diff options
| -rw-r--r-- | .gitattributes | 3 | ||||
| -rw-r--r-- | 25664-0.txt | 6592 | ||||
| -rw-r--r-- | 25664-0.zip | bin | 0 -> 96533 bytes | |||
| -rw-r--r-- | 25664-8.txt | 6591 | ||||
| -rw-r--r-- | 25664-8.zip | bin | 0 -> 95818 bytes | |||
| -rw-r--r-- | 25664-h.zip | bin | 0 -> 219377 bytes | |||
| -rw-r--r-- | 25664-h/25664-h.htm | 12561 | ||||
| -rw-r--r-- | 25664-h/images/d_curl.gif | bin | 0 -> 203 bytes | |||
| -rw-r--r-- | 25664-h/images/finger.gif | bin | 0 -> 190 bytes | |||
| -rw-r--r-- | 25664-h/images/finger_left.gif | bin | 0 -> 193 bytes | |||
| -rw-r--r-- | 25664-h/images/hand_count.png | bin | 0 -> 63684 bytes | |||
| -rw-r--r-- | 25664-h/images/l_pair.gif | bin | 0 -> 212 bytes | |||
| -rw-r--r-- | 25664-h/images/line.gif | bin | 0 -> 56 bytes | |||
| -rw-r--r-- | 25664-h/images/n_curl.gif | bin | 0 -> 179 bytes | |||
| -rw-r--r-- | 25664-h/images/num3_full.png | bin | 0 -> 483 bytes | |||
| -rw-r--r-- | 25664-h/images/num4_full.png | bin | 0 -> 534 bytes | |||
| -rw-r--r-- | 25664-h/images/num6_full.png | bin | 0 -> 553 bytes | |||
| -rw-r--r-- | 25664-h/images/num9_full.png | bin | 0 -> 534 bytes | |||
| -rw-r--r-- | 25664-h/images/num_134.png | bin | 0 -> 392 bytes | |||
| -rw-r--r-- | 25664-h/images/title_app1.png | bin | 0 -> 4785 bytes | |||
| -rw-r--r-- | 25664-h/images/title_app2.png | bin | 0 -> 2168 bytes | |||
| -rw-r--r-- | 25664-h/images/title_art.png | bin | 0 -> 6722 bytes | |||
| -rw-r--r-- | 25664-h/images/title_count.png | bin | 0 -> 3216 bytes | |||
| -rw-r--r-- | 25664-h/images/title_craft.png | bin | 0 -> 2657 bytes | |||
| -rw-r--r-- | 25664-h/images/title_hand.png | bin | 0 -> 4709 bytes | |||
| -rw-r--r-- | 25664-h/images/title_inner.png | bin | 0 -> 3693 bytes | |||
| -rw-r--r-- | 25664-h/images/title_main.png | bin | 0 -> 8309 bytes | |||
| -rw-r--r-- | LICENSE.txt | 11 | ||||
| -rw-r--r-- | README.md | 2 |
29 files changed, 25760 insertions, 0 deletions
diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..6833f05 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,3 @@ +* text=auto +*.txt text +*.md text diff --git a/25664-0.txt b/25664-0.txt new file mode 100644 index 0000000..b0f4b1d --- /dev/null +++ b/25664-0.txt @@ -0,0 +1,6592 @@ +Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + + +Title: The Earliest Arithmetics in English + +Author: Anonymous + +Editor: Robert Steele + +Release Date: June 1, 2008 [EBook #25664] + +Language: English + +Character set encoding: UTF-8 + +*** START OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH *** + + + + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + + + + +[Transcriber’s Note: + +This e-text includes characters that will only display in UTF-8 +(Unicode) text readers: + + ȝ, ſ (yogh, long s) + ɳ, łł (n with curl, crossed l: see below) + φ (Greek phi: see below) + ʷ (small raised “w”) + +If any of these characters do not display properly, or if the +apostrophes and quotation marks in this paragraph appear as garbage, +make sure your text reader’s “character set” or “file encoding” is set +to Unicode (UTF-8). You may also need to change the default font. + +In _The Crafte of Nombrynge_, final “n” was sometimes written with an +extra curl. It has been rendered as ɳ for visual effect; the character +is not intended to convey phonetic information. In the same selection, +the numeral “0” was sometimes printed as Greek φ (phi); this has been +retained for the e-text. Double “l” with a line is shown as łł. The +first few occurrences of “d” (for “pence”) were printed with a +decorative curl. The letter is shown with the same “d’” used in the +remainder of the text. + +The word “withdraw” or “w{i}t{h}draw” was inconsistently hyphenated; +it was left as printed, and line-end hyphens were retained. +Superscripts are shown with carets as ^e. Except for [Illustration] +markers and similar, all brackets are in the original. + +Individual letters were italicized to show expanded abbreviations; these +are shown in br{ac}es. Other italicized words are shown conventionally +with _lines_, boldface with +marks+. When a footnote called for added +text, the addition is shown in the body text with [[double brackets]]. + +The original text contained at least five types of marginal note. +Details are given at the end of the e-text, followed by a listing of +typographical errors.] + + + * * * * * + * * * * + * * * * * + + + The Earliest Arithmetics + in English + + + Early English Text Society. + + Extra Series, No. CXVIII. + + 1922 (for 1916). + + + + + THE EARLIEST ARITHMETICS + IN ENGLISH + + Edited With Introduction + + by + + ROBERT STEELE + + London: + Published for the Early English Text Society + By Humphrey Milford, Oxford University Press, + Amen Corner, E.C. 4. + 1922. + + + + + [Titles (list added by transcriber): + + The Crafte of Nombrynge + The Art of Nombryng + Accomptynge by Counters + The arte of nombrynge by the hande + APP. I. A Treatise on the Numeration of Algorism + APP. II. Carmen de Algorismo] + + + + +INTRODUCTION + + +The number of English arithmetics before the sixteenth century is very +small. This is hardly to be wondered at, as no one requiring to use even +the simplest operations of the art up to the middle of the fifteenth +century was likely to be ignorant of Latin, in which language there were +several treatises in a considerable number of manuscripts, as shown by +the quantity of them still in existence. Until modern commerce was +fairly well established, few persons required more arithmetic than +addition and subtraction, and even in the thirteenth century, scientific +treatises addressed to advanced students contemplated the likelihood of +their not being able to do simple division. On the other hand, the study +of astronomy necessitated, from its earliest days as a science, +considerable skill and accuracy in computation, not only in the +calculation of astronomical tables but in their use, a knowledge of +which latter was fairly common from the thirteenth to the sixteenth +centuries. + +The arithmetics in English known to me are:-- + + (1) Bodl. 790 G. VII. (2653) f. 146-154 (15th c.) _inc._ “Of angrym + ther be IX figures in numbray . . .” A mere unfinished fragment, + only getting as far as Duplation. + + (2) Camb. Univ. LI. IV. 14 (III.) f. 121-142 (15th c.) _inc._ + “Al maner of thyngis that prosedeth ffro the frist begynnyng . . .” + + (3) Fragmentary passages or diagrams in Sloane 213 f. 120-3 + (a fourteenth-century counting board), Egerton 2852 f. 5-13, + Harl. 218 f. 147 and + + (4) The two MSS. here printed; Eg. 2622 f. 136 and Ashmole 396 + f. 48. All of these, as the language shows, are of the fifteenth + century. + +The CRAFTE OF NOMBRYNGE is one of a large number of scientific +treatises, mostly in Latin, bound up together as Egerton MS. 2622 in +the British Museum Library. It measures 7” × 5”, 29-30 lines to the +page, in a rough hand. The English is N.E. Midland in dialect. It is a +translation and amplification of one of the numerous glosses on the _de +algorismo_ of Alexander de Villa Dei (c. 1220), such as that of Thomas +of Newmarket contained in the British Museum MS. Reg. 12, E. 1. +A fragment of another translation of the same gloss was printed by +Halliwell in his _Rara Mathematica_ (1835) p. 29.[1*] It corresponds, as +far as p. 71, l. 2, roughly to p. 3 of our version, and from thence to +the end p. 2, ll. 16-40. + + [Footnote 1*: Halliwell printed the two sides of his leaf in the + wrong order. This and some obvious errors of transcription-- + ‘ferye’ for ‘ferthe,’ ‘lest’ for ‘left,’ etc., have not been + corrected in the reprint on pp. 70-71.] + +The ART OF NOMBRYNG is one of the treatises bound up in the Bodleian MS. +Ashmole 396. It measures 11½” × 17¾”, and is written with thirty-three +lines to the page in a fifteenth century hand. It is a translation, +rather literal, with amplifications of the _de arte numerandi_ +attributed to John of Holywood (Sacrobosco) and the translator had +obviously a poor MS. before him. The _de arte numerandi_ was printed in +1488, 1490 (_s.n._), 1501, 1503, 1510, 1517, 1521, 1522, 1523, 1582, and +by Halliwell separately and in his two editions of _Rara Mathematica_, +1839 and 1841, and reprinted by Curze in 1897. + +Both these tracts are here printed for the first time, but the first +having been circulated in proof a number of years ago, in an endeavour +to discover other manuscripts or parts of manuscripts of it, Dr. David +Eugene Smith, misunderstanding the position, printed some pages in a +curious transcript with four facsimiles in the _Archiv für die +Geschichte der Naturwissenschaften und der Technik_, 1909, and invited +the scientific world to take up the “not unpleasant task” of editing it. + +ACCOMPTYNGE BY COUNTERS is reprinted from the 1543 edition of Robert +Record’s Arithmetic, printed by R. Wolfe. It has been reprinted within +the last few years by Mr. F. P. Barnard, in his work on Casting +Counters. It is the earliest English treatise we have on this variety of +the Abacus (there are Latin ones of the end of the fifteenth century), +but there is little doubt in my mind that this method of performing the +simple operations of arithmetic is much older than any of the pen +methods. At the end of the treatise there follows a note on merchants’ +and auditors’ ways of setting down sums, and lastly, a system of digital +numeration which seems of great antiquity and almost world-wide +extension. + +After the fragment already referred to, I print as an appendix the +‘Carmen de Algorismo’ of Alexander de Villa Dei in an enlarged and +corrected form. It was printed for the first time by Halliwell in +_Rara Mathemathica_, but I have added a number of stanzas from various +manuscripts, selecting various readings on the principle that the verses +were made to scan, aided by the advice of my friend Mr. Vernon Rendall, +who is not responsible for the few doubtful lines I have conserved. This +poem is at the base of all other treatises on the subject in medieval +times, but I am unable to indicate its sources. + + +THE SUBJECT MATTER. + +Ancient and medieval writers observed a distinction between the Science +and the Art of Arithmetic. The classical treatises on the subject, those +of Euclid among the Greeks and Boethius among the Latins, are devoted to +the Science of Arithmetic, but it is obvious that coeval with practical +Astronomy the Art of Calculation must have existed and have made +considerable progress. If early treatises on this art existed at all +they must, almost of necessity, have been in Greek, which was the +language of science for the Romans as long as Latin civilisation +existed. But in their absence it is safe to say that no involved +operations were or could have been carried out by means of the +alphabetic notation of the Greeks and Romans. Specimen sums have indeed +been constructed by moderns which show its possibility, but it is absurd +to think that men of science, acquainted with Egyptian methods and in +possession of the abacus,[2*] were unable to devise methods for its use. + + [Footnote 2*: For Egyptian use see Herodotus, ii. 36, Plato, _de + Legibus_, VII.] + + +THE PRE-MEDIEVAL INSTRUMENTS USED IN CALCULATION. + +The following are known:-- + +(1) A flat polished surface or tablets, strewn with sand, on which +figures were inscribed with a stylus. + +(2) A polished tablet divided longitudinally into nine columns (or more) +grouped in threes, with which counters were used, either plain or marked +with signs denoting the nine numerals, etc. + +(3) Tablets or boxes containing nine grooves or wires, in or on which +ran beads. + +(4) Tablets on which nine (or more) horizontal lines were marked, each +third being marked off. + +The only Greek counting board we have is of the fourth class and was +discovered at Salamis. It was engraved on a block of marble, and +measures 5 feet by 2½. Its chief part consists of eleven parallel lines, +the 3rd, 6th, and 9th being marked with a cross. Another section +consists of five parallel lines, and there are three rows of +arithmetical symbols. This board could only have been used with counters +(_calculi_), preferably unmarked, as in our treatise of _Accomptynge by +Counters_. + + +CLASSICAL ROMAN METHODS OF CALCULATION. + +We have proof of two methods of calculation in ancient Rome, one by the +first method, in which the surface of sand was divided into columns by a +stylus or the hand. Counters (_calculi_, or _lapilli_), which were kept +in boxes (_loculi_), were used in calculation, as we learn from Horace’s +schoolboys (Sat. 1. vi. 74). For the sand see Persius I. 131, “Nec qui +abaco numeros et secto in pulvere metas scit risisse,” Apul. Apolog. 16 +(pulvisculo), Mart. Capella, lib. vii. 3, 4, etc. Cicero says of an +expert calculator “eruditum attigisse pulverem,” (de nat. Deorum, +ii. 18). Tertullian calls a teacher of arithmetic “primus numerorum +arenarius” (de Pallio, _in fine_). The counters were made of various +materials, ivory principally, “Adeo nulla uncia nobis est eboris, etc.” +(Juv. XI. 131), sometimes of precious metals, “Pro calculis albis et +nigris aureos argenteosque habebat denarios” (Pet. Arb. Satyricon, 33). + +There are, however, still in existence four Roman counting boards of a +kind which does not appear to come into literature. A typical one is of +the third class. It consists of a number of transverse wires, broken at +the middle. On the left hand portion four beads are strung, on the right +one (or two). The left hand beads signify units, the right hand one five +units. Thus any number up to nine can be represented. This instrument is +in all essentials the same as the Swanpan or Abacus in use throughout +the Far East. The Russian stchota in use throughout Eastern Europe is +simpler still. The method of using this system is exactly the same as +that of _Accomptynge by Counters_, the right-hand five bead replacing +the counter between the lines. + + +THE BOETHIAN ABACUS. + +Between classical times and the tenth century we have little or no +guidance as to the art of calculation. Boethius (fifth century), at the +end of lib. II. of his _Geometria_ gives us a figure of an abacus of the +second class with a set of counters arranged within it. It has, however, +been contended with great probability that the whole passage is a tenth +century interpolation. As no rules are given for its use, the chief +value of the figure is that it gives the signs of the nine numbers, +known as the Boethian “apices” or “notae” (from whence our word +“notation”). To these we shall return later on. + + +THE ABACISTS. + +It would seem probable that writers on the calendar like Bede (A.D. 721) +and Helpericus (A.D. 903) were able to perform simple calculations; +though we are unable to guess their methods, and for the most part they +were dependent on tables taken from Greek sources. We have no early +medieval treatises on arithmetic, till towards the end of the tenth +century we find a revival of the study of science, centring for us round +the name of Gerbert, who became Pope as Sylvester II. in 999. His +treatise on the use of the Abacus was written (c. 980) to a friend +Constantine, and was first printed among the works of Bede in the Basle +(1563) edition of his works, I. 159, in a somewhat enlarged form. +Another tenth century treatise is that of Abbo of Fleury (c. 988), +preserved in several manuscripts. Very few treatises on the use of the +Abacus can be certainly ascribed to the eleventh century, but from the +beginning of the twelfth century their numbers increase rapidly, to +judge by those that have been preserved. + +The Abacists used a permanent board usually divided into twelve columns; +the columns were grouped in threes, each column being called an “arcus,” +and the value of a figure in it represented a tenth of what it would +have in the column to the left, as in our arithmetic of position. With +this board counters or jetons were used, either plain or, more probably, +marked with numerical signs, which with the early Abacists were the +“apices,” though counters from classical times were sometimes marked on +one side with the digital signs, on the other with Roman numerals. Two +ivory discs of this kind from the Hamilton collection may be seen at the +British Museum. Gerbert is said by Richer to have made for the purpose +of computation a thousand counters of horn; the usual number of a set of +counters in the sixteenth and seventeenth centuries was a hundred. + +Treatises on the Abacus usually consist of chapters on Numeration +explaining the notation, and on the rules for Multiplication and +Division. Addition, as far as it required any rules, came naturally +under Multiplication, while Subtraction was involved in the process of +Division. These rules were all that were needed in Western Europe in +centuries when commerce hardly existed, and astronomy was unpractised, +and even they were only required in the preparation of the calendar and +the assignments of the royal exchequer. In England, for example, when +the hide developed from the normal holding of a household into the unit +of taxation, the calculation of the geldage in each shire required a sum +in division; as we know from the fact that one of the Abacists proposes +the sum: “If 200 marks are levied on the county of Essex, which contains +according to Hugh of Bocland 2500 hides, how much does each hide +pay?”[3*] Exchequer methods up to the sixteenth century were founded on +the abacus, though when we have details later on, a different and +simpler form was used. + + [Footnote 3*: See on this Dr. Poole, _The Exchequer in the Twelfth + Century_, Chap. III., and Haskins, _Eng. Hist. Review_, 27, 101. + The hidage of Essex in 1130 was 2364 hides.] + +The great difficulty of the early Abacists, owing to the absence of a +figure representing zero, was to place their results and operations in +the proper columns of the abacus, especially when doing a division sum. +The chief differences noticeable in their works are in the methods for +this rule. Division was either done directly or by means of differences +between the divisor and the next higher multiple of ten to the divisor. +Later Abacists made a distinction between “iron” and “golden” methods of +division. The following are examples taken from a twelfth century +treatise. In following the operations it must be remembered that a +figure asterisked represents a counter taken from the board. A zero is +obviously not needed, and the result may be written down in words. + +(_a_) MULTIPLICATION. 4600 × 23. + + +-----------+-----------+ + | Thousands | | + +---+---+---+---+---+---+ + | H | T | U | H | T | U | + | u | e | n | u | e | n | + | n | n | i | n | n | i | + | d | s | t | d | s | t | + | r | | s | r | | s | + | e | | | e | | | + | d | | | d | | | + | s | | | s | | | + +---+---+---+---+---+---+ + | | | 4 | 6 | | | +Multiplicand.+ + +---+---+---+---+---+---+ + | | | 1 | 8 | | | 600 × 3. + | | 1 | 2 | | | | 4000 × 3. + | | 1 | 2 | | | | 600 × 20. + | | 8 | | | | | 4000 × 20. + +---+---+---+---+---+---+ + | 1 | | 5 | 8 | | | Total product. + +---+---+---+---+---+---+ + | | | | | 2 | 3 | +Multiplier.+ + +---+---+---+---+---+---+ + +(_b_) DIVISION: DIRECT. 100,000 ÷ 20,023. Here each counter in turn is a +separate divisor. + + +-----------+-----------+ + | Thousands | | + +---+---+---+---+---+---+ + | H.| T.| U.| H.| T.| U.| + +---+---+---+---+---+---+ + | | 2 | | | 2 | 3 | +Divisors.+ + +---+---+---+---+---+---+ + | | 2 | | | | | Place greatest divisor to right of dividend. + | 1 | | | | | | +Dividend.+ + | | 2 | | | | | Remainder. + | | | | 1 | | | + | | 1 | 9 | 9 | | | Another form of same. + | | | | | 8 | | Product of 1st Quotient and 20. + +---+---+---+---+---+---+ + | | 1 | 9 | 9 | 2 | | Remainder. + | | | | | 1 | 2 | Product of 1st Quotient and 3. + +---+---+---+---+---+---+ + | | 1 | 9 | 9 | | 8 | +Final remainder.+ + | | | | | | 4 | Quotient. + +---+---+---+---+---+---+ + +(_c_) DIVISION BY DIFFERENCES. 900 ÷ 8. Here we divide by (10-2). + + +---+---+---+-----+---+---+ + | | | | H. | T.| U.| + +---+---+---+-----+---+---+ + | | | | | | 2 | Difference. + | | | | | | 8 | Divisor. + +---+---+---+-----+---+---+ + | | | |[4*]9| | | +Dividend.+ + | | | |[4*]1| 8 | | Product of difference by 1st Quotient (9). + | | | | | 2 | | Product of difference by 2nd Quotient (1). + +---+---+---+-----+---+---+ + | | | |[4*]1| | | Sum of 8 and 2. + | | | | | 2 | | Product of difference by 3rd Quotient (1). + | | | | | | 4 | Product of difference by 4th Quot. (2). + | | | | | | | +Remainder.+ + +---+---+---+-----+---+---+ + | | | | | | 2 | 4th Quotient. + | | | | | 1 | | 3rd Quotient. + | | | | | 1 | | 2nd Quotient. + | | | | | 9 | | 1st Quotient. + +---+---+---+-----+---+---+ + | | | | 1 | 1 | 2 | +Quotient.+ (+Total of all four.+) + +---+---+---+-----+---+---+ + + [Footnote 4*: These figures are removed at the next step.] + +DIVISION. 7800 ÷ 166. + + +---------------+---------------+ + | Thousands | | + +----+----+-----+-----+----+----+ + | H. | T. | U. | H. | T. | U. | + +----+----+-----+-----+----+----+ + | | | | | 3 | 4 | Differences (making 200 trial + | | | | | | | divisor). + | | | | 1 | 6 | 6 | Divisors. + +----+----+-----+-----+----+----+ + | | |[4*]7| 8 | | | +Dividends.+ + | | | 1 | | | | Remainder of greatest dividend. + | | | | 1 | 2 | | Product of 1st difference (4) + | | | | | | | by 1st Quotient (3). + | | | | 9 | | | Product of 2nd difference (3) + | | | | | | | by 1st Quotient (3). + +----+----+-----+-----+----+----+ + | | |[4*]2| 8 | 2 | | New dividends. + | | | | 3 | 4 | | Product of 1st and 2nd difference + | | | | | | | by 2nd Quotient (1). + +----+----+-----+-----+----+----+ + | | |[4*]1| 1 | 6 | | New dividends. + | | | | | 2 | | Product of 1st difference by + | | | | | | | 3rd Quotient (5). + | | | | 1 | 5 | | Product of 2nd difference by + | | | | | | | 3rd Quotient (5). + +----+----+-----+-----+----+----+ + | | | |[4*]3| 3 | | New dividends. + | | | | 1 | | | Remainder of greatest dividend. + | | | | | 3 | 4 | Product of 1st and 2nd difference + | | | | | | | by 4th Quotient (1). + +----+----+-----+-----+----+----+ + | | | | 1 | 6 | 4 | +Remainder+ (less than divisor). + | | | | | | 1 | 4th Quotient. + | | | | | | 5 | 3rd Quotient. + | | | | | 1 | | 2nd Quotient. + | | | | | 3 | | 1st Quotient. + +----+----+-----+-----+----+----+ + | | | | | 4 | 6 | +Quotient.+ + +----+----+-----+-----+----+----+ + + [Footnote 4*: These figures are removed at the next step.] + +DIVISION. 8000 ÷ 606. + + +-------------+-----------+ + | Thousands | | + +---+---+-----+---+---+---+ + | H.| T.| U. | H.| T.| U.| + +---+---+-----+---+---+---+ + | | | | | 9 | | Difference (making 700 trial divisor). + | | | | | | 4 | Difference. + | | | | 6 | | 6 | Divisors. + +---+---+-----+---+---+---+ + | | |[4*]8| | | | +Dividend.+ + | | | 1 | | | | Remainder of dividend. + | | | | 9 | 4 | | Product of difference 1 and 2 with + | | | | | | | 1st Quotient (1). + +---+---+-----+---+---+---+ + | | |[4*]1| 9 | 4 | | New dividends. + | | | | 3 | | | Remainder of greatest dividend. + | | | | | 9 | 4 | Product of difference 1 and 2 with 2nd + | | | | | | | Quotient (1). + +---+---+-----+---+---+---+ + | | |[4*]1| 3 | 3 | 4 | New dividends. + | | | | 3 | | | Remainder of greatest dividend. + | | | | | 9 | 4 | Product of difference 1 and 2 with 3rd + | | | | | | | Quotient (1). + +---+---+-----+---+---+---+ + | | | | 7 | 2 | 8 | New dividends. + | | | | 6 | | 6 | Product of divisors by 4th Quotient (1). + +---+---+-----+---+---+---+ + | | | | 1 | 2 | 2 | +Remainder.+ + | | | | | | 1 | 4th Quotient. + | | | | | | 1 | 3rd Quotient. + | | | | | | 1 | 2nd Quotient. + | | | | | 1 | | 1st Quotient. + +---+---+-----+---+---+---+ + | | | | | 1 | 3 | +Quotient.+ + +---+---+-----+---+---+---+ + + [Footnote 4*: These figures are removed at the next step.] + +The chief Abacists are Gerbert (tenth century), Abbo, and Hermannus +Contractus (1054), who are credited with the revival of the art, +Bernelinus, Gerland, and Radulphus of Laon (twelfth century). We know as +English Abacists, Robert, bishop of Hereford, 1095, “abacum et lunarem +compotum et celestium cursum astrorum rimatus,” Turchillus Compotista +(Thurkil), and through him of Guilielmus R. . . . “the best of living +computers,” Gislebert, and Simonus de Rotellis (Simon of the Rolls). +They flourished most probably in the first quarter of the twelfth +century, as Thurkil’s treatise deals also with fractions. Walcher of +Durham, Thomas of York, and Samson of Worcester are also known as +Abacists. + +Finally, the term Abacists came to be applied to computers by manual +arithmetic. A MS. Algorithm of the thirteenth century (Sl. 3281, +f. 6, b), contains the following passage: “Est et alius modus secundum +operatores sive practicos, quorum unus appellatur Abacus; et modus ejus +est in computando per digitos et junctura manuum, et iste utitur ultra +Alpes.” + +In a composite treatise containing tracts written A.D. 1157 and 1208, on +the calendar, the abacus, the manual calendar and the manual abacus, we +have a number of the methods preserved. As an example we give the rule +for multiplication (Claud. A. IV., f. 54 vo). “Si numerus multiplicat +alium numerum auferatur differentia majoris a minore, et per residuum +multiplicetur articulus, et una differentia per aliam, et summa +proveniet.” Example, 8 × 7. The difference of 8 is 2, of 7 is 3, the +next article being 10; 7 - 2 is 5. 5 × 10 = 50; 2 × 3 = 6. 50 + 6 = 56 +answer. The rule will hold in such cases as 17 × 15 where the article +next higher is the same for both, _i.e._, 20; but in such a case as +17 × 9 the difference for each number must be taken from the higher +article, _i.e._, the difference of 9 will be 11. + + +THE ALGORISTS. + +Algorism (augrim, augrym, algram, agram, algorithm), owes its name to +the accident that the first arithmetical treatise translated from the +Arabic happened to be one written by Al-Khowarazmi in the early ninth +century, “de numeris Indorum,” beginning in its Latin form “Dixit +Algorismi. . . .” The translation, of which only one MS. is known, was +made about 1120 by Adelard of Bath, who also wrote on the Abacus and +translated with a commentary Euclid from the Arabic. It is probable that +another version was made by Gerard of Cremona (1114-1187); the number of +important works that were not translated more than once from the Arabic +decreases every year with our knowledge of medieval texts. A few lines +of this translation, as copied by Halliwell, are given on p. 72, note 2. +Another translation still seems to have been made by Johannes +Hispalensis. + +Algorism is distinguished from Abacist computation by recognising seven +rules, Addition, Subtraction, Duplation, Mediation, Multiplication, +Division, and Extraction of Roots, to which were afterwards added +Numeration and Progression. It is further distinguished by the use of +the zero, which enabled the computer to dispense with the columns of the +Abacus. It obviously employs a board with fine sand or wax, and later, +as a substitute, paper or parchment; slate and pencil were also used in +the fourteenth century, how much earlier is unknown.[5*] Algorism +quickly ousted the Abacus methods for all intricate calculations, being +simpler and more easily checked: in fact, the astronomical revival of +the twelfth and thirteenth centuries would have been impossible without +its aid. + + [Footnote 5*: Slates are mentioned by Chaucer, and soon after + (1410) Prosdocimo de Beldamandi speaks of the use of a “lapis” + for making notes on by calculators.] + +The number of Latin Algorisms still in manuscript is comparatively +large, but we are here only concerned with two--an Algorism in prose +attributed to Sacrobosco (John of Holywood) in the colophon of a Paris +manuscript, though this attribution is no longer regarded as conclusive, +and another in verse, most probably by Alexander de Villedieu (Villa +Dei). Alexander, who died in 1240, was teaching in Paris in 1209. His +verse treatise on the Calendar is dated 1200, and it is to that period +that his Algorism may be attributed; Sacrobosco died in 1256 and quotes +the verse Algorism. Several commentaries on Alexander’s verse treatise +were composed, from one of which our first tractate was translated, and +the text itself was from time to time enlarged, sections on proofs and +on mental arithmetic being added. We have no indication of the source on +which Alexander drew; it was most likely one of the translations of +Al-Khowarasmi, but he has also the Abacists in mind, as shewn by +preserving the use of differences in multiplication. His treatise, first +printed by Halliwell-Phillipps in his _Rara Mathematica_, is adapted for +use on a board covered with sand, a method almost universal in the +thirteenth century, as some passages in the algorism of that period +already quoted show: “Est et alius modus qui utitur apud Indos, et +doctor hujusmodi ipsos erat quidem nomine Algus. Et modus suus erat in +computando per quasdam figuras scribendo in pulvere. . . .” “Si +voluerimus depingere in pulvere predictos digitos secundum consuetudinem +algorismi . . .” “et sciendum est quod in nullo loco minutorum sive +secundorum . . . in pulvere debent scribi plusquam sexaginta.” + + +MODERN ARITHMETIC. + +Modern Arithmetic begins with Leonardi Fibonacci’s treatise “de Abaco,” +written in 1202 and re-written in 1228. It is modern rather in the range +of its problems and the methods of attack than in mere methods of +calculation, which are of its period. Its sole interest as regards the +present work is that Leonardi makes use of the digital signs described +in Record’s treatise on _The arte of nombrynge by the hand_ in mental +arithmetic, calling it “modus Indorum.” Leonardo also introduces the +method of proof by “casting out the nines.” + + +DIGITAL ARITHMETIC. + +The method of indicating numbers by means of the fingers is of +considerable age. The British Museum possesses two ivory counters marked +on one side by carelessly scratched Roman numerals IIIV and VIIII, and +on the other by carefully engraved digital signs for 8 and 9. Sixteen +seems to have been the number of a complete set. These counters were +either used in games or for the counting board, and the Museum ones, +coming from the Hamilton collection, are undoubtedly not later than the +first century. Frohner has published in the _Zeitschrift des Münchener +Alterthumsvereins_ a set, almost complete, of them with a Byzantine +treatise; a Latin treatise is printed among Bede’s works. The use of +this method is universal through the East, and a variety of it is found +among many of the native races in Africa. In medieval Europe it was +almost restricted to Italy and the Mediterranean basin, and in the +treatise already quoted (Sloane 3281) it is even called the Abacus, +perhaps a memory of Fibonacci’s work. + +Methods of calculation by means of these signs undoubtedly have existed, +but they were too involved and liable to error to be much used. + + +THE USE OF “ARABIC” FIGURES. + +It may now be regarded as proved by Bubnov that our present numerals are +derived from Greek sources through the so-called Boethian “apices,” +which are first found in late tenth century manuscripts. That they were +not derived directly from the Arabic seems certain from the different +shapes of some of the numerals, especially the 0, which stands for 5 in +Arabic. Another Greek form existed, which was introduced into Europe by +John of Basingstoke in the thirteenth century, and is figured by Matthew +Paris (V. 285); but this form had no success. The date of the +introduction of the zero has been hotly debated, but it seems obvious +that the twelfth century Latin translators from the Arabic were +perfectly well acquainted with the system they met in their Arabic text, +while the earliest astronomical tables of the thirteenth century I have +seen use numbers of European and not Arabic origin. The fact that Latin +writers had a convenient way of writing hundreds and thousands without +any cyphers probably delayed the general use of the Arabic notation. +Dr. Hill has published a very complete survey of the various forms +of numerals in Europe. They began to be common at the middle of the +thirteenth century and a very interesting set of family notes concerning +births in a British Museum manuscript, Harl. 4350 shows their extension. +The first is dated Mij^c. lviii., the second Mij^c. lxi., the third +Mij^c. 63, the fourth 1264, and the fifth 1266. Another example is given +in a set of astronomical tables for 1269 in a manuscript of Roger +Bacon’s works, where the scribe began to write MCC6. and crossed out +the figures, substituting the “Arabic” form. + + +THE COUNTING BOARD. + +The treatise on pp. 52-65 is the only one in English known on the +subject. It describes a method of calculation which, with slight +modifications, is current in Russia, China, and Japan, to-day, though it +went out of use in Western Europe by the seventeenth century. In Germany +the method is called “Algorithmus Linealis,” and there are several +editions of a tract under this name (with a diagram of the counting +board), printed at Leipsic at the end of the fifteenth century and the +beginning of the sixteenth. They give the nine rules, but “Capitulum de +radicum extractione ad algoritmum integrorum reservato, cujus species +per ciffrales figuras ostenduntur ubi ad plenum de hac tractabitur.” The +invention of the art is there attributed to Appulegius the philosopher. + +The advantage of the counting board, whether permanent or constructed by +chalking parallel lines on a table, as shown in some sixteenth-century +woodcuts, is that only five counters are needed to indicate the number +nine, counters on the lines representing units, and those in the spaces +above representing five times those on the line below. The Russian +abacus, the “tchatui” or “stchota” has ten beads on the line; the +Chinese and Japanese “Swanpan” economises by dividing the line into two +parts, the beads on one side representing five times the value of those +on the other. The “Swanpan” has usually many more lines than the +“stchota,” allowing for more extended calculations, see Tylor, +_Anthropology_ (1892), p. 314. + +Record’s treatise also mentions another method of counter notation +(p. 64) “merchants’ casting” and “auditors’ casting.” These were adapted +for the usual English method of reckoning numbers up to 200 by scores. +This method seems to have been used in the Exchequer. A counting board +for merchants’ use is printed by Halliwell in _Rara Mathematica_ (p. 72) +from Sloane MS. 213, and two others are figured in Egerton 2622 f. 82 +and f. 83. The latter is said to be “novus modus computandi secundum +inventionem Magistri Thome Thorleby,” and is in principle, the same as +the “Swanpan.” + +The Exchequer table is described in the _Dialogus de Scaccario_ (Oxford, +1902), p. 38. + + + + ++The Earliest Arithmetics in English.+ + + + + ++The Crafte of Nombrynge+ + +_Egerton 2622._ + + + [*leaf 136a] + + Hec algorism{us} ars p{re}sens dicit{ur}; in qua + Talib{us} indor{um} fruim{ur} bis qui{n}q{ue} figuris. + + [Sidenote: A derivation of Algorism. Another derivation of the word.] + +This boke is called þe boke of algorym, or Augrym aft{er} lewd{er} vse. +And þis boke tretys þe Craft of Nombryng, þe quych crafte is called also +Algorym. Ther was a kyng of Inde, þe quich heyth Algor, & he made þis +craft. And aft{er} his name he called hit algory{m}; or els anoþ{er} +cause is quy it is called Algorym, for þe latyn word of hit s. +Algorism{us} com{es} of Algos, grece, q{uid} e{st} ars, latine, craft oɳ +englis, and rides, q{uid} e{st} {nu}me{rus}, latine, A nomb{ur} oɳ +englys, inde d{icitu}r Algorism{us} p{er} addic{i}one{m} hui{us} sillabe +m{us} & subtracc{i}onem d & e, q{ua}si ars num{er}andi. ¶ fforthermor{e} +ȝe most vnd{ir}stonde þ{a}t in þis craft ben vsid teen figurys, as here +ben{e} writen for ensampul, φ 9 8 7 6 5 4 3 2 1. ¶ Expone þe too +v{er}sus afor{e}: this p{re}sent craft ys called Algorism{us}, in þe +quych we vse teen signys of Inde. Questio. ¶ Why teɳ fyguris of Inde? +Solucio. for as I haue sayd afore þai wer{e} fonde fyrst in Inde of a +kyng{e} of þat Cuntre, þ{a}t was called Algor. + + [Headnote: Notation and Numeration.] + + [Sidenote: v{ersus} [in margin].] + + ¶ Prima sig{nifica}t unu{m}; duo ve{r}o s{e}c{un}da: + ¶ Tercia sig{nifica}t tria; sic procede sinistre. + ¶ Don{e}c ad extrema{m} venias, que cifra voca{tur}. + + ++¶ Cap{itulu}m primum de significac{i}o{n}e figurar{um}.+ + + [Sidenote: Expo{sitio} v{ersus}.] + [Sidenote: The meaning and place of the figures. Which figure is + read first.] + +In þis verse is notifide þe significac{i}on of þese figur{is}. And þus +expone the verse. Þe first signifiyth on{e}, þe secu{n}de [*leaf 136b] +signi[*]fiyth tweyn{e}, þe thryd signifiyth thre, & the fourte +signifiyth 4. ¶ And so forthe towarde þe lyft syde of þe tabul or of þe +boke þ{a}t þe figures ben{e} writen{e} in, til þat þ{o}u come to the +last figure, þ{a}t is called a cifre. ¶ Questio. In quych syde sittes þe +first figur{e}? Soluc{io}, forsothe loke quich figure is first in þe +ryȝt side of þe bok or of þe tabul, & þ{a}t same is þe first figur{e}, +for þ{o}u schal write bakeward, as here, 3. 2. 6. 4. 1. 2. 5. The +fig{ur}e of 5. was first write, & he is þe first, for he sittes oɳ þe +riȝt syde. And the fig{ur}e of 3 is last. ¶ Neu{er}-þe-les wen he says +¶ P{ri}ma sig{nifica}t vnu{m} &c., þat is to say, þe first betokenes +on{e}, þe secu{n}de. 2. & fore-þ{er}-mor{e}, he vnd{ir}stondes noȝt of +þe first fig{ur}e of eu{er}y rew. ¶ But he vnd{ir}stondes þe first +figure þ{a}t is in þe nomb{ur} of þe forsayd teen figuris, þe quych is +on{e} of þ{e}se. 1. And þe secu{n}de 2. & so forth. + + [Sidenote: v{ersus} [in margin].] + + ¶ Quelib{et} illar{um} si pr{im}o limite ponas, + ¶ Simplicite{r} se significat: si v{er}o se{cun}do, + Se decies: sursu{m} {pr}ocedas m{u}ltiplicando. + ¶ Na{m}q{ue} figura seque{n}s q{uam}uis signat decies pl{us}. + ¶ Ipsa locata loco quam sign{ific}at p{ertin}ente. + + [Transcriber’s Note: + + In the following section, numerals shown in +marks+ were printed in + a different font, possibly as facsimiles of the original MS form.] + + [Sidenote: Expo{sitio} [in margin].] + [Sidenote: An explanation of the principles of notation. An example: + units, tens, hundreds, thousands. How to read the number.] + +¶ Expone þis v{er}se þus. Eu{er}y of þese figuris bitokens hym selfe & +no mor{e}, yf he stonde in þe first place of þe rewele / this worde +Simplicit{er} in þat verse it is no more to say but þat, & no mor{e}. +¶ If it stonde in the secu{n}de place of þe rewle, he betokens ten{e} +tymes hym selfe, as þis figur{e} 2 here 20 tokens ten tyme hym selfe, +[*leaf 137a] þat is twenty, for he hym selfe betokenes twey{ne}, & ten +tymes twene is twenty. And for he stondis oɳ þe lyft side & in þe +secu{n}de place, he betokens ten tyme hy{m} selfe. And so go forth. +¶ ffor eu{er}y fig{ure}, & he stonde aft{ur} a-noþ{er} toward the lyft +side, he schal betoken{e} ten tymes as mich mor{e} as he schul betoken & +he stode in þe place þ{ere} þat þe fig{ure} a-for{e} hym stondes. loo an +ensampull{e}. 9. 6. 3. 4. Þe fig{ure} of 4. þ{a}t hase þis schape +4.+ +betokens bot hymselfe, for he stondes in þe first place. The fig{ure} of +3. þat hase þis schape +3.+ betokens ten tymes mor{e} þen he schuld & he +stode þ{ere} þ{a}t þe fig{ure} of 4. stondes, þ{a}t is thretty. The +fig{ure} of 6, þ{a}t hase þis schape +6+, betokens ten tymes mor{e} þan +he schuld & he stode þ{ere} as þe fig{ure} of +3.+ stondes, for þ{ere} +he schuld tokyn{e} bot sexty, & now he betokens ten tymes mor{e}, þat is +sex hundryth. The fig{ure} of 9. þ{a}t hase þis schape +9.+ betokens ten +tymes mor{e} þan{e} he schuld & he stode in þe place þ{ere} þe fig{ure} +of sex stondes, for þen he schuld betoken to 9. hundryth, and in þe +place þ{ere} he stondes now he betokens 9. þousande. Al þe hole nomb{ur} +is 9 thousande sex hundryth & four{e} & thretty. ¶ fforthermor{e}, when +þ{o}u schalt rede a nomb{ur} of fig{ure}, þ{o}u schalt begyn{e} at þe +last fig{ure} in the lyft side, & rede so forth to þe riȝt side as +her{e} 9. 6. 3. 4. Thou schal begyn to rede at þe fig{ure} of 9. & rede +forth þus. 9. [*leaf 137b] thousand sex hundryth thritty & foure. But +when þ{o}u schall{e} write, þ{o}u schalt be-gynne to write at þe ryȝt +side. + + ¶ Nil cifra sig{nifica}t s{ed} dat signa{re} sequenti. + + [Sidenote: The meaning and use of the cipher.] + +Expone þis v{er}se. A cifre tokens noȝt, bot he makes þe fig{ure} to +betoken þat comes aft{ur} hym mor{e} þan he schuld & he wer{e} away, as +þus 1φ. her{e} þe fig{ure} of on{e} tokens ten, & yf þe cifre wer{e} +away[{1}] & no fig{ure} by-for{e} hym he schuld token bot on{e}, for +þan he sch{ul}d stonde in þe first place. ¶ And þe cifre tokens nothyng +hym selfe. for al þe nomb{ur} of þe ylke too fig{ure}s is bot ten. +¶ Questio. Why says he þat a cifre makys a fig{ure} to signifye (tyf) +mor{e} &c. ¶ I speke for þis worde significatyf, ffor sothe it may happe +aft{ur} a cifre schuld come a-noþ{ur} cifre, as þus 2φφ. And ȝet þe +secunde cifre shuld token neu{er} þe mor{e} excep he schuld kepe þe +ord{er} of þe place. and a cifre is no fig{ure} significatyf. + + +¶ Q{ua}m p{re}cedentes plus ulti{m}a significabit+ / + + [Sidenote: The last figure means more than all the others, + since it is of the highest value.] + +Expone þis v{er}se þus. Þe last figu{re} schal token mor{e} þan all{e} +þe oþ{er} afor{e}, thouȝt þ{ere} wer{e} a hundryth thousant figures +afor{e}, as þus, 16798. Þe last fig{ure} þat is 1. betokens ten +thousant. And all{e} þe oþ{er} fig{ure}s b{e}n bot betoken{e} bot sex +thousant seuyn{e} h{u}ndryth nynty & 8. ¶ And ten thousant is mor{e} þen +all{e} þat nomb{ur}, {er}go þe last figu{re} tokens mor{e} þan all þe +nomb{ur} afor{e}. + + [Headnote: The Three Kinds of Numbers] + + [*leaf 138a] + + ¶ Post p{re}dicta scias breuit{er} q{uod} tres num{er}or{um} + Distincte species sunt; nam quidam digiti sunt; + Articuli quidam; quidam q{uoque} compositi sunt. + +¶ Capit{ulu}m 2^m de t{ri}plice divisione nu{mer}or{um}. + + [Sidenote: Digits. Articles. Composites.] + +¶ The auctor of þis tretis dep{ar}tys þis worde a nomb{ur} into 3 +p{ar}tes. Some nomb{ur} is called digit{us} latine, a digit in englys. +So{m}me nomb{ur} is called articul{us} latine. An Articul in englys. +Some nomb{ur} is called a composyt in englys. ¶ Expone þis v{er}se. know +þ{o}u aft{ur} þe forsayd rewles þ{a}t I sayd afore, þat þ{ere} ben thre +spices of nomb{ur}. Oon{e} is a digit, Anoþ{er} is an Articul, & þe +toþ{er} a Composyt. v{er}sus. + + [Headnote: Digits, Articles, and Composites.] + + ¶ Sunt digiti num{er}i qui cit{ra} denariu{m} s{u}nt. + + [Sidenote: What are digits.] + +¶ Her{e} he telles qwat is a digit, Expone v{er}su{s} sic. Nomb{ur}s +digitus ben{e} all{e} nomb{ur}s þat ben w{i}t{h}-inne ten, as nyne, +8. 7. 6. 5. 4. 3. 2. 1. + + ¶ Articupli decupli degito{rum}; compositi s{u}nt + Illi qui constant ex articulis degitisq{ue}. + + [Sidenote: What are articles.] + +¶ Her{e} he telles what is a composyt and what is an{e} articul. Expone +sic v{er}sus. ¶ Articulis ben[{2}] all{e} þ{a}t may be deuidyt into +nomb{urs} of ten & nothyng{e} leue ou{er}, as twenty, thretty, fourty, +a hundryth, a thousand, & such oþ{er}, ffor twenty may be dep{ar}tyt +in-to 2 nomb{ur}s of ten, fforty in to four{e} nomb{ur}s of ten, & so +forth. + + [Sidenote: What numbers are composites.] + +[*leaf 138b] Compositys beɳ nomb{ur}s þat bene componyt of a digyt & of +an articull{e} as fouretene, fyftene, sextene, & such oþ{er}. ffortene +is co{m}ponyd of four{e} þat is a digit & of ten þat is an articull{e}. +ffiftene is componyd of 5 & ten, & so of all oþ{er}, what þat þai ben. +Short-lych eu{er}y nomb{ur} þat be-gynnes w{i}t{h} a digit & endyth in a +articull{e} is a composyt, as fortene bygennyng{e} by four{e} þat is a +digit, & endes in ten. + + ¶ Ergo, p{ro}posito nu{mer}o tibi scriber{e}, p{ri}mo + Respicias quid sit nu{merus}; si digitus sit + P{ri}mo scribe loco digitu{m}, si compositus sit + P{ri}mo scribe loco digitu{m} post articulu{m}; sic. + + [Sidenote: How to write a number, if it is a digit; if it is a + composite. How to read it.] + +¶ here he telles how þ{o}u schalt wyrch whan þ{o}u schalt write a +nomb{ur}. Expone v{er}su{m} sic, & fac iuxta expon{ent}is sentencia{m}; +whan þ{o}u hast a nomb{ur} to write, loke fyrst what man{er} nomb{ur} it +ys þ{a}t þ{o}u schalt write, whether it be a digit or a composit or an +Articul. ¶ If he be a digit, write a digit, as yf it be seuen, write +seuen & write þ{a}t digit in þe first place toward þe ryght side. If it +be a composyt, write þe digit of þe composit in þe first place & write +þe articul of þat digit in þe secunde place next toward þe lyft side. As +yf þ{o}u schal write sex & twenty. write þe digit of þe nomb{ur} in þe +first place þat is sex, and write þe articul next aft{ur} þat is twenty, +as þus 26. But whan þ{o}u schalt sowne or speke [*leaf 139a] or rede an +Composyt þou schalt first sowne þe articul & aft{ur} þe digit, as þ{o}u +seyst by þe comyn{e} speche, Sex & twenty & nouȝt twenty & sex. +v{er}sus. + + ¶ Articul{us} si sit, in p{ri}mo limite cifram, + Articulu{m} {vero} reliq{ui}s insc{ri}be figur{is}. + + [Sidenote: How to write Articles: tens, hundreds, thousands, &c.] + +¶ Here he tells how þ{o}u schal write when þe nombre þ{a}t þ{o}u hase to +write is an Articul. Expone v{er}sus sic & fac s{ecundu}m sentenciam. +Ife þe nomb{ur} þ{a}t þ{o}u hast write be an Articul, write first a +cifre & aft{ur} þe cifer write an Articull{e} þus. 2φ. fforthermor{e} +þ{o}u schalt vnd{ir}stonde yf þ{o}u haue an Articul, loke how mych he +is, yf he be w{i}t{h}-ynne an hundryth, þ{o}u schalt write bot on{e} +cifre, afore, as her{e} .9φ. If þe articull{e} be by hym-silfe & be an +hundrid euen{e}, þen schal þ{o}u write .1. & 2 cifers afor{e}, þat he +may stonde in þe thryd place, for eu{er}y fig{ure} in þe thryd place +schal token a hundrid tymes hym selfe. If þe articul be a thousant or +thousandes[{3}] and he stonde by hy{m} selfe, write afor{e} 3 cifers & +so forþ of al oþ{er}. + + ¶ Quolib{et} in nu{mer}o, si par sit p{ri}ma figura, + Par erit & to{tu}m, quicquid sibi co{n}ti{nua}t{ur}; + Imp{ar} si fu{er}it, totu{m} tu{n}c fiet {et} impar. + + [Sidenote: To tell an even number or an odd.] + +¶ Her{e} he teches a gen{er}all{e} rewle þ{a}t yf þe first fig{ure} in +þe rewle of fig{ure}s token a nomb{ur} þat is euen{e} al þ{a}t nomb{ur} +of fig{ur}ys in þat rewle schal be euen{e}, as her{e} þ{o}u may see 6. +7. 3. 5. 4. Computa & p{ro}ba. ¶ If þe first [*leaf 139b] fig{ur}e token +an nomb{ur} þat is ode, all{e} þat nomb{ur} in þat rewle schall{e} be +ode, as her{e} 5 6 7 8 6 7. Computa & p{ro}ba. v{er}sus. + + ¶ Septe{m} su{n}t partes, no{n} pl{u}res, istius artis; + ¶ Adder{e}, subt{ra}her{e}, duplar{e}, dimidiar{e}, + Sextaq{ue} diuider{e}, s{ed} qui{n}ta m{u}ltiplicar{e}; + Radice{m} ext{ra}her{e} p{ar}s septi{m}a dicitur esse. + + [Headnote: The Seven Rules of Arithmetic.] + + [Sidenote: The seven rules.] + +¶ Her{e} telles þ{a}t þ{er} beɳ .7. spices or p{ar}tes of þis craft. +The first is called addicioñ, þe secunde is called subtraccioñ. The +thryd is called duplacioñ. The 4. is called dimydicioñ. The 5. is called +m{u}ltiplicacioñ. The 6 is called diuisioñ. The 7. is called extraccioñ +of þe Rote. What all þese spices ben{e} hit schall{e} be tolde +singillati{m} in her{e} caputul{e}. + + ¶ Subt{ra}his aut addis a dext{ri}s vel mediabis: + + [Sidenote: Add, subtract, or halve, from right to left.] + +Thou schal be-gynne in þe ryght side of þe boke or of a tabul. loke +wer{e} þ{o}u wul be-gynne to write latyn or englys in a boke, & þ{a}t +schall{e} be called þe lyft side of the boke, þat þ{o}u writest toward +þ{a}t side schal be called þe ryght side of þe boke. V{er}sus. + + A leua dupla, diuide, m{u}ltiplica. + + [Sidenote: Multiply or divide from left to right.] + +Here he telles þe in quych side of þe boke or of þe tabul þ{o}u +schall{e} be-gyn{e} to wyrch duplacioñ, diuisioñ, and m{u}ltiplicacioñ. +Thou schal begyn{e} to worch in þe lyft side of þe boke or of þe tabul, +but yn what wyse þ{o}u schal wyrch in hym +dicetur singillatim in +seque{n}tib{us} capi{tulis} et de vtilitate cui{us}li{bet} art{is} & sic +Completur [*leaf 140.] p{ro}hemi{um} & sequit{ur} tractat{us} & p{ri}mo +de arte addic{ion}is que p{ri}ma ars est in ordine.+ + + [Headnote: The Craft of Addition.] + + ++Adder{e} si nu{mer}o num{e}ru{m} vis, ordine tali + Incipe; scribe duas p{rim}o series nu{mer}or{um} + P{ri}ma{m} sub p{ri}ma recte pone{n}do figura{m}, + Et sic de reliq{ui}s facias, si sint tibi plures. + + [Sidenote: Four things must be known: what it is; how many rows of + figures; how many cases; what is its result. How to set down the sum.] + +¶ Her{e} by-gynnes þe craft of Addicioñ. In þis craft þ{o}u most knowe +foure thyng{es}. ¶ Fyrst þ{ou} most know what is addicioñ. Next þ{o}u +most know how mony rewles of figurys þou most haue. ¶ Next þ{o}u most +know how mony diue{r}s casys happes in þis craft of addicioñ. ¶ And next +qwat is þe p{ro}fet of þis craft. ¶ As for þe first þou most know þat +addicioñ is a castyng to-ged{ur} of twoo nomburys in-to on{e} nombr{e}. +As yf I aske qwat is twene & thre. Þ{o}u wyl cast þese twene nomb{re}s +to-ged{ur} & say þ{a}t it is fyue. ¶ As for þe secunde þou most know +þ{a}t þou schall{e} haue tweyne rewes of figures, on{e} vndur a-nother, +as her{e} þ{o}u mayst se. + + 1234 + 2168. + +¶ As for þe thryd þou most know þ{a}t ther{e} ben foure diu{er}se cases. +As for þe forthe þ{o}u most know þ{a}t þe p{ro}fet of þis craft is to +telle what is þe hole nomb{ur} þ{a}t comes of diu{er}se nomburis. Now as +to þe texte of oure verse, he teches ther{e} how þ{o}u schal worch in +þis craft. ¶ He says yf þ{o}u wilt cast on{e} nomb{ur} to anoþ{er} +nomb{ur}, þou most by-gynne on þis wyse. ¶ ffyrst write [*leaf 140b] two +rewes of figuris & nombris so þat þ{o}u write þe first figur{e} of þe +hyer nomb{ur} euen{e} vnd{ir} the first fig{ure} of þe nether nomb{ur}, +And þe secunde of þe nether nomb{ur} euen{e} vnd{ir} þe secunde of þe +hyer, & so forthe of eu{er}y fig{ur}e of both þe rewes as þ{o}u +mayst se. + + 123 + 234. + + [Headnote: The Cases of the Craft of Addition.] + + ¶ Inde duas adde p{ri}mas hac condic{i}one: + Si digitus crescat ex addic{i}one prior{um}; + P{ri}mo scribe loco digitu{m}, quicu{n}q{ue} sit ille. + + [Sidenote: Add the first figures; rub out the top figure; + write the result in its place. Here is an example.] + +¶ Here he teches what þ{o}u schalt do when þ{o}u hast write too rewes of +figuris on vnder an-oþ{er}, as I sayd be-for{e}. ¶ He says þ{o}u schalt +take þe first fig{ur}e of þe heyer nomb{re} & þe fyrst figur{e} of þe +neþ{er} nombre, & cast hem to-ged{er} vp-on þis condicioɳ. Thou schal +loke qweþ{er} þe nombe{r} þat comys þ{ere}-of be a digit or no. ¶ If he +be a digit þ{o}u schalt do away þe first fig{ur}e of þe hyer nomb{re}, +and write þ{ere} in his stede þat he stode Inne þe digit, þ{a}t comes of +þe ylke 2 fig{ur}es, & so wrich forth oɳ oþ{er} figures yf þ{ere} be ony +moo, til þ{o}u come to þe ende toward þe lyft side. And lede þe nether +fig{ure} stonde still eu{er}-mor{e} til þ{o}u haue ydo. ffor þ{ere}-by +þ{o}u schal wyte wheþ{er} þ{o}u hast don{e} wel or no, as I schal tell +þe aft{er}ward in þe ende of þis Chapt{er}. ¶ And loke allgate þat þou +be-gynne to worch in þis Craft of [*leaf 141a] Addi[*]cioɳ in þe ryȝt +side, here is an ensampul of þis case. + + 1234 + 2142. + +Caste 2 to four{e} & þat wel be sex, do away 4. & write in þe same place +þe fig{ur}e of sex. ¶ And lete þe fig{ur}e of 2 in þe nether rewe stonde +stil. When þ{o}u hast do so, cast 3 & 4 to-ged{ur} and þat wel be seuen +þ{a}t is a digit. Do away þe 3, & set þ{ere} seueɳ, and lete þe neþ{er} +fig{ure} stonde still{e}, & so worch forth bakward til þ{o}u hast ydo +all to-ged{er}. + + Et si composit{us}, in limite scribe seque{n}te + Articulum, p{ri}mo digitum; q{uia} sic iubet ordo. + + [Sidenote: Suppose it is a Composite, set down the digit, + and carry the tens. Here is an example.] + +¶ Here is þe secunde case þ{a}t may happe in þis craft. And þe case is +þis, yf of þe casting of 2 nomburis to-ged{er}, as of þe fig{ur}e of þe +hyer rewe & of þe figure of þe neþ{er} rewe come a Composyt, how schalt +þ{ou} worch. Þ{us} þ{o}u schalt worch. Thou shalt do away þe fig{ur}e of +þe hyer nomb{er} þat was cast to þe figure of þe neþ{er} nomber. ¶ And +write þ{ere} þe digit of þe Composyt. And set þe articul of þe composit +next aft{er} þe digit in þe same rewe, yf þ{ere} be no mo fig{ur}es +aft{er}. But yf þ{ere} be mo figuris aft{er} þat digit. And þere he +schall be rekend for hym selfe. And when þ{o}u schalt adde þ{a}t ylke +figure þ{a}t berys þe articull{e} ou{er} his hed to þe figur{e} vnd{er} +hym, þ{o}u schalt cast þat articul to þe figure þ{a}t hase hym ou{er} +his hed, & þ{ere} þat Articul schal tokeɳ hym selfe. lo an Ensampull +[*leaf 141b] of all. + + 326 + 216. + +Cast 6 to 6, & þ{ere}-of wil arise twelue. do away þe hyer 6 & write +þ{ere} 2, þ{a}t is þe digit of þis composit. And þe{n} write þe +articull{e} þat is ten ou{er} þe figuris hed of twene as þ{us}. + + 1 + 322 + 216. + +Now cast þe articull{e} þ{a}t standus vpon þe fig{ur}is of twene hed to +þe same fig{ur}e, & reken þat articul bot for on{e}, and þan þ{ere} wil +arise thre. Þan cast þat thre to þe neþ{er} figure, þat is on{e}, & þat +wul be four{e}. do away þe fig{ur}e of 3, and write þ{ere} a fig{ur}e of +foure. and lete þe neþ{er} fig{ur}e stonde stil, & þan worch forth. +vn{de} {ver}sus. + + ¶ Articulus si sit, in p{ri}mo limite cifram, + ¶ Articulu{m} v{er}o reliquis inscribe figuris, + Vel p{er} se scribas si nulla figura sequat{ur}. + + [Sidenote: Suppose it is an Article, set down a cipher and carry + the tens. Here is an example.] + +¶ Her{e} he puttes þe thryde case of þe craft of Addicioɳ. & þe case is +þis. yf of Addiciouɳ of 2 figuris a-ryse an Articull{e}, how schal þ{o}u +do. thou most do away þe heer fig{ur}e þ{a}t was addid to þe neþ{er}, +& write þ{ere} a cifre, and sett þe articuls on þe figuris hede, yf +þ{a}t þ{ere} come ony aft{er}. And wyrch þan as I haue tolde þe in þe +secunde case. An ensampull. + + 25. + 15 + +Cast 5 to 5, þat wylle be ten. now do away þe hyer 5, & write þ{ere} a +cifer. And sette ten vpon þe figuris hed of 2. And reken it but for on +þus.] lo an Ensampull{e} + + +----+ + | 1 | + | 2φ | + | 15 | + +----+ + +And [*leaf 142a] þan worch forth. But yf þ{ere} come no figure aft{er} +þe cifre, write þe articul next hym in þe same rewe as here + + +---+ + | 5 | + | 5 | + +---+ + +cast 5 to 5, and it wel be ten. do away 5. þat is þe hier 5. and write +þ{ere} a cifre, & write aft{er} hym þe articul as þus + + +----+ + | 1φ | + | 5 | + +----+ + +And þan þ{o}u hast done. + + ¶ Si tibi cifra sup{er}ueniens occurrerit, illa{m} + Dele sup{er}posita{m}; fac illic scribe figura{m}, + Postea procedas reliquas addendo figuras. + + [Sidenote: What to do when you have a cipher in the top row. + An example of all the difficulties.] + +¶ Her{e} he putt{es} þe fourt case, & it is þis, þat yf þ{ere} come a +cifer in þe hier rewe, how þ{o}u schal do. þus þ{o}u schalt do. do away +þe cifer, & sett þ{ere} þe digit þ{a}t comes of þe addiciou{n} as þus + + 1φφ84. + 17743 + +In þis ensampul ben all{e} þe four{e} cases. Cast 3 to foure, þ{a}t wol +be seueɳ. do away 4. & write þ{ere} seueɳ; þan cast 4 to þe figur{e} of +8. þ{a}t wel be 12. do away 8, & sett þ{ere} 2. þat is a digit, and +sette þe articul of þe composit, þat is ten, vpon þe cifers hed, & reken +it for hym selfe þat is on. þan cast on{e} to a cifer, & hit wull{e} be +but on, for noȝt & on makes but on{e}. þan cast 7. þ{a}t stondes vnd{er} +þat on to hym, & þat wel be 8. do away þe cifer & þat 1. & sette þ{ere} +8. þan go forthermor{e}. cast þe oþ{er} 7 to þe cifer þ{a}t stondes +ou{er} hy{m}. þ{a}t wul be bot seuen, for þe cifer betokens noȝt. do +away þe cifer & sette þ{ere} seueɳ, [*leaf 142b] & þen go forþ{er}mor{e} +& cast 1 to 1, & þat wel be 2. do away þe hier 1, & sette þ{ere} 2. þan +hast þ{o}u do. And yf þ{o}u haue wel ydo þis nomber þat is sett +her{e}-aft{er} wel be þe nomber þat schall{e} aryse of all{e} þe +addicioɳ as her{e} 27827. ¶ Sequi{tu}r alia sp{eci}es. + + [Headnote: The Craft of Subtraction.] + + ++A nu{mer}o num{er}u{m} si sit tibi demer{e} cura + Scribe figurar{um} series, vt in addicione. + + [Sidenote: Four things to know about subtraction: the first; + the second; the third; the fourth.] + +¶ This is þe Chapt{er} of subtraccioɳ, in the quych þou most know foure +nessessary thyng{es}. the first what is subtraccioɳ. þe secunde is how +mony nombers þou most haue to subt{ra}ccioɳ, the thryd is how mony +maners of cases þ{ere} may happe in þis craft of subtraccioɳ. The fourte +is qwat is þe p{ro}fet of þis craft. ¶ As for þe first, þ{o}u most know +þ{a}t subtraccioɳ is drawyng{e} of on{e} nowmb{er} oute of anoþ{er} +nomber. As for þe secunde, þou most knowe þ{a}t þou most haue two rewes +of figuris on{e} vnd{er} anoþ{er}, as þ{o}u addyst in addicioɳ. As for +þe thryd, þ{o}u moyst know þ{a}t four{e} man{er} of diu{er}se casis mai +happe in þis craft. ¶ As for þe fourt, þou most know þ{a}t þe p{ro}fet +of þis craft is whenne þ{o}u hasse taken þe lasse nomber out of þe +mor{e} to telle what þ{ere} leues ou{er} þ{a}t. & þ{o}u most be-gynne to +wyrch in þ{is} craft in þe ryght side of þe boke, as þ{o}u diddyst in +addicioɳ. V{er}sus. + + ¶ Maiori nu{mer}o num{er}u{m} suppone minorem, + ¶ Siue pari nu{mer}o supponat{ur} num{er}us par. + + [Sidenote: Put the greater number above the less.] + +[*leaf 143a] ¶ Her{e} he telles þat þe hier nomber most be mor{e} þen þe +neþ{er}, or els eueɳ as mych. but he may not be lasse. And þe case is +þis, þou schalt drawe þe neþ{er} nomber out of þe hyer, & þou mayst not +do þ{a}t yf þe hier nomber wer{e} lasse þan þat. ffor þ{o}u mayst not +draw sex out of 2. But þ{o}u mast draw 2 out of sex. And þou maiste draw +twene out of twene, for þou schal leue noȝt of þe hier twene vn{de} +v{er}sus. + + [Headnote: The Cases of the Craft of Subtraction.] + + ¶ Postea si possis a prima subt{ra}he p{ri}ma{m} + Scribens quod remanet. + + [Sidenote: The first case of subtraction. Here is an example.] + +Her{e} is þe first case put of subtraccioɳ, & he says þou schalt begynne +in þe ryght side, & draw þe first fig{ure} of þe neþ{er} rewe out of þe +first fig{ure} of þe hier rewe. qwether þe hier fig{ur}e be mor{e} þen +þe neþ{er}, or eueɳ as mych. And þat is notified in þe vers when he says +“Si possis.” Whan þ{o}u has þus ydo, do away þe hiest fig{ur}e & sett +þ{ere} þat leues of þe subtraccioɳ, lo an Ensampull{e} + + +-----+ + | 234 | + | 122 | + +-----+ + +draw 2 out of 4. þan leues 2. do away 4 & write þ{ere} 2, & latte þe +neþ{er} figur{e} sto{n}de stille, & so go for-by oþ{er} figuris till +þ{o}u come to þe ende, þan hast þ{o}u do. + + ¶ Cifram si nil remanebit. + + [Sidenote: Put a cipher if nothing remains. Here is an example.] + +¶ Her{e} he putt{es} þe secunde case, & hit is þis. yf it happe þ{a}t +qwen þ{o}u hast draw on neþ{er} fig{ure} out of a hier, & þ{er}e leue +noȝt aft{er} þe subt{ra}ccioɳ, þus [*leaf 143b] þou schalt do. þ{o}u +schall{e} do away þe hier fig{ur}e & write þ{ere} a cifer, as lo an +Ensampull + + +----+ + | 24 | + | 24 | + +----+ + +Take four{e} out of four{e} þan leus noȝt. þ{er}efor{e} do away þe hier +4 & set þ{ere} a cifer, þan take 2 out of 2, þan leues noȝt. do away þe +hier 2, & set þ{ere} a cifer, and so worch whar{e} so eu{er} þis happe. + + Sed si no{n} possis a p{ri}ma dem{er}e p{ri}ma{m} + P{re}cedens vnu{m} de limite deme seque{n}te, + Quod demptu{m} p{ro} denario reputabis ab illo + Subt{ra}he to{ta}lem num{er}u{m} qu{em} p{ro}posuisti + Quo facto sc{ri}be super quicquid remaneb{i}t. + + [Sidenote: Suppose you cannot take the lower figure from the top one, + borrow ten; take the lower number from ten; add the answer to the top + number. How to ‘Pay back’ the borrowed ten. Example.] + +Her{e} he puttes þe thryd case, þe quych is þis. yf it happe þat þe +neþ{er} fig{ur}e be mor{e} þen þe hier fig{ur}e þat he schall{e} be draw +out of. how schall{e} þou do. þus þ{o}u schall{e} do. þou schall{e} +borro .1. oute of þe next fig{ur}e þat comes aft{er} in þe same rewe, +for þis case may neu{er} happ but yf þ{ere} come figures aft{er}. þan +þ{o}u schalt sett þat on ou{er} þe hier figur{es} hed, of the quych þou +woldist y-draw oute þe neyþ{er} fig{ur}e yf þ{o}u haddyst y-myȝt. Whane +þou hase þus ydo þou schall{e} rekene þ{a}t .1. for ten. ¶. And out of +þat ten þ{o}u schal draw þe neyþermost fig{ur}e, And all{e} þ{a}t leues +þou schall{e} adde to þe figur{e} on whos hed þat .1. stode. And þen +þ{o}u schall{e} do away all{e} þat, & sett þ{ere} all{e} that arisys of +the addicioɳ of þe ylke 2 fig{ur}is. And yf yt [*leaf 144a] happe þat þe +fig{ur}e of þe quych þ{o}u schalt borro on be hym self but 1. If þ{o}u +schalt þat on{e} & sett it vppoɳ þe oþ{er} figur{is} hed, and sett in +þ{a}t 1. place a cifer, yf þ{ere} come mony figur{es} aft{er}. lo an +Ensampul. + + +------+ + | 2122 | + | 1134 | + +------+ + +take 4 out of 2. it wyl not be, þerfor{e} borro on{e} of þe next +figur{e}, þ{a}t is 2. and sett þat ou{er} þe hed of þe fyrst 2. & rekene +it for ten. and þere þe secunde stondes write 1. for þ{o}u tokest on out +of hy{m}. þan take þe neþ{er} fig{ur}e, þat is 4, out of ten. And þen +leues 6. cast to 6 þe fig{ur}e of þat 2 þat stode vnd{er} þe hedde of 1. +þat was borwed & rekened for ten, and þat wylle be 8. do away þ{a}t 6 & +þat 2, & sette þ{ere} 8, & lette þe neþ{er} fig{ur}e stonde stille. +Whanne þ{o}u hast do þus, go to þe next fig{ur}e þ{a}t is now bot 1. but +first yt was 2, & þ{ere}-of was borred 1. þan take out of þ{a}t þe +fig{ur}e vnd{er} hym, þ{a}t is 3. hit wel not be. þer-for{e} borowe of +the next fig{ur}e, þe quych is bot 1. Also take & sett hym ou{er} þe +hede of þe fig{ure} þat þou woldest haue y-draw oute of þe nether +figure, þe quych was 3. & þou myȝt not, & rekene þ{a}t borwed 1 for ten +& sett in þe same place, of þe quych place þ{o}u tokest hy{m} of, +a cifer, for he was bot 1. Whanne þ{o}u hast þ{us} ydo, take out of þat +1. þ{a}t is rekent for ten, þe neþ{er} figure of 3. And þ{ere} leues 7. +[*leaf 144b] cast þe ylke 7 to þe fig{ur}e þat had þe ylke ten vpon his +hed, þe quych fig{ur}e was 1, & þat wol be 8. þan do away þ{a}t 1 and +þ{a}t 7, & write þ{ere} 8. & þan wyrch forth in oþ{er} figuris til þ{o}u +come to þe ende, & þan þ{o}u hast þe do. V{er}sus. + + ¶ Facque nonenarios de cifris, cu{m} remeabis + ¶ Occ{ur}rant si forte cifre; dum demps{er}is vnum + ¶ Postea p{ro}cedas reliquas deme{n}do figuras. + + [Sidenote: A very hard case is put. Here is an example.] + +¶ Her{e} he putt{es} þe fourte case, þe quych is þis, yf it happe þat þe +neþ{er} fig{ur}e, þe quych þ{o}u schalt draw out of þe hier fig{ur}e be +mor{e} pan þe hier figur ou{er} hym, & þe next fig{ur}e of two or of +thre or of foure, or how mony þ{ere} be by cifers, how wold þ{o}u do. +Þ{o}u wost wel þ{o}u most nede borow, & þ{o}u mayst not borow of þe +cifers, for þai haue noȝt þat þai may lene or spar{e}. Ergo[{4}] how +woldest þ{o}u do. Certayɳ þus most þ{o}u do, þ{o}u most borow on of þe +next figure significatyf in þat rewe, for þis case may not happe, but yf +þ{ere} come figures significatyf aft{er} the cifers. Whan þ{o}u hast +borowede þ{a}t 1 of the next figure significatyf, sett þ{a}t on ou{er} +þe hede of þ{a}t fig{ur}e of þe quych þ{o}u wold haue draw þe neþ{er} +figure out yf þ{o}u hadest myȝt, & reken it for ten as þo{u} diddest +i{n} þe oþ{er} case her{e}-a-for{e}. Whaɳ þ{o}u hast þus y-do loke how +mony cifers þ{ere} wer{e} bye-twene þat figur{e} significatyf, & þe +fig{ur}e of þe quych þ{o}u woldest haue y-draw the [*leaf 145a] neþ{er} +figure, and of eu{er}y of þe ylke cifers make a figur{e} of 9. lo an +Ensampull{e} after. + + +-----+ + |40002| + |10004| + +-----+ + +Take 4 out of 2. it wel not be. borow 1 out of be next figure +significatyf, þe quych is 4, & þen leues 3. do away þ{a}t figur{e} of 4 +& write þ{ere} 3. & sett þ{a}t 1 vppon þe fig{ur}e of 2 hede, & þan take +4 out of ten, & þan þere leues 6. Cast 6 to the fig{ur}e of 2, þ{a}t wol +be 8. do away þat 6 & write þ{er}e 8. Whan þ{o}u hast þus y-do make of +eu{er}y 0 betweyn 3 & 8 a figure of 9, & þan worch forth in goddes name. +& yf þ{o}u hast wel y-do þ{o}u[{5}] schalt haue þis nomb{er} + + +-----+ + |39998| Sic. + |10004| + +-----+ + + [Headnote: How to prove the Subtraction.] + + ¶ Si subt{ra}cc{i}o sit b{e}n{e} facta p{ro}bar{e} valebis + Quas s{u}btraxisti p{ri}mas addendo figuras. + + [Sidenote: How to prove a subtraction sum. Here is an example. + He works his proof through, and brings out a result.] + +¶ Her{e} he teches þe Craft how þ{o}u schalt know, whan þ{o}u hast +subt{ra}yd, wheþ{er} þou hast wel ydo or no. And þe Craft is þis, ryght +as þ{o}u subtrayd þe neþ{er} figures fro þe hier figures, ryȝt so adde +þe same neþ{er} figures to þe hier figures. And yf þ{o}u haue well +y-wroth a-for{e} þou schalt haue þe hier nombre þe same þ{o}u haddest or +þou be-gan to worch. as for þis I bade þou schulde kepe þe neþ{er} +figures stylle. lo an [*leaf 145b] Ensampull{e} of all{e} þe 4 cases +toged{re}. worche well{e} þis case + + +--------+ + |40003468|. + |20004664| + +--------+ + +And yf þou worch well{e} whan þou hast all{e} subtrayd þe þ{a}t hier +nombr{e} her{e}, þis schall{e} be þe nombre here foloyng whan þ{o}u hast +subtrayd. + + +--------+ + |39998804|. [Sidenote: Our author makes a slip here (3 for 1).] + |20004664| + +--------+ + +And þou schalt know þ{us}. adde þe neþ{er} rowe of þe same nombre to þe +hier rewe as þus, cast 4 to 4. þat wol be 8. do away þe 4 & write þ{ere} +8. by þe first case of addicioɳ. þan cast 6 to 0 þat wol be 6. do away +þe 0, & write þere 6. þan cast 6 to 8, þ{a}t wel be 14. do away 8 & +write þ{ere} a fig{ur}e of 4, þat is þe digit, and write a fig{ur}e of +1. þ{a}t schall be-token ten. þ{a}t is þe articul vpon þe hed of 8 next +aft{er}, þan reken þ{a}t 1. for 1. & cast it to 8. þat schal be 9. cast +to þat 9 þe neþ{er} fig{ur}e vnd{er} þat þe quych is 4, & þat schall{e} +be 13. do away þat 9 & sett þ{er}e 3, & sett a figure of 1. þ{a}t schall +be 10 vpon þe next figur{is} hede þe quych is 9. by þe secu{n}de case +þ{a}t þ{o}u hadest in addicioɳ. þan cast 1 to 9. & þat wol be 10. do +away þe 9. & þat 1. And write þ{ere} a cifer. and write þe articull{e} +þat is 1. betokenyng{e} 10. vpon þe hede of þe next figur{e} toward þe +lyft side, þe quych [*leaf 146a] is 9, & so do forth tyl þ{o}u come to +þe last 9. take þe figur{e} of þat 1. þe quych þ{o}u schalt fynde ou{er} +þe hed of 9. & sett it ou{er} þe next figures hede þat schal be 3. +¶ Also do away þe 9. & set þ{ere} a cifer, & þen cast þat 1 þat stondes +vpon þe hede of 3 to þe same 3, & þ{a}t schall{e} make 4, þen caste to +þe ylke 4 the figur{e} in þe neyþ{er} rewe, þe quych is 2, and þat +schall{e} be 6. And þen schal þ{o}u haue an Ensampull{e} aȝeyɳ, loke & +se, & but þ{o}u haue þis same þ{o}u hase myse-wroȝt. + + +--------+ + |60003468| + |20004664| + +--------+ + +Sequit{ur} de duplac{i}one + + + [Headnote: The Craft of Duplation.] + + ++Si vis duplar{e} num{er}u{m}, sic i{n}cipe p{rim}o + Scribe fig{ur}ar{um} serie{m} q{ua}mcu{n}q{ue} vel{is} tu. + + [Sidenote: Four things must be known in Duplation. Here they are. + Mind where you begin. Remember your rules.] + +¶ This is the Chaptur{e} of duplacioɳ, in þe quych craft þ{o}u most haue +& know 4 thing{es}. ¶ Þe first þ{a}t þ{o}u most know is what is +duplacioɳ. þe secu{n}de is how mony rewes of fig{ur}es þ{o}u most haue +to þis craft. ¶ þe thryde is how many cases may[{6}] happe in þis craft. +¶ þe fourte is what is þe p{ro}fet of þe craft. ¶ As for þe first. +duplacioɳ is a doublyng{e} of a nombre. ¶ As for þe secu{n}de þ{o}u most +[*leaf 146b] haue on nombre or on rewe of figures, the quych called +nu{merus} dupland{us}. As for þe thrid þ{o}u most know þat 3 diu{er}se +cases may hap in þis craft. As for þe fourte. qwat is þe p{ro}fet of þis +craft, & þ{a}t is to know what a-risyȝt of a nombre I-doublyde. +¶ fforþ{er}-mor{e}, þ{o}u most know & take gode hede in quych side þ{o}u +schall{e} be-gyn in þis craft, or ellis þ{o}u mayst spyl all{e} þ{i} +lab{er} þ{er}e aboute. c{er}teyn þ{o}u schalt begyɳ in the lyft side in +þis Craft. thenke wel ou{er} þis verse. ¶ [{7}]A leua dupla, diuide, +m{u}ltiplica.