen spectrum,
+whereas according to \Fig{3} there is not only distortion but also
+complete disappearance of certain terms of low quantum numbers.
+It may be stated, that this view not only appears to offer an explanation
+of the magnitude of the terms, but that the complexity
+of the terms in the $P$~and $D$ series finds a natural explanation in
+the deviation of the configuration of the ten electrons first bound
+from a purely central symmetry. This lack of symmetry has its
+origin in the configuration of the two innermost electrons and
+``transmits'' itself to the outer parts of the atomic structure, since
+the $2_{1}$~orbits penetrate partly into the region of these electrons.
+
+This view of the sodium spectrum provides at the same time an
+immediate explanation of the pronounced electropositive properties
+of sodium, since the last bound electron in the sodium atom is still
+more loosely bound than the last captured electron in the lithium
+atom. In this connection it might be mentioned that the increase
+in atomic volume with increasing atomic number in the family of
+the alkali metals finds a simple explanation in the successively
+looser binding of the valency electrons. In his work on the X-ray
+spectra Sommerfeld at an earlier period regarded this increase in
+the atomic volumes as supporting the assumption that the principal
+quantum number of the orbit of the valency electrons increases by
+unity as we pass from one metal to the next in the family. His
+later investigations on the series spectra have led him, however,
+definitely to abandon this assumption. At first sight it might also
+appear to entail a far greater increase in the atomic volume than
+that actually observed. A simple explanation of this fact is however
+afforded by realizing that the orbit of the electron will run
+partly inside the region of the inner orbit and that therefore the
+``effective'' quantum number which corresponds to the outer almost
+elliptical loop will be much smaller than the principal quantum
+number, by which the whole central orbit is described. It may
+be mentioned that Vegard in his investigations on the X-ray spectra
+has also proposed the assumption of successively increasing quantum
+numbers for the electronic orbits in the various groups of the atom,
+reckoned from the nucleus outward. He has introduced assumptions
+\PageSep{99}
+about the relations between the numbers of electrons in the various
+groups of the atom and the lengths of the periods in the periodic
+system which exhibit certain formal similarities with the results
+presented here. But Vegard's considerations do not offer points of
+departure for a further consideration of the evolution and stability
+of the groups, and consequently no basis for a detailed interpretation
+of the properties of the elements.
+
+When we consider the elements following sodium in the third
+period of the periodic system we meet in \emph{the binding of the $12$th,
+$13$th and $14$th electrons} conditions which are analogous to those
+we met in the binding of the $4$th, $5$th and $6$th electrons. In the
+elements of the third periods, however, we possess a far more
+detailed knowledge of the series spectra. Too little is known
+about the beryllium spectrum to draw conclusions about the
+binding of the fourth electron, but we may infer directly from the
+well-known arc spectrum of magnesium that the $12$th electron
+in the atom of this element is bound in a $3_{1}$~orbit. As regards
+the binding of the $13$th electron we meet in aluminium an
+absorption spectrum different in structure to that of the alkali
+metals. In fact here not the lines of the principal series but the
+lines of the sharp and diffuse series are absorption lines. Consequently
+it is the first member of the $P$~terms and not of the $S$~terms
+which corresponds to the normal state of the aluminium
+atom, and we must assume that the $13$th electron is bound in
+a $3_{2}$~orbit. This, however, would hardly seem to be a general
+property of the binding of the $13$th electron in atoms, but rather
+to arise from the special conditions for the binding of the last
+electron in an atom, where already there are two other electrons
+bound as loosely as the valency electron of aluminium. At the
+present state of the theory it seems best to assume that in the
+silicon atom the four last captured electrons will move in $3_{1}$~orbits
+forming a configuration possessing symmetrical properties
+similar to the outer configuration of the four electrons in $2_{1}$~orbits
+in carbon. Like what we assumed for the latter configuration we
+shall expect that the configuration of the $3_{1}$~orbits occurring for the
+first time in silicon possesses such a completion, that the addition
+of a further electron in a $3_{1}$~orbit to the atom of the following elements
+is impossible, and that \emph{the $15$th electron} in the elements of
+\PageSep{100}
+higher atomic number will be bound in a new type of orbit. In this
+case, however, the orbits with which we meet will not be circular,
+as in the capture of the $7$th electron, but will be rotating \Chg{excentric}{eccentric}
+orbits of the type~$3_{2}$. This is very closely related to the fact, mentioned
+above, that the non-circular orbits will correspond to a
+firmer binding than the circular orbits having the same value for
+the principal quantum number, since the electrons will at certain
+moments penetrate much farther into the interior of the atom.
+Even though a $3_{2}$~orbit will not penetrate into the innermost configuration
+of $1_{1}$~orbits, it will penetrate to distances from the nucleus
+which are considerably less than the radii of the circular $2_{}2$~orbits.
+In the case of the $16$th, $17$th and $18$th electrons the conditions are
+similar to those for the $15$th. So for argon we may expect a configuration
+in which the ten innermost electrons move in orbits of
+the same type as in the neon atom while the last eight electrons will
+form a configuration of four $3_{1}$~orbits and four $3_{2}$~orbits, whose
+symmetrical properties must be regarded as closely corresponding
+to the configuration of $2$-quanta orbits in the neon atom. At the
+same time, as this picture suggests a qualitative explanation of the
+similarity of the chemical properties of the elements in the latter
+part of the second and third periods, it also opens up the possibility
+of a natural explanation of the conspicuous difference from a
+quantitative aspect.
+
+\Section{Fourth Period. Potassium---Krypton.} In the fourth period
+we meet at first elements which resemble chemically those at the
+beginning of the two previous periods. This is also what we should
+expect. We must thus assume that \emph{the $19$th electron} is bound in
+a new type of orbit, and a closer consideration shows that this will
+be a $4_{1}$~orbit. The points which were emphasized in connection
+with the binding of the last electron in the sodium atom will be
+even more marked here on account of the larger quantum number
+by which the orbits of the inner electrons are characterized. In
+fact, in the potassium atom the $4_{1}$~orbit of the $19$th electron will,
+as far as inner loops are concerned, coincide closely with the shape
+of a $3_{1}$~orbit. On this account, therefore, the dimensions of the
+outer part of the orbit will not only deviate greatly from the
+dimensions of a $4_{1}$~orbit in the hydrogen atom, but will coincide
+\PageSep{101}
+closely with a hydrogen orbit of the type~$2_{1}$, the dimensions of
+which are about four times smaller than the $4_{1}$~hydrogen orbit.
+This result allows an immediate explanation of the main features of
+the chemical properties and the spectrum of potassium. Corresponding
+results apply to calcium, in the neutral atom of which
+there will be two valency electrons in equivalent $4_{1}$~orbits.
+
+After calcium the properties of the elements in the fourth period
+of the periodic system deviate, however, more and more from the
+corresponding elements in the previous periods, until in the family
+of the iron metals we meet elements whose properties are essentially
+different. Proceeding to still higher atomic numbers we again
+meet different conditions. Thus we find in the latter part of the
+fourth period a series of elements whose chemical properties approach
+more and more to the properties of the elements at the end
+of the preceding periods, until finally with atomic number~$36$ we
+again meet one of the inactive gases, namely krypton. This is
+exactly what we should expect. The formation and stability of the
+atoms of the elements in the first three periods require that each
+of the first $18$ electrons in the atom shall be bound in each succeeding
+element in an orbit of the same principal quantum number
+as that possessed by the particular electron, when it first appeared.
+It is readily seen that this is no longer the case for the $19$th
+electron. With increasing nuclear charge and the consequent
+decrease in the difference between the fields of force inside and
+outside the region of the orbits of the first $18$ bound electrons, the
+dimensions of those parts of a $4_{1}$~orbit which fall outside will
+approach more and more to the dimensions of a $4$-quantum orbit
+calculated on the assumption that the interaction between the
+electrons in the atom may be neglected. \emph{With increasing atomic
+number a point will therefore be reached where a $3_{3}$~orbit will correspond
+to a firmer binding of the $19$th electron than a $4_{1}$~orbit}, and
+this occurs as early as at the beginning of the fourth period. This
+cannot only be anticipated from a simple calculation but is confirmed
+in a striking way from an examination of the series spectra. While
+the spectrum of potassium indicates that the $4_{1}$~orbit corresponds
+to a binding which is more than twice as firm as in a $3_{3}$~orbit
+corresponding to the first spectral term in the $D$~series, the conditions
+are entirely different as soon as calcium is reached. We
+\PageSep{102}
+shall not consider the arc spectrum which is emitted during the
+capture of the $20$th electron but the spark spectrum which corresponds
+to the capture and binding of the $19$th electron. While the
+spark spectrum of magnesium exhibits great similarity with the
+sodium spectrum as regards the values of the spectral terms in the
+various series---apart from the fact that the constant appearing in
+formula~\Eq{(12)} is four times as large as the Rydberg constant---we
+meet in the spark spectrum of calcium the remarkable condition
+\Figure{4}{102}
+that the first term of the $D$~series is larger than the first term of
+the $P$~series and is only a little smaller than the first term of the
+$S$~series, which may be regarded as corresponding to the binding
+of the $19$th electron in the normal state of the calcium atom.
+These facts are shown in \Fig[figure]{4} which gives a survey of the
+stationary states corresponding to the arc spectra of sodium and
+potassium. As in figures \FigNum{2} and~\FigNum{3} of the sodium spectrum, we
+have disregarded the complexity of the spectral terms, and the
+numbers characterizing the stationary states are simply the quantum
+\PageSep{103}
+numbers $n$~and~$k$. For the sake of comparison the scale in which the
+energy of the different states is indicated is chosen four times as
+small for the spark spectra as for the arc spectra. Consequently
+the vertical lines indicated with various values of~$n$ correspond for
+the arc spectra to the spectral terms of hydrogen, for the spark
+spectra to the terms of the helium spectrum given by formula~\Eq{(7)}.
+Comparing the change in the relative firmness in the binding of
+the $19$th electron in a $4_{1}$~and $3_{3}$~orbit for potassium and calcium we
+see that we must be prepared already for the next element,
+scandium, to find that the $3_{3}$~orbit will correspond to a stronger
+binding of this electron than a $4_{1}$~orbit. On the other hand it
+follows from previous remarks that the binding will be much lighter
+than for the first $18$ electrons which agrees that in chemical combinations
+scandium appears electropositively with three valencies.
+
+If we proceed to the following elements, a still larger number of
+$3_{3}$~orbits will occur in the normal state of these atoms, since the
+number of such electron orbits will depend upon the firmness of
+their binding compared to the firmness with which an electron is
+bound in a $4_{1}$~orbit, in which type of orbit at least the last captured
+electron in the atom may be assumed to move. We therefore meet
+conditions which are essentially different from those which we have
+considered in connection with the previous periods, so that here
+we have to do with \emph{the successive development of one of the inner
+groups of electrons in the atom}, in this case with groups of electrons
+in $3$-quanta orbits. Only when the development of this group has
+been completed may we expect to find once more a corresponding
+change in the properties of the elements with increasing atomic
+number such as we find in the preceding periods. The properties
+of the elements in the latter part of the fourth period show
+immediately that the group, when completed, will possess $18$~electrons.
+Thus in krypton, for example, we may expect besides
+the groups of $1$,~$2$ and $3$-quanta orbits a markedly symmetrical
+configuration of $8$~electrons in $4$-quanta orbits consisting of four $4_{1}$~orbits
+and four $4_{2}$~orbits.
+
+The question now arises: In which way will the gradual formation
+of the group of electrons having $3$-quanta orbits take place?