[{7}] [[Subt{ra}has a{u}t addis a dext{ri}s {ve}l +medi{a}b{is}]] The sentens of þes verses afor{e}, as þ{o}u may see if +þ{o}u take hede. As þe text of þis verse, þat is to say, ¶ Si vis +duplare. þis is þe sentence. ¶ If þ{o}u wel double a nombre þus þ{o}u +most be-gynɳ. Write a rewe of figures of what nomb{re} þou welt. +v{er}sus. + + Postea p{ro}cedas p{ri}ma{m} duplando figura{m} + Inde q{uo}d excrescit scribas vbi iusserit ordo + Iuxta p{re}cepta tibi que dant{ur} in addic{i}one. + + [Sidenote: How to work a sum.] + +¶ Her{e} he telles how þ{o}u schalt worch in þis Craft. he says, fyrst, +whan þ{o}u hast writen þe nombre þ{o}u schalt be-gyn at þe first +figur{e} in the lyft side, & doubull{e} þat fig{ur}e, & þe nombre þat +comes þ{ere}-of þ{o}u schalt write as þ{o}u diddyst in addicioɳ, as +¶ I schal telle þe in þe case. v{er}sus. + + [Headnote: The Cases of the Craft of Duplation.] + + [*leaf 147a] + + ¶ Nam si sit digitus in primo limite scribas. + + [Sidenote: If the answer is a digit, write it in the place of the + top figure.] + +¶ Her{e} is þe first case of þis craft, þe quych is þis. yf of duplacioɳ +of a figur{e} arise a digit. what schal þ{o}u do. þus þ{o}u schal do. do +away þe fig{ur}e þat was doublede, & sett þ{ere} þe diget þat comes of +þe duplacioɳ, as þus. 23. double 2, & þ{a}t wel be 4. do away þe +figur{e} of 2 & sett þ{ere} a figur{e} of 4, & so worch forth till{e} +þ{o}u come to þe ende. v{er}sus. + + ¶ Articul{us} si sit, in p{ri}mo limite cifram, + ¶ Articulu{m} v{er}o reliquis inscribe figuris; + ¶ Vel p{er} se scribas, si nulla figura sequat{ur}. + + [Sidenote: If it is an article, put a cipher in the place, and + ‘carry’ the tens. If there is no figure to ‘carry’ them to, write + them down.] + +¶ Here is þe secunde case, þe quych is þis yf þ{ere} come an articull{e} +of þe duplacioɳ of a fig{ur}e þ{o}u schalt do ryȝt as þ{o}u diddyst in +addicioɳ, þat is to wete þat þ{o}u schalt do away þe figur{e} þat is +doublet & sett þ{ere} a cifer, & write þe articull{e} ou{er} þe next +figur{is} hede, yf þ{ere} be any aft{er}-warde toward þe lyft side as +þus. 25. begyn at the lyft side, and doubull{e} 2. þat wel be 4. do away +þat 2 & sett þere 4. þan doubul 5. þat wel be 10. do away 5, & sett +þ{ere} a 0, & sett 1 vpon þe next figur{is} hede þe quych is 4. & þen +draw downe 1 to 4 & þat woll{e} be 5, & þen do away þ{a}t 4 & þat 1, +& sett þ{ere} 5. for þat 1 schal be rekened in þe drawyng{e} toged{re} +for 1. wen [*leaf 147b] þou hast ydon þou schalt haue þis nomb{r}e 50. +yf þ{ere} come no figur{e} aft{er} þe fig{ur}e þ{a}t is addit, of þe +quych addicioɳ comes an articull{e}, þ{o}u schalt do away þe figur{e} +þ{a}t is dowblet & sett þ{ere} a 0. & write þe articul next by in þe +same rewe toward þe lyft syde as þus, 523. double 5 þat woll be ten. do +away þe figur{e} 5 & set þ{ere} a cifer, & sett þe articul next aft{er} +in þe same rewe toward þe lyft side, & þou schalt haue þis nombre 1023. +þen go forth & double þe oþ{er} nombers þe quych is lyȝt y-nowȝt to do. +v{er}sus. + + ¶ Compositus si sit, in limite sc{ri}be seq{uen}te + Articulu{m}, p{ri}mo digitu{m}; q{uia} sic iubet ordo: + Et sic de reliq{ui}s facie{n}s, si sint tibi plures. + + [Sidenote: If it is a Composite, write down the digit, and ‘carry’ + the tens. Here is an example.] + +¶ Her{e} he putt{es} þe Thryd case, þe quych is þis, yf of duplacioɳ of +a fig{ur}e come a Composit. þ{o}u schalt do away þe fig{u}re þ{a}t is +doublet & set þ{ere} a digit of þe Composit, & sett þe articull{e} +ou{er} þe next figures hede, & aft{er} draw hym downe w{i}t{h} þe +figur{e} ou{er} whos hede he stondes, & make þ{ere}-of an nombre as +þ{o}u hast done afore, & yf þ{ere} come no fig{ur}e aft{er} þat digit +þat þ{o}u hast y-write, þa{n} set þe articull{e} next aft{er} hym in þe +same rewe as þus, 67: double 6 þat wel be 12, do away 6 & write þ{ere} +þe digit [*leaf 148a] of 12, þe quych is 2, and set þe articull{e} next +aft{er} toward þe lyft side in þe same rewe, for þ{ere} comes no +figur{e} aft{er}. þan dowble þat oþ{er} figur{e}, þe quych is 7, þat wel +be 14. the quych is a Composit. þen do away 7 þat þ{o}u doublet & sett +þe þe diget of hy{m}, the quych is 4, sett þe articull{e} ou{er} þe next +figur{es} hed, þe quych is 2, & þen draw to hym þat on, & make on nombre +þe quych schall{e} be 3. And þen yf þ{o}u haue wel y-do þ{o}u schall{e} +haue þis nombre of þe duplacioɳ, 134. v{er}sus. + + ¶ Si super ext{re}ma{m} nota sit monade{m} dat eid{em} + Quod t{ibi} {con}tingat si p{ri}mo dimidiabis. + + [Sidenote: How to double the mark for one-half. This can only stand + over the first figure.] + +¶ Her{e} he says, yf ou{er} þe fyrst fig{ur}e in þe ryȝt side be such a +merke as is her{e} made, ʷ, þ{o}u schall{e} fyrst doubull{e} þe +figur{e}, the quych stondes vnd{er} þ{a}t merke, & þen þou schalt doubul +þat merke þe quych stond{es} for haluendel on. for too haluedels makes +on, & so þ{a}t wol be on. cast þ{a}t on to þat duplacioɳ of þe figur{e} +ou{er} whos hed stode þat merke, & write it in þe same place þ{ere} þat +þe figur{e} þe quych was doublet stode, as þus 23ʷ. double 3, þat wol be +6; doubul þat halue on, & þat wol be on. cast on to 6, þ{a}t wel be 7. +do away 6 & þat 1, & sett þ{ere} 7. þan hase þou do. as for þat +figur{e}, þan go [*leaf 148b] to þe oþ{er} fig{ure} & worch forth. +& þ{o}u schall neu{er} haue such a merk but ou{er} þe hed of þe furst +figure in þe ryght side. And ȝet it schal not happe but yf it were +y-halued a-for{e}, þus þ{o}u schalt vnd{er}stonde þe verse. ¶ Si sup{er} +ext{re}ma{m} &c. Et nota, talis fig{ur}a ʷ significans medietate{m}, +unitat{is} veniat, {i.e.} contingat u{e}l fiat sup{er} ext{re}ma{m}, +{i.e.} sup{er} p{ri}ma{m} figura{m} in ext{re}mo sic v{er}sus dextram +ars dat: {i.e.} reddit monade{m}. {i.e.} vnitate{m} eide{m}. {i.e.} +eidem note & declina{tur} hec monos, d{i}s, di, dem, &c. ¶ Quod {er}g{o} +to{tum} ho{c} dabis monade{m} note {con}ting{et}. {i.e.} eveniet tibi si +dimidiasti, {i.e.} accipisti u{e}l subtulisti medietatem alicuius unius, +in cuius principio sint figura nu{mer}u{m} denotans i{m}pare{m} p{rim}o +{i.e.} principiis. + + [Headnote: The Craft of Mediation.] + +¶ Sequit{ur} de mediacione. + + ++Incipe sic, si vis alique{m} nu{me}ru{m} mediar{e}: + Sc{ri}be figurar{um} seriem sola{m}, velut an{te}. + + [Sidenote: The four things to be known in mediation: the first the + second; the third; the fourth. Begin thus.] + +¶ In þis Chapter is taȝt þe Craft of mediaciouɳ, in þe quych craft þ{o}u +most know 4 thynges. ffurst what is mediacioɳ. the secunde how mony +rewes of figur{es} þ{o}u most haue in þe wyrchyng{e} of þis craft. þe +thryde how mony diu{er}se cases may happ in þis craft.[{8}] [[the .4. +what is þe p{ro}fet of þis craft.]] ¶ As for þe furst, þ{o}u schalt +vndurstonde þat mediacioɳ is a takyng out of halfe a nomber out of a +holle nomber, [*leaf 149a] as yf þ{o}u wolde take 3 out of 6. ¶ As for +þe secunde, þ{o}u schalt know þ{a}t þ{o}u most haue on{e} rewe of +figures, & no moo, as þ{o}u hayst in þe craft of duplacioɳ. ¶ As for the +thryd, þou most vnd{er}stonde þat 5 cases may happe in þis craft. ¶ As +for þe fourte, þou schall{e} know þat the p{ro}fet of þis craft is when +þ{o}u hast take away þe haluendel of a nomb{re} to telle qwat þer{e} +schall{e} leue. ¶ Incipe sic, &c. The sentence of þis verse is þis. yf +þ{o}u wold medye, þat is to say, take halfe out of þe holle, or halfe +out of halfe, þou most begynne þ{us}. Write on{e} rewe of figur{es} of +what nombre þou wolte, as þ{o}u dyddyst be-for{e} in þe Craft of +duplacioɳ. v{er}sus. + + ¶ Postea p{ro}cedas medians, si p{ri}ma figura + Si par aut i{m}par videas. + + [Sidenote: See if the number is even or odd.] + +¶ Her{e} he says, when þ{o}u hast write a rewe of figures, þ{o}u schalt +take hede wheþ{er} þe first figur{e} be eueɳ or odde in nombre, & +vnd{er}stonde þ{a}t he spekes of þe first figure in þe ryȝt side. And +i{n} the ryght side þ{o}u schall{e} begynne in þis Craft. + + ¶ Quia si fu{er}it par, + Dimidiab{is} eam, scribe{n}s quicq{ui}d remanebit: + + [Sidenote: If it is even, halve it, and write the answer in its +place.] + +¶ Her{e} is the first case of þis craft, þe quych is þis, yf þe first +figur{e} be euen. þou schal take away fro þe figur{e} euen halfe, & do +away þat fig{ur}e and set þ{ere} þat leues ou{er}, as þus, 4. take +[*leaf 149b] halfe out of 4, & þan þ{ere} leues 2. do away 4 & sett +þ{ere} 2. þis is lyght y-nowȝt. v{er}sus. + + [Headnote: The Mediation of an Odd Number.] + + ¶ Impar si fu{er}it vnu{m} demas mediar{e} + Quod no{n} p{re}sumas, s{ed} quod sup{er}est mediabis + Inde sup{er} tractu{m} fac demptu{m} quod no{ta}t vnu{m}. + + [Sidenote: If it is odd, halve the even number less than it. Here is + an example. Then write the sign for one-half over it. Put the mark + only over the first figure.] + +Her{e} is þe secunde case of þis craft, the quych is þis. yf þe first +figur{e} betoken{e} a nombre þat is odde, the quych odde schal not be +mediete, þen þ{o}u schalt medye þat nombre þat leues, when the odde of +þe same nomb{re} is take away, & write þat þ{a}t leues as þ{o}u diddest +in þe first case of þis craft. Whaɳ þ{o}u hayst write þat. for þ{a}t þat +leues, write such a merke as is her{e} ʷ vpon his hede, þe quych merke +schal betokeɳ halfe of þe odde þat was take away. lo an Ensampull. 245. +the first figur{e} her{e} is betokenyng{e} odde nombre, þe quych is 5, +for 5 is odde; þ{er}e-for{e} do away þat þ{a}t is odde, þe quych is 1. +þen leues 4. þen medye 4 & þen leues 2. do away 4. & sette þ{ere} 2, +& make such a merke ʷ upon his hede, þat is to say ou{er} his hede of 2 +as þus. 242.ʷ And þen worch forth in þe oþ{er} figures tyll þ{o}u come +to þe ende. by þe furst case as þ{o}u schalt vnd{er}stonde þat þ{o}u +schalt [*leaf 150a] neu{er} make such a merk but ou{er} þe first +fig{ur}e hed in þe riȝt side. Wheþ{er} þe other fig{ur}es þat comyɳ +aft{er} hym be eueɳ or odde. v{er}sus. + + [Headnote: The Cases of the Craft of Mediation.] + + ¶ Si monos, dele; sit t{ibi} cifra post no{ta} supra. + + [Sidenote: If the first figure is one put a cipher.] + +¶ Here is þe thryde case, þe quych yf the first figur{e} be a figur{e} +of 1. þ{o}u schalt do away þat 1 & set þ{ere} a cifer, & a merke ou{er} +þe cifer as þus, 241. do away 1, & sett þ{ere} a cifer w{i}t{h} a merke +ou{er} his hede, & þen hast þ{o}u ydo for þat 0. as þus 0ʷ þen worch +forth in þe oþer fig{ur}ys till þ{o}u come to þe ende, for it is lyght +as dyche water. vn{de} v{er}sus. + + ¶ Postea p{ro}cedas hac condic{i}one secu{n}da: + Imp{ar} si fu{er}it hinc vnu{m} deme p{ri}ori, + Inscribens quinque, nam denos significabit + Monos p{re}d{ict}am. + + [Sidenote: What to do if any other figure is odd. Write a figure of + five over the next lower number’s head. Example.] + +¶ Her{e} he putt{es} þe fourte case, þe quych is þis. yf it happeɳ the +secunde figur{e} betoken odde nombre, þou schal do away on of þat odde +nombre, þe quych is significatiue by þ{a}t figure 1. þe quych 1 schall +be rekende for 10. Whan þ{o}u hast take away þ{a}t 1 out of þe nombre +þ{a}t is signifiede by þat figur{e}, þ{o}u schalt medie þ{a}t þat leues +ou{er}, & do away þat figur{e} þat is medied, & sette in his styde halfe +of þ{a}t nombre. ¶ Whan þ{o}u hase so done, þ{o}u schalt write [*leaf +150b] a figure of 5 ou{er} þe next figur{es} hede by-for{e} toward þe +ryȝt side, for þat 1, þe quych made odd nombr{e}, schall stonde for ten, +& 5 is halfe of 10; so þ{o}u most write 5 for his haluendell{e}. lo an +Ensampull{e}, 4678. begyɳ in þe ryȝt side as þ{o}u most nedes. medie 8. +þen þ{o}u schalt leue 4. do away þat 8 & sette þ{ere} 4. þen out of 7. +take away 1. þe quych makes odde, & sett 5. vpon þe next figur{es} hede +afor{e} toward þe ryȝt side, þe quych is now 4. but afor{e} it was 8. +for þat 1 schal be rekenet for 10, of þe quych 10, 5 is halfe, as þou +knowest wel. Whan þ{o}u hast þus ydo, medye þ{a}t þe quych leues aft{er} +þe takying{e} away of þat þat is odde, þe quych leuyng{e} schall{e} be +3; do away 6 & sette þ{er}e 3, & þou schalt haue such a nombre + + 5 + 4634. + +aft{er} go forth to þe next fig{ur}e, & medy þat, & worch forth, for it +is lyȝt ynovȝt to þe c{er}tayɳ. + + ¶ Si v{er}o s{e}c{un}da dat vnu{m}. + Illa deleta, sc{ri}bat{ur} cifra; p{ri}ori + ¶ Tradendo quinque pro denario mediato; + Nec cifra sc{ri}batur, nisi dei{n}de fig{ur}a seq{u}at{ur}: + Postea p{ro}cedas reliq{ua}s mediando figuras + Vt sup{ra} docui, si sint tibi mille figure. + + [Sidenote: If the second figure is one, put a cipher, and write + five over the next figure. How to halve fourteen.] + +¶ Her{e} he putt{es} þe 5 case, þe quych is [*leaf 151a] þis: yf þe +secunde figur{e} be of 1, as þis is here 12, þou schalt do away þat 1 & +sett þ{ere} a cifer. & sett 5 ou{er} þe next fig{ur}e hede afor{e} +toward þe riȝt side, as þou diddyst afor{e}; & þat 5 schal be haldel of +þat 1, þe quych 1 is rekent for 10. lo an Ensampull{e}, 214. medye 4. +þ{a}t schall{e} be 2. do away 4 & sett þ{ere} 2. þe{n} go forth to þe +next figur{e}. þe quych is bot 1. do away þat 1. & sett þ{ere} a cifer. +& set 5 vpon þe figur{es} hed afor{e}, þe quych is nowe 2, & þen þou +schalt haue þis no{m}b{re} + + 5 + 202, + +þen worch forth to þe nex fig{ur}e. And also it is no mayst{er}y yf +þ{ere} come no figur{e} after þat on is medyet, þ{o}u schalt write no 0. +ne nowȝt ellis, but set 5 ou{er} þe next fig{ur}e afor{e} toward þe +ryȝt, as þus 14. medie 4 then leues 2, do away 4 & sett þ{ere} 2. þen +medie 1. þe q{ui}ch is rekende for ten, þe halue{n}del þ{ere}-of wel be +5. sett þ{a}t 5 vpon þe hede of þ{a}t figur{e}, þe quych is now 2, & do +away þ{a}t 1, & þou schalt haue þis nombre yf þ{o}u worch wel, + + 5 + 2. + +vn{de} v{er}sus. + + [Headnote: How to prove the Mediation.] + + ¶ Si mediacio sit b{e}n{e} f{ac}ta p{ro}bar{e} valeb{is} + ¶ Duplando num{er}u{m} que{m} p{ri}mo di{m}ediasti + + [Sidenote: How to prove your mediation. First example. The second. + The third example. The fourth example. The fifth example.] + +¶ Her{e} he telles þe how þou schalt know wheþ{er} þou hase wel ydo or +no. doubul [*leaf 151b] þe nombre þe quych þ{o}u hase mediet, and yf +þ{o}u haue wel y-medyt after þe dupleacioɳ, þou schalt haue þe same +nombre þat þ{o}u haddyst in þe tabull{e} or þ{o}u began to medye, as +þus. ¶ The furst ensampull{e} was þis. 4. þe quych I-mediet was laft 2, +þe whych 2 was write in þe place þ{a}t 4 was write afor{e}. Now +doubull{e} þat 2, & þ{o}u schal haue 4, as þ{o}u hadyst afor{e}. þe +secunde Ensampull{e} was þis, 245. When þ{o}u haddyst mediet all{e} þis +nomb{re}, yf þou haue wel ydo þou schalt haue of þ{a}t mediacioɳ þis +nombre, 122ʷ. Now doubull{e} þis nombre, & begyn in þe lyft side; +doubull{e} 1, þat schal be 2. do away þat 1 & sett þ{ere} 2. þen +doubull{e} þ{a}t oþ{er} 2 & sett þ{ere} 4, þen doubull{e} þat oþ{er} 2, +& þat wel be 4. þe{n} doubul þat merke þat stondes for halue on. & þat +schall{e} be 1. Cast þat on to 4, & it schall{e} be 5. do away þat 2 & +þat merke, & sette þ{ere} 5, & þen þ{o}u schal haue þis nombre 245. & +þis wos þe same nombur þ{a}t þ{o}u haddyst or þ{o}u began to medye, as +þ{o}u mayst se yf þou take hede. The nombre þe quych þou haddist for an +Ensampul in þe 3 case of mediacioɳ to be mediet was þis 241. whan þ{o}u +haddist medied all{e} þis nombur truly [*leaf 152a] by eu{er}y figur{e}, +þou schall haue be þ{a}t mediacioɳ þis nombur 120ʷ. Now dowbul þis +nomb{ur}, & begyn in þe lyft side, as I tolde þe in þe Craft of +duplacioɳ. þus doubull{e} þe fig{ur}e of 1, þat wel be 2. do away þat 1 +& sett þ{ere} 2, þen doubul þe next figur{e} afore, the quych is 2, +& þat wel be 4; do away 2 & set þ{ere} 4. þen doubul þe cifer, & þat wel +be noȝt, for a 0 is noȝt. And twyes noȝt is but noȝt. þ{ere}for{e} +doubul the merke aboue þe cifers hede, þe quych betokenes þe halue{n}del +of 1, & þat schal be 1. do away þe cifer & þe merke, & sett þ{ere} 1, +& þen þ{o}u schalt haue þis nombur 241. And þis same nombur þ{o}u +haddyst afore or þ{o}u began to medy, & yf þ{o}u take gode hede. ¶ The +next ensampul þat had in þe 4 case of mediacioɳ was þis 4678. Whan þ{o}u +hast truly ymedit all{e} þis nombur fro þe begynnyng{e} to þe endyng{e}, +þ{o}u schalt haue of þe mediacioɳ þis nombur + + 5 + 2334. + +Now doubul this nombur & begyn in þe lyft side, & doubull{e} 2 þat schal +be 4. do away 2 and sette þere 4; þen doubul{e} 3, þ{a}t wol be 6; do +away 3 & sett þ{ere} 6, þen doubul þat oþ{er} 3, & þat wel be 6; do away +3 & set þ{ere} [*leaf 152b] 6, þen doubul þe 4, þat welle be 8; þen +doubul 5. þe quych stondes ou{er} þe hed of 4, & þat wol be 10; cast 10 +to 8, & þ{a}t schal be 18; do away 4 & þat 5, & sett þ{ere} 8, & sett +that 1, þe quych is an articul of þe Composit þe quych is 18, ou{er} þe +next figur{es} hed toward þe lyft side, þe quych is 6. drav þ{a}t 1 to +6, þe quych 1 in þe dravyng schal be rekente bot for 1, & þ{a}t 1 & +þ{a}t 6 togedur wel be 7. do away þat 6 & þat 1. the quych stondes +ou{er} his hede, & sett ther 7, & þen þou schalt haue þis nombur 4678. +And þis same nombur þ{o}u hadyst or þ{o}u began to medye, as þ{o}u mayst +see in þe secunde Ensampul þat þou had in þe 4 case of mediacioɳ, þat +was þis: when þ{o}u had mediet truly all{e} the nombur, a p{ri}ncipio +usque ad fine{m}. þ{o}u schalt haue of þat mediacioɳ þis nombur + + 5 + 102. + +Now doubul 1. þat wel be 2. do away 1 & sett þ{ere} 2. þen doubul 0. +þ{a}t will be noȝt. þ{ere}for{e} take þe 5, þe quych stondes ou{er} þe +next figur{es} hed, & doubul it, & þat wol be 10. do away þe 0 þat +stondes betwene þe two fig{u}r{i}s, & sette þ{ere} in his stid 1, for +þ{a}t 1 now schal stonde in þe secunde place, wher{e} he schal betoken +10; þen doubul 2, þat wol be 4. do away 2 & sett þere 4. & [*leaf 153a] +þou schal haue þus nombur 214. þis is þe same nu{m}bur þat þ{o}u hadyst +or þ{o}u began to medye, as þ{o}u may see. And so do eu{er} mor{e}, yf +þ{o}u wil knowe wheþ{er} þou hase wel ymedyt or no. ¶. doubull{e} þe +nu{m}bur þat comes aft{er} þe mediaciouɳ, & þ{o}u schal haue þe same +nombur þ{a}t þ{o}u hadyst or þ{o}u began to medye, yf þ{o}u haue welle +ydo. or els doute þe noȝt, but yf þ{o}u haue þe same, þ{o}u hase faylide +in þ{i} Craft. + ++Sequitur de multiplicatione.+ + + + [Headnote: The Craft of Multiplication.] + + [Headnote: To write down a Multiplication Sum.] + + ++Si tu p{er} num{er}u{m} num{er}u{m} vis m{u}ltiplicar{e} + Scribe duas q{ua}scu{nque} velis series nu{me}ror{um} + Ordo s{er}vet{ur} vt vltima m{u}ltiplicandi + Ponat{ur} sup{er} ant{er}iorem multiplicant{is} + A leua reliq{u}e sint scripte m{u}ltiplicantes. + + [Sidenote: Four things to be known of Multiplication: the first: + the second: the third: the fourth. How to set down the sum. Two + sorts of Multiplication: mentally, and on paper.] + +¶ Her{e} be-gynnes þe Chapt{r}e of m{u}ltiplicatioɳ, in þe quych þou +most know 4 thynges. ¶ Ffirst, qwat is m{u}ltiplicacioɳ. The secunde, +how mony cases may hap in multiplicacioɳ. The thryde, how mony rewes of +figur{es} þ{ere} most be. ¶ The 4. what is þe p{ro}fet of þis craft. +¶ As for þe first, þ{o}u schal vnd{er}stonde þat m{u}ltiplicacioɳ is a +bryngyng{e} to-ged{er} of 2 thyng{es} in on nombur, þe quych on nombur +{con}tynes so mony tymes on, howe [*leaf 153b] mony tymes þ{ere} ben +vnytees in þe nowmb{re} of þat 2, as twyes 4 is 8. now her{e} ben þe 2 +nomb{er}s, of þe quych too nowmbr{e}s on is betokened be an adu{er}be, +þe quych is þe worde twyes, & þis worde thryes, & þis worde four{e} +sythes,[{9}] [[& þis wordes fyue sithe & sex sythes.]] & so furth of +such other lyke wordes. ¶ And tweyn nombres schal be tokenyde be a +nowne, as þis worde four{e} showys þes tweyɳ nombres y-broth in-to on +hole nombur, þat is 8, for twyes 4 is 8, as þ{o}u wost wel. ¶ And þes +nomb{re} 8 conteynes as oft tymes 4 as þ{ere} ben vnites in þ{a}t other +nomb{re}, þe quych is 2, for in 2 ben 2 vnites, & so oft tymes 4 ben in +8, as þ{o}u wottys wel. ¶ ffor þe secu{n}de, þ{o}u most know þat þ{o}u +most haue too rewes of figures. ¶ As for þe thryde, þ{o}u most know +þ{a}t 8 man{er} of diu{er}se case may happe in þis craft. The p{ro}fet +of þis Craft is to telle when a nomb{re} is m{u}ltiplyed be a noþ{er}, +qwat co{m}mys þ{ere} of. ¶ fforthermor{e}, as to þe sentence of our{e} +verse, yf þ{o}u wel m{u}ltiply a nombur be a-noþ{er} nomb{ur}, þou +schalt write [*leaf 154a] a rewe of figures of what nomb{ur}s so eu{er} +þ{o}u welt, & þat schal be called Num{erus} m{u}ltiplicand{us}, Anglice, +þe nomb{ur} the quych to be m{u}ltiplied. þen þ{o}u schalt write +a-nother rewe of figur{e}s, by þe quych þ{o}u schalt m{u}ltiplie the +nombre þat is to be m{u}ltiplied, of þe quych nomb{ur} þe furst fig{ur}e +schal be write vnd{er} þe last figur{e} of þe nomb{ur}, þe quych is to +be m{u}ltiplied. And so write forthe toward þe lyft side, as her{e} you +may se, + + +----------+ + | 67324 | + | 1234 | + +----------+ + +And þis on{e} nomb{ur} schall{e} be called nu{meru}s m{u}ltiplicans. +An{gli}ce, þe nomb{ur} m{u}ltipliyng{e}, for he schall{e} m{u}ltiply þe +hyer nounb{ur}, as þus on{e} tyme 6. And so forth, as I schal telle the +aft{er}warde. And þou schal begyn in þe lyft side. ¶ ffor-þ{ere}-more +þou schalt vndurstonde þat þ{ere} is two man{ur}s of m{u}ltiplicacioɳ; +one ys of þe wyrchyng{e} of þe boke only in þe mynde of a mon. fyrst he +teches of þe fyrst man{er} of duplacioɳ, þe quych is be wyrchyng{e} of +tabuls. Aft{er}warde he wol teche on þe secunde man{er}. vn{de} +v{er}sus. + + [Headnote: To multiply one Digit by another.] + + In digitu{m} cures digitu{m} si duc{er}e ma{i}or + [*leaf 154b.] + P{er} qua{n}tu{m} distat a denis respice debes + ¶ Namq{ue} suo decuplo totiens deler{e} mi{n}ore{m} + Sitq{ue} tibi nu{meru}s veniens exinde patebit. + + [Sidenote: How to multiply two digits. Subtract the greater from ten; + take the less so many times from ten times itself. Example.] + +¶ Her{e} he teches a rewle, how þ{o}u schalt fynde þe nounb{r}e þat +comes by þe m{u}ltiplicacioɳ of a digit be anoþ{er}. loke how mony +[vny]tes ben. bytwene þe mor{e} digit and 10. And reken ten for on +vnite. And so oft do away þe lasse nounbre out of his owne decuple, þat +is to say, fro þat nounb{r}e þat is ten tymes so mych is þe nounb{re} +þ{a}t comes of þe m{u}ltiplicacioɳ. As yf þ{o}u wol m{u}ltiply 2 be 4. +loke how mony vnitees ben by-twene þe quych is þe mor{e} nounb{re}, +& be-twene ten. C{er}ten þ{ere} wel be vj vnitees by-twene 4 & ten. +yf þ{o}u reken þ{ere} w{i}t{h} þe ten þe vnite, as þou may se. so mony +tymes take 2. out of his decuple, þe quych is 20. for 20 is þe decuple +of 2, 10 is þe decuple of 1, 30 is þe decuple of 3, 40 is þe decuple of +4, And þe oþ{er} digetes til þ{o}u come to ten; & whan þ{o}u hast y-take +so mony tymes 2 out of twenty, þe quych is sex tymes, þ{o}u schal leue 8 +as þ{o}u wost wel, for 6 times 2 is twelue. take [1]2 out of twenty, +& þ{ere} schal leue 8. bot yf bothe þe digett{es} [*leaf 155a] ben +y-lyech mych as her{e}. 222 or too tymes twenty, þen it is no fors quych +of hem tweyn þ{o}u take out of here decuple. als mony tymes as þ{a}t is +fro 10. but neu{er}-þe-lesse, yf þ{o}u haue hast to worch, þ{o}u schalt +haue her{e} a tabul of figures, wher{e}-by þ{o}u schalt se a-nonɳ ryght +what is þe nounbre þ{a}t comes of þe multiplicacioɳ of 2 digittes. þus +þ{o}u schalt worch in þis fig{ur}e. + + [Sidenote: Better use this table, though. How to use it. The way to + use the Multiplication table.] + + 1| + ----- + 2| 4| + -------- + 3| 6| 9| + ----------- + 4| 8|12|16| + -------------- + 5|10|15|20|25| + ----------------- + 6|12|18|24|30|36| + -------------------- + 7|14|21|28|35|42|49| + ----------------------- + 8|16|24|32|40|48|56|64| + -------------------------- + 9|18|27|36|45|54|63|72|81| + ---------------------------- + 1| 2| 3| 4| 5| 6| 7| 8| 9| + ---------------------------- + +yf þe fig{ur}e, þe quych schall{e} be m{u}ltiplied, be euen{e} as mych +as þe diget be, þe quych þat oþ{er} figur{e} schal be m{u}ltiplied, +as two tymes twayɳ, or thre tymes 3. or sych other. loke qwer{e} þat +fig{ur}e sittes in þe lyft side of þe t{ri}angle, & loke qwer{e} þe +diget sittes in þe neþ{er} most rewe of þe triangle. & go fro hym +vpwarde in þe same rewe, þe quych rewe gose vpwarde til þ{o}u come +agaynes þe oþ{er} digette þat sittes in þe lyft side of þe t{ri}angle. +And þat nounbre, þe quych þou [*leaf 155b] fyn[*]des þ{ere} is þe +nounbre þat comes of the m{u}ltiplicacioɳ of þe 2 digittes, as yf þou +wold wete qwat is 2 tymes 2. loke quer{e} sittes 2 in þe lyft side i{n} +þe first rewe, he sittes next 1 in þe lyft side al on hye, as þ{o}u may +se; þe[{n}] loke qwer{e} sittes 2 in þe lowyst rewe of þe t{ri}angle, +& go fro hym vpwarde in þe same rewe tyll{e} þou come a-ȝenenes 2 in þe +hyer place, & þer þou schalt fynd ywrite 4, & þat is þe nounb{r}e þat +comes of þe multiplicacioɳ of two tymes tweyn is 4, as þow wotest +well{e}. yf þe diget. the quych is m{u}ltiplied, be mor{e} þan þe +oþ{er}, þou schalt loke qwer{e} þe mor{e} diget sittes in þe lowest rewe +of þe t{ri}angle, & go vpwarde in þe same rewe tyl[{10}] þ{o}u come +a-nendes þe lasse diget in the lyft side. And þ{ere} þ{o}u schalt fynde +þe no{m}b{r}e þat comes of þe m{u}ltiplicacioɳ; but þ{o}u schalt +vnd{er}stonde þat þis rewle, þe quych is in þis v{er}se. ¶ In digitu{m} +cures, &c., noþ{er} þis t{ri}angle schall{e} not s{er}ue, bot to fynde +þe nounbres þ{a}t comes of the m{u}ltiplicacioɳ þat comes of 2 articuls +or {com}posites, þe nedes no craft but yf þou wolt m{u}ltiply in þi +mynde. And [*leaf 156a] þere-to þou schalt haue a craft aft{er}warde, +for þou schall wyrch w{i}t{h} digettes in þe tables, as þou schalt know +aft{er}warde. v{er}sus. + + [Headnote: To multiply one Composite by another.] + + ¶ Postea p{ro}cedas postrema{m} m{u}ltiplica{n}do + [Recte multiplicans per cu{n}ctas i{n}feriores] + Condic{i}onem tamen t{a}li q{uod} m{u}ltiplicant{es} + Scribas in capite quicq{ui}d p{ro}cesserit inde + Sed postq{uam} fuit hec m{u}ltiplicate fig{ur}e + Anteriorent{ur} serei m{u}ltiplica{n}t{is} + Et sic m{u}ltiplica velut isti m{u}ltiplicasti + Qui sequit{ur} nu{mer}u{m} sc{ri}ptu{m} quiscu{n}q{ue} figur{is}. + + [Sidenote: How to multiply one number by another. Multiply the ‘last’ + figure of the higher by the ‘first’ of the lower number. Set the + answer over the first of the lower: then multiply the second of the + lower, and so on. Then antery the lower number: as thus. Now multiply + by the last but one of the higher: as thus. Antery the figures again, + and multiply by five: Then add all the figures above the line: and + you will have the answer.] + +¶ Her{e} he teches how þ{o}u schalt wyrch in þis craft. þou schalt +m{ul}tiplye þe last figur{e} of þe nombre, and quen þ{o}u hast so ydo +þou schalt draw all{e} þe figures of þe neþ{er} nounbre mor{e} taward þe +ryȝt side, so qwe{n} þ{o}u hast m{u}ltiplyed þe last figur{e} of þe +heyer nounbre by all{e} þe neþ{er} figures. And sette þe nounbir þat +comes þer-of ou{er} þe last figur{e} of þe neþ{er} nounb{re}, & þen þou +schalt sette al þe oþ{er} fig{ur}es of þe neþ{er} nounb{re} mor{e} +ner{e} to þe ryȝt side. ¶ And whan þou hast m{u}ltiplied þat figur{e} +þat schal be m{u}ltiplied þe next aft{er} hym by al þe neþ{er} figures. +And worch as þou dyddyst afor{e} til [*leaf 156b] þou come to þe ende. +And þou schalt vnd{er}stonde þat eu{er}y figur{e} of þe hier nounb{re} +schal be m{u}ltiplied be all{e} þe figur{e}s of the neþ{er} nounbre, +yf þe hier nounb{re} be any figur{e} þen on{e}. lo an Ensampul her{e} +folowyng{e}. + + +------+ + | 2465|. + |232 | + +------+ + +þou schalt begyne to m{u}ltiplye in þe lyft side. M{u}ltiply 2 be 2, and +twyes 2 is 4. set 4 ou{er} þe hed of þ{a}t 2, þen m{u}ltiplie þe same +hier 2 by 3 of þe nether nounbre, as thryes 2 þat schal be 6. set 6 +ou{er} þe hed of 3, þan m{u}ltiplie þe same hier 2 by þat 2 þe quych +stondes vnd{er} hym, þ{a}t wol be 4; do away þe hier 2 & sette þ{ere} 4. +¶ Now þ{o}u most antery þe nether nounbre, þat is to say, þ{o}u most +sett þe neþ{er} nounbre more towarde þe ryȝt side, as þus. Take þe +neþ{er} 2 toward þe ryȝt side, & sette it eueɳ vnd{er} þe 4 of þe hyer +nounb{r}e, & ant{er}y all{e} þe figures þat comes aft{er} þat 2, as þus; +sette 2 vnd{er} þe 4. þen sett þe figur{e} of 3 þ{ere} þat þe figure of +2 stode, þe quych is now vndur þ{a}t 4 in þe hier nounbre; þen sett þe +oþer figur{e} of 2, þe quych is þe last fig{ur}e toward þe lyft side of +þe neþ{er} nomb{er} þ{ere} þe figur{e} of 3 stode. þen þ{o}u schalt haue +such a nombre. + + +------+ + |464465| + | 232 | + +------+ + +[*leaf 157a] ¶ Now m{u}ltiply 4, þe quych comes next aft{er} 6, by þe +last 2 of þe neþ{er} nounbur toward þe lyft side. as 2 tymes 4, þat wel +be 8. sette þat 8 ou{er} þe figure the quych stondes ou{er} þe hede of +þat 2, þe quych is þe last figur{e} of þe neþ{er} nounbre; þan multiplie +þat same 4 by 3, þat comes in þe neþ{er} rewe, þat wol be 12. sette þe +digit of þe composyt ou{er} þe figure þe quych stondes ou{er} þe hed of +þat 3, & sette þe articule of þis co{m}posit ou{er} al þe figures þat +stondes ou{er} þe neþ{er} 2 hede. þen m{u}ltiplie þe same 4 by þe 2 in +þe ryȝt side in þe neþ{er} nounbur, þat wol be 8. do away 4. & sette +þ{ere} 8. Eu{er} mor{e} qwen þ{o}u m{u}ltiplies þe hier figur{e} by þat +figur{e} þe quych stondes vnd{er} hym, þou schalt do away þat hier +figur{e}, & sett þer þat nounbre þe quych comes of m{u}ltiplicacioɳ of +ylke digittes. Whan þou hast done as I haue byde þe, þ{o}u schalt haue +suych an ord{er} of figur{e} as is her{e}, + + +--------+ + | 1 |. + | 82 | + |4648[65]| + | 232 | + +--------+ + +þen take and ant{er}y þi neþ{er} figures. And sett þe fyrst fig{ur}e of +þe neþ{er} figures[{11}] vndre be figur{e} of 6. ¶ And draw al þe oþ{er} +figures of þe same rewe to hym-warde, [*leaf 157b] as þ{o}u diddyst +afore. þen m{u}ltiplye 6 be 2, & sett þat þe quych comes ou{er} +þ{ere}-of ou{er} al þe oþ{er} figures hedes þat stondes ou{er} þat 2. +þen m{u}ltiply 6 be 3, & sett all{e} þat comes þ{ere}-of vpon all{e} þe +figur{e}s hedes þat standes ou{er} þat 3; þa{n} m{u}ltiplye 6 be 2, þe +quych stondes vnd{er} þat 6, þen do away 6 & write þ{ere} þe digitt of +þe composit þat schal come þ{ere}of, & sette þe articull ou{er} all{e} +þe figures þat stondes ou{er} þe hede of þat 3 as her{e}, + + +------+ + | 11 | + | 121 | + | 828 | + |464825| + | 232 | + +------+ + +þen ant{er}y þi figures as þou diddyst afor{e}, and m{u}ltipli 5 be 2, +þat wol be 10; sett þe 0 ou{er} all þe figures þ{a}t stonden ou{er} þat +2, & sett þ{a}t 1. ou{er} the next figures hedes, all{e} on hye towarde +þe lyft side. þen m{u}ltiplye 5 be 3. þat wol be 15, write 5 ou{er} þe +figures hedes þat stonden ou{er} þ{a}t 3, & sett þat 1 ou{er} þe next +figur{e}s hedes toward þe lyft side. þen m{u}ltiplye 5 be 2, þat wol be +10. do away þat 5 & sett þ{ere} a 0, & sett þat 1 ou{er} þe figures +hedes þat stonden ou{er} 3. And þen þou schalt haue such a nounbre as +here stondes aftur.[*leaf 158a] + + +------+ + | 11 | + | 1101 | + | 1215 | + | 82820| + |4648 | + | 232| + +------+ + +¶ Now draw all{e} þese figures downe toged{er} as þus, 6.8.1. & 1 draw +to-gedur; þat wolle be 16, do away all{e} þese figures saue 6. lat hym +stonde, for þow þ{o}u take hym away þou most write þer þe same aȝene. +þ{ere}for{e} late hym stonde, & sett 1 ou{er} þe figur{e} hede of 4 +toward þe lyft side; þen draw on to 4, þat woll{e} be 5. do away þat 4 & +þat 1, & sette þ{ere} 5. þen draw 4221 & 1 toged{ur}, þat wol be 10. do +away all{e} þat, & write þere þat 4 & þat 0, & sett þat 1 ou{er} þe next +figur{es} hede toward þe lyft side, þe quych is 6. þen draw þat 6 & þat +1 togedur, & þat wolle be 7; do away 6 & sett þ{ere} 7, þen draw 8810 & +1, & þat wel be 18; do away all{e} þe figures þ{a}t stondes ou{er} þe +hede of þat 8, & lette 8 stonde stil, & write þat 1 ou{er} þe next +fig{u}r{is} hede, þe quych is a 0. þen do away þat 0, & sett þ{ere} 1, +þe quych stondes ou{er} þe 0. hede. þen draw 2, 5, & 1 toged{ur}, þat +woll{e} be 8. þen do away all{e} þat, & write þ{ere} 8. ¶ And þen þou +schalt haue þis nounbre, 571880. + + [Headnote: The Cases of this Craft.] + + [*leaf 158b] + + ¶ S{ed} cu{m} m{u}ltiplicabis, p{ri}mo sic e{st} op{er}andu{m}, + Si dabit articulu{m} tibi m{u}ltiplicacio solu{m}; + P{ro}posita cifra su{m}ma{m} t{ra}nsferre meme{n}to. + + [Sidenote: What to do if the first multiplication results in an + article.] + +¶ Her{e} he puttes þe fyrst case of þis craft, þe quych is þis: yf +þ{ere} come an articulle of þe m{u}ltiplicacioɳ ysette befor{e} the +articull{e} in þe lyft side as þus + + +---+ + | 51|. + |23 | + +---+ + +multiplye 5 by 2, þat wol be 10; sette ou{er} þe hede of þat 2 a 0, +& sett þat on, þat is þe articul, in þe lyft side, þat is next hym, þen +þ{o}u schalt haue þis nounbre + + +----+ + |1051|. + | 23 | + +----+ + +¶ And þen worch forth as þou diddist afore. And þ{o}u schalt +vnd{er}stonde þat þ{o}u schalt write no 0. but whan þat place where þou +schal write þat 0 has no figure afore hy{m} noþ{er} aft{er}. v{er}sus. + + ¶ Si aut{em} digitus excreu{er}it articul{us}q{ue}. + Articul{us}[{12}] sup{ra}p{osit}o digito salit vltra. + + [Sidenote: What to do if the result is a composite number.] + +¶ Her{e} is þe secunde case, þe quych is þis: yf hit happe þat þ{ere} +come a composyt, þou schalt write þe digitte ou{er} þe hede of þe +neþ{er} figur{e} by þe quych þ{o}u multipliest þe hier figure; and sett +þe articull{e} next hym toward þe lyft side, as þou diddyst afore, as +þ{us} + + +---+ + | 83|. + |83 | + +---+ + +Multiply 8 by 8, þat wol be 64. Write þe 4 ou{er} 8, þat is to say, +ou{er} þe hede of þe neþ{er} 8; & set 6, þe quych [*leaf 159a] is an +articul, next aft{er}. And þen þou schalt haue such a nounb{r}e as is +her{e}, + + +-----------+ + | 6483[{13}]|, + | 83 | + +-----------+ + +And þen worch forth. + + ¶ Si digitus t{amen} ponas ip{su}m sup{er} ip{s}am. + + [Sidenote: What if it be a digit.] + +¶ Her{e} is þe thryde case, þe quych is þis: yf hit happe þat of þi +m{u}ltiplicaciouɳ come a digit, þ{o}u schalt write þe digit ou{er} þe +hede of þe neþ{er} figur{e}, by the quych þou m{u}ltipliest þe hier{e} +figur{e}, for þis nedes no Ensampul. + + ¶ Subdita m{u}ltiplica non hanc que [incidit] illi + Delet ea{m} penit{us} scribens quod p{ro}uenit inde. + + [Sidenote: The fourth case of the craft.] + +¶ Her{e} is þe 4 case, þe quych is: yf hit be happe þat þe neþ{er} +figur{e} schal multiplye þat figur{e}, þe quych stondes ou{er} þat +figures hede, þou schal do away þe hier figur{e} & sett þ{er}e þat +þ{a}t comys of þ{a}t m{u}ltiplicacioɳ. As yf þ{er}e come of þat +m{u}ltiplicacioɳ an articuls þou schalt write þere þe hier figur{e} +stode a 0. ¶ And write þe articuls in þe lyft side, yf þat hit be a +digit write þ{er}e a digit. yf þat h{i}t be a composit, write þe digit +of þe composit. And þe articul in þe lyft side. al þis is lyȝt y-nowȝt, +þ{er}e-for{e} þer nedes no Ensampul. + + ¶ S{ed} si m{u}ltiplicat alia{m} ponas sup{er} ip{s}am + Adiu{n}ges num{er}u{m} que{m} p{re}bet duct{us} ear{um}. + + [Sidenote: The fifth case of the craft.] + +¶ Her{e} is þe 5 case, þe quych is þis: yf [*leaf 159b] þe neþ{er} +figur{e} schul m{u}ltiplie þe hier, and þat hier figur{e} is not recte +ou{er} his hede. And þat neþ{er} figur{e} hase oþ{er} figures, or on +figure ou{er} his hede by m{u}ltiplicacioɳ, þat hase be afor{e}, þou +schalt write þat nounbre, þe quych comes of þat, ou{er} all{e} þe ylke +figures hedes, as þus here: + + +-----+ + | 236| + |234 | + +-----+ + +Multiply 2 by 2, þat wol be 4; set 4 ou{er} þe hede of þat 2. þen[{14}] +m{u}ltiplies þe hier 2 by þe neþ{er} 3, þat wol be 6. set ou{er} his +hede 6, multiplie þe hier 2 by þe neþ{er} 4, þat wol be 8. do away þe +hier 2, þe quych stondes ou{er} þe hede of þe figur{e} of 4, and set +þ{er}e 8. And þou schalt haue þis nounb{re} here + + +-------+ + | 46836 | + | 234 | + +-------+ + +And antery þi figur{e}s, þat is to say, set þi neþ{er} 4 vnd{er} þe hier +3, and set þi 2 other figures ner{e} hym, so þat þe neþ{er} 2 stonde +vnd{ur} þe hier 6, þe quych 6 stondes in þe lyft side. And þat 3 þat +stondes vndur 8, as þus aftur ȝe may se, + + +-------+ + | 46836 | + | 234 | + +-------+ + +Now worch forthermor{e}, And m{u}ltiplye þat hier 3 by 2, þat wol be 6, +set þ{a}t 6 þe quych stondes ou{er} þe hede of þat 2, And þen worch as I +taȝt þe afore. + + [*leaf 160a] + + ¶ Si sup{ra}posita cifra debet m{u}ltiplicar{e} + Prorsus ea{m} deles & ibi scribi cifra debet. + + [Sidenote: The sixth case of the craft.] + +¶ Her{e} is þe 6 case, þe quych is þis: yf hit happe þat þe figur{e} by +þe quych þou schal m{u}ltiplye þe hier figur{e}, þe quych stondes ryght +ou{er} hym by a 0, þou schalt do away þat figur{e}, þe quych ou{er} þat +cifre hede. ¶ And write þ{ere} þat nounbre þat comes of þe +m{u}ltiplicacioɳ as þus, 23. do away 2 and sett þ{er}e a 0. vn{de} +v{er}sus. + + ¶ Si cifra m{u}ltiplicat alia{m} posita{m} sup{er} ip{s}am + Sitq{ue} locus sup{ra} vacu{us} sup{er} hanc cifra{m} fiet. + + [Sidenote: The seventh case of the craft.] + +¶ Her{e} is þe 7 case, þe quych is þis: yf a 0 schal m{u}ltiply a +figur{e}, þe quych stondes not recte ou{er} hym, And ou{er} þat 0 stonde +no thyng, þou schalt write ou{er} þat 0 anoþ{er} 0 as þus: + + +----+ + | 24| + |03 | + +----+ + +multiplye 2 be a 0, it wol be nothyng{e}. write þere a 0 ou{er} þe hede +of þe neþ{er} 0, And þen worch forth til þou come to þe ende. + + ¶ Si sup{ra}[{15}] fuerit cifra sem{per} e{st} p{re}t{er}eunda. + + [Sidenote: The eighth case of the craft.] + +¶ Her{e} is þe 8 case, þe quych is þis: yf þ{ere} be a 0 or mony cifers +in þe hier rewe, þ{o}u schalt not m{u}ltiplie hem, bot let hem stonde. +And antery þe figures beneþe to þe next figur{e} sygnificatyf as þus: + + +-----+ + |00032|. + |22 | + +-----+ + +Ou{er}-lepe all{e} þese cifers & sett þat [*leaf 160b] neþ{er} 2 þat +stondes toward þe ryght side, and sett hym vnd{ur} þe 3, and sett þe +oþ{er} nether 2 nere hym, so þat he stonde vnd{ur} þe thrydde 0, þe +quych stondes next 3. And þan worch. vnd{e} v{er}sus. + + ¶ Si dubites, an sit b{e}n{e} m{u}ltiplicac{i}o facta, + Diuide totalem nu{mer}u{m} p{er} multiplicante{m}. + + [Sidenote: How to prove the multiplication.] + +¶ Her{e} he teches how þou schalt know wheþ{er} þou hase wel I-do or no. +And he says þat þou schalt deuide all{e} þe nounb{r}e þat comes of þe +m{u}ltiplicacioɳ by þe neþ{er} figures. And þen þou schalt haue þe same +nounbur þat þ{o}u hadyst in þe begynnyng{e}. but ȝet þou hast not þe +craft of dyuisioɳ, but þ{o}u schalt haue hit aft{er}warde. + + ¶ P{er} num{er}u{m} si vis nu{mer}u{m} q{u}oq{ue} m{u}ltiplicar{e} + ¶ T{antu}m p{er} normas subtiles absq{ue} figuris + Has normas pot{er}is p{er} v{er}sus scir{e} sequentes. + + [Sidenote: Mental multiplication.] + +¶ Her{e} he teches þe to m{u}ltiplie be þowȝt figures in þi mynde. And +þe sentence of þis v{er}se is þis: yf þo{u} wel m{u}ltiplie on nounbre +by anoþ{er} in þi mynde, þ{o}u schal haue þ{er}eto rewles in þe v{er}ses +þat schal come aft{er}. + + ¶ Si tu p{er} digitu{m} digitu{m} vis m{u}ltiplicar{e} + Re{gula} p{re}cedens dat qualit{er} est op{er}andu{m}. + + [Sidenote: Digit by digit is easy.] + +¶ Her{e} he teches a rewle as þou hast afor{e} to m{u}ltiplie a digit be +anoþ{er}, as yf þou wolde wete qwat is sex tymes 6. þou [*leaf 161a] +schalt wete by þe rewle þat I taȝt þe befor{e}, yf þou haue mynde +þ{er}of. + + ¶ Articulu{m} si p{er} reliquu{m} reliquu{m} vis m{u}lti{plica}r{e} + In p{ro}p{r}iu{m} digitu{m} debet vt{er}q{ue} resolui. + ¶ Articul{us} digitos post se m{u}ltiplicantes + Ex digit{us} quociens retenerit m{u}ltipli{ca}r{i} + Articuli faciu{n}t tot centu{m} m{u}ltiplicati. + + [Sidenote: The first case of the craft. Article by article; an + example: another example:] + + [Headnote: How to work subtly without Figures.] + + [Sidenote: Mental multiplication. Another example. Another example. + Notation. Notation again. Mental multiplication.] + +¶ Her{e} he teches þe furst rewle, þe quych is þis: yf þou wel +m{u}ltiplie an articul be anoþ{er}, so þat both þe articuls bene +w{i}t{h}-Inne an hundreth, þus þ{o}u schalt do. take þe digit of bothe +the articuls, for eu{er}y articul hase a digit, þen m{u}ltiplye þat on +digit by þat oþ{er}, and loke how mony vnytes ben in þe nounbre þat +comes of þe m{u}ltiplicacioɳ of þe 2 digittes, & so mony hundrythes ben +in þe nounb{re} þat schal come of þe m{u}ltiplicacioɳ of þe ylke 2 +articuls as þus. yf þ{o}u wold wete qwat is ten tymes ten. take þe digit +of ten, þe quych is 1; take þe digit of þat oþ{er} ten, þe quych is on. +¶ Also m{u}ltiplie 1 be 1, as on tyme on þat is but 1. In on is but on +vnite as þou wost welle, þ{er}efor{e} ten tymes ten is but a hundryth. +¶ Also yf þou wold wete what is twenty tymes 30. take þe digit of +twenty, þat is 2; & take þe digitt of thrytty, þat is 3. m{u}ltiplie 3 +be 2, þat is 6. Now in 6 ben 6 vnites, ¶ And so mony hundrythes ben in +20 tymes 30[*leaf 161b], þ{ere}for{e} 20 tymes 30 is 6 hundryth eueɳ. +loke & se. ¶ But yf it be so þat on{e} articul be w{i}t{h}-Inne an +hundryth, or by-twene an hundryth and a thowsande, so þat it be not a +þowsande fully. þen loke how mony vnytes ben in þe nounbur þat comys of +þe m{u}ltiplicacioɳ [{16}]And so mony tymes[{16}] of 2 digitt{es} of +ylke articuls, so mony thowsant ben in þe nounbre, the qwych comes of þe +m{u}ltiplicacioɳ. And so mony tymes ten thowsand schal be in þe nounbre +þat comes of þe m{u}ltiplicacion of 2 articuls, as yf þ{o}u wold wete +qwat is 4 hundryth tymes [two hundryth]. Multiply 4 be 2,[{17}] þat wol +be 8. in 8 ben 8 vnites. ¶ And so mony tymes ten thousand be in 4 +hundryth tymes [2][{17}] hundryth, þ{a}t is 80 thousand. Take hede, +I schall telle þe a gen{e}rall{e} rewle whan þ{o}u hast 2 articuls, And +þou wold wete qwat comes of þe m{u}ltiplicacioɳ of hem 2. m{u}ltiplie þe +digit of þ{a}t on articuls, and kepe þat nounbre, þen loke how mony +cifers schuld go befor{e} þat on articuls, and he wer{e} write. Als mony +cifers schuld go befor{e} þat other, & he wer{e} write of cifers. And +haue all{e} þe ylke cifers toged{ur} in þi mynde, [*leaf 162a] a-rowe +ychoɳ aftur other, and in þe last plase set þe nounbre þat comes of þe +m{u}ltiplicacioɳ of þe 2 digittes. And loke in þi mynde in what place he +stondes, wher{e} in þe secunde, or in þe thryd, or in þe 4, or wher{e} +ellis, and loke qwat þe figures by-token in þat place; & so mych is þe +nounbre þat comes of þe 2 articuls y-m{u}ltiplied to-ged{ur} as þus: +yf þ{o}u wold wete what is 20 thousant tymes 3 þowsande. m{u}ltiply þe +digit of þat articull{e} þe quych is 2 by þe digitte of þat oþ{er} +articul þe quych is 3, þat wol be 6. þen loke how mony cifers schal go +to 20 thousant as hit schuld be write in a tabul. c{er}tainly 4 cifers +schuld go to 20 þowsant. ffor þis figure 2 in þe fyrst place betokenes +twene. ¶ In þe secunde place hit betokenes twenty. ¶ In þe 3. place hit +betokenes 2 hundryth. .¶. In þe 4 place 2 thousant. ¶ In þe 5 place +h{i}t betokenes twenty þousant. þ{ere}for{e} he most haue 4 cifers +a-for{e} hym þat he may sto{n}de in þe 5 place. kepe þese 4 cifers in +thy mynde, þen loke how mony cifers goɳ to 3 thousant. Certayn to 3 +thousante [*leaf 162b] goɳ 3 cifers afor{e}. Now cast ylke 4 cifers þat +schuld go to twenty thousant, And thes 3 cifers þat schuld go afor{e} 3 +thousant, & sette hem in rewe ychoɳ aft{er} oþ{er} in þi mynde, as þai +schuld stonde in a tabull{e}. And þen schal þou haue 7 cifers; þen sett +þat 6 þe quych comes of þe m{u}ltiplicacioɳ of þe 2 digitt{es} aft{u}r +þe ylke cifers in þe 8 place as yf þat hit stode in a tabul. And loke +qwat a figur{e} of 6 schuld betoken in þe 8 place. yf hit wer{e} in a +tabul & so mych it is. & yf þat figure of 6 stonde in þe fyrst place he +schuld betoken but 6. ¶ In þe 2 place he schuld betoken sexty. ¶ In the +3 place he schuld betokeɳ sex hundryth. ¶ In þe 4 place sex thousant. +¶ In þe 5 place sexty þowsant. ¶ In þe sext place sex hundryth þowsant. +¶ In þe 7 place sex þowsant thousant{es}. ¶ In þe 8 place sexty þowsant +thousantes. þ{er}for{e} sett 6 in octauo loco, And he schal betoken +sexty þowsant thousantes. And so mych is twenty þowsant tymes 3 +thousant, ¶ And þis rewle is gen{er}all{e} for all{e} man{er} of +articuls, Whethir þai be hundryth or þowsant; but þ{o}u most know well +þe craft of þe wryrchyng{e} in þe tabull{e} [*leaf 163a] or þou know to +do þus in þi mynde aftur þis rewle. Thou most þat þis rewle holdyþe note +but wher{e} þ{ere} ben 2 articuls and no mo of þe quych ayther of hem +hase but on figur{e} significatyf. As twenty tymes 3 thousant or 3 +hundryth, and such oþ{ur}. + + ¶ Articulum digito si m{u}ltiplicare o{portet} + Articuli digit[i sumi quo multiplicate] + Debem{us} reliquu{m} quod m{u}ltiplicat{ur} ab ill{is} + P{er} reliq{u}o decuplu{m} sic su{m}ma{m} later{e} neq{ui}b{i}t. + + [Sidenote: The third case of the craft; an example.] + +¶ Her{e} he puttes þe thryde rewle, þe quych is þis. yf þ{o}u wel +m{u}ltiply in þi mynde, And þe Articul be a digitte, þou schalt loke þat +þe digitt be w{i}t{h}-Inne an hundryth, þen þou schalt m{u}ltiply the +digitt of þe Articulle by þe oþer digitte. And eu{er}y vnite in þe +nounbre þat schall{e} come þ{ere}-of schal betoken ten. As þus: yf þat +þ{o}u wold wete qwat is twyes 40. m{u}ltiplie þe digitt{e} of 40, þe +quych is 4, by þe oþ{er} diget, þe quych is 2. And þat wolle be 8. And +in þe nombre of 8 ben 8 vnites, & eu{er}y of þe ylke vnites schuld +stonde for 10. þ{ere}-fore þ{ere} schal be 8 tymes 10, þat wol be 4 +score. And so mony is twyes 40. ¶ If þe articul be a hundryth or be 2 +hundryth And a þowsant, so þat hit be notte a thousant, [*leaf 163b] +worch as þo{u} dyddyst afor{e}, saue þ{o}u schalt rekene eu{er}y vnite +for a hundryth. + + ¶ In nu{mer}u{m} mixtu{m} digitu{m} si ducer{e} cures + Articul{us} mixti sumat{ur} deinde resoluas + In digitu{m} post fac respectu de digitis + Articul{us}q{ue} docet excrescens in diriua{n}do + In digitu{m} mixti post ducas m{u}ltiplica{n}te{m} + ¶ De digitis vt norma [{18}][docet] de [hunc] + Multiplica si{mu}l et sic postea summa patebit. + + [Sidenote: The fourth case of the craft: Composite by digit. Mental + multiplication.] + +Here he puttes þe 4 rewle, þe quych is þis: yf þou m{u}ltipliy on +composit be a digit as 6 tymes 24, [{19}]þen take þe diget of þat +composit, & m{u}ltiply þ{a}t digitt by þat oþ{er} diget, and kepe þe +nomb{ur} þat comes þ{ere}-of. þen take þe digit of þat composit, +& m{u}ltiply þat digit by anoþ{er} diget, by þe quych þ{o}u hast +m{u}ltiplyed þe diget of þe articul, and loke qwat comes þ{ere}-of. þen +take þ{o}u þat nounbur, & cast hit to þat other nounbur þat þ{o}u +secheste as þus yf þou wel wete qwat comes of 6 tymes 4 & twenty. +multiply þat articull{e} of þe composit by þe digit, þe quych is 6, +as yn þe thryd rewle þ{o}u was tauȝt, And þat schal be 6 scor{e}. þen +m{u}ltiply þe diget of þe {com}posit, [*leaf 164a] þe quych is 4, and +m{u}ltiply þat by þat other diget, þe quych is 6, as þou wast tauȝt in +þe first rewle, yf þ{o}u haue mynde þ{er}of, & þat wol be 4 & twenty. +cast all ylke nounburs to-ged{ir}, & hit schal be 144. And so mych is 6 +tymes 4 & twenty. + + [Headnote: How to multiply without Figures.] + + ¶ Duct{us} in articulu{m} num{erus} si {com}posit{us} sit + Articulu{m} puru{m} comites articulu{m} q{u}o{que} + Mixti pro digit{is} post fiat [et articulus vt] + Norma iubet [retinendo quod extra dicta ab illis] + Articuli digitu{m} post tu mixtu{m} digitu{m} duc + Re{gula} de digitis nec p{re}cipit articul{us}q{ue} + Ex quib{us} exc{re}scens su{m}me tu iunge p{ri}ori + Sic ma{n}ifesta cito fiet t{ibi} su{m}ma petita. + + [Sidenote: The fifth case of the craft: Article by Composite. + An example.] + +¶ Her{e} he puttes þe 5 rewle, þe quych is þis: yf þ{o}u wel m{u}ltiply +an Articul be a composit, m{u}ltiplie þat Articul by þe articul of þe +composit, and worch as þou wos tauȝt in þe secunde rewle, of þe quych +rewle þe v{er}se begynnes þus. ¶ Articulu{m} si p{er} Relicu{m} vis +m{u}ltiplicare. þen m{u}ltiply þe diget of þe composit by þat oþ{ir} +articul aft{ir} þe doctrine of þe 3 rewle. take þ{er}of gode hede, +I p{ra}y þe as þus. Yf þ{o}u wel wete what is 24 tymes ten. Multiplie +ten by 20, þat wel be 2 hundryth. þen m{u}ltiply þe diget of þe 10, þe +quych is 1, by þe diget of þe composit, þe quych is 4, & þ{a}t [*leaf +164b] wol be 4. þen reken eu{er}y vnite þat is in 4 for 10, & þat schal +be 40. Cast 40 to 2 hundryth, & þat wol be 2 hundryth & 40. And so mych +is 24 tymes ten. + + [Headnote: How to work without Figures.] + + ¶ Compositu{m} num{er}u{m} mixto si[c] m{u}ltiplicabis + Vndecies tredeci{m} sic e{st} ex hiis op{er}andum + In reliquu{m} p{rimu}m demu{m} duc post in eund{em} + Vnu{m} post den{u}m duc in t{ri}a dei{n}de p{er} vnu{m} + Multiplices{que} dem{u}m int{ra} o{mn}ia m{u}ltiplicata + In su{m}ma decies q{ua}m si fu{er}it t{ibi} doces + Multiplicandor{um} de normis sufficiunt h{ec}. + + [Sidenote: The sixth case of the craft: Composite by Composite. + Mental multiplication. An example of the sixth case of the craft.] + +¶ Here he puttes þe 6 rewle, & þe last of all{e} multiplicacioɳ, +þe quych is þis: yf þ{o}u wel m{u}ltiplye a {com}posit by a-noþ{er} +composit, þou schalt do þus. m{u}ltiplie þ{a}t on composit, qwych þ{o}u +welt of the twene, by þe articul of þe toþ{er} composit, as þ{o}u wer{e} +tauȝt in þe 5 rewle, þen m{u}ltiplie þ{a}t same composit, þe quych þou +hast m{u}ltiplied by þe oþ{er} articul, by þe digit of þe oþ{er} +composit, as þ{o}u was tauȝt in þe 4 rewle. As þus, yf þou wold wete +what is 11 tymes 13, as þ{o}u was tauȝt in þe 5 rewle, & þat schal be an +hundryth & ten, aft{er}warde m{u}ltiply þat same co{m}posit þ{a}t þ{o}u +hast m{u}ltiplied, þe quych is a .11. And m{u}ltiplye hit be þe digit of +þe oþ{er} composit, þe quych is 3, for 3 is þe digit of 13, And þat wel +be 30. þen take þe digit of þat composit, þe quych composit þou +m{u}ltiplied by þe digit of þ{a}t oþ{er} {com}posit, [*leaf 165a] þe +quych is a 11. ¶ Also of the quych 11 on is þe digit. m{u}ltiplie þat +digitt by þe digett of þat oth{er} composit, þe quych diget is 3, +as þ{o}u was tauȝt in þe first rewle i{n} þe begynnyng{e} of þis craft. +þe quych rewle begynn{es} “In digitu{m} cures.” And of all{e} þe +m{u}ltiplicacioɳ of þe 2 digitt comys thre, for onys 3 is but 3. Now +cast all{e} þese nounbers toged{ur}, the quych is þis, a hundryth & ten +& 30 & 3. And al þat wel be 143. Write 3 first in þe ryght side. And +cast 10 to 30, þat wol be 40. set 40 next aft{ur} towarde þe lyft side, +And set aftur a hundryth as her{e} an Ensampull{e}, 143. + +(Cetera desunt.) + + +FOOTNOTES (The Crafte of Nombrynge): + + [1: In MS, ‘awiy.’] + [2: ‘ben’ repeated in MS.] + [3: In MS. ‘thausandes.’] + [4: Perhaps “So.”] + [5: ‘hali’ marked for erasure in MS.] + [6: ‘moy’ in MS.] + [7: ‘Subt{ra}has a{u}t addis a dext{ri}s {ve}l medi{a}b{is}’ added + on margin of MS.] + [8: After ‘craft’ insert ‘the .4. what is þe p{ro}fet of þis craft.’] + [9: After ‘sythes’ insert ‘& þis wordes fyue sithe & sex sythes.’] + [10: ‘t’l’ marked for erasure before ‘tyl’ in MS.] + [11: Here ‘of þe same rew’ is marked for erasure in MS.] + [12: ‘s{ed}’ deleted in MS.] + [13: 6883 in MS.] + [14: ‘þen’ overwritten on ‘þat’ marked for erasure.] + [15: ‘Supra’ inserted in MS. in place of ‘cifra’ marked for erasure.] + [16--16: Marked for erasure in MS.] + [17: 4 in MS.] + [18: docet. decet MS.] + [19: ‘4 times 4’ in MS.] + + + + ++The Art of Nombryng.+ + +A TRANSLATION OF + ++John of Holywood’s De Arte Numerandi.+ + + +[_Ashmole MS. 396, fol. 48._] + + +Boys seying in the begynnyng of his Arsemetrik{e}:--All{e} + [*Fol. 48.] thynges that ben{e} fro the first begynnyng of thynges + have p{ro}ceded{e}, and come forth{e}, And by reso{u}n of nombre + ben formed{e}; And in wise as they ben{e}, So oweth{e} they to be + knowen{e}; wherfor in vniu{er}sall{e} knowlechyng of thynges the + Art of nombrynge is best, and most operatyf{e}.+ + + [Sidenote: The name of the art. Derivation of Algorism. Another. + Another. Kinds of numbers. The 9 rules of the Art.] + +Therfore sithen the science of the whiche at this tyme we intenden{e} to +write of standith{e} all{e} and about nombre: ffirst we most se, what is +the p{ro}pre name therof{e}, and fro whens the name come: Afterward{e} +what is nombre, And how manye spices of nombre ther ben. The name is +cleped{e} Algorisme, had{e} out of Algor{e}, other of Algos, in grewe, +That is clepid{e} in englissh{e} art other craft, And of Rithm{us} that +is called{e} nombre. So algorisme is cleped{e} the art of nombryng, +other it is had of{e} en or in, and gogos that is introduccio{u}n, and +Rithm{us} nombre, that is to say Interduccio{u}n of nombre. And thirdly +it is had{e} of the name of a kyng that is cleped{e} Algo and Rythm{us}; +So called{e} Algorism{us}. Sothely .2. maner{e} of nombres ben +notified{e}; Formall{e},[{1}] as nombr{e} i{s} vnitees gadred{e} +to-gedres; Materiall{e},[{2}] as nombr{e} is a colleccio{u}n of vnitees. +Other nombr{e} is a multitude had{e} out of vnitees, vnitee is that +thynge wher-by eu{er}y thynge is called{e} oone, other o thynge. Of +nombres, that one is cleped{e} digitall{e}, that other{e} Article, +Another a nombre componed{e} oþ{er} myxt. Another digitall{e} is a +nombre w{i}t{h}-in .10.; Article is þ{a}t nombre that may be dyvyded{e} +in .10. p{ar}ties egally, And that there leve no residue; Componed{e} or +medled{e} is that nombre that is come of a digite and of an article. And +vndrestand{e} wele that all{e} nombres betwix .2. articles next is a +nombr{e} componed{e}. Of this art ben{e} .9. spices, that is forto sey, +num{er}acio{u}n, addicio{u}n, Subtraccio{u}n, Mediac{i}o{u}n, +Duplacio{u}n, Multipliacio{u}n, Dyvysio{u}n, Progressio{u}n, And of +Rootes the extraccio{u}n, and that may be had{e} in .2. maners, that is +to sey in nombres quadrat, and in cubic{es}: Amonge the which{e}, ffirst +of Num{er}acio{u}n, and aft{er}ward{e} of þe oþ{er}s by ordure, +y entende to write. + + + [Headnote: Chapter I. Numeration.] + + [*Fol. 48b] + + +For-soth{e} num{er}acio{u}n is of eu{er}y numbre by + competent figures an artificiall{e} rep{re}sentacio{u}n.