+From analogy with the constitution of the groups of electrons with
+$2$-quanta orbits we might at first sight be inclined to suppose that
+\PageSep{104}
+the complete group of $3$-quanta orbits would consist of three subgroups
+of four electrons each in orbits of the types $3_{1}$,~$3_{2}$ and~$3_{3}$
+respectively, so that the total number of electrons would be $12$
+instead of~$18$. Further consideration shows, however, that such an
+expectation would not be justified. The stability of the configuration
+of eight electrons with $2$-quanta orbits occurring in neon must
+be ascribed not only to the symmetrical configuration of the electronic
+orbits in the two subgroups of $2_{1}$~and $2_{2}$ orbits respectively,
+but fully as much to the possibility of bringing the orbits inside these
+subgroups into harmonic relation with one another. The situation
+is different, however, for the groups of electrons with $3$-quanta
+orbits. Three subgroups of four orbits each \Chg{can not}{cannot} in this case be
+expected to come into interaction with one another in a correspondingly
+simple manner. On the contrary we must assume that
+the presence of electrons in $3_{3}$~orbits will diminish the harmony of
+the orbits within the first two $3$-quanta subgroups, at any rate
+when a point is reached where the $19$th electron is no longer, as
+was the case with scandium, bound considerably more lightly than
+the previously bound electrons in $3$-quanta orbits, but has been
+drawn so far into the atom that it revolves within essentially
+the same region of the atom where these electrons move. We
+shall now assume that this decrease in the harmony will so to
+say ``open'' the previously ``closed'' configuration of electrons
+in orbits of these types. As regards the final result, the number~$18$
+indicates that after the group is finally formed there will
+be three subgroups containing six electrons each. Even if it has
+not at present been possible to follow in detail the various
+steps in the formation of the group this result is nevertheless
+confirmed in an interesting manner by the fact that it is possible
+to arrange three configurations having six electrons each in a simple
+manner relative to one another. The configuration of the subgroups
+does not exhibit a tetrahedral symmetry like the groups of $2$-quanta
+orbits in carbon, but a symmetry which, so far as the relative
+orientation of the normals to the planes of the orbits is concerned,
+may be described as trigonal.
+
+In spite of the great difference in the properties of the elements
+of this period, compared with those of the preceding period, the
+completion of the group of $18$~electrons in $3$-quanta orbits in the
+\PageSep{105}
+fourth period may to a certain extent be said to have the same
+characteristic results as the completion of the group of $2$-quanta
+orbits in the second period. As we have seen, this determined not
+only the properties of neon as an inactive gas, but in addition the
+electronegative properties of the preceding elements and the
+electropositive properties of the elements which follow. The fact
+that there is no inactive gas possessing an outer group of $18$~electrons
+is very easily accounted for by the much larger dimensions
+which a $3_{3}$~orbit has in comparison with a $2_{2}$~orbit revolving in the
+same field of force. On this account a complete $3$-quanta group
+\Chg{can not}{cannot} occur as the outermost group in a neutral atom, but only
+in positively charged ions. The characteristic decrease in valency
+which we meet in copper, shown by the appearance of the singly
+charged cuprous ions, indicates the same tendency towards the
+completion of a symmetrical configuration of electrons that we
+found in the marked electronegative character of an element like
+fluorine. Direct evidence that a complete group of $3$-quanta orbits
+is present in the cuprous ion is given by the spectrum of copper
+which, in contrast to the extremely complicated spectra of the
+preceding elements resulting from the unsymmetrical character of
+the inner system, possesses a simple structure very much like that
+of the sodium spectrum. This may no doubt be ascribed to a
+simple symmetrical structure present in the cuprous ion similar to
+that in the sodium ion, although the great difference in the constitution
+of the outer group of electrons in these ions is shown
+both by the considerable difference in the values of the spectral
+terms and in the separation of the doublets in the $P$~terms of the
+two spectra. The occurrence of the cupric compounds shows, however,
+that the firmness of binding in the group of $3$-quanta orbits
+in the copper atom is not as great as the firmness with which the
+electrons are bound in the group of $2$-quanta orbits in the sodium
+atom. Zinc, which is always divalent, is the first element in which
+the groups of the electrons are so firmly bound that they \Chg{can not}{cannot}
+be removed by ordinary chemical processes.
+
+The picture I have given of the formation and structure of the
+atoms of the elements in the fourth period gives an explanation of
+the chemical and spectral properties. In addition it is supported
+by evidence of a different nature to that which we have hitherto
+\PageSep{106}
+used. It is a familiar fact, that the elements in the fourth period
+differ markedly from the elements in the preceding periods
+partly in their \emph{magnetic properties} and partly in the \emph{characteristic
+colours} of their compounds. Paramagnetism and colours do occur
+in elements belonging to the foregoing periods, but not in simple
+compounds where the atoms considered enter as ions. Many
+elements of the fourth period, on the contrary, exhibit paramagnetic
+properties and characteristic colours even in dissociated
+aqueous solutions. The importance of this has been emphasized
+by Ladenburg in his attempt to explain the properties of the
+elements in the long periods of the periodic system (see \PageRef{73}).
+Langmuir in order to account for the difference between the fourth
+period and the preceding periods simply assumed that the atom,
+in addition to the layers of cells containing $8$~electrons each, possesses
+an outer layer of cells with room for $18$~electrons which is completely
+filled for the first time in the case of krypton. Ladenburg,
+on the other hand, assumes that for some reason or other an
+intermediate layer is developed between the inner electronic
+configuration in the atom appearing already in argon, and the
+external group of valency electrons. This layer commences with
+scandium and is completed exactly at the end of the family of iron
+metals. In support of this assumption Ladenburg not only mentions
+the chemical properties of the elements in the fourth period, but
+also refers to the paramagnetism and colours which occur exactly
+in the elements, where this intermediate layer should be in
+development. It is seen that Ladenburg's ideas exhibit certain
+formal similarities with the interpretation I have given above of
+the appearance of the fourth period, and it is interesting to note that
+our view, based on a direct investigation of the conditions for the
+formation of the atoms, enables us to understand the relation
+emphasized by Ladenburg.
+
+Our ordinary electrodynamic conceptions are probably insufficient
+to form a basis for an explanation of atomic magnetism. This is
+hardly to be wondered at when we remember that they have not
+proved adequate to account for the phenomena of radiation which
+are connected with the intimate interaction between the electric
+and magnetic forces arising from the motion of the electrons. In
+whatever way these difficulties may be solved it seems simplest to
+\PageSep{107}
+assume that the occurrence of magnetism, such as we meet in the
+elements of the fourth period, results from a lack of symmetry in
+the internal structure of the atom, thus preventing the magnetic
+forces arising from the motion of the electrons from forming a
+system of closed lines of force running wholly within the atom.
+While it has been assumed that the ions of the elements in the
+previous periods, whether positively or negatively charged, contain
+configurations of marked symmetrical character, we must, however,
+be prepared to encounter a definite lack of symmetry in the
+electronic configurations in ions of those elements within the fourth
+period which contain a group of electrons in $3$-quanta orbits in the
+transition stage between symmetrical configurations of $8$~and $18$
+electrons respectively. As pointed out by Kossel, the experimental
+results exhibit an extreme simplicity, the magnetic moment of the
+ions depending only on the number of electrons in the ion. Ferric
+ions, for example, exhibit the same atomic magnetism as manganous
+ions, while manganic ions exhibit the same atomic magnetism as
+chromous ions. It is in beautiful agreement with what we have
+assumed about the structure of the atoms of copper and zinc, that
+the magnetism disappears with those ions containing $28$~electrons
+which, as I stated, must be assumed to contain a complete group
+of $3$-quanta orbits. On the whole a consideration of the magnetic
+properties of the elements within the fourth period gives us a vivid
+impression of how a wound in the otherwise symmetrical inner
+structure is first developed and then healed as we pass from element
+to element. It is to be hoped that a further investigation of the
+magnetic properties will give us a clue to the way in which the
+group of electrons in $3$-quanta orbits is developed step by step.
+
+Also the colours of the ions directly support our view of atomic
+structure. According to the postulates of the quantum theory
+absorption as well as emission of radiation is regarded as taking
+place during transitions between stationary states. The occurrence
+of colours, that is to say the absorption of light in the visible region
+of the spectrum, is evidence of transitions involving energy changes
+of the same order of magnitude as those giving the usual optical
+spectra of the elements. In contrast to the ions of the elements of
+the preceding periods where all the electrons are assumed to be very
+firmly bound, the occurrence of such processes in the fourth period
+\PageSep{108}
+is exactly what we should expect. For the development and completion
+of the electronic groups with $3$-quanta orbits will proceed,
+so to say, in competition with the binding of electrons in orbits of
+higher quanta, since the binding of electrons in $3$-quanta orbits
+occurs when the electrons in these orbits are bound more firmly
+than electrons in $4_{1}$~orbits. The development of the group will
+therefore proceed to the point where we may say there is equilibrium
+between the two kinds of orbits. This condition may be
+assumed to be intimately connected not only with the colour of the
+ions, but also with the tendency of the elements to form ions with
+different valencies. This is in contrast to the elements of the first
+periods where the charge of the ions in aqueous solutions is always
+the same for one and the same element.
+
+\Section{Fifth Period. Rubidium---Xenon.} The structure of the atoms
+in the remaining periods may be followed up in complete analogy
+with what has already been said. Thus we shall assume that the
+$37$th and $38$th electrons in the elements of the fifth period are
+bound in $5_{1}$~orbits. This is supported by the measurements of the
+arc spectrum of rubidium and the spark spectrum of strontium.
+The latter spectrum indicates at the same time that $4_{3}$~orbits will
+soon appear, and therefore in this period, which like the $4$th
+contains $18$~elements, we must assume that we are witnessing a
+\emph{further stage in the development of the electronic group of $4$-quanta
+orbits}. The first stage in the formation of this group may be said
+to have been attained in krypton with the appearance of a symmetrical
+configuration of eight electrons consisting of two subgroups
+each of four electrons in $4_{1}$~and $4_{2}$~orbits. A second preliminary
+completion must be regarded as having been reached with the
+appearance of a symmetrical configuration of $18$~electrons in the
+case of silver, consisting of three subgroups with six electrons each
+in orbits of the types $4_{1}$,~$4_{2}$ and~$4_{3}$. Everything that has been said
+about the successive formation of the group of electrons with $3$-quanta
+orbits applies unchanged to this stage in the transformation
+of the group with $4$-quanta orbits. For in no case have we made
+use of the absolute values of the quantum numbers nor of assumptions
+concerning the form of the orbits but only of the number of
+possible types of orbits which might come into consideration. At
+\PageSep{109}
+the same time it may be of interest to mention that the properties
+of these elements compared with those of the foregoing period
+nevertheless show a difference corresponding exactly to what would
+be expected from the difference in the types of orbits. For instance,
+the divergencies from the characteristic valency conditions of the
+elements in the second and third periods appear later in the fifth
+period than for elements in the fourth period. While an element
+like titanium in the fourth period already shows a marked tendency
+to occur with various valencies, on the other hand an element like
+zirconium is still quadri-valent like carbon in the second period
+and silicon in the third. A simple investigation of the kinematic
+properties of the orbits of the electrons shows in fact that an
+electron in an \Chg{excentric}{eccentric} $4_{3}$~orbit of an element in the fifth
+period will be considerably more loosely bound than an electron in
+a circular $3_{3}$~orbit of the corresponding element in the fourth
+period, while electrons which are bound in \Chg{excentric}{eccentric} orbits of the
+types $5_{1}$~and $4_{1}$ respectively will correspond to a binding of about
+the same firmness.
+
+At the end of the fifth period we may assume that xenon, the
+atomic number of which is~$54$, has a structure which in addition to
+the two $1$-quantum, eight $2$-quanta, eighteen $3$-quanta and eighteen
+$4$-quanta orbits already mentioned contains a symmetrical
+configuration of eight electrons in $5$-quanta orbits consisting of two
+subgroups with four electrons each in $5_{1}$~and $5_{2}$ orbits respectively.