+ + + [Sidenote: Figures, differences, places, and limits. The 9 figures. + The cipher. The numeration of digits, of articles, of composites. + The value due to position. Numbers are written from right to left.] + +Sothly figure, difference, places, and lynes supposen o thyng other the +same, But they ben sette here for dyue{r}s resons. ffigure is cleped{e} +for p{ro}traccio{u}n of figuracio{u}n; Difference is called{e} for +therby is shewed{e} eu{er}y figure, how it hath{e} difference fro the +figures before them: place by cause of space, where-in me writeth{e}: +lynees, for that is ordeyned{e} for the p{re}sentacio{u}n of eu{er}y +figure. And vnderstonde that ther ben .9. lymytes of figures that +rep{re}senten the .9. digit{es} that ben these. 0. 9. 8. 7. 6. 5. 4. 3. +2. 1. The .10. is cleped{e} theta, or a cercle, other a cifre, other a +figure of nought for nought it signyfieth{e}. Nathelesse she holdyng +that place giveth{e} others for to signyfie; for with{e}-out cifre or +cifres a pure article may not be writte. And sithen that by these .9. +figures significatif{es} Ioyned{e} w{i}t{h} cifre or w{i}t{h} cifres +all{e} nombres ben and may be rep{re}sented{e}, It was, nether is, +no nede to fynde any more figures. And note wele that eu{er}y digite +shall{e} be writte w{i}t{h} oo figure allone to it ap{ro}pred{e}. And +all{e} articles by a cifre, ffor eu{er}y article is named{e} for oone of +the digitis as .10. of 1.. 20. of. 2. and so of the others, &c. And +all{e} nombres digitall{e} owen to be sette in the first difference: +All{e} articles in the seconde. Also all{e} nombres fro .10. til an +.100. [which] is excluded{e}, with .2. figures mvst be writte; And yf it +be an article, by a cifre first put, and the figure y-writte toward{e} +the lift hond{e}, that signifieth{e} the digit of the which{e} the +article is named{e}; And yf it be a nombre componed{e}, ffirst write the +digit that is a part of that componed{e}, and write to the lift side the +article as it is seid{e} be-fore. All{e} nombre that is fro an +hundred{e} tille a thousand{e} exclused{e}, owith{e} to be writ by .3. +figures; and all{e} nombre that is fro a thousand{e} til .x. Mł. mvst be +writ by .4. figures; And so forthe. And vnderstond{e} wele that eu{er}y +figure sette in the first place signyfieth{e} his digit; In the +second{e} place .10. tymes his digit; In the .3. place an hundred{e} so +moche; In the .4. place a thousand{e} so moche; In the .5. place .x. +thousand{e} so moch{e}; In the .6. place an hundred{e} thousand{e} so +moch{e}; In the .7. place a thousand{e} thousand{e}. And so infynytly +mvltiplying by [*Fol. 49.] these .3. 10, 100, 1000. And vnderstand{e} +wele that competently me may sette vpon figure in the place of a +thousand{e}, a prik{e} to shewe how many thousand{e} the last figure +shall{e} rep{re}sent. We writen{e} in this art to the lift side-ward{e}, +as arabien{e} writen{e}, that weren fynders of this science, other{e} +for this reso{u}n, that for to kepe a custumable ordr{e} in redyng, +Sette we all{e}-wey the more nombre before. + + [Headnote: Chapter II. Addition.] + + [Sidenote: Definition. How the numbers should be written. The method + of working. Begin at the right. The Sum is a digit, or an article, + or a composite.] + +Addicio{u}n is of nombre other of nombres vnto nombre or to nombres +aggregacio{u}n, that me may see that that is come therof as +exc{re}ssent. In addicio{u}n, 2. ordres of figures and .2. nombres ben +necessary, that is to sey, a nombre to be added{e} and the nombre wherto +the addic{i}oun shold{e} be made to. The nombre to be added{e} is that +þat shold{e} be added{e} therto, and shall{e} be vnderwriten; the nombre +vnto the which{e} addicio{u}n shall{e} be made to is that nombre that +resceyueth{e} the addicion of þat other, and shall{e} be writen above; +and it is convenient that the lesse nombre be vnderwrit, and the more +added{e}, than the contrary. But whether it happ{e} one other other, the +same comyth{e} of, Therfor, yf þow wilt adde nombre to nombre, write the +nombre wherto the addicio{u}n shall{e} be made in the omest ordre by his +differences, so that the first of the lower ordre be vndre the first of +the omyst ordre, and so of others. That done, adde the first of the +lower ordre to the first of the omyst ordre. And of such{e} addicio{u}n, +other þ{er}e grow{i}t{h} therof a digit, An article, other a +composed{e}. If it be digit{us}, In the place of the omyst shalt thow +write the digit excrescyng, as thus:-- + + +----------------------------+---+ + |The resultant | 2 | + +----------------------------+---+ + |To whom it shal be added{e} | 1 | + +----------------------------+---+ + |The nombre to be added{e} | 1 | + +----------------------------+---+ + +If the article; in the place of the omyst put a-way by a cifre writte, +and the digit transferred{e}, of þe which{e} the article toke his name, +toward{e} the lift side, and be it added{e} to the next figure folowyng, +yf ther be any figure folowyng; or no, and yf it be not, leve it [in +the] void{e}, as thus:-- + + +---------------------------------+----+ + | The resultant | 10 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 7 | + +---------------------------------+----+ + | The nombre to be added{e} | 3 | + +---------------------------------+----+ + + +----------------------+---+---+---+---+---+ + | Resultans | 2 | 7 | 8 | 2 | 7 | + +----------------------+---+---+---+---+---+ + | Cui d{ebet} addi | 1 | 0 | 0 | 8 | 4 | + +----------------------+---+---+---+---+---+ + | Num{erus} addend{us} | 1 | 7 | 7 | 4 | 3 | + +----------------------+---+---+---+---+---+ + +And yf it happe that the figure folowyng wherto the addicio{u}n shall{e} +be made by [the cifre of] an article, it sette a-side; In his place +write the [*Fol. 49b] [digit of the] Article as thus:-- + + +---------------------------------+----+ + | The resultant | 17 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 10 | + +---------------------------------+----+ + | The nombre to be added{e} | 7 | + +---------------------------------+----+ + +And yf it happe that a figure of .9. by the figure that me mvst adde +[one] to, In the place of that 9. put a cifre {and} write þe article +toward{e} þe lift hond{e} as bifore, and thus:-- + + +---------------------------------+----+ + | The resultant | 10 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 9 | + +---------------------------------+----+ + | The nombre to be added{e} | 1 | + +---------------------------------+----+ + +And yf[{3}] [therefrom grow a] nombre componed,[{4}] [in the place of +the nombre] put a-way[{5}][let] the digit [be][{6}]writ þ{a}t is part of +þ{a}t co{m}posid{e}, and þan put to þe lift side the article as before, +and þus:-- + + +---------------------------------+----+ + | The resultant | 12 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 8 | + +---------------------------------+----+ + | The nombre to be added{e} | 4 | + +---------------------------------+----+ + +This done, adde the seconde to the second{e}, and write above oþ{er} as +before. + + [Sidenote: The translator’s note.] + +Note wele þ{a}t in addic{i}ons and in all{e} spices folowyng, whan he +seith{e} one the other shall{e} be writen aboue, and me most vse eu{er} +figure, as that eu{er}y figure were sette by half{e}, and by +hym-self{e}. + + + [Headnote: Chapter III. Subtraction.] + + [Sidenote: Definition of Subtraction. How it may be done. What is + required. Write the greater number above. Subtract the first figure + if possible. If it is not possible ‘borrow ten,’ and then subtract.] + +Subtraccio{u}n is of .2. p{ro}posed{e} nombres, the fyndyng of the +excesse of the more to the lasse: Other subtraccio{u}n is ablacio{u}n of +o nombre fro a-nother, that me may see a some left. The lasse of the +more, or even of even, may be w{i}t{h}draw; The more fro the lesse may +neu{er} be. And sothly that nombre is more that hath{e} more figures, So +that the last be signyficatife{s}: And yf ther ben as many in that one +as in that other, me most deme it by the last, other by the next last. +More-ou{er} in w{i}t{h}-drawyng .2. nombres ben necessary; A nombre to +be w{i}t{h}draw, And a nombre that me shall{e} w{i}t{h}-draw of. The +nombre to be w{i}t{h}-draw shall{e} be writ in the lower ordre by his +differences; The nombre fro the which{e} me shall{e} with{e}-draw in the +omyst ordre, so that the first be vnder the first, the second{e} vnder +the second{e}, And so of all{e} others. With{e}-draw therfor the first +of the lower{e} ordre fro the first of the ordre above his hede, and +that wolle be other more or lesse, oþ{er} egall{e}. + + +---------------------------------+----+ + | The remanent | 20 | + +---------------------------------+----+ + | Wherof me shall{e} w{i}t{h}draw | 22 | + +---------------------------------+----+ + | The nombre to be w{i}t{h}draw | 2 | + +---------------------------------+----+ + +yf it be egall{e} or even the figure sette beside, put in his place a +cifre. And yf it be more put away þ{er}fro als many of vnitees the lower +figure conteyneth{e}, and writ the residue as thus + + +----------------------------------+---+---+ + | The remanent | 2 | 2 | + +----------------------------------+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 2 | 8 | + +----------------------------------+---+---+ + | Þe nombre to be w{i}t{h}draw | | 6 | + +----------------------------------+---+---+ + + [*Fol. 50.] + + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | Remane{n}s | 2 | 2 | 1 | 8 | 2 | 9 | 9 | 9 | 8 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | A quo sit subtraccio | 8 | 7 | 2 | 4 | 3 | 0 | 0 | 0 | 4 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | Numerus subt{ra}hend{us} | 6 | 5 |[{7}]|[6]| . | . | . | . | 6 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + +And yf it be lesse, by-cause the more may not be w{i}t{h}-draw ther-fro, +borow an vnyte of the next figure that is worth{e} 10. Of that .10. and +of the figure that ye wold{e} have w{i}t{h}-draw fro be-fore to-gedre +Ioyned{e}, w{i}t{h}-draw þe figure be-nethe, and put the residue in the +place of the figure put a-side as þ{us}:-- + + +----------------------------------+---+---+ + | The remanent | 1 | 8 | + +----------------------------------+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 2 | 4 | + +----------------------------------+---+---+ + | The nombre to be w{i}t{h}-draw | 0 | 6 | + +----------------------------------+---+---+ + + [Sidenote: If the second figure is one.] + +And yf the figure wherof me shal borow the vnyte be one, put it a-side, +and write a cifre in the place þ{er}of, lest the figures folowing faile +of thair{e} nombre, and þan worch{e} as it shew{i}t{h} in this figure +here:-- + + +--------------------------------+---+---+------+ + | The remanent | 3 | 0 |9[{8}]| + +--------------------------------+---+---+------+ + | Wherof me shal w{i}t{h}-draw | 3 | 1 | 2 | + +--------------------------------+---+---+------+ + | The nombre to be w{i}t{h}-draw | . | . | 3 | + +--------------------------------+---+---+------+ + + [Sidenote: If the second figure is a cipher.] + +And yf the vnyte wherof me shal borow be a cifre, go ferther to the +figure signyficatif{e}, and ther borow one, and reto{ur}nyng bak{e}, in +the place of eu{er}y cifre þ{a}t ye passid{e} ou{er}, sette figures of +.9. as here it is specified{e}:-- + + +----------------------------------+---+---+---+---+---+ + | The remenaunt | 2 | 9 | 9 | 9 | 9 | + +----------------------------------+---+---+---+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 3 | 0 | 0 | 0 | 3 | + +----------------------------------+---+---+---+---+---+ + | The nombre to be w{i}t{h}-draw | | | | | 4 | + +----------------------------------+---+---+---+---+---+ + + [Sidenote: A justification of the rule given. Why it is better to + work from right to left. How to prove subtraction, and addition.] + +And whan me cometh{e} to the nombre wherof me intendith{e}, there +remayneth{e} all{e}-wayes .10. ffor þe which{e} .10. &c. The reson why +þat for eu{er}y cifre left behynde me setteth figures ther of .9. this +it is:--If fro the .3. place me borowed{e} an vnyte, that vnyte by +respect of the figure that he came fro rep{re}sentith an .C., In the +place of that cifre [passed over] is left .9., [which is worth ninety], +and yit it remayneth{e} as .10., And the same reson{e} wold{e} be yf me +had{e} borowed{e} an vnyte fro the .4., .5., .6., place, or ony other so +vpward{e}. This done, withdraw the second{e} of the lower ordre fro the +figure above his hede of þe omyst ordre, and wirch{e} as before. And +note wele that in addicion or in subtracc{i}o{u}n me may wele fro the +lift side begynne and ryn to the right side, But it wol be more +p{ro}fitabler to be do, as it is taught. And yf thow wilt p{ro}ve yf +thow have do wele or no, The figures that thow hast withdraw, adde them +ayene to the omyst figures, and they wolle accorde w{i}t{h} the first +that thow haddest yf thow have labored wele; and in like wise in +addicio{u}n, whan thow hast added{e} all{e} thy figures, w{i}t{h}draw +them that thow first [*Fol. 50b] addest, and the same wolle reto{ur}ne. +The subtraccio{u}n is none other but a p{ro}uff{e} of the addicio{u}n, +and the contrarye in like wise. + + [Headnote: Chapter IV. Mediation.] + + [Sidenote: Definition of mediation. Where to begin. If the first + figure is unity. What to do if it is not unity.] + +Mediacio{u}n is the fyndyng of the halfyng of eu{er}y nombre, that it +may be seyn{e} what and how moch{e} is eu{er}y half{e}. In halfyng ay oo +order of figures and oo nombre is necessary, that is to sey the nombre +to be halfed{e}. Therfor yf thow wilt half any nombre, write that nombre +by his differences, and begynne at the right, that is to sey, fro the +first figure to the right side, so that it be signyficatif{e} other +rep{re}sent vnyte or eny other digitall{e} nombre. If it be vnyte write +in his place a cifre for the figures folowyng, [lest they signify less], +and write that vnyte w{i}t{h}out in the table, other resolue it in .60. +mynvt{es} and sette a-side half of tho m{inutes} so, and reserve the +remen{au}nt w{i}t{h}out in the table, as thus .30.; other sette +w{i}t{h}out thus .{dī}: that kepeth{e} none ordre of place, Nathelesse +it hath{e} signyficacio{u}n. And yf the other figure signyfie any other +digital nombre fro vnyte forth{e}, oþ{er} the nombre is od{e} or +even{e}. If it be even, write this half in this wise:-- + + +-----------------+---+---+ + | Halfed{e} | 2 | 2 | + +-----------------+----+--+ + | to be halfed{e} | 4 | 4 | + +-----------------+---+---+ + +And if it be odde, Take the next even vndre hym conteyned{e}, and put +his half in the place of that odde, and of þe vnyte that remayneth{e} to +be halfed{e} do thus:-- + + +-----------------+---+---+ + | halfed{e} | 2 | 3 | [di] + +-----------------+---+---+ + | To be halfed{e} | 4 | 7 | + +-----------------+---+---+ + + [Sidenote: Then halve the second figure. If it is odd, add 5 to the + figure before.] + +This done, the second{e} is to be halfed{e}, yf it be a cifre put it +be-side, and yf it be significatif{e}, other it is even or od{e}: If it +be even, write in the place of þe nombres wiped{e} out the half{e}; yf +it be od{e}, take the next even vnder it co{n}tenyth{e}, and in the +place of the Impar sette a-side put half of the even: The vnyte that +remayneth{e} to be halfed{e}, respect had{e} to them before, is worth{e} +.10. Dyvide that .10. in .2., 5. is, and sette a-side that one, and adde +that other to the next figure p{re}cedent as here:-- + + +-----------------+---+---+---+ + | Halfed{e} | | | | + +-----------------+---+---+---+ + | to be halfed{e} | | | | + +-----------------+---+---+---+ + +And yf þe addicio{u}n shold{e} be made to a cifre, sette it a-side, and +write in his place .5. And vnder this fo{ur}me me shall{e} write and +worch{e}, till{e} the totall{e} nombre be halfed{e}. + + +------------------+---+---+---+---+---+----+----+---+ + | doubled{e} | 2 | 6 | 8 | 9 | 0 | 10 | 17 | 4 | + +------------------+---+---+---+---+---+----+----+---+ + | to be doubled{e} | 1 | 3 | 4 | 4 | 5 | 5 | 8 | 7 | + +------------------+---+---+---+---+---+----+----+---+ + + [Headnote: Chapter V. Duplation.] + + [Sidenote: Definition of Duplation. Where to begin. Why. What to do + with the result.] + +Duplicacio{u}n is ag{re}gacion of nombre [to itself] þat me may se the +nombre growen. In doublyng{e} ay is but one ordre of figures necessarie. +And me most be-gynne w{i}t{h} the lift side, other of the more figure, +And after the nombre of the more figure rep{re}sentith{e}. [*Fol. 51.] +In the other .3. before we begynne all{e} way fro the right side and fro +the lasse nombre, In this spice and in all{e} other folowyng we wolle +begynne fro the lift side, ffor and me bigon th{e} double fro the first, +omwhile me myght double oo thynge twyes. And how be it that me myght +double fro the right, that wold{e} be harder in techyng and in workyng. +Therfor yf thow wolt double any nombre, write that nombre by his +differences, and double the last. And of that doubly{n}g other +growith{e} a nombre digital, article, or componed{e}. [If it be a digit, +write it in the place of the first digit.] If it be article, write in +his place a cifre and transferre the article toward{e} the lift, as +thus:-- + + +------------------+----+ + | double | 10 | + +------------------+----+ + | to be doubled{e} | 5 | + +------------------+----+ + +And yf the nombre be componed{e}, write a digital that is part of his +composicio{u}n, and sette the article to the lift hand{e}, as thus:-- + + +------------------+----+ + | doubled{e} | 16 | + +------------------+----+ + | to be doubled{e} | 8 | + +------------------+----+ + +That done, me most double the last save one, and what groweth{e} þ{er}of +me most worche as before. And yf a cifre be, touch{e} it not. But yf any +nombre shall{e} be added{e} to the cifre, in þe place of þe figure +wiped{e} out me most write the nombre to be added{e}, as thus:-- + + +------------------+---+---+---+ + | doubled{e} | 6 | 0 | 6 | + +------------------+---+---+---+ + | to be doubled{e} | 3 | 0 | 3 | + +------------------+---+---+---+ + + [Sidenote: How to prove your answer.] + +In the same wise me shall{e} wirch{e} of all{e} others. And this +p{ro}bacio{u}n: If thow truly double the halfis, and truly half the +doubles, the same nombre and figure shall{e} mete, such{e} as thow +labo{ur}ed{e} vpon{e} first, And of the contrarie. + + +------------------+---+---+---+ + | Doubled{e} | 6 | 1 | 8 | + +------------------+---+---+---+ + | to be doubled{e} | 3 | 0 | 9 | + +------------------+---+---+---+ + + [Headnote: Chapter VI. Multiplication.] + + [Sidenote: Definition of Multiplication. Multiplier. Multiplicand. + Product.] + +Multiplicacio{u}n of nombre by hym-self other by a-nother, w{i}t{h} +p{ro}posid{e} .2. nombres, [is] the fyndyng of the third{e}, That so +oft conteyneth{e} that other, as ther ben vnytes in the oþ{er}. In +multiplicacio{u}n .2. nombres pryncipally ben necessary, that is to +sey, the nombre multiplying and the nombre to be multiplied{e}, +as here;--twies fyve. [The number multiplying] is designed{e} +adu{er}bially. The nombre to be multiplied{e} resceyveth{e} a +no{m}i{n}all{e} appellacio{u}n, as twies .5. 5. is the nombre +multiplied{e}, and twies is the nombre to be multipliede. + + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Resultans |[{9}]| 1 | 0 || 1 | 3 | 2 | 6 | 6 | 8 | 0 | 0 | 8 | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Multiplicand{us}| . | . | 5 || . | . | 4 | . | 3 | 4 | 0 | 0 | 4 | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Multiplicans | . | 2 | 2 || . | 3 | 3 | 2 | 2 | 2 | . | . | . | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + +Also me may thervpon{e} to assigne the. 3. nombre, the which{e} is +[*Fol. 51b] cleped{e} p{ro}duct or p{ro}venient, of takyng out of one +fro another: as twyes .5 is .10., 5. the nombre to be multiplied{e}, +and .2. the multipliant, and. 10. as before is come therof. And +vnderstonde wele, that of the multipliant may be made the nombre to +be multiplied{e}, and of the contrarie, remaynyng eu{er} the same some, +and herof{e} cometh{e} the comen speche, that seith{e} all nombre is +converted{e} by Multiplying in hym-self{e}. + + +----+----+----+----+----+--------+----+----+----+-----+ + | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 2 | 4 | 6 | 8 | 10 |10[{10}]| 14 | 16 | 18 | 20 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 56 | 60 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | + +----+----+----+----+----+--------+----+----+----+-----+ + + [Headnote: The Cases of Multiplication.] + + [Sidenote: There are 6 rules of Multiplication. (1) Digit by digit. + See the table above. (2) Digit by article. (3) Composite by digit.] + +And ther ben .6 rules of Multiplicacio{u}n; ffirst, yf a digit multiplie +a digit, considr{e} how many of vnytees ben betwix the digit by +multiplying and his .10. beth{e} to-gedre accompted{e}, and so oft +w{i}t{h}-draw the digit multiplying, vnder the article of his +deno{m}i{n}acio{u}n. Example of grace. If thow wolt wete how moch{e} is +.4. tymes .8., [{11}]se how many vnytees ben betwix .8.[{12}] and .10. +to-geder rekened{e}, and it shew{i}t{h} that .2.: withdraw ther-for the +quat{e}rnary, of the article of his deno{m}i{n}acion twies, of .40., And +ther remayneth{e} .32., that is, to some of all{e} the +multiplicacio{u}n. Wher-vpon for more evidence and declaracion the +seid{e} table is made. Whan a digit multiplieth{e} an article, thow most +bryng the digit into þe digit, of þe which{e} the article [has][{13}] +his name, and eu{er}y vnyte shall{e} stond{e} for .10., and eu{er}y +article an .100. Whan the digit multiplieth{e} a nombre componed{e}, +þ{o}u most bryng the digit into aiþ{er} part of the nombre componed{e}, +so þ{a}t digit be had into digit by the first rule, into an article by +þe second{e} rule; and aft{er}ward{e} Ioyne the p{ro}duccio{u}n, and +þ{er}e wol be the some totall{e}. + + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Resultans | 1 | 2 | 6|| 7 | 3 | 6|| 1 | 2 | 0|| 1 | 2 | 0 | 8 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Multiplicand{us}| | | 2|| | 3 | 2|| | | 6|| | | | 4 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Multiplicans | | 6 | 3|| 2 | 3 | || | 2 | 0|| | 3 | 0 | 2 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + + [Sidenote: (4) Article by article. (5) Composite by article. + (6) Composite by composite. How to set down your numbers. If the + result is a digit, an article, or a composite. Multiply next by + the last but one, and so on.] + +Whan an article multiplieth{e} an article, the digit wherof he is +named{e} is to be brought Into the digit wherof the oþ{er} is named{e}, +and eu{er}y vnyte wol be worth{e} [*Fol. 52.] an .100., and eu{er}y +article. a .1000. Whan an article multiplieth{e} a nombre componed{e}, +thow most bryng the digit of the article into aither part of the nombre +componed{e}; and Ioyne the p{ro}duccio{u}n, and eu{er}y article wol be +worth{e} .100., and eu{er}y vnyte .10., and so woll{e} the some be +open{e}. Whan a nombre componed{e} multiplieth{e} a nombre componed{e}, +eu{er}y p{ar}t of the nombre multiplying is to be had{e} into eu{er}y +p{ar}t of the nombre to be multiplied{e}, and so shall{e} the digit be +had{e} twies, onys in the digit, that other in the article. The article +also twies, ones in the digit, that other in the article. Therfor yf +thow wilt any nombre by hym-self other by any other multiplie, write the +nombre to be multiplied{e} in the ou{er} ordre by his differences, The +nombre multiplying in the lower ordre by his differences, so that the +first of the lower ordre be vnder the last of the ou{er} ordre. This +done, of the multiplying, the last is to be had{e} into the last of the +nombre to be multiplied{e}. Wherof than wolle grow a digit, an article, +other a nombre componed{e}. If it be a digit, even above the figure +multiplying is hede write his digit that come of, as it appereth{e} +here:-- + + +-----------------------+---+ + | The resultant | 6 | + +-----------------------+---+ + | To be multiplied{e} | 3 | + +-----------------------+---+ + | Þe nombre multipliyng | 2 | + +-----------------------+---+ + +And yf an article had be writ ou{er} the fig{ur}e multiplying his hede, +put a cifre þ{er} and transferre the article toward{e} the lift hand{e}, +as thus:-- + + +-------------------------+---+---+ + | The resultant | 1 | 0 | + +-------------------------+---+---+ + | to be multiplied{e} | | 5 | + +-------------------------+---+---+ + | þe nombre m{u}ltipliyng | | 2 | + +-------------------------+---+---+ + +And yf a nombre componed{e} be writ ou{er} the figure multyplying is +hede, write the digit in the nombre componed{e} is place, and sette the +article to the lift hand{e}, as thus:-- + + +------------------------+---+---+ + | Resultant | 1 | 2 | + +------------------------+---+---+ + | to be multiplied{e} | | 4 | + +------------------------+---+---+ + | the nombre multipliyng | | 3 | + +------------------------+---+---+ + +This done, me most bryng the last save one of the multipliyng into the +last of þe nombre to be multiplied{e}, and se what comyth{e} therof as +before, and so do w{i}t{h} all{e}, tille me come to the first of the +nombre multiplying, that must be brought into the last of the nombre to +be multiplied{e}, wherof growith{e} oþ{er} a digit, an article, [*Fol. +52b] other a nombre componed{e}. If it be a digit, In the place of the +ou{er}er, sette a-side, as here: + + +--------------------------+---+---+ + | Resultant | 6 | 6 | + +--------------------------+---+---+ + | to be multiplied{e} | | 3 | + +--------------------------+---+---+ + | the nombre m{u}ltipliyng | 2 | 2 | + +--------------------------+---+---+ + +If an article happe, there put a cifre in his place, and put hym to the +lift hand{e}, as here: + + +-------------------------+---+---+---+ + | The resultant | 1 | 1 | 0 | + +-------------------------+---+---+---+ + | to be multiplied{e} | | | 5 | + +-------------------------+---+---+---+ + | þe nombre m{u}ltiplying | | 2 | 2 | + +-------------------------+---+---+---+ + +If it be a nombre componed{e}, in the place of the ou{er}er sette +a-side, write a digit that[{14}] is a p{ar}t of the componed{e}, and +sette on the left hond{e} the article, as here: + + +-----------------------------+---+-------+---+ + | The resultant | 1 |3[{15}]| 2 | + +-----------------------------+---+-------+---+ + | to be m{u}ltiplied{e} | | | 4 | + +-----------------------------+---+-------+---+ + | þe nombr{e} m{u}ltiplia{n}t | | 3 | 3 | + +-----------------------------+---+-------+---+ + + [Sidenote: Then antery the multiplier one place. Work as before. + How to deal with ciphers.] + +That done, sette forward{e} the figures of the nombre multiplying by oo +difference, so that the first of the multipliant be vnder the last save +one of the nombre to be multiplied{e}, the other by o place sette +forward{e}. Than me shall{e} bryng{e} the last of the m{u}ltipliant in +hym to be multiplied{e}, vnder the which{e} is the first multipliant. +And than wolle growe oþ{er} a digit, an article, or a componed{e} +nombre. If it be a digit, adde hym even above his hede; If it be an +article, transferre hym to the lift side; And if it be a nombre +componed{e}, adde a digit to the figure above his hede, and sette to the +lift hand{e} the article. And all{e}-wayes eu{er}y figure of the nombre +multipliant is to be brought to the last save one nombre to be +multiplied{e}, til me come to the first of the multipliant, where me +shall{e} wirche as it is seid{e} before of the first, and aft{er}ward{e} +to put forward{e} the figures by o difference and one till{e} they +all{e} be multiplied{e}. And yf it happe that the first figure of þe +multipliant be a cifre, and boue it is sette the figure signyficatif{e}, +write a cifre in the place of the figur{e} sette a-side, as thus, +{et}c.: + + +---------------------+---+---+---+ + | The resultant | 1 | 2 | 0 | + +---------------------+---+---+---+ + | to be multiplied{e} | | | 6 | + +---------------------+---+---+---+ + | the multipliant | | 2 | 0 | + +---------------------+---+---+---+ + + [Sidenote: How to deal with ciphers.] + +And yf a cifre happe in the lower order be-twix the first and the last, +and even above be sette the fig{ur}e signyficatif, leve it vntouched{e}, +as here:-- + + +---------------------+---+---+---+---+---+ + | The resultant | 2 | 2 | 6 | 4 | 4 | + +---------------------+---+---+---+---+---+ + | To be multiplied{e} | | | 2 | 2 | 2 | + +---------------------+---+---+---+---+---+ + | The multipliant | 1 | 0 | 2 | | | + +---------------------+---+---+---+---+---+ + +And yf the space above sette be void{e}, in that place write thow a +cifre. And yf the cifre happe betwix þe first and the last to be +m{u}ltiplied{e}, me most sette forward{e} the ordre of the figures by +thair{e} differences, for oft of duccio{u}n of figur{e}s in cifres +nought is the resultant, as here, + + +-----------------------+---+---+---+---+---+ + | Resultant | 8 | 0 | 0 | 8 | | + +-----------------------+---+---+---+---+---+ + | to be m{u}ltiplied{e} | 4 | 0 | 0 | 4 | | + +-----------------------+---+---+---+---+---+ + | the m{u}ltipliant | 2 | . | . | . | | + +-----------------------+---+---+---+---+---+ + +[*Fol. 53.] wherof it is evident and open, yf that the first figure of +the nombre be to be multiplied{e} be a cifre, vndir it shall{e} be none +sette as here:-- + + +-----------------------+---+---+--------+ + | Resultant | 3 | 2 |0[{16}] | + +-----------------------+---+---+--------+ + | To be m{u}ltiplied{e} | | 8 | 0 | + +-----------------------+---+---+--------+ + | The m{u}ltipliant | | 4 | | + +-----------------------+---+---+--------+ + + [Sidenote: Leave room between the rows of figures.] + +Vnder[stand] also that in multiplicacio{u}n, divisio{u}n, and of rootis +the extraccio{u}n, competently me may leve a mydel space betwix .2. +ordres of figures, that me may write there what is come of addyng other +with{e}-drawyng, lest any thynge shold{e} be ou{er}-hipped{e} and sette +out of mynde. + + [Headnote: Chapter VII. Division.] + + [Sidenote: Definition of division. Dividend, Divisor, Quotient. + How to set down your Sum. An example. Examples.] + +For to dyvyde oo nombre by a-nother, it is of .2. nombres p{ro}posed{e}, +It is forto depart the moder nombre into as many p{ar}tis as ben of +vnytees in the lasse nombre. And note wele that in makyng{e} of +dyvysio{u}n ther ben .3. nombres necessary: that is to sey, the nombre +to be dyvyded{e}; the nombre dyvydyng and the nombre exeant, other how +oft, or quocient. Ay shall{e} the nombre that is to be dyvyded{e} be +more, other at the lest even{e} w{i}t{h} the nombre the dyvysere, yf the +nombre shall{e} be mad{e} by hole nombres. Therfor yf thow wolt any +nombre dyvyde, write the nombre to be dyvyded{e} in þe ou{er}er +bordur{e} by his differences, the dyviser{e} in the lower ordur{e} by +his differences, so that the last of the dyviser be vnder the last of +the nombre to be dyvyde, the next last vnder the next last, and so of +the others, yf it may competently be done; as here:-- + + +------------------+---+---+---+ + | The residue | | 2 | 7 | + +------------------+---+---+---+ + | The quotient | | | 5 | + +------------------+---+---+---+ + | To be dyvyded{e} | 3 | 4 | 2 | + +------------------+---+---+---+ + | The dyvyser | | 6 | 3 | + +------------------+---+---+---+ + + +--------------+---+---+----+---+---++---+---+---++---+---+---+ + | Residuu{m} | | | 8 || | || | 2 | 7 || | 2 | 6 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Quociens | | 2 | 1 || 2 | 2 || | | 5 || | | 9 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Diuidend{us} | 6 | 8 | 0 || 6 | 6 || 3 | 4 | 2 || 3 | 3 | 2 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Diuiser | 3 | 2 | || 3 | || | 6 | 3 || | 3 | 4 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + + [Sidenote: When the last of the divisor must not be set below the + last of the dividend. How to begin.] + +And ther ben .2. causes whan the last figure may not be sette vnder the +last, other that the last of the lower nombre may not be w{i}t{h}-draw +of the last of the ou{er}er nombre for it is lasse than the lower, other +how be it, that it myght be w{i}t{h}-draw as for hym-self fro the +ou{er}er the remenaunt may not so oft of them above, other yf þe last of +the lower be even to the figure above his hede, and þe next last oþ{er} +the figure be-fore þ{a}t be more þan the figure above sette. [*Fol. +53^2.] These so ordeyned{e}, me most wirch{e} from the last figure of þe +nombre of the dyvyser, and se how oft it may be w{i}t{h}-draw of and fro +the figure aboue his hede, namly so that the remen{au}nt may be take of +so oft, and to se the residue as here:-- + + [Sidenote: An example.] + + +------------------+---+---+---+ + | The residue | | 2 | 6 | + +------------------+---+---+---+ + | The quocient | | | 9 | + +------------------+---+---+---+ + | To be dyvyded{e} | 3 | 3 | 2 | + +------------------+---+---+---+ + | The dyvyser | | 3 | 4 | + +------------------+---+---+---+ + + [Sidenote: Where to set the quotiente. Examples.] + +And note wele that me may not with{e}-draw more than .9. tymes nether +lasse than ones. Therfor se how oft þe figures of the lower ordre may be +w{i}t{h}-draw fro the figures of the ou{er}er, and the nombre that +shew{i}t{h} þe q{u}ocient most be writ ou{er} the hede of þat figure, +vnder the which{e} the first figure is, of the dyviser; And by that +figure me most with{e}-draw all{e} oþ{er} figures of the lower ordir and +that of the figures aboue thair{e} hedis. This so don{e}, me most sette +forward{e} þe figures of the diuiser by o difference toward{es} the +right hond{e} and worch{e} as before; and thus:-- + + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Residuu{m} | | | | | | || | | | | . | 1 | 2 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | quo{ciens} | | | | 6 | 5 | 4 || | | | 2 | 0 | 0 | 4 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Diuidend{us} | 3 | 5 | 5 | 1 | 2 | 2 || 8 | 8 | 6 | 3 | 7 | 0 | 4 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Diuisor | | 5 | 4 | 3 | | || 4 | 4 | 2 | 3 | | | | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + + +------------------+---+---+---+---+---+---+ + | The quocient | | | | 6 | 5 | 4 | + +------------------+---+---+---+---+---+---+ + | To be dyvyded{e} | 3 | 5 | 5 | 1 | 2 | 2 | + +------------------+---+---+---+---+---+---+ + | The dyvyser | | 5 | 4 | 3 | | | + +------------------+---+---+---+---+---+---+ + + [Sidenote: A special case.] + +And yf it happ{e} after þe settyng forward{e} of the fig{ur}es þ{a}t þe +last of the divisor may not so oft be w{i}t{h}draw of the fig{ur}e above +his hede, above þat fig{ur}e vnder the which{e} the first of the diuiser +is writ me most sette a cifre in ordre of the nombre quocient, and sette +the fig{ur}es forward{e} as be-fore be o difference alone, and so me +shall{e} do in all{e} nombres to be dyvided{e}, for where the dyviser +may not be w{i}t{h}-draw me most sette there a cifre, and sette +forward{e} the figures; as here:-- + + +------------------+---+---+---+---+---+---+---+ + | The residue | | | | | | 1 | 2 | + |------------------+---+---+---+---+---+---+---+ + | The quocient | | | | 2 | 0 | 0 | 4 | + |------------------+---+---+---+---+---+---+---+ + | To be dyvyded{e} | 8 | 8 | 6 | 3 | 7 | 0 | 4 | + |------------------+---+---+---+---+---+---+---+ + | The dyvyser | 4 | 4 | 2 | 3 | | | | + +------------------+---+---+---+---+---+---+---+ + + [Sidenote: Another example. What the quotient shows. How to prove + your division, or multiplication.] + +And me shall{e} not cesse fro such{e} settyng of fig{ur}es forward{e}, +nether of settyng{e} of þe quocient into the dyviser, neþ{er} of +subt{ra}ccio{u}n of the dyvyser, till{e} the first of the dyvyser be +w{i}t{h}-draw fro þe first to be divided{e}. The which{e} don{e}, or +ought,[{17}] oþ{er} nought shall{e} remayne: and yf it be ought,[{17}] +kepe it in the tables, And eu{er} vny it to þe diviser. And yf þ{o}u +wilt wete how many vnytees of þe divisio{u}n [*Fol. 53^3.] wol growe to +the nombre of the diviser{e}, the nombre quocient wol shewe it: and whan +such{e} divisio{u}n is made, and þ{o}u lust p{ro}ve yf thow have wele +done or no, Multiplie the quocient by the diviser, And the same +fig{ur}es wolle come ayene that thow haddest bifore and none other. And +yf ought be residue, than w{i}t{h} addicio{u}n therof shall{e} come the +same figures: And so multiplicacio{u}n p{ro}vith{e} divisio{u}n, and +dyvisio{u}n multiplicacio{u}n: as thus, yf multiplicacio{u}n be made, +divide it by the multipliant, and the nombre quocient wol shewe the +nombre that was to be multiplied{e}, {et}c. + + [Headnote: Chapter VIII. Progression.] + + [Sidenote: Definition of Progression. Natural Progression. Broken + Progression. The 1st rule for Natural Progression. The second rule. + The first rule of Broken Progression. The second rule.] + +Progressio{u}n is of nombre after egall{e} excesse fro oone or tweyn{e} +take ag{r}egacio{u}n. of p{ro}gressio{u}n one is naturell{e} or +co{n}tynuell{e}, þ{a}t oþ{er} broken and discontynuell{e}. Naturell{e} +it is, whan me begynneth{e} w{i}t{h} one, and kepeth{e} ordure +ou{er}lepyng one; as .1. 2. 3. 4. 5. 6., {et}c., so þ{a}t the nombre +folowyng{e} passith{e} the other be-fore in one. Broken it is, whan me +lepith{e} fro o nombre till{e} another, and kepith{e} not the contynuel +ordir{e}; as 1. 3. 5. 7. 9, {et}c. Ay me may begynne w{i}t{h} .2., as +þus; .2. 4. 6. 8., {et}c., and the nombre folowyng passeth{e} the others +by-fore by .2. And note wele, that naturell{e} p{ro}gressio{u}n ay +begynneth{e} w{i}t{h} one, and Int{er}cise or broken p{ro}gressio{u}n, +omwhile begynnyth{e} w{i}th one, omwhile w{i}t{h} twayn{e}. Of +p{ro}gressio{u}n naturell .2. rules ther be yove, of the which{e} the +first is this; whan the p{ro}gressio{u}n naturell{e} endith{e} in even +nombre, by the half therof multiplie þe next totall{e} ou{er}er{e} +nombre; Example of grace: .1. 2. 3. 4. Multiplie .5. by .2. and so .10. +cometh{e} of, that is the totall{e} nombre þ{er}of. The second{e} rule +is such{e}, whan the p{ro}gressio{u}n naturell{e} endith{e} in nombre +od{e}. Take the more porcio{u}n of the oddes, and multiplie therby the +totall{e} nombre. Example of grace 1. 2. 3. 4. 5., multiplie .5. by .3, +and thryes .5. shall{e} be resultant. so the nombre totall{e} is .15. Of +p{ro}gresio{u}n int{er}cise, ther ben also .2.[{18}] rules; and þe first +is þis: Whan the Int{er}cise p{ro}gression endith{e} in even nombre by +half therof multiplie the next nombre to þat half{e} as .2.[{18}] 4. 6. +Multiplie .4. by .3. so þat is thryes .4., and .12. the nombre of all{e} +the p{ro}gressio{u}n, woll{e} folow. The second{e} rule is this: whan +the p{ro}gressio{u}n int{er}scise endith{e} in od{e}, take þe more +porcio{u}n of all{e} þe nombre, [*Fol. 53^4.] and multiplie by +hym-self{e}; as .1. 3. 5. Multiplie .3. by hym-self{e}, and þe some of +all{e} wolle be .9., {et}c. + + [Headnote: Chapter IX. Extraction of Roots.] + + [Sidenote: The preamble of the extraction of roots. Linear, + superficial, and solid numbers. Superficial numbers. Square numbers. + The root of a square number. Notes of some examples of square roots + here interpolated. Solid numbers. Three dimensions of solids. Cubic + numbers. All cubics are solid numbers. No number may be both linear + and solid. Unity is not a number.] + +Here folowith{e} the extraccio{u}n of rotis, and first in nombre +q{ua}drat{es}. Wherfor me shall{e} se what is a nombre quadrat, and what +is the rote of a nombre quadrat, and what it is to draw out the rote of +a nombre. And before other note this divisio{u}n: Of nombres one is +lyneal, anoþ{er} sup{er}ficiall{e}, anoþ{er} quadrat, anoþ{er} cubik{e} +or hoole. lyneal is that þat is considred{e} after the p{ro}cesse, +havyng{e} no respect to the direccio{u}n of nombre in nombre, As a lyne +hath{e} but one dymensio{u}n that is to sey after the length{e}. Nombre +sup{er}ficial is þ{a}t cometh{e} of ledyng{e} of oo nombre into +a-nother, wherfor it is called{e} sup{er}ficial, for it hath{e} .2. +nombres notyng or mesuryng{e} hym, as a sup{er}ficiall{e} thyng{e} +hath{e} .2. dimensions, þ{a}t is to sey length{e} and brede. And for +bycause a nombre may be had{e} in a-nother by .2. man{er}s, þ{a}t is to +sey other in hym-self{e}, oþ{er} in anoþ{er}, Vnderstond{e} yf it be had +in hym-self, It is a quadrat. ffor dyvisio{u}n write by vnytes, hath{e} +.4. sides even as a quadrangill{e}. and yf the nombre be had{e} in +a-noþ{er}, the nombre is sup{er}ficiel and not quadrat, as .2. had{e} in +.3. maketh{e} .6. that is þe first nombre sup{er}ficiell{e}; wherfor it +is open þat all{e} nombre quadrat is sup{er}ficiel, and not +co{n}u{er}tid{e}. The rote of a nombre quadrat is þat nombre that is had +of hym-self, as twies .2. makith{e} 4. and .4. is the first nombre +quadrat, and 2. is his rote. 9. 8. 7. 6. 5. 4. 3. 2. 1. / The rote of +the more quadrat .3. 1. 4. 2. 6. The most nombre quadrat 9. 8. 7. 5. +9. 3. 4. 7. 6. / the remenent ou{er} the quadrat .6. 0. 8. 4. 5. / The +first caas of nombre quadrat .5. 4. 7. 5. 6. The rote .2. 3. 4. The +second{e} caas .3. 8. 4. 5. The rote .6. 2. The third{e} caas .2. 8. 1. +9. The rote .5. 3. The .4. caas .3. 2. 1. The rote .1. 7. / The 5. caas +.9. 1. 2. 0. 4. / The rote 3. 0. 2. The solid{e} nombre or cubik{e} is +þat þ{a}t comytħe of double ledyng of nombre in nombre; And it is +cleped{e} a solid{e} body that hath{e} þ{er}-in .3 [dimensions] þat is +to sey, length{e}, brede, and thiknesse. so þ{a}t nombre hath{e} .3. +nombres to be brought forth{e} in hym. But nombre may be had{e} twies in +nombre, for other it is had{e} in hym-self{e}, oþ{er} in a-noþ{er}. If a +nombre be had{e} twies in hym-self, oþ{er} ones in his quadrat, þ{a}t is +the same, þ{a}t a cubik{e} [*Fol. 54.] is, And is the same that is +solide. And yf a nombre twies be had{e} in a-noþ{er}, the nombre is +cleped{e} solide and not cubik{e}, as twies .3. and þ{a}t .2. makith{e} +.12. Wherfor it is opyn{e} that all{e} cubik{e} nombre is solid{e}, and +not {con}u{er}tid{e}. Cubik{e} is þ{a}t nombre þat comyth{e} of +ledyng{e} of hym-self{e} twyes, or ones in his quadrat. And here-by it +is open that o nombre is the roote of a quadrat and of a cubik{e}. +Natheles the same nombre is not q{ua}drat and cubik{e}. Opyn{e} it is +also that all{e} nombres may be a rote to a q{ua}drat and cubik{e}, but +not all{e} nombre quadrat or cubik{e}. Therfor sithen þe ledyng{e} of +vnyte in hym-self ones or twies nought cometh{e} but vnytes, Seith{e} +Boice in Arsemetrik{e}, that vnyte potencially is al nombre, and none in +act. And vndirstond{e} wele also that betwix euery .2. quadrat{es} ther +is a meene p{ro}porcionall{e}, That is opened{e} thus; lede the rote of +o quadrat into the rote of the oþ{er} quadrat, and þan wolle þe meene +shew. + + [Sidenote: Examples of square roots.] + + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Residuu{m} | | |0| || | | |4|| | |0| | || | | 0 | | + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Quadrand{e} |4|3|5|6||3|0|2|9||1|7|4|2|4||1| 9 | 3 |6| + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Duplum |1|2| | ||1|0| | ||2| |6| | || |[8]|[{19}]| | + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Subduplu{m} | |6| |6|| |5| |5||1| |3| |2|| | 4 | |4| + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + + [Sidenote: A note on mean proportionals.] + +Also betwix the next .2. cubikis, me may fynde a double meene, that is +to sey a more meene and a lesse. The more meene thus, as to bryng{e} the +rote of the lesse into a quadrat of the more. The lesse thus, If the +rote of the more be brought Into the quadrat of the lesse. + + [Headnote: Chapter X. Extraction of Square Root.] + + [Sidenote: To find a square root. Begin with the last odd place. + Find the nearest square root of that number, subtract, double it, + and set the double one to the right. Find the second figure by + division. Multiply the double by the second figure, and add after + it the square of the second figure, and subtract.] + +[{20}]To draw a rote of the nombre quadrat it is What-eu{er} nombre be +p{ro}posed{e} to fynde his rote and to se yf it be quadrat. And yf it be +not quadrat the rote of the most quadrat fynde out, vnder the nombre +p{ro}posed{e}. Therfor yf thow wilt the rote of any quadrat nombre draw +out, write the nombre by his differences, and compt the nombre of the +figures, and wete yf it be od{e} or even. And yf it be even, than most +thow begynne worche vnder the last save one. And yf it be od{e} w{i}t{h} +the last; and forto sey it shortly, al-weyes fro the last od{e} me +shall{e} begynne. Therfor vnder the last in an od place sette, me most +fynd{e} a digit, the which{e} lad{e} in hym-self{e} it puttith{e} away +that, þat is ou{er} his hede, oþ{er} as neigh{e} as me may: suche a +digit found{e} and w{i}t{h}draw fro his ou{er}er, me most double that +digit and sette the double vnder the next figure toward{e} the right +hond{e}, and his vnder double vnder hym. That done, than me most +fy{n}d{e} a-noþ{er} digit vnder the next figure bifore the doubled{e}, +the which{e} [*Fol. 54b] brought in double setteth{e} a-way all{e} that +is ou{er} his hede as to reward{e} of the doubled{e}: Than brought into +hym-self settith{e} all away in respect of hym-self, Other do it as nye +as it may be do: other me may w{i}t{h}-draw the digit [{21}][last] +found{e}, and lede hym in double or double hym, and after in +hym-self{e}; Than Ioyne to-geder the p{ro}duccion{e} of them bothe, So +that the first figure of the last p{ro}duct be added{e} before the first +of the first p{ro}duct{es}, the second{e} of the first, {et}c. and so +forth{e}, subtrahe fro the totall{e} nombre in respect of þe digit. + + [Sidenote: Examples.] + + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The residue | | | | | || | | | | || | | |5| 4 |3|2| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | To be quadred{e} |4|1|2|0|9||1|5|1|3|9|| 9 |0| 0 |5| 4 |3|2| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The double | |4|0| | || |2| |4| || |6| |0| | |0| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The vnder double |2| |0| |3||1| |2| |3||[3]| |[0]| |[0]| |0| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + + [Sidenote: Special cases. The residue.] + +And if it hap þ{a}t no digit may be found{e}, Than sette a cifre vndre +a cifre, and cesse not till{e} thow fynde a digit; and whan thow hast +founde it to double it, neþ{er} to sette the doubled{e} forward{e} +nether the vnder doubled{e}, Till thow fynde vndre the first figure a +digit, the which{e} lad{e} in all{e} double, settyng away all{e} that is +ou{er} hym in respect of the doubled{e}: Than lede hym into hym-self{e}, +and put a-way all{e} in regard{e} of hym, other as nygh{e} as thow +maist. That done, other ought or nought wolle be the residue. If nought, +than it shewith{e} that a nombre componed{e} was the quadrat, and his +rote a digit last found{e} w{i}t{h} vnder{e}-double other vndirdoubles, +so that it be sette be-fore: And yf ought[{22}] remayn{e}, that +shew{i}t{h} that the nombre p{ro}posed{e} was not quadrat,[{23}] +[[wher-vpon{e} se the table in the next side of the next leef{e}.]] +but a digit [last found with the subduple or subduples is] + + [Sidenote: This table is constructed for use in cube root sums, + giving the value of ab.^2] + + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 2 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 3 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 4 | 32 | 48 | 64 | 80 | 96 |112[{24}]| 128 | 144 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 5 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 6 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 7 | 98 | 147 | 196 | 245 | 294 | 343 | 393 | 441 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 8 | 128 | 192 | 256 | 320 | 384 | 448 | 512 | 576 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 9 | 168 | 243 | 324 | 405 | 486 | 567 | 648 |729[{25}]| + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + + [Sidenote: How to prove the square root without or with a remainder.] + +The rote of the most quadrat conteyned{e} vndre the nombre +p{ro}posed{e}. Therfor yf thow wilt p{ro}ve yf thow have wele do or no, +Multiplie the digit last found{e} w{i}t{h} the vnder-double oþ{er} +vnder-doublis, and thow shalt fynde the same figures that thow haddest +before; And so that nought be the [*Fol. 55.] residue. And yf thow have +any residue, than w{i}t{h} the addicio{u}n þ{er}of that is res{er}ued{e} +w{i}t{h}-out in thy table, thow shalt fynd{e} thi first figures as thow +haddest them before, {et}c. + + [Headnote: Chapter XI. Extraction of Cube Root.] + + [Sidenote: Definition of a cubic number and a cube root. Mark off + the places in threes. Find the first digit; treble it and place it + under the next but one, and multiply by the digit. Then find the + second digit. Multiply the first triplate and the second digit, twice + by this digit. Subtract. Examples.] + +Heere folowith{e} the extraccio{u}n of rotis in cubik{e} nombres; +wher-for me most se what is a nombre cubik{e}, and what is his roote, +And what is the extraccio{u}n of a rote. A nombre cubik{e} it is, as it +is before declared{e}, that cometh{e} of ledyng of any nombre twies in +hym-self{e}, other ones in his quadrat. The rote of a nombre cubik{e} is +the nombre that is twies had{e} in hy{m}-self{e}, or ones in his +quadrat. Wher-thurgh{e} it is open, that eu{er}y nombre quadrat or +cubik{e} have the same rote, as it is seid{e} before. And forto draw out +the rote of a cubik{e}, It is first to fynd{e} þe nombr{e} p{ro}posed{e} +yf it be a cubik{e}; And yf it be not, than thow most make extraccio{u}n +of his rote of the most cubik{e} vndre the nombre p{ro}posid{e} his rote +found{e}. Therfor p{ro}posed{e} some nombre, whos cubical rote þ{o}u +woldest draw out; First thow most compt the figures by fourthes, that is +to sey in the place of thousand{es}; And vnder the last thousand{e} +place, thow most fynde a digit, the which{e} lad{e} in hym-self cubikly +puttith{e} a-way that þat is ou{er} his hede as in respect of hym, other +as nygh{e} as thow maist. That done, thow most trebill{e} the digit, and +that triplat is to be put vnder the .3. next figure toward{e} the right +hond{e}, And the vnder-trebill{e} vnder the trebill{e}; Than me most +fynd{e} a digit vndre the next figure bifore the triplat, the which{e} +w{i}t{h} his vnder-trebill{e} had into a trebill{e}, aft{er}warde other +vnder[trebille][{26}] had in his p{ro}duccio{u}n, putteth{e} a-way +all{e} that is ou{er} it in regard{e} of[{27}] [the triplat. Then lade +in hymself puttithe away that þat is over his hede as in respect of hym, +other as nyghe as thou maist:] That done, thow most trebill{e} the digit +ayene, and the triplat is to be sette vnder the next .3. figure as +before, And the vnder-trebill{e} vnder the trebill{e}: and than most +thow sette forward{e} the first triplat w{i}t{h} his vndre-trebill{e} by +.2. differences. And than most thow fynde a digit vnder the next figure +before the triplat, the which{e} with{e} his vnder-t{r}iplat had in his +triplat afterward{e}, other vnder-treblis lad in p{ro}duct [*Fol. 55b] +It sitteth{e} a-way ałł that is ou{er} his hede in respect of the +triplat than had in hym-self cubikly,[{28}] [[it setteth{e} a-way all{e} +his respect]] or as nygh{e} as ye may. + + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Residuu{m} | | | | | | | 5 || | | | | | 4|| 1|0|1 |9| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Cubicandu{s} | 8|3|6|5|4|3| 2 || 3|0|0|7|6| 7|| 1 1|6|6 |7| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Triplum | | |6|0| | | || | | |1|8| || | |4 | | | + +----------------+--+-+-+-+-+-+---++--+-+-+---+--++----+-+--+-+--+ + | Subt{r}iplu{m} | 2| | |0| | |[3]|| | |6| | | 7|| 2| | |2| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + + [Sidenote: Continue this process till the first figure is reached. + Examples. The residue. Special cases. Special case.] + +Nother me shall{e} not cesse of the fyndyng{e} of that digit, neither of +his triplacio{u}n, neþ{er} of the triplat-is [{29}]anteriorac{i}o{u}n, +that is to sey, settyng forward{e} by .2. differences, Ne therof the +vndre-triple to be put vndre the triple, Nether of the multiplicacio{u}n +þ{er}of, Neither of the subtraccio{u}n, till{e} it come to the first +figure, vnder the which{e} is a digitall{e} nombre to be found{e}, the +which{e} with{e} his vndre-treblis most be had{e} in tribles, +After-ward{e} w{i}t{h}out vnder-treblis to be had{e} into produccio{u}n, +settyng away all{e} that is ou{er} the hed{e} of the triplat nombre, +After had into hymself{e} cubikly, and sette all{e}-way that is ou{er} +hym. + + +------------------+---+---+---+---++---+---+---+---+---+ + | To be cubiced{e} | 1 | 7 | 2 | 8 || 3 | 2 | 7 | 6 | 8 | + +------------------+---+---+---+---++---+---+---+---+---+ + | The triple | | | 3 | 2 || | | | 9 | | + +------------------+---+---+---+---++---+---+---+---+---+ + | The vnder triple | | | 1 | 2 || |[3]| | 3 | 3 | + +------------------+---+---+---+---++---+---+---+---+---+ + +Also note wele that the p{ro}ducc{i}on comyng{e} of the ledyng of a +digite found{e}[{30}] [[w{i}t{h} an vndre-triple / other of an +vndre-triple in a triple or triplat is And after-ward{e} w{i}t{h} out +vndre-triple other vndre-triplis in the p{ro}duct and ayene that +p{ro}duct that cometh{e} of the ledyng{e} of a digit found{e} in +hym-self{e} cubicall{e}]] me may adde to, and also w{i}t{h}-draw fro of +the totall{e} nombre sette above that digit so found{e}.[{31}] [[as ther +had be a divisio{u}n made as it is opened{e} before]] That done ought or +nought most be the residue. If it be nought, It is open that the nombre +p{ro}posed{e} was a cubik{e} nombre, And his rote a digit founde last +w{i}t{h} the vnder-triples: If the rote therof wex bad{e} in +hym-self{e}, and afterward{e} p{ro}duct they shall{e} make the first +fig{ur}es. And yf ought be in residue, kepe that w{i}t{h}out in the +table; and it is open{e} that the nombre was not a cubik{e}. but a digit +last founde w{i}t{h} the vndirtriplis is rote of the most cubik{e} vndre +the nombre p{ro}posed{e} conteyned{e}, the which{e} rote yf it be had{e} +in hym-self{e}, And aft{er}ward{e} in a p{ro}duct of that shall{e} growe +the most cubik{e} vndre the nombre p{ro}posed{e} conteyned{e}, And yf +that be added{e} to a cubik{e} the residue res{er}ued{e} in the table, +woll{e} make the same figures that ye had{e} first. [*Fol. 56.] And yf +no digit after the anterioracio{u}n[{32}] may not be found{e}, than put +ther{e} a cifre vndre a cifre vndir the third{e} figure, And put +forward{e} þe fig{ur}es. Note also wele that yf in the nombre +p{ro}posed{e} ther ben no place of thowsand{es}, me most begynne vnder +the first figure in the extraccio{u}n of the rote. some vsen forto +distingue the nombre by threes, and ay begynne forto wirch{e} vndre the +first of the last t{er}nary other unco{m}plete nombre, the which{e} +maner of op{er}acio{u}n accordeth{e} w{i}t{h} that before. And this at +this tyme suffiseth{e} in extraccio{u}n of nombres quadrat or cubik{es} +{et}c. + + [Sidenote: Examples.] + + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The residue | | | | | | | 0|| | | | | | 1| 1| + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The cubicand{us} | 8 | 0| 0 | 0| 0| 0| 0|| 8| 2| 4| 2| 4| 1| 9| + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The triple | | |[{33}]| 0| 0| | || | | 6| | | | | + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The vndert{r}iple |[2]| | | 0| 0| | || 2| | | 6| 2| | | + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + + + [Headnote: Table of Numbers, &c.] + + [Sidenote: A table of numbers; probably from the Abacus.] + + 1 2 3 4 5 6 + one. x. an. hundred{e}/ a thowsand{e}/ x. thowsand{e}/ An hundred{e} + 7 + thowsand{e}/ A thowsand{e} tymes a thowsand{e}/ x. thousand{e} tymes + + a thousand{e}/ An hundred{e} thousand{e} tymes a thousand{e} A + + thousand{e} thousand{e} tymes a thousand{e}/ this is the x place + + {et}c. + + +[Ende.] + + +FOOTNOTES (The Art of Nombryng): + + [1: MS. Materiall{e}.] + [2: MS. Formall{e}.] + [3: ‘the’ in MS.] + [4: ‘be’ in MS.] + [5: ‘and’ in MS.] + [6: ‘is’ in MS.] + [7: 6 in MS.] + [8: 0 in MS.] + [9: 2 in MS.] + [10: _sic._] + [11: ‘And’ inserted in MS.] + [12: ‘4 the’ inserted in MS.] + [13: ‘to’ in MS.] + [14: ‘that’ repeated in MS.] + [15: ‘1’ in MS.] + [16: Blank in MS.] + [17: ‘nought’ in MS.] + [18: 3 written for 2 in MS.] + [19: 7 in MS.] + [20: runs on in MS.] + [21: ‘so’ in MS.] + [22: ‘nought’ in MS.] + [23: MS. adds here: ‘wher-vpon{e} se the table in the next side of + the next leef{e}.’] + [24: 110 in MS.] + [25: 0 in MS.] + [26: double in MS.] + [27: ‘it hym-self{e}’ in MS.] + [28: MS. adds here: ‘it setteth{e} a-way all{e} his respect.’] + [29: ‘aucterioracio{u}n’ in MS.] + [30: MS. adds here: ’w{i}t{h} an vndre-triple / other of an + vndre-triple in a triple or triplat is And after-ward{e} w{i}t{h} + out vndre-triple other vndre-triplis in the p{ro}duct and ayene + that p{ro}duct that cometh{e} of the ledyng{e} of a digit found{e} + in hym-self{e} cubicall{e}’ /] + [31: MS. adds here: ‘as ther had be a divisio{u}n made as it is + opened{e} before.’] + [32: MS. anteriocacio{u}n.] + [33: 4 in MS.] + + + + +Accomptynge by counters. + + [Transcriber’s Note: + + The original text was printed as a single continuous paragraph, with + no break between speakers; all examples were shown inline. It has been + broken up for this e-text.] + + + [*116b] + + ¶ The seconde dialoge of accomptynge by counters. + +_Mayster._ + +Nowe that you haue learned the commen kyndes of Arithmetyke with the +penne, you shall se the same art in cou{n}ters: whiche feate doth not +only serue for them that can not write and rede, but also for them that +can do bothe, but haue not at some tymes theyr penne or tables redye +with them. This sorte is in two fourmes co{m}menly. The one by lynes, +and the other without lynes: in that y^t hath lynes, the lynes do stande +for the order of places: and in y^t that hath no lynes, there must be +sette in theyr stede so many counters as shall nede, for eche lyne one, +and they shall supplye the stede of the lynes. + +_S._ By examples I shuld better p{er}ceaue your meanynge. + +_M._ For example of the [*117a.] ly[*]nes: + + ----1-0-0-0-0-0-- + ----1-0-0-0-0---- + -X--1-0-0-0------ + ----1-0-0-------- + ----1-0---------- + ----1------------ + + [Sidenote: Numeration.] + +Lo here you se .vi. lynes whiche stande for syxe places so that the +nethermost standeth for y^e fyrst place, and the next aboue it, for the +second: and so vpward tyll you come to the hyghest, which is the syxte +lyne, and standeth for the syxte place. Now what is the valewe of euery +place or lyne, you may perceaue by the figures whiche I haue set on +them, which is accordynge as you learned before in the Numeration of +figures by the penne: for the fyrste place is the place of vnities or +ones, and euery counter set in that lyne betokeneth but one: {and} the +seconde lyne is the place of 10, for euery counter there, standeth for +10. The thyrd lyne the place of hundredes: the fourth of thousandes: +{and} so forth. + +_S._ Syr I do perceaue that the same order is here of lynes, as was in +the other figures [*117b] by places, so that you shall not nede longer +to stande about Numeration, excepte there be any other difference. + +_M._ Yf you do vndersta{n}de it, then how wyll you set 1543? + +_S._ Thus, as I suppose. + + ------- + -X--1-- + ----5-- + ----4-- + ----3-- + +_M._ You haue set y^e places truely, but your figures be not mete for +this vse: for the metest figure in this behalfe, is the figure of a +cou{n}ter round, as you se here, where I haue expressed that same summe. + + ------------- + + -X--o-------- + o + ------------- + + ----o-o-o-o-- + + ----o-o-o---- + +_S._ So that you haue not one figure for 2, nor 3, nor 4, and so forth, +but as many digettes as you haue, you set in the lowest lyne: and for +euery 10 you set one in the second line: and so of other. But I know not +by what reason you set that one counter for 500 betwene two lynes. + +_M._ you shall remember this, that when so euer you nede to set downe 5, +50, or 500, or 5000, or so forth any other nomber, whose numerator +[*118a] is 5, you shall set one counter for it, in the next space aboue +the lyne that it hath his denomination of, as in this example of that +500, bycause the numerator is 5, it must be set in a voyd space: and +bycause the denominator is hundred, I knowe that his place is the voyde +space next aboue hundredes, that is to say, aboue the thyrd lyne. And +farther you shall marke, that in all workynge by this sorte, yf you +shall sette downe any summe betwene 4 and 10, for the fyrste parte of +that nomber you shall set downe 5, & then so many counters more, as +there reste no{m}bers aboue 5. And this is true bothe of digettes and +articles. And for example I wyll set downe this su{m}me 287965, + + -X----------- + + ------o-o---- + o + ------o-o-o-- + o + -X----o-o---- + o + ----o-o-o-o-- + o + ----o-------- + o + ------------- + +which su{m}me yf you marke well, you nede none other exa{m}ples for to +lerne the numeration of [*118b] this forme. But this shal you marke, +that as you dyd in the other kynde of arithmetike, set a pricke in the +places of thousa{n}des, in this worke you shall sette a starre, as you +se here. + + [Headnote: Addition on the Counting Board.] + + [Sidenote: Addition.] + +_S._ Then I perceave numeration, but I praye you, howe shall I do in +this arte to adde two summes or more together? + +_M._ The easyest way in this arte is, to adde but 2 su{m}mes at ones +together: how be it you may adde more, as I wyll tell you anone. +Therfore when you wyll adde two su{m}mes, you shall fyrst set downe one +of them, it forseth not whiche, {and} then by it drawe a lyne crosse the +other lynes. And afterward set downe the other su{m}me, so that that +lyne may be betwene them, as yf you wolde adde 2659 to 8342, you must +set your su{m}mes as you se + + -------------|----------- + o | + -X--o-o-o----|--o-o------ + | o + ----o-o-o----|--o-------- + | o + ----o-o-o-o--|----------- + | o + ----o-o------|--o-o-o-o-- + +here. And then yf you lyst, you [*119a] may adde the one to the other in +the same place, or els you may adde them both together in a newe place: +which waye, bycause it is moste playnest, I wyll showe you fyrst. +Therfore wyl I begynne at the vnites, whiche in the fyrst su{m}me is but +2, {and} in y^e second su{m}me 9, that maketh 11, those do I take vp, +and for them I set 11 in the new roume, thus, + + -------------|-------|------- + o | | + -X--o-o-o----|--o-o--|------- + | o | + ----o-o-o----|--o----|------- + | o | + ----o-o-o-o--|-------|-o----- + | | + -------------|-------|-o----- + +Then do I take vp all y^e articles vnder a hundred, which in the fyrst +su{m}me are 40, and in the second summe 50, that maketh 90: or you may +saye better, that in the fyrste summe there are 4 articles of 10, and in +the seconde summe 5, which make 9, but then take hede that you sette +them in theyr [*119b] ryght lynes as you se here. + + -----------|----------|------------- + o | | + -X--o-o-o--|--o-o-----|------------- + | o | + ----o-o-o--|--o-------|------------- + | | o + -----------|----------|--o-o-o-o-o-- + | | + -----------|----------|--o---------- + +Where I haue taken awaye 40 fro{m} the fyrste su{m}me, and 50 from y^e +second, and in theyr stede I haue set 90 in the thyrde, whiche I haue +set playnely y^t you myght well perceaue it: how be it seynge that 90 +with the 10 that was in y^e thyrd roume all redy, doth make 100, +I myghte better for those 6 cou{n}ters set 1 in the thyrde lyne, thus: + + ---------- + + -X-------- + + ----o----- + + ---------- + + ----o----- + +For it is all one summe as you may se, but it is beste, neuer to set 5 +cou{n}ters in any line, for that may be done with 1 cou{n}ter in a +hygher place. + +_S._ I iudge that good reaso{n}, for many are vnnedefull, where one wyll +serue. + +_M._ Well, then [*120a] wyll I adde forth of hundredes: I fynde 3 in the +fyrste summe, and 6 in the seconde, whiche make 900, them do I take vp +{and} set in the thyrd roume where is one hundred all redy, to whiche I +put 900, and it wyll be 1000, therfore I set one cou{n}ter in the fourth +lyne for them all, as you se here. + + -----------|-------|-------- + o | | + -X--o-o-o--|--o-o--|--o----- + | | + -----------|-------|-------- + | | + -----------|-------|-------- + | | + -----------|-------|--o----- + +Then adde I y^e thousandes together, whiche in the fyrst su{m}me are +8000, {and} in y^e second 2000, that maketh 10000: them do I take vp +fro{m} those two places, and for them I set one counter in the fyfte +lyne, and then appereth as you se, to be 11001, for so many doth amount +of the addition of 8342 to 2659. + + ----o----- + + -X--o----- + + ---------- + + ---------- + + ----o----- + +[*120b] _S._ Syr, this I do perceave: but how shall I set one su{m}me to +an other, not chaungynge them to a thyrde place? + +_M._ Marke well how I do it: I wyll adde together 65436, and 3245, +whiche fyrste I set downe thus. + + -------------|-------------- + | o + -------------|--o----------- + | o + -X--o-o-o----|-------------- + | + ----o-o------|--o-o-o-o----- + | + ----o-o-o-o--|--o-o-o------- + o | o + -------------|--o----------- + +Then do I begynne with the smalest, which in the fyrst summe is 5, that +do I take vp, and wold put to the other 5 in the seconde summe, sauynge +that two counters can not be set in a voyd place of 5, but for them +bothe I must set 1 in the seconde lyne, which is the place of 10, +therfore I take vp the 5 of the fyrst su{m}me, {and} the 5 of the +seco{n}de, and for them I set 1 in the seco{n}d lyne, [*121a] as you se +here. + + -------------|-------------- + | o + -------------|--o----------- + | o + -X--o-o-o----|-------------- + | + ----o-o------|--o-o-o-o----- + | + ----o-o-o-o--|--o-o-o-o----- + | + -------------|--o----------- + +Then do I lyke wayes take vp the 4 counters of the fyrste su{m}me {and} +seconde lyne (which make 40) and adde them to the 4 counters of the same +lyne, in the second su{m}me, and it maketh 80, But as I sayde I maye not +conueniently set aboue 4 cou{n}ters in one lyne, therfore to those 4 +that I toke vp in the fyrst su{m}me, I take one also of the seconde +su{m}me, and then haue I taken vp 50, for whiche 5 counters I sette +downe one in the space ouer y^e second lyne, as here doth appere. + + -----------|-------------- + | o + -----------|--o----------- + | o + -X--o-o-o--|-------------- + | + ----o-o----|--o-o-o-o----- + | o + -----------|--o-o-o------- + | + -----------|--o----------- + +[*121b.] and then is there 80, as well w^t those 4 counters, as yf I had +set downe y^e other 4 also. Now do I take the 200 in the fyrste su{m}me, +and adde them to the 400 in the seconde summe, and it maketh 600, +therfore I take vp the 2 counters in the fyrste summe, and 3 of them in +the seconde summe, and for them 5 I set 1 in y^e space aboue, thus. + + -----------|------------ + | o + -----------|--o--------- + | o + -X--o-o-o--|------------ + | o + -----------|--o--------- + | o + -----------|--o-o-o----- + | + -----------|--o--------- + +Then I take y^e 3000 in y^e fyrste su{m}me, vnto whiche there are none +in the second summe agreynge, therfore I do onely remoue those 3 +counters from the fyrste summe into the seconde, as here doth appere. + + ----|------------- + | o + ----|---o--------- + | o + -X--|---o-o-o----- + | o + ----|-o----------- + | o + ----|---o-o-o----- + | + ----|---o--------- + +[*122a.] And so you see the hole su{m}me, that amou{n}teth of the +addytio{n} of 65436 with 3245 to be 6868[1]. And yf you haue marked +these two exa{m}ples well, you nede no farther enstructio{n} in Addition +of 2 only summes: but yf you haue more then two summes to adde, you may +adde them thus. Fyrst adde two of them, and then adde the thyrde, and +y^e fourth, or more yf there be so many: as yf I wolde adde 2679 with +4286 and 1391. Fyrste I adde the two fyrste summes thus. + + -------------|-----------|-------------- + | | o + -X--o-o------|--o-o-o-o--|--o----------- + o | | o + ----o--------|--o-o------|--o-o-o-o----- + o | o | o + ----o-o------|--o-o-o----|--o----------- + o | o | o + ----o-o-o-o--|--o--------|-------------- + +[*122b.] And then I adde the thyrde thereto thus. And so of more yf you +haue them. + + -------------|-----------|------------ + | o | o + -X--o--------|--o--------|--o-o-o----- + | o | + ----o-o-o----|--o-o-o-o--|--o-o-o----- + o | o | o + ----o-o-o-o--|----o------|------------ + | o | o + ----o--------|-----------|--o--------- + + + [Headnote: Subtraction on the Counting Board.] + + [Sidenote: Subtraction.] + +_S._ Nowe I thynke beste that you passe forth to Subtraction, except +there be any wayes to examyn this maner of Addition, then I thynke that +were good to be knowen nexte. + +_M._ There is the same profe here that is in the other Addition by the +penne, I meane Subtraction, for that onely is a sure waye: but +consyderynge that Subtraction must be fyrste knowen, I wyl fyrste teache +you the arte of Subtraction, and that by this example: I wolde subtracte +2892 out of 8746. These summes must I set downe as I dyd in Addition: +but here it is best [*116a (_sic_).] to set the lesser no{m}ber fyrste, +thus. + + -------------|-------------- + | o + -X--o-o------|--o-o-o------- + o | o + ----o-o-o----|--o-o--------- + o | + ----o-o-o-o--|--o-o-o-o----- + | o + ----o-o------|--o----------- + +Then shall I begynne to subtracte the greatest nombres fyrste (contrary +to the vse of the penne) y^t is the thousandes in this exa{m}ple: +therfore I fynd amongest the thousandes 2, for which I withdrawe so many +fro{m} the seconde summe (where are 8) and so remayneth there 6, as this +exa{m}ple showeth. + + -------------+-------------- + | o + -+-----------+--o----------- + o | o + ----o-o-o----+--o-o--------- + o | + ----o-o-o-o--+--o-o-o-o----- + | o + ----o-o------+--o----------- + +Then do I lyke wayes with the hundredes, of whiche in the fyrste summe +[*116b] I fynde 8, and is the seconde summe but 7, out of whiche I can +not take 8, therfore thus muste I do: I muste loke how moche my summe +dyffereth from 10, whiche I fynde here to be 2, then must I bate for my +su{m}me of 800, one thousande, and set downe the excesse of hundredes, +that is to saye 2, for so moche 100[0] is more then I shuld take vp. +Therfore fro{m} the fyrste su{m}me I take that 800, and from the second +su{m}me where are 6000, I take vp one thousande, and leue 5000; but then +set I downe the 200 unto the 700 y^t are there all redye, and make them +900 thus. + + -------------+-------------- + | o + -+-----------+-------------- + | o + -------------+--o-o-o-o----- + o | + ----o-o-o-o--+--o-o-o-o----- + | o + ----o-o------+--o----------- + +Then come I to the articles of te{n}nes where in the fyrste su{m}me I +fynde 90, [*117a] and in the seconde su{m}me but only 40: Now +consyderyng that 90 can not be bated from 40, I loke how moche y^t 90 +doth dyffer from the next summe aboue it, that is 100 (or elles whiche +is all to one effecte, I loke how moch 9 doth dyffer fro{m} 10) {and} I +fynd it to be 1, then in the stede of that 90, I do take from the second +summe 100: but consyderynge that it is 10 to moche, I set downe 1 in y^e +nexte lyne beneth for it, as you se here. + + ---------+------------ + | o + -+-------+------------ + | o + ---------+--o-o-o----- + | o + ---------+------------ + | o + ----o-o--+--o--------- + +Sauynge that here I haue set one counter in y^e space in stede of 5 in +y^e nexte lyne. And thus haue I subtracted all saue two, which I must +bate from the 6 in the second summe, and there wyll remayne 4, thus. + + ----+-------------- + | o + -+--+-------------- + | o + ----+--o-o-o------- + | o + ----+-------------- + | + ----+--o-o-o-o----- + +So y^t yf I subtracte 2892 fro{m} 8746, the remayner wyll be 5854, +[*117b] And that this is truely wrought, you maye proue by Addition: for +yf you adde to this remayner the same su{m}me that you dyd subtracte, +then wyll the formar su{m}me 8746 amount agayne. + +_S._ That wyll I proue: and fyrst I set the su{m}me that was subtracted, +which was 2892, {and} the{n} the remayner 5854, thus. + + --------------+-------------- + | o + -||--o-o------+-------------- + o | o + -----o-o-o----+--o-o-o------- + o | o + -----o-o-o-o--+-------------- + | + -----o-o------+--o-o-o-o----- + +Then do I adde fyrst y^e 2 to 4, whiche maketh 6, so take I vp 5 of +those counters, and in theyr stede I sette 1 in the space, as here +appereth. + + --------------+------------ + | o + -||--o-o------+------------ + o | o + -----o-o-o----+--o-o-o----- + o | o + -----o-o-o-o--+------------ + | o + --------------+--o--------- + +[*118a] Then do I adde the 90 nexte aboue to the 50, and it maketh 140, +therfore I take vp those 6 counters, and for them I sette 1 to the +hundredes in y^e thyrde lyne, {and} 4 in y^e second lyne, thus. + + ------------+-------------- + | o + -||--o-o----+-------------- + o | o + -----o-o-o--+--o-o-o-o----- + | + ------------+--o-o-o-o----- + | o + ------------+----o--------- + +Then do I come to the hundredes, of whiche I fynde 8 in the fyrst summe, +and 9 in y^e second, that maketh 1700, therfore I take vp those 9 +counters, and in theyr stede I sette 1 in the .iiii. lyne, and 1 in the +space nexte beneth, and 2 in the thyrde lyne, as you se here. + + ----------+-------------- + | o + -||--o-o--+--o----------- + | o + ----------+--o-o--------- + | + ----------+--o-o-o-o----- + | o + ----------+--o----------- + +Then is there lefte in the fyrste summe but only 2000, whiche I shall +take vp from thence, and set [*118b] in the same lyne in y^e second +su{m}me, to y^e one y^t is there all redy: {and} then wyll the hole +su{m}me appere (as you may wel se) to be 8746, which was y^e fyrst +grosse summe, {and} therfore I do perceaue, that I hadde well subtracted +before. And thus you may se how Subtraction maye be tryed by Addition. + + ----+-------------- + | o + -X--+--o-o-o------- + | o + ----+--o-o--------- + | + ----+--o-o-o-o----- + | o + ----+----o--------- + +_S._ I perceaue the same order here w^t cou{n}ters, y^t I lerned before +in figures. + +_M._ Then let me se howe can you trye Addition by Subtraction. + +_S._ Fyrste I wyl set forth this exa{m}ple of Additio{n} where I haue +added 2189 to 4988, and the hole su{m}me appereth to be 7177, + + --------------+-----------+---------- + | | o + -||--o-o------+--o-o-o-o--+--o-o----- + | o | + -----o--------+--o-o-o-o--+--o------- + o | o | o + -----o-o-o----+--o-o-o----+--o-o----- + o | o | o + -----o-o-o-o--+--o-o-o----+--o-o----- + +[*119a] Nowe to trye whether that su{m}me be well added or no, I wyll +subtract one of the fyrst two su{m}mes from the thyrd, and yf I haue +well done y^e remayner wyll be lyke that other su{m}me. As for example: +I wyll subtracte the fyrste summe from the thyrde, whiche I set thus in +theyr order. + + --------------+---------- + | o + -||--o-o------+--o-o----- + | + -----o--------+--o------- + o | o + -----o-o-o----+--o-o----- + o | o + -----o-o-o-o--+--o-o----- + +Then do I subtract 2000 of the fyrste summe fro{m} y^e second su{m}me, +and then remayneth there 5000 thus. + + -------------+---------- + | o + -X-----------+----------- + | + ----o--------+--o------- + o | o + ----o-o-o----+--o-o----- + o | o + ----o-o-o-o--+--o-o----- + +Then in the thyrd lyne, I subtract y^e 100 of the fyrste summe, fro{m} +the second su{m}me, where is onely 100 also, and then in y^e thyrde lyne +resteth nothyng. Then in the second lyne with his space ouer hym, +I fynde 80, which I shuld subtract [*119b] from the other su{m}me, then +seyng there are but only 70 I must take it out of some hygher summe, +which is here only 5000, therfore I take vp 5000, and seyng that it is +to moch by 4920, I sette downe so many in the seconde roume, whiche with +the 70 beynge there all redy do make 4990, & then the summes doth stande +thus. + + --------------+-------------- + | + -||-----------+--o-o-o-o----- + | o + --------------+--o-o-o-o----- + | o + --------------+--o-o-o-o----- + o | o + -----o-o-o-o--+--o-o--------- + +Yet remayneth there in the fyrst su{m}me 9, to be bated from the second +summe, where in that place of vnities dothe appere only 7, then I muste +bate a hygher su{m}me, that is to saye 10, but seynge that 10 is more +then 9 (which I shulde abate) by 1, therfore shall I take vp one counter +from the seconde lyne, {and} set downe the same in the fyrst [*120a] or +lowest lyne, as you se here. + + -----+-------------- + | + -||--+--o-o-o-o----- + | o + -----+--o-o-o-o----- + | o + -----+--o-o-o------- + | o + -----+--o-o-o------- + +And so haue I ended this worke, {and} the su{m}me appereth to be y^e +same, whiche was y^e seconde summe of my addition, and therfore I +perceaue, I haue wel done. + +_M._ To stande longer about this, it is but folye: excepte that this you +maye also vnderstande, that many do begynne to subtracte with counters, +not at the hyghest su{m}me, as I haue taught you, but at the +nethermoste, as they do vse to adde: and when the summe to be abatyd, +in any lyne appeareth greater then the other, then do they borowe one of +the next hygher roume, as for example: yf they shuld abate 1846 from +2378, they set y^e summes thus. + + --------------+------------ + | + -||--o--------+--o-o------- + o | + -----o-o-o----+--o-o-o----- + | o + -----o-o-o-o--+--o-o------- + o | o + -----o--------+--o-o-o----- + +[*120b] And fyrste they take 6 whiche is in the lower lyne, and his +space from 8 in the same roumes, in y^e second su{m}me, and yet there +remayneth 2 counters in the lowest lyne. Then in the second lyne must 4 +be subtracte from 7, and so remayneth there 3. Then 8 in the thyrde lyne +and his space, from 3 of the second summe can not be, therfore do they +bate it from a hygher roume, that is, from 1000, and bycause that 1000 +is to moch by 200, therfore must I sette downe 200 in the thyrde lyne, +after I haue taken vp 1000 from the fourth lyne: then is there yet 1000 +in the fourth lyne of the fyrst summe, whiche yf I withdrawe from the +seconde summe, then doth all y^e figures stande in this order. + + -----+------------ + | + -||--+------------ + | o + -----+------------ + | + -----+--o-o-o----- + | + -----+--o-o------- + +So that (as you se) it differeth not greatly whether you begynne +subtractio{n} at the hygher lynes, or at [*121a] the lower. How be it, +as some menne lyke the one waye beste, so some lyke the other: therfore +you now knowyng bothe, may vse whiche you lyst. + + [Headnote: Multiplication by Counters.] + + [Sidenote: Multiplication.] + +But nowe touchynge Multiplicatio{n}: you shall set your no{m}bers in two +roumes, as you dyd in those two other kyndes, but so that the multiplier +be set in the fyrste roume. Then shall you begyn with the hyghest +no{m}bers of y^e seconde roume, and multiply them fyrst after this sort. +Take that ouermost lyne in your fyrst workynge, as yf it were the lowest +lyne, setting on it some mouable marke, as you lyste, and loke how many +counters be in hym, take them vp, and for them set downe the hole +multyplyer, so many tymes as you toke vp counters, reckenyng, I saye +that lyne for the vnites: {and} when you haue so done with the hygheest +no{m}ber then come to the nexte lyne beneth, {and} do euen so with it, +and so with y^e next, tyll you haue done all. And yf there be any nomber +in a space, then for it [*121b] shall you take y^e multiplyer 5 tymes, +and then must you recken that lyne for the vnites whiche is nexte beneth +that space: or els after a shorter way, you shall take only halfe the +multyplyer, but then shall you take the lyne nexte aboue that space, for +the lyne of vnites: but in suche workynge, yf chau{n}ce your multyplyer +be an odde nomber, so that you can not take the halfe of it iustly, then +muste you take the greater halfe, and set downe that, as if that it were +the iuste halfe, and farther you shall set one cou{n}ter in the space +beneth that line, which you recken for the lyne of vnities, or els only +remoue forward the same that is to be multyplyed. + +_S._ Yf you set forth an example hereto I thynke I shal perceaue you. + +_M._ Take this exa{m}ple: I wold multiply 1542 by 365, therfore I set +y^e nombers thus. + + ------------+-------------- + | + -||---------+--o----------- + | o + -----o-o-o--+-------------- + o | + -----o------+--o-o-o-o----- + o | + ------------+--o-o--------- + +[*122a] Then fyrste I begynne at the 1000 in y^e hyghest roume, as yf it +were y^e fyrst place, & I take it vp, settynge downe for it so often +(that is ones) the multyplyer, which is 365, thus, as you se here: + + -----------+-----------+------------ + | | + -----------+-----------+--o-o-o----- + | | o + -----------+-----------+--o--------- + | | o + -X---------+-----------+------------ [<-] + | o | + ----o-o-o--+-----------+------------ + o | | + ----o------+--o-o-o-o--+------------ + o | | + -----------+--o-o------+------------ + +where for the one counter taken vp from the fourth lyne, I haue sette +downe other 6, whiche make y^e su{m}me of the multyplyer, reckenynge +that fourth lyne, as yf it were the fyrste: whiche thyng I haue marked +by the hand set at the begynnyng of y^e same, + +_S._ I perceaue this well: for in dede, this summe that you haue set +downe is 365000, for so moche doth amount [*122b] of 1000, multiplyed by +365. + +_M._ Well the{n} to go forth, in the nexte space I fynde one counter +which I remoue forward but take not vp, but do (as in such case I must) +set downe the greater halfe of my multiplier (seyng it is an odde +no{m}ber) which is 182, {and} here I do styll let that fourth place +stand, as yf it were y^e fyrst: + + ------------+-----------+--o-o-o--+--o--------- + | | o | o + ------------+-----------+--o------+--o-o-o----- + | | o | + -||---------+-----------+---------+--o-o------- [<-] + | | | o + -----o-o-o--+-----------+---------+------------ + o | | | + -----o------+--o-o-o-o--+---------+------------ + o | | | + ------------+--o-o------+---------+------------ + +as in this fourme you se, where I haue set this multiplycatio{n} with +y^e other: but for the ease of your vndersta{n}dynge, I haue set a +lytell lyne betwene them: now shulde they both in one su{m}me stand +thus. + + ------------+-----------+--o-o-o-o-o----- + | | + ------------+-----------+--o-o-o-o------- + | | o + -||---------+-----------+--o-o----------- [<-] + | | o + -----o-o-o--+-----------+---------------- + o | | + -----o------+--o-o-o-o--+---------------- + o | | + ------------+--o-o------+---------------- + +[*123a] Howe be it an other fourme to multyplye suche cou{n}ters i{n} +space is this: Fyrst to remoue the fynger to the lyne nexte benethe y^e +space, {and} then to take vp y^e cou{n}ter, {and} to set downe y^e +multiplyer .v. tymes, as here you se. + + ---------+---------+-o-o-o-+------+------+------+------+------+- + | | o | | | | | | + ---------+---------+-o-----+o-o-o-+o-o-o-+o-o-o-+o-o-o-+o-o-o-+- + | | o | o | o | o | o | o | + ---------+---------+-------+o-----+------+o-----+o-----+o-----+- + | | | o | o | o | o | o | + [->]-X-o-o-o-+---------+-------+------+------+------+------+------+- + o | | | | | | | | + ---o-----+-o-o-o-o-+-------+------+------+------+------+------+- + o | | | | | | | | + ---------+-o-o-----+-------+------+------+------+------+------+- + +Which su{m}mes yf you do adde together into one su{m}me, you shal +p{er}ceaue that it wyll be y^e same y^t appeareth of y^e other worki{n}g +before, so that [*123b] bothe sortes are to one entent, but as the other +is much shorter, so this is playner to reason, for suche as haue had +small exercyse in this arte. Not withstandynge you maye adde them in +your mynde before you sette them downe, as in this exa{m}ple, you myghte +haue sayde 5 tymes 300 is 1500, {and} 5 tymes 60 is 300, also 5 tymes 5 +is 25, whiche all put together do make 1825, which you maye at one tyme +set downe yf you lyste. But nowe to go forth, I must remoue the hand to +the nexte counters, whiche are in the second lyne, and there must I take +vp those 4 counters, settynge downe for them my multiplyer 4 tymes, +whiche thynge other I maye do at 4 tymes seuerally, or elles I may +gather that hole summe in my mynde fyrste, and then set it downe: as to +saye 4 tymes 300 is 1200: 4 tymes 60 are 240: and 4 tymes 5 make 20: y^t +is in all 1460, y^t shall I set downe also: as here you se. + o + -----------+-------+-----------+-------------- + | | | + -----------+-------+--o-o-o-o--+--o----------- + | | o | + -X---------+-------+--o-o------+--o-o-o-o----- + | | o | o + ----o-o-o--+-------+-----------+--o----------- + o | | | + [->] ----o------+-------+-----------+-------------- + o | | | + -----------+--o-o--+-----------+-------------- + +[*124a] whiche yf I ioyne in one summe with the formar nombers, it wyll +appeare thus. + o + ---------+-------+---------- + | | o + ---------+-------+--o------- + | | + ---------+-------+--o-o----- + | | + --o-o-o--+-------+-o-------- + o | | + [->] --o------+-------+---------- + o | | + ---------+--o-o--+---------- + +Then to ende this multiplycation, I remoue the fynger to the lowest +lyne, where are onely 2, them do I take vp, and in theyr stede do I set +downe twyse 365, that is 730, for which I set [*124b] one in the space +aboue the thyrd lyne for 500, and 2 more in the thyrd lyne with that one +that is there all redye, and the reste in theyr order, {and} so haue I +ended the hole summe thus. + o + ---------+-----+------------ + | | o + ---------+-----+--o--------- + | | + ---------+-----+--o-o------- + | | o + --o-o-o--+-----+--o-o-o----- + o | | + --o------+-----+--o-o-o----- + o | | + ---------+-----+------------ + +Wherby you se, that 1542 (which is the nomber of yeares syth Ch[r]ystes +incarnation) beyng multyplyed by 365 (which is the nomber of dayes in +one yeare) dothe amounte vnto 562830, which declareth y^e no{m}ber of +daies sith Chrystes incarnatio{n} vnto the ende of 1542[{1}] yeares. +(besyde 385 dayes and 12 houres for lepe yeares). + +_S._ Now wyll I proue by an other exa{m}ple, as this: 40 labourers +(after 6 d. y^e day for eche man) haue wrought 28 dayes, I wold [*125a] +know what theyr wages doth amou{n}t vnto: In this case muste I worke +doublely: fyrst I must multyplye the nomber of the labourers by y^e +wages of a man for one day, so wyll y^e charge of one daye amount: then +secondarely shall I multyply that charge of one daye, by the hole nomber +of dayes, {and} so wyll the hole summe appeare: fyrst therefore I shall +set the su{m}mes thus. + + ------+-------------- + | + ------+-------------- + | + ------+-------------- + | + ------+--o-o-o-o----- + o | + --o---+-------------- + +Where in the fyrste space is the multyplyer (y^t is one dayes wages for +one man) {and} in the second space is set the nomber of the worke men to +be multyplyed: the{n} saye I, 6 tymes 4 (reckenynge that second lyne as +the lyne of vnites) maketh 24, for whiche summe I shulde set 2 counters +in the thyrde lyne, and 4 in the seconde, therfore do I set 2 in the +thyrde lyne, and let the 4 stand styll in the seconde lyne, thus.[*125b] + + -----+-------------- + | + -----+-------------- + | + -----+--o-o--------- + | + -----+--o-o-o-o----- + | + -----+-------------- + +So apwereth the hole dayes wages to be 240d’. that is 20 s. Then do I +multiply agayn the same summe by the no{m}ber of dayes and fyrste I +sette the nombers, thus. + + ---------+-------------- + | + ---------+-------------- + | + ---------+--o-o--------- + | + --o-o----+--o-o-o-o----- + o | + --o-o-o--+------------- + +The{n} bycause there are counters in dyuers lynes, I shall begynne with +the hyghest, and take them vp, settynge for them the multyplyer so many +tymes, as I toke vp counters, y^t is twyse, then wyll y^e su{m}me stande +thus. + + -----+-------------- + | o + -----+-------------- + | o + -----+--o----------- + | + -----+--o-o-o-o----- + | + -----+-------------- + +Then come I to y^e seconde lyne, and take vp those 4 cou{n}ters, +settynge for them the multiplyer foure tymes, so wyll the hole summe +appeare thus.[*126a] + + -----+---------- + | o + -----+--o------- + | o + -----+--o-o----- + | + -----+--o-o----- + | + -----+---------- + +So is the hole wages of 40 workeme{n}, for 28 dayes (after 6d’. eche +daye for a man) 6720d’. that is 560 s. or 28 l’i. + + [Headnote: Division on the Counting Board.] + + [Sidenote: Diuision.] + +_M._ Now if you wold proue Multiplycatio{n}, the surest way is by +Dyuision: therfore wyll I ouer passe it tyll I haue taught you y^e arte +of Diuision, whiche you shall worke thus. Fyrste sette downe the Diuisor +for feare of forgettynge, and then set the nomber that shalbe deuided, +at y^e ryghte syde, so farre from the diuisor, that the quotient may be +set betwene them: as for exa{m}ple: Yf 225 shepe cost 45 l’i. what dyd +euery shepe cost? To knowe this, I shulde diuide the hole summe, that is +45 l’i. by 225, but that can not be, therfore must I fyrste reduce that +45 l’i. into a lesser denomination, as into shyllynges: then I multiply +45 by 20, and it is 900, that summe shall I diuide by the no{m}ber of +[*126b] shepe, whiche is 225, these two nombers therfore I sette thus. + + -------+-----+-------------- + | | + -------+-----+-------------- + | | o + --o-o--+-----+--o-o-o-o----- + | | + --o-o--+-----+-------------- + o | | + -------+-----+-------------- + +Then begynne I at the hyghest lyne of the diuident, and seke how often I +may haue the diuisor therin, and that maye I do 4 tymes, then say I, +4 tymes 2 are 8, whyche yf I take from 9, there resteth but 1, thus + + -------+-----------+-------- + | | + -------+-----------+-------- + | | + --o-o--+-----------+--o----- + | | + --o-o--+-----------+-------- + o | | + -------+--o-o-o-o--+-------- + +And bycause I founde the diuisor 4 tymes in the diuidente, I haue set +(as you se) 4 in the myddle roume, which [*127a] is the place of the +quotient: but now must I take the reste of the diuisor as often out of +the remayner: therfore come I to the seconde lyne of the diuisor, sayeng +2 foure tymes make 8, take 8 from 10, {and} there resteth 2, thus. + + ----------+-----------+---------- + | | + -||-------+-----------+---------- + | | + -----o-o--+-----------+---------- + | | + -----o-o--+-----------+--o-o----- + o | | + ----------+--o-o-o-o--+---------- + +Then come I to the lowest nomber, which is 5, and multyply it 4 tymes, +so is it 20, that take I from 20, and there remayneth nothynge, so that +I se my quotient to be 4, whiche are in valewe shyllynges, for so was +the diuident: and therby I knowe, that yf 225 shepe dyd coste 45 l’i. +euery shepe coste 4 s. + +_S._ This can I do, as you shall perceaue by this exa{m}ple: Yf 160 +sowldyars do spende euery moneth 68 l’i. what spendeth eche man? Fyrst +[*127b] bycause I can not diuide the 68 by 160, therfore I wyll turne +the pou{n}des into pennes by multiplicacio{n}, so shall there be +16320 d’. Nowe muste I diuide this su{m}me by the nomber of sowldyars, +therfore I set the{m} i{n} order, thus. + + ---------+-----+--o--------- + | | o + -||------+-----+--o--------- + | | + -----o---+-----+--o-o-o----- + o | | + -----o---+-----+--o-o------- + | | + ---------+-----+------------ + +Then begyn I at the hyghest place of the diuidente, sekynge my diuisor +there, whiche I fynde ones, Therfore set I 1 in the nether lyne. + +_M._ Not in the nether line of the hole summe, but in the nether lyne of +that worke, whiche is the thyrde lyne. + +_S._ So standeth it with reason. + +_M._ Then thus do they stande.[*128a] + + ---------+-----+------------ + | | + -||------+-----+------------ + | | + -----o---+--o--+--o-o-o----- + o | | + -----o---+-----+--o-o------- + | | + ---------+-----+------------ + +Then seke I agayne in the reste, how often I may fynde my diuisor, and I +se that in the 300 I myghte fynde 100 thre tymes, but then the 60 wyll +not be so often founde in 20, therfore I take 2 for my quotient: then +take I 100 twyse from 300, and there resteth 100, out of whiche with the +20 (that maketh 120) I may take 60 also twyse, and then standeth the +nombers thus, + + ---------+-------+----- + | | + -||------+-------+----- + | | + -----o---+--o----+----- + o | | + -----o---+-------+----- + | | + ---------+--o-o--+----- + +[*128b] where I haue sette the quotient 2 in the lowest lyne: So is +euery sowldyars portion 102 d’. that is 8 s. 6 d’. + +_M._ But yet bycause you shall perceaue iustly the reason of Diuision, +it shall be good that you do set your diuisor styll agaynst those +nombres fro{m} whiche you do take it: as by this example I wyll declare. +Yf y^e purchace of 200 acres of ground dyd coste 290 l’i. what dyd one +acre coste? Fyrst wyl I turne the poundes into pennes, so wyll there be +69600 d’· Then in settynge downe these nombers I shall do thus. + + ---------+-----+-------------- + | | o + ----o-o--+-----+--o----------- + | | o + -X-------+-----+--o-o-o-o----- + | | o + ---------+-----+--o----------- + | | + ---------+-----+-------------- + | | + ---------+-----+-------------- + +Fyrst set the diuident on the ryghte hande as it oughte, and then +[*129a] the diuisor on the lefte hande agaynst those nombers, fro{m} +which I entende to take hym fyrst as here you se, wher I haue set the +diuisor two lynes hygher the{n} is theyr owne place. + +_S._ This is lyke the order of diuision by the penne. + +_M._ Truth you say, and nowe must I set y^e quotient of this worke in +the thyrde lyne, for that is the lyne of vnities in respecte to the +diuisor in this worke. Then I seke howe often the diuisor maye be founde +in the diuident, {and} that I fynde 3 tymes, then set I 3 in the thyrde +lyne for the quotient, and take awaye that 60000 fro{m} the diuident, +and farther I do set the diuisor one line lower, as yow se here. + + ----------+---------+-------------- + | | o + -||--o-o--+---------+--o-o-o-o----- + | | o + ----------+--o-o-o--+----o--------- + | | + ----------+---------+-------------- + | | + ----------+---------+-------------- + +[*129b] And then seke I how often the diuisor wyll be taken from the +nomber agaynste it, whiche wyll be 4 tymes and 1 remaynynge. + +_S._ But what yf it chaunce that when the diuisor is so remoued, it can +not be ones taken out of the diuident agaynste it? + +_M._ Then must the diuisor be set in an other line lower. + +_S._ So was it in diuision by the penne, and therfore was there a cypher +set in the quotient: but howe shall that be noted here? + +_M._ Here nedeth no token, for the lynes do represente the places: onely +loke that you set your quotient in that place which standeth for vnities +in respecte of the diuisor: but now to returne to the example, I fynde +the diuisor 4 tymes in the diuidente, and 1 remaynynge, for 4 tymes 2 +make 8, which I take from 9, and there resteth 1, as this figure +sheweth: + + ----------+-----------+--------- + | | + -||--o-o--+-----------+--o------ + | | o + ----------+--o-o-o----+--o------ + | | + ----------+--o-o-o-o--+--------- + | | + ----------+-----------+--------- + +and in the myddle space for the quotient I set 4 in the seconde lyne, +whiche is in this worke the place of vnities.[*130a] Then remoue I y^e +diuisor to the next lower line, and seke how often I may haue it in the +dyuident, which I may do here 8 tymes iust, and nothynge remayne, as in +this fourme, + + ----------+-----------+----- + | | + -||--o-o--+-----------+----- + | | + ----------+--o-o-o----+----- + | | + ----------+--o-o-o-o--+----- + | o | + ----------+--o-o-o----+----- + +where you may se that the hole quotient is 348 d’, that is 29 s. wherby +I knowe that so moche coste the purchace of one aker. + +_S._ Now resteth the profes of Multiplycatio{n}, and also of Diuisio{n}. + +_M._ Ther best profes are eche [*130b] one by the other, for +Multyplication is proued by Diuision, and Diuision by Multiplycation, +as in the worke by the penne you learned. + +_S._ Yf that be all, you shall not nede to repete agayne that, y^t was +sufficye{n}tly taughte all redye: and excepte you wyll teache me any +other feate, here maye you make an ende of this arte I suppose. + +_M._ So wyll I do as touchynge hole nomber, and as for broken nomber, +I wyll not trouble your wytte with it, tyll you haue practised this so +well, y^t you be full perfecte, so that you nede not to doubte in any +poynte that I haue taught you, and thenne maye I boldly enstructe you in +y^e arte of fractions or broken no{m}ber, wherin I wyll also showe you +the reasons of all that you haue nowe learned. But yet before I make an +ende, I wyll showe you the order of co{m}men castyng, wher in are bothe +pennes, shyllynges, and poundes, procedynge by no grounded reason, but +onely by a receaued [*131a] fourme, and that dyuersly of dyuers men: for +marchau{n}tes vse one fourme, and auditors an other: + + [Headnote: Merchants’ Casting Counters.] + + [Sidenote: Merchants’ casting.] + +But fyrste for marchauntes fourme marke this example here, + + o o o o o + o + o o o o + o + o o o o o + o + o o o o o + +in which I haue expressed this summe 198 l’i.[{2}] 19 s. 11 d’. So that +you maye se that the lowest lyne serueth for pe{n}nes, the next aboue +for shyllynges, the thyrde for poundes, and the fourth for scores of +pou{n}des. And farther you maye se, that the space betwene pennes and +shyllynges may receaue but one counter (as all other spaces lyke wayes +do) and that one standeth in that place for 6 d’. Lyke wayes betwene the +shyllynges {and} the pou{n}des, one cou{n}ter standeth for 10 s. And +betwene the poundes and 20 l’i. one counter standeth for 10 pou{n}des. +But besyde those you maye see at the left syde of shyllynges, that one +counter standeth alone, {and} betokeneth 5 s. [*131b] So agaynste the +poundes, that one cou{n}ter standeth for 5 l’i. And agaynst the 20 +poundes, the one counter standeth for 5 score pou{n}des, that is +100 l’i. so that euery syde counter is 5 tymes so moch as one of them +agaynst whiche he standeth. + + [Sidenote: Auditors’ casting.] + +Now for the accompt of auditors take this example. + + o o o o o o + o o o o o o o o o o o o + o o o o + +where I haue expressed y^e same su{m}me 198 l’i. 19 s. 11 d’. But here +you se the pe{n}nes stande toward y^e ryght hande, and the other +encreasynge orderly towarde the lefte hande. Agayne you maye se, that +auditours wyll make 2 lynes (yea and more) for pennes, shyllynges, {and} +all other valewes, yf theyr summes extende therto. Also you se, that +they set one counter at the ryght ende of eche rowe, whiche so set there +standeth for 5 of that roume: and on [*132a] the lefte corner of the +rowe it sta{n}deth for 10, of y^e same row. But now yf you wold adde +other subtracte after any of both those sortes, yf you marke y^e order +of y^t other feate which I taught you, you may easely do the same here +without moch teachynge: for in Additio{n} you must fyrst set downe one +su{m}me and to the same set the other orderly, and lyke maner yf you +haue many: but in Subtraction you must sette downe fyrst the greatest +summe, and from it must you abate that other euery denominatio{n} from +his dewe place. + +_S._ I do not doubte but with a lytell practise I shall attayne these +bothe: but how shall I multiply and diuide after these fourmes? + +_M._ You can not duely do none of both by these sortes, therfore in +suche case, you must resort to your other artes. + +_S._ Syr, yet I se not by these sortes how to expresse hu{n}dreddes, +yf they excede one hundred, nother yet thousandes. + +_M._ They that vse such accomptes that it excede 200 [*132b] in one +summe, they sette no 5 at the lefte hande of the scores of poundes, but +they set all the hundredes in an other farther rowe {and} 500 at the +lefte hand therof, and the thousandes they set in a farther rowe yet, +{and} at the lefte syde therof they sette the 5000, and in the space +ouer they sette the 10000, and in a hygher rowe 20000, whiche all I haue +expressed in this exa{m}ple, + + o o o o + o + o o o + o o o o + o o o + o o o o o + o + o o + o + o o o + o o + o + +which is 97869 l’i. 12 s. 9 d’ ob. q. for I had not told you before +where, nother how you shuld set downe farthynges, which (as you se here) +must be set in a voyde space sydelynge beneth the pennes: for q one +counter: for ob. 2 counters: for ob. q. 3 counters: {and} more there can +not be, for 4 farthynges [*133a] do make 1 d’. which must be set in his +dewe place. + + [Headnote: Auditors’ Casting Counters.] + +And yf you desyre y^e same summe after audytors maner, lo here it is. + + o o o o o o + o o o o o o o o o o o o o o o o o o o + o o o o + o + +But in this thyng, you shall take this for suffycyent, and the reste you +shall obserue as you maye se by the working of eche sorte: for the +dyuers wittes of men haue inuented dyuers and sundry wayes almost +vnnumerable. But one feate I shall teache you, whiche not only for the +straungenes and secretnes is moche pleasaunt, but also for the good +co{m}moditie of it ryghte worthy to be well marked. This feate hath ben +vsed aboue 2000 yeares at the leaste, and yet was it neuer come{n}ly +knowen, especyally in Englysshe it was neuer taughte yet. This is the +arte of nombrynge on the hand, with diuers gestures of the fyngers, +expressynge any summe conceaued in the [*133b] mynde. And fyrst to +begynne, yf you wyll expresse any summe vnder 100, you shall expresse it +with your lefte hande: and from 100 vnto 10000, you shall expresse it +with your ryght hande, as here orderly by this table folowynge you may +perceaue. + + +¶ Here foloweth the table + of the arte of the + hande+ + + + + +The arte of nombrynge by the hande. + + [Transcriber’s Note: + + Footnote 3 reads: + “Bracket ([) denotes new paragraph in original.” + For this e-text, the brackets have been omitted in favor of restoring + the paragraph breaks. Changes of speaker (M, S) are also marked by + paragraphs, as in the previous selection. + + The illustration includes the printed page number 134; there is + therefore no sidenote *134a. The sidenote for “4” is missing.] + + +[Illustration: (Numbers as described in text)] + + [Sidenote: 1] + +[*134b] In which as you may se 1 is expressed by y^e lyttle fynger of +y^e lefte hande closely and harde croked. + + [Sidenote: 2] + +[{3}]2 is declared by lyke bowynge of the weddynge fynger (whiche is the +nexte to the lyttell fynger) together with the lytell fynger. + + [Sidenote: 3] + +3 is signified by the myddle fynger bowed in lyke maner, with those +other two. + +4 is declared by the bowyng of the myddle fynger and the rynge fynger, +or weddynge fynger, with the other all stretched forth. + + [Sidenote: 5, 6] + +5 is represented by the myddle fynger onely bowed. + +And 6 by the weddynge fynger only crooked: and this you may marke in +these a certayne order. But now 7, 8, and 9, are expressed w{i}t{h} the +bowynge of the same fyngers as are 1, 2, and 3, but after an other +fourme. + + [Sidenote: 7] + +For 7 is declared by the bowynge of the lytell fynger, as is 1, saue +that for 1 the fynger is clasped in, harde {and} [*135a] rounde, but for +to expresse 7, you shall bowe the myddle ioynte of the lytell fynger +only, and holde the other ioyntes streyght. + +_S._ Yf you wyll geue me leue to expresse it after my rude maner, thus I +vnderstand your meanyng: that 1 is expressed by crookynge in the lyttell +fynger lyke the head of a bysshoppes bagle: and 7 is declared by the +same fynger bowed lyke a gybbet. + +_M._ So I perceaue, you vnderstande it. + + [Sidenote: 8] + +Then to expresse 8, you shall bowe after the same maner both the lyttell +fynger and the rynge fynger. + + [Sidenote: 9, 10] + +And yf you bowe lyke wayes with them the myddle fynger, then doth it +betoken 9. + +Now to expresse 10, you shall bowe your fore fynger rounde, and set the +ende of it on the hyghest ioynte of the thombe. + + [Sidenote: 20] + +And for to expresse 20, you must set your fyngers streyght, and the ende +of your thombe to the partitio{n} of the [*135b] fore moste and myddle +fynger. + + [Sidenote: 30] + +30 is represented by the ioynynge together of y^e headdes of the +foremost fynger and the thombe. + + [Sidenote: 40] + +40 is declared by settynge of the thombe crossewayes on the foremost +fynger. + + [Sidenote: 50] + +50 is signified by ryght stretchyng forth of the fyngers ioyntly, and +applyenge of the thombes ende to the partition of the myddle fynger +{and} the rynge fynger, or weddynge fynger. + + [Sidenote: 60] + +60 is formed by bendynge of the thombe croked and crossynge it with the +fore fynger. + + [Sidenote: 70] + +70 is expressed by the bowynge of the foremost fynger, and settynge the +ende of the thombe between the 2 foremost or hyghest ioyntes of it. + + [Sidenote: 80] + +80 is expressed by settynge of the foremost fynger crossewayes on the +thombe, so that 80 dyffereth thus fro{m} 40, that for 80 the forefynger +is set crosse on the thombe, and for 40 the thombe is set crosse ouer +y^e forefinger. + + [Sidenote: 90] + +[*136a] 90 is signified, by bendynge the fore fynger, and settyng the +ende of it in the innermost ioynte of y^e thombe, that is euen at the +foote of it. And thus are all the no{m}bers ended vnder 100. + +[Sidenote: 11, 12, 13, 21, 22, 23] + +_S._ In dede these be all the nombers fro{m} 1 to 10, {and} then all the +tenthes within 100, but this teacyed me not how to expresse 11, 12, 13, +{et}c. 21, 22, 23, {et}c. and such lyke. + +_M._ You can lytell vnderstande, yf you can not do that without +teachynge: what is 11? is it not 10 and 1? then expresse 10 as you were +taught, and 1 also, and that is 11: and for 12 expresse 10 and 2: for 23 +set 20 and 3: and so for 68 you muste make 60 and there to 8: and so of +all other sortes. + + [Sidenote: 100] + +But now yf you wolde represente 100 other any nomber aboue it, you muste +do that with the ryghte hande, after this maner. [You must expresse 100 +in the ryght hand, with the lytell fynger so bowed as you dyd expresse 1 +in the left hand. + + [Sidenote: 200] + +[*136b] And as you expressed 2 in the lefte hande, the same fasshyon in +the ryght hande doth declare 200. + + [Sidenote: 300] + +The fourme of 3 in the ryght hand standeth for 300. + + [Sidenote: 400] + +The fourme of 4, for 400. + + [Sidenote: 500] + +Lykewayes the fourme of 5, for 500. + + [Sidenote: 600] + +The fourme of 6, for 600. And to be shorte: loke how you did expresse +single vnities and tenthes in the lefte hande, so must you expresse +vnities {and} tenthes of hundredes, in the ryghte hande. + + [Sidenote: 900] + +_S._ I vnderstande you thus: that yf I wold represent 900, I must so +fourme the fyngers of my ryghte hande, as I shuld do in my left hand to +expresse 9, + + [Sidenote: 1000] + +And as in my lefte hand I expressed 10, so in my ryght hande must I +expresse 1000. + +And so the fourme of euery tenthe in the lefte hande serueth to expresse +lyke no{m}ber of thousa{n}des, + + [Sidenote: 4000] + +so y^e fourme of 40 standeth for 4000. + + [Sidenote: 8000] + +The fourme of 80 for 8000. + + [Sidenote: 9000] + + [*137a] + + And the fourme of 90 (whiche is + the greatest) for 9000, and aboue that + I can not expresse any nomber. _M._ + No not with one fynger: how be it, + w{i}t{h} dyuers fyngers you maye expresse + 9999, and all at one tyme, and that lac + keth but 1 of 10000. So that vnder + 10000 you may by your fyngers ex- + presse any summe. And this shal suf- + fyce for Numeration on the fyngers. + And as for Addition, Subtraction, + Multiplicatio{n}, and Diuision (which + yet were neuer taught by any man as + farre as I do knowe) I wyll enstruct + you after the treatyse of fractions. + And now for this tyme fare well, + and loke that you cease not to + practyse that you haue lear + ned. _S._ Syr, with moste + harty mynde I thanke + you, bothe for your + good learnyng, {and} + also your good + cou{ns}el, which + (god wyllyng) I truste to folow. + + + Finis. + + + FOOTNOTES (Accomptynge by counters + _and_ The arte of nombrynge by the hande): + + [1: 1342 in original.] + [2: 168 in original.] + [3: Bracket ([) denotes new paragraph in original.] + + + + +APPENDIX I. + ++A Treatise on the Numeration of Algorism.+ + + +[_From a MS. of the 14th Century._] + +To alle suche even nombrys the most have cifrys as to ten. twenty. +thirtty. an hundred. an thousand and suche other. but ye schal +vnderstonde that a cifre tokeneth nothinge but he maketh other the more +significatyf that comith after hym. Also ye schal vnderstonde that in +nombrys composyt and in alle other nombrys that ben of diverse figurys +ye schal begynne in the ritht syde and to rekene backwarde and so he +schal be wryte as thus--1000. the sifre in the ritht side was first +wryte and yit he tokeneth nothinge to the secunde no the thridde but +thei maken that figure of 1 the more signyficatyf that comith after hem +by as moche as he born oute of his first place where he schuld yf he +stode ther tokene but one. And there he stondith nowe in the ferye place +he tokeneth a thousand as by this rewle. In the first place he tokeneth +but hymself. In the secunde place he tokeneth ten times hymself. In the +thridde place he tokeneth an hundred tymes himself. In the ferye he +tokeneth a thousand tymes himself. In the fyftye place he tokeneth ten +thousand tymes himself. In the sexte place he tokeneth an hundred +thousand tymes hymself. In the seveth place he tokeneth ten hundred +thousand tymes hymself, &c. And ye schal vnderstond that this worde +nombre is partyd into thre partyes. Somme is callyd nombre of digitys +for alle ben digitys that ben withine ten as ix, viii, vii, vi, v, iv, +iii, ii, i. Articules ben alle thei that mow be devyded into nombrys of +ten as xx, xxx, xl, and suche other. Composittys be alle nombrys that +ben componyd of a digyt and of an articule as fourtene fyftene thrittene +and suche other. Fourtene is componyd of four that is a digyt and of ten +that is an articule. Fyftene is componyd of fyve that is a digyt and of +ten that is an articule and so of others . . . . . . But as to this +rewle. In the firste place he tokeneth but himself that is to say he +tokeneth but that and no more. If that he stonde in the secunde place he +tokeneth ten tymes himself as this figure 2 here 21. this is oon and +twenty. This figure 2 stondith in the secunde place and therfor he +tokeneth ten tymes himself and ten tymes 2 is twenty and so forye of +every figure and he stonde after another toward the lest syde he schal +tokene ten tymes as moche more as he schuld token and he stode in that +place ther that the figure afore him stondeth: lo an example as thus +9634. This figure of foure that hath this schape 4 tokeneth but himself +for he stondeth in the first place. The figure of thre that hath this +schape 3 tokeneth ten tyme himself for he stondeth in the secunde place +and that is thritti. The figure of sexe that hath this schape 6 tokeneth +ten tyme more than he schuld and he stode in the place yer the figure of +thre stondeth for ther he schuld tokene but sexty. And now he tokeneth +ten tymes that is sexe hundrid. The figure of nyne that hath this schape +9 tokeneth ten tymes more than he schulde and he stode in the place ther +the figure of 6 stondeth inne for thanne he schuld tokene but nyne +hundryd. And in the place that he stondeth inne nowe he tokeneth nine +thousand. Alle the hole nombre of these foure figurys. Nine thousand +sexe hundrid and foure and thritti. + + + + +APPENDIX II. + +Carmen de Algorismo. + + +[_From a B.M. MS., 8 C. iv., with additions from 12 E. 1 & Eg. 2622._] + + Hec algorismus ars presens dicitur[{1}]; in qua + Talibus Indorum[{2}] fruimur his quinque figuris. + 0. 9. 8. 7. 6. 5. 4. 3. 2. 1. + Prima significat unum: duo vero secunda: + Tercia significat tria: sic procede sinistre 4 + Donec ad extremam venies, qua cifra vocatur; + [{3}][Que nil significat; dat significare sequenti.] + Quelibet illarum si primo limite ponas, + Simpliciter se significat: si vero secundo, 8 + Se decies: sursum procedas multiplicando.[{4}] + [Namque figura sequens quevis signat decies plus, + Ipsa locata loco quam significet pereunte: 12 + Nam precedentes plus ultima significabit.] + [{5}]Post predicta scias quod tres breuiter numerorum + Distincte species sunt; nam quidam digiti sunt; + Articuli quidam; quidam quoque compositi sunt. 16 + [Sunt digiti numeri qui citra denarium sunt; + Articuli decupli degitorum; compositi sunt + Illi qui constant ex articulis digitisque.] + Ergo, proposito numero tibi scribere, primo 20 + Respicias quis sit numerus; quia si digitus sit, + [{5}][Una figura satis sibi; sed si compositus sit,] + Primo scribe loco digitum post articulum fac + Articulus si sit, cifram post articulum sit, 24 + [Articulum vero reliquenti in scribe figure.] + Quolibet in numero, si par sit prima figura, + Par erit et totum, quicquid sibi continetur; + Impar si fuerit, totum sibi fiet et impar. 28 + Septem[{6}] sunt partes, non plures, istius artis; + Addere, subtrahere, duplare, dimidiare; + Sexta est diuidere, set quinta est multiplicare; + Radicem extrahere pars septima dicitur esse. 32 + Subtrahis aut addis a dextris vel mediabis; + A leua dupla, diuide, multiplicaque; + Extrahe radicem semper sub parte sinistra. + + [Sidenote: Addition.] + + Addere si numero numerum vis, ordine tali 36 + Incipe; scribe duas primo series numerorum + Prima sub prima recte ponendo figuram, + Et sic de reliquis facias, si sint tibi plures. + Inde duas adde primas hac condicione; 40 + Si digitus crescat ex addicione priorum, + Primo scribe loco digitum, quicunque sit ille; + Si sit compositus, in limite scribe sequenti + Articulum, primo digitum; quia sic iubet ordo. 44 + Articulus si sit, in primo limite cifram, + Articulum vero reliquis inscribe figuris; + Vel per se scribas si nulla figura sequatur. + Si tibi cifra superueniens occurrerit, illam 48 + Deme suppositam; post illic scribe figuram: + Postea procedas reliquas addendo figuras. + + [Sidenote: Subtraction.] + + A numero numerum si sit tibi demere cura, + Scribe figurarum series, vt in addicione; 52 + Maiori numero numerum suppone minorem, + Siue pari numero supponatur numerus par. + Postea si possis a prima subtrahe primam, + Scribens quod remanet, cifram si nil remanebit. 56 + Set si non possis a prima demere primam; + Procedens, vnum de limite deme sequenti; + Et demptum pro denario reputabis ab illo, + Subtrahe totaliter numerum quem proposuisti. 60 + Quo facto, scribe supra quicquit remanebit, + Facque novenarios de cifris, cum remanebis, + Occurrant si forte cifre, dum demseris vnum; + Postea procedas reliquas demendo figuras. 64 + + [Sidenote: Proof.] + + [{7}][Si subtracio sit bene facta probare valebis, + Quas subtraxisti primas addendo figuras. + Nam, subtractio si bene sit, primas retinebis, + Et subtractio facta tibi probat additionem.] 68 + + [Sidenote: Duplation.] + + Si vis duplare numerum, sic incipe; solam + Scribe figurarum seriem, quamcumque voles que + Postea procedas primam duplando figuram; + Inde quod excrescet, scribens, vbi iusserit ordo, 72 + Juxta precepta que dantur in addicione. + Nam si sit digitus, in primo limite scribe; + Articulus si sit, in primo limite cifram, + Articulum vero reliquis inscribe figuris; 76 + Vel per se scribas, si nulla figura sequatur: + Compositus si sit, in limite scribe sequenti + Articulum primo, digitum; quia sic jubet ordo: + Et sic de reliquis facias, si sint tibi plures. 80 + [{8}][Si super extremam nota sit, monadem dat eidem, + Quod tibi contingit, si primo dimidiabis.] + + [Sidenote: Mediation.] + + Incipe sic, si vis aliquem numerum mediare: + Scribe figurarum seriem solam, velud ante; 84 + Postea procedens medias, et prima figura + Si par aut impar videas; quia si fuerit par, + Dimidiabis eam, scribens quicquit remanebit; + Impar si fuerit, vnum demas, mediare, 88 + Nonne presumas, sed quod superest mediabis; + Inde super tractum, fac demptum quod notat unum; + Si monos, dele; sit ibi cifra post nota supra. + Postea procedas hac condicione secunda:[{9}] 92 + Impar[{10}] si fuerit hic vnum deme priori, + Inscribens quinque, nam denos significabit + Monos prædictam: si vero secunda dat vnam, + Illa deleta, scribatur cifra; priori 96 + Tradendo quinque pro denario mediato; + Nec cifra scribatur, nisi inde figura sequatur: + Postea procedas reliquas mediando figuras, + Quin supra docui, si sint tibi mille figure. 100 + [{11}][Si mediatio sit bene facta probare valebis, + Duplando numerum quem primo dimidiasti.] + Si super extremam nota sit monades dat eidem + Quod contingat cum primo dimiabis + Atque figura prior nuper fuerit mediando.] + + [Sidenote: Multiplication.] + + Si tu per numerum numerum vis multiplicare, + Scribe duas, quascunque volis, series numerorum; 104 + Ordo tamen seruetur vt vltima multiplicandi + Ponatur super anteriorem multiplicantis; + [{12}][A leua relique sint scripte multiplicantes.] + In digitum cures digitum si ducere, major 108 + Per quantes distat a denis respice, debes + Namque suo decuplo tociens delere minorem; + Sicque tibi numerus veniens exinde patebit. + Postea procedas postremam multiplicando, 112 + Juste multiplicans per cunctas inferiores, + Condicione tamen tali; quod multiplicantis + Scribas in capite, quicquid processerit inde; + Set postquam fuerit hec multiplicata, figure 116 + Anteriorentur seriei multiplicantis; + Et sic multiplica, velut istam multiplicasti, + Qui sequitur numerum scriptum quicunque figuris. + Set cum multiplicas, primo sic est operandum, 120 + Si dabit articulum tibi multiplicacio solum; + Proposita cifra, summam transferre memento. + Sin autem digitus excrescerit articulusque, + Articulus supraposito digito salit ultra; 124 + Si digitus tamen, ponas illum super ipsam, + Subdita multiplicans hanc que super incidit illi + Delet eam penitus, scribens quod provenit inde; + Sed si multiplices illam posite super ipsam, 128 + Adiungens numerum quem prebet ductus earum; + Si supraimpositam cifra debet multiplicare, + Prorsus eam delet, scribi que loco cifra debet, + [{12}][Si cifra multiplicat aliam positam super ipsam, 132 + Sitque locus supra vacuus super hanc cifra fiet;] + Si supra fuerit cifra semper pretereunda est; + Si dubites, an sit bene multiplicando secunda, + Diuide totalem numerum per multiplicantem, 136 + Et reddet numerus emergens inde priorem. + + [Sidenote: Mental Multiplication.] + + [{13}][Per numerum si vis numerum quoque multiplicare + Tantum per normas subtiles absque figuris + Has normas poteris per versus scire sequentes. 140 + Si tu per digitum digitum quilibet multiplicabis + Regula precedens dat qualiter est operandum + Articulum si per reliquum vis multiplicare + In proprium digitum debebit uterque resolvi 144 + Articulus digitos post per se multiplicantes + Ex digitis quociens teneret multiplicatum + Articuli faciunt tot centum multiplicati. + Articulum digito si multiplicamus oportet 148 + Articulum digitum sumi quo multiplicare + Debemus reliquum quod multiplicaris ab illis + Per reliquo decuplum sic omne latere nequibit + In numerum mixtum digitum si ducere cures 152 + Articulus mixti sumatur deinde resolvas + In digitum post hec fac ita de digitis nec + Articulusque docet excrescens in detinendo + In digitum mixti post ducas multiplicantem 156 + De digitis ut norma docet sit juncta secundo + Multiplica summam et postea summa patebit + Junctus in articulum purum articulumque + [{14}][Articulum purum comittes articulum que] 160 + Mixti pro digitis post fiat et articulus vt + Norma jubet retinendo quod egreditur ab illis + Articuli digitum post in digitum mixti duc + Regula de digitis ut percipit articulusque 164 + Ex quibus excrescens summe tu junge priori + Sic manifesta cito fiet tibi summa petita. + Compositum numerum mixto sic multiplicabis + Vndecies tredecem sic est ex hiis operandum 168 + In reliquum primum demum duc post in eundem + Unum post deinde duc in tercia deinde per unum + Multiplices tercia demum tunc omnia multiplicata + In summa duces quam que fuerit te dices 172 + Hic ut hic mixtus intentus est operandum + Multiplicandorum de normis sufficiunt hec.] + + [Sidenote: Division.] + + Si vis dividere numerum, sic incipe primo; + Scribe duas, quascunque voles, series numerorum; 176 + Majori numero numerum suppone minorem, + [{15}][Nam docet ut major teneat bis terve minorem;] + Et sub supprima supprimam pone figuram, + Sic reliquis reliquas a dextra parte locabis; 180 + Postea de prima primam sub parte sinistra + Subtrahe, si possis, quociens potes adminus istud, + Scribens quod remanet sub tali conditione; + Ut totiens demas demendas a remanente, 184 + Que serie recte ponentur in anteriori, + Unica si, tantum sit ibi decet operari; + Set si non possis a prima demere primam, + Procedas, et eam numero suppone sequenti; 188 + Hanc uno retrahendo gradu quo comites retrahantur, + Et, quotiens poteris, ab eadem deme priorem, + Ut totiens demas demendas a remanenti, + Nec plus quam novies quicquam tibi demere debes, 192 + Nascitur hinc numerus quociens supraque sequentem + Hunc primo scribas, retrahas exinde figuras, + Dum fuerit major supra positus inferiori, + Et rursum fiat divisio more priori; 196 + Et numerum quotiens supra scribas pereunti, + Si fiat saliens retrahendo, cifra locetur, + Et pereat numero quotiens, proponas eidem + Cifram, ne numerum pereat vis, dum locus illic 200 + Restat, et expletis divisio non valet ultra: + Dum fuerit numerus numerorum inferiore seorsum + Illum servabis; hinc multiplicando probabis, + + [Sidenote: Proof.] + + Si bene fecisti, divisor multiplicetur 204 + Per numerum quotiens; cum multiplicaveris, adde + Totali summæ, quod servatum fuit ante, + Reddeturque tibi numerus quem proposuisti; + Et si nil remanet, hunc multiplicando reddet, 208 + + [Sidenote: Square Numbers.] + + Cum ducis numerum per se, qui provenit inde + Sit tibi quadratus, ductus radix erit hujus, + Nec numeros omnes quadratos dicere debes, + Est autem omnis numerus radix alicujus. 