+
+\Section{Sixth Period. Caesium---Niton.} If we now consider the atoms
+of elements of still higher atomic number, we must first of all
+assume that the $55$th and $56$th electrons in the atoms of caesium
+and barium are bound in $6_{1}$~orbits. This is confirmed by the spectra
+of these elements. It is clear, however, that we must be prepared
+shortly to meet entirely new conditions. With increasing nuclear
+charge we shall have to expect not only that an electron in a $5_{3}$~orbit
+will be bound more firmly than in a $6_{1}$~orbit, but we must also
+expect that a moment will arrive when during the formation of the
+atom a $4_{4}$~orbit will represent a firmer binding of the electron than
+an orbit of $5$~or $6$-quanta, in much the same way as in the elements
+of the fourth period a new stage in the development of the $3$-quanta
+group was started when a point was reached where for the first
+\PageSep{110}
+time the $19$th electron was bound in a $3_{3}$~orbit instead of in a $4_{1}$~orbit.
+We shall thus expect in the sixth period to meet with a new
+stage in the development of the group with $4$-quanta orbits. Once
+this point has been reached we must be prepared to find with increasing
+atomic number a number of elements following one another,
+which as in the family of the iron metals have very nearly the same
+properties. The similarity will, however, be still more pronounced,
+since in this case we are concerned with the successive transformation
+of a configuration of electrons which lies deeper in the interior
+of the atom. You will have already guessed that what I have in view
+is a simple explanation of the occurrence of the \emph{family of rare earths}
+at the beginning of the sixth period. As in the case of the transformation
+and completion of the group of $3$-quanta orbits in the fourth
+period and the partial completion of groups of $4$-quanta orbits in
+the fifth period, we may immediately deduce from the length of the
+sixth period the number of electrons, namely~$32$, which are finally
+contained in the $4$-quanta group of orbits. Analogous to what
+applied to the group of $3$-quanta orbits it is probable that, when
+the group is completed, it will contain eight electrons in each of the
+four subgroups. Even though it has not yet been possible to follow
+the development of the group step by step, we can even here give
+some theoretical evidence in favour of the occurrence of a symmetrical
+configuration of exactly this number of electrons. I shall
+simply mention that it is not possible without coincidence of the
+planes of the orbits to arrive at an interaction between four subgroups
+of six electrons each in a configuration of simple trigonal
+symmetry, which is equally simple as that shown by three subgroups.
+The difficulties which we meet make it probable that a harmonic
+interaction can be attained precisely by four groups each containing
+eight electrons the orbital configurations of which exhibit axial
+symmetry.
+
+Just as in the case of the family of the iron metals in the fourth
+period, the proposed explanation of the occurrence of the family of
+rare earths in the sixth period is supported in an interesting
+manner by an investigation of the magnetic properties of these
+elements. In spite of the great chemical similarity the members
+of this family exhibit very different magnetic properties, so that
+while some of them exhibit but very little magnetism others exhibit
+\PageSep{111}
+a greater magnetic moment per atom than any other element which
+has been investigated. It is also possible to give a simple interpretation
+of the peculiar colours exhibited by the compounds of these
+elements in much the same way as in the case of the family of iron
+metals in the fourth period. The idea that the appearance of the
+group of the rare earths is connected with the development of inner
+groups in the atom is not in itself new and has for instance been
+considered by Vegard in connection with his work on X-ray spectra.
+The new feature of the present considerations lies, however, in the
+emphasis laid on the peculiar way in which the relative strength of
+the binding for two orbits of the same principal quantum number
+but of different shapes varies with the nuclear charge and with the
+number of electrons previously bound. Due to this fact the presence
+of a group like that of the rare earths in the sixth period may be
+considered as a direct consequence of the theory and might actually
+have been predicted on a quantum theory, adapted to the explanation
+of the properties of the elements within the preceding periods
+in the way I have shown.
+
+Besides \emph{the final development of the group of $4$-quanta orbits} we
+observe in the sixth period in the family of the platinum metals \emph{the
+second stage in the development of the group of $5$-quanta orbits}.
+Also in the radioactive, chemically inactive gas niton, which completes
+this period, we observe the first preliminary step in the
+development of a group of electrons with $6$-quanta orbits. In the
+atom of this element, in addition to the groups of electrons of two
+$1$-quantum, eight $2$-quanta, eighteen $3$-quanta, thirty-two $4$-quanta
+and eighteen $5$-quanta orbits respectively, there is also an outer
+symmetrical configuration of eight electrons in $6$-quanta orbits,
+which we shall assume to consist of two subgroups with four electrons
+each in $6_{1}$~and $6_{2}$ orbits respectively.
+
+\Section{Seventh Period.} In the seventh and last period of the periodic
+system we may expect the appearance of $7$-quanta orbits in the
+normal state of the atom. Thus in the neutral atom of radium in
+addition to the electronic structure of niton there will be two
+electrons in $7_{1}$~orbits which will penetrate during their revolution
+not only into the region of the orbits of electrons possessing lower
+values for the principal quantum number, but even to distances
+\PageSep{112}
+from the nucleus which are less than the radii of the orbits of the
+innermost $1$-quantum orbits. The properties of the elements in the
+seventh period are very similar to the properties of the elements in the
+fifth period. Thus, in contrast to the conditions in the sixth period,
+there are no elements whose properties resemble one another like
+those of the rare earths. In exact analogy with what has already
+been said about the relations between the properties of the elements
+in the fourth and fifth periods this may be very simply explained by
+the fact that an \Chg{excentric}{eccentric} $5_{4}$~orbit will correspond to a considerably
+looser binding of an electron in the atom of an element of the
+seventh period than the binding of an electron in a circular $4_{4}$~orbit
+in the corresponding element of the sixth period, while there will be
+a much smaller difference in the firmness of the binding of these
+electrons in orbits of the types $7_{1}$~and $6_{1}$ respectively.
+
+It is well known that the seventh period is not complete, for no atom
+has been found having an atomic number greater than~$92$. This is
+probably connected with the fact that the last elements in the
+system are radioactive and that nuclei of atoms with a total charge
+greater than~$92$ will not be sufficiently stable to exist under conditions
+where the elements can be observed. It is tempting to
+sketch a picture of the atoms formed by the capture and binding
+of electrons around nuclei having higher charges, and thus to
+obtain some idea of the properties which the corresponding hypothetical
+elements might be expected to exhibit. I shall not develop
+this matter further, however, since the general results we should
+get will be evident to you from the views I have developed to
+explain the properties of the elements actually observed. A survey
+of these results is given in the following table, which gives a symbolical
+representation of the atomic structure of the inactive gases
+which complete the first six periods in the periodic system. In
+order to emphasize the progressive change the table includes the
+probable arrangement of electrons in the next atom which would
+possess properties like the inactive gases.
+
+The view of atomic constitution underlying this table, which
+involves configurations of electrons moving with large velocities
+between each other, so that the electrons in the ``outer'' groups
+penetrate into the region of the orbits of the electrons of the ``inner''
+groups, is of course completely different from such statical models
+\PageSep{113}
+of the atom as are proposed by Langmuir. But quite apart from this
+it will be seen that the arrangement of the electronic groups in
+the atom, to which we have been lead by tracing the way in which
+each single electron has been bound, is essentially different from
+the arrangement of the groups in Langmuir's theory. In order to
+explain the properties of the elements of the sixth period Langmuir
+assumes for instance that, in addition to the inner layers of cells
+containing $2$,~$8$, $8$, $18$ and $18$ electrons respectively, which are
+employed to account for the properties of the elements in the
+earlier periods, the atom also possesses a layer of cells with room
+for $32$~electrons which is just completed in the case of niton.
+
+\Figure{}{113}
+
+In this connection it may be of interest to mention a recent
+paper by Bury, to which my attention was first drawn after the
+deliverance of this address, and which contains an interesting
+survey of the chemical properties of the elements based on similar
+conceptions of atomic structure as those applied by Lewis and
+Langmuir. From purely chemical considerations Bury arrives at
+conclusions which as regards the arrangement and completion of
+the groups in the main coincide with those of the present theory,
+the outlines of which were given in my letters to Nature mentioned
+in the introduction.
+
+\Section{Survey of the periodic table.} The results given in this address
+are also illustrated by means of the representation of the periodic
+system given in \Fig{1}. In this figure the frames are meant to
+indicate such elements in which one of the ``inner'' groups is
+in a stage of development. Thus there will be found in the
+\PageSep{114}
+fourth and fifth periods a single frame indicating the final completion
+of the electronic group with $3$-quanta orbits, and the
+last stage but one in the development of the group with $4$-quanta
+orbits respectively. In the sixth period it has been necessary to
+introduce two frames, of which the inner one indicates the last
+stage of the evolution of the group with $4$-quanta orbits, giving rise
+to the rare earths. This occurs at a place in the periodic system
+where the third stage in the development of an electronic group
+with $5$-quanta orbits, indicated by the outer frame, has already
+begun. In this connection it will be seen that the inner frame
+encloses a smaller number of elements than is usually attributed
+to the family of the rare earths. At the end of this group an
+uncertainty exists, due to the fact that no element of atomic
+number~$72$ is known with certainty. However, as indicated in
+\Fig{1}, we must conclude from the theory that the group with
+$4$-quanta orbits is finally completed in lutetium~($71$). This element
+therefore ought to be the last in the sequence of consecutive
+elements with similar properties in the first half of the sixth period,
+and at the place~$72$ an element must be expected which in its
+chemical and physical properties is homologous with zirconium and
+thorium. This, which is already indited on Julius Thomsen's old
+table, has also been pointed out by Bury. [Quite recently Dauvillier
+has in an investigation of the X-ray spectrum excited in preparations
+containing rare earths, observed certain faint lines which he ascribes
+to an element of atomic number~$72$. This element is identified by
+him as the element celtium, belonging to the family of rare earths,
+the existence of which had previously been suspected by Urbain.
+Quite apart from the difficulties which this result, if correct, might
+entail for atomic theories, it would, since the rare earths according
+to chemical view possess three valencies, imply a rise in positive
+valency of two units when passing from the element~$72$ to the
+next element~$73$, tantalum. This would mean an exception from
+the otherwise general rule, that the valency never increases by
+more than one unit when passing from one element to the next in
+the periodic table\Add{.}] In the case of the incomplete seventh period
+the full drawn frame indicates the third stage in the development
+of the electronic group with $6$-quanta orbits, which must begin in
+actinium. The dotted frame indicates the last stage but one in
+\PageSep{115}
+the development of the group with $5$-quanta orbits, which hitherto
+has not been observed, but which ought to begin shortly after
+uranium, if it has not already begun in this element.
+
+With reference to the homology of the elements the exceptional
+position of the elements enclosed by frames in \Fig{1} is further
+emphasized by taking care that, in spite of the large similarity
+many elements exhibit, no connecting lines are drawn between
+two elements which occupy different positions in the system with
+respect to framing. In fact, the large chemical similarity between,
+for instance, aluminium and scandium, both of which are trivalent
+and pronounced electropositive elements, is directly or indirectly
+emphasized in the current representations of the periodic table.
+While this procedure is justified by the analogous structure of the
+trivalent ions of these elements, our more detailed ideas of atomic
+structure suggest, however, marked differences in the physical
+properties of aluminium and scandium, originating in the essentially
+different character of the way in which the last three electrons
+in the neutral atom are bound. This fact gives probably a direct
+explanation of the marked difference existing between the spectra
+of aluminium and scandium. Even if the spectrum of scandium is
+not yet sufficiently cleared up, this difference seems to be of a much
+more fundamental character than for instance the difference between
+the arc spectra of sodium and copper, which apart from the large
+difference in the absolute values of the spectral terms possess a
+completely analogous structure, as previously mentioned in this
+essay. On the whole we must expect that the spectra of elements
+in the later periods lying inside a frame will show new features
+compared with the spectra of the elements in the first three periods.