212 + Quando voles numeri radicem querere, scribi + Debet; inde notes si sit locus ulterius impar, + Estque figura loco talis scribenda sub illo, + Que, per se dicta, numerum tibi destruat illum, 216 + Vel quantum poterit ex inde delebis eandem; + Vel retrahendo duples retrahens duplando sub ista + Que primo sequitur, duplicatur per duplacationem, + Post per se minuens pro posse quod est minuendum. 220 + [{16}]Post his propones digitum, qui, more priori + Per precedentes, post per se multiplicatus, + Destruat in quantum poterit numerum remanentem, + Et sic procedens retrahens duplando figuram, 224 + Preponendo novam donec totum peragatur, + Subdupla propriis servare docetque duplatis; + Si det compositum numerum duplacio, debet + Inscribi digitus a parte dextra parte propinqua, 228 + Articulusque loco quo non duplicata resessit; + Si dabit articulum, sit cifra loco pereunte + Articulusque locum tenet unum, de duplicata resessit; + Si donet digitum, sub prima pone sequente, 232 + Si supraposita fuerit duplicata figura + Major proponi debet tantummodo cifra, + Has retrahens solito propones more figuram, + Usque sub extrema ita fac retrahendo figuras, 236 + Si totum deles numerum quem proposuisti, + Quadratus fuerit, de dupla quod duplicasti, + Sicque tibi radix illius certa patebit, + Si de duplatis fit juncta supprima figura; 240 + Radicem per se multiplices habeasque + Primo propositum, bene te fecisse probasti; + Non est quadratus, si quis restat, sed habentur + Radix quadrati qui stat major sub eadem; 244 + Vel quicquid remanet tabula servare memento; + Hoc casu radix per se quoque multiplicetur, + Vel sic quadratus sub primo major habetur, + Hinc addas remanens, et prius debes haberi; 248 + Si locus extremus fuerit par, scribe figuram + Sub pereunte loco per quam debes operari, + Que quantum poterit supprimas destruat ambas, + Vel penitus legem teneas operando priorem, 252 + Si suppositum digitus suo fine repertus, + Omnino delet illic scribi cifra debet, + A leva si qua sit ei sociata figura; + Si cifre remanent in fine pares decet harum 256 + Radices, numero mediam proponere partem, + Tali quesita radix patet arte reperta. + Per numerum recte si nosti multiplicare + Ejus quadratum, numerus qui pervenit inde 260 + Dicetur cubicus; primus radix erit ejus; + Nec numeros omnes cubicatos dicere debes, + Est autem omnis numerus radix alicujus; + + [Sidenote: Cube Root.] + + Si curas cubici radicem quærere, primo 264 + Inscriptum numerum distinguere per loca debes; + Que tibi mille notant a mille notante suprema + Initiam, summa operandi parte sinistra, + Illic sub scribas digitum, qui multiplicatus 268 + In semet cubice suprapositum sibi perdat, + Et si quid fuerit adjunctum parte sinistra + Si non omnino, quantum poteris minuendo, + Hinc triplans retrahe saltum, faciendo sub illa 272 + Que manet a digito deleto terna, figuram + Illi propones quo sub triplo asocietur, + Ut cum subtriplo per eam tripla multiplicatur; + Hinc per eam solam productum multiplicabis, 276 + Postea totalem numerum, qui provenit inde + A suprapositis respectu tolle triplate + Addita supprimo cubice tunc multiplicetur, + Respectu cujus, numerus qui progredietur 280 + Ex cubito ductu, supra omnes adimetur; + Tunc ipsam delens triples saltum faciendo, + Semper sub ternas, retrahens alias triplicatas + Ex hinc triplatis aliam propone figuram, 284 + Que per triplatas ducatur more priori; + Primo sub triplis sibi junctis, postea per se, + In numerum ducta, productum de triplicatis: + Utque prius dixi numerus qui provenit inde 288 + A suprapositis has respiciendo trahatur, + Huic cubice ductum sub primo multiplicabis, + Respectumque sui, removebis de remanenti, + Et sic procedas retrahendo triplando figuram. 292 + Et proponendo nonam, donec totum peragatur, + Subtripla sub propriis servare decet triplicatis; + Si nil in fine remanet, numerus datus ante + Est cubicus; cubicam radicem sub tripla prebent, 296 + Cum digito juncto quem supprimo posuisti, + Hec cubice ducta, numerum reddant tibi primum. + Si quid erit remanens non est cubicus, sed habetur + Major sub primo qui stat radix cubicam, 300 + Servari debet quicquid radice remansit, + Extracto numero, decet hec addi cubicato. + Quo facto, numerus reddi debet tibi primus. + Nam debes per se radicem multiplicare 304 + Ex hinc in numerum duces, qui provenit inde + Sub primo cubicus major sic invenietur; + Illi jungatur remanens, et primus habetur, + Si per triplatum numerum nequeas operari; 308 + Cifram propones, nil vero per hanc operare + Set retrahens illam cum saltu deinde triplata, + Propones illi digitum sub lege priori, + Cumque cifram retrahas saliendo, non triplicabis, 312 + Namque nihil cifre triplacio dicitur esse; + At tu cum cifram protraxeris aut triplicata, + Hanc cum subtriplo semper servare memento: + Si det compositum, digiti triplacio debet 316 + Illius scribi, digitus saliendo sub ipsam; + Digito deleto, que terna dicitur esse; + Jungitur articulus cum triplata pereunte, + Set facit hunc scribi per se triplacio prima, 320 + Que si det digitum per se scribi facit illum; + Consumpto numero, si sole fuit tibi cifre + Triplato, propone cifram saltum faciendo, + Cumque cifram retrahe triplam, scribendo figuram, 324 + Preponas cifre, sic procedens operare, + Si tres vel duo serie in sint, pone sub yma, + A dextris digitum servando prius documentum. + Si sit continua progressio terminus nuper 328 + Per majus medium totalem multiplicato; + Si par, per medium tunc multiplicato sequentem. + Set si continua non sit progressio finis: + Impar, tunc majus medium si multiplicabis, 332 + Si par per medium sibi multiplicato propinquum. 333 + + +FOOTNOTES (Appendix II, Carmen de Algorismo): + + [1: “Hec præsens ars dicitur algorismus ab Algore rege ejus + inventore, vel dicitur ab _algos_ quod est ars, et _rodos_ quod est + numerus; quæ est ars numerorum vel numerandi, ad quam artem bene + sciendum inveniebantur apud Indos bis quinque (id est decem) + figuræ.” --_Comment. Thomæ de Novo-Mercatu._ MS. Bib. Reg. Mus. + Brit. 12 E. 1.] + + [2: “Hæ necessariæ figuræ sunt Indorum characteros.” _MS. de + numeratione._ Bib. Sloan. Mus. Brit. 513, fol. 58. “Cum vidissem + Yndos constituisse IX literas in universo numero suo propter + dispositionem suam quam posuerunt, volui patefacere de opere quod + sit per eas aliquidque esset levius discentibus, si Deus voluerit. + Si autem Indi hoc voluerunt et intentio illorum nihil novem literis + fuit, causa que mihi potuit. Deus direxit me ad hoc. Si vero alia + dicam preter eam quam ego exposui, hoc fecerunt per hoc quod ego + exposui, eadem tam certissime et absque ulla dubitatione poterit + inveniri. Levitasque patebit aspicientibus et discentibus.” MS. + U.L.C., Ii. vi. 5, f. 102.] + + [3: From Eg. 2622.] + + [4: 8 C. iv. inserts + Nullum cipa significat: dat significare sequenti.] + + [5: From 12 E. 1.] + + [6: + En argorisme devon prendre + Vii especes . . . . + Adision subtracion + Doubloison mediacion + Monteploie et division + Et de radix eustracion + A chez vii especes savoir + Doit chascun en memoire avoir + Letres qui figures sont dites + Et qui excellens sont ecrites. --MS. _Seld. Arch._ B. 26.] + + [7: From 12 E. 1.] + + [8: From 12 E. 1.] + + [9: 8 C. iv. inserts + Atque figura prior nuper fuerit mediando.] + + [10: _I.e._ figura secundo loco posita.] + + [11: So 12 E. 1; 8 C. iv. inserts-- + + [12: 12 E. 1 inserts.] + + [13: 12 E. 1 inserts to l. 174.] + + [14: 12 E. 1 omits, Eg. 2622 inserts.] + + [15: 12 E. 1 inserts.] + + [16: 8 C. iv. inserts-- + Hinc illam dele duplans sub ei psalliendo + Que sequitur retrahens quicquid fuerit duplicatum.] + + + + +INDEX OF TECHNICAL TERMS[1*] + + [Footnote 1*: This Index has been kindly prepared by Professor + J. B. Dale, of King’s College, University of London, and the + best thanks of the Society are due to him for his valuable + contribution.] + + [Transcriber’s Note: + The Technical Terms and Glossary (following) refer to page and line + numbers in the printed book. Information in [[double brackets]] has + been added by the transcriber to aid in text searching.] + + + +algorisme+, 33/12; +algorym+, +augrym+, 3/3; the art of computing, + using the so-called Arabic numerals. + The word in its various forms is derived from the Arabic + _al-Khowarazmi_ (i.e. the native of Khwarazm (Khiva)). This was the + surname of Ja’far Mohammad ben Musa, who wrote a treatise early in + the 9th century (see p. xiv). + The form _algorithm_ is also found, being suggested by a supposed + derivation from the Greek ἀριθμός (number). + + +antery+, 24/11; to move figures to the right of the position in + which they are first written. This operation is performed repeatedly + upon the multiplier in multiplication, and upon certain figures + which arise in the process of root extraction. + + +anterioracioun+, 50/5; the operation of moving figures to the + right. [[written anteriorac{i}o{u}n or anterioracio{u}n]] + + +article+, 34/23; +articul+, 5/31; +articuls+, 9/36, 29/7,8; + a number divisible by ten without remainder. [[also articull{e}]] + + +cast+, 8/12; to add one number to another. + ‘Addition is a _casting_ together of two numbers into one number,’ + 8/10. + + +cifre+, 4/1; the name of the figure 0. The word is derived from the + Arabic _sifr_ = empty, nothing. Hence _zero_. + A cipher is the symbol of the absence of number or of zero quantity. + It may be used alone or in conjunction with digits or other ciphers, + and in the latter case, according to the position which it occupies + relative to the other figures, indicates the absence of units, or + tens, or hundreds, etc. The great superiority of the Arabic to all + other systems of notation resides in the employment of this symbol. + When the cipher is not used, the place value of digits has to be + indicated by writing them in assigned rows or columns. Ciphers, + however, may be interpolated amongst the significant figures used, + and as they sufficiently indicate the positions of the empty rows or + columns, the latter need not be indicated in any other way. The + practical performance of calculations is thus enormously facilitated + (see p. xvi). + + +componede+, 33/24; +composyt+, 5/35; with reference to numbers, one + compounded of a multiple of ten and a digit. + [[written componed{e}]] + + +conuertide+ = conversely, 46/29, 47/9. + [[written co{n}u{er}tid{e} or {con}u{er}tid{e}]] + + +cubicede+, 50/13; +to be c.+, to have its cube root found. + [[written cubiced{e}]] + + +cubike nombre+, 47/8; a number formed by multiplying a given number + twice by itself, _e.g._ 27 = 3 × 3 × 3. Now called simply a cube. + [[written cubik{e} ...]] + + +decuple+, 22/12; the product of a number by ten. Tenfold. + + +departys+ = divides, 5/29. [[written dep{ar}tys]] + + +digit+, 5/30; +digitalle+, 33/24; a number less than ten, + represented by one of the nine Arabic numerals. + [[written digitall{e}]] + + +dimydicion+, 7/23; the operation of dividing a number by two. + Halving. [[written dimydicioñ]] + + +duccioun+, multiplication, 43/9. [[written duccio{u}n]] + + +duplacion+, 7/23, 14/15; the operation of multiplying a number by + two. Doubling. + [[written duplacioñ or duplacioɳ with fancy “n”]] + + +i-mediet+ = halved, 19/23. + + +intercise+ = broken, 46/2; intercise Progression is the name given + to either of the Progressions 1, 3, 5, 7, etc.; 2, 4, 6, 8, etc., + in which the common difference is 2. [[written int{er}cise]] + + +lede into+, multiply by, 47/18. + [[words always separated, as “lede ... into”]] + + +lyneal nombre+, 46/14; a number such as that which expresses the + measure of the length of a line, and therefore is not _necessarily_ + the product of two or more numbers (_vide_ Superficial, Solid). This + appears to be the meaning of the phrase as used in _The Art of + Nombryng_. It is possible that the numbers so designated are the + prime numbers, that is, numbers not divisible by any other number + except themselves and unity, but it is not clear that this + limitation is intended. + + +mediacioun+, 16/36, 38/16; dividing by two (see also +dimydicion+). + [[written mediacioɳ with fancy “n”, generally without “u”]] + + +medlede nombre+, 34/1; a number formed of a multiple of ten and a + digit (_vide_ componede, composyt). [[written medled{e} ...]] + + +medye+, 17/8, to halve; +mediete+, halved, 17/30; +ymedit+, 20/9. + + +naturelle progressioun+, 45/22; the series of numbers 1, 2, 3, etc. + [[written naturell{e} p{ro}gressio{u}n]] + + +produccioun+, multiplication, 50/11. [[written produccio{u}n]] + + +quadrat nombre+, 46/12; a number formed by multiplying a given + number by itself, _e.g._ 9 = 3 × 3, a square. + + +rote+, 7/25; +roote+, 47/11; root. The roots of squares and cubes + are the numbers from which the squares and cubes are derived by + multiplication into themselves. + + +significatyf+, significant, 5/14; The significant figures of a + number are, strictly speaking, those other than zero, _e.g._ in 3 6 + 5 0 4 0 0, the significant figures are 3, 6, 5, 4. Modern usage, + however, regards all figures between the two extreme significant + figures as significant, even when some are zero. Thus, in the above + example, 3 6 5 0 4 are considered significant. + + +solide nombre+, 46/37; a number which is the product of three other + numbers, _e.g._ 66 = 11 × 2 × 3. [[usually written solid{e}]] + + +superficial nombre+, 46/18; a number which is the product of two + other numbers, _e.g._ 6 = 2 × 3. + [[written sup{er}ficial or sup{er}ficiall{e}]] + + +ternary+, consisting of three digits, 51/7. + [[written t{er}nary]] + + +vnder double+, a digit which has been doubled, 48/3. + + +vnder-trebille+, a digit which has been trebled, 49/28; + +vnder-triplat+, 49/39. + [[written vnder-trebill{e}, vnder-t{r}iplat]] + + +w+, a symbol used to denote half a unit, 17/33 + [[shown in e-text as superscript ʷ]] + + + + +GLOSSARY + + [Transcriber’s Note: + + Words whose first appearance is earlier than the page cited in the + Glossary are identified in double-bracketed notes. To aid in text + searching, words written with internal {italics} are also noted, + and context is given for common words.] + + + +ablacioun+, taking away, 36/21 [[written ablacio{u}n]] + +addyst+, haddest, 10/37 + +agregacioun+, addition, 45/22. (First example in N.E.D., 1547.) + [[written ag{r}egacio{u}n]] + +a-ȝenenes+, against, 23/10 + +allgate+, always, 8/39 + +als+, as, 22/24 + +and+, if, 29/8; + +&+, 4/27; + +& yf+, 20/7 + +a-nendes+, towards, 23/15 + +aproprede+, appropriated, 34/27 [[written ap{ro}pred{e}]] + +apwereth+, appears, 61/8 + +a-risyȝt+, arises, 14/24 + +a-rowe+, in a row, 29/10 + +arsemetrike+, arithmetic, 33/1 [[written arsemetrik{e}]] + +ayene+, again, 45/15 + + +bagle+, crozier, 67/12 + +bordure+ = ordure, row, 43/30 [[written bordur{e}]] + +borro+, _inf._ borrow, 11/38; + _imp. s._ +borowe+, 12/20; + _pp._ +borwed+, 12/15; + +borred+, 12/19 + +boue+, above, 42/34 + + +caputule+, chapter, 7/26 [[written caputul{e}]] + +certayn+, assuredly, 18/34 [[written c{er}tayɳ]] + +clepede+, called, 47/7 [[written cleped{e}]] + +competently+, conveniently, 35/8 + +compt+, count, 47/29 + +contynes+, contains, 21/12; [[written {con}tynes]] + _pp._ +contenythe+, 38/39 [[written co{n}tenyth{e}]] + +craft+, art, 3/4 + + +distingue+, divide, 51/5 + + +egalle+, equal, 45/21 [[written egall{e}]] + +excep+, except, 5/16] + +exclusede+, excluded, 34/37 [[written exclused{e}]] + +excressent+, resulting, 35/16 [[written exc{re}ssent]] + +exeant+, resulting, 43/26 + +expone+, expound, 3/23 + + +ferye+ = ferþe, fourth, 70/12 + +figure+ = figures, 5/1 [[written fig{ure}]] + +for-by+, past, 12/11 + +fors; no f.+, no matter, 22/24 + +forseth+, matters, 53/30 + +forye+ = forþe, forth, 71/8] + +fyftye+ = fyftþe, fifth, 70/16 + + +grewe+, Greek, 33/13 + + +haluendel+, half, 16/16; + +haldel+, 19/4; + _pl._ +haluedels+, 16/16 + +hayst+, hast, 17/3, 32 + +hast+, haste, 22/25 [[in “haue hast to”]] + +heer+, higher, 9/35 + +here+, their, 7/26 [[in “in her{e} caputul{e}”]] + +here-a-fore+, heretofore, 13/7 [[written her{e}-a-for{e}]] + +heyth+, was called, 3/5 + +hole+, whole, 4/39; + +holle+, 17/1; + +hoole+, of three dimensions, 46/15 + +holdyþe+, holds good, 30/5 + +how be it that+, although, 44/4 + + +lede+ = lete, let, 8/37 + +lene+, lend, 12/39 + +lest+, least, 43/27 [[in “at the lest”]] + +lest+ = left, 71/9 [[in “the lest syde”]] + +leue+, leave, 6/5; + _pr. 3 s._ +leues+, remains, 11/19; [[first in 10/40]] + +leus+, 11/28; + _pp._ +laft+, left, 19/24 + +lewder+, more ignorant, 3/3 [[written lewd{er}]] + +lust+, desirest to, 45/13 + +lyȝt+, easy, 15/31 + +lymytes+, limits, 34/18; + +lynes+, 34/12; + +lynees+, 34/17; + Lat. limes, _pl._ limites. + + +maystery+, achievement; [[written mayst{er}y]] + +no m.+, no achievement, i.e. easy, 19/10 + +me+, _indef. pron._ one, 42/1 [[first in 34/16]] + +mo+, more, 9/16 + +moder+ = more (Lat. majorem), 43/22 + +most+, must, 30/3 [[first in 3/12 and many more]] + +multipliede+, +to be m.+ = multiplying, 40/9 + +mynvtes+, the sixty parts into which a unit is divided, 38/25 + [[written mynvt{es}]] + +myse-wroȝt+, mis-wrought, 14/11 + + +nether+, nor, 34/25 [[in “It was, nether is”]] + +nex+, next, 19/9 + +noȝt+, nought, 5/7 [[first in 4/8]] + +note+, not, 30/5 + + +oo+, one, 42/20; +o+, 42/21 [[first in 34/27; 33/22]] + +omest+, uppermost, higher, 35/26; + +omyst+, 35/28 + +omwhile+, sometimes, 45/31 [[first in 39/17]] + +on+, one, 8/29 [[in “on vnder an-oþ{er}”]] + +opyne+, plain, 47/8 [[written opyn{e}]] + +or+, before, 13/25 [[in “or þou be-gan”]] + +or+ = þe oþ{er}, the other, 28/34 [[in “or by-twene”]] + +ordure+, order, 34/9; + row, 43/1 [[word form is “order”]] + +other+, or, 33/13, 43/26; + [[in “art other craft” on 33/13, “other how oft” on 43/26; + note also “one other other” on 35/24]] + +other . . . or+, either . . . or, 38/37 + [[in “other it is even or od{e}” on 38/37; + there are earlier occurrences]] + +ouerer+, upper, 42/15 [[written ou{er}er]] + +ouer-hippede+, passed over, 43/19 [[written ou{er}-hipped{e}]] + + +recte+, directly, 27/20 [[in “stondes not recte”; + also on 26/31 in “recte ou{er} his hede”]] + +remayner+, remainder, 56/28 + +representithe+, represented, 39/14 [[written rep{re}sentith{e}]] + +resteth+, remains, 63/29 [[first in 57/29 and others]] + +rewarde+, regard, 48/6 [[written reward{e}]] + +rew+, row, 4/8 + +rewle+, row, 4/20, 7/12; + [[in “place of þe rewle”, “þe rewle of fig{ure}s”]] + +rewele+, 4/18; + +rewles+, rules, 5/33 + + +s.+ = scilicet, 3/8 [[in “s. Algorism{us}”]] + +sentens+, meaning, 14/29 + +signifye(tyf)+, 5/13. The last three letters are added above the + line, evidently because of the word ‘significatyf’ in l. 14. + But the ‘Solucio,’ which contained the word, has been omitted. + +sithen+, since, 33/8 + +some+, sum, result, 40/17, 32 + [[first in 36/21 in “me may see a some”, then in “the same some” + and “to some of”]] + +sowne+, pronounce, 6/29 + +singillatim+, singly, 7/25 + +spices+, species, kinds, 34/4 [[first in 5/34 and others]] + +spyl+, waste, 14/26 + +styde+, stead, 18/20 + +subtrahe+, subtract, 48/12; + _pp._ +subtrayd+, 13/21 + +sythes+, times, 21/16 + + +taȝt+, taught, 16/36 + +take+, _pp._ taken; + +t. fro+, starting from, 45/22 [[in “fro oone or tweyn{e} take”]] + +taward+, toward, 23/34 + +thouȝt+, though, 5/20 + +trebille+, multiply by three, 49/26 [[written trebill{e}]] + +twene+, two, 8/11 [[first in 4/23]] + +þow+, though, 25/15 [[in “þow þ{o}u take”]] + +þowȝt+, thought; + +be þ.+, mentally, 28/4 + +þus+ = þis, this, 20/33 [[in “þus nombur 214”]] + + +vny+, unite, 45/10 + + +wel+, wilt, 14/31 [[in “If þ{o}u wel”]] + +wete+, wit, 15/16; + +wyte+, know, 8/38; + _pr. 2 s._ +wost+, 12/38 + +wex+, become, 50/18 + +where+, whether, 29/12 + [[written wher{e} in “wher{e} in þe secunde, or”]] + +wher-thurghe+, whence, 49/15 [[written Wher-thurgh{e}]] + +worch+, work, 8/19; [[first in 7/35]] + +wrich+, 8/35; + +wyrch+, 6/19; + _imp. s._ +worch+, 15/9; [[first in 9/6]] + _pp._ +y-wroth+, 13/24 + +write+, written, 29/19; + [[first in 6/37 in “hast write”, “be write”]] + +y-write+, 16/1 + +wryrchynge+ = wyrchynge, working, 30/4 [[written wryrchyng{e}]] + +w^t+, with, 55/8 + + +y-broth+, brought, 21/18 + +ychon+, each one, 29/10 [[written ychoɳ]] + +ydo+, done, added, 9/6 + [[first in 8/37 in “haue ydo”; 9/6 in “ydo all to-ged{er}”]] + +ylke+, same, 5/12 + +y-lyech+, alike, 22/23 + +y-myȝt+, been able, 12/2 + +y-nowȝt+, enough, 15/31; + +ynovȝt+, 18/34 + +yove+, given, 45/33 + +y^t+, that, 52/8 + +y-write+, _v._ +write.+ + +y-wroth+, _v._ +worch.+ + + + * * * * * + * * * * + * * * * * + + +MARGINAL NOTES: + ++Headnotes+ have been moved to the beginning of the appropriate +paragraph. Headnotes were omitted from the two Appendixes, as sidenotes +give the same information. + ++Line Numbers+ are cited in the Index and Glossary. They have been +omitted from the e-text except in the one verse selection (App. II, +_Carmen de Algorismo_). Instead, the Index and Glossary include +supplemental information to help locate each word. + ++Numbered Notes+: + + Numbered sidenotes show page or leaf numbers from the original MSS. + In the e-text, the page number is shown as [*123b] inline; mid-word + page breaks are marked with a supplemental asterisk [*]. Numbers are + not used. + + Footnotes give textual information such as variant readings. They + have been numbered sequentially within each title, with numbers + shown as [{1}] to avoid confusion with bracked text--including + single numerals--in the original. Editorial notes are shown as [1*]. + When a footnote calls for added text, the addition is shown in the + body text with [[double brackets]]. + ++Sidenotes+ giving a running synopsis of the text have been moved to the +beginning of each paragraph, where they are shown as a single note. + + +ERRORS AND ANOMALIES (Noted by Transcriber): + +Introduction: + + dated Mij^c + [_In this and the remainder of the paragraph, the letter shown as + ^c is printed directly above the preceding j._] + +The Crafte of Nombrynge: + + sursu{m} {pr}ocedas m{u}ltiplicando + [_Italicized as shown: error for “p{ro}cedas”?_] + Sidenote: Our author makes a slip here + [_Elsewhere in the book, numerical errors are corrected in the + body text, with a footnote giving the original form._] + ten tymes so mych is þe nounb{re} + [_text unchanged: error for “as”?_] + 6 tymes 24, [{19}]þen take + [_misplaced footnote anchor in original: + belongs with “6 times 24”_] + Fn. 7: ‘Subt{ra}has a{u}t addis a dext{ri}s [_open quote missing_] + +The Art of Nombryng: + + oone of the digitis as .10. of 1.. 20. of. 2. + [_text unchanged: error for “as .10. of .1. 20. of .2.”?_] + sette a-side half of tho m{inutes} + [_text unchanged: error for “the”?_] + and. 10. as before is come therof + [_text unchanged: error for “and .10.”?_] + Sidenote: Where to set the quotiente [_spelling (1922) unchanged_] + Sidenote: Definition of Progression. [_f in “of” illegible_] + Sidenote: ... giving the value of ab.^2 [_That is, “a(b^2).”_] + +Accomptynge by counters: + + For example of the [*117a.] ly[*]nes + [_final . in sidenote missing or invisible_] + [_also in 121b, 122a] + which in the fyrst summe is 5 + [_invisible “5” supplied by transcriber_] + [*116a (_sic_).] + [_Editor’s “sic”: page numbering jumps back to 116 instead of the + expected 123, and continues from 116._] + [*123a] ... set downe y^e multiplyer .v. tymes, as here you se + [_Diagram shown as printed, with 35500 for 36500 in one column, + and apparent misplaced “thousands” marker_] + 365 (which is the nomber of dayes ... [_open ( missing_] + +The arte of nombrynge by the hande: + + for 1 the fynger is clasped in + [_In at least one printing of the text, “clasped” is misprinted + as “elasped”_] + but this teacyed me not [_text unchanged_] + +Appendix I: A Treatise on the Numeration of Algorism: + + _See Introduction and Glossary for ſ:f and þ:y errors_ + +Appendix II: Carmen de Algorismo: + + _In this selection, errors that are not explained in footnotes were + assumed to be typographic._ + + l. 99 Postea procedas [procdeas] + l. 163 Articuli digitum post in digitum mixti duc [post iu] + + + + + + +End of Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +*** END OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH *** + +***** This file should be named 25664-0.txt or 25664-0.zip ***** +This and all associated files of various formats will be found in: + http://www.gutenberg.org/2/5/6/6/25664/ + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + +Updated editions will replace the previous one--the old editions +will be renamed. + +Creating the works from public domain print editions means that no +one owns a United States copyright in these works, so the Foundation +(and you!) can copy and distribute it in the United States without +permission and without paying copyright royalties. Special rules, +set forth in the General Terms of Use part of this license, apply to +copying and distributing Project Gutenberg-tm electronic works to +protect the PROJECT GUTENBERG-tm concept and trademark. Project +Gutenberg is a registered trademark, and may not be used if you +charge for the eBooks, unless you receive specific permission. If you +do not charge anything for copies of this eBook, complying with the +rules is very easy. You may use this eBook for nearly any purpose +such as creation of derivative works, reports, performances and +research. They may be modified and printed and given away--you may do +practically ANYTHING with public domain eBooks. Redistribution is +subject to the trademark license, especially commercial +redistribution. + + + +*** START: FULL LICENSE *** + +THE FULL PROJECT GUTENBERG LICENSE +PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK + +To protect the Project Gutenberg-tm mission of promoting the free +distribution of electronic works, by using or distributing this work +(or any other work associated in any way with the phrase "Project +Gutenberg"), you agree to comply with all the terms of the Full Project +Gutenberg-tm License (available with this file or online at +http://gutenberg.org/license). + + +Section 1. General Terms of Use and Redistributing Project Gutenberg-tm +electronic works + +1.A. By reading or using any part of this Project Gutenberg-tm +electronic work, you indicate that you have read, understand, agree to +and accept all the terms of this license and intellectual property +(trademark/copyright) agreement. If you do not agree to abide by all +the terms of this agreement, you must cease using and return or destroy +all copies of Project Gutenberg-tm electronic works in your possession. +If you paid a fee for obtaining a copy of or access to a Project +Gutenberg-tm electronic work and you do not agree to be bound by the +terms of this agreement, you may obtain a refund from the person or +entity to whom you paid the fee as set forth in paragraph 1.E.8. + +1.B. "Project Gutenberg" is a registered trademark. It may only be +used on or associated in any way with an electronic work by people who +agree to be bound by the terms of this agreement. There are a few +things that you can do with most Project Gutenberg-tm electronic works +even without complying with the full terms of this agreement. See +paragraph 1.C below. There are a lot of things you can do with Project +Gutenberg-tm electronic works if you follow the terms of this agreement +and help preserve free future access to Project Gutenberg-tm electronic +works. See paragraph 1.E below. + +1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" +or PGLAF), owns a compilation copyright in the collection of Project +Gutenberg-tm electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an +individual work is in the public domain in the United States and you are +located in the United States, we do not claim a right to prevent you from +copying, distributing, performing, displaying or creating derivative +works based on the work as long as all references to Project Gutenberg +are removed. Of course, we hope that you will support the Project +Gutenberg-tm mission of promoting free access to electronic works by +freely sharing Project Gutenberg-tm works in compliance with the terms of +this agreement for keeping the Project Gutenberg-tm name associated with +the work. You can easily comply with the terms of this agreement by +keeping this work in the same format with its attached full Project +Gutenberg-tm License when you share it without charge with others. + +1.D. The copyright laws of the place where you are located also govern +what you can do with this work. Copyright laws in most countries are in +a constant state of change. If you are outside the United States, check +the laws of your country in addition to the terms of this agreement +before downloading, copying, displaying, performing, distributing or +creating derivative works based on this work or any other Project +Gutenberg-tm work. The Foundation makes no representations concerning +the copyright status of any work in any country outside the United +States. + +1.E. Unless you have removed all references to Project Gutenberg: + +1.E.1. The following sentence, with active links to, or other immediate +access to, the full Project Gutenberg-tm License must appear prominently +whenever any copy of a Project Gutenberg-tm work (any work on which the +phrase "Project Gutenberg" appears, or with which the phrase "Project +Gutenberg" is associated) is accessed, displayed, performed, viewed, +copied or distributed: + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + +1.E.2. If an individual Project Gutenberg-tm electronic work is derived +from the public domain (does not contain a notice indicating that it is +posted with permission of the copyright holder), the work can be copied +and distributed to anyone in the United States without paying any fees +or charges. If you are redistributing or providing access to a work +with the phrase "Project Gutenberg" associated with or appearing on the +work, you must comply either with the requirements of paragraphs 1.E.1 +through 1.E.7 or obtain permission for the use of the work and the +Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or +1.E.9. + +1.E.3. If an individual Project Gutenberg-tm electronic work is posted +with the permission of the copyright holder, your use and distribution +must comply with both paragraphs 1.E.1 through 1.E.7 and any additional +terms imposed by the copyright holder. Additional terms will be linked +to the Project Gutenberg-tm License for all works posted with the +permission of the copyright holder found at the beginning of this work. + +1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm +License terms from this work, or any files containing a part of this +work or any other work associated with Project Gutenberg-tm. + +1.E.5. Do not copy, display, perform, distribute or redistribute this +electronic work, or any part of this electronic work, without +prominently displaying the sentence set forth in paragraph 1.E.1 with +active links or immediate access to the full terms of the Project +Gutenberg-tm License. + +1.E.6. You may convert to and distribute this work in any binary, +compressed, marked up, nonproprietary or proprietary form, including any +word processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenberg-tm work in a format other than +"Plain Vanilla ASCII" or other format used in the official version +posted on the official Project Gutenberg-tm web site (www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original "Plain Vanilla ASCII" or other +form. Any alternate format must include the full Project Gutenberg-tm +License as specified in paragraph 1.E.1. + +1.E.7. Do not charge a fee for access to, viewing, displaying, +performing, copying or distributing any Project Gutenberg-tm works +unless you comply with paragraph 1.E.8 or 1.E.9. + +1.E.8. You may charge a reasonable fee for copies of or providing +access to or distributing Project Gutenberg-tm electronic works provided +that + +- You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenberg-tm works calculated using the method + you already use to calculate your applicable taxes. The fee is + owed to the owner of the Project Gutenberg-tm trademark, but he + has agreed to donate royalties under this paragraph to the + Project Gutenberg Literary Archive Foundation. Royalty payments + must be paid within 60 days following each date on which you + prepare (or are legally required to prepare) your periodic tax + returns. Royalty payments should be clearly marked as such and + sent to the Project Gutenberg Literary Archive Foundation at the + address specified in Section 4, "Information about donations to + the Project Gutenberg Literary Archive Foundation." + +- You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenberg-tm + License. You must require such a user to return or + destroy all copies of the works possessed in a physical medium + and discontinue all use of and all access to other copies of + Project Gutenberg-tm works. + +- You provide, in accordance with paragraph 1.F.3, a full refund of any + money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days + of receipt of the work. + +- You comply with all other terms of this agreement for free + distribution of Project Gutenberg-tm works. + +1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm +electronic work or group of works on different terms than are set +forth in this agreement, you must obtain permission in writing from +both the Project Gutenberg Literary Archive Foundation and Michael +Hart, the owner of the Project Gutenberg-tm trademark. Contact the +Foundation as set forth in Section 3 below. + +1.F. + +1.F.1. Project Gutenberg volunteers and employees expend considerable +effort to identify, do copyright research on, transcribe and proofread +public domain works in creating the Project Gutenberg-tm +collection. Despite these efforts, Project Gutenberg-tm electronic +works, and the medium on which they may be stored, may contain +"Defects," such as, but not limited to, incomplete, inaccurate or +corrupt data, transcription errors, a copyright or other intellectual +property infringement, a defective or damaged disk or other medium, a +computer virus, or computer codes that damage or cannot be read by +your equipment. + +1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right +of Replacement or Refund" described in paragraph 1.F.3, the Project +Gutenberg Literary Archive Foundation, the owner of the Project +Gutenberg-tm trademark, and any other party distributing a Project +Gutenberg-tm electronic work under this agreement, disclaim all +liability to you for damages, costs and expenses, including legal +fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT +LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE +PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE +TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE +LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR +INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH +DAMAGE. + +1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a +defect in this electronic work within 90 days of receiving it, you can +receive a refund of the money (if any) you paid for it by sending a +written explanation to the person you received the work from. If you +received the work on a physical medium, you must return the medium with +your written explanation. The person or entity that provided you with +the defective work may elect to provide a replacement copy in lieu of a +refund. If you received the work electronically, the person or entity +providing it to you may choose to give you a second opportunity to +receive the work electronically in lieu of a refund. If the second copy +is also defective, you may demand a refund in writing without further +opportunities to fix the problem. + +1.F.4. Except for the limited right of replacement or refund set forth +in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + +1.F.5. Some states do not allow disclaimers of certain implied +warranties or the exclusion or limitation of certain types of damages. +If any disclaimer or limitation set forth in this agreement violates the +law of the state applicable to this agreement, the agreement shall be +interpreted to make the maximum disclaimer or limitation permitted by +the applicable state law. The invalidity or unenforceability of any +provision of this agreement shall not void the remaining provisions. + +1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the +trademark owner, any agent or employee of the Foundation, anyone +providing copies of Project Gutenberg-tm electronic works in accordance +with this agreement, and any volunteers associated with the production, +promotion and distribution of Project Gutenberg-tm electronic works, +harmless from all liability, costs and expenses, including legal fees, +that arise directly or indirectly from any of the following which you do +or cause to occur: (a) distribution of this or any Project Gutenberg-tm +work, (b) alteration, modification, or additions or deletions to any +Project Gutenberg-tm work, and (c) any Defect you cause. + + +Section 2. Information about the Mission of Project Gutenberg-tm + +Project Gutenberg-tm is synonymous with the free distribution of +electronic works in formats readable by the widest variety of computers +including obsolete, old, middle-aged and new computers. It exists +because of the efforts of hundreds of volunteers and donations from +people in all walks of life. + +Volunteers and financial support to provide volunteers with the +assistance they need, is critical to reaching Project Gutenberg-tm's +goals and ensuring that the Project Gutenberg-tm collection will +remain freely available for generations to come. In 2001, the Project +Gutenberg Literary Archive Foundation was created to provide a secure +and permanent future for Project Gutenberg-tm and future generations. +To learn more about the Project Gutenberg Literary Archive Foundation +and how your efforts and donations can help, see Sections 3 and 4 +and the Foundation web page at http://www.pglaf.org. + + +Section 3. Information about the Project Gutenberg Literary Archive +Foundation + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the +state of Mississippi and granted tax exempt status by the Internal +Revenue Service. The Foundation's EIN or federal tax identification +number is 64-6221541. Its 501(c)(3) letter is posted at +http://pglaf.org/fundraising. Contributions to the Project Gutenberg +Literary Archive Foundation are tax deductible to the full extent +permitted by U.S. federal laws and your state's laws. + +The Foundation's principal office is located at 4557 Melan Dr. S. +Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at +809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact +information can be found at the Foundation's web site and official +page at http://pglaf.org + +For additional contact information: + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. Information about Donations to the Project Gutenberg +Literary Archive Foundation + +Project Gutenberg-tm depends upon and cannot survive without wide +spread public support and donations to carry out its mission of +increasing the number of public domain and licensed works that can be +freely distributed in machine readable form accessible by the widest +array of equipment including outdated equipment. Many small donations +($1 to $5,000) are particularly important to maintaining tax exempt +status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United +States. Compliance requirements are not uniform and it takes a +considerable effort, much paperwork and many fees to meet and keep up +with these requirements. We do not solicit donations in locations +where we have not received written confirmation of compliance. To +SEND DONATIONS or determine the status of compliance for any +particular state visit http://pglaf.org + +While we cannot and do not solicit contributions from states where we +have not met the solicitation requirements, we know of no prohibition +against accepting unsolicited donations from donors in such states who +approach us with offers to donate. + +International donations are gratefully accepted, but we cannot make +any statements concerning tax treatment of donations received from +outside the United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation +methods and addresses. Donations are accepted in a number of other +ways including checks, online payments and credit card donations. +To donate, please visit: http://pglaf.org/donate + + +Section 5. General Information About Project Gutenberg-tm electronic +works. + +Professor Michael S. Hart is the originator of the Project Gutenberg-tm +concept of a library of electronic works that could be freely shared +with anyone. For thirty years, he produced and distributed Project +Gutenberg-tm eBooks with only a loose network of volunteer support. + + +Project Gutenberg-tm eBooks are often created from several printed +editions, all of which are confirmed as Public Domain in the U.S. +unless a copyright notice is included. Thus, we do not necessarily +keep eBooks in compliance with any particular paper edition. + + +Most people start at our Web site which has the main PG search facility: + + http://www.gutenberg.org + +This Web site includes information about Project Gutenberg-tm, +including how to make donations to the Project Gutenberg Literary +Archive Foundation, how to help produce our new eBooks, and how to +subscribe to our email newsletter to hear about new eBooks. diff --git a/25664-0.zip b/25664-0.zip Binary files differnew file mode 100644 index 0000000..ed00f51 --- /dev/null +++ b/25664-0.zip diff --git a/25664-8.txt b/25664-8.txt new file mode 100644 index 0000000..21abb1e --- /dev/null +++ b/25664-8.txt @@ -0,0 +1,6591 @@ +Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + + +Title: The Earliest Arithmetics in English + +Author: Anonymous + +Editor: Robert Steele + +Release Date: June 1, 2008 [EBook #25664] + +Language: English + +Character set encoding: ISO-8859-1 + +*** START OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH *** + + + + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + + + + +[Transcriber's Note: + +This text is intended for users whose text readers cannot use the "real" +(unicode/utf-8) version of the file. Characters that could not be fully +displayed have been "unpacked" and shown in brackets: + + [gh] (yogh) + [n~], [l~l] (n with curl, crossed l: see below) + +0+ (Greek phi: see below) + +In _The Crafte of Nombrynge_, final "n" was sometimes written with an +extra curl. In this Latin-1 text it is shown as [n~]. In the same +selection, the numeral "0" was sometimes printed as the Greek letter +phi. It is shown here as +0+ rather than the usual +ph+ because the +physical form is more significant than the sound of the letter. Double +"l" with a line is shown as [l~l]. The first few occurrences of "d" +(for "pence") were printed with a decorative curl. The letter is shown +with the same "d" used in the remainder of the text. + +The word "withdraw" or "w{i}t{h}draw" was inconsistently hyphenated; +it was left as printed, and line-end hyphens were retained. +Superscripts are shown with carets as ^e. Except for [Illustration] +markers and similar, and the letters noted above, all brackets are in +the original. + +Individual letters were italicized to show expanded abbreviations; these +are shown in br{ac}es. Other italicized words are shown conventionally +with _lines_, boldface with +marks+. When a footnote called for added +text, the addition is shown in the body text with [[double brackets]]. + +The original text contained at least five types of marginal note. +Details are given at the end of the e-text, followed by a listing of +typographical errors.] + + + * * * * * + * * * * + * * * * * + + + The Earliest Arithmetics + in English + + + Early English Text Society. + + Extra Series, No. CXVIII. + + 1922 (for 1916). + + + + + THE EARLIEST ARITHMETICS + IN ENGLISH + + Edited With Introduction + + by + + ROBERT STEELE + + London: + Published for the Early English Text Society + By Humphrey Milford, Oxford University Press, + Amen Corner, E.C. 4. + 1922. + + + + + [Titles (list added by transcriber): + + The Crafte of Nombrynge + The Art of Nombryng + Accomptynge by Counters + The arte of nombrynge by the hande + APP. I. A Treatise on the Numeration of Algorism + APP. II. Carmen de Algorismo] + + + + +INTRODUCTION + + +The number of English arithmetics before the sixteenth century is very +small. This is hardly to be wondered at, as no one requiring to use even +the simplest operations of the art up to the middle of the fifteenth +century was likely to be ignorant of Latin, in which language there were +several treatises in a considerable number of manuscripts, as shown by +the quantity of them still in existence. Until modern commerce was +fairly well established, few persons required more arithmetic than +addition and subtraction, and even in the thirteenth century, scientific +treatises addressed to advanced students contemplated the likelihood of +their not being able to do simple division. On the other hand, the study +of astronomy necessitated, from its earliest days as a science, +considerable skill and accuracy in computation, not only in the +calculation of astronomical tables but in their use, aknowledge of +which latter was fairly common from the thirteenth to the sixteenth +centuries. + +The arithmetics in English known to me are:-- + + (1) Bodl. 790 G. VII. (2653) f. 146-154 (15th c.) _inc._ "Of angrym + ther be IX figures in numbray..." Amere unfinished fragment, + only getting as far as Duplation. + + (2) Camb. Univ. LI. IV. 14 (III.) f. 121-142 (15th c.) _inc._ + "Al maner of thyngis that prosedeth ffro the frist begynnyng..." + + (3) Fragmentary passages or diagrams in Sloane 213 f.120-3 + (afourteenth-century counting board), Egerton 2852 f.5-13, + Harl. 218 f.147 and + + (4) The two MSS. here printed; Eg. 2622 f.136 and Ashmole 396 + f.48. All of these, as the language shows, are of the fifteenth + century. + +The CRAFTE OF NOMBRYNGE is one of a large number of scientific +treatises, mostly in Latin, bound up together as Egerton MS. 2622 in +the British Museum Library. It measures 7"נ5", 29-30 lines to the +page, in a rough hand. The English is N.E. Midland in dialect. It is a +translation and amplification of one of the numerous glosses on the _de +algorismo_ of Alexander de Villa Dei (c. 1220), such as that of Thomas +of Newmarket contained in the British Museum MS. Reg. 12, E.1. +Afragment of another translation of the same gloss was printed by +Halliwell in his _Rara Mathematica_ (1835) p.29.[1*] It corresponds, as +far as p.71, l.2, roughly to p.3 of our version, and from thence to +the end p.2, ll.16-40. + + [Footnote 1*: Halliwell printed the two sides of his leaf in the + wrong order. This and some obvious errors of transcription-- + 'ferye' for 'ferthe,' 'lest' for 'left,' etc., have not been + corrected in the reprint on pp.70-71.] + +The ART OF NOMBRYNG is one of the treatises bound up in the Bodleian MS. +Ashmole 396. It measures 11"נ17", and is written with thirty-three +lines to the page in a fifteenth century hand. It is a translation, +rather literal, with amplifications of the _de arte numerandi_ +attributed to John of Holywood (Sacrobosco) and the translator had +obviously a poor MS. before him. The _de arte numerandi_ was printed in +1488, 1490 (_s.n._), 1501, 1503, 1510, 1517, 1521, 1522, 1523, 1582, and +by Halliwell separately and in his two editions of _Rara Mathematica_, +1839 and 1841, and reprinted by Curze in 1897. + +Both these tracts are here printed for the first time, but the first +having been circulated in proof a number of years ago, in an endeavour +to discover other manuscripts or parts of manuscripts of it, Dr. David +Eugene Smith, misunderstanding the position, printed some pages in a +curious transcript with four facsimiles in the _Archiv fr die +Geschichte der Naturwissenschaften und der Technik_, 1909, and invited +the scientific world to take up the "not unpleasant task" of editingit. + +ACCOMPTYNGE BY COUNTERS is reprinted from the 1543 edition of Robert +Record's Arithmetic, printed by R.Wolfe. It has been reprinted within +the last few years by Mr. F.P. Barnard, in his work on Casting +Counters. It is the earliest English treatise we have on this variety of +the Abacus (there are Latin ones of the end of the fifteenth century), +but there is little doubt in my mind that this method of performing the +simple operations of arithmetic is much older than any of the pen +methods. At the end of the treatise there follows a note on merchants' +and auditors' ways of setting down sums, and lastly, asystem of digital +numeration which seems of great antiquity and almost world-wide +extension. + +After the fragment already referred to, Iprint as an appendix the +'Carmen de Algorismo' of Alexander de Villa Dei in an enlarged and +corrected form. It was printed for the first time by Halliwell in +_Rara Mathemathica_, but I have added a number of stanzas from various +manuscripts, selecting various readings on the principle that the verses +were made to scan, aided by the advice of my friend Mr. Vernon Rendall, +who is not responsible for the few doubtful lines I have conserved. This +poem is at the base of all other treatises on the subject in medieval +times, but I am unable to indicate its sources. + + +THE SUBJECT MATTER. + +Ancient and medieval writers observed a distinction between the Science +and the Art of Arithmetic. The classical treatises on the subject, those +of Euclid among the Greeks and Boethius among the Latins, are devoted to +the Science of Arithmetic, but it is obvious that coeval with practical +Astronomy the Art of Calculation must have existed and have made +considerable progress. If early treatises on this art existed at all +they must, almost of necessity, have been in Greek, which was the +language of science for the Romans as long as Latin civilisation +existed. But in their absence it is safe to say that no involved +operations were or could have been carried out by means of the +alphabetic notation of the Greeks and Romans. Specimen sums have indeed +been constructed by moderns which show its possibility, but it is absurd +to think that men of science, acquainted with Egyptian methods and in +possession of the abacus,[2*] were unable to devise methods for its use. + + [Footnote 2*: For Egyptian use see Herodotus, ii.36, Plato, _de + Legibus_, VII.] + + +THE PRE-MEDIEVAL INSTRUMENTS USED IN CALCULATION. + +The following are known:-- + +(1) A flat polished surface or tablets, strewn with sand, on which +figures were inscribed with a stylus. + +(2) A polished tablet divided longitudinally into nine columns (or more) +grouped in threes, with which counters were used, either plain or marked +with signs denoting the nine numerals, etc. + +(3) Tablets or boxes containing nine grooves or wires, in or on which +ran beads. + +(4) Tablets on which nine (or more) horizontal lines were marked, each +third being marked off. + +The only Greek counting board we have is of the fourth class and was +discovered at Salamis. It was engraved on a block of marble, and +measures 5 feet by 2. Its chief part consists of eleven parallel lines, +the 3rd, 6th, and 9th being marked with a cross. Another section +consists of five parallel lines, and there are three rows of +arithmetical symbols. This board could only have been used with counters +(_calculi_), preferably unmarked, as in our treatise of _Accomptynge by +Counters_. + + +CLASSICAL ROMAN METHODS OF CALCULATION. + +We have proof of two methods of calculation in ancient Rome, one by the +first method, in which the surface of sand was divided into columns by a +stylus or the hand. Counters (_calculi_, or _lapilli_), which were kept +in boxes (_loculi_), were used in calculation, as we learn from Horace's +schoolboys (Sat.1. vi. 74). For the sand see Persius I.131, "Nec qui +abaco numeros et secto in pulvere metas scit risisse," Apul. Apolog. 16 +(pulvisculo), Mart. Capella, lib. vii. 3,4, etc. Cicero says of an +expert calculator "eruditum attigisse pulverem," (de nat. Deorum, +ii.18). Tertullian calls a teacher of arithmetic "primus numerorum +arenarius" (de Pallio, _in fine_). The counters were made of various +materials, ivory principally, "Adeo nulla uncia nobis est eboris, etc." +(Juv. XI. 131), sometimes of precious metals, "Pro calculis albis et +nigris aureos argenteosque habebat denarios" (Pet. Arb. Satyricon,33). + +There are, however, still in existence four Roman counting boards of a +kind which does not appear to come into literature. Atypical one is of +the third class. It consists of a number of transverse wires, broken at +the middle. On the left hand portion four beads are strung, on the right +one (or two). The left hand beads signify units, the right hand one five +units. Thus any number up to nine can be represented. This instrument is +in all essentials the same as the Swanpan or Abacus in use throughout +the Far East. The Russian stchota in use throughout Eastern Europe is +simpler still. The method of using this system is exactly the same as +that of _Accomptynge by Counters_, the right-hand five bead replacing +the counter between the lines. + + +THE BOETHIAN ABACUS. + +Between classical times and the tenth century we have little or no +guidance as to the art of calculation. Boethius (fifth century), at the +end of lib.II. of his _Geometria_ gives us a figure of an abacus of the +second class with a set of counters arranged within it. It has, however, +been contended with great probability that the whole passage is a tenth +century interpolation. As no rules are given for its use, the chief +value of the figure is that it gives the signs of the nine numbers, +known as the Boethian "apices" or "notae" (from whence our word +"notation"). To these we shall return lateron. + + +THE ABACISTS. + +It would seem probable that writers on the calendar like Bede (A.D. 721) +and Helpericus (A.D. 903) were able to perform simple calculations; +though we are unable to guess their methods, and for the most part they +were dependent on tables taken from Greek sources. We have no early +medieval treatises on arithmetic, till towards the end of the tenth +century we find a revival of the study of science, centring for us round +the name of Gerbert, who became Pope as SylvesterII. in 999. His +treatise on the use of the Abacus was written (c.980) to a friend +Constantine, and was first printed among the works of Bede in the Basle +(1563) edition of his works, I.159, in a somewhat enlarged form. +Another tenth century treatise is that of Abbo of Fleury (c.988), +preserved in several manuscripts. Very few treatises on the use of the +Abacus can be certainly ascribed to the eleventh century, but from the +beginning of the twelfth century their numbers increase rapidly, to +judge by those that have been preserved. + +The Abacists used a permanent board usually divided into twelve columns; +the columns were grouped in threes, each column being called an "arcus," +and the value of a figure in it represented a tenth of what it would +have in the column to the left, as in our arithmetic of position. With +this board counters or jetons were used, either plain or, more probably, +marked with numerical signs, which with the early Abacists were the +"apices," though counters from classical times were sometimes marked on +one side with the digital signs, on the other with Roman numerals. Two +ivory discs of this kind from the Hamilton collection may be seen at the +British Museum. Gerbert is said by Richer to have made for the purpose +of computation a thousand counters of horn; the usual number of a set of +counters in the sixteenth and seventeenth centuries was a hundred. + +Treatises on the Abacus usually consist of chapters on Numeration +explaining the notation, and on the rules for Multiplication and +Division. Addition, as far as it required any rules, came naturally +under Multiplication, while Subtraction was involved in the process of +Division. These rules were all that were needed in Western Europe in +centuries when commerce hardly existed, and astronomy was unpractised, +and even they were only required in the preparation of the calendar and +the assignments of the royal exchequer. In England, for example, when +the hide developed from the normal holding of a household into the unit +of taxation, the calculation of the geldage in each shire required a sum +in division; as we know from the fact that one of the Abacists proposes +the sum: "If 200 marks are levied on the county of Essex, which contains +according to Hugh of Bocland 2500 hides, how much does each hide +pay?"[3*] Exchequer methods up to the sixteenth century were founded on +the abacus, though when we have details later on, adifferent and +simpler form was used. + + [Footnote 3*: See on this Dr. Poole, _The Exchequer in the Twelfth + Century_, Chap. III., and Haskins, _Eng. Hist. Review_, 27, 101. + The hidage of Essex in 1130 was 2364 hides.] + +The great difficulty of the early Abacists, owing to the absence of a +figure representing zero, was to place their results and operations in +the proper columns of the abacus, especially when doing a division sum. +The chief differences noticeable in their works are in the methods for +this rule. Division was either done directly or by means of differences +between the divisor and the next higher multiple of ten to the divisor. +Later Abacists made a distinction between "iron" and "golden" methods of +division. The following are examples taken from a twelfth century +treatise. In following the operations it must be remembered that a +figure asterisked represents a counter taken from the board. Azero is +obviously not needed, and the result may be written down in words. + +(_a_) MULTIPLICATION. 4600 נ23. + + +-----------+-----------+ + | Thousands | | + +---+---+---+---+---+---+ + | H | T | U | H | T | U | + | u | e | n | u | e | n | + | n | n | i | n | n | i | + | d | s | t | d | s | t | + | r | | s | r | | s | + | e | | | e | | | + | d | | | d | | | + | s | | | s | | | + +---+---+---+---+---+---+ + | | | 4 | 6 | | | +Multiplicand.+ + +---+---+---+---+---+---+ + | | | 1 | 8 | | | 600נ3. + | | 1 | 2 | | | | 4000נ3. + | | 1 | 2 | | | | 600 20. + | | 8 | | | | | 4000 20. + +---+---+---+---+---+---+ + | 1 | | 5 | 8 | | | Total product. + +---+---+---+---+---+---+ + | | | | | 2 | 3 | +Multiplier.+ + +---+---+---+---+---+---+ + +(_b_) DIVISION: DIRECT. 100,000 20,023. Here each counter in turn is a +separate divisor. + + +-----------+-----------+ + | Thousands | | + +---+---+---+---+---+---+ + | H.| T.| U.| H.| T.| U.| + +---+---+---+---+---+---+ + | | 2 | | | 2 | 3 | +Divisors.+ + +---+---+---+---+---+---+ + | | 2 | | | | | Place greatest divisor to right of dividend. + | 1 | | | | | | +Dividend.+ + | | 2 | | | | | Remainder. + | | | | 1 | | | + | | 1 | 9 | 9 | | | Another form of same. + | | | | | 8 | | Product of 1st Quotient and20. + +---+---+---+---+---+---+ + | | 1 | 9 | 9 | 2 | | Remainder. + | | | | | 1 | 2 | Product of 1st Quotient and3. + +---+---+---+---+---+---+ + | | 1 | 9 | 9 | | 8 | +Final remainder.+ + | | | | | | 4 | Quotient. + +---+---+---+---+---+---+ + +(_c_) DIVISION BY DIFFERENCES. 900 8. Here we divide by (10-2). + + +---+---+---+-----+---+---+ + | | | | H. | T.| U.| + +---+---+---+-----+---+---+ + | | | | | | 2 | Difference. + | | | | | | 8 | Divisor. + +---+---+---+-----+---+---+ + | | | |[4*]9| | | +Dividend.+ + | | | |[4*]1| 8 | | Product of difference by 1st Quotient (9). + | | | | | 2 | | Product of difference by 2nd Quotient (1). + +---+---+---+-----+---+---+ + | | | |[4*]1| | | Sum of 8 and2. + | | | | | 2 | | Product of difference by 3rd Quotient (1). + | | | | | | 4 | Product of difference by 4th Quot. (2). + | | | | | | | +Remainder.+ + +---+---+---+-----+---+---+ + | | | | | | 2 | 4th Quotient. + | | | | | 1 | | 3rd Quotient. + | | | | | 1 | | 2nd Quotient. + | | | | | 9 | | 1st Quotient. + +---+---+---+-----+---+---+ + | | | | 1 | 1 | 2 | +Quotient.+ (+Total of all four.+) + +---+---+---+-----+---+---+ + + [Footnote 4*: These figures are removed at the next step.] + +DIVISION. 7800 166. + + +---------------+---------------+ + | Thousands | | + +----+----+-----+-----+----+----+ + | H. | T. | U. | H. | T. | U. | + +----+----+-----+-----+----+----+ + | | | | | 3 | 4 | Differences (making 200 trial + | | | | | | | divisor). + | | | | 1 | 6 | 6 | Divisors. + +----+----+-----+-----+----+----+ + | | |[4*]7| 8 | | | +Dividends.