+This expectation seems supported by recent work on the spectrum
+of manganese by Catalan, which appeared just before the printing
+of this essay.
+
+Before I leave the interpretation of the chemical properties by
+means of this atomic model I should like to remind you once again
+of the fundamental principles which we have used. The whole
+theory has evolved from an investigation of the way in which
+electrons can be captured by an atom. The formation of an atom
+was held to consist in the successive binding of electrons, this
+binding resulting in radiation according to the quantum theory.
+\PageSep{116}
+According to the fundamental postulates of the theory this binding
+takes place in stages by transitions between stationary states
+accompanied by emission of radiation. For the problem of the
+stability of the atom the essential problem is at what stage such a
+process comes to an end. As regards this point the postulates give
+no direct information, but here the correspondence principle is
+brought in. Even though it has been possible to penetrate considerably
+further at many points than the time has permitted me
+to indicate to you, still it has not yet been possible to follow in
+detail all stages in the formation of the atoms. We cannot say, for
+instance, that the above table of the atomic constitution of the
+inert gases may in every detail be considered as the unambiguous
+result of applying the correspondence principle. On the other hand
+it appears that our considerations already place the empirical data
+in a light which scarcely permits of an essentially different interpretation
+of the properties of the elements based upon the postulates of
+the quantum theory. This applies not only to the series spectra
+and the close relationship of these to the chemical properties of the
+elements, but also to the X-ray spectra, the consideration of which
+leads us into an investigation of interatomic processes of an entirely
+different character. As we have already mentioned, it is necessary
+to assume that the emission of the latter spectra is connected with
+processes which may be described as a reorganization of the completely
+formed atom after a disturbance produced in the interior
+of the atom by the action of external forces.
+
+
+\Chapter{IV.}{Reorganization of Atoms and X-Ray Spectra}
+
+As in the case of the series spectra it has also been possible to represent
+the frequency of each line in the X-ray spectrum of an element
+as the difference of two of a set of spectral terms. We shall therefore
+assume that each X-ray line is due to a transition between
+two stationary states of the atom. The values of the atomic energy
+corresponding to these states are frequently referred to as the
+``energy levels'' of the X-ray spectra. The great difference between
+the origin of the X-ray and the series spectra is clearly seen, however,
+in the difference of the laws applying to the absorption of
+radiation in the X-ray and the optical regions of the spectra. The
+absorption by non-excited atoms in the latter case is connected
+\PageSep{117}
+with those lines in the series spectrum which correspond to combinations
+of the various spectral terms with the largest of these
+terms. As has been shown, especially by the investigations of
+Wagner and de~Broglie, the absorption in the X-ray region, on
+the other hand, is connected not with the X-ray lines but with
+certain spectral regions commencing at the so-called ``absorption
+edges.'' The frequencies of these edges agree very closely with the
+spectral terms used to account for the X-ray lines. We shall now
+see how the conception of atomic structure developed in the preceding
+pages offers a simple interpretation of these facts. Let us
+consider the following question: What changes in the state of the
+atom can be produced by the absorption of radiation, and which
+processes of emission can be initiated by such changes?
+
+\Section{Absorption and emission of X-rays and correspondence
+principle.} The possibility of producing a change at all in the
+motion of an electron in the interior of an atom by means of radiation
+must in the first place be regarded as intimately connected
+with the character of the interaction between the electrons within
+the separate groups. In contrast to the forms of motion where at
+every moment the position of the electrons exhibits polygonal or
+polyhedral symmetry, the conception of this interaction evolved from
+a consideration of the possible formation of atoms by successive
+binding of electrons has such a character that the harmonic components
+in the motion of an electron are in general represented in
+the resulting electric moment of the atom. As a result of this it
+will be possible to release a single electron from the interaction
+with the other electrons in the same group by a process which
+possesses the necessary analogy with an absorption process on
+the ordinary electrodynamic view claimed by the correspondence
+principle. The points of view on which we based the interpretation
+of the development and completion of the groups during the
+formation of an atom imply, on the other hand, that just as no
+additional electron can be taken up into a previously completed
+group in the atom by a change involving emission of radiation,
+similarly it will not be possible for a new electron to be added
+to such a group, when the state of the atom is changed by
+absorption of radiation. This means that an electron which belongs
+\PageSep{118}
+to one of the inner groups of the atom, as a consequence of an
+absorption process---besides the case where it leaves the atom
+completely---can only go over either to an incompleted group, or
+to an orbit where the electron during the greater part of its revolution
+moves at a distance from the nucleus large compared to the
+distance of the other electrons. On account of the peculiar conditions
+of stability which control the occurrence of incomplete groups in
+the interior of the atom, the energy which is necessary to bring
+about a transition to such a group will in general differ very little
+from that required to remove the particular electron completely
+from the atom. We must therefore assume that the energy levels
+corresponding to the absorption edges indicate to a first approximation
+the amount of work that is required to remove an electron
+in one of the inner groups completely from the atom. The
+correspondence principle also provides a basis for understanding
+the experimental evidence about the appearance of the emission
+lines of the X-ray spectra due to transitions between the stationary
+states corresponding to these energy levels. Thus the nature of the
+interaction between the electrons in the groups of the atom implies
+that each electron in the atom is so to say prepared, independently
+of the other electrons in the same group, to seize any opportunity
+which is offered to become more firmly bound by being taken up
+into a group of electrons with orbits corresponding to smaller values
+of the principal quantum number. It is evident, however, that on
+the basis of our views of atomic structure, such an opportunity is
+always at hand as soon as an electron has been removed from one
+of these groups.
+
+At the same time that our view of the atom leads to a natural
+conception of the phenomena of emission and absorption of X-rays,
+agreeing closely with that by which Kossel has attempted to give
+a formal explanation of the experimental observations, it also suggests
+a simple explanation of those quantitative relations holding for the
+frequencies of the lines which have been discovered by Moseley and
+Sommerfeld. These researches brought to light a remarkable and
+far-reaching similarity between the Röntgen spectrum of a given
+element and the spectrum which would be expected to appear upon
+the binding of a single electron by the nucleus. This similarity we
+immediately understand if we recall that in the normal state of the
+\PageSep{119}
+atom there are electrons moving in orbits which, with certain
+limitations, correspond to all stages of such a binding process and
+that, when an electron is removed from its original place in the
+atom, processes may be started within the atom which will correspond
+to all transitions between these stages permitted by the
+correspondence principle. This brings us at once out of those
+difficulties which apparently arise, when one attempts to account
+for the origin of the X-ray spectra by means of an atomic structure,
+suited to explain the periodic system. This difficulty has been felt
+to such an extent that it has led Sommerfeld for example in his
+recent work to assume that the configurations of the electrons in
+the various atoms of one and the same element may be different
+even under usual conditions. Since, in contrast to our ideas, he
+supposed all electrons in the principal groups of the atom to move
+in equivalent orbits, he is compelled to assume that these groups
+are different in the different atoms, corresponding to different
+possible types of orbital shapes. Such an assumption, however, seems
+inconsistent with an interpretation of the definite character of the
+physical and chemical properties of the elements, and stands in marked
+contradiction with the points of view about the stability of the atoms
+which form the basis of the view of atomic structure here proposed.
+
+\Section{X-ray spectra and atomic structure.} In this connection it is
+of interest to emphasize that the group distribution of the electrons
+in the atom, on which we have based both the explanation of the
+periodic system and the classification of the lines in the X-ray
+spectra, shows itself in an entirely different manner in these two
+phenomena. While the characteristic change of the chemical
+properties with atomic number is due to the gradual development
+and completion of the groups of the loosest bound electrons, the
+characteristic absence of almost every trace of a periodic change in
+the X-ray spectra is due to two causes. Firstly the electronic
+configuration of the completed groups is repeated unchanged for
+increasing atomic number, and secondly the gradual way in which
+the incompleted groups are developed implies that a type of orbit,
+from the moment when it for the first time appears in the normal
+state of the neutral atom, always will occur in this state and will
+correspond to a steadily increasing firmness of binding. The development
+\PageSep{120}
+of the groups in the atom with increasing atomic number,
+which governs the chemical properties of the elements shows itself
+in the X-ray spectra mainly in the appearance of new lines. Swinne
+has already referred to a connection of this kind between the periodic
+system and the X-ray spectra in connection with Kossel's theory.
+We can only expect a closer connection between the X-ray phenomena
+and the chemical properties of the elements, when the conditions
+on the surface of the atom are concerned. In agreement
+with what has been brought to light by investigations on absorption
+of X-rays in elements of lower atomic number, such as have
+been performed in recent years in the physical laboratory at Lund,
+we understand immediately that the position and eventual structure
+of the absorption edges will to a certain degree depend upon
+the physical and chemical conditions under which the element
+investigated exists, while such a dependence does not appear in
+the characteristic emission lines.
+
+If we attempt to obtain a more detailed explanation of the
+experimental observations, we meet the question of the influence
+of the presence of the other electrons in the atom upon the firmness
+of the binding of an electron in a given type of orbit. This influence
+will, as we at once see, be least for the inner parts of the atom,
+where for each electron the attraction of the nucleus is large in
+proportion to the repulsion of the other electrons. It should also
+be recalled, that while the relative influence of the presence of the
+other electrons upon the firmness of the binding will decrease with
+increasing charge of the nucleus, the effect of the variation in the
+mass of the electron with the velocity upon the firmness of the
+binding will increase strongly. This may be seen from Sommerfeld's
+formula~\Eq{(11)}. While we obtain a fairly good agreement for the
+levels corresponding to the removal of one of the innermost electrons
+in the atom by using the simple formula~\Eq{(11)}, it is, however, already
+necessary to take the influence of the other electrons into consideration
+in making an approximate calculation of the levels corresponding
+to a removal of an electron from one of the outer groups in the
+atom. Just this circumstance offers us, however, a possibility of
+obtaining information about the configurations of the electrons in
+the interior of the atoms from the X-ray spectra. Numerous
+investigations have been directed at this question both by
+\PageSep{121}
+Sommerfeld and his pupils and by Debye, Vegard and others. It
+may also be remarked that de~Broglie and Dauvillier in a recent
+paper have thought it possible to find support in the experimental
+material for certain assumptions about the numbers of electrons in
+the groups of the atom to which Dauvillier had been led by considerations
+about the periodic system similar to those proposed by
+Langmuir and Ladenburg. In calculations made in connection with
+these investigations it is assumed that the electrons in the various
+groups move in separate concentric regions of the atom, so that
+the effect of the presence of the electrons in inner groups upon the
+motion of the electrons in outer groups as a first approximation
+may be expected to consist in a simple screening of the nucleus.
+On our view, however, the conditions are essentially different, since
+for the calculation of the firmness of the binding of the electrons
+it is necessary to take into consideration that the electrons in the
+more lightly bound groups in general during a certain fraction of
+their revolution will penetrate into the region of the orbits of
+electrons in the more firmly bound groups. On account of this
+fact, many examples of which we saw in the series spectra, we \Chg{can not}{cannot}
+expect to give an account of the firmness of the binding of the
+separate electrons, simply by means of a ``screening correction''
+consisting in the subtraction of a constant quantity from the value
+for~$N$ in such formulae as \Eq{(5)} and~\Eq{(11)}. Furthermore in the calculation
+of the work corresponding to the energy levels we must take
+account not only of the interaction between, the electrons in the
+normal state of the atom, but also of the changes in the configuration
+and interaction of the remaining electrons, which establish
+themselves automatically without emission of radiation during the
+removal of the electron. Even though such calculations have not
+yet been made very accurately, a preliminary investigation has
+already shown that it is possible approximately to account for the
+experimental results.
+
+\Section{Classification of X-ray spectra.} Independently of a definite
+view of atomic structure it has been possible by means of a formal
+application of Kossel's and Sommerfeld's theories to disentangle
+the large amount of experimental material on X-ray spectra. This
+material is drawn mainly from the accurate measurements of
+\PageSep{122}
+Siegbahn and his collaborators. From this disentanglement of the
+experimental observations, in which besides Sommerfeld and his
+students especially Smekal and Coster have taken part, we have
+obtained a nearly complete classification of the energy levels corresponding
+to the X-ray spectra. These levels are formally referred
+to types of orbits characterized by two quantum numbers $n$ and~$k$,
+and certain definite rules for the possibilities of combination
+between the various levels have also been found. In this way a
+number of results of great interest for the further elucidation of
+the origin of the X-ray spectra have been attained. First it has
+not only been possible to find levels, which within certain limits
+correspond to all possible pairs of numbers for $n$ and~$k$, but it has
+been found that in general to each such pair more than one level
+must be assigned. This result, which at first may appear very
+surprising, upon further consideration can be given a simple
+interpretation. We must remember that the levels depend not
+only upon the constitution of the atom in the normal state, but
+also upon the configurations which appear after the removal
+of one of the inner electrons and which in contrast to the normal
+state do not possess a uniquely completed character. If we thus
+consider a process in which one of the electrons in a group
+(subgroup) is removed we must be prepared to find that after the
+process the orbits of the remaining electrons in this group may be
+orientated in more than one way in relation to one another, and
+still fulfil the conditions required of the stationary states by the
+quantum theory. Such a view of the ``complexity'' of the levels, as
+further consideration shows, just accounts for the manner in which
+the energy difference of the two levels varies with the atomic
+number. Without attempting to develop a more detailed picture
+of atomic structure, Smekal has already discussed the possibility
+of accounting for the multiplicity of levels. Besides referring to
+the possibility that the separate electrons in the principal groups
+do not move in equivalent orbits, Smekal suggests the introduction
+of three quantum numbers for the description of the various groups,
+but does not further indicate to what extent these quantum
+numbers shall be regarded as characterizing a complexity in the
+structure of the groups in the normal state itself or on the
+contrary characterizing the incompleted groups which appear
+when an electron is removed.
+\PageSep{123}
+
+It will be seen that the complexity of the X-ray levels exhibits a
+close analogy with the explanation of the complexity of the terms
+of the series spectra. There exists, however, this difference between
+the complex structure of the X-ray spectra and the complex
+structure of the lines in the series spectra, that in the X-ray
+spectra there occur not only combinations between spectral terms,
+for which $k$~varies by unity, but also between terms corresponding
+to the same value of~$k$. This may be assumed to be
+due to the fact, that in the X-ray spectra in contrast to the series
+\Figure{5}{123}
+spectra we have to do with transitions between stationary states
+where, both before and after the transition, the electron concerned
+takes part in an intimate interaction with other electrons in orbits
+with the same principal quantum number. Even though this
+interaction may be assumed to be of such a nature that the
+harmonic components which would appear in the motion of an
+electron in the absence of the others will in general also appear
+in the resulting moment of the atom, we must expect that the
+interaction between the electrons will give rise to the appearance
+in this moment of new types of harmonic components.
+\PageSep{124}
+
+It may be of interest to insert here a few words about a new
+paper of Coster which appeared after this address was given,
+and in which he has succeeded in obtaining an extended and
+detailed connection between the X-ray spectra and the ideas
+of atomic structure given in this essay. The classification mentioned
+above was based on measurements of the spectra of the
+heaviest elements, and the results in their complete form, which
+were principally due to independent work of Coster and Wentzel,
+may be represented by the diagram in \Fig{5}, which refers to
+elements in the neighbourhood of niton. The vertical arrows
+\Figure{6}{124}
+represent the observed lines arising from combinations between
+the different energy levels which are represented by horizontal lines.
+In each group the levels are arranged in the same succession as
+their energy values, but their distances do not give a quantitative
+picture of the actual energy-differences, since this would require a
+much larger figure. The numbers~$n_{k}$ attached to the different levels
+indicate the type of the corresponding orbit. The letters $a$ and~$b$
+refer to the rules of combination which I mentioned. According
+to these rules the possibility of combination is limited (1)~by the
+exclusion of combinations, for which $k$~changes by more than one
+unit, (2)~by the condition that only combinations between an $a$-
+and a $b$-level can take place. The latter rule was given in this
+\PageSep{125}
+form by Coster; Wentzel formulated it in a somewhat different
+way by the formal introduction of a third quantum number. In
+his new paper Coster has established a similar classification for the
+lighter elements. For the elements in the neighbourhood of xenon
+and krypton he has obtained results illustrated by the diagrams
+given in \Fig{6}. Just as in \Fig{5} the levels correspond exactly to
+those types of orbits which, as seen from the table on \PageRef[page]{113},
+according to the theory will be present in the atoms of these elements.
+In xenon several of the levels present in niton have disappeared,
+and in krypton still more levels have fallen away. Coster
+has also investigated in which elements these particular levels
+appear for the last time, when passing from higher to lower atomic
+number. His results concerning this point confirm in detail the
+predictions of the theory. Further he proves that the change in
+the firmness of binding of the electrons in the outer groups in
+the elements of the family of the rare earths shows a dependence
+on the atomic number which strongly supports the assumption that
+in these elements a completion of an inner group of $4$-quanta
+orbits takes place. For details the reader is referred to Coster's
+paper in the \Title{Philosophical Magazine}. Another important contribution
+to our systematic knowledge of the X-ray spectra is
+contained in a recent paper by Wentzel. He shows that various
+lines, which find no place in the classification hitherto considered,
+can be ascribed in a natural manner to processes of reorganization,
+initiated by the removal of more than one electron from the
+atom; these lines are therefore in a certain sense analogous to
+the enhanced lines in the optical spectra.
+
+\Chapter{}{Conclusion}
+
+Before bringing this address to a close I wish once more to
+emphasize the complete analogy in the application of the
+quantum theory to the stability of the atom, used in explaining
+two so different phenomena as the periodic system and X-ray
+spectra. This point is of the greatest importance in judging the
+reality of the theory, since the justification for employing considerations,
+relating to the formation of atoms by successive capture
+of electrons, as a guiding principle for the investigation of atomic
+\PageSep{126}
+structure might appear doubtful if such considerations could not
+be brought into natural agreement with views on the reorganization
+of the atom after a disturbance in the normal electronic
+arrangement. Even though a certain inner consistency in this
+view of atomic structure will be recognized, it is, however, hardly
+necessary for me to emphasize the incomplete character of the
+theory, not only as regards the elaboration of details, but also so
+far as the foundation of the general points of view is concerned.
+There seems, however, to be no other way of advance in atomic
+problems than that which hitherto has been followed, namely to let
+the work in these two directions go hand in hand.
+
+%%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%%
+\PGLicense
+\begin{PGtext}
+End of the Project Gutenberg EBook of The Theory of Spectra and Atomic
+Constitution, by Niels (Niels Henrik David) Bohr
+
+*** END OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA ***
+
+***** This file should be named 47464-pdf.pdf or 47464-pdf.zip *****
+This and all associated files of various formats will be found in:
+ http://www.gutenberg.org/4/7/4/6/47464/
+
+Produced by Andrew D. Hwang
+
+Updated editions will replace the previous one--the old editions
+will be renamed.
+
+Creating the works from public domain print editions means that no
+one owns a United States copyright in these works, so the Foundation
+(and you!) can copy and distribute it in the United States without
+permission and without paying copyright royalties. Special rules,
+set forth in the General Terms of Use part of this license, apply to
+copying and distributing Project Gutenberg-tm electronic works to
+protect the PROJECT GUTENBERG-tm concept and trademark. Project
+Gutenberg is a registered trademark, and may not be used if you
+charge for the eBooks, unless you receive specific permission. If you
+do not charge anything for copies of this eBook, complying with the
+rules is very easy. You may use this eBook for nearly any purpose
+such as creation of derivative works, reports, performances and
+research. They may be modified and printed and given away--you may do
+practically ANYTHING with public domain eBooks. Redistribution is
+subject to the trademark license, especially commercial
+redistribution.
+
+
+
+*** START: FULL LICENSE ***
+
+THE FULL PROJECT GUTENBERG LICENSE
+PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
+
+To protect the Project Gutenberg-tm mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase "Project
+Gutenberg"), you agree to comply with all the terms of the Full Project
+Gutenberg-tm License available with this file or online at
+ www.gutenberg.org/license.
+
+
+Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
+electronic works
+
+1.A. By reading or using any part of this Project Gutenberg-tm
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or destroy
+all copies of Project Gutenberg-tm electronic works in your possession.
+If you paid a fee for obtaining a copy of or access to a Project
+Gutenberg-tm electronic work and you do not agree to be bound by the
+terms of this agreement, you may obtain a refund from the person or
+entity to whom you paid the fee as set forth in paragraph 1.E.8.
+
+1.B. "Project Gutenberg" is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenberg-tm electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenberg-tm electronic works if you follow the terms of this agreement
+and help preserve free future access to Project Gutenberg-tm electronic
+works. See paragraph 1.E below.
+
+1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
+or PGLAF), owns a compilation copyright in the collection of Project
+Gutenberg-tm electronic works. Nearly all the individual works in the
+collection are in the public domain in the United States. If an
+individual work is in the public domain in the United States and you are
+located in the United States, we do not claim a right to prevent you from
+copying, distributing, performing, displaying or creating derivative
+works based on the work as long as all references to Project Gutenberg
+are removed. Of course, we hope that you will support the Project
+Gutenberg-tm mission of promoting free access to electronic works by
+freely sharing Project Gutenberg-tm works in compliance with the terms of
+this agreement for keeping the Project Gutenberg-tm name associated with
+the work. You can easily comply with the terms of this agreement by
+keeping this work in the same format with its attached full Project
+Gutenberg-tm License when you share it without charge with others.
+
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are in
+a constant state of change. If you are outside the United States, check
+the laws of your country in addition to the terms of this agreement
+before downloading, copying, displaying, performing, distributing or
+creating derivative works based on this work or any other Project
+Gutenberg-tm work. The Foundation makes no representations concerning
+the copyright status of any work in any country outside the United
+States.
+
+1.E. Unless you have removed all references to Project Gutenberg:
+
+1.E.1. The following sentence, with active links to, or other immediate
+access to, the full Project Gutenberg-tm License must appear prominently
+whenever any copy of a Project Gutenberg-tm work (any work on which the
+phrase "Project Gutenberg" appears, or with which the phrase "Project
+Gutenberg" is associated) is accessed, displayed, performed, viewed,
+copied or distributed:
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.org
+
+1.E.2. If an individual Project Gutenberg-tm electronic work is derived
+from the public domain (does not contain a notice indicating that it is
+posted with permission of the copyright holder), the work can be copied
+and distributed to anyone in the United States without paying any fees
+or charges. If you are redistributing or providing access to a work
+with the phrase "Project Gutenberg" associated with or appearing on the
+work, you must comply either with the requirements of paragraphs 1.E.1
+through 1.E.7 or obtain permission for the use of the work and the
+Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
+1.E.9.
+
+1.E.3. If an individual Project Gutenberg-tm electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
+terms imposed by the copyright holder. Additional terms will be linked
+to the Project Gutenberg-tm License for all works posted with the
+permission of the copyright holder found at the beginning of this work.
+
+1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenberg-tm.
+
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenberg-tm License.