+ + | | | 1 | | | | Remainder of greatest dividend. + | | | | 1 | 2 | | Product of 1st difference (4) + | | | | | | | by 1st Quotient (3). + | | | | 9 | | | Product of 2nd difference (3) + | | | | | | | by 1st Quotient (3). + +----+----+-----+-----+----+----+ + | | |[4*]2| 8 | 2 | | New dividends. + | | | | 3 | 4 | | Product of 1st and 2nd difference + | | | | | | | by 2nd Quotient (1). + +----+----+-----+-----+----+----+ + | | |[4*]1| 1 | 6 | | New dividends. + | | | | | 2 | | Product of 1st difference by + | | | | | | | 3rd Quotient (5). + | | | | 1 | 5 | | Product of 2nd difference by + | | | | | | | 3rd Quotient (5). + +----+----+-----+-----+----+----+ + | | | |[4*]3| 3 | | New dividends. + | | | | 1 | | | Remainder of greatest dividend. + | | | | | 3 | 4 | Product of 1st and 2nd difference + | | | | | | | by 4th Quotient (1). + +----+----+-----+-----+----+----+ + | | | | 1 | 6 | 4 | +Remainder+ (less than divisor). + | | | | | | 1 | 4th Quotient. + | | | | | | 5 | 3rd Quotient. + | | | | | 1 | | 2nd Quotient. + | | | | | 3 | | 1st Quotient. + +----+----+-----+-----+----+----+ + | | | | | 4 | 6 | +Quotient.+ + +----+----+-----+-----+----+----+ + + [Footnote 4*: These figures are removed at the next step.] + +DIVISION. 8000 606. + + +-------------+-----------+ + | Thousands | | + +---+---+-----+---+---+---+ + | H.| T.| U. | H.| T.| U.| + +---+---+-----+---+---+---+ + | | | | | 9 | | Difference (making 700 trial divisor). + | | | | | | 4 | Difference. + | | | | 6 | | 6 | Divisors. + +---+---+-----+---+---+---+ + | | |[4*]8| | | | +Dividend.+ + | | | 1 | | | | Remainder of dividend. + | | | | 9 | 4 | | Product of difference 1 and 2 with + | | | | | | | 1st Quotient (1). + +---+---+-----+---+---+---+ + | | |[4*]1| 9 | 4 | | New dividends. + | | | | 3 | | | Remainder of greatest dividend. + | | | | | 9 | 4 | Product of difference 1 and 2 with 2nd + | | | | | | | Quotient (1). + +---+---+-----+---+---+---+ + | | |[4*]1| 3 | 3 | 4 | New dividends. + | | | | 3 | | | Remainder of greatest dividend. + | | | | | 9 | 4 | Product of difference 1 and 2 with 3rd + | | | | | | | Quotient (1). + +---+---+-----+---+---+---+ + | | | | 7 | 2 | 8 | New dividends. + | | | | 6 | | 6 | Product of divisors by 4th Quotient (1). + +---+---+-----+---+---+---+ + | | | | 1 | 2 | 2 | +Remainder.+ + | | | | | | 1 | 4th Quotient. + | | | | | | 1 | 3rd Quotient. + | | | | | | 1 | 2nd Quotient. + | | | | | 1 | | 1st Quotient. + +---+---+-----+---+---+---+ + | | | | | 1 | 3 | +Quotient.+ + +---+---+-----+---+---+---+ + + [Footnote 4*: These figures are removed at the next step.] + +The chief Abacists are Gerbert (tenth century), Abbo, and Hermannus +Contractus (1054), who are credited with the revival of the art, +Bernelinus, Gerland, and Radulphus of Laon (twelfth century). We know as +English Abacists, Robert, bishop of Hereford, 1095, "abacum et lunarem +compotum et celestium cursum astrorum rimatus," Turchillus Compotista +(Thurkil), and through him of Guilielmus R.... "the best of living +computers," Gislebert, and Simonus de Rotellis (Simon of the Rolls). +They flourished most probably in the first quarter of the twelfth +century, as Thurkil's treatise deals also with fractions. Walcher of +Durham, Thomas of York, and Samson of Worcester are also known as +Abacists. + +Finally, the term Abacists came to be applied to computers by manual +arithmetic. AMS. Algorithm of the thirteenth century (Sl. 3281, +f.6,b), contains the following passage: "Est et alius modus secundum +operatores sive practicos, quorum unus appellatur Abacus; et modus ejus +est in computando per digitos et junctura manuum, et iste utitur ultra +Alpes." + +In a composite treatise containing tracts written A.D. 1157 and 1208, on +the calendar, the abacus, the manual calendar and the manual abacus, we +have a number of the methods preserved. As an example we give the rule +for multiplication (Claud. A. IV., f. 54 vo). "Si numerus multiplicat +alium numerum auferatur differentia majoris a minore, et per residuum +multiplicetur articulus, et una differentia per aliam, et summa +proveniet." Example, 8נ7. The difference of 8 is 2, of 7 is 3, the +next article being 10; 7-2 is5. 5נ10 = 50; 2נ3 = 6. 50+6 = 56 +answer. The rule will hold in such cases as 17נ15 where the article +next higher is the same for both, _i.e._, 20; but in such a case as +17נ9 the difference for each number must be taken from the higher +article, _i.e._, the difference of 9 will be11. + + +THE ALGORISTS. + +Algorism (augrim, augrym, algram, agram, algorithm), owes its name to +the accident that the first arithmetical treatise translated from the +Arabic happened to be one written by Al-Khowarazmi in the early ninth +century, "de numeris Indorum," beginning in its Latin form "Dixit +Algorismi...." The translation, of which only one MS. is known, was +made about 1120 by Adelard of Bath, who also wrote on the Abacus and +translated with a commentary Euclid from the Arabic. It is probable that +another version was made by Gerard of Cremona (1114-1187); the number of +important works that were not translated more than once from the Arabic +decreases every year with our knowledge of medieval texts. Afew lines +of this translation, as copied by Halliwell, are given on p.72, note2. +Another translation still seems to have been made by Johannes +Hispalensis. + +Algorism is distinguished from Abacist computation by recognising seven +rules, Addition, Subtraction, Duplation, Mediation, Multiplication, +Division, and Extraction of Roots, to which were afterwards added +Numeration and Progression. It is further distinguished by the use of +the zero, which enabled the computer to dispense with the columns of the +Abacus. It obviously employs a board with fine sand or wax, and later, +as a substitute, paper or parchment; slate and pencil were also used in +the fourteenth century, how much earlier is unknown.[5*] Algorism +quickly ousted the Abacus methods for all intricate calculations, being +simpler and more easily checked: in fact, the astronomical revival of +the twelfth and thirteenth centuries would have been impossible without +its aid. + + [Footnote 5*: Slates are mentioned by Chaucer, and soon after + (1410) Prosdocimo de Beldamandi speaks of the use of a "lapis" + for making notes on by calculators.] + +The number of Latin Algorisms still in manuscript is comparatively +large, but we are here only concerned with two--an Algorism in prose +attributed to Sacrobosco (John of Holywood) in the colophon of a Paris +manuscript, though this attribution is no longer regarded as conclusive, +and another in verse, most probably by Alexander de Villedieu (Villa +Dei). Alexander, who died in 1240, was teaching in Paris in 1209. His +verse treatise on the Calendar is dated 1200, and it is to that period +that his Algorism may be attributed; Sacrobosco died in 1256 and quotes +the verse Algorism. Several commentaries on Alexander's verse treatise +were composed, from one of which our first tractate was translated, and +the text itself was from time to time enlarged, sections on proofs and +on mental arithmetic being added. We have no indication of the source on +which Alexander drew; it was most likely one of the translations of +Al-Khowarasmi, but he has also the Abacists in mind, as shewn by +preserving the use of differences in multiplication. His treatise, first +printed by Halliwell-Phillipps in his _Rara Mathematica_, is adapted for +use on a board covered with sand, amethod almost universal in the +thirteenth century, as some passages in the algorism of that period +already quoted show: "Est et alius modus qui utitur apud Indos, et +doctor hujusmodi ipsos erat quidem nomine Algus. Et modus suus erat in +computando per quasdam figuras scribendo in pulvere...." "Si +voluerimus depingere in pulvere predictos digitos secundum consuetudinem +algorismi..." "et sciendum est quod in nullo loco minutorum sive +secundorum ... in pulvere debent scribi plusquam sexaginta." + + +MODERN ARITHMETIC. + +Modern Arithmetic begins with Leonardi Fibonacci's treatise "de Abaco," +written in 1202 and re-written in 1228. It is modern rather in the range +of its problems and the methods of attack than in mere methods of +calculation, which are of its period. Its sole interest as regards the +present work is that Leonardi makes use of the digital signs described +in Record's treatise on _The arte of nombrynge by the hand_ in mental +arithmetic, calling it "modus Indorum." Leonardo also introduces the +method of proof by "casting out the nines." + + +DIGITAL ARITHMETIC. + +The method of indicating numbers by means of the fingers is of +considerable age. The British Museum possesses two ivory counters marked +on one side by carelessly scratched Roman numerals IIIV and VIIII, and +on the other by carefully engraved digital signs for 8 and9. Sixteen +seems to have been the number of a complete set. These counters were +either used in games or for the counting board, and the Museum ones, +coming from the Hamilton collection, are undoubtedly not later than the +first century. Frohner has published in the _Zeitschrift des Mnchener +Alterthumsvereins_ a set, almost complete, of them with a Byzantine +treatise; aLatin treatise is printed among Bede's works. The use of +this method is universal through the East, and a variety of it is found +among many of the native races in Africa. In medieval Europe it was +almost restricted to Italy and the Mediterranean basin, and in the +treatise already quoted (Sloane 3281) it is even called the Abacus, +perhaps a memory of Fibonacci's work. + +Methods of calculation by means of these signs undoubtedly have existed, +but they were too involved and liable to error to be much used. + + +THE USE OF "ARABIC" FIGURES. + +It may now be regarded as proved by Bubnov that our present numerals are +derived from Greek sources through the so-called Boethian "apices," +which are first found in late tenth century manuscripts. That they were +not derived directly from the Arabic seems certain from the different +shapes of some of the numerals, especially the 0, which stands for 5 in +Arabic. Another Greek form existed, which was introduced into Europe by +John of Basingstoke in the thirteenth century, and is figured by Matthew +Paris (V. 285); but this form had no success. The date of the +introduction of the zero has been hotly debated, but it seems obvious +that the twelfth century Latin translators from the Arabic were +perfectly well acquainted with the system they met in their Arabic text, +while the earliest astronomical tables of the thirteenth century I have +seen use numbers of European and not Arabic origin. The fact that Latin +writers had a convenient way of writing hundreds and thousands without +any cyphers probably delayed the general use of the Arabic notation. +Dr. Hill has published a very complete survey of the various forms +of numerals in Europe. They began to be common at the middle of the +thirteenth century and a very interesting set of family notes concerning +births in a British Museum manuscript, Harl. 4350 shows their extension. +The first is dated Mij^c. lviii., the second Mij^c. lxi., the third +Mij^c. 63, the fourth 1264, and the fifth 1266. Another example is given +in a set of astronomical tables for 1269 in a manuscript of Roger +Bacon's works, where the scribe began to write MCC6. and crossed out +the figures, substituting the "Arabic" form. + + +THE COUNTING BOARD. + +The treatise on pp. 52-65 is the only one in English known on the +subject. It describes a method of calculation which, with slight +modifications, is current in Russia, China, and Japan, to-day, though it +went out of use in Western Europe by the seventeenth century. In Germany +the method is called "Algorithmus Linealis," and there are several +editions of a tract under this name (with a diagram of the counting +board), printed at Leipsic at the end of the fifteenth century and the +beginning of the sixteenth. They give the nine rules, but "Capitulum de +radicum extractione ad algoritmum integrorum reservato, cujus species +per ciffrales figuras ostenduntur ubi ad plenum de hac tractabitur." The +invention of the art is there attributed to Appulegius the philosopher. + +The advantage of the counting board, whether permanent or constructed by +chalking parallel lines on a table, as shown in some sixteenth-century +woodcuts, is that only five counters are needed to indicate the number +nine, counters on the lines representing units, and those in the spaces +above representing five times those on the line below. The Russian +abacus, the "tchatui" or "stchota" has ten beads on the line; the +Chinese and Japanese "Swanpan" economises by dividing the line into two +parts, the beads on one side representing five times the value of those +on the other. The "Swanpan" has usually many more lines than the +"stchota," allowing for more extended calculations, see Tylor, +_Anthropology_ (1892), p.314. + +Record's treatise also mentions another method of counter notation +(p.64) "merchants' casting" and "auditors' casting." These were adapted +for the usual English method of reckoning numbers up to 200 by scores. +This method seems to have been used in the Exchequer. Acounting board +for merchants' use is printed by Halliwell in _Rara Mathematica_ (p.72) +from Sloane MS. 213, and two others are figured in Egerton 2622 f.82 +and f.83. The latter is said to be "novus modus computandi secundum +inventionem Magistri Thome Thorleby," and is in principle, the same as +the "Swanpan." + +The Exchequer table is described in the _Dialogus de Scaccario_ (Oxford, +1902), p.38. + + + + ++The Earliest Arithmetics in English.+ + + + + ++The Crafte of Nombrynge+ + +_Egerton 2622._ + + + [*leaf 136a] + + Hec algorism{us} ars p{re}sens dicit{ur}; in qua + Talib{us} indor{um} fruim{ur} bis qui{n}q{ue} figuris. + + [Sidenote: A derivation of Algorism. Another derivation of the word.] + +This boke is called e boke of algorym, or Augrym aft{er} lewd{er} vse. +And is boke tretys e Craft of Nombryng, e quych crafte is called also +Algorym. Ther was a kyng of Inde, e quich heyth Algor, &he made is +craft. And aft{er} his name he called hit algory{m}; or els ano{er} +cause is quy it is called Algorym, for e latyn word of hit s. +Algorism{us} com{es} of Algos, grece, q{uid} e{st} ars, latine, craft +o[n~] englis, and rides, q{uid} e{st} {nu}me{rus}, latine, Anomb{ur} +o[n~] englys, inde d{icitu}r Algorism{us} p{er} addic{i}one{m} hui{us} +sillabe m{us} & subtracc{i}onem d & e, q{ua}si ars num{er}andi. +fforthermor{e} [gh]e most vnd{ir}stonde {a}t in is craft ben vsid +teen figurys, as here ben{e} writen for ensampul, +0+9 8 7 6 5 4 3 2 1. +Expone e too v{er}sus afor{e}: this p{re}sent craft ys called +Algorism{us}, in e quych we vse teen signys of Inde. Questio. Why +te[n~] fyguris of Inde? Solucio. for as I haue sayd afore ai wer{e} +fonde fyrst in Inde of a kyng{e} of at Cuntre, {a}t was called Algor. + + [Headnote: Notation and Numeration.] + + [Sidenote: v{ersus} [in margin].] + + Prima sig{nifica}t unu{m}; duo ve{r}o s{e}c{un}da: + Tercia sig{nifica}t tria; sic procede sinistre. + Don{e}c ad extrema{m} venias, que cifra voca{tur}. + + ++ Cap{itulu}m primum de significac{i}o{n}e figurar{um}.+ + + [Sidenote: Expo{sitio} v{ersus}.] + [Sidenote: The meaning and place of the figures. Which figure is + read first.] + +In is verse is notifide e significac{i}on of ese figur{is}. And us +expone the verse. e first signifiyth on{e}, e secu{n}de [*leaf 136b] +signi[*]fiyth tweyn{e}, e thryd signifiyth thre, &the fourte +signifiyth4. And so forthe towarde e lyft syde of e tabul or of e +boke {a}t e figures ben{e} writen{e} in, til at {o}u come to the +last figure, {a}t is called a cifre. Questio. In quych syde sittes e +first figur{e}? Soluc{io}, forsothe loke quich figure is first in e +ry[gh]t side of e bok or of e tabul, &{a}t same is e first +figur{e}, for {o}u schal write bakeward, as here, 3. 2. 6. 4. 1. 2. 5. +The fig{ur}e of 5. was first write, &he is e first, for he sittes +o[n~] e ri[gh]t syde. And the fig{ur}e of 3 is last. Neu{er}-e-les +wen he says P{ri}ma sig{nifica}t vnu{m} &c., at is to say, e first +betokenes on{e}, e secu{n}de. 2. & fore-{er}-mor{e}, he vnd{ir}stondes +no[gh]t of e first fig{ur}e of eu{er}y rew. But he vnd{ir}stondes e +first figure {a}t is in e nomb{ur} of e forsayd teen figuris, e +quych is on{e} of {e}se. 1. And e secu{n}de 2. & so forth. + + [Sidenote: v{ersus} [in margin].] + + Quelib{et} illar{um} si pr{im}o limite ponas, + Simplicite{r} se significat: si v{er}o se{cun}do, + Se decies: sursu{m} {pr}ocedas m{u}ltiplicando. + Na{m}q{ue} figura seque{n}s q{uam}uis signat decies pl{us}. + Ipsa locata loco quam sign{ific}at p{ertin}ente. + + [Transcriber's Note: + + In the following section, numerals shown in +marks+ were printed in + a different font, possibly as facsimiles of the original MS form.] + + [Sidenote: Expo{sitio} [in margin].] + [Sidenote: An explanation of the principles of notation. An example: + units, tens, hundreds, thousands. How to read the number.] + +Expone is v{er}se us. Eu{er}y of ese figuris bitokens hym selfe & +no mor{e}, yf he stonde in e first place of e rewele / this worde +Simplicit{er} in at verse it is no more to say but at, & no mor{e}. +If it stonde in the secu{n}de place of e rewle, he betokens ten{e} +tymes hym selfe, as is figur{e} 2 here 20 tokens ten tyme hym selfe, +[*leaf 137a] at is twenty, for he hym selfe betokenes twey{ne}, &ten +tymes twene is twenty. And for he stondis o[n~] e lyft side & in e +secu{n}de place, he betokens ten tyme hy{m} selfe. And so go forth. +ffor eu{er}y fig{ure}, &he stonde aft{ur} a-no{er} toward the lyft +side, he schal betoken{e} ten tymes as mich mor{e} as he schul betoken & +he stode in e place {ere} at e fig{ure} a-for{e} hym stondes. loo an +ensampull{e}. 9. 6. 3. 4. e fig{ure} of 4. {a}t hase is schape +4.+ +betokens bot hymselfe, for he stondes in e first place. The fig{ure} of +3. at hase is schape +3.+ betokens ten tymes mor{e} en he schuld & he +stode {ere} {a}t e fig{ure} of 4. stondes, {a}t is thretty. The +fig{ure} of 6, {a}t hase is schape +6+, betokens ten tymes mor{e} an +he schuld & he stode {ere} as e fig{ure} of +3.+ stondes, for {ere} +he schuld tokyn{e} bot sexty, &now he betokens ten tymes mor{e}, at is +sex hundryth. The fig{ure} of 9. {a}t hase is schape +9.+ betokens ten +tymes mor{e} an{e} he schuld & he stode in e place {ere} e fig{ure} +of sex stondes, for en he schuld betoken to 9. hundryth, and in e +place {ere} he stondes now he betokens 9. ousande. Al e hole nomb{ur} +is 9 thousande sex hundryth & four{e} & thretty. fforthermor{e}, when +{o}u schalt rede a nomb{ur} of fig{ure}, {o}u schalt begyn{e} at e +last fig{ure} in the lyft side, &rede so forth to e ri[gh]t side as +her{e} 9.6. 3.4. Thou schal begyn to rede at e fig{ure} of 9. & rede +forth us.9. [*leaf 137b] thousand sex hundryth thritty & foure. But +when {o}u schall{e} write, {o}u schalt be-gynne to write at e ry[gh]t +side. + + Nil cifra sig{nifica}t s{ed} dat signa{re} sequenti. + + [Sidenote: The meaning and use of the cipher.] + +Expone is v{er}se. Acifre tokens no[gh]t, bot he makes e fig{ure} to +betoken at comes aft{ur} hym mor{e} an he schuld & he wer{e} away, as +us 1+0+. her{e} e fig{ure} of on{e} tokens ten, &yf e cifre wer{e} +away[{1}] & no fig{ure} by-for{e} hym he schuld token bot on{e}, for +an he sch{ul}d stonde in e first place. And e cifre tokens nothyng +hym selfe. for al e nomb{ur} of e ylke too fig{ure}s is bot ten. +Questio. Why says he at a cifre makys a fig{ure} to signifye (tyf) +mor{e} &c. Ispeke for is worde significatyf, ffor sothe it may happe +aft{ur} a cifre schuld come a-no{ur} cifre, as us 2+0++0+. And [gh]et +e secunde cifre shuld token neu{er} e mor{e} excep he schuld kepe e +ord{er} of e place. and a cifre is no fig{ure} significatyf. + + + Q{ua}m p{re}cedentes plus ulti{m}a significabit+ / + + [Sidenote: The last figure means more than all the others, + since it is of the highest value.] + +Expone is v{er}se us. e last figu{re} schal token mor{e} an all{e} +e o{er} afor{e}, thou[gh]t {ere} wer{e} a hundryth thousant figures +afor{e}, as us, 16798. e last fig{ure} at is 1. betokens ten +thousant. And all{e} e o{er} fig{ure}s b{e}n bot betoken{e} bot sex +thousant seuyn{e} h{u}ndryth nynty & 8. And ten thousant is mor{e} en +all{e} at nomb{ur}, {er}go e last figu{re} tokens mor{e} an all e +nomb{ur} afor{e}. + + [Headnote: The Three Kinds of Numbers] + + [*leaf 138a] + + Post p{re}dicta scias breuit{er} q{uod} tres num{er}or{um} + Distincte species sunt; nam quidam digiti sunt; + Articuli quidam; quidam q{uoque} compositi sunt. + + Capit{ulu}m 2^m de t{ri}plice divisione nu{mer}or{um}. + + [Sidenote: Digits. Articles. Composites.] + + The auctor of is tretis dep{ar}tys is worde a nomb{ur} into 3 +p{ar}tes. Some nomb{ur} is called digit{us} latine, adigit in englys. +So{m}me nomb{ur} is called articul{us} latine. An Articul in englys. +Some nomb{ur} is called a composyt in englys. Expone is v{er}se. know +{o}u aft{ur} e forsayd rewles {a}t I sayd afore, at {ere} ben thre +spices of nomb{ur}. Oon{e} is a digit, Ano{er} is an Articul, &e +to{er} a Composyt. v{er}sus. + + [Headnote: Digits, Articles, and Composites.] + + Sunt digiti num{er}i qui cit{ra} denariu{m} s{u}nt. + + [Sidenote: What are digits.] + + Her{e} he telles qwat is a digit, Expone v{er}su{s} sic. Nomb{ur}s +digitus ben{e} all{e} nomb{ur}s at ben w{i}t{h}-inne ten, as nyne, +8. 7. 6. 5. 4. 3. 2.1. + + Articupli decupli degito{rum}; compositi s{u}nt + Illi qui constant ex articulis degitisq{ue}. + + [Sidenote: What are articles.] + + Her{e} he telles what is a composyt and what is an{e} articul. Expone +sic v{er}sus. Articulis ben[{2}] all{e} {a}t may be deuidyt into +nomb{urs} of ten & nothyng{e} leue ou{er}, as twenty, thretty, fourty, +ahundryth, athousand, &such o{er}, ffor twenty may be dep{ar}tyt +in-to 2 nomb{ur}s of ten, fforty in to four{e} nomb{ur}s of ten, &so +forth. + + [Sidenote: What numbers are composites.] + +[*leaf 138b] Compositys be[n~] nomb{ur}s at bene componyt of a digyt & +of an articull{e} as fouretene, fyftene, sextene, &such o{er}. +ffortene is co{m}ponyd of four{e} at is a digit & of ten at is an +articull{e}. ffiftene is componyd of 5 & ten, &so of all o{er}, what +at ai ben. Short-lych eu{er}y nomb{ur} at be-gynnes w{i}t{h} a digit +& endyth in a articull{e} is a composyt, as fortene bygennyng{e} by +four{e} at is a digit, &endes in ten. + + Ergo, p{ro}posito nu{mer}o tibi scriber{e}, p{ri}mo + Respicias quid sit nu{merus}; si digitus sit + P{ri}mo scribe loco digitu{m}, si compositus sit + P{ri}mo scribe loco digitu{m} post articulu{m}; sic. + + [Sidenote: How to write a number, if it is a digit; if it is a + composite. How to read it.] + + here he telles how {o}u schalt wyrch whan {o}u schalt write a +nomb{ur}. Expone v{er}su{m} sic, &fac iuxta expon{ent}is sentencia{m}; +whan {o}u hast a nomb{ur} to write, loke fyrst what man{er} nomb{ur} it +ys {a}t {o}u schalt write, whether it be a digit or a composit or an +Articul. If he be a digit, write a digit, as yf it be seuen, write +seuen & write {a}t digit in e first place toward e ryght side. If it +be a composyt, write e digit of e composit in e first place & write +e articul of at digit in e secunde place next toward e lyft side. As +yf {o}u schal write sex & twenty. write e digit of e nomb{ur} in e +first place at is sex, and write e articul next aft{ur} at is twenty, +as us 26. But whan {o}u schalt sowne or speke [*leaf 139a] or rede an +Composyt ou schalt first sowne e articul & aft{ur} e digit, as {o}u +seyst by e comyn{e} speche, Sex & twenty & nou[gh]t twenty & sex. +v{er}sus. + + Articul{us} si sit, in p{ri}mo limite cifram, + Articulu{m} {vero} reliq{ui}s insc{ri}be figur{is}. + + [Sidenote: How to write Articles: tens, hundreds, thousands, &c.] + + Here he tells how {o}u schal write when e nombre {a}t {o}u hase to +write is an Articul. Expone v{er}sus sic & fac s{ecundu}m sentenciam. +Ife e nomb{ur} {a}t {o}u hast write be an Articul, write first a +cifre & aft{ur} e cifer write an Articull{e} us. 2+0+. fforthermor{e} +{o}u schalt vnd{ir}stonde yf {o}u haue an Articul, loke how mych he +is, yf he be w{i}t{h}-ynne an hundryth, {o}u schalt write bot on{e} +cifre, afore, as her{e} .9+0+. If e articull{e} be by hym-silfe & be an +hundrid euen{e}, en schal {o}u write .1. & 2 cifers afor{e}, at he +may stonde in e thryd place, for eu{er}y fig{ure} in e thryd place +schal token a hundrid tymes hym selfe. If e articul be a thousant or +thousandes[{3}] and he stonde by hy{m} selfe, write afor{e} 3 cifers & +so for of al o{er}. + + Quolib{et} in nu{mer}o, si par sit p{ri}ma figura, + Par erit & to{tu}m, quicquid sibi co{n}ti{nua}t{ur}; + Imp{ar} si fu{er}it, totu{m} tu{n}c fiet {et} impar. + + [Sidenote: To tell an even number or an odd.] + + Her{e} he teches a gen{er}all{e} rewle {a}t yf e first fig{ure} in +e rewle of fig{ure}s token a nomb{ur} at is euen{e} al {a}t nomb{ur} +of fig{ur}ys in at rewle schal be euen{e}, as her{e} {o}u may see 6. +7. 3. 5.4. Computa & p{ro}ba. If e first [*leaf 139b] fig{ur}e token +an nomb{ur} at is ode, all{e} at nomb{ur} in at rewle schall{e} be +ode, as her{e} 5 6 7 8 67. Computa & p{ro}ba. v{er}sus. + + Septe{m} su{n}t partes, no{n} pl{u}res, istius artis; + Adder{e}, subt{ra}her{e}, duplar{e}, dimidiar{e}, + Sextaq{ue} diuider{e}, s{ed} qui{n}ta m{u}ltiplicar{e}; + Radice{m} ext{ra}her{e} p{ar}s septi{m}a dicitur esse. + + [Headnote: The Seven Rules of Arithmetic.] + + [Sidenote: The seven rules.] + + Her{e} telles {a}t {er} be[n~] .7. spices or p{ar}tes of is craft. +The first is called addicio, e secunde is called subtraccio. The +thryd is called duplacio. The 4. is called dimydicio. The 5. is called +m{u}ltiplicacio. The 6 is called diuisio. The 7. is called extraccio +of e Rote. What all ese spices ben{e} hit schall{e} be tolde +singillati{m} in her{e} caputul{e}. + + Subt{ra}his aut addis a dext{ri}s vel mediabis: + + [Sidenote: Add, subtract, or halve, from right to left.] + +Thou schal be-gynne in e ryght side of e boke or of a tabul. loke +wer{e} {o}u wul be-gynne to write latyn or englys in a boke, & {a}t +schall{e} be called e lyft side of the boke, at {o}u writest toward +{a}t side schal be called e ryght side of e boke. V{er}sus. + + A leua dupla, diuide, m{u}ltiplica. + + [Sidenote: Multiply or divide from left to right.] + +Here he telles e in quych side of e boke or of e tabul {o}u +schall{e} be-gyn{e} to wyrch duplacio, diuisio, and m{u}ltiplicacio. +Thou schal begyn{e} to worch in e lyft side of e boke or of e tabul, +but yn what wyse {o}u schal wyrch in hym +dicetur singillatim in +seque{n}tib{us} capi{tulis} et de vtilitate cui{us}li{bet} art{is} & sic +Completur [*leaf 140.] p{ro}hemi{um} & sequit{ur} tractat{us} & p{ri}mo +de arte addic{ion}is que p{ri}ma ars est in ordine.+ + + [Headnote: The Craft of Addition.] + + ++Adder{e} si nu{mer}o num{e}ru{m} vis, ordine tali + Incipe; scribe duas p{rim}o series nu{mer}or{um} + P{ri}ma{m} sub p{ri}ma recte pone{n}do figura{m}, + Et sic de reliq{ui}s facias, si sint tibi plures. + + [Sidenote: Four things must be known: what it is; how many rows of + figures; how many cases; what is its result. How to set down the sum.] + + Her{e} by-gynnes e craft of Addicio. In is craft {o}u most knowe +foure thyng{es}. Fyrst {ou} most know what is addicio. Next {o}u +most know how mony rewles of figurys ou most haue. Next {o}u most +know how mony diue{r}s casys happes in is craft of addicio. And next +qwat is e p{ro}fet of is craft. As for e first ou most know at +addicio is a castyng to-ged{ur} of twoo nomburys in-to on{e} nombr{e}. +As yf I aske qwat is twene & thre. {o}u wyl cast ese twene nomb{re}s +to-ged{ur} & say {a}t it is fyue. As for e secunde ou most know +{a}t ou schall{e} haue tweyne rewes of figures, on{e} vndur a-nother, +as her{e} {o}u maystse. + + 1234 + 2168. + + As for e thryd ou most know {a}t ther{e} ben foure diu{er}se cases. +As for e forthe {o}u most know {a}t e p{ro}fet of is craft is to +telle what is e hole nomb{ur} {a}t comes of diu{er}se nomburis. Now as +to e texte of oure verse, he teches ther{e} how {o}u schal worch in +is craft. He says yf {o}u wilt cast on{e} nomb{ur} to ano{er} +nomb{ur}, ou most by-gynne on is wyse. ffyrst write [*leaf 140b] two +rewes of figuris & nombris so at {o}u write e first figur{e} of e +hyer nomb{ur} euen{e} vnd{ir} the first fig{ure} of e nether nomb{ur}, +And e secunde of e nether nomb{ur} euen{e} vnd{ir} e secunde of e +hyer, & so forthe of eu{er}y fig{ur}e of both e rewes as {o}u +maystse. + + 123 + 234. + + [Headnote: The Cases of the Craft of Addition.] + + Inde duas adde p{ri}mas hac condic{i}one: + Si digitus crescat ex addic{i}one prior{um}; + P{ri}mo scribe loco digitu{m}, quicu{n}q{ue} sit ille. + + [Sidenote: Add the first figures; rub out the top figure; + write the result in its place. Here is an example.] + + Here he teches what {o}u schalt do when {o}u hast write too rewes of +figuris on vnder an-o{er}, as I sayd be-for{e}. He says {o}u schalt +take e first fig{ur}e of e heyer nomb{re} & e fyrst figur{e} of e +ne{er} nombre, &cast hem to-ged{er} vp-on is condicio[n~]. Thou schal +loke qwe{er} e nombe{r} at comys {ere}-of be a digit or no. If he +be a digit {o}u schalt do away e first fig{ur}e of e hyer nomb{re}, +and write {ere} in his stede at he stode Inne e digit, {a}t comes of +e ylke 2 fig{ur}es, &so wrich forth o[n~] o{er} figures yf {ere} be +ony moo, til {o}u come to e ende toward e lyft side. And lede e +nether fig{ure} stonde still eu{er}-mor{e} til {o}u haue ydo. ffor +{ere}-by {o}u schal wyte whe{er} {o}u hast don{e} wel or no, as I +schal tell e aft{er}ward in e ende of is Chapt{er}. And loke +allgate at ou be-gynne to worch in is Craft of [*leaf 141a] +Addi[*]cio[n~] in e ry[gh]t side, here is an ensampul of is case. + + 1234 + 2142. + +Caste 2 to four{e} & at wel be sex, do away 4. & write in e same place +e fig{ur}e of sex. And lete e fig{ur}e of 2 in e nether rewe stonde +stil. When {o}u hast do so, cast 3 & 4 to-ged{ur} and at wel be seuen +{a}t is a digit. Do away e 3, &set {ere} seue[n~], and lete e +ne{er} fig{ure} stonde still{e}, &so worch forth bakward til {o}u +hast ydo all to-ged{er}. + + Et si composit{us}, in limite scribe seque{n}te + Articulum, p{ri}mo digitum; q{uia} sic iubet ordo. + + [Sidenote: Suppose it is a Composite, set down the digit, + and carry the tens. Here is an example.] + + Here is e secunde case {a}t may happe in is craft. And e case is +is, yf of e casting of 2 nomburis to-ged{er}, as of e fig{ur}e of e +hyer rewe & of e figure of e ne{er} rewe come a Composyt, how schalt +{ou} worch. {us} {o}u schalt worch. Thou shalt do away e fig{ur}e of +e hyer nomb{er} at was cast to e figure of e ne{er} nomber. And +write {ere} e digit of e Composyt. And set e articul of e composit +next aft{er} e digit in e same rewe, yf {ere} be no mo fig{ur}es +aft{er}. But yf {ere} be mo figuris aft{er} at digit. And ere he +schall be rekend for hym selfe. And when {o}u schalt adde {a}t ylke +figure {a}t berys e articull{e} ou{er} his hed to e figur{e} vnd{er} +hym, {o}u schalt cast at articul to e figure {a}t hase hym ou{er} +his hed, &{ere} at Articul schal toke[n~] hym selfe. lo an Ensampull +[*leaf 141b] of all. + + 326 + 216. + +Cast 6 to 6, & {ere}-of wil arise twelue. do away e hyer 6 & write +{ere} 2, {a}t is e digit of is composit. And e{n} write e +articull{e} at is ten ou{er} e figuris hed of twene as {us}. + + 1 + 322 + 216. + +Now cast e articull{e} {a}t standus vpon e fig{ur}is of twene hed to +e same fig{ur}e, &reken at articul bot for on{e}, and an {ere} wil +arise thre. an cast at thre to e ne{er} figure, at is on{e}, &at +wul be four{e}. do away e fig{ur}e of 3, and write {ere} a fig{ur}e of +foure. and lete e ne{er} fig{ur}e stonde stil, &an worch forth. +vn{de} {ver}sus. + + Articulus si sit, in p{ri}mo limite cifram, + Articulu{m} v{er}o reliquis inscribe figuris, + Vel p{er} se scribas si nulla figura sequat{ur}. + + [Sidenote: Suppose it is an Article, set down a cipher and carry + the tens. Here is an example.] + + Her{e} he puttes e thryde case of e craft of Addicio[n~]. & e case +is is. yf of Addiciou[n~] of 2 figuris a-ryse an Articull{e}, how schal +{o}u do. thou most do away e heer fig{ur}e {a}t was addid to e +ne{er}, &write {ere} a cifre, and sett e articuls on e figuris +hede, yf {a}t {ere} come ony aft{er}. And wyrch an as I haue tolde e +in e secunde case. An ensampull. + + 25. + 15 + +Cast 5 to 5, at wylle be ten. now do away e hyer 5, &write {ere} a +cifer. And sette ten vpon e figuris hed of 2. And reken it but for on +us.] lo an Ensampull{e} + + +----+ + | 1 | + | 2+0+ | + | 15 | + +----+ + +And [*leaf 142a] an worch forth. But yf {ere} come no figure aft{er} +e cifre, write e articul next hym in e same rewe as here + + +---+ + | 5 | + | 5 | + +---+ + +cast 5 to 5, and it wel be ten. do away 5. at is e hier 5. and write +{ere} a cifre, &write aft{er} hym e articul as us + + +----+ + | 1+0+ | + | 5 | + +----+ + +And an {o}u hast done. + + Si tibi cifra sup{er}ueniens occurrerit, illa{m} + Dele sup{er}posita{m}; fac illic scribe figura{m}, + Postea procedas reliquas addendo figuras. + + [Sidenote: What to do when you have a cipher in the top row. + An example of all the difficulties.] + +Her{e} he putt{es} e fourt case, &it is is, at yf {ere} come a +cifer in e hier rewe, how {o}u schal do. us {o}u schalt do. do away +e cifer, &sett {ere} e digit {a}t comes of e addiciou{n} as us + + 1+0++0+84. + 17743 + +In is ensampul ben all{e} e four{e} cases. Cast 3 to foure, {a}t wol +be seue[n~]. do away 4. & write {ere} seue[n~]; an cast 4 to e +figur{e} of 8. {a}t wel be 12. do away 8, &sett {ere} 2. at is a +digit, and sette e articul of e composit, at is ten, vpon e cifers +hed, &reken it for hym selfe at is on. an cast on{e} to a cifer, & +hit wull{e} be but on, for no[gh]t & on makes but on{e}. an cast 7. +{a}t stondes vnd{er} at on to hym, &at wel be 8. do away e cifer & +at 1. & sette {ere} 8. an go forthermor{e}. cast e o{er} 7 to e +cifer {a}t stondes ou{er} hy{m}. {a}t wul be bot seuen, for e cifer +betokens no[gh]t. do away e cifer & sette {ere} seue[n~], [*leaf 142b] +& en go for{er}mor{e} & cast 1 to 1, &at wel be 2. do away e hier +1, &sette {ere} 2. an hast {o}u do. And yf {o}u haue wel ydo is +nomber at is sett her{e}-aft{er} wel be e nomber at schall{e} aryse +of all{e} e addicio[n~] as her{e} 27827. Sequi{tu}r alia sp{eci}es. + + [Headnote: The Craft of Subtraction.] + + ++A nu{mer}o num{er}u{m} si sit tibi demer{e} cura + Scribe figurar{um} series, vt in addicione. + + [Sidenote: Four things to know about subtraction: the first; + the second; the third; the fourth.] + +This is e Chapt{er} of subtraccio[n~], in the quych ou most know +foure nessessary thyng{es}. the first what is subtraccio[n~]. e secunde +is how mony nombers ou most haue to subt{ra}ccio[n~], the thryd is how +mony maners of cases {ere} may happe in is craft of subtraccio[n~]. +The fourte is qwat is e p{ro}fet of is craft. As for e first, {o}u +most know {a}t subtraccio[n~] is drawyng{e} of on{e} nowmb{er} oute of +ano{er} nomber. As for e secunde, ou most knowe {a}t ou most haue +two rewes of figuris on{e} vnd{er} ano{er}, as {o}u addyst in +addicio[n~]. As for e thryd, {o}u moyst know {a}t four{e} man{er} of +diu{er}se casis mai happe in is craft. As for e fourt, ou most know +{a}t e p{ro}fet of is craft is whenne {o}u hasse taken e lasse +nomber out of e mor{e} to telle what {ere} leues ou{er} {a}t. & {o}u +most be-gynne to wyrch in {is} craft in e ryght side of e boke, as +{o}u diddyst in addicio[n~]. V{er}sus. + + Maiori nu{mer}o num{er}u{m} suppone minorem, + Siue pari nu{mer}o supponat{ur} num{er}us par. + + [Sidenote: Put the greater number above the less.] + +[*leaf 143a] Her{e} he telles at e hier nomber most be mor{e} en e +ne{er}, or els eue[n~] as mych. but he may not be lasse. And e case is +is, ou schalt drawe e ne{er} nomber out of e hyer, &ou mayst not +do {a}t yf e hier nomber wer{e} lasse an at. ffor {o}u mayst not +draw sex out of 2. But {o}u mast draw 2 out of sex. And ou maiste draw +twene out of twene, for ou schal leue no[gh]t of e hier twene vn{de} +v{er}sus. + + [Headnote: The Cases of the Craft of Subtraction.] + + Postea si possis a prima subt{ra}he p{ri}ma{m} + Scribens quod remanet. + + [Sidenote: The first case of subtraction. Here is an example.] + +Her{e} is e first case put of subtraccio[n~], &he says ou schalt +begynne in e ryght side, &draw e first fig{ure} of e ne{er} rewe +out of e first fig{ure} of e hier rewe. qwether e hier fig{ur}e be +mor{e} en e ne{er}, or eue[n~] as mych. And at is notified in e +vers when he says "Si possis." Whan {o}u has us ydo, do away e hiest +fig{ur}e & sett {ere} at leues of e subtraccio[n~], lo an +Ensampull{e} + + +-----+ + | 234 | + | 122 | + +-----+ + +draw 2 out of 4. an leues 2. do away 4 & write {ere} 2, & latte e +ne{er} figur{e} sto{n}de stille, &so go for-by o{er} figuris till +{o}u come to e ende, an hast {o}udo. + + Cifram si nil remanebit. + + [Sidenote: Put a cipher if nothing remains. Here is an example.] + +Her{e} he putt{es} e secunde case, &hit is is. yf it happe {a}t +qwen {o}u hast draw on ne{er} fig{ure} out of a hier, &{er}e leue +no[gh]t aft{er} e subt{ra}ccio[n~], us [*leaf 143b] ou schalt do. +{o}u schall{e} do away e hier fig{ur}e & write {ere} a cifer, as lo +an Ensampull + + +----+ + | 24 | + | 24 | + +----+ + +Take four{e} out of four{e} an leus no[gh]t. {er}efor{e} do away e +hier 4 & set {ere} a cifer, an take 2 out of 2, an leues no[gh]t. do +away e hier 2, &set {ere} a cifer, and so worch whar{e} so eu{er} is +happe. + + Sed si no{n} possis a p{ri}ma dem{er}e p{ri}ma{m} + P{re}cedens vnu{m} de limite deme seque{n}te, + Quod demptu{m} p{ro} denario reputabis ab illo + Subt{ra}he to{ta}lem num{er}u{m} qu{em} p{ro}posuisti + Quo facto sc{ri}be super quicquid remaneb{i}t. + + [Sidenote: Suppose you cannot take the lower figure from the top one, + borrow ten; take the lower number from ten; add the answer to the top + number. How to 'Pay back' the borrowed ten. Example.] + +Her{e} he puttes e thryd case, e quych is is. yf it happe at e +ne{er} fig{ur}e be mor{e} en e hier fig{ur}e at he schall{e} be draw +out of. how schall{e} ou do. us {o}u schall{e} do. ou schall{e} +borro .1. oute of e next fig{ur}e at comes aft{er} in e same rewe, +for is case may neu{er} happ but yf {ere} come figures aft{er}. an +{o}u schalt sett at on ou{er} e hier figur{es} hed, of the quych ou +woldist y-draw oute e ney{er} fig{ur}e yf {o}u haddyst y-my[gh]t. +Whane ou hase us ydo ou schall{e} rekene {a}t .1. for ten. . And +out of at ten {o}u schal draw e neyermost fig{ur}e, And all{e} {a}t +leues ou schall{e} adde to e figur{e} on whos hed at .1. stode. And +en {o}u schall{e} do away all{e} at, &sett {ere} all{e} that arisys +of the addicio[n~] of e ylke 2 fig{ur}is. And yf yt [*leaf 144a] happe +at e fig{ur}e of e quych {o}u schalt borro on be hym self but 1. If +{o}u schalt at on{e} & sett it vppo[n~] e o{er} figur{is} hed, and +sett in {a}t 1. place a cifer, yf {ere} come mony figur{es} aft{er}. +lo an Ensampul. + + +------+ + | 2122 | + | 1134 | + +------+ + +take 4 out of 2. it wyl not be, erfor{e} borro on{e} of e next +figur{e}, {a}t is 2. and sett at ou{er} e hed of e fyrst 2. & rekene +it for ten. and ere e secunde stondes write 1. for {o}u tokest on out +of hy{m}. an take e ne{er} fig{ur}e, at is 4, out of ten. And en +leues 6. cast to 6 e fig{ur}e of at 2 at stode vnd{er} e hedde of 1. +at was borwed & rekened for ten, and at wylle be 8. do away {a}t 6 & +at 2, & sette {ere} 8, &lette e ne{er} fig{ur}e stonde stille. +Whanne {o}u hast do us, go to e next fig{ur}e {a}t is now bot 1. but +first yt was 2, & {ere}-of was borred1. an take out of {a}t e +fig{ur}e vnd{er} hym, {a}t is 3. hit wel not be. er-for{e} borowe of +the next fig{ur}e, e quych is bot 1. Also take & sett hym ou{er} e +hede of e fig{ure} at ou woldest haue y-draw oute of e nether +figure, e quych was 3. & ou my[gh]t not, &rekene {a}t borwed 1 for +ten & sett in e same place, of e quych place {o}u tokest hy{m} of, +acifer, for he was bot 1. Whanne {o}u hast {us} ydo, take out of at +1. {a}t is rekent for ten, e ne{er} figure of 3. And {ere} leues7. +[*leaf 144b] cast e ylke 7 to e fig{ur}e at had e ylke ten vpon his +hed, e quych fig{ur}e was1, &at wol be8. an do away {a}t 1 and +{a}t7, &write {ere} 8. & an wyrch forth in o{er} figuris til {o}u +come to e ende, &an {o}u hast e do. V{er}sus. + + Facque nonenarios de cifris, cu{m} remeabis + Occ{ur}rant si forte cifre; dum demps{er}is vnum + Postea p{ro}cedas reliquas deme{n}do figuras. + + [Sidenote: Avery hard case is put. Here is an example.] + + Her{e} he putt{es} e fourte case, e quych is is, yf it happe at e +ne{er} fig{ur}e, e quych {o}u schalt draw out of e hier fig{ur}e be +mor{e} pan e hier figur ou{er} hym, &e next fig{ur}e of two or of +thre or of foure, or how mony {ere} be by cifers, how wold {o}u do. +{o}u wost wel {o}u most nede borow, &{o}u mayst not borow of e +cifers, for ai haue no[gh]t at ai may lene or spar{e}. Ergo[{4}] how +woldest {o}u do. Certay[n~] us most {o}u do, {o}u most borow on of +e next figure significatyf in at rewe, for is case may not happe, but +yf {ere} come figures significatyf aft{er} the cifers. Whan {o}u hast +borowede {a}t 1 of the next figure significatyf, sett {a}t on ou{er} +e hede of {a}t fig{ur}e of e quych {o}u wold haue draw e ne{er} +figure out yf {o}u hadest my[gh]t, &reken it for ten as o{u} diddest +i{n} e o{er} case her{e}-a-for{e}. Wha[n~] {o}u hast us y-do loke +how mony cifers {ere} wer{e} bye-twene at figur{e} significatyf, &e +fig{ur}e of e quych {o}u woldest haue y-draw the [*leaf 145a] ne{er} +figure, and of eu{er}y of e ylke cifers make a figur{e} of 9. lo an +Ensampull{e} after. + + +-----+ + |40002| + |10004| + +-----+ + +Take 4 out of 2. it wel not be. borow 1 out of be next figure +significatyf, e quych is 4, &en leues 3. do away {a}t figur{e} of 4 +& write {ere} 3. & sett {a}t 1 vppon e fig{ur}e of 2 hede, &an take +4 out of ten, &an ere leues 6. Cast 6 to the fig{ur}e of 2, {a}t wol +be 8. do away at 6 & write {er}e 8. Whan {o}u hast us y-do make of +eu{er}y 0 betweyn 3 & 8 a figure of 9, &an worch forth in goddes name. +& yf {o}u hast wel y-do {o}u[{5}] schalt haue is nomb{er} + + +-----+ + |39998| Sic. + |10004| + +-----+ + + [Headnote: How to prove the Subtraction.] + + Si subt{ra}cc{i}o sit b{e}n{e} facta p{ro}bar{e} valebis + Quas s{u}btraxisti p{ri}mas addendo figuras. + + [Sidenote: How to prove a subtraction sum. Here is an example. + He works his proof through, and brings out a result.] + +Her{e} he teches e Craft how {o}u schalt know, whan {o}u hast +subt{ra}yd, whe{er} ou hast wel ydo or no. And e Craft is is, ryght +as {o}u subtrayd e ne{er} figures fro e hier figures, ry[gh]t so +adde e same ne{er} figures to e hier figures. And yf {o}u haue well +y-wroth a-for{e} ou schalt haue e hier nombre e same {o}u haddest or +ou be-gan to worch. as for is I bade ou schulde kepe e ne{er} +figures stylle. lo an [*leaf 145b] Ensampull{e} of all{e} e 4 cases +toged{re}. worche well{e} is case + + +--------+ + |40003468|. + |20004664| + +--------+ + +And yf ou worch well{e} whan ou hast all{e} subtrayd e {a}t hier +nombr{e} her{e}, is schall{e} be e nombre here foloyng whan {o}u hast +subtrayd. + + +--------+ + |39998804|. [Sidenote: Our author makes a slip here (3 for1).] + |20004664| + +--------+ + +And ou schalt know {us}. adde e ne{er} rowe of e same nombre to e +hier rewe as us, cast 4 to 4. at wol be 8. do away e 4 & write {ere} +8. by e first case of addicio[n~]. an cast 6 to 0 at wol be 6. do +away e 0, &write ere 6. an cast 6 to 8, {a}t wel be 14. do away 8 & +write {ere} a fig{ur}e of 4, at is e digit, and write a fig{ur}e of +1. {a}t schall be-token ten. {a}t is e articul vpon e hed of 8 next +aft{er}, an reken {a}t 1. for 1. & cast it to 8. at schal be 9. cast +to at 9 e ne{er} fig{ur}e vnd{er} at e quych is 4, &at schall{e} +be 13. do away at 9 & sett {er}e 3, & sett a figure of 1. {a}t schall +be 10 vpon e next figur{is} hede e quych is 9. by e secu{n}de case +{a}t {o}u hadest in addicio[n~]. an cast 1 to 9. & at wol be 10. do +away e 9. & at 1. And write {ere} a cifer. and write e articull{e} +at is 1. betokenyng{e} 10. vpon e hede of e next figur{e} toward e +lyft side, e quych [*leaf 146a] is 9, &so do forth tyl {o}u come to +e last9. take e figur{e} of at1. e quych {o}u schalt fynde ou{er} +e hed of 9. & sett it ou{er} e next figures hede at schal be3. +Also do away e 9. & set {ere} a cifer, &en cast at 1 at stondes +vpon e hede of 3 to e same 3, &{a}t schall{e} make4, en caste to +e ylke 4 the figur{e} in e ney{er} rewe, e quych is2, and at +schall{e} be 6. And en schal {o}u haue an Ensampull{e} a[gh]ey[n~], +loke & se, &but {o}u haue is same {o}u hase myse-wro[gh]t. + + +--------+ + |60003468| + |20004664| + +--------+ + +Sequit{ur} de duplac{i}one + + + [Headnote: The Craft of Duplation.] + + ++Si vis duplar{e} num{er}u{m}, sic i{n}cipe p{rim}o + Scribe fig{ur}ar{um} serie{m} q{ua}mcu{n}q{ue} vel{is} tu. + + [Sidenote: Four things must be known in Duplation. Here they are. + Mind where you begin. Remember your rules.] + +This is the Chaptur{e} of duplacio[n~], in e quych craft {o}u most +haue & know 4 thing{es}. e first {a}t {o}u most know is what is +duplacio[n~]. e secu{n}de is how mony rewes of fig{ur}es {o}u most +haue to is craft. e thryde is how many cases may[{6}] happe in is +craft. e fourte is what is e p{ro}fet of e craft. As for e +first. duplacio[n~] is a doublyng{e} of a nombre. As for e secu{n}de +{o}u most [*leaf 146b] haue on nombre or on rewe of figures, the quych +called nu{merus} dupland{us}. As for e thrid {o}u most know at 3 +diu{er}se cases may hap in is craft. As for e fourte. qwat is e +p{ro}fet of is craft, &{a}t is to know what a-risy[gh]t of a nombre +I-doublyde. ffor{er}-mor{e}, {o}u most know & take gode hede in +quych side {o}u schall{e} be-gyn in is craft, or ellis {o}u mayst +spyl all{e} {i} lab{er} {er}e aboute. c{er}teyn {o}u schalt begy[n~] +in the lyft side in is Craft. thenke wel ou{er} is verse. [{7}]A +leua dupla, diuide, m{u}ltiplica.[{7}] [[Subt{ra}has a{u}t addis a +dext{ri}s {ve}l medi{a}b{is}]] The sentens of es verses afor{e}, as +{o}u may see if {o}u take hede. As e text of is verse, at is to +say, Si vis duplare. is is e sentence. If {o}u wel double a +nombre us {o}u most be-gyn[n~]. Write a rewe of figures of what +nomb{re} ou welt. v{er}sus. + + Postea p{ro}cedas p{ri}ma{m} duplando figura{m} + Inde q{uo}d excrescit scribas vbi iusserit ordo + Iuxta p{re}cepta tibi que dant{ur} in addic{i}one. + + [Sidenote: How to work a sum.] + + Her{e} he telles how {o}u schalt worch in is Craft. he says, fyrst, +whan {o}u hast writen e nombre {o}u schalt be-gyn at e first +figur{e} in the lyft side, &doubull{e} at fig{ur}e, &e nombre at +comes {ere}-of {o}u schalt write as {o}u diddyst in addicio[n~], as +Ischal telle e in e case. v{er}sus. + + [Headnote: The Cases of the Craft of Duplation.] + + [*leaf 147a] + + Nam si sit digitus in primo limite scribas. + + [Sidenote: If the answer is a digit, write it in the place of the + top figure.] + + Her{e} is e first case of is craft, e quych is is. yf of +duplacio[n~] of a figur{e} arise a digit. what schal {o}u do. us {o}u +schal do. do away e fig{ur}e at was doublede, &sett {ere} e diget +at comes of e duplacio[n~], as us. 23. double 2, &{a}t wel be 4. do +away e figur{e} of 2 & sett {ere} a figur{e} of 4, &so worch forth +till{e} {o}u come to e ende. v{er}sus. + + Articul{us} si sit, in p{ri}mo limite cifram, + Articulu{m} v{er}o reliquis inscribe figuris; + Vel p{er} se scribas, si nulla figura sequat{ur}. + + [Sidenote: If it is an article, put a cipher in the place, and + 'carry' the tens. If there is no figure to 'carry' them to, write + them down.] + + Here is e secunde case, e quych is is yf {ere} come an articull{e} +of e duplacio[n~] of a fig{ur}e {o}u schalt do ry[gh]t as {o}u +diddyst in addicio[n~], at is to wete at {o}u schalt do away e +figur{e} at is doublet & sett {ere} a cifer, &write e articull{e} +ou{er} e next figur{is} hede, yf {ere} be any aft{er}-warde toward e +lyft side as us. 25. begyn at the lyft side, and doubull{e} 2. at wel +be 4. do away at 2 & sett ere 4. an doubul 5. at wel be 10. do away +5, & sett {ere} a 0, &sett 1 vpon e next figur{is} hede e quych is +4. & en draw downe 1 to 4 & at woll{e} be 5, &en do away {a}t 4 & +at 1, &sett {ere} 5. for at 1 schal be rekened in e drawyng{e} +toged{re} for 1. wen [*leaf 147b] ou hast ydon ou schalt haue is +nomb{r}e 50. yf {ere} come no figur{e} aft{er} e fig{ur}e {a}t is +addit, of e quych addicio[n~] comes an articull{e}, {o}u schalt do +away e figur{e} {a}t is dowblet & sett {ere} a 0. & write e articul +next by in e same rewe toward e lyft syde as us, 523. double 5 at +woll be ten. do away e figur{e} 5 & set {ere} a cifer, &sett e +articul next aft{er} in e same rewe toward e lyft side, &ou schalt +haue is nombre 1023. en go forth & double e o{er} nombers e quych +is ly[gh]t y-now[gh]t to do. v{er}sus. + + Compositus si sit, in limite sc{ri}be seq{uen}te + Articulu{m}, p{ri}mo digitu{m}; q{uia} sic iubet ordo: + Et sic de reliq{ui}s facie{n}s, si sint tibi plures. + + [Sidenote: If it is a Composite, write down the digit, and 'carry' + the tens. Here is an example.] + + Her{e} he putt{es} e Thryd case, e quych is is, yf of duplacio[n~] +of a fig{ur}e come a Composit. {o}u schalt do away e fig{u}re {a}t is +doublet & set {ere} a digit of e Composit, & sett e articull{e} +ou{er} e next figures hede, &aft{er} draw hym downe w{i}t{h} e +figur{e} ou{er} whos hede he stondes, &make {ere}-of an nombre as +{o}u hast done afore, &yf {ere} come no fig{ur}e aft{er} at digit +at {o}u hast y-write, a{n} set e articull{e} next aft{er} hym in e +same rewe as us, 67: double 6 at wel be 12, do away 6 & write {ere} +e digit [*leaf 148a] of 12, e quych is2, and set e articull{e} next +aft{er} toward e lyft side in e same rewe, for {ere} comes no +figur{e} aft{er}. an dowble at o{er} figur{e}, e quych is7, at wel +be 14. the quych is a Composit. en do away 7 at {o}u doublet & sett +e e diget of hy{m}, the quych is 4, sett e articull{e} ou{er} e next +figur{es} hed, e quych is 2, &en draw to hym at on, &make on nombre +e quych schall{e} be 3. And en yf {o}u haue wel y-do {o}u schall{e} +haue is nombre of e duplacio[n~], 134. v{er}sus. + + Si super ext{re}ma{m} nota sit monade{m} dat eid{em} + Quod t{ibi} {con}tingat si p{ri}mo dimidiabis. + + [Sidenote: How to double the mark for one-half. This can only stand + over the first figure.] + +Her{e} he says, yf ou{er} e fyrst fig{ur}e in e ry[gh]t side be such +a merke as is her{e} made, ^w, {o}u schall{e} fyrst doubull{e} e +figur{e}, the quych stondes vnd{er} {a}t merke, &en ou schalt doubul +at merke e quych stond{es} for haluendel on. for too haluedels makes +on, & so {a}t wol be on. cast {a}t on to at duplacio[n~] of e +figur{e} ou{er} whos hed stode at merke, &write it in e same place +{ere} at e figur{e} e quych was doublet stode, as us 23^w. double +3, at wol be 6; doubul at halue on, &at wol be on. cast on to 6, +{a}t wel be 7. do away 6 & at 1, &sett {ere} 7. an hase ou do. as +for at figur{e}, an go [*leaf 148b] to e o{er} fig{ure} & worch +forth. &{o}u schall neu{er} haue such a merk but ou{er} e hed of e +furst figure in e ryght side. And [gh]et it schal not happe but yf it +were y-halued a-for{e}, us {o}u schalt vnd{er}stonde e verse. Si +sup{er} ext{re}ma{m} &c. Et nota, talis fig{ur}a ^w significans +medietate{m}, unitat{is} veniat, {i.e.} contingat u{e}l fiat sup{er} +ext{re}ma{m}, {i.e.} sup{er} p{ri}ma{m} figura{m} in ext{re}mo sic +v{er}sus dextram ars dat: {i.e.} reddit monade{m}. {i.e.} vnitate{m} +eide{m}. {i.e.} eidem note & declina{tur} hec monos, d{i}s, di, dem, &c. +Quod {er}g{o} to{tum} ho{c} dabis monade{m} note {con}ting{et}. {i.e.} +eveniet tibi si dimidiasti, {i.e.} accipisti u{e}l subtulisti medietatem +alicuius unius, in cuius principio sint figura nu{mer}u{m} denotans +i{m}pare{m} p{rim}o {i.e.} principiis. + + [Headnote: The Craft of Mediation.] + + Sequit{ur} de mediacione. + + ++Incipe sic, si vis alique{m} nu{me}ru{m} mediar{e}: + Sc{ri}be figurar{um} seriem sola{m}, velut an{te}. + + [Sidenote: The four things to be known in mediation: the first the + second; the third; the fourth. Begin thus.] + +In is Chapter is ta[gh]t e Craft of mediaciou[n~], in e quych craft +{o}u most know 4 thynges. ffurst what is mediacio[n~]. the secunde how +mony rewes of figur{es} {o}u most haue in e wyrchyng{e} of is craft. +e thryde how mony diu{er}se cases may happ in is craft.[{8}] [[the .4. +what is e p{ro}fet of is craft.]] As for e furst, {o}u schalt +vndurstonde at mediacio[n~] is a takyng out of halfe a nomber out of a +holle nomber, [*leaf 149a] as yf {o}u wolde take 3 out of 6. As for +e secunde, {o}u schalt know {a}t {o}u most haue on{e} rewe of +figures, &no moo, as {o}u hayst in e craft of duplacio[n~]. As for +the thryd, ou most vnd{er}stonde at 5 cases may happe in is craft. +As for e fourte, ou schall{e} know at the p{ro}fet of is craft is +when {o}u hast take away e haluendel of a nomb{re} to telle qwat +er{e} schall{e} leue. Incipe sic, &c. The sentence of is verse is +is. yf {o}u wold medye, at is to say, take halfe out of e holle, or +halfe out of halfe, ou most begynne {us}. Write on{e} rewe of +figur{es} of what nombre ou wolte, as {o}u dyddyst be-for{e} in e +Craft of duplacio[n~]. v{er}sus. + + Postea p{ro}cedas medians, si p{ri}ma figura + Si par aut i{m}par videas. + + [Sidenote: See if the number is even or odd.] + + Her{e} he says, when {o}u hast write a rewe of figures, {o}u schalt +take hede whe{er} e first figur{e} be eue[n~] or odde in nombre, & +vnd{er}stonde {a}t he spekes of e first figure in e ry[gh]t side. And +i{n} the ryght side {o}u schall{e} begynne in is Craft. + + Quia si fu{er}it par, + Dimidiab{is} eam, scribe{n}s quicq{ui}d remanebit: + + [Sidenote: If it is even, halve it, and write the answer in its +place.] + +Her{e} is the first case of is craft, e quych is is, yf e first +figur{e} be euen. ou schal take away fro e figur{e} euen halfe, &do +away at fig{ur}e and set {ere} at leues ou{er}, as us, 4. take +[*leaf 149b] halfe out of 4, &an {ere} leues 2. do away 4 & sett +{ere} 2. is is lyght y-now[gh]t. v{er}sus. + + [Headnote: The Mediation of an Odd Number.] + + Impar si fu{er}it vnu{m} demas mediar{e} + Quod no{n} p{re}sumas, s{ed} quod sup{er}est mediabis + Inde sup{er} tractu{m} fac demptu{m} quod no{ta}t vnu{m}. + + [Sidenote: If it is odd, halve the even number less than it. Here is + an example. Then write the sign for one-half over it. Put the mark + only over the first figure.] + +Her{e} is e secunde case of is craft, the quych is is. yf e first +figur{e} betoken{e} a nombre at is odde, the quych odde schal not be +mediete, en {o}u schalt medye at nombre at leues, when the odde of +e same nomb{re} is take away, &write at {a}t leues as {o}u diddest +in e first case of is craft. Wha[n~] {o}u hayst write at. for {a}t +at leues, write such a merke as is her{e} ^w vpon his hede, e quych +merke schal betoke[n~] halfe of e odde at was take away. lo an +Ensampull. 245. the first figur{e} her{e} is betokenyng{e} odde nombre, +e quych is 5, for 5 is odde; {er}e-for{e} do away at {a}t is odde, +e quych is 1. en leues 4. en medye 4 & en leues 2. do away 4. & +sette {ere} 2, &make such a merke ^w upon his hede, at is to say +ou{er} his hede of 2 as us. 242.^w And en worch forth in e o{er} +figures tyll {o}u come to e ende. by e furst case as {o}u schalt +vnd{er}stonde at {o}u schalt [*leaf 150a] neu{er} make such a merk but +ou{er} e first fig{ur}e hed in e ri[gh]t side. Whe{er} e other +fig{ur}es at comy[n~] aft{er} hym be eue[n~] or odde. v{er}sus. + + [Headnote: The Cases of the Craft of Mediation.] + + Si monos, dele; sit t{ibi} cifra post no{ta} supra. + + [Sidenote: If the first figure is one put a cipher.] + +Here is e thryde case, e quych yf the first figur{e} be a figur{e} +of1. {o}u schalt do away at 1 & set {ere} a cifer, &a merke ou{er} +e cifer as us, 241. do away1, &sett {ere} a cifer w{i}t{h} a merke +ou{er} his hede, &en hast {o}u ydo for at 0. as us 0^w en worch +forth in e oer fig{ur}ys till {o}u come to e ende, for it is lyght +as dyche water. vn{de} v{er}sus. + + Postea p{ro}cedas hac condic{i}one secu{n}da: + Imp{ar} si fu{er}it hinc vnu{m} deme p{ri}ori, + Inscribens quinque, nam denos significabit + Monos p{re}d{ict}am. + + [Sidenote: What to do if any other figure is odd. Write a figure of + five over the next lower number's head. Example.] + +Her{e} he putt{es} e fourte case, e quych is is. yf it happe[n~] +the secunde figur{e} betoken odde nombre, ou schal do away on of at +odde nombre, e quych is significatiue by {a}t figure 1. e quych 1 +schall be rekende for 10. Whan {o}u hast take away {a}t 1 out of e +nombre {a}t is signifiede by at figur{e}, {o}u schalt medie {a}t at +leues ou{er}, &do away at figur{e} at is medied, &sette in his styde +halfe of {a}t nombre. Whan {o}u hase so done, {o}u schalt write +[*leaf 150b] a figure of 5 ou{er} e next figur{es} hede by-for{e} +toward e ry[gh]t side, for at 1, e quych made odd nombr{e}, schall +stonde for ten, &5 is halfe of 10; so {o}u most write 5 for his +haluendell{e}. lo an Ensampull{e}, 4678. begy[n~] in e ry[gh]t side as +{o}u most nedes. medie 8. en {o}u schalt leue 4. do away at 8 & +sette {ere} 4. en out of 7. take away 1. e quych makes odde, &sett +5. vpon e next figur{es} hede afor{e} toward e ry[gh]t side, e quych +is now 4. but afor{e} it was 8. for at 1 schal be rekenet for 10, of e +quych 10, 5 is halfe, as ou knowest wel. Whan {o}u hast us ydo, medye +{a}t e quych leues aft{er} e takying{e} away of at at is odde, e +quych leuyng{e} schall{e} be 3; do away 6 & sette {er}e 3, &ou schalt +haue such a nombre + + 5 + 4634. + +aft{er} go forth to e next fig{ur}e, &medy at, & worch forth, for it +is ly[gh]t ynov[gh]t to e c{er}tay[n~]. + + Si v{er}o s{e}c{un}da dat vnu{m}. + Illa deleta, sc{ri}bat{ur} cifra; p{ri}ori + Tradendo quinque pro denario mediato; + Nec cifra sc{ri}batur, nisi dei{n}de fig{ur}a seq{u}at{ur}: + Postea p{ro}cedas reliq{ua}s mediando figuras + Vt sup{ra} docui, si sint tibi mille figure. + + [Sidenote: If the second figure is one, put a cipher, and write + five over the next figure. How to halve fourteen.] + + Her{e} he putt{es} e 5 case, e quych is [*leaf 151a] is: yf e +secunde figur{e} be of 1, as is is here 12, ou schalt do away at 1 & +sett {ere} a cifer. & sett 5 ou{er} e next fig{ur}e hede afor{e} +toward e ri[gh]t side, as ou diddyst afor{e}; & at 5 schal be haldel +of at 1, e quych 1 is rekent for 10. lo an Ensampull{e}, 214. medye 4. +{a}t schall{e} be 2. do away 4 & sett {ere} 2. e{n} go forth to e +next figur{e}. e quych is bot 1. do away at 1. & sett {ere} a cifer. +& set 5 vpon e figur{es} hed afor{e}, e quych is nowe 2, &en ou +schalt haue is no{m}b{re} + + 5 + 202, + +en worch forth to e nex fig{ur}e. And also it is no mayst{er}y yf +{ere} come no figur{e} after at on is medyet, {o}u schalt write no 0. +ne now[gh]t ellis, but set 5 ou{er} e next fig{ur}e afor{e} toward e +ry[gh]t, as us 14. medie 4 then leues 2, do away 4 & sett {ere} 2. en +medie 1. e q{ui}ch is rekende for ten, e halue{n}del {ere}-of wel be +5. sett {a}t 5 vpon e hede of {a}t figur{e}, e quych is now 2, &do +away {a}t 1, &ou schalt haue is nombre yf {o}u worch wel, + + 5 + 2. + +vn{de} v{er}sus. + + [Headnote: How to prove the Mediation.] + + Si mediacio sit b{e}n{e} f{ac}ta p{ro}bar{e} valeb{is} + Duplando num{er}u{m} que{m} p{ri}mo di{m}ediasti + + [Sidenote: How to prove your mediation. First example. The second. + The third example. The fourth example. The fifth example.] + +Her{e} he telles e how ou schalt know whe{er} ou hase wel ydo or +no. doubul [*leaf 151b] e nombre e quych {o}u hase mediet, and yf +{o}u haue wel y-medyt after e dupleacio[n~], ou schalt haue e same +nombre at {o}u haddyst in e tabull{e} or {o}u began to medye, as +us. The furst ensampull{e} was is. 4. e quych I-mediet was laft2, +e whych 2 was write in e place {a}t 4 was write afor{e}. Now +doubull{e} at 2, &{o}u schal haue 4, as {o}u hadyst afor{e}. e +secunde Ensampull{e} was is, 245. When {o}u haddyst mediet all{e} is +nomb{re}, yf ou haue wel ydo ou schalt haue of {a}t mediacio[n~] is +nombre, 122^w. Now doubull{e} is nombre, &begyn in e lyft side; +doubull{e} 1, at schal be 2. do away at 1 & sett {ere} 2. en +doubull{e} {a}t o{er} 2 & sett {ere} 4, en doubull{e} at o{er} 2, +&at wel be 4. e{n} doubul at merke at stondes for halue on. & at +schall{e} be 1. Cast at on to 4, &it schall{e} be 5. do away at 2 & +at merke, &sette {ere} 5, &en {o}u schal haue is nombre 245. & +is wos e same nombur {a}t {o}u haddyst or {o}u began to medye, as +{o}u mayst se yf ou take hede. The nombre e quych ou haddist for an +Ensampul in e 3 case of mediacio[n~] to be mediet was is 241. whan +{o}u haddist medied all{e} is nombur truly [*leaf 152a] by eu{er}y +figur{e}, ou schall haue be {a}t mediacio[n~] is nombur 120^w. Now +dowbul is nomb{ur}, &begyn in e lyft side, as I tolde e in e Craft +of duplacio[n~]. us doubull{e} e fig{ur}e of 1, at wel be 2. do away +at 1 & sett {ere} 2, en doubul e next figur{e} afore, the quych is +2, &at wel be 4; do away 2 & set {ere} 4. en doubul e cifer, & at +wel be no[gh]t, for a 0 is no[gh]t. And twyes no[gh]t is but no[gh]t. +{ere}for{e} doubul the merke aboue e cifers hede, e quych betokenes +e halue{n}del of 1, &at schal be 1. do away e cifer & e merke, +&sett {ere} 1, &en {o}u schalt haue is nombur 241. And is same +nombur {o}u haddyst afore or {o}u began to medy, & yf {o}u take gode +hede. The next ensampul at had in e 4 case of mediacio[n~] was is +4678. Whan {o}u hast truly ymedit all{e} is nombur fro e begynnyng{e} +to e endyng{e}, {o}u schalt haue of e mediacio[n~] is nombur + + 5 + 2334. + +Now doubul this nombur & begyn in e lyft side, &doubull{e} 2 at schal +be 4. do away 2 and sette ere 4; en doubul{e} 3, {a}t wol be 6; do +away 3 & sett {ere} 6, en doubul at o{er} 3, &at wel be 6; do away +3 & set {ere} [*leaf 152b] 6, en doubul e 4, at welle be 8; en +doubul 5. e quych stondes ou{er} e hed of 4, &at wol be 10; cast 10 +to 8, &{a}t schal be 18; do away 4 & at 5, &sett {ere} 8, &sett +that 1, e quych is an articul of e Composit e quych is 18, ou{er} e +next figur{es} hed toward e lyft side, e quych is 6. drav {a}t 1 to +6, e quych 1 in e dravyng schal be rekente bot for 1, &{a}t 1 & +{a}t 6 togedur wel be 7. do away at 6 & at 1. the quych stondes +ou{er} his hede, &sett ther 7, & en ou schalt haue is nombur 4678. +And is same nombur {o}u hadyst or {o}u began to medye, as {o}u mayst +see in e secunde Ensampul at ou had in e 4 case of mediacio[n~], at +was is: when {o}u had mediet truly all{e} the nombur, ap{ri}ncipio +usque ad fine{m}. {o}u schalt haue of at mediacio[n~] is nombur + + 5 + 102. + +Now doubul 1. at wel be 2. do away 1 & sett {ere} 2. en doubul 0. +{a}t will be no[gh]t. {ere}for{e} take e 5, e quych stondes ou{er} +e next figur{es} hed, &doubul it, &at wol be 10. do away e 0 at +stondes betwene e two fig{u}r{i}s, &sette {ere} in his stid 1, for +{a}t 1 now schal stonde in e secunde place, wher{e} he schal betoken +10; en doubul 2, at wol be 4. do away 2 & sett ere 4. & [*leaf 153a] +ou schal haue us nombur 214. is is e same nu{m}bur at {o}u hadyst +or {o}u began to medye, as {o}u may see. And so do eu{er} mor{e}, yf +{o}u wil knowe whe{er} ou hase wel ymedyt or no. .doubull{e} e +nu{m}bur at comes aft{er} e mediaciou[n~], &{o}u schal haue e same +nombur {a}t {o}u hadyst or {o}u began to medye, yf {o}u haue welle +ydo. or els doute e no[gh]t, but yf {o}u haue e same, {o}u hase +faylide in {i} Craft. + ++Sequitur de multiplicatione.