+
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including any
+word processing or hypertext form. However, if you provide access to or
+distribute copies of a Project Gutenberg-tm work in a format other than
+"Plain Vanilla ASCII" or other format used in the official version
+posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
+you must, at no additional cost, fee or expense to the user, provide a
+copy, a means of exporting a copy, or a means of obtaining a copy upon
+request, of the work in its original "Plain Vanilla ASCII" or other
+form. Any alternate format must include the full Project Gutenberg-tm
+License as specified in paragraph 1.E.1.
+
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenberg-tm works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenberg-tm electronic works provided
+that
+
+- You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenberg-tm works calculated using the method
+ you already use to calculate your applicable taxes. The fee is
+ owed to the owner of the Project Gutenberg-tm trademark, but he
+ has agreed to donate royalties under this paragraph to the
+ Project Gutenberg Literary Archive Foundation. Royalty payments
+ must be paid within 60 days following each date on which you
+ prepare (or are legally required to prepare) your periodic tax
+ returns. Royalty payments should be clearly marked as such and
+ sent to the Project Gutenberg Literary Archive Foundation at the
+ address specified in Section 4, "Information about donations to
+ the Project Gutenberg Literary Archive Foundation."
+
+- You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenberg-tm
+ License. You must require such a user to return or
+ destroy all copies of the works possessed in a physical medium
+ and discontinue all use of and all access to other copies of
+ Project Gutenberg-tm works.
+
+- You provide, in accordance with paragraph 1.F.3, a full refund of any
+ money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days
+ of receipt of the work.
+
+- You comply with all other terms of this agreement for free
+ distribution of Project Gutenberg-tm works.
+
+1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
+electronic work or group of works on different terms than are set
+forth in this agreement, you must obtain permission in writing from
+both the Project Gutenberg Literary Archive Foundation and Michael
+Hart, the owner of the Project Gutenberg-tm trademark. Contact the
+Foundation as set forth in Section 3 below.
+
+1.F.
+
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+public domain works in creating the Project Gutenberg-tm
+collection. Despite these efforts, Project Gutenberg-tm electronic
+works, and the medium on which they may be stored, may contain
+"Defects," such as, but not limited to, incomplete, inaccurate or
+corrupt data, transcription errors, a copyright or other intellectual
+property infringement, a defective or damaged disk or other medium, a
+computer virus, or computer codes that damage or cannot be read by
+your equipment.
+
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
+of Replacement or Refund" described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenberg-tm trademark, and any other party distributing a Project
+Gutenberg-tm electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium with
+your written explanation. The person or entity that provided you with
+the defective work may elect to provide a replacement copy in lieu of a
+refund. If you received the work electronically, the person or entity
+providing it to you may choose to give you a second opportunity to
+receive the work electronically in lieu of a refund. If the second copy
+is also defective, you may demand a refund in writing without further
+opportunities to fix the problem.
+
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER
+WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
+
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of damages.
+If any disclaimer or limitation set forth in this agreement violates the
+law of the state applicable to this agreement, the agreement shall be
+interpreted to make the maximum disclaimer or limitation permitted by
+the applicable state law. The invalidity or unenforceability of any
+provision of this agreement shall not void the remaining provisions.
+
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenberg-tm electronic works in accordance
+with this agreement, and any volunteers associated with the production,
+promotion and distribution of Project Gutenberg-tm electronic works,
+harmless from all liability, costs and expenses, including legal fees,
+that arise directly or indirectly from any of the following which you do
+or cause to occur: (a) distribution of this or any Project Gutenberg-tm
+work, (b) alteration, modification, or additions or deletions to any
+Project Gutenberg-tm work, and (c) any Defect you cause.
+
+
+Section 2. Information about the Mission of Project Gutenberg-tm
+
+Project Gutenberg-tm is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of computers
+including obsolete, old, middle-aged and new computers. It exists
+because of the efforts of hundreds of volunteers and donations from
+people in all walks of life.
+
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg-tm's
+goals and ensuring that the Project Gutenberg-tm collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenberg-tm and future generations.
+To learn more about the Project Gutenberg Literary Archive Foundation
+and how your efforts and donations can help, see Sections 3 and 4
+and the Foundation information page at www.gutenberg.org
+
+
+Section 3. Information about the Project Gutenberg Literary Archive
+Foundation
+
+The Project Gutenberg Literary Archive Foundation is a non profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation's EIN or federal tax identification
+number is 64-6221541. Contributions to the Project Gutenberg
+Literary Archive Foundation are tax deductible to the full extent
+permitted by U.S. federal laws and your state's laws.
+
+The Foundation's principal office is located at 4557 Melan Dr. S.
+Fairbanks, AK, 99712., but its volunteers and employees are scattered
+throughout numerous locations. Its business office is located at 809
+North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email
+contact links and up to date contact information can be found at the
+Foundation's web site and official page at www.gutenberg.org/contact
+
+For additional contact information:
+ Dr. Gregory B. Newby
+ Chief Executive and Director
+ gbnewby@pglaf.org
+
+Section 4. Information about Donations to the Project Gutenberg
+Literary Archive Foundation
+
+Project Gutenberg-tm depends upon and cannot survive without wide
+spread public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To
+SEND DONATIONS or determine the status of compliance for any
+particular state visit www.gutenberg.org/donate
+
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+
+Please check the Project Gutenberg Web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including checks, online payments and credit card donations.
+To donate, please visit: www.gutenberg.org/donate
+
+
+Section 5. General Information About Project Gutenberg-tm electronic
+works.
+
+Professor Michael S. Hart was the originator of the Project Gutenberg-tm
+concept of a library of electronic works that could be freely shared
+with anyone. For forty years, he produced and distributed Project
+Gutenberg-tm eBooks with only a loose network of volunteer support.
+
+Project Gutenberg-tm eBooks are often created from several printed
+editions, all of which are confirmed as Public Domain in the U.S.
+unless a copyright notice is included. Thus, we do not necessarily
+keep eBooks in compliance with any particular paper edition.
+
+Most people start at our Web site which has the main PG search facility:
+
+ www.gutenberg.org
+
+This Web site includes information about Project Gutenberg-tm,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+\end{PGtext}
+
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% End of the Project Gutenberg EBook of The Theory of Spectra and Atomic %
+% Constitution, by Niels (Niels Henrik David) Bohr %
+% %
+% *** END OF THIS PROJECT GUTENBERG EBOOK THEORY OF SPECTRA *** %
+% %
+% ***** This file should be named 47464-t.tex or 47464-t.zip ***** %
+% This and all associated files of various formats will be found in: %
+% http://www.gutenberg.org/4/7/4/6/47464/ %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\end{document}
+###
+@ControlwordReplace = (
+ ['\\ie', 'i.e.']
+ );
+
+@ControlwordArguments = (
+ ['\\Signature', 1, 1, '', ' ', 1, 1, '', ' ', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Figure', 0, 0, '', '', 1, 0, '', '', 1, 0, '<GRAPHIC>', ''],
+ ['\\BookMark', 1, 0, '', '', 1, 0, '', ''],
+ ['\\First', 1, 1, '', ''],
+ ['\\Essay', 1, 1, 'Essay ', ' ', 1, 1, '', '', 1, 0, '', ''],
+ ['\\Chapter', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Section', 1, 1, '', ''],
+ ['\\Fig', 0, 0, '', '', 1, 1, 'figure ', ''],
+ ['\\FigNum', 1, 1, '', ''],
+ ['\\Pagelabel', 1, 0, '', ''],
+ ['\\PageRef', 1, 1, 'p. ', ''],
+ ['\\PageNum', 1, 1, '', ''],
+ ['\\Eq', 0, 0, '', '', 1, 1, '', ''],
+ ['\\Add', 1, 1, '', ''],
+ ['\\Chg', 1, 0, '', '', 1, 1, '', '']
+ );
+$PageSeparator = qr/^\\PageSep/;
+$CustomClean = 'print "\\nCustom cleaning in progress...";
+my $cline = 0;
+ while ($cline <= $#file) {
+ $file[$cline] =~ s/--------[^\n]*\n//; # strip page separators
+ $cline++
+ }
+ print "done\\n";';
+###
+This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) (format=pdflatex 2014.9.6) 26 NOV 2014 07:10
+entering extended mode
+ %&-line parsing enabled.
+**47464-t.tex
+(./47464-t.tex
+LaTeX2e <2011/06/27>
+Babel <3.9h> and hyphenation patterns for 78 languages loaded.
+(/usr/share/texlive/texmf-dist/tex/latex/base/book.cls
+Document Class: book 2007/10/19 v1.4h Standard LaTeX document class
+(/usr/share/texlive/texmf-dist/tex/latex/base/bk12.clo
+File: bk12.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@chapter=\count80
+\c@section=\count81
+\c@subsection=\count82
+\c@subsubsection=\count83
+\c@paragraph=\count84
+\c@subparagraph=\count85
+\c@figure=\count86
+\c@table=\count87
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
+Package: inputenc 2008/03/30 v1.1d Input encoding file
+\inpenc@prehook=\toks14
+\inpenc@posthook=\toks15
+(/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def
+File: latin1.def 2008/03/30 v1.1d Input encoding file
+)) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
+Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
+Package: amsmath 2013/01/14 v2.14 AMS math features
+\@mathmargin=\skip43
+For additional information on amsmath, use the `?' option.
+(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
+Package: amstext 2000/06/29 v2.01
+(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
+File: amsgen.sty 1999/11/30 v2.0
+\@emptytoks=\toks16
+\ex@=\dimen103
+)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
+Package: amsbsy 1999/11/29 v1.2d
+\pmbraise@=\dimen104
+) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
+Package: amsopn 1999/12/14 v2.01 operator names
+)
+\inf@bad=\count88
+LaTeX Info: Redefining \frac on input line 210.
+\uproot@=\count89
+\leftroot@=\count90
+LaTeX Info: Redefining \overline on input line 306.
+\classnum@=\count91
+\DOTSCASE@=\count92
+LaTeX Info: Redefining \ldots on input line 378.
+LaTeX Info: Redefining \dots on input line 381.
+LaTeX Info: Redefining \cdots on input line 466.
+\Mathstrutbox@=\box26
+\strutbox@=\box27
+\big@size=\dimen105
+LaTeX Font Info: Redeclaring font encoding OML on input line 566.
+LaTeX Font Info: Redeclaring font encoding OMS on input line 567.
+\macc@depth=\count93
+\c@MaxMatrixCols=\count94
+\dotsspace@=\muskip10
+\c@parentequation=\count95
+\dspbrk@lvl=\count96
+\tag@help=\toks17
+\row@=\count97
+\column@=\count98
+\maxfields@=\count99
+\andhelp@=\toks18
+\eqnshift@=\dimen106
+\alignsep@=\dimen107
+\tagshift@=\dimen108
+\tagwidth@=\dimen109
+\totwidth@=\dimen110
+\lineht@=\dimen111
+\@envbody=\toks19
+\multlinegap=\skip44
+\multlinetaggap=\skip45
+\mathdisplay@stack=\toks20
+LaTeX Info: Redefining \[ on input line 2665.
+LaTeX Info: Redefining \] on input line 2666.
+) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
+Package: amssymb 2013/01/14 v3.01 AMS font symbols
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
+Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
+\symAMSa=\mathgroup4
+\symAMSb=\mathgroup5
+LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
+(Font) U/euf/m/n --> U/euf/b/n on input line 106.