+ + + + [Headnote: The Craft of Multiplication.] + + [Headnote: To write down a Multiplication Sum.] + + ++Si tu p{er} num{er}u{m} num{er}u{m} vis m{u}ltiplicar{e} + Scribe duas q{ua}scu{nque} velis series nu{me}ror{um} + Ordo s{er}vet{ur} vt vltima m{u}ltiplicandi + Ponat{ur} sup{er} ant{er}iorem multiplicant{is} + A leua reliq{u}e sint scripte m{u}ltiplicantes. + + [Sidenote: Four things to be known of Multiplication: the first: + the second: the third: the fourth. How to set down the sum. Two + sorts of Multiplication: mentally, and on paper.] + +Her{e} be-gynnes e Chapt{r}e of m{u}ltiplicatio[n~], in e quych ou +most know 4 thynges. Ffirst, qwat is m{u}ltiplicacio[n~]. The secunde, +how mony cases may hap in multiplicacio[n~]. The thryde, how mony rewes +of figur{es} {ere} most be. The 4. what is e p{ro}fet of is craft. +As for e first, {o}u schal vnd{er}stonde at m{u}ltiplicacio[n~] is +a bryngyng{e} to-ged{er} of 2 thyng{es} in on nombur, e quych on nombur +{con}tynes so mony tymes on, howe [*leaf 153b] mony tymes {ere} ben +vnytees in e nowmb{re} of at 2, as twyes 4 is 8. now her{e} ben e 2 +nomb{er}s, of e quych too nowmbr{e}s on is betokened be an adu{er}be, +e quych is e worde twyes, &is worde thryes, &is worde four{e} +sythes,[{9}] [[& is wordes fyue sithe & sex sythes.]] &so furth of +such other lyke wordes. And tweyn nombres schal be tokenyde be a +nowne, as is worde four{e} showys es twey[n~] nombres y-broth in-to on +hole nombur, at is 8, for twyes 4 is 8, as {o}u wost wel. And es +nomb{re} 8 conteynes as oft tymes 4 as {ere} ben vnites in {a}t other +nomb{re}, e quych is 2, for in 2 ben 2 vnites, &so oft tymes 4 ben in +8, as {o}u wottys wel. ffor e secu{n}de, {o}u most know at {o}u +most haue too rewes of figures. As for e thryde, {o}u most know +{a}t 8 man{er} of diu{er}se case may happe in is craft. The p{ro}fet +of is Craft is to telle when a nomb{re} is m{u}ltiplyed be a no{er}, +qwat co{m}mys {ere}of. fforthermor{e}, as to e sentence of our{e} +verse, yf {o}u wel m{u}ltiply a nombur be a-no{er} nomb{ur}, ou +schalt write [*leaf 154a] a rewe of figures of what nomb{ur}s so eu{er} +{o}u welt, &at schal be called Num{erus} m{u}ltiplicand{us}, Anglice, +e nomb{ur} the quych to be m{u}ltiplied. en {o}u schalt write +a-nother rewe of figur{e}s, by e quych {o}u schalt m{u}ltiplie the +nombre at is to be m{u}ltiplied, of e quych nomb{ur} e furst fig{ur}e +schal be write vnd{er} e last figur{e} of e nomb{ur}, e quych is to +be m{u}ltiplied. And so write forthe toward e lyft side, as her{e} you +mayse, + + +----------+ + | 67324 | + | 1234 | + +----------+ + +And is on{e} nomb{ur} schall{e} be called nu{meru}s m{u}ltiplicans. +An{gli}ce, e nomb{ur} m{u}ltipliyng{e}, for he schall{e} m{u}ltiply e +hyer nounb{ur}, as us on{e} tyme 6. And so forth, as I schal telle the +aft{er}warde. And ou schal begyn in e lyft side. ffor-{ere}-more +ou schalt vndurstonde at {ere} is two man{ur}s of +m{u}ltiplicacio[n~]; one ys of e wyrchyng{e} of e boke only in e +mynde of a mon. fyrst he teches of e fyrst man{er} of duplacio[n~], e +quych is be wyrchyng{e} of tabuls. Aft{er}warde he wol teche on e +secunde man{er}. vn{de} v{er}sus. + + [Headnote: To multiply one Digit by another.] + + In digitu{m} cures digitu{m} si duc{er}e ma{i}or + [*leaf 154b.] + P{er} qua{n}tu{m} distat a denis respice debes + Namq{ue} suo decuplo totiens deler{e} mi{n}ore{m} + Sitq{ue} tibi nu{meru}s veniens exinde patebit. + + [Sidenote: How to multiply two digits. Subtract the greater from ten; + take the less so many times from ten times itself. Example.] + +Her{e} he teches a rewle, how {o}u schalt fynde e nounb{r}e at +comes by e m{u}ltiplicacio[n~] of a digit be ano{er}. loke how mony +[vny]tes ben. bytwene e mor{e} digit and 10. And reken ten for on +vnite. And so oft do away e lasse nounbre out of his owne decuple, at +is to say, fro at nounb{r}e at is ten tymes so mych is e nounb{re} +{a}t comes of e m{u}ltiplicacio[n~]. As yf {o}u wol m{u}ltiply 2 be +4. loke how mony vnitees ben by-twene e quych is e mor{e} nounb{re}, +&be-twene ten. C{er}ten {ere} wel be vj vnitees by-twene 4 & ten. yf +{o}u reken {ere} w{i}t{h} e ten e vnite, as ou may se. so mony +tymes take 2. out of his decuple, e quych is 20. for 20 is e decuple +of 2, 10 is e decuple of 1, 30 is e decuple of 3, 40 is e decuple of +4, And e o{er} digetes til {o}u come to ten; & whan {o}u hast y-take +so mony tymes 2 out of twenty, e quych is sex tymes, {o}u schal leue 8 +as {o}u wost wel, for 6 times 2 is twelue. take [1]2 out of twenty, +&{ere} schal leue 8. bot yf bothe e digett{es} [*leaf 155a] ben +y-lyech mych as her{e}. 222 or too tymes twenty, en it is no fors quych +of hem tweyn {o}u take out of here decuple. als mony tymes as {a}t is +fro 10. but neu{er}-e-lesse, yf {o}u haue hast to worch, {o}u schalt +haue her{e} a tabul of figures, wher{e}-by {o}u schalt se a-non[n~] +ryght what is e nounbre {a}t comes of e multiplicacio[n~] of 2 +digittes. us {o}u schalt worch in is fig{ur}e. + + [Sidenote: Better use this table, though. How to use it. The way to + use the Multiplication table.] + + 1| + ----- + 2| 4| + -------- + 3| 6| 9| + ----------- + 4| 8|12|16| + -------------- + 5|10|15|20|25| + ----------------- + 6|12|18|24|30|36| + -------------------- + 7|14|21|28|35|42|49| + ----------------------- + 8|16|24|32|40|48|56|64| + -------------------------- + 9|18|27|36|45|54|63|72|81| + ---------------------------- + 1| 2| 3| 4| 5| 6| 7| 8| 9| + ---------------------------- + +yf e fig{ur}e, e quych schall{e} be m{u}ltiplied, be euen{e} as mych +as e diget be, e quych at o{er} figur{e} schal be m{u}ltiplied, +as two tymes tway[n~], or thre tymes 3. or sych other. loke qwer{e} at +fig{ur}e sittes in e lyft side of e t{ri}angle, &loke qwer{e} e +diget sittes in e ne{er} most rewe of e triangle. & go fro hym +vpwarde in e same rewe, e quych rewe gose vpwarde til {o}u come +agaynes e o{er} digette at sittes in e lyft side of e t{ri}angle. +And at nounbre, e quych ou [*leaf 155b] fyn[*]des {ere} is e +nounbre at comes of the m{u}ltiplicacio[n~] of e 2 digittes, as yf ou +wold wete qwat is 2 tymes 2. loke quer{e} sittes 2 in e lyft side i{n} +e first rewe, he sittes next 1 in e lyft side al on hye, as {o}u may +se; e[{n}] loke qwer{e} sittes 2 in e lowyst rewe of e t{ri}angle, +&go fro hym vpwarde in e same rewe tyll{e} ou come a-[gh]enenes 2 in +e hyer place, &er ou schalt fynd ywrite 4, & at is e nounb{r}e at +comes of e multiplicacio[n~] of two tymes tweyn is 4, as ow wotest +well{e}. yf e diget. the quych is m{u}ltiplied, be mor{e} an e +o{er}, ou schalt loke qwer{e} e mor{e} diget sittes in e lowest rewe +of e t{ri}angle, &go vpwarde in e same rewe tyl[{10}] {o}u come +a-nendes e lasse diget in the lyft side. And {ere} {o}u schalt fynde +e no{m}b{r}e at comes of e m{u}ltiplicacio[n~]; but {o}u schalt +vnd{er}stonde at is rewle, e quych is in is v{er}se. In digitu{m} +cures, &c., no{er} is t{ri}angle schall{e} not s{er}ue, bot to fynde +e nounbres {a}t comes of the m{u}ltiplicacio[n~] at comes of 2 +articuls or {com}posites, e nedes no craft but yf ou wolt m{u}ltiply +in i mynde. And [*leaf 156a] ere-to ou schalt haue a craft +aft{er}warde, for ou schall wyrch w{i}t{h} digettes in e tables, as +ou schalt know aft{er}warde. v{er}sus. + + [Headnote: To multiply one Composite by another.] + + Postea p{ro}cedas postrema{m} m{u}ltiplica{n}do + [Recte multiplicans per cu{n}ctas i{n}feriores] + Condic{i}onem tamen t{a}li q{uod} m{u}ltiplicant{es} + Scribas in capite quicq{ui}d p{ro}cesserit inde + Sed postq{uam} fuit hec m{u}ltiplicate fig{ur}e + Anteriorent{ur} serei m{u}ltiplica{n}t{is} + Et sic m{u}ltiplica velut isti m{u}ltiplicasti + Qui sequit{ur} nu{mer}u{m} sc{ri}ptu{m} quiscu{n}q{ue} figur{is}. + + [Sidenote: How to multiply one number by another. Multiply the 'last' + figure of the higher by the 'first' of the lower number. Set the + answer over the first of the lower: then multiply the second of the + lower, and so on. Then antery the lower number: as thus. Now multiply + by the last but one of the higher: as thus. Antery the figures again, + and multiply by five: Then add all the figures above the line: and + you will have the answer.] + +Her{e} he teches how {o}u schalt wyrch in is craft. ou schalt +m{ul}tiplye e last figur{e} of e nombre, and quen {o}u hast so ydo +ou schalt draw all{e} e figures of e ne{er} nounbre mor{e} taward e +ry[gh]t side, so qwe{n} {o}u hast m{u}ltiplyed e last figur{e} of e +heyer nounbre by all{e} e ne{er} figures. And sette e nounbir at +comes er-of ou{er} e last figur{e} of e ne{er} nounb{re}, &en ou +schalt sette al e o{er} fig{ur}es of e ne{er} nounb{re} mor{e} +ner{e} to e ry[gh]t side. And whan ou hast m{u}ltiplied at figur{e} +at schal be m{u}ltiplied e next aft{er} hym by al e ne{er} figures. +And worch as ou dyddyst afor{e} til [*leaf 156b] ou come to e ende. +And ou schalt vnd{er}stonde at eu{er}y figur{e} of e hier nounb{re} +schal be m{u}ltiplied be all{e} e figur{e}s of the ne{er} nounbre, +yf e hier nounb{re} be any figur{e} en on{e}. lo an Ensampul her{e} +folowyng{e}. + + +------+ + | 2465|. + |232 | + +------+ + +ou schalt begyne to m{u}ltiplye in e lyft side. M{u}ltiply 2 be 2, and +twyes 2 is 4. set 4 ou{er} e hed of {a}t 2, en m{u}ltiplie e same +hier 2 by 3 of e nether nounbre, as thryes 2 at schal be 6. set 6 +ou{er} e hed of 3, an m{u}ltiplie e same hier 2 by at 2 e quych +stondes vnd{er} hym, {a}t wol be 4; do away e hier 2 & sette {ere} 4. +Now {o}u most antery e nether nounbre, at is to say, {o}u most +sett e ne{er} nounbre more towarde e ry[gh]t side, as us. Take e +ne{er} 2 toward e ry[gh]t side, &sette it eue[n~] vnd{er} e 4 of e +hyer nounb{r}e, & ant{er}y all{e} e figures at comes aft{er} at 2, as +us; sette 2 vnd{er} e 4. en sett e figur{e} of 3 {ere} at e +figure of 2 stode, e quych is now vndur {a}t 4 in e hier nounbre; en +sett e oer figur{e} of 2, e quych is e last fig{ur}e toward e lyft +side of e ne{er} nomb{er} {ere} e figur{e} of 3 stode. en {o}u +schalt haue such a nombre. + + +------+ + |464465| + | 232 | + +------+ + +[*leaf 157a] Now m{u}ltiply 4, e quych comes next aft{er} 6, by e +last 2 of e ne{er} nounbur toward e lyft side. as 2 tymes 4, at wel +be 8. sette at 8 ou{er} e figure the quych stondes ou{er} e hede of +at 2, e quych is e last figur{e} of e ne{er} nounbre; an multiplie +at same 4 by 3, at comes in e ne{er} rewe, at wol be 12. sette e +digit of e composyt ou{er} e figure e quych stondes ou{er} e hed of +at 3, &sette e articule of is co{m}posit ou{er} al e figures at +stondes ou{er} e ne{er} 2 hede. en m{u}ltiplie e same 4 by e 2 in +e ry[gh]t side in e ne{er} nounbur, at wol be 8. do away 4. & sette +{ere} 8. Eu{er} mor{e} qwen {o}u m{u}ltiplies e hier figur{e} by at +figur{e} e quych stondes vnd{er} hym, ou schalt do away at hier +figur{e}, & sett er at nounbre e quych comes of m{u}ltiplicacio[n~] +of ylke digittes. Whan ou hast done as I haue byde e, {o}u schalt +haue suych an ord{er} of figur{e} as is her{e}, + + +--------+ + | 1 |. + | 82 | + |4648[65]| + | 232 | + +--------+ + +en take and ant{er}y i ne{er} figures. And sett e fyrst fig{ur}e of +e ne{er} figures[{11}] vndre be figur{e} of 6. And draw al e o{er} +figures of e same rewe to hym-warde, [*leaf 157b] as {o}u diddyst +afore. en m{u}ltiplye 6 be 2, &sett at e quych comes ou{er} +{ere}-of ou{er} al e o{er} figures hedes at stondes ou{er} at 2. +en m{u}ltiply 6 be 3, &sett all{e} at comes {ere}-of vpon all{e} e +figur{e}s hedes at standes ou{er} at 3; a{n} m{u}ltiplye 6 be 2, e +quych stondes vnd{er} at 6, en do away 6 & write {ere} e digitt of +e composit at schal come {ere}of, &sette e articull ou{er} all{e} +e figures at stondes ou{er} e hede of at 3 as her{e}, + + +------+ + | 11 | + | 121 | + | 828 | + |464825| + | 232 | + +------+ + +en ant{er}y i figures as ou diddyst afor{e}, and m{u}ltipli 5 be 2, +at wol be 10; sett e 0 ou{er} all e figures {a}t stonden ou{er} at +2, &sett {a}t 1. ou{er} the next figures hedes, all{e} on hye towarde +e lyft side. en m{u}ltiplye 5 be 3. at wol be 15, write 5 ou{er} e +figures hedes at stonden ou{er} {a}t 3, & sett at 1 ou{er} e next +figur{e}s hedes toward e lyft side. en m{u}ltiplye 5 be 2, at wol be +10. do away at 5 & sett {ere} a 0, & sett at 1 ou{er} e figures +hedes at stonden ou{er} 3. And en ou schalt haue such a nounbre as +here stondes aftur.[*leaf 158a] + + +------+ + | 11 | + | 1101 | + | 1215 | + | 82820| + |4648 | + | 232| + +------+ + + Now draw all{e} ese figures downe toged{er} as us, 6.8.1. & 1 draw +to-gedur; at wolle be 16, do away all{e} ese figures saue 6. lat hym +stonde, for ow {o}u take hym away ou most write er e same a[gh]ene. +{ere}for{e} late hym stonde, &sett 1 ou{er} e figur{e} hede of 4 +toward e lyft side; en draw on to 4, at woll{e} be 5. do away at 4 & +at 1, &sette {ere} 5. en draw 4221 & 1 toged{ur}, at wol be 10. do +away all{e} at, &write ere at 4 & at 0, &sett at 1 ou{er} e next +figur{es} hede toward e lyft side, e quych is 6. en draw at 6 & at +1 togedur, &at wolle be 7; do away 6 & sett {ere} 7, en draw 8810 & +1, &at wel be 18; do away all{e} e figures {a}t stondes ou{er} e +hede of at 8, &lette 8 stonde stil, &write at 1 ou{er} e next +fig{u}r{is} hede, e quych is a 0. en do away at 0, &sett {ere} 1, +e quych stondes ou{er} e 0. hede. en draw 2, 5, &1 toged{ur}, at +woll{e} be 8. en do away all{e} at, &write {ere}8. And en ou +schalt haue is nounbre, 571880. + + [Headnote: The Cases of this Craft.] + + [*leaf 158b] + + S{ed} cu{m} m{u}ltiplicabis, p{ri}mo sic e{st} op{er}andu{m}, + Si dabit articulu{m} tibi m{u}ltiplicacio solu{m}; + P{ro}posita cifra su{m}ma{m} t{ra}nsferre meme{n}to. + + [Sidenote: What to do if the first multiplication results in an + article.] + +Her{e} he puttes e fyrst case of is craft, e quych is is: yf +{ere} come an articulle of e m{u}ltiplicacio[n~] ysette befor{e} the +articull{e} in e lyft side as us + + +---+ + | 51|. + |23 | + +---+ + +multiplye 5 by 2, at wol be 10; sette ou{er} e hede of at 2 a 0, +&sett at on, at is e articul, in e lyft side, at is next hym, en +{o}u schalt haue is nounbre + + +----+ + |1051|. + | 23 | + +----+ + + And en worch forth as ou diddist afore. And {o}u schalt +vnd{er}stonde at {o}u schalt write no 0. but whan at place where ou +schal write at 0 has no figure afore hy{m} no{er} aft{er}. v{er}sus. + + Si aut{em} digitus excreu{er}it articul{us}q{ue}. + Articul{us}[{12}] sup{ra}p{osit}o digito salit vltra. + + [Sidenote: What to do if the result is a composite number.] + +Her{e} is e secunde case, e quych is is: yf hit happe at {ere} +come a composyt, ou schalt write e digitte ou{er} e hede of e +ne{er} figur{e} by e quych {o}u multipliest e hier figure; and sett +e articull{e} next hym toward e lyft side, as ou diddyst afore, as +{us} + + +---+ + | 83|. + |83 | + +---+ + +Multiply 8 by 8, at wol be 64. Write e 4 ou{er} 8, at is to say, +ou{er} e hede of e ne{er} 8; & set 6, e quych [*leaf 159a] is an +articul, next aft{er}. And en ou schalt haue such a nounb{r}e as is +her{e}, + + +-----------+ + | 6483[{13}]|, + | 83 | + +-----------+ + +And en worch forth. + + Si digitus t{amen} ponas ip{su}m sup{er} ip{s}am. + + [Sidenote: What if it be a digit.] + + Her{e} is e thryde case, e quych is is: yf hit happe at of i +m{u}ltiplicaciou[n~] come a digit, {o}u schalt write e digit ou{er} e +hede of e ne{er} figur{e}, by the quych ou m{u}ltipliest e hier{e} +figur{e}, for is nedes no Ensampul. + + Subdita m{u}ltiplica non hanc que [incidit] illi + Delet ea{m} penit{us} scribens quod p{ro}uenit inde. + + [Sidenote: The fourth case of the craft.] + +Her{e} is e 4 case, e quych is: yf hit be happe at e ne{er} +figur{e} schal multiplye at figur{e}, e quych stondes ou{er} at +figures hede, ou schal do away e hier figur{e} & sett {er}e at +{a}t comys of {a}t m{u}ltiplicacio[n~]. As yf {er}e come of at +m{u}ltiplicacio[n~] an articuls ou schalt write ere e hier figur{e} +stode a 0. And write e articuls in e lyft side, yf at hit be a +digit write {er}e a digit. yf at h{i}t be a composit, write e digit +of e composit. And e articul in e lyft side. al is is ly[gh]t +y-now[gh]t, {er}e-for{e} er nedes no Ensampul. + + S{ed} si m{u}ltiplicat alia{m} ponas sup{er} ip{s}am + Adiu{n}ges num{er}u{m} que{m} p{re}bet duct{us} ear{um}. + + [Sidenote: The fifth case of the craft.] + +Her{e} is e 5 case, e quych is is: yf [*leaf 159b] e ne{er} +figur{e} schul m{u}ltiplie e hier, and at hier figur{e} is not recte +ou{er} his hede. And at ne{er} figur{e} hase o{er} figures, or on +figure ou{er} his hede by m{u}ltiplicacio[n~], at hase be afor{e}, ou +schalt write at nounbre, e quych comes of at, ou{er} all{e} e ylke +figures hedes, as us here: + + +-----+ + | 236| + |234 | + +-----+ + +Multiply 2 by 2, at wol be 4; set 4 ou{er} e hede of at 2. en[{14}] +m{u}ltiplies e hier 2 by e ne{er} 3, at wol be 6. set ou{er} his +hede 6, multiplie e hier 2 by e ne{er} 4, at wol be 8. do away e +hier 2, e quych stondes ou{er} e hede of e figur{e} of4, and set +{er}e 8. And ou schalt haue is nounb{re} here + + +-------+ + | 46836 | + | 234 | + +-------+ + +And antery i figur{e}s, at is to say, set i ne{er} 4 vnd{er} e hier +3, and set i 2 other figures ner{e} hym, so at e ne{er} 2 stonde +vnd{ur} e hier 6, e quych 6 stondes in e lyft side. And at 3 at +stondes vndur 8, as us aftur [gh]e mayse, + + +-------+ + | 46836 | + | 234 | + +-------+ + +Now worch forthermor{e}, And m{u}ltiplye at hier 3 by 2, at wol be 6, +set {a}t 6 e quych stondes ou{er} e hede of at 2, And en worch as I +ta[gh]t e afore. + + [*leaf 160a] + + Si sup{ra}posita cifra debet m{u}ltiplicar{e} + Prorsus ea{m} deles & ibi scribi cifra debet. + + [Sidenote: The sixth case of the craft.] + +Her{e} is e 6 case, e quych is is: yf hit happe at e figur{e} by +e quych ou schal m{u}ltiplye e hier figur{e}, e quych stondes ryght +ou{er} hym by a 0, ou schalt do away at figur{e}, e quych ou{er} at +cifre hede. And write {ere} at nounbre at comes of e +m{u}ltiplicacio[n~] as us, 23. do away 2 and sett {er}e a 0. vn{de} +v{er}sus. + + Si cifra m{u}ltiplicat alia{m} posita{m} sup{er} ip{s}am + Sitq{ue} locus sup{ra} vacu{us} sup{er} hanc cifra{m} fiet. + + [Sidenote: The seventh case of the craft.] + +Her{e} is e 7 case, e quych is is: yf a 0 schal m{u}ltiply a +figur{e}, e quych stondes not recte ou{er} hym, And ou{er} at 0 stonde +no thyng, ou schalt write ou{er} at 0 ano{er} 0 as us: + + +----+ + | 24| + |03 | + +----+ + +multiplye 2 be a 0, it wol be nothyng{e}. write ere a 0 ou{er} e hede +of e ne{er} 0, And en worch forth til ou come to e ende. + + Si sup{ra}[{15}] fuerit cifra sem{per} e{st} p{re}t{er}eunda. + + [Sidenote: The eighth case of the craft.] + +Her{e} is e 8 case, e quych is is: yf {ere} be a 0 or mony cifers +in e hier rewe, {o}u schalt not m{u}ltiplie hem, bot let hem stonde. +And antery e figures benee to e next figur{e} sygnificatyf as us: + + +-----+ + |00032|. + |22 | + +-----+ + +Ou{er}-lepe all{e} ese cifers & sett at [*leaf 160b] ne{er} 2 at +stondes toward e ryght side, and sett hym vnd{ur} e 3, and sett e +o{er} nether 2 nere hym, so at he stonde vnd{ur} e thrydde 0, e +quych stondes next 3. And an worch. vnd{e} v{er}sus. + + Si dubites, an sit b{e}n{e} m{u}ltiplicac{i}o facta, + Diuide totalem nu{mer}u{m} p{er} multiplicante{m}. + + [Sidenote: How to prove the multiplication.] + +Her{e} he teches how ou schalt know whe{er} ou hase wel I-do or no. +And he says at ou schalt deuide all{e} e nounb{r}e at comes of e +m{u}ltiplicacio[n~] by e ne{er} figures. And en ou schalt haue e +same nounbur at {o}u hadyst in e begynnyng{e}. but [gh]et ou hast +not e craft of dyuisio[n~], but {o}u schalt haue hit aft{er}warde. + + P{er} num{er}u{m} si vis nu{mer}u{m} q{u}oq{ue} m{u}ltiplicar{e} + T{antu}m p{er} normas subtiles absq{ue} figuris + Has normas pot{er}is p{er} v{er}sus scir{e} sequentes. + + [Sidenote: Mental multiplication.] + + Her{e} he teches e to m{u}ltiplie be ow[gh]t figures in i mynde. +And e sentence of is v{er}se is is: yf o{u} wel m{u}ltiplie on +nounbre by ano{er} in i mynde, {o}u schal haue {er}eto rewles in e +v{er}ses at schal come aft{er}. + + Si tu p{er} digitu{m} digitu{m} vis m{u}ltiplicar{e} + Re{gula} p{re}cedens dat qualit{er} est op{er}andu{m}. + + [Sidenote: Digit by digit is easy.] + + Her{e} he teches a rewle as ou hast afor{e} to m{u}ltiplie a digit be +ano{er}, as yf ou wolde wete qwat is sex tymes 6. ou [*leaf 161a] +schalt wete by e rewle at I ta[gh]t e befor{e}, yf ou haue mynde +{er}of. + + Articulu{m} si p{er} reliquu{m} reliquu{m} vis m{u}lti{plica}r{e} + In p{ro}p{r}iu{m} digitu{m} debet vt{er}q{ue} resolui. + Articul{us} digitos post se m{u}ltiplicantes + Ex digit{us} quociens retenerit m{u}ltipli{ca}r{i} + Articuli faciu{n}t tot centu{m} m{u}ltiplicati. + + [Sidenote: The first case of the craft. Article by article; an + example: another example:] + + [Headnote: How to work subtly without Figures.] + + [Sidenote: Mental multiplication. Another example. Another example. + Notation. Notation again. Mental multiplication.] + +Her{e} he teches e furst rewle, e quych is is: yf ou wel +m{u}ltiplie an articul be ano{er}, so at both e articuls bene +w{i}t{h}-Inne an hundreth, us {o}u schalt do. take e digit of bothe +the articuls, for eu{er}y articul hase a digit, en m{u}ltiplye at on +digit by at o{er}, and loke how mony vnytes ben in e nounbre at +comes of e m{u}ltiplicacio[n~] of e 2 digittes, &so mony hundrythes +ben in e nounb{re} at schal come of e m{u}ltiplicacio[n~] of e ylke +2 articuls as us. yf {o}u wold wete qwat is ten tymes ten. take e +digit of ten, e quych is 1; take e digit of at o{er} ten, e quych +is on. Also m{u}ltiplie 1 be 1, as on tyme on at is but 1. In on is +but on vnite as ou wost welle, {er}efor{e} ten tymes ten is but a +hundryth. Also yf ou wold wete what is twenty tymes 30. take e digit +of twenty, at is 2; & take e digitt of thrytty, at is 3. m{u}ltiplie +3 be 2, at is 6. Now in 6 ben 6 vnites, And so mony hundrythes ben in +20 tymes 30[*leaf 161b], {ere}for{e} 20 tymes 30 is 6 hundryth eue[n~]. +loke & se. But yf it be so at on{e} articul be w{i}t{h}-Inne an +hundryth, or by-twene an hundryth and a thowsande, so at it be not a +owsande fully. en loke how mony vnytes ben in e nounbur at comys of +e m{u}ltiplicacio[n~] [{16}]And so mony tymes[{16}] of 2 digitt{es} of +ylke articuls, so mony thowsant ben in e nounbre, the qwych comes of e +m{u}ltiplicacio[n~]. And so mony tymes ten thowsand schal be in e +nounbre at comes of e m{u}ltiplicacion of 2 articuls, as yf {o}u wold +wete qwat is 4 hundryth tymes [two hundryth]. Multiply 4 be 2,[{17}] at +wol be 8. in 8 ben 8 vnites. And so mony tymes ten thousand be in 4 +hundryth tymes [2][{17}] hundryth, {a}t is 80 thousand. Take hede, +Ischall telle e a gen{e}rall{e} rewle whan {o}u hast 2 articuls, And +ou wold wete qwat comes of e m{u}ltiplicacio[n~] of hem 2. m{u}ltiplie +e digit of {a}t on articuls, and kepe at nounbre, en loke how mony +cifers schuld go befor{e} at on articuls, and he wer{e} write. Als mony +cifers schuld go befor{e} at other, &he wer{e} write of cifers. And +haue all{e} e ylke cifers toged{ur} in i mynde, [*leaf 162a] a-rowe +ycho[n~] aftur other, and in e last plase set e nounbre at comes of +e m{u}ltiplicacio[n~] of e 2 digittes. And loke in i mynde in what +place he stondes, wher{e} in e secunde, or in e thryd, or in e 4, or +wher{e} ellis, and loke qwat e figures by-token in at place; & so mych +is e nounbre at comes of e 2 articuls y-m{u}ltiplied to-ged{ur} as +us: yf {o}u wold wete what is 20 thousant tymes 3 owsande. m{u}ltiply +e digit of at articull{e} e quych is 2 by e digitte of at o{er} +articul e quych is 3, at wol be 6. en loke how mony cifers schal go +to 20 thousant as hit schuld be write in a tabul. c{er}tainly 4 cifers +schuld go to 20 owsant. ffor is figure 2 in e fyrst place betokenes +twene. In e secunde place hit betokenes twenty. In e 3. place hit +betokenes 2 hundryth. .. In e 4 place 2 thousant. In e 5 place +h{i}t betokenes twenty ousant. {ere}for{e} he most haue 4 cifers +a-for{e} hym at he may sto{n}de in e 5 place. kepe ese 4 cifers in +thy mynde, en loke how mony cifers go[n~] to 3 thousant. Certayn to 3 +thousante [*leaf 162b] go[n~] 3 cifers afor{e}. Now cast ylke 4 cifers +at schuld go to twenty thousant, And thes 3 cifers at schuld go +afor{e} 3 thousant, &sette hem in rewe ycho[n~] aft{er} o{er} in i +mynde, as ai schuld stonde in a tabull{e}. And en schal ou haue 7 +cifers; en sett at 6 e quych comes of e m{u}ltiplicacio[n~] of e 2 +digitt{es} aft{u}r e ylke cifers in e 8 place as yf at hit stode in a +tabul. And loke qwat a figur{e} of 6 schuld betoken in e 8 place. yf +hit wer{e} in a tabul & so mych it is. & yf at figure of 6 stonde in e +fyrst place he schuld betoken but 6. In e 2 place he schuld betoken +sexty. In the 3 place he schuld betoke[n~] sex hundryth. In e 4 +place sex thousant. In e 5 place sexty owsant. In e sext place +sex hundryth owsant. In e 7 place sex owsant thousant{es}. In e +8 place sexty owsant thousantes. {er}for{e} sett 6 in octauo loco, And +he schal betoken sexty owsant thousantes. And so mych is twenty owsant +tymes 3 thousant, And is rewle is gen{er}all{e} for all{e} man{er} of +articuls, Whethir ai be hundryth or owsant; but {o}u most know well +e craft of e wryrchyng{e} in e tabull{e} [*leaf 163a] or ou know to +do us in i mynde aftur is rewle. Thou most at is rewle holdye note +but wher{e} {ere} ben 2 articuls and no mo of e quych ayther of hem +hase but on figur{e} significatyf. As twenty tymes 3 thousant or 3 +hundryth, and such o{ur}. + + Articulum digito si m{u}ltiplicare o{portet} + Articuli digit[i sumi quo multiplicate] + Debem{us} reliquu{m} quod m{u}ltiplicat{ur} ab ill{is} + P{er} reliq{u}o decuplu{m} sic su{m}ma{m} later{e} neq{ui}b{i}t. + + [Sidenote: The third case of the craft; an example.] + +Her{e} he puttes e thryde rewle, e quych is is. yf {o}u wel +m{u}ltiply in i mynde, And e Articul be a digitte, ou schalt loke at +e digitt be w{i}t{h}-Inne an hundryth, en ou schalt m{u}ltiply the +digitt of e Articulle by e oer digitte. And eu{er}y vnite in e +nounbre at schall{e} come {ere}-of schal betoken ten. As us: yf at +{o}u wold wete qwat is twyes 40. m{u}ltiplie e digitt{e} of 40, e +quych is 4, by e o{er} diget, e quych is 2. And at wolle be 8. And +in e nombre of 8 ben 8 vnites, &eu{er}y of e ylke vnites schuld +stonde for 10. {ere}-fore {ere} schal be 8 tymes 10, at wol be 4 +score. And so mony is twyes 40. If e articul be a hundryth or be 2 +hundryth And a owsant, so at hit be notte a thousant, [*leaf 163b] +worch as o{u} dyddyst afor{e}, saue {o}u schalt rekene eu{er}y vnite +for a hundryth. + + In nu{mer}u{m} mixtu{m} digitu{m} si ducer{e} cures + Articul{us} mixti sumat{ur} deinde resoluas + In digitu{m} post fac respectu de digitis + Articul{us}q{ue} docet excrescens in diriua{n}do + In digitu{m} mixti post ducas m{u}ltiplica{n}te{m} + De digitis vt norma [{18}][docet] de [hunc] + Multiplica si{mu}l et sic postea summa patebit. + + [Sidenote: The fourth case of the craft: Composite by digit. Mental + multiplication.] + +Here he puttes e 4 rewle, e quych is is: yf ou m{u}ltipliy on +composit be a digit as 6 tymes 24, [{19}]en take e diget of at +composit, & m{u}ltiply {a}t digitt by at o{er} diget, and kepe e +nomb{ur} at comes {ere}-of. en take e digit of at composit, +&m{u}ltiply at digit by ano{er} diget, by e quych {o}u hast +m{u}ltiplyed e diget of e articul, and loke qwat comes {ere}-of. en +take {o}u at nounbur, & cast hit to at other nounbur at {o}u +secheste as us yf ou wel wete qwat comes of 6 tymes 4 & twenty. +multiply at articull{e} of e composit by e digit, e quych is 6, +as yn e thryd rewle {o}u was tau[gh]t, And at schal be 6 scor{e}. en +m{u}ltiply e diget of e {com}posit, [*leaf 164a] e quych is 4, and +m{u}ltiply at by at other diget, e quych is 6, as ou wast tau[gh]t +in e first rewle, yf {o}u haue mynde {er}of, &at wol be 4 & twenty. +cast all ylke nounburs to-ged{ir}, & hit schal be 144. And so mych is 6 +tymes 4 & twenty. + + [Headnote: How to multiply without Figures.] + + Duct{us} in articulu{m} num{erus} si {com}posit{us} sit + Articulu{m} puru{m} comites articulu{m} q{u}o{que} + Mixti pro digit{is} post fiat [et articulus vt] + Norma iubet [retinendo quod extra dicta ab illis] + Articuli digitu{m} post tu mixtu{m} digitu{m} duc + Re{gula} de digitis nec p{re}cipit articul{us}q{ue} + Ex quib{us} exc{re}scens su{m}me tu iunge p{ri}ori + Sic ma{n}ifesta cito fiet t{ibi} su{m}ma petita. + + [Sidenote: The fifth case of the craft: Article by Composite. + An example.] + +Her{e} he puttes e 5 rewle, e quych is is: yf {o}u wel m{u}ltiply +an Articul be a composit, m{u}ltiplie at Articul by e articul of e +composit, and worch as ou wos tau[gh]t in e secunde rewle, of e quych +rewle e v{er}se begynnes us. Articulu{m} si p{er} Relicu{m} vis +m{u}ltiplicare. en m{u}ltiply e diget of e composit by at o{ir} +articul aft{ir} e doctrine of e 3 rewle. take {er}of gode hede, +Ip{ra}y e as us. Yf {o}u wel wete what is 24 tymes ten. Multiplie +ten by 20, at wel be 2 hundryth. en m{u}ltiply e diget of e 10, e +quych is 1, by e diget of e composit, e quych is 4, & {a}t [*leaf +164b] wol be 4. en reken eu{er}y vnite at is in 4 for 10, &at schal +be 40. Cast 40 to 2 hundryth, &at wol be 2 hundryth & 40. And so mych +is 24 tymes ten. + + [Headnote: How to work without Figures.] + + Compositu{m} num{er}u{m} mixto si[c] m{u}ltiplicabis + Vndecies tredeci{m} sic e{st} ex hiis op{er}andum + In reliquu{m} p{rimu}m demu{m} duc post in eund{em} + Vnu{m} post den{u}m duc in t{ri}a dei{n}de p{er} vnu{m} + Multiplices{que} dem{u}m int{ra} o{mn}ia m{u}ltiplicata + In su{m}ma decies q{ua}m si fu{er}it t{ibi} doces + Multiplicandor{um} de normis sufficiunt h{ec}. + + [Sidenote: The sixth case of the craft: Composite by Composite. + Mental multiplication. An example of the sixth case of the craft.] + +Here he puttes e 6 rewle, &e last of all{e} multiplicacio[n~], +e quych is is: yf {o}u wel m{u}ltiplye a {com}posit by a-no{er} +composit, ou schalt do us. m{u}ltiplie {a}t on composit, qwych {o}u +welt of the twene, by e articul of e to{er} composit, as {o}u wer{e} +tau[gh]t in e 5 rewle, en m{u}ltiplie {a}t same composit, e quych +ou hast m{u}ltiplied by e o{er} articul, by e digit of e o{er} +composit, as {o}u was tau[gh]t in e 4 rewle. As us, yf ou wold wete +what is 11 tymes 13, as {o}u was tau[gh]t in e 5 rewle, &at schal be +an hundryth & ten, aft{er}warde m{u}ltiply at same co{m}posit {a}t +{o}u hast m{u}ltiplied, e quych is a .11. And m{u}ltiplye hit be e +digit of e o{er} composit, e quych is 3, for 3 is e digit of 13, And +at wel be 30. en take e digit of at composit, e quych composit ou +m{u}ltiplied by e digit of {a}t o{er} {com}posit, [*leaf 165a] e +quych is a 11. Also of the quych 11 on is e digit. m{u}ltiplie at +digitt by e digett of at oth{er} composit, e quych diget is 3, as +{o}u was tau[gh]t in e first rewle i{n} e begynnyng{e} of is craft. +e quych rewle begynn{es} "In digitu{m} cures." And of all{e} e +m{u}ltiplicacio[n~] of e 2 digitt comys thre, for onys 3 is but 3. Now +cast all{e} ese nounbers toged{ur}, the quych is is, ahundryth & ten +& 30 & 3. And al at wel be 143. Write 3 first in e ryght side. And +cast 10 to 30, at wol be 40. set 40 next aft{ur} towarde e lyft side, +And set aftur a hundryth as her{e} an Ensampull{e}, 143. + +(Cetera desunt.) + + +FOOTNOTES (The Crafte of Nombrynge): + + [1: In MS, 'awiy.'] + [2: 'ben' repeated in MS.] + [3: In MS. 'thausandes.'] + [4: Perhaps "So."] + [5: 'hali' marked for erasure in MS.] + [6: 'moy' in MS.] + [7: 'Subt{ra}has a{u}t addis a dext{ri}s {ve}l medi{a}b{is}' added + on margin ofMS.] + [8: After 'craft' insert 'the .4. what is e p{ro}fet of is craft.'] + [9: After 'sythes' insert '& is wordes fyue sithe & sex sythes.'] + [10: 't'l' marked for erasure before 'tyl' in MS.] + [11: Here 'of e same rew' is marked for erasure in MS.] + [12: 's{ed}' deleted in MS.] + [13: 6883 in MS.] + [14: 'en' overwritten on 'at' marked for erasure.] + [15: 'Supra' inserted in MS. in place of 'cifra' marked for erasure.] + [16--16: Marked for erasure in MS.] + [17: 4 in MS.] + [18: docet. decet MS.] + [19: '4 times 4' in MS.] + + + + ++The Art of Nombryng.+ + +A TRANSLATION OF + ++John of Holywood's De Arte Numerandi.+ + + +[_Ashmole MS. 396, fol. 48._] + + +Boys seying in the begynnyng of his Arsemetrik{e}:--All{e} + [*Fol. 48.] thynges that ben{e} fro the first begynnyng of thynges + have p{ro}ceded{e}, and come forth{e}, And by reso{u}n of nombre + ben formed{e}; And in wise as they ben{e}, So oweth{e} they to be + knowen{e}; wherfor in vniu{er}sall{e} knowlechyng of thynges the + Art of nombrynge is best, and most operatyf{e}.+ + + [Sidenote: The name of the art. Derivation of Algorism. Another. + Another. Kinds of numbers. The 9 rules of the Art.] + +Therfore sithen the science of the whiche at this tyme we intenden{e} to +write of standith{e} all{e} and about nombre: ffirst we most se, what is +the p{ro}pre name therof{e}, and fro whens the name come: Afterward{e} +what is nombre, And how manye spices of nombre ther ben. The name is +cleped{e} Algorisme, had{e} out of Algor{e}, other of Algos, in grewe, +That is clepid{e} in englissh{e} art other craft, And of Rithm{us} that +is called{e} nombre. So algorisme is cleped{e} the art of nombryng, +other it is had of{e} en or in, and gogos that is introduccio{u}n, and +Rithm{us} nombre, that is to say Interduccio{u}n of nombre. And thirdly +it is had{e} of the name of a kyng that is cleped{e} Algo and Rythm{us}; +So called{e} Algorism{us}. Sothely .2. maner{e} of nombres ben +notified{e}; Formall{e},[{1}] as nombr{e} i{s} vnitees gadred{e} +to-gedres; Materiall{e},[{2}] as nombr{e} is a colleccio{u}n of vnitees. +Other nombr{e} is a multitude had{e} out of vnitees, vnitee is that +thynge wher-by eu{er}y thynge is called{e} oone, other o thynge. Of +nombres, that one is cleped{e} digitall{e}, that other{e} Article, +Another a nombre componed{e} o{er} myxt. Another digitall{e} is a +nombre w{i}t{h}-in .10.; Article is {a}t nombre that may be dyvyded{e} +in .10. p{ar}ties egally, And that there leve no residue; Componed{e} or +medled{e} is that nombre that is come of a digite and of an article. And +vndrestand{e} wele that all{e} nombres betwix .2. articles next is a +nombr{e} componed{e}. Of this art ben{e} .9. spices, that is forto sey, +num{er}acio{u}n, addicio{u}n, Subtraccio{u}n, Mediac{i}o{u}n, +Duplacio{u}n, Multipliacio{u}n, Dyvysio{u}n, Progressio{u}n, And of +Rootes the extraccio{u}n, and that may be had{e} in .2. maners, that is +to sey in nombres quadrat, and in cubic{es}: Amonge the which{e}, ffirst +of Num{er}acio{u}n, and aft{er}ward{e} of e o{er}s by ordure, +yentende to write. + + + [Headnote: Chapter I. Numeration.] + + [*Fol. 48b] + + +For-soth{e} num{er}acio{u}n is of eu{er}y numbre by + competent figures an artificiall{e} rep{re}sentacio{u}n.+ + + [Sidenote: Figures, differences, places, and limits. The 9 figures. + The cipher. The numeration of digits, of articles, of composites. + The value due to position. Numbers are written from right to left.] + +Sothly figure, difference, places, and lynes supposen o thyng other the +same, But they ben sette here for dyue{r}s resons. ffigure is cleped{e} +for p{ro}traccio{u}n of figuracio{u}n; Difference is called{e} for +therby is shewed{e} eu{er}y figure, how it hath{e} difference fro the +figures before them: place by cause of space, where-in me writeth{e}: +lynees, for that is ordeyned{e} for the p{re}sentacio{u}n of eu{er}y +figure. And vnderstonde that ther ben .9. lymytes of figures that +rep{re}senten the .9. digit{es} that ben these. 0. 9. 8. 7. 6. 5. 4. 3. +2. 1. The .10. is cleped{e} theta, or a cercle, other a cifre, other a +figure of nought for nought it signyfieth{e}. Nathelesse she holdyng +that place giveth{e} others for to signyfie; for with{e}-out cifre or +cifres a pure article may not be writte. And sithen that by these .9. +figures significatif{es} Ioyned{e} w{i}t{h} cifre or w{i}t{h} cifres +all{e} nombres ben and may be rep{re}sented{e}, It was, nether is, +no nede to fynde any more figures. And note wele that eu{er}y digite +shall{e} be writte w{i}t{h} oo figure allone to it ap{ro}pred{e}. And +all{e} articles by a cifre, ffor eu{er}y article is named{e} for oone of +the digitis as .10. of 1.. 20. of. 2. and so of the others, &c. And +all{e} nombres digitall{e} owen to be sette in the first difference: +All{e} articles in the seconde. Also all{e} nombres fro .10. til an +.100. [which] is excluded{e}, with .2. figures mvst be writte; And yf it +be an article, by a cifre first put, and the figure y-writte toward{e} +the lift hond{e}, that signifieth{e} the digit of the which{e} the +article is named{e}; And yf it be a nombre componed{e}, ffirst write the +digit that is a part of that componed{e}, and write to the lift side the +article as it is seid{e} be-fore. All{e} nombre that is fro an +hundred{e} tille a thousand{e} exclused{e}, owith{e} to be writ by .3. +figures; and all{e} nombre that is fro a thousand{e} til .x. M[~l]. mvst +be writ by .4. figures; And so forthe. And vnderstond{e} wele that +eu{er}y figure sette in the first place signyfieth{e} his digit; In the +second{e} place .10. tymes his digit; In the .3. place an hundred{e} so +moche; In the .4. place a thousand{e} so moche; In the .5. place .x. +thousand{e} so moch{e}; In the .6. place an hundred{e} thousand{e} so +moch{e}; In the .7. place a thousand{e} thousand{e}. And so infynytly +mvltiplying by [*Fol. 49.] these .3. 10, 100, 1000. And vnderstand{e} +wele that competently me may sette vpon figure in the place of a +thousand{e}, aprik{e} to shewe how many thousand{e} the last figure +shall{e} rep{re}sent. We writen{e} in this art to the lift side-ward{e}, +as arabien{e} writen{e}, that weren fynders of this science, other{e} +for this reso{u}n, that for to kepe a custumable ordr{e} in redyng, +Sette we all{e}-wey the more nombre before. + + [Headnote: Chapter II. Addition.] + + [Sidenote: Definition. How the numbers should be written. The method + of working. Begin at the right. The Sum is a digit, or an article, + or a composite.] + +Addicio{u}n is of nombre other of nombres vnto nombre or to nombres +aggregacio{u}n, that me may see that that is come therof as +exc{re}ssent. In addicio{u}n, 2. ordres of figures and .2. nombres ben +necessary, that is to sey, anombre to be added{e} and the nombre wherto +the addic{i}oun shold{e} be made to. The nombre to be added{e} is that +at shold{e} be added{e} therto, and shall{e} be vnderwriten; the nombre +vnto the which{e} addicio{u}n shall{e} be made to is that nombre that +resceyueth{e} the addicion of at other, and shall{e} be writen above; +and it is convenient that the lesse nombre be vnderwrit, and the more +added{e}, than the contrary. But whether it happ{e} one other other, the +same comyth{e} of, Therfor, yf ow wilt adde nombre to nombre, write the +nombre wherto the addicio{u}n shall{e} be made in the omest ordre by his +differences, so that the first of the lower ordre be vndre the first of +the omyst ordre, and so of others. That done, adde the first of the +lower ordre to the first of the omyst ordre. And of such{e} addicio{u}n, +other {er}e grow{i}t{h} therof a digit, An article, other a +composed{e}. If it be digit{us}, In the place of the omyst shalt thow +write the digit excrescyng, as thus:-- + + +----------------------------+---+ + |The resultant | 2 | + +----------------------------+---+ + |To whom it shal be added{e} | 1 | + +----------------------------+---+ + |The nombre to be added{e} | 1 | + +----------------------------+---+ + +If the article; in the place of the omyst put a-way by a cifre writte, +and the digit transferred{e}, of e which{e} the article toke his name, +toward{e} the lift side, and be it added{e} to the next figure folowyng, +yf ther be any figure folowyng; or no, and yf it be not, leve it [in +the] void{e}, as thus:-- + + +---------------------------------+----+ + | The resultant | 10 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 7 | + +---------------------------------+----+ + | The nombre to be added{e} | 3 | + +---------------------------------+----+ + + +----------------------+---+---+---+---+---+ + | Resultans | 2 | 7 | 8 | 2 | 7 | + +----------------------+---+---+---+---+---+ + | Cui d{ebet} addi | 1 | 0 | 0 | 8 | 4 | + +----------------------+---+---+---+---+---+ + | Num{erus} addend{us} | 1 | 7 | 7 | 4 | 3 | + +----------------------+---+---+---+---+---+ + +And yf it happe that the figure folowyng wherto the addicio{u}n shall{e} +be made by [the cifre of] an article, it sette a-side; In his place +write the [*Fol. 49b] [digit of the] Article as thus:-- + + +---------------------------------+----+ + | The resultant | 17 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 10 | + +---------------------------------+----+ + | The nombre to be added{e} | 7 | + +---------------------------------+----+ + +And yf it happe that a figure of .9. by the figure that me mvst adde +[one] to, In the place of that 9. put a cifre {and} write e article +toward{e} e lift hond{e} as bifore, and thus:-- + + +---------------------------------+----+ + | The resultant | 10 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 9 | + +---------------------------------+----+ + | The nombre to be added{e} | 1 | + +---------------------------------+----+ + +And yf[{3}] [therefrom grow a] nombre componed,[{4}] [in the place of +the nombre] put a-way[{5}][let] the digit [be][{6}]writ {a}t is part of +{a}t co{m}posid{e}, and an put to e lift side the article as before, +and us:-- + + +---------------------------------+----+ + | The resultant | 12 | + +---------------------------------+----+ + | To whom it shall{e} be added{e} | 8 | + +---------------------------------+----+ + | The nombre to be added{e} | 4 | + +---------------------------------+----+ + +This done, adde the seconde to the second{e}, and write above o{er} as +before. + + [Sidenote: The translator's note.] + +Note wele {a}t in addic{i}ons and in all{e} spices folowyng, whan he +seith{e} one the other shall{e} be writen aboue, and me most vse eu{er} +figure, as that eu{er}y figure were sette by half{e}, and by +hym-self{e}. + + + [Headnote: Chapter III. Subtraction.] + + [Sidenote: Definition of Subtraction. How it may be done. What is + required. Write the greater number above. Subtract the first figure + if possible. If it is not possible 'borrow ten,' and then subtract.] + +Subtraccio{u}n is of .2. p{ro}posed{e} nombres, the fyndyng of the +excesse of the more to the lasse: Other subtraccio{u}n is ablacio{u}n of +o nombre fro a-nother, that me may see a some left. The lasse of the +more, or even of even, may be w{i}t{h}draw; The more fro the lesse may +neu{er} be. And sothly that nombre is more that hath{e} more figures, So +that the last be signyficatife{s}: And yf ther ben as many in that one +as in that other, me most deme it by the last, other by the next last. +More-ou{er} in w{i}t{h}-drawyng .2. nombres ben necessary; Anombre to +be w{i}t{h}draw, And a nombre that me shall{e} w{i}t{h}-draw of. The +nombre to be w{i}t{h}-draw shall{e} be writ in the lower ordre by his +differences; The nombre fro the which{e} me shall{e} with{e}-draw in the +omyst ordre, so that the first be vnder the first, the second{e} vnder +the second{e}, And so of all{e} others. With{e}-draw therfor the first +of the lower{e} ordre fro the first of the ordre above his hede, and +that wolle be other more or lesse, o{er} egall{e}. + + +---------------------------------+----+ + | The remanent | 20 | + +---------------------------------+----+ + | Wherof me shall{e} w{i}t{h}draw | 22 | + +---------------------------------+----+ + | The nombre to be w{i}t{h}draw | 2 | + +---------------------------------+----+ + +yf it be egall{e} or even the figure sette beside, put in his place a +cifre. And yf it be more put away {er}fro als many of vnitees the lower +figure conteyneth{e}, and writ the residue as thus + + +----------------------------------+---+---+ + | The remanent | 2 | 2 | + +----------------------------------+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 2 | 8 | + +----------------------------------+---+---+ + | e nombre to be w{i}t{h}draw | | 6 | + +----------------------------------+---+---+ + + [*Fol. 50.] + + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | Remane{n}s | 2 | 2 | 1 | 8 | 2 | 9 | 9 | 9 | 8 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | A quo sit subtraccio | 8 | 7 | 2 | 4 | 3 | 0 | 0 | 0 | 4 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + | Numerus subt{ra}hend{us} | 6 | 5 |[{7}]|[6]| . | . | . | . | 6 | + +--------------------------+---+---+-----+---+---+---+---+---+---+ + +And yf it be lesse, by-cause the more may not be w{i}t{h}-draw ther-fro, +borow an vnyte of the next figure that is worth{e} 10. Of that .10. and +of the figure that ye wold{e} have w{i}t{h}-draw fro be-fore to-gedre +Ioyned{e}, w{i}t{h}-draw e figure be-nethe, and put the residue in the +place of the figure put a-side as {us}:-- + + +----------------------------------+---+---+ + | The remanent | 1 | 8 | + +----------------------------------+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 2 | 4 | + +----------------------------------+---+---+ + | The nombre to be w{i}t{h}-draw | 0 | 6 | + +----------------------------------+---+---+ + + [Sidenote: If the second figure is one.] + +And yf the figure wherof me shal borow the vnyte be one, put it a-side, +and write a cifre in the place {er}of, lest the figures folowing faile +of thair{e} nombre, and an worch{e} as it shew{i}t{h} in this figure +here:-- + + +--------------------------------+---+---+------+ + | The remanent | 3 | 0 |9[{8}]| + +--------------------------------+---+---+------+ + | Wherof me shal w{i}t{h}-draw | 3 | 1 | 2 | + +--------------------------------+---+---+------+ + | The nombre to be w{i}t{h}-draw | . | . | 3 | + +--------------------------------+---+---+------+ + + [Sidenote: If the second figure is a cipher.] + +And yf the vnyte wherof me shal borow be a cifre, go ferther to the +figure signyficatif{e}, and ther borow one, and reto{ur}nyng bak{e}, in +the place of eu{er}y cifre {a}t ye passid{e} ou{er}, sette figures of +.9. as here it is specified{e}:-- + + +----------------------------------+---+---+---+---+---+ + | The remenaunt | 2 | 9 | 9 | 9 | 9 | + +----------------------------------+---+---+---+---+---+ + | Wherof me shall{e} w{i}t{h}-draw | 3 | 0 | 0 | 0 | 3 | + +----------------------------------+---+---+---+---+---+ + | The nombre to be w{i}t{h}-draw | | | | | 4 | + +----------------------------------+---+---+---+---+---+ + + [Sidenote: Ajustification of the rule given. Why it is better to + work from right to left. How to prove subtraction, and addition.] + +And whan me cometh{e} to the nombre wherof me intendith{e}, there +remayneth{e} all{e}-wayes .10. ffor e which{e} .10. &c. The reson why +at for eu{er}y cifre left behynde me setteth figures ther of .9. this +it is:--If fro the .3. place me borowed{e} an vnyte, that vnyte by +respect of the figure that he came fro rep{re}sentith an .C., In the +place of that cifre [passed over] is left .9., [which is worth ninety], +and yit it remayneth{e} as .10., And the same reson{e} wold{e} be yf me +had{e} borowed{e} an vnyte fro the .4., .5., .6., place, or ony other so +vpward{e}. This done, withdraw the second{e} of the lower ordre fro the +figure above his hede of e omyst ordre, and wirch{e} as before. And +note wele that in addicion or in subtracc{i}o{u}n me may wele fro the +lift side begynne and ryn to the right side, But it wol be more +p{ro}fitabler to be do, as it is taught. And yf thow wilt p{ro}ve yf +thow have do wele or no, The figures that thow hast withdraw, adde them +ayene to the omyst figures, and they wolle accorde w{i}t{h} the first +that thow haddest yf thow have labored wele; and in like wise in +addicio{u}n, whan thow hast added{e} all{e} thy figures, w{i}t{h}draw +them that thow first [*Fol. 50b] addest, and the same wolle reto{ur}ne. +The subtraccio{u}n is none other but a p{ro}uff{e} of the addicio{u}n, +and the contrarye in like wise. + + [Headnote: Chapter IV. Mediation.] + + [Sidenote: Definition of mediation. Where to begin. If the first + figure is unity. What to do if it is not unity.] + +Mediacio{u}n is the fyndyng of the halfyng of eu{er}y nombre, that it +may be seyn{e} what and how moch{e} is eu{er}y half{e}. In halfyng ay oo +order of figures and oo nombre is necessary, that is to sey the nombre +to be halfed{e}. Therfor yf thow wilt half any nombre, write that nombre +by his differences, and begynne at the right, that is to sey, fro the +first figure to the right side, so that it be signyficatif{e} other +rep{re}sent vnyte or eny other digitall{e} nombre. If it be vnyte write +in his place a cifre for the figures folowyng, [lest they signify less], +and write that vnyte w{i}t{h}out in the table, other resolue it in .60. +mynvt{es} and sette a-side half of tho m{inutes} so, and reserve the +remen{au}nt w{i}t{h}out in the table, as thus .30.; other sette +w{i}t{h}out thus .{d[-i]}: that kepeth{e} none ordre of place, +Nathelesse it hath{e} signyficacio{u}n. And yf the other figure signyfie +any other digital nombre fro vnyte forth{e}, o{er} the nombre is od{e} +or even{e}. If it be even, write this half in this wise:-- + + +-----------------+---+---+ + | Halfed{e} | 2 | 2 | + +-----------------+----+--+ + | to be halfed{e} | 4 | 4 | + +-----------------+---+---+ + +And if it be odde, Take the next even vndre hym conteyned{e}, and put +his half in the place of that odde, and of e vnyte that remayneth{e} to +be halfed{e} do thus:-- + + +-----------------+---+---+ + | halfed{e} | 2 | 3 | [di] + +-----------------+---+---+ + | To be halfed{e} | 4 | 7 | + +-----------------+---+---+ + + [Sidenote: Then halve the second figure. If it is odd, add 5 to the + figure before.] + +This done, the second{e} is to be halfed{e}, yf it be a cifre put it +be-side, and yf it be significatif{e}, other it is even or od{e}: If it +be even, write in the place of e nombres wiped{e} out the half{e}; yf +it be od{e}, take the next even vnder it co{n}tenyth{e}, and in the +place of the Impar sette a-side put half of the even: The vnyte that +remayneth{e} to be halfed{e}, respect had{e} to them before, is worth{e} +.10. Dyvide that .10. in .2., 5. is, and sette a-side that one, and adde +that other to the next figure p{re}cedent as here:-- + + +-----------------+---+---+---+ + | Halfed{e} | | | | + +-----------------+---+---+---+ + | to be halfed{e} | | | | + +-----------------+---+---+---+ + +And yf e addicio{u}n shold{e} be made to a cifre, sette it a-side, and +write in his place .5. And vnder this fo{ur}me me shall{e} write and +worch{e}, till{e} the totall{e} nombre be halfed{e}. + + +------------------+---+---+---+---+---+----+----+---+ + | doubled{e} | 2 | 6 | 8 | 9 | 0 | 10 | 17 | 4 | + +------------------+---+---+---+---+---+----+----+---+ + | to be doubled{e} | 1 | 3 | 4 | 4 | 5 | 5 | 8 | 7 | + +------------------+---+---+---+---+---+----+----+---+ + + [Headnote: Chapter V. Duplation.] + + [Sidenote: Definition of Duplation. Where to begin. Why. What to do + with the result.] + +Duplicacio{u}n is ag{re}gacion of nombre [to itself] at me may se the +nombre growen. In doublyng{e} ay is but one ordre of figures necessarie. +And me most be-gynne w{i}t{h} the lift side, other of the more figure, +And after the nombre of the more figure rep{re}sentith{e}. [*Fol. 51.] +In the other .3. before we begynne all{e} way fro the right side and fro +the lasse nombre, In this spice and in all{e} other folowyng we wolle +begynne fro the lift side, ffor and me bigon th{e} double fro the first, +omwhile me myght double oo thynge twyes. And how be it that me myght +double fro the right, that wold{e} be harder in techyng and in workyng. +Therfor yf thow wolt double any nombre, write that nombre by his +differences, and double the last. And of that doubly{n}g other +growith{e} a nombre digital, article, or componed{e}. [If it be a digit, +write it in the place of the first digit.] If it be article, write in +his place a cifre and transferre the article toward{e} the lift, as +thus:-- + + +------------------+----+ + | double | 10 | + +------------------+----+ + | to be doubled{e} | 5 | + +------------------+----+ + +And yf the nombre be componed{e}, write a digital that is part of his +composicio{u}n, and sette the article to the lift hand{e}, as thus:-- + + +------------------+----+ + | doubled{e} | 16 | + +------------------+----+ + | to be doubled{e} | 8 | + +------------------+----+ + +That done, me most double the last save one, and what groweth{e} {er}of +me most worche as before. And yf a cifre be, touch{e} it not. But yf any +nombre shall{e} be added{e} to the cifre, in e place of e figure +wiped{e} out me most write the nombre to be added{e}, as thus:-- + + +------------------+---+---+---+ + | doubled{e} | 6 | 0 | 6 | + +------------------+---+---+---+ + | to be doubled{e} | 3 | 0 | 3 | + +------------------+---+---+---+ + + [Sidenote: How to prove your answer.] + +In the same wise me shall{e} wirch{e} of all{e} others. And this +p{ro}bacio{u}n: If thow truly double the halfis, and truly half the +doubles, the same nombre and figure shall{e} mete, such{e} as thow +labo{ur}ed{e} vpon{e} first, And of the contrarie. + + +------------------+---+---+---+ + | Doubled{e} | 6 | 1 | 8 | + +------------------+---+---+---+ + | to be doubled{e} | 3 | 0 | 9 | + +------------------+---+---+---+ + + [Headnote: Chapter VI. Multiplication.] + + [Sidenote: Definition of Multiplication. Multiplier. Multiplicand. + Product.] + +Multiplicacio{u}n of nombre by hym-self other by a-nother, w{i}t{h} +p{ro}posid{e} .2. nombres, [is] the fyndyng of the third{e}, That so +oft conteyneth{e} that other, as ther ben vnytes in the o{er}. In +multiplicacio{u}n .2. nombres pryncipally ben necessary, that is to +sey, the nombre multiplying and the nombre to be multiplied{e}, +as here;--twies fyve. [The number multiplying] is designed{e} +adu{er}bially. The nombre to be multiplied{e} resceyveth{e} a +no{m}i{n}all{e} appellacio{u}n, as twies .5. 5. is the nombre +multiplied{e}, and twies is the nombre to be multipliede. + + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Resultans |[{9}]| 1 | 0 || 1 | 3 | 2 | 6 | 6 | 8 | 0 | 0 | 8 | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Multiplicand{us}| . | . | 5 || . | . | 4 | . | 3 | 4 | 0 | 0 | 4 | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + | Multiplicans | . | 2 | 2 || . | 3 | 3 | 2 | 2 | 2 | . | . | . | + +-----------------+-----+---+---++---+---+---+---+---+---+---+---+---+ + +Also me may thervpon{e} to assigne the. 3. nombre, the which{e} is +[*Fol. 51b] cleped{e} p{ro}duct or p{ro}venient, of takyng out of one +fro another: as twyes .5 is .10., 5. the nombre to be multiplied{e}, +and .2. the multipliant, and. 10. as before is come therof. And +vnderstonde wele, that of the multipliant may be made the nombre to +be multiplied{e}, and of the contrarie, remaynyng eu{er} the same some, +and herof{e} cometh{e} the comen speche, that seith{e} all nombre is +converted{e} by Multiplying in hym-self{e}. + + +----+----+----+----+----+--------+----+----+----+-----+ + | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 2 | 4 | 6 | 8 | 10 |10[{10}]| 14 | 16 | 18 | 20 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 56 | 60 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | + +----+----+----+----+----+--------+----+----+----+-----+ + | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | + +----+----+----+----+----+--------+----+----+----+-----+ + + [Headnote: The Cases of Multiplication.] + + [Sidenote: There are 6 rules of Multiplication. (1) Digit by digit. + See the table above. (2) Digit by article. (3) Composite by digit.] + +And ther ben .6 rules of Multiplicacio{u}n; ffirst, yf a digit multiplie +a digit, considr{e} how many of vnytees ben betwix the digit by +multiplying and his .10. beth{e} to-gedre accompted{e}, and so oft +w{i}t{h}-draw the digit multiplying, vnder the article of his +deno{m}i{n}acio{u}n. Example of grace. If thow wolt wete how moch{e} is +.4. tymes .8., [{11}]se how many vnytees ben betwix .8.