+)) (/usr/share/texlive/texmf-dist/tex/latex/base/alltt.sty
+Package: alltt 1997/06/16 v2.0g defines alltt environment
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/indentfirst.sty
+Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
+Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
+\col@sep=\dimen112
+\extrarowheight=\dimen113
+\NC@list=\toks21
+\extratabsurround=\skip46
+\backup@length=\skip47
+) (/usr/share/texlive/texmf-dist/tex/latex/footmisc/footmisc.sty
+Package: footmisc 2011/06/06 v5.5b a miscellany of footnote facilities
+\FN@temptoken=\toks22
+\footnotemargin=\dimen114
+\c@pp@next@reset=\count100
+\c@@fnserial=\count101
+Package footmisc Info: Declaring symbol style bringhurst on input line 855.
+Package footmisc Info: Declaring symbol style chicago on input line 863.
+Package footmisc Info: Declaring symbol style wiley on input line 872.
+Package footmisc Info: Declaring symbol style lamport-robust on input line 883.
+
+Package footmisc Info: Declaring symbol style lamport* on input line 903.
+Package footmisc Info: Declaring symbol style lamport*-robust on input line 924
+.
+) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
+Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
+Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
+\KV@toks@=\toks23
+) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
+Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
+File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
+)
+Package graphics Info: Driver file: pdftex.def on input line 91.
+(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
+File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
+Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
+) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
+Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
+)
+\Gread@gobject=\count102
+))
+\Gin@req@height=\dimen115
+\Gin@req@width=\dimen116
+) (/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
+Package: calc 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
+\calc@Acount=\count103
+\calc@Bcount=\count104
+\calc@Adimen=\dimen117
+\calc@Bdimen=\dimen118
+\calc@Askip=\skip48
+\calc@Bskip=\skip49
+LaTeX Info: Redefining \setlength on input line 76.
+LaTeX Info: Redefining \addtolength on input line 77.
+\calc@Ccount=\count105
+\calc@Cskip=\skip50
+) (/usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
+\fancy@headwidth=\skip51
+\f@ncyO@elh=\skip52
+\f@ncyO@erh=\skip53
+\f@ncyO@olh=\skip54
+\f@ncyO@orh=\skip55
+\f@ncyO@elf=\skip56
+\f@ncyO@erf=\skip57
+\f@ncyO@olf=\skip58
+\f@ncyO@orf=\skip59
+) (/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
+Package: geometry 2010/09/12 v5.6 Page Geometry
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
+Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
+Package ifpdf Info: pdfTeX in PDF mode is detected.
+) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifvtex.sty
+Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
+Package ifvtex Info: VTeX not detected.
+) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
+Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
+)
+\Gm@cnth=\count106
+\Gm@cntv=\count107
+\c@Gm@tempcnt=\count108
+\Gm@bindingoffset=\dimen119
+\Gm@wd@mp=\dimen120
+\Gm@odd@mp=\dimen121
+\Gm@even@mp=\dimen122
+\Gm@layoutwidth=\dimen123
+\Gm@layoutheight=\dimen124
+\Gm@layouthoffset=\dimen125
+\Gm@layoutvoffset=\dimen126
+\Gm@dimlist=\toks24
+) (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
+Package: hyperref 2012/11/06 v6.83m Hypertext links for LaTeX
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
+Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
+
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
+Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
+Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
+Package hobsub Info: Skipping package `infwarerr' (already loaded).
+Package hobsub Info: Skipping package `ltxcmds' (already loaded).
+Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
+Package ifluatex Info: LuaTeX not detected.
+Package hobsub Info: Skipping package `ifvtex' (already loaded).
+Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
+Package hobsub Info: Skipping package `ifpdf' (already loaded).
+Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
+Package etexcmds Info: Could not find \expanded.
+(etexcmds) That can mean that you are not using pdfTeX 1.50 or
+(etexcmds) that some package has redefined \expanded.
+(etexcmds) In the latter case, load this package earlier.
+Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
+Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
+Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
+)
+Package pdftexcmds Info: LuaTeX not detected.
+Package pdftexcmds Info: \pdf@primitive is available.
+Package pdftexcmds Info: \pdf@ifprimitive is available.
+Package pdftexcmds Info: \pdfdraftmode found.
+Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
+Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
+)
+Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
+Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
+)
+Package hobsub Info: Skipping package `hobsub' (already loaded).
+Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
+Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
+Package: xcolor-patch 2011/01/30 xcolor patch
+Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
+Package atveryend Info: \enddocument detected (standard20110627).
+Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
+Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
+Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
+) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/auxhook.sty
+Package: auxhook 2011/03/04 v1.3 Hooks for auxiliary files (HO)
+) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
+Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
+)
+\@linkdim=\dimen127
+\Hy@linkcounter=\count109
+\Hy@pagecounter=\count110
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
+File: pd1enc.def 2012/11/06 v6.83m Hyperref: PDFDocEncoding definition (HO)
+)
+\Hy@SavedSpaceFactor=\count111
+(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
+File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+)
+Package hyperref Info: Option `hyperfootnotes' set `false' on input line 4319.
+Package hyperref Info: Option `bookmarks' set `true' on input line 4319.
+Package hyperref Info: Option `linktocpage' set `false' on input line 4319.
+Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 431
+9.
+Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4319.
+Package hyperref Info: Option `bookmarksopen' set `true' on input line 4319.
+Package hyperref Info: Option `colorlinks' set `true' on input line 4319.
+Package hyperref Info: Hyper figures OFF on input line 4443.
+Package hyperref Info: Link nesting OFF on input line 4448.
+Package hyperref Info: Hyper index ON on input line 4451.
+Package hyperref Info: Plain pages OFF on input line 4458.
+Package hyperref Info: Backreferencing OFF on input line 4463.
+Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
+Package hyperref Info: Bookmarks ON on input line 4688.
+\c@Hy@tempcnt=\count112
+(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
+\Urlmuskip=\muskip11
+Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
+)
+LaTeX Info: Redefining \url on input line 5041.
+\XeTeXLinkMargin=\dimen128
+\Fld@menulength=\count113
+\Field@Width=\dimen129
+\Fld@charsize=\dimen130
+Package hyperref Info: Hyper figures OFF on input line 6295.
+Package hyperref Info: Link nesting OFF on input line 6300.
+Package hyperref Info: Hyper index ON on input line 6303.
+Package hyperref Info: backreferencing OFF on input line 6310.
+Package hyperref Info: Link coloring ON on input line 6313.
+Package hyperref Info: Link coloring with OCG OFF on input line 6320.
+Package hyperref Info: PDF/A mode OFF on input line 6325.
+LaTeX Info: Redefining \ref on input line 6365.
+LaTeX Info: Redefining \pageref on input line 6369.
+\Hy@abspage=\count114
+\c@Item=\count115
+)
+
+Package hyperref Message: Driver: hpdftex.
+
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
+File: hpdftex.def 2012/11/06 v6.83m Hyperref driver for pdfTeX
+\Fld@listcount=\count116
+\c@bookmark@seq@number=\count117
+(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
+Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
+Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
+82.
+)
+\Hy@SectionHShift=\skip60
+)
+\TmpLen=\skip61
+\c@SecNo=\count118
+(./47464-t.aux)
+\openout1 = `47464-t.aux'.
+
+LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 465.
+LaTeX Font Info: ... okay on input line 465.
+(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
+[Loading MPS to PDF converter (version 2006.09.02).]
+\scratchcounter=\count119
+\scratchdimen=\dimen131
+\scratchbox=\box28
+\nofMPsegments=\count120
+\nofMParguments=\count121
+\everyMPshowfont=\toks25
+\MPscratchCnt=\count122
+\MPscratchDim=\dimen132
+\MPnumerator=\count123
+\makeMPintoPDFobject=\count124
+\everyMPtoPDFconversion=\toks26
+)
+*geometry* driver: auto-detecting
+*geometry* detected driver: pdftex
+*geometry* verbose mode - [ preamble ] result:
+* driver: pdftex
+* paper: <default>
+* layout: <same size as paper>
+* layoutoffset:(h,v)=(0.0pt,0.0pt)
+* hratio: 1:1
+* modes: includehead includefoot twoside
+* h-part:(L,W,R)=(9.03375pt, 307.14749pt, 9.03375pt)
+* v-part:(T,H,B)=(1.26749pt, 466.58623pt, 1.90128pt)
+* \paperwidth=325.215pt
+* \paperheight=469.75499pt
+* \textwidth=307.14749pt
+* \textheight=404.71243pt
+* \oddsidemargin=-63.23624pt
+* \evensidemargin=-63.23624pt
+* \topmargin=-71.0025pt
+* \headheight=12.0pt
+* \headsep=19.8738pt
+* \topskip=12.0pt
+* \footskip=30.0pt
+* \marginparwidth=98.0pt
+* \marginparsep=7.0pt
+* \columnsep=10.0pt
+* \skip\footins=10.8pt plus 4.0pt minus 2.0pt
+* \hoffset=0.0pt
+* \voffset=0.0pt
+* \mag=1000
+* \@twocolumnfalse
+* \@twosidetrue
+* \@mparswitchtrue
+* \@reversemarginfalse
+* (1in=72.27pt=25.4mm, 1cm=28.453pt)
+
+\AtBeginShipoutBox=\box29
+(/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty
+Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
+File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+)
+Package color Info: Driver file: pdftex.def on input line 130.
+)
+Package hyperref Info: Link coloring ON on input line 465.
+(/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
+Package: nameref 2012/10/27 v2.43 Cross-referencing by name of section
+(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
+Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
+)
+\c@section@level=\count125
+)
+LaTeX Info: Redefining \ref on input line 465.
+LaTeX Info: Redefining \pageref on input line 465.
+LaTeX Info: Redefining \nameref on input line 465.
+(./47464-t.out) (./47464-t.out)
+\@outlinefile=\write3
+\openout3 = `47464-t.out'.
+
+
+Overfull \hbox (7.35703pt too wide) in paragraph at lines 475--475
+[]\OT1/cmtt/m/n/8 This eBook is for the use of anyone anywhere in the United St
+ates and most[]
+ []
+
+
+Overfull \hbox (7.35703pt too wide) in paragraph at lines 477--477
+[]\OT1/cmtt/m/n/8 whatsoever. You may copy it, give it away or re-use it under
+ the terms of[]
+ []
+
+
+Overfull \hbox (15.85715pt too wide) in paragraph at lines 479--479
+[]\OT1/cmtt/m/n/8 www.gutenberg.org. If you are not located in the United Stat
+es, you'll have[]
+ []
+
+
+Overfull \hbox (28.60733pt too wide) in paragraph at lines 480--480
+[]\OT1/cmtt/m/n/8 to check the laws of the country where you are located before
+ using this ebook.[]
+ []
+
+LaTeX Font Info: Try loading font information for U+msa on input line 497.
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
+File: umsa.fd 2013/01/14 v3.01 AMS symbols A
+)
+LaTeX Font Info: Try loading font information for U+msb on input line 497.
+(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
+File: umsb.fd 2013/01/14 v3.01 AMS symbols B
+) [1
+
+{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2] [3] [1
+
+
+
+
+] [2]
+LaTeX Font Info: Try loading font information for OMS+cmr on input line 664.
+
+(/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
+File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+)
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <8> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 664.
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <7> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 664.
+[3] [4] (./47464-t.toc
+Underfull \hbox (badness 1917) in paragraph at lines 18--18
+[][]| \OT1/cmr/m/sc/10.95 De-vel-op-ment of the Quan-tum The-ory of
+ []
+
+[5
+
+
+
+])
+\tf@toc=\write4
+\openout4 = `47464-t.toc'.
+
+[6] [7] [8]
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 788.
+[1
+
+
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
+[19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30
+
+
+] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] <./imag
+es/fig_p30.pdf, id=538, 154.17601pt x 62.8749pt>
+File: ./images/fig_p30.pdf Graphic file (type pdf)
+<use ./images/fig_p30.pdf>
+Package pdftex.def Info: ./images/fig_p30.pdf used on input line 2042.
+(pdftex.def) Requested size: 291.78917pt x 119.00972pt.
+[45] [46 <./images/fig_p30.pdf>] [47] [48] [49] [50] [51] [52] [53] [54] [55] [
+56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]
+[72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87]
+[88] [89] [90] [91] [92
+
+
+] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] <./images/fi
+g_p70.pdf, id=936, 154.17601pt x 157.5486pt>
+File: ./images/fig_p70.pdf Graphic file (type pdf)
+<use ./images/fig_p70.pdf>
+Package pdftex.def Info: ./images/fig_p70.pdf used on input line 3686.
+(pdftex.def) Requested size: 291.78917pt x 298.20833pt.
+[105] [106 <./images/fig_p70.pdf>] [107] [108] [109] [110] [111] [112] [113] [1
+14] [115] [116] [117] <./images/fig_p79.pdf, id=1023, 154.17601pt x 62.8749pt>
+File: ./images/fig_p79.pdf Graphic file (type pdf)
+<use ./images/fig_p79.pdf>
+Package pdftex.def Info: ./images/fig_p79.pdf used on input line 4026.
+(pdftex.def) Requested size: 291.78917pt x 119.00972pt.
+[118] [119 <./images/fig_p79.pdf>] [120] [121] [122] [123] [124] [125] [126] [1
+27] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [14
+0] [141] [142] [143] <./images/fig_p97.pdf, id=1170, 154.17601pt x 64.3203pt>
+File: ./images/fig_p97.pdf Graphic file (type pdf)
+<use ./images/fig_p97.pdf>
+Package pdftex.def Info: ./images/fig_p97.pdf used on input line 4747.
+(pdftex.def) Requested size: 291.78917pt x 121.74559pt.
+[144] [145] [146 <./images/fig_p97.pdf>] [147] [148] [149] [150]
+Underfull \hbox (badness 1292) in paragraph at lines 4867--4888
+ [][]\OT1/cmr/bx/n/12 Fourth Pe-riod. Potassium---Krypton. \OT1/cmr/m/n/12 In t
+he
+ []
+
+<./images/fig_p102.pdf, id=1215, 154.17601pt x 133.2177pt>
+File: ./images/fig_p102.pdf Graphic file (type pdf)
+<use ./images/fig_p102.pdf>
+Package pdftex.def Info: ./images/fig_p102.pdf used on input line 4930.
+(pdftex.def) Requested size: 291.78917pt x 252.15475pt.
+[151] [152] [153] [154 <./images/fig_p102.pdf>] [155] [156] [157] [158] [159] [
+160] [161] [162] [163] [164] [165] [166] [167] [168] [169] <./images/fig_p113.p
+df, id=1314, 154.17601pt x 69.6201pt>
+File: ./images/fig_p113.pdf Graphic file (type pdf)
+<use ./images/fig_p113.pdf>
+Package pdftex.def Info: ./images/fig_p113.pdf used on input line 5354.
+(pdftex.def) Requested size: 291.78917pt x 131.77707pt.
+[170 <./images/fig_p113.pdf>] [171] [172] [173] [174] [175] [176] [177] [178] [
+179] [180] [181] [182] [183] <./images/fig_p123.pdf, id=1395, 154.17601pt x 137
+.5539pt>
+File: ./images/fig_p123.pdf Graphic file (type pdf)
+<use ./images/fig_p123.pdf>
+Package pdftex.def Info: ./images/fig_p123.pdf used on input line 5741.
+(pdftex.def) Requested size: 291.78917pt x 260.3623pt.
+[184] [185 <./images/fig_p123.pdf>] <./images/fig_p124.pdf, id=1420, 154.17601p
+t x 93.951pt>
+File: ./images/fig_p124.pdf Graphic file (type pdf)
+<use ./images/fig_p124.pdf>
+Package pdftex.def Info: ./images/fig_p124.pdf used on input line 5764.
+(pdftex.def) Requested size: 291.78917pt x 177.83067pt.
+[186 <./images/fig_p124.pdf>] [187] [188] [189] [1
+
+
+]
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5902--5902
+[]\OT1/cmtt/m/n/8 1.C. The Project Gutenberg Literary Archive Foundation ("the
+ Foundation"[]
+ []
+
+
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5907--5907
+[]\OT1/cmtt/m/n/8 located in the United States, we do not claim a right to prev
+ent you from[]
+ []
+
+
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5912--5912
+[]\OT1/cmtt/m/n/8 freely sharing Project Gutenberg-tm works in compliance with
+the terms of[]
+ []
+
+[2] [3]
+Overfull \hbox (3.10696pt too wide) in paragraph at lines 5975--5975
+[]\OT1/cmtt/m/n/8 posted on the official Project Gutenberg-tm web site (www.gut
+enberg.org),[]
+ []
+
+[4] [5] [6] [7] [8]
+Package atveryend Info: Empty hook `BeforeClearDocument' on input line 6204.
+[9]
+Package atveryend Info: Empty hook `AfterLastShipout' on input line 6204.
+(./47464-t.aux)
+Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 6204.
+
+ *File List*
+ book.cls 2007/10/19 v1.4h Standard LaTeX document class
+ bk12.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
+inputenc.sty 2008/03/30 v1.1d Input encoding file
+ latin1.def 2008/03/30 v1.1d Input encoding file
+ ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+ amsmath.sty 2013/01/14 v2.14 AMS math features
+ amstext.sty 2000/06/29 v2.01
+ amsgen.sty 1999/11/30 v2.0
+ amsbsy.sty 1999/11/29 v1.2d
+ amsopn.sty 1999/12/14 v2.01 operator names
+ amssymb.sty 2013/01/14 v3.01 AMS font symbols
+amsfonts.sty 2013/01/14 v3.01 Basic AMSFonts support
+ alltt.sty 1997/06/16 v2.0g defines alltt environment
+indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC)
+ array.sty 2008/09/09 v2.4c Tabular extension package (FMi)
+footmisc.sty 2011/06/06 v5.5b a miscellany of footnote facilities
+graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+ keyval.sty 1999/03/16 v1.13 key=value parser (DPC)
+graphics.sty 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+ trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
+graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
+ pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
+infwarerr.sty 2010/04/08 v1.3 Providing info/warning/error messages (HO)
+ ltxcmds.sty 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
+ calc.sty 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
+fancyhdr.sty
+geometry.sty 2010/09/12 v5.6 Page Geometry
+ ifpdf.sty 2011/01/30 v2.3 Provides the ifpdf switch (HO)
+ ifvtex.sty 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
+ ifxetex.sty 2010/09/12 v0.6 Provides ifxetex conditional
+hyperref.sty 2012/11/06 v6.83m Hypertext links for LaTeX
+hobsub-hyperref.sty 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
+hobsub-generic.sty 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
+ hobsub.sty 2012/05/28 v1.13 Construct package bundles (HO)
+ifluatex.sty 2010/03/01 v1.3 Provides the ifluatex switch (HO)
+ intcalc.sty 2007/09/27 v1.1 Expandable calculations with integers (HO)
+etexcmds.sty 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
+kvsetkeys.sty 2012/04/25 v1.16 Key value parser (HO)
+kvdefinekeys.sty 2011/04/07 v1.3 Define keys (HO)
+pdftexcmds.sty 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO)
+pdfescape.sty 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
+bigintcalc.sty 2012/04/08 v1.3 Expandable calculations on big integers (HO)
+ bitset.sty 2011/01/30 v1.1 Handle bit-vector datatype (HO)
+uniquecounter.sty 2011/01/30 v1.2 Provide unlimited unique counter (HO)
+letltxmacro.sty 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
+ hopatch.sty 2012/05/28 v1.2 Wrapper for package hooks (HO)
+xcolor-patch.sty 2011/01/30 xcolor patch
+atveryend.sty 2011/06/30 v1.8 Hooks at the very end of document (HO)
+atbegshi.sty 2011/10/05 v1.16 At begin shipout hook (HO)
+refcount.sty 2011/10/16 v3.4 Data extraction from label references (HO)
+ hycolor.sty 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
+ auxhook.sty 2011/03/04 v1.3 Hooks for auxiliary files (HO)
+kvoptions.sty 2011/06/30 v3.11 Key value format for package options (HO)
+ pd1enc.def 2012/11/06 v6.83m Hyperref: PDFDocEncoding definition (HO)
+hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+ url.sty 2013/09/16 ver 3.4 Verb mode for urls, etc.
+ hpdftex.def 2012/11/06 v6.83m Hyperref driver for pdfTeX
+rerunfilecheck.sty 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
+supp-pdf.mkii
+ color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+ color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+ nameref.sty 2012/10/27 v2.43 Cross-referencing by name of section
+gettitlestring.sty 2010/12/03 v1.4 Cleanup title references (HO)
+ 47464-t.out
+ 47464-t.out
+ umsa.fd 2013/01/14 v3.01 AMS symbols A
+ umsb.fd 2013/01/14 v3.01 AMS symbols B
+ omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+./images/fig_p30.pdf
+./images/fig_p70.pdf
+./images/fig_p79.pdf
+./images/fig_p97.pdf
+./images/fig_p102.pdf
+./images/fig_p113.pdf
+./images/fig_p123.pdf
+./images/fig_p124.pdf
+ ***********
+
+Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 6204.
+
+Package rerunfilecheck Info: File `47464-t.out' has not changed.
+(rerunfilecheck) Checksum: 941BAAB177EAA6E2EBF87B376707898A;1582.
+Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 6204.
+ )
+Here is how much of TeX's memory you used:
+ 7604 strings out of 493304
+ 106244 string characters out of 6139872
+ 214221 words of memory out of 5000000
+ 10478 multiletter control sequences out of 15000+600000
+ 17658 words of font info for 68 fonts, out of 8000000 for 9000
+ 959 hyphenation exceptions out of 8191
+ 28i,12n,44p,345b,485s stack positions out of 5000i,500n,10000p,200000b,80000s
+</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></us
+r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/sha
+re/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/tex
+live/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb></usr/share/texlive/t
+exmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/share/texlive/texmf-di
+st/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/font
+s/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1
+/public/amsfonts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public
+/amsfonts/cm/cmr8.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfont
+s/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/c
+msy6.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pf
+b></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb></usr
+/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share
+/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti12.pfb></usr/share/texli
+ve/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb></usr/share/texlive/tex
+mf-dist/fonts/type1/public/amsfonts/cm/cmtt8.pfb>
+Output written on 47464-t.pdf (209 pages, 1116135 bytes).
+PDF statistics:
+ 1651 PDF objects out of 1728 (max. 8388607)
+ 1379 compressed objects within 14 object streams
+ 479 named destinations out of 1000 (max. 500000)
+ 193 words of extra memory for PDF output out of 10000 (max. 10000000)
+
diff --git a/47464-t/old/47464-t.zip b/47464-t/old/47464-t.zip
new file mode 100644
index 0000000..2b8e1e4
--- /dev/null
+++ b/47464-t/old/47464-t.zip
Binary files differ
diff --git a/LICENSE.txt b/LICENSE.txt
new file mode 100644
index 0000000..6312041
--- /dev/null
+++ b/LICENSE.txt
@@ -0,0 +1,11 @@
+This eBook, including all associated images, markup, improvements,
+metadata, and any other content or labor, has been confirmed to be
+in the PUBLIC DOMAIN IN THE UNITED STATES.
+
+Procedures for determining public domain status are described in
+the "Copyright How-To" at https://www.gutenberg.org.
+
+No investigation has been made concerning possible copyrights in
+jurisdictions other than the United States. Anyone seeking to utilize
+this eBook outside of the United States should confirm copyright
+status under the laws that apply to them.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..c64c344
--- /dev/null
+++ b/README.md
@@ -0,0 +1,2 @@
+Project Gutenberg (https://www.gutenberg.org) public repository for
+eBook #47464 (https://www.gutenberg.org/ebooks/47464)