[{12}] and .10. +to-geder rekened{e}, and it shew{i}t{h} that .2.: withdraw ther-for the +quat{e}rnary, of the article of his deno{m}i{n}acion twies, of .40., And +ther remayneth{e} .32., that is, to some of all{e} the +multiplicacio{u}n. Wher-vpon for more evidence and declaracion the +seid{e} table is made. Whan a digit multiplieth{e} an article, thow most +bryng the digit into e digit, of e which{e} the article [has][{13}] +his name, and eu{er}y vnyte shall{e} stond{e} for .10., and eu{er}y +article an .100. Whan the digit multiplieth{e} a nombre componed{e}, +{o}u most bryng the digit into ai{er} part of the nombre componed{e}, +so {a}t digit be had into digit by the first rule, into an article by +e second{e} rule; and aft{er}ward{e} Ioyne the p{ro}duccio{u}n, and +{er}e wol be the some totall{e}. + + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Resultans | 1 | 2 | 6|| 7 | 3 | 6|| 1 | 2 | 0|| 1 | 2 | 0 | 8 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Multiplicand{us}| | | 2|| | 3 | 2|| | | 6|| | | | 4 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + |Multiplicans | | 6 | 3|| 2 | 3 | || | 2 | 0|| | 3 | 0 | 2 | + +----------------+---+---+--++---+---+--++---+---+--++---+---+---+---+ + + [Sidenote: (4) Article by article. (5) Composite by article. + (6) Composite by composite. How to set down your numbers. If the + result is a digit, an article, or a composite. Multiply next by + the last but one, and so on.] + +Whan an article multiplieth{e} an article, the digit wherof he is +named{e} is to be brought Into the digit wherof the o{er} is named{e}, +and eu{er}y vnyte wol be worth{e} [*Fol. 52.] an .100., and eu{er}y +article. a.1000. Whan an article multiplieth{e} a nombre componed{e}, +thow most bryng the digit of the article into aither part of the nombre +componed{e}; and Ioyne the p{ro}duccio{u}n, and eu{er}y article wol be +worth{e} .100., and eu{er}y vnyte .10., and so woll{e} the some be +open{e}. Whan a nombre componed{e} multiplieth{e} a nombre componed{e}, +eu{er}y p{ar}t of the nombre multiplying is to be had{e} into eu{er}y +p{ar}t of the nombre to be multiplied{e}, and so shall{e} the digit be +had{e} twies, onys in the digit, that other in the article. The article +also twies, ones in the digit, that other in the article. Therfor yf +thow wilt any nombre by hym-self other by any other multiplie, write the +nombre to be multiplied{e} in the ou{er} ordre by his differences, The +nombre multiplying in the lower ordre by his differences, so that the +first of the lower ordre be vnder the last of the ou{er} ordre. This +done, of the multiplying, the last is to be had{e} into the last of the +nombre to be multiplied{e}. Wherof than wolle grow a digit, an article, +other a nombre componed{e}. If it be a digit, even above the figure +multiplying is hede write his digit that come of, as it appereth{e} +here:-- + + +-----------------------+---+ + | The resultant | 6 | + +-----------------------+---+ + | To be multiplied{e} | 3 | + +-----------------------+---+ + | e nombre multipliyng | 2 | + +-----------------------+---+ + +And yf an article had be writ ou{er} the fig{ur}e multiplying his hede, +put a cifre {er} and transferre the article toward{e} the lift hand{e}, +as thus:-- + + +-------------------------+---+---+ + | The resultant | 1 | 0 | + +-------------------------+---+---+ + | to be multiplied{e} | | 5 | + +-------------------------+---+---+ + | e nombre m{u}ltipliyng | | 2 | + +-------------------------+---+---+ + +And yf a nombre componed{e} be writ ou{er} the figure multyplying is +hede, write the digit in the nombre componed{e} is place, and sette the +article to the lift hand{e}, as thus:-- + + +------------------------+---+---+ + | Resultant | 1 | 2 | + +------------------------+---+---+ + | to be multiplied{e} | | 4 | + +------------------------+---+---+ + | the nombre multipliyng | | 3 | + +------------------------+---+---+ + +This done, me most bryng the last save one of the multipliyng into the +last of e nombre to be multiplied{e}, and se what comyth{e} therof as +before, and so do w{i}t{h} all{e}, tille me come to the first of the +nombre multiplying, that must be brought into the last of the nombre to +be multiplied{e}, wherof growith{e} o{er} a digit, an article, [*Fol. +52b] other a nombre componed{e}. If it be a digit, In the place of the +ou{er}er, sette a-side, as here: + + +--------------------------+---+---+ + | Resultant | 6 | 6 | + +--------------------------+---+---+ + | to be multiplied{e} | | 3 | + +--------------------------+---+---+ + | the nombre m{u}ltipliyng | 2 | 2 | + +--------------------------+---+---+ + +If an article happe, there put a cifre in his place, and put hym to the +lift hand{e}, as here: + + +-------------------------+---+---+---+ + | The resultant | 1 | 1 | 0 | + +-------------------------+---+---+---+ + | to be multiplied{e} | | | 5 | + +-------------------------+---+---+---+ + | e nombre m{u}ltiplying | | 2 | 2 | + +-------------------------+---+---+---+ + +If it be a nombre componed{e}, in the place of the ou{er}er sette +a-side, write a digit that[{14}] is a p{ar}t of the componed{e}, and +sette on the left hond{e} the article, as here: + + +-----------------------------+---+-------+---+ + | The resultant | 1 |3[{15}]| 2 | + +-----------------------------+---+-------+---+ + | to be m{u}ltiplied{e} | | | 4 | + +-----------------------------+---+-------+---+ + | e nombr{e} m{u}ltiplia{n}t | | 3 | 3 | + +-----------------------------+---+-------+---+ + + [Sidenote: Then antery the multiplier one place. Work as before. + How to deal with ciphers.] + +That done, sette forward{e} the figures of the nombre multiplying by oo +difference, so that the first of the multipliant be vnder the last save +one of the nombre to be multiplied{e}, the other by o place sette +forward{e}. Than me shall{e} bryng{e} the last of the m{u}ltipliant in +hym to be multiplied{e}, vnder the which{e} is the first multipliant. +And than wolle growe o{er} a digit, an article, or a componed{e} +nombre. If it be a digit, adde hym even above his hede; If it be an +article, transferre hym to the lift side; And if it be a nombre +componed{e}, adde a digit to the figure above his hede, and sette to the +lift hand{e} the article. And all{e}-wayes eu{er}y figure of the nombre +multipliant is to be brought to the last save one nombre to be +multiplied{e}, til me come to the first of the multipliant, where me +shall{e} wirche as it is seid{e} before of the first, and aft{er}ward{e} +to put forward{e} the figures by o difference and one till{e} they +all{e} be multiplied{e}. And yf it happe that the first figure of e +multipliant be a cifre, and boue it is sette the figure signyficatif{e}, +write a cifre in the place of the figur{e} sette a-side, as thus, +{et}c.: + + +---------------------+---+---+---+ + | The resultant | 1 | 2 | 0 | + +---------------------+---+---+---+ + | to be multiplied{e} | | | 6 | + +---------------------+---+---+---+ + | the multipliant | | 2 | 0 | + +---------------------+---+---+---+ + + [Sidenote: How to deal with ciphers.] + +And yf a cifre happe in the lower order be-twix the first and the last, +and even above be sette the fig{ur}e signyficatif, leve it vntouched{e}, +as here:-- + + +---------------------+---+---+---+---+---+ + | The resultant | 2 | 2 | 6 | 4 | 4 | + +---------------------+---+---+---+---+---+ + | To be multiplied{e} | | | 2 | 2 | 2 | + +---------------------+---+---+---+---+---+ + | The multipliant | 1 | 0 | 2 | | | + +---------------------+---+---+---+---+---+ + +And yf the space above sette be void{e}, in that place write thow a +cifre. And yf the cifre happe betwix e first and the last to be +m{u}ltiplied{e}, me most sette forward{e} the ordre of the figures by +thair{e} differences, for oft of duccio{u}n of figur{e}s in cifres +nought is the resultant, as here, + + +-----------------------+---+---+---+---+---+ + | Resultant | 8 | 0 | 0 | 8 | | + +-----------------------+---+---+---+---+---+ + | to be m{u}ltiplied{e} | 4 | 0 | 0 | 4 | | + +-----------------------+---+---+---+---+---+ + | the m{u}ltipliant | 2 | . | . | . | | + +-----------------------+---+---+---+---+---+ + +[*Fol. 53.] wherof it is evident and open, yf that the first figure of +the nombre be to be multiplied{e} be a cifre, vndir it shall{e} be none +sette as here:-- + + +-----------------------+---+---+--------+ + | Resultant | 3 | 2 |0[{16}] | + +-----------------------+---+---+--------+ + | To be m{u}ltiplied{e} | | 8 | 0 | + +-----------------------+---+---+--------+ + | The m{u}ltipliant | | 4 | | + +-----------------------+---+---+--------+ + + [Sidenote: Leave room between the rows of figures.] + +Vnder[stand] also that in multiplicacio{u}n, divisio{u}n, and of rootis +the extraccio{u}n, competently me may leve a mydel space betwix .2. +ordres of figures, that me may write there what is come of addyng other +with{e}-drawyng, lest any thynge shold{e} be ou{er}-hipped{e} and sette +out of mynde. + + [Headnote: Chapter VII. Division.] + + [Sidenote: Definition of division. Dividend, Divisor, Quotient. + How to set down your Sum. An example. Examples.] + +For to dyvyde oo nombre by a-nother, it is of .2. nombres p{ro}posed{e}, +It is forto depart the moder nombre into as many p{ar}tis as ben of +vnytees in the lasse nombre. And note wele that in makyng{e} of +dyvysio{u}n ther ben .3. nombres necessary: that is to sey, the nombre +to be dyvyded{e}; the nombre dyvydyng and the nombre exeant, other how +oft, or quocient. Ay shall{e} the nombre that is to be dyvyded{e} be +more, other at the lest even{e} w{i}t{h} the nombre the dyvysere, yf the +nombre shall{e} be mad{e} by hole nombres. Therfor yf thow wolt any +nombre dyvyde, write the nombre to be dyvyded{e} in e ou{er}er +bordur{e} by his differences, the dyviser{e} in the lower ordur{e} by +his differences, so that the last of the dyviser be vnder the last of +the nombre to be dyvyde, the next last vnder the next last, and so of +the others, yf it may competently be done; as here:-- + + +------------------+---+---+---+ + | The residue | | 2 | 7 | + +------------------+---+---+---+ + | The quotient | | | 5 | + +------------------+---+---+---+ + | To be dyvyded{e} | 3 | 4 | 2 | + +------------------+---+---+---+ + | The dyvyser | | 6 | 3 | + +------------------+---+---+---+ + + +--------------+---+---+----+---+---++---+---+---++---+---+---+ + | Residuu{m} | | | 8 || | || | 2 | 7 || | 2 | 6 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Quociens | | 2 | 1 || 2 | 2 || | | 5 || | | 9 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Diuidend{us} | 6 | 8 | 0 || 6 | 6 || 3 | 4 | 2 || 3 | 3 | 2 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + | Diuiser | 3 | 2 | || 3 | || | 6 | 3 || | 3 | 4 | + +--------------+---+---+---++---+---++---+---+---++---+---+---+ + + [Sidenote: When the last of the divisor must not be set below the + last of the dividend. How to begin.] + +And ther ben .2. causes whan the last figure may not be sette vnder the +last, other that the last of the lower nombre may not be w{i}t{h}-draw +of the last of the ou{er}er nombre for it is lasse than the lower, other +how be it, that it myght be w{i}t{h}-draw as for hym-self fro the +ou{er}er the remenaunt may not so oft of them above, other yf e last of +the lower be even to the figure above his hede, and e next last o{er} +the figure be-fore {a}t be more an the figure above sette. [*Fol. +53^2.] These so ordeyned{e}, me most wirch{e} from the last figure of e +nombre of the dyvyser, and se how oft it may be w{i}t{h}-draw of and fro +the figure aboue his hede, namly so that the remen{au}nt may be take of +so oft, and to se the residue as here:-- + + [Sidenote: An example.] + + +------------------+---+---+---+ + | The residue | | 2 | 6 | + +------------------+---+---+---+ + | The quocient | | | 9 | + +------------------+---+---+---+ + | To be dyvyded{e} | 3 | 3 | 2 | + +------------------+---+---+---+ + | The dyvyser | | 3 | 4 | + +------------------+---+---+---+ + + [Sidenote: Where to set the quotiente. Examples.] + +And note wele that me may not with{e}-draw more than .9. tymes nether +lasse than ones. Therfor se how oft e figures of the lower ordre may be +w{i}t{h}-draw fro the figures of the ou{er}er, and the nombre that +shew{i}t{h} e q{u}ocient most be writ ou{er} the hede of at figure, +vnder the which{e} the first figure is, of the dyviser; And by that +figure me most with{e}-draw all{e} o{er} figures of the lower ordir and +that of the figures aboue thair{e} hedis. This so don{e}, me most sette +forward{e} e figures of the diuiser by o difference toward{es} the +right hond{e} and worch{e} as before; and thus:-- + + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Residuu{m} | | | | | | || | | | | . | 1 | 2 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | quo{ciens} | | | | 6 | 5 | 4 || | | | 2 | 0 | 0 | 4 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Diuidend{us} | 3 | 5 | 5 | 1 | 2 | 2 || 8 | 8 | 6 | 3 | 7 | 0 | 4 | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + | Diuisor | | 5 | 4 | 3 | | || 4 | 4 | 2 | 3 | | | | + +--------------+---+---+---+---+---+---++---+---+---+---+---+---+---+ + + +------------------+---+---+---+---+---+---+ + | The quocient | | | | 6 | 5 | 4 | + +------------------+---+---+---+---+---+---+ + | To be dyvyded{e} | 3 | 5 | 5 | 1 | 2 | 2 | + +------------------+---+---+---+---+---+---+ + | The dyvyser | | 5 | 4 | 3 | | | + +------------------+---+---+---+---+---+---+ + + [Sidenote: A special case.] + +And yf it happ{e} after e settyng forward{e} of the fig{ur}es {a}t e +last of the divisor may not so oft be w{i}t{h}draw of the fig{ur}e above +his hede, above at fig{ur}e vnder the which{e} the first of the diuiser +is writ me most sette a cifre in ordre of the nombre quocient, and sette +the fig{ur}es forward{e} as be-fore be o difference alone, and so me +shall{e} do in all{e} nombres to be dyvided{e}, for where the dyviser +may not be w{i}t{h}-draw me most sette there a cifre, and sette +forward{e} the figures; as here:-- + + +------------------+---+---+---+---+---+---+---+ + | The residue | | | | | | 1 | 2 | + |------------------+---+---+---+---+---+---+---+ + | The quocient | | | | 2 | 0 | 0 | 4 | + |------------------+---+---+---+---+---+---+---+ + | To be dyvyded{e} | 8 | 8 | 6 | 3 | 7 | 0 | 4 | + |------------------+---+---+---+---+---+---+---+ + | The dyvyser | 4 | 4 | 2 | 3 | | | | + +------------------+---+---+---+---+---+---+---+ + + [Sidenote: Another example. What the quotient shows. How to prove + your division, or multiplication.] + +And me shall{e} not cesse fro such{e} settyng of fig{ur}es forward{e}, +nether of settyng{e} of e quocient into the dyviser, ne{er} of +subt{ra}ccio{u}n of the dyvyser, till{e} the first of the dyvyser be +w{i}t{h}-draw fro e first to be divided{e}. The which{e} don{e}, or +ought,[{17}] o{er} nought shall{e} remayne: and yf it be ought,[{17}] +kepe it in the tables, And eu{er} vny it to e diviser. And yf {o}u +wilt wete how many vnytees of e divisio{u}n [*Fol. 53^3.] wol growe to +the nombre of the diviser{e}, the nombre quocient wol shewe it: and whan +such{e} divisio{u}n is made, and {o}u lust p{ro}ve yf thow have wele +done or no, Multiplie the quocient by the diviser, And the same +fig{ur}es wolle come ayene that thow haddest bifore and none other. And +yf ought be residue, than w{i}t{h} addicio{u}n therof shall{e} come the +same figures: And so multiplicacio{u}n p{ro}vith{e} divisio{u}n, and +dyvisio{u}n multiplicacio{u}n: as thus, yf multiplicacio{u}n be made, +divide it by the multipliant, and the nombre quocient wol shewe the +nombre that was to be multiplied{e}, {et}c. + + [Headnote: Chapter VIII. Progression.] + + [Sidenote: Definition of Progression. Natural Progression. Broken + Progression. The 1st rule for Natural Progression. The second rule. + The first rule of Broken Progression. The second rule.] + +Progressio{u}n is of nombre after egall{e} excesse fro oone or tweyn{e} +take ag{r}egacio{u}n. of p{ro}gressio{u}n one is naturell{e} or +co{n}tynuell{e}, {a}t o{er} broken and discontynuell{e}. Naturell{e} +it is, whan me begynneth{e} w{i}t{h} one, and kepeth{e} ordure +ou{er}lepyng one; as .1. 2. 3. 4. 5. 6., {et}c., so {a}t the nombre +folowyng{e} passith{e} the other be-fore in one. Broken it is, whan me +lepith{e} fro o nombre till{e} another, and kepith{e} not the contynuel +ordir{e}; as 1. 3. 5. 7. 9, {et}c. Ay me may begynne w{i}t{h} .2., as +us; .2. 4. 6. 8., {et}c., and the nombre folowyng passeth{e} the others +by-fore by .2. And note wele, that naturell{e} p{ro}gressio{u}n ay +begynneth{e} w{i}t{h} one, and Int{er}cise or broken p{ro}gressio{u}n, +omwhile begynnyth{e} w{i}th one, omwhile w{i}t{h} twayn{e}. Of +p{ro}gressio{u}n naturell .2. rules ther be yove, of the which{e} the +first is this; whan the p{ro}gressio{u}n naturell{e} endith{e} in even +nombre, by the half therof multiplie e next totall{e} ou{er}er{e} +nombre; Example of grace: .1. 2. 3. 4. Multiplie .5. by .2. and so .10. +cometh{e} of, that is the totall{e} nombre {er}of. The second{e} rule +is such{e}, whan the p{ro}gressio{u}n naturell{e} endith{e} in nombre +od{e}. Take the more porcio{u}n of the oddes, and multiplie therby the +totall{e} nombre. Example of grace 1. 2. 3. 4. 5., multiplie .5. by .3, +and thryes .5. shall{e} be resultant. so the nombre totall{e} is .15. Of +p{ro}gresio{u}n int{er}cise, ther ben also .2.[{18}] rules; and e first +is is: Whan the Int{er}cise p{ro}gression endith{e} in even nombre by +half therof multiplie the next nombre to at half{e} as .2.[{18}] 4. 6. +Multiplie .4. by .3. so at is thryes .4., and .12. the nombre of all{e} +the p{ro}gressio{u}n, woll{e} folow. The second{e} rule is this: whan +the p{ro}gressio{u}n int{er}scise endith{e} in od{e}, take e more +porcio{u}n of all{e} e nombre, [*Fol. 53^4.] and multiplie by +hym-self{e}; as .1. 3. 5. Multiplie .3. by hym-self{e}, and e some of +all{e} wolle be .9., {et}c. + + [Headnote: Chapter IX. Extraction of Roots.] + + [Sidenote: The preamble of the extraction of roots. Linear, + superficial, and solid numbers. Superficial numbers. Square numbers. + The root of a square number. Notes of some examples of square roots + here interpolated. Solid numbers. Three dimensions of solids. Cubic + numbers. All cubics are solid numbers. No number may be both linear + and solid. Unity is not a number.] + +Here folowith{e} the extraccio{u}n of rotis, and first in nombre +q{ua}drat{es}. Wherfor me shall{e} se what is a nombre quadrat, and what +is the rote of a nombre quadrat, and what it is to draw out the rote of +a nombre. And before other note this divisio{u}n: Of nombres one is +lyneal, ano{er} sup{er}ficiall{e}, ano{er} quadrat, ano{er} cubik{e} +or hoole. lyneal is that at is considred{e} after the p{ro}cesse, +havyng{e} no respect to the direccio{u}n of nombre in nombre, As a lyne +hath{e} but one dymensio{u}n that is to sey after the length{e}. Nombre +sup{er}ficial is {a}t cometh{e} of ledyng{e} of oo nombre into +a-nother, wherfor it is called{e} sup{er}ficial, for it hath{e} .2. +nombres notyng or mesuryng{e} hym, as a sup{er}ficiall{e} thyng{e} +hath{e} .2. dimensions, {a}t is to sey length{e} and brede. And for +bycause a nombre may be had{e} in a-nother by .2. man{er}s, {a}t is to +sey other in hym-self{e}, o{er} in ano{er}, Vnderstond{e} yf it be had +in hym-self, It is a quadrat. ffor dyvisio{u}n write by vnytes, hath{e} +.4. sides even as a quadrangill{e}. and yf the nombre be had{e} in +a-no{er}, the nombre is sup{er}ficiel and not quadrat, as .2. had{e} in +.3. maketh{e} .6. that is e first nombre sup{er}ficiell{e}; wherfor it +is open at all{e} nombre quadrat is sup{er}ficiel, and not +co{n}u{er}tid{e}. The rote of a nombre quadrat is at nombre that is had +of hym-self, as twies .2. makith{e} 4. and .4. is the first nombre +quadrat, and 2. is his rote. 9. 8. 7. 6. 5. 4. 3. 2. 1. / The rote of +the more quadrat .3. 1. 4. 2. 6. The most nombre quadrat 9. 8. 7. 5. +9. 3. 4. 7. 6. / the remenent ou{er} the quadrat .6. 0. 8. 4. 5. / The +first caas of nombre quadrat .5. 4. 7. 5. 6. The rote .2. 3. 4. The +second{e} caas .3. 8. 4. 5. The rote .6. 2. The third{e} caas .2. 8. 1. +9. The rote .5. 3. The .4. caas .3. 2. 1. The rote .1. 7. / The 5. caas +.9. 1. 2. 0. 4. / The rote 3. 0. 2. The solid{e} nombre or cubik{e} is +at {a}t comyt[-h]e of double ledyng of nombre in nombre; And it is +cleped{e} a solid{e} body that hath{e} {er}-in .3 [dimensions] at is +to sey, length{e}, brede, and thiknesse. so {a}t nombre hath{e} .3. +nombres to be brought forth{e} in hym. But nombre may be had{e} twies in +nombre, for other it is had{e} in hym-self{e}, o{er} in a-no{er}. If a +nombre be had{e} twies in hym-self, o{er} ones in his quadrat, {a}t is +the same, {a}t a cubik{e} [*Fol. 54.] is, And is the same that is +solide. And yf a nombre twies be had{e} in a-no{er}, the nombre is +cleped{e} solide and not cubik{e}, as twies .3. and {a}t .2. makith{e} +.12. Wherfor it is opyn{e} that all{e} cubik{e} nombre is solid{e}, and +not {con}u{er}tid{e}. Cubik{e} is {a}t nombre at comyth{e} of +ledyng{e} of hym-self{e} twyes, or ones in his quadrat. And here-by it +is open that o nombre is the roote of a quadrat and of a cubik{e}. +Natheles the same nombre is not q{ua}drat and cubik{e}. Opyn{e} it is +also that all{e} nombres may be a rote to a q{ua}drat and cubik{e}, but +not all{e} nombre quadrat or cubik{e}. Therfor sithen e ledyng{e} of +vnyte in hym-self ones or twies nought cometh{e} but vnytes, Seith{e} +Boice in Arsemetrik{e}, that vnyte potencially is al nombre, and none in +act. And vndirstond{e} wele also that betwix euery .2. quadrat{es} ther +is a meene p{ro}porcionall{e}, That is opened{e} thus; lede the rote of +o quadrat into the rote of the o{er} quadrat, and an wolle e meene +shew. + + [Sidenote: Examples of square roots.] + + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Residuu{m} | | |0| || | | |4|| | |0| | || | | 0 | | + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Quadrand{e} |4|3|5|6||3|0|2|9||1|7|4|2|4||1| 9 | 3 |6| + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Duplum |1|2| | ||1|0| | ||2| |6| | || |[8]|[{19}]| | + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + | Subduplu{m} | |6| |6|| |5| |5||1| |3| |2|| | 4 | |4| + +-------------+-+-+-+-++-+-+-+-++-+-+-+-+-++-+---+------+-+ + + [Sidenote: A note on mean proportionals.] + +Also betwix the next .2. cubikis, me may fynde a double meene, that is +to sey a more meene and a lesse. The more meene thus, as to bryng{e} the +rote of the lesse into a quadrat of the more. The lesse thus, If the +rote of the more be brought Into the quadrat of the lesse. + + [Headnote: Chapter X. Extraction of Square Root.] + + [Sidenote: To find a square root. Begin with the last odd place. + Find the nearest square root of that number, subtract, double it, + and set the double one to the right. Find the second figure by + division. Multiply the double by the second figure, and add after + it the square of the second figure, and subtract.] + +[{20}]To draw a rote of the nombre quadrat it is What-eu{er} nombre be +p{ro}posed{e} to fynde his rote and to se yf it be quadrat. And yf it be +not quadrat the rote of the most quadrat fynde out, vnder the nombre +p{ro}posed{e}. Therfor yf thow wilt the rote of any quadrat nombre draw +out, write the nombre by his differences, and compt the nombre of the +figures, and wete yf it be od{e} or even. And yf it be even, than most +thow begynne worche vnder the last save one. And yf it be od{e} w{i}t{h} +the last; and forto sey it shortly, al-weyes fro the last od{e} me +shall{e} begynne. Therfor vnder the last in an od place sette, me most +fynd{e} a digit, the which{e} lad{e} in hym-self{e} it puttith{e} away +that, at is ou{er} his hede, o{er} as neigh{e} as me may: suche a +digit found{e} and w{i}t{h}draw fro his ou{er}er, me most double that +digit and sette the double vnder the next figure toward{e} the right +hond{e}, and his vnder double vnder hym. That done, than me most +fy{n}d{e} a-no{er} digit vnder the next figure bifore the doubled{e}, +the which{e} [*Fol. 54b] brought in double setteth{e} a-way all{e} that +is ou{er} his hede as to reward{e} of the doubled{e}: Than brought into +hym-self settith{e} all away in respect of hym-self, Other do it as nye +as it may be do: other me may w{i}t{h}-draw the digit [{21}][last] +found{e}, and lede hym in double or double hym, and after in +hym-self{e}; Than Ioyne to-geder the p{ro}duccion{e} of them bothe, So +that the first figure of the last p{ro}duct be added{e} before the first +of the first p{ro}duct{es}, the second{e} of the first, {et}c. and so +forth{e}, subtrahe fro the totall{e} nombre in respect of e digit. + + [Sidenote: Examples.] + + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The residue | | | | | || | | | | || | | |5| 4 |3|2| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | To be quadred{e} |4|1|2|0|9||1|5|1|3|9|| 9 |0| 0 |5| 4 |3|2| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The double | |4|0| | || |2| |4| || |6| |0| | |0| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + | The vnder double |2| |0| |3||1| |2| |3||[3]| |[0]| |[0]| |0| + +------------------+-+-+-+-+-++-+-+-+-+-++---+-+---+-+---+-+-+ + + [Sidenote: Special cases. The residue.] + +And if it hap {a}t no digit may be found{e}, Than sette a cifre vndre +a cifre, and cesse not till{e} thow fynde a digit; and whan thow hast +founde it to double it, ne{er} to sette the doubled{e} forward{e} +nether the vnder doubled{e}, Till thow fynde vndre the first figure a +digit, the which{e} lad{e} in all{e} double, settyng away all{e} that is +ou{er} hym in respect of the doubled{e}: Than lede hym into hym-self{e}, +and put a-way all{e} in regard{e} of hym, other as nygh{e} as thow +maist. That done, other ought or nought wolle be the residue. If nought, +than it shewith{e} that a nombre componed{e} was the quadrat, and his +rote a digit last found{e} w{i}t{h} vnder{e}-double other vndirdoubles, +so that it be sette be-fore: And yf ought[{22}] remayn{e}, that +shew{i}t{h} that the nombre p{ro}posed{e} was not quadrat,[{23}] +[[wher-vpon{e} se the table in the next side of the next leef{e}.]] +but a digit [last found with the subduple or subduples is] + + [Sidenote: This table is constructed for use in cube root sums, + giving the value of ab.^2] + + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 2 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 3 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 4 | 32 | 48 | 64 | 80 | 96 |112[{24}]| 128 | 144 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 5 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 6 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 7 | 98 | 147 | 196 | 245 | 294 | 343 | 393 | 441 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 8 | 128 | 192 | 256 | 320 | 384 | 448 | 512 | 576 | + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + | 9 | 168 | 243 | 324 | 405 | 486 | 567 | 648 |729[{25}]| + +---+-----+-----+-----+-----+-----+---------+-----+---------+ + + [Sidenote: How to prove the square root without or with a remainder.] + +The rote of the most quadrat conteyned{e} vndre the nombre +p{ro}posed{e}. Therfor yf thow wilt p{ro}ve yf thow have wele do or no, +Multiplie the digit last found{e} w{i}t{h} the vnder-double o{er} +vnder-doublis, and thow shalt fynde the same figures that thow haddest +before; And so that nought be the [*Fol. 55.] residue. And yf thow have +any residue, than w{i}t{h} the addicio{u}n {er}of that is res{er}ued{e} +w{i}t{h}-out in thy table, thow shalt fynd{e} thi first figures as thow +haddest them before, {et}c. + + [Headnote: Chapter XI. Extraction of Cube Root.] + + [Sidenote: Definition of a cubic number and a cube root. Mark off + the places in threes. Find the first digit; treble it and place it + under the next but one, and multiply by the digit. Then find the + second digit. Multiply the first triplate and the second digit, twice + by this digit. Subtract. Examples.] + +Heere folowith{e} the extraccio{u}n of rotis in cubik{e} nombres; +wher-for me most se what is a nombre cubik{e}, and what is his roote, +And what is the extraccio{u}n of a rote. Anombre cubik{e} it is, as it +is before declared{e}, that cometh{e} of ledyng of any nombre twies in +hym-self{e}, other ones in his quadrat. The rote of a nombre cubik{e} is +the nombre that is twies had{e} in hy{m}-self{e}, or ones in his +quadrat. Wher-thurgh{e} it is open, that eu{er}y nombre quadrat or +cubik{e} have the same rote, as it is seid{e} before. And forto draw out +the rote of a cubik{e}, It is first to fynd{e} e nombr{e} p{ro}posed{e} +yf it be a cubik{e}; And yf it be not, than thow most make extraccio{u}n +of his rote of the most cubik{e} vndre the nombre p{ro}posid{e} his rote +found{e}. Therfor p{ro}posed{e} some nombre, whos cubical rote {o}u +woldest draw out; First thow most compt the figures by fourthes, that is +to sey in the place of thousand{es}; And vnder the last thousand{e} +place, thow most fynde a digit, the which{e} lad{e} in hym-self cubikly +puttith{e} a-way that at is ou{er} his hede as in respect of hym, other +as nygh{e} as thow maist. That done, thow most trebill{e} the digit, and +that triplat is to be put vnder the .3. next figure toward{e} the right +hond{e}, And the vnder-trebill{e} vnder the trebill{e}; Than me most +fynd{e} a digit vndre the next figure bifore the triplat, the which{e} +w{i}t{h} his vnder-trebill{e} had into a trebill{e}, aft{er}warde other +vnder[trebille][{26}] had in his p{ro}duccio{u}n, putteth{e} a-way +all{e} that is ou{er} it in regard{e} of[{27}] [the triplat. Then lade +in hymself puttithe away that at is over his hede as in respect of hym, +other as nyghe as thou maist:] That done, thow most trebill{e} the digit +ayene, and the triplat is to be sette vnder the next .3. figure as +before, And the vnder-trebill{e} vnder the trebill{e}: and than most +thow sette forward{e} the first triplat w{i}t{h} his vndre-trebill{e} by +.2. differences. And than most thow fynde a digit vnder the next figure +before the triplat, the which{e} with{e} his vnder-t{r}iplat had in his +triplat afterward{e}, other vnder-treblis lad in p{ro}duct [*Fol. 55b] +It sitteth{e} a-way a[l~l] that is ou{er} his hede in respect of the +triplat than had in hym-self cubikly,[{28}] [[it setteth{e} a-way all{e} +his respect]] or as nygh{e} as ye may. + + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Residuu{m} | | | | | | | 5 || | | | | | 4|| 1|0|1 |9| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Cubicandu{s} | 8|3|6|5|4|3| 2 || 3|0|0|7|6| 7|| 1 1|6|6 |7| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + | Triplum | | |6|0| | | || | | |1|8| || | |4 | | | + +----------------+--+-+-+-+-+-+---++--+-+-+---+--++----+-+--+-+--+ + | Subt{r}iplu{m} | 2| | |0| | |[3]|| | |6| | | 7|| 2| | |2| | + +----------------+--+-+-+-+-+-+---++--+-+-+-+-+--++----+-+--+-+--+ + + [Sidenote: Continue this process till the first figure is reached. + Examples. The residue. Special cases. Special case.] + +Nother me shall{e} not cesse of the fyndyng{e} of that digit, neither of +his triplacio{u}n, ne{er} of the triplat-is [{29}]anteriorac{i}o{u}n, +that is to sey, settyng forward{e} by .2. differences, Ne therof the +vndre-triple to be put vndre the triple, Nether of the multiplicacio{u}n +{er}of, Neither of the subtraccio{u}n, till{e} it come to the first +figure, vnder the which{e} is a digitall{e} nombre to be found{e}, the +which{e} with{e} his vndre-treblis most be had{e} in tribles, +After-ward{e} w{i}t{h}out vnder-treblis to be had{e} into produccio{u}n, +settyng away all{e} that is ou{er} the hed{e} of the triplat nombre, +After had into hymself{e} cubikly, and sette all{e}-way that is ou{er} +hym. + + +------------------+---+---+---+---++---+---+---+---+---+ + | To be cubiced{e} | 1 | 7 | 2 | 8 || 3 | 2 | 7 | 6 | 8 | + +------------------+---+---+---+---++---+---+---+---+---+ + | The triple | | | 3 | 2 || | | | 9 | | + +------------------+---+---+---+---++---+---+---+---+---+ + | The vnder triple | | | 1 | 2 || |[3]| | 3 | 3 | + +------------------+---+---+---+---++---+---+---+---+---+ + +Also note wele that the p{ro}ducc{i}on comyng{e} of the ledyng of a +digite found{e}[{30}] [[w{i}t{h} an vndre-triple / other of an +vndre-triple in a triple or triplat is And after-ward{e} w{i}t{h} out +vndre-triple other vndre-triplis in the p{ro}duct and ayene that +p{ro}duct that cometh{e} of the ledyng{e} of a digit found{e} in +hym-self{e} cubicall{e}]] me may adde to, and also w{i}t{h}-draw fro of +the totall{e} nombre sette above that digit so found{e}.[{31}] [[as ther +had be a divisio{u}n made as it is opened{e} before]] That done ought or +nought most be the residue. If it be nought, It is open that the nombre +p{ro}posed{e} was a cubik{e} nombre, And his rote a digit founde last +w{i}t{h} the vnder-triples: If the rote therof wex bad{e} in +hym-self{e}, and afterward{e} p{ro}duct they shall{e} make the first +fig{ur}es. And yf ought be in residue, kepe that w{i}t{h}out in the +table; and it is open{e} that the nombre was not a cubik{e}. but a digit +last founde w{i}t{h} the vndirtriplis is rote of the most cubik{e} vndre +the nombre p{ro}posed{e} conteyned{e}, the which{e} rote yf it be had{e} +in hym-self{e}, And aft{er}ward{e} in a p{ro}duct of that shall{e} growe +the most cubik{e} vndre the nombre p{ro}posed{e} conteyned{e}, And yf +that be added{e} to a cubik{e} the residue res{er}ued{e} in the table, +woll{e} make the same figures that ye had{e} first. [*Fol. 56.] And yf +no digit after the anterioracio{u}n[{32}] may not be found{e}, than put +ther{e} a cifre vndre a cifre vndir the third{e} figure, And put +forward{e} e fig{ur}es. Note also wele that yf in the nombre +p{ro}posed{e} ther ben no place of thowsand{es}, me most begynne vnder +the first figure in the extraccio{u}n of the rote. some vsen forto +distingue the nombre by threes, and ay begynne forto wirch{e} vndre the +first of the last t{er}nary other unco{m}plete nombre, the which{e} +maner of op{er}acio{u}n accordeth{e} w{i}t{h} that before. And this at +this tyme suffiseth{e} in extraccio{u}n of nombres quadrat or cubik{es} +{et}c. + + [Sidenote: Examples.] + + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The residue | | | | | | | 0|| | | | | | 1| 1| + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The cubicand{us} | 8 | 0| 0 | 0| 0| 0| 0|| 8| 2| 4| 2| 4| 1| 9| + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The triple | | |[{33}]| 0| 0| | || | | 6| | | | | + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + | The vndert{r}iple |[2]| | | 0| 0| | || 2| | | 6| 2| | | + +-------------------+---+--+------+--+--+--+--++--+--+--+--+--+--+--+ + + + [Headnote: Table of Numbers, &c.] + + [Sidenote: A table of numbers; probably from the Abacus.] + + 1 2 3 4 5 6 + one. x. an. hundred{e}/ a thowsand{e}/ x. thowsand{e}/ An hundred{e} + 7 + thowsand{e}/ A thowsand{e} tymes a thowsand{e}/ x. thousand{e} tymes + + a thousand{e}/ An hundred{e} thousand{e} tymes a thousand{e} A + + thousand{e} thousand{e} tymes a thousand{e}/ this is the x place + + {et}c. + + +[Ende.] + + +FOOTNOTES (The Art of Nombryng): + + [1: MS. Materiall{e}.] + [2: MS. Formall{e}.] + [3: 'the' in MS.] + [4: 'be' in MS.] + [5: 'and' in MS.] + [6: 'is' in MS.] + [7: 6 in MS.] + [8: 0 in MS.] + [9: 2 in MS.] + [10: _sic._] + [11: 'And' inserted in MS.] + [12: '4 the' inserted in MS.] + [13: 'to' in MS.] + [14: 'that' repeated in MS.] + [15: '1' in MS.] + [16: Blank in MS.] + [17: 'nought' in MS.] + [18: 3 written for 2 in MS.] + [19: 7 in MS.] + [20: runs on in MS.] + [21: 'so' in MS.] + [22: 'nought' in MS.] + [23: MS. adds here: 'wher-vpon{e} se the table in the next side of + the next leef{e}.'] + [24: 110 in MS.] + [25: 0 in MS.] + [26: double in MS.] + [27: 'it hym-self{e}' in MS.] + [28: MS. adds here: 'it setteth{e} a-way all{e} his respect.'] + [29: 'aucterioracio{u}n' in MS.] + [30: MS. adds here: 'w{i}t{h} an vndre-triple / other of an + vndre-triple in a triple or triplat is And after-ward{e} w{i}t{h} + out vndre-triple other vndre-triplis in the p{ro}duct and ayene + that p{ro}duct that cometh{e} of the ledyng{e} of a digit found{e} + in hym-self{e} cubicall{e}' /] + [31: MS. adds here: 'as ther had be a divisio{u}n made as it is + opened{e} before.'] + [32: MS. anteriocacio{u}n.] + [33: 4 in MS.] + + + + +Accomptynge by counters. + + [Transcriber's Note: + + The original text was printed as a single continuous paragraph, with + no break between speakers; all examples were shown inline. It has been + broken up for this e-text.] + + + [*116b] + + The seconde dialoge of accomptynge by counters. + +_Mayster._ + +Nowe that you haue learned the commen kyndes of Arithmetyke with the +penne, you shall se the same art in cou{n}ters: whiche feate doth not +only serue for them that can not write and rede, but also for them that +can do bothe, but haue not at some tymes theyr penne or tables redye +with them. This sorte is in two fourmes co{m}menly. The one by lynes, +and the other without lynes: in that y^t hath lynes, the lynes do stande +for the order of places: and in y^t that hath no lynes, there must be +sette in theyr stede so many counters as shall nede, for eche lyne one, +and they shall supplye the stede of the lynes. + +_S._ By examples I shuld better p{er}ceaue your meanynge. + +_M._ For example of the [*117a.] ly[*]nes: + + ----1-0-0-0-0-0-- + ----1-0-0-0-0---- + -X--1-0-0-0------ + ----1-0-0-------- + ----1-0---------- + ----1------------ + + [Sidenote: Numeration.] + +Lo here you se .vi. lynes whiche stande for syxe places so that the +nethermost standeth for y^e fyrst place, and the next aboue it, for the +second: and so vpward tyll you come to the hyghest, which is the syxte +lyne, and standeth for the syxte place. Now what is the valewe of euery +place or lyne, you may perceaue by the figures whiche I haue set on +them, which is accordynge as you learned before in the Numeration of +figures by the penne: for the fyrste place is the place of vnities or +ones, and euery counter set in that lyne betokeneth but one: {and} the +seconde lyne is the place of 10, for euery counter there, standeth for +10. The thyrd lyne the place of hundredes: the fourth of thousandes: +{and} so forth. + +_S._ Syr I do perceaue that the same order is here of lynes, as was in +the other figures [*117b] by places, so that you shall not nede longer +to stande about Numeration, excepte there be any other difference. + +_M._ Yf you do vndersta{n}de it, then how wyll you set 1543? + +_S._ Thus, as I suppose. + + ------- + -X--1-- + ----5-- + ----4-- + ----3-- + +_M._ You haue set y^e places truely, but your figures be not mete for +this vse: for the metest figure in this behalfe, is the figure of a +cou{n}ter round, as you se here, where I haue expressed that same summe. + + ------------- + + -X--o-------- + o + ------------- + + ----o-o-o-o-- + + ----o-o-o---- + +_S._ So that you haue not one figure for 2, nor 3, nor 4, and so forth, +but as many digettes as you haue, you set in the lowest lyne: and for +euery 10 you set one in the second line: and so of other. But I know not +by what reason you set that one counter for 500 betwene two lynes. + +_M._ you shall remember this, that when so euer you nede to set downe 5, +50, or 500, or 5000, or so forth any other nomber, whose numerator +[*118a] is 5, you shall set one counter for it, in the next space aboue +the lyne that it hath his denomination of, as in this example of that +500, bycause the numerator is 5, it must be set in a voyd space: and +bycause the denominator is hundred, Iknowe that his place is the voyde +space next aboue hundredes, that is to say, aboue the thyrd lyne. And +farther you shall marke, that in all workynge by this sorte, yf you +shall sette downe any summe betwene 4 and 10, for the fyrste parte of +that nomber you shall set downe 5, &then so many counters more, as +there reste no{m}bers aboue 5. And this is true bothe of digettes and +articles. And for example I wyll set downe this su{m}me 287965, + + -X----------- + + ------o-o---- + o + ------o-o-o-- + o + -X----o-o---- + o + ----o-o-o-o-- + o + ----o-------- + o + ------------- + +which su{m}me yf you marke well, you nede none other exa{m}ples for to +lerne the numeration of [*118b] this forme. But this shal you marke, +that as you dyd in the other kynde of arithmetike, set a pricke in the +places of thousa{n}des, in this worke you shall sette a starre, as you +se here. + + [Headnote: Addition on the Counting Board.] + + [Sidenote: Addition.] + +_S._ Then I perceave numeration, but I praye you, howe shall I do in +this arte to adde two summes or more together? + +_M._ The easyest way in this arte is, to adde but 2 su{m}mes at ones +together: how be it you may adde more, as I wyll tell you anone. +Therfore when you wyll adde two su{m}mes, you shall fyrst set downe one +of them, it forseth not whiche, {and} then by it drawe a lyne crosse the +other lynes. And afterward set downe the other su{m}me, so that that +lyne may be betwene them, as yf you wolde adde 2659 to 8342, you must +set your su{m}mes as you se + + -------------|----------- + o | + -X--o-o-o----|--o-o------ + | o + ----o-o-o----|--o-------- + | o + ----o-o-o-o--|----------- + | o + ----o-o------|--o-o-o-o-- + +here. And then yf you lyst, you [*119a] may adde the one to the other in +the same place, or els you may adde them both together in a newe place: +which waye, bycause it is moste playnest, Iwyll showe you fyrst. +Therfore wyl I begynne at the vnites, whiche in the fyrst su{m}me is but +2, {and} in y^e second su{m}me 9, that maketh 11, those do I take vp, +and for them I set 11 in the new roume, thus, + + -------------|-------|------- + o | | + -X--o-o-o----|--o-o--|------- + | o | + ----o-o-o----|--o----|------- + | o | + ----o-o-o-o--|-------|-o----- + | | + -------------|-------|-o----- + +Then do I take vp all y^e articles vnder a hundred, which in the fyrst +su{m}me are 40, and in the second summe 50, that maketh 90: or you may +saye better, that in the fyrste summe there are 4 articles of 10, and in +the seconde summe 5, which make 9, but then take hede that you sette +them in theyr [*119b] ryght lynes as you se here. + + -----------|----------|------------- + o | | + -X--o-o-o--|--o-o-----|------------- + | o | + ----o-o-o--|--o-------|------------- + | | o + -----------|----------|--o-o-o-o-o-- + | | + -----------|----------|--o---------- + +Where I haue taken awaye 40 fro{m} the fyrste su{m}me, and 50 from y^e +second, and in theyr stede I haue set 90 in the thyrde, whiche I haue +set playnely y^t you myght well perceaue it: how be it seynge that 90 +with the 10 that was in y^e thyrd roume all redy, doth make 100, +Imyghte better for those 6 cou{n}ters set 1 in the thyrde lyne, thus: + + ---------- + + -X-------- + + ----o----- + + ---------- + + ----o----- + +For it is all one summe as you may se, but it is beste, neuer to set 5 +cou{n}ters in any line, for that may be done with 1 cou{n}ter in a +hygher place. + +_S._ I iudge that good reaso{n}, for many are vnnedefull, where one wyll +serue. + +_M._ Well, then [*120a] wyll I adde forth of hundredes: Ifynde 3 in the +fyrste summe, and 6 in the seconde, whiche make 900, them do I take vp +{and} set in the thyrd roume where is one hundred all redy, to whiche I +put 900, and it wyll be 1000, therfore I set one cou{n}ter in the fourth +lyne for them all, as you se here. + + -----------|-------|-------- + o | | + -X--o-o-o--|--o-o--|--o----- + | | + -----------|-------|-------- + | | + -----------|-------|-------- + | | + -----------|-------|--o----- + +Then adde I y^e thousandes together, whiche in the fyrst su{m}me are +8000, {and} in y^e second 2000, that maketh 10000: them do I take vp +fro{m} those two places, and for them I set one counter in the fyfte +lyne, and then appereth as youse, to be 11001, for so many doth amount +of the addition of 8342 to 2659. + + ----o----- + + -X--o----- + + ---------- + + ---------- + + ----o----- + +[*120b] _S._ Syr, this I do perceave: but how shall I set one su{m}me to +an other, not chaungynge them to a thyrde place? + +_M._ Marke well how I do it: Iwyll adde together 65436, and 3245, +whiche fyrste I set downe thus. + + -------------|-------------- + | o + -------------|--o----------- + | o + -X--o-o-o----|-------------- + | + ----o-o------|--o-o-o-o----- + | + ----o-o-o-o--|--o-o-o------- + o | o + -------------|--o----------- + +Then do I begynne with the smalest, which in the fyrst summe is 5, that +do I take vp, and wold put to the other 5 in the seconde summe, sauynge +that two counters can not be set in a voyd place of 5, but for them +bothe I must set 1 in the seconde lyne, which is the place of 10, +therfore I take vp the 5 of the fyrst su{m}me, {and} the 5 of the +seco{n}de, and for them I set 1 in the seco{n}d lyne, [*121a] as you se +here. + + -------------|-------------- + | o + -------------|--o----------- + | o + -X--o-o-o----|-------------- + | + ----o-o------|--o-o-o-o----- + | + ----o-o-o-o--|--o-o-o-o----- + | + -------------|--o----------- + +Then do I lyke wayes take vp the 4 counters of the fyrste su{m}me {and} +seconde lyne (which make 40) and adde them to the 4 counters of the same +lyne, in the second su{m}me, and it maketh 80, But as I sayde I maye not +conueniently set aboue 4 cou{n}ters in one lyne, therfore to those 4 +that I toke vp in the fyrst su{m}me, Itake one also of the seconde +su{m}me, and then haue I taken vp 50, for whiche 5 counters I sette +downe one in the space ouer y^e second lyne, as here doth appere. + + -----------|-------------- + | o + -----------|--o----------- + | o + -X--o-o-o--|-------------- + | + ----o-o----|--o-o-o-o----- + | o + -----------|--o-o-o------- + | + -----------|--o----------- + +[*121b.] and then is there 80, as well w^t those 4 counters, as yf I had +set downe y^e other 4 also. Now do I take the 200 in the fyrste su{m}me, +and adde them to the 400 in the seconde summe, and it maketh 600, +therfore I take vp the 2 counters in the fyrste summe, and 3 of them in +the seconde summe, and for them 5 I set 1 in y^e space aboue, thus. + + -----------|------------ + | o + -----------|--o--------- + | o + -X--o-o-o--|------------ + | o + -----------|--o--------- + | o + -----------|--o-o-o----- + | + -----------|--o--------- + +Then I take y^e 3000 in y^e fyrste su{m}me, vnto whiche there are none +in the second summe agreynge, therfore I do onely remoue those 3 +counters from the fyrste summe into the seconde, as here doth appere. + + ----|------------- + | o + ----|---o--------- + | o + -X--|---o-o-o----- + | o + ----|-o----------- + | o + ----|---o-o-o----- + | + ----|---o--------- + +[*122a.] And so you see the hole su{m}me, that amou{n}teth of the +addytio{n} of 65436 with 3245 to be 6868[1]. And yf you haue marked +these two exa{m}ples well, you nede no farther enstructio{n} in Addition +of 2 only summes: but yf you haue more then two summes to adde, you may +adde them thus. Fyrst adde two of them, and then adde the thyrde, and +y^e fourth, or more yf there be so many: as yf I wolde adde 2679 with +4286 and 1391. Fyrste I adde the two fyrste summes thus. + + -------------|-----------|-------------- + | | o + -X--o-o------|--o-o-o-o--|--o----------- + o | | o + ----o--------|--o-o------|--o-o-o-o----- + o | o | o + ----o-o------|--o-o-o----|--o----------- + o | o | o + ----o-o-o-o--|--o--------|-------------- + +[*122b.] And then I adde the thyrde thereto thus. And so of more yf you +haue them. + + -------------|-----------|------------ + | o | o + -X--o--------|--o--------|--o-o-o----- + | o | + ----o-o-o----|--o-o-o-o--|--o-o-o----- + o | o | o + ----o-o-o-o--|----o------|------------ + | o | o + ----o--------|-----------|--o--------- + + + [Headnote: Subtraction on the Counting Board.] + + [Sidenote: Subtraction.] + +_S._ Nowe I thynke beste that you passe forth to Subtraction, except +there be any wayes to examyn this maner of Addition, then I thynke that +were good to be knowen nexte. + +_M._ There is the same profe here that is in the other Addition by the +penne, Imeane Subtraction, for that onely is a sure waye: but +consyderynge that Subtraction must be fyrste knowen, Iwyl fyrste teache +you the arte of Subtraction, and that by this example: Iwolde subtracte +2892 out of 8746. These summes must I set downe as I dyd in Addition: +but here it is best [*116a (_sic_).] to set the lesser no{m}ber fyrste, +thus. + + -------------|-------------- + | o + -X--o-o------|--o-o-o------- + o | o + ----o-o-o----|--o-o--------- + o | + ----o-o-o-o--|--o-o-o-o----- + | o + ----o-o------|--o----------- + +Then shall I begynne to subtracte the greatest nombres fyrste (contrary +to the vse of the penne) y^t is the thousandes in this exa{m}ple: +therfore I fynd amongest the thousandes 2, for which I withdrawe so many +fro{m} the seconde summe (where are8) and so remayneth there 6, as this +exa{m}ple showeth. + + -------------+-------------- + | o + -+-----------+--o----------- + o | o + ----o-o-o----+--o-o--------- + o | + ----o-o-o-o--+--o-o-o-o----- + | o + ----o-o------+--o----------- + +Then do I lyke wayes with the hundredes, of whiche in the fyrste summe +[*116b] I fynde 8, and is the seconde summe but 7, out of whiche I can +not take 8, therfore thus muste I do: Imuste loke how moche my summe +dyffereth from 10, whiche I fynde here to be 2, then must I bate for my +su{m}me of 800, one thousande, and set downe the excesse of hundredes, +that is to saye 2, for so moche 100[0] is more then I shuld take vp. +Therfore fro{m} the fyrste su{m}me I take that 800, and from the second +su{m}me where are 6000, Itake vp one thousande, and leue 5000; but then +set I downe the 200 unto the 700 y^t are there all redye, and make them +900 thus. + + -------------+-------------- + | o + -+-----------+-------------- + | o + -------------+--o-o-o-o----- + o | + ----o-o-o-o--+--o-o-o-o----- + | o + ----o-o------+--o----------- + +Then come I to the articles of te{n}nes where in the fyrste su{m}me I +fynde 90, [*117a] and in the seconde su{m}me but only 40: Now +consyderyng that 90 can not be bated from 40, Iloke how moche y^t 90 +doth dyffer from the next summe aboue it, that is 100 (or elles whiche +is all to one effecte, Iloke how moch 9 doth dyffer fro{m} 10) {and} I +fynd it to be 1, then in the stede of that 90, Ido take from the second +summe 100: but consyderynge that it is 10 to moche, Iset downe 1 in y^e +nexte lyne beneth for it, as you se here. + + ---------+------------ + | o + -+-------+------------ + | o + ---------+--o-o-o----- + | o + ---------+------------ + | o + ----o-o--+--o--------- + +Sauynge that here I haue set one counter in y^e space in stede of 5 in +y^e nexte lyne. And thus haue I subtracted all saue two, which I must +bate from the 6 in the second summe, and there wyll remayne 4, thus. + + ----+-------------- + | o + -+--+-------------- + | o + ----+--o-o-o------- + | o + ----+-------------- + | + ----+--o-o-o-o----- + +So y^t yf I subtracte 2892 fro{m} 8746, the remayner wyll be 5854, +[*117b] And that this is truely wrought, you maye proue by Addition: for +yf you adde to this remayner the same su{m}me that you dyd subtracte, +then wyll the formar su{m}me 8746 amount agayne. + +_S._ That wyll I proue: and fyrst I set the su{m}me that was subtracted, +which was 2892, {and} the{n} the remayner 5854, thus. + + --------------+-------------- + | o + -||--o-o------+-------------- + o | o + -----o-o-o----+--o-o-o------- + o | o + -----o-o-o-o--+-------------- + | + -----o-o------+--o-o-o-o----- + +Then do I adde fyrst y^e 2 to 4, whiche maketh 6, so take I vp 5 of +those counters, and in theyr stede I sette 1 in the space, as here +appereth. + + --------------+------------ + | o + -||--o-o------+------------ + o | o + -----o-o-o----+--o-o-o----- + o | o + -----o-o-o-o--+------------ + | o + --------------+--o--------- + +[*118a] Then do I adde the 90 nexte aboue to the 50, and it maketh 140, +therfore I take vp those 6 counters, and for them I sette 1 to the +hundredes in y^e thyrde lyne, {and} 4 in y^e second lyne, thus. + + ------------+-------------- + | o + -||--o-o----+-------------- + o | o + -----o-o-o--+--o-o-o-o----- + | + ------------+--o-o-o-o----- + | o + ------------+----o--------- + +Then do I come to the hundredes, of whiche I fynde 8 in the fyrst summe, +and 9 in y^e second, that maketh 1700, therfore I take vp those 9 +counters, and in theyr stede I sette 1 in the .iiii. lyne, and 1 in the +space nexte beneth, and 2 in the thyrde lyne, as you se here. + + ----------+-------------- + | o + -||--o-o--+--o----------- + | o + ----------+--o-o--------- + | + ----------+--o-o-o-o----- + | o + ----------+--o----------- + +Then is there lefte in the fyrste summe but only 2000, whiche I shall +take vp from thence, and set [*118b] in the same lyne in y^e second +su{m}me, to y^e one y^t is there all redy: {and} then wyll the hole +su{m}me appere (as you may wel se) to be 8746, which was y^e fyrst +grosse summe, {and} therfore I do perceaue, that I hadde well subtracted +before. And thus you may se how Subtraction maye be tryed by Addition. + + ----+-------------- + | o + -X--+--o-o-o------- + | o + ----+--o-o--------- + | + ----+--o-o-o-o----- + | o + ----+----o--------- + +_S._ I perceaue the same order here w^t cou{n}ters, y^t I lerned before +in figures. + +_M._ Then let me se howe can you trye Addition by Subtraction. + +_S._ Fyrste I wyl set forth this exa{m}ple of Additio{n} where I haue +added 2189 to 4988, and the hole su{m}me appereth to be 7177, + + --------------+-----------+---------- + | | o + -||--o-o------+--o-o-o-o--+--o-o----- + | o | + -----o--------+--o-o-o-o--+--o------- + o | o | o + -----o-o-o----+--o-o-o----+--o-o----- + o | o | o + -----o-o-o-o--+--o-o-o----+--o-o----- + +[*119a] Nowe to trye whether that su{m}me be well added or no, Iwyll +subtract one of the fyrst two su{m}mes from the thyrd, and yf I haue +well done y^e remayner wyll be lyke that other su{m}me. As for example: +Iwyll subtracte the fyrste summe from the thyrde, whiche I set thus in +theyr order. + + --------------+---------- + | o + -||--o-o------+--o-o----- + | + -----o--------+--o------- + o | o + -----o-o-o----+--o-o----- + o | o + -----o-o-o-o--+--o-o----- + +Then do I subtract 2000 of the fyrste summe fro{m} y^e second su{m}me, +and then remayneth there 5000 thus. + + -------------+---------- + | o + -X-----------+----------- + | + ----o--------+--o------- + o | o + ----o-o-o----+--o-o----- + o | o + ----o-o-o-o--+--o-o----- + +Then in the thyrd lyne, I subtract y^e 100 of the fyrste summe, fro{m} +the second su{m}me, where is onely 100 also, and then in y^e thyrde lyne +resteth nothyng. Then in the second lyne with his space ouer hym, +Ifynde 80, which I shuld subtract [*119b] from the other su{m}me, then +seyng there are but only 70 I must take it out of some hygher summe, +which is here only 5000, therfore I take vp 5000, and seyng that it is +to moch by 4920, Isette downe so many in the seconde roume, whiche with +the 70 beynge there all redy do make 4990, &then the summes doth stande +thus. + + --------------+-------------- + | + -||-----------+--o-o-o-o----- + | o + --------------+--o-o-o-o----- + | o + --------------+--o-o-o-o----- + o | o + -----o-o-o-o--+--o-o--------- + +Yet remayneth there in the fyrst su{m}me 9, to be bated from the second +summe, where in that place of vnities dothe appere only 7, then I muste +bate a hygher su{m}me, that is to saye 10, but seynge that 10 is more +then 9 (which I shulde abate) by 1, therfore shall I take vp one counter +from the seconde lyne, {and} set downe the same in the fyrst [*120a] or +lowest lyne, as you se here. + + -----+-------------- + | + -||--+--o-o-o-o----- + | o + -----+--o-o-o-o----- + | o + -----+--o-o-o------- + | o + -----+--o-o-o------- + +And so haue I ended this worke, {and} the su{m}me appereth to be y^e +same, whiche was y^e seconde summe of my addition, and therfore I +perceaue, Ihaue wel done. + +_M._ To stande longer about this, it is but folye: excepte that this you +maye also vnderstande, that many do begynne to subtracte with counters, +not at the hyghest su{m}me, as I haue taught you, but at the +nethermoste, as they do vse to adde: and when the summe to be abatyd, +in any lyne appeareth greater then the other, then do they borowe one of +the next hygher roume, as for example: yf they shuld abate 1846 from +2378, they set y^e summes thus. + + --------------+------------ + | + -||--o--------+--o-o------- + o | + -----o-o-o----+--o-o-o----- + | o + -----o-o-o-o--+--o-o------- + o | o + -----o--------+--o-o-o----- + +[*120b] And fyrste they take 6 whiche is in the lower lyne, and his +space from 8 in the same roumes, in y^e second su{m}me, and yet there +remayneth 2 counters in the lowest lyne. Then in the second lyne must 4 +be subtracte from 7, and so remayneth there 3. Then 8 in the thyrde lyne +and his space, from 3 of the second summe can not be, therfore do they +bate it from a hygher roume, that is, from 1000, and bycause that 1000 +is to moch by 200, therfore must I sette downe 200 in the thyrde lyne, +after I haue taken vp 1000 from the fourth lyne: then is there yet 1000 +in the fourth lyne of the fyrst summe, whiche yf I withdrawe from the +seconde summe, then doth all y^e figures stande in this order. + + -----+------------ + | + -||--+------------ + | o + -----+------------ + | + -----+--o-o-o----- + | + -----+--o-o------- + +So that (as you se) it differeth not greatly whether you begynne +subtractio{n} at the hygher lynes, or at [*121a] the lower. How be it, +as some menne lyke the one waye beste, so some lyke the other: therfore +you now knowyng bothe, may vse whiche you lyst. + + [Headnote: Multiplication by Counters.] + + [Sidenote: Multiplication.] + +But nowe touchynge Multiplicatio{n}: you shall set your no{m}bers in two +roumes, as you dyd in those two other kyndes, but so that the multiplier +be set in the fyrste roume. Then shall you begyn with the hyghest +no{m}bers of y^e seconde roume, and multiply them fyrst after this sort. +Take that ouermost lyne in your fyrst workynge, as yf it were the lowest +lyne, setting on it some mouable marke, as you lyste, and loke how many +counters be in hym, take them vp, and for them set downe the hole +multyplyer, so many tymes as you toke vp counters, reckenyng, Isaye +that lyne for the vnites: {and} when you haue so done with the hygheest +no{m}ber then come to the nexte lyne beneth, {and} do euen so with it, +and so with y^e next, tyll you haue done all. And yf there be any nomber +in a space, then for it [*121b] shall you take y^e multiplyer 5 tymes, +and then must you recken that lyne for the vnites whiche is nexte beneth +that space: or els after a shorter way, you shall take only halfe the +multyplyer, but then shall you take the lyne nexte aboue that space, for +the lyne of vnites: but in suche workynge, yf chau{n}ce your multyplyer +be an odde nomber, so that you can not take the halfe of it iustly, then +muste you take the greater halfe, and set downe that, as if that it were +the iuste halfe, and farther you shall set one cou{n}ter in the space +beneth that line, which you recken for the lyne of vnities, or els only +remoue forward the same that is to be multyplyed. + +_S._ Yf you set forth an example hereto I thynke I shal perceaue you. + +_M._ Take this exa{m}ple: Iwold multiply 1542 by 365, therfore I set +y^e nombers thus. + + ------------+-------------- + | + -||---------+--o----------- + | o + -----o-o-o--+-------------- + o | + -----o------+--o-o-o-o----- + o | + ------------+--o-o--------- + +[*122a] Then fyrste I begynne at the 1000 in y^e hyghest roume, as yf it +were y^e fyrst place, &I take it vp, settynge downe for it so often +(that is ones) the multyplyer, which is 365, thus, as you se here: + + -----------+-----------+------------ + | | + -----------+-----------+--o-o-o----- + | | o + -----------+-----------+--o--------- + | | o + -X---------+-----------+------------ [<-] + | o | + ----o-o-o--+-----------+------------ + o | | + ----o------+--o-o-o-o--+------------ + o | | + -----------+--o-o------+------------ + +where for the one counter taken vp from the fourth lyne, Ihaue sette +downe other 6, whiche make y^e su{m}me of the multyplyer, reckenynge +that fourth lyne, as yf it were the fyrste: whiche thyng I haue marked +by the hand set at the begynnyng of y^e same, + +_S._ I perceaue this well: for in dede, this summe that you haue set +downe is 365000, for so moche doth amount [*122b] of 1000, multiplyed by +365. + +_M._ Well the{n} to go forth, in the nexte space I fynde one counter +which I remoue forward but take not vp, but do (as in such case I must) +set downe the greater halfe of my multiplier (seyng it is an odde +no{m}ber) which is 182, {and} here I do styll let that fourth place +stand, as yf it were y^e fyrst: + + ------------+-----------+--o-o-o--+--o--------- + | | o | o + ------------+-----------+--o------+--o-o-o----- + | | o | + -||---------+-----------+---------+--o-o------- [<-] + | | | o + -----o-o-o--+-----------+---------+------------ + o | | | + -----o------+--o-o-o-o--+---------+------------ + o | | | + ------------+--o-o------+---------+------------ + +as in this fourme you se, where I haue set this multiplycatio{n} with +y^e other: but for the ease of your vndersta{n}dynge, Ihaue set a +lytell lyne betwene them: now shulde they both in one su{m}me stand +thus. + + ------------+-----------+--o-o-o-o-o----- + | | + ------------+-----------+--o-o-o-o------- + | | o + -||---------+-----------+--o-o----------- [<-] + | | o + -----o-o-o--+-----------+---------------- + o | | + -----o------+--o-o-o-o--+---------------- + o | | + ------------+--o-o------+---------------- + +[*123a] Howe be it an other fourme to multyplye suche cou{n}ters i{n} +space is this: Fyrst to remoue the fynger to the lyne nexte benethe y^e +space, {and} then to take vp y^e cou{n}ter, {and} to set downe y^e +multiplyer .v. tymes, as here youse. + + ---------+---------+-o-o-o-+------+------+------+------+------+- + | | o | | | | | | + ---------+---------+-o-----+o-o-o-+o-o-o-+o-o-o-+o-o-o-+o-o-o-+- + | | o | o | o | o | o | o | + ---------+---------+-------+o-----+------+o-----+o-----+o-----+- + | | | o | o | o | o | o | + [->]-X-o-o-o-+---------+-------+------+------+------+------+------+- + o | | | | | | | | + ---o-----+-o-o-o-o-+-------+------+------+------+------+------+- + o | | | | | | | | + ---------+-o-o-----+-------+------+------+------+------+------+- + +Which su{m}mes yf you do adde together into one su{m}me, you shal +p{er}ceaue that it wyll be y^e same y^t appeareth of y^e other worki{n}g +before, so that [*123b] bothe sortes are to one entent, but as the other +is much shorter, so this is playner to reason, for suche as haue had +small exercyse in this arte. Not withstandynge you maye adde them in +your mynde before you sette them downe, as in this exa{m}ple, you myghte +haue sayde 5 tymes 300 is 1500, {and} 5 tymes 60 is 300, also 5 tymes 5 +is 25, whiche all put together do make 1825, which you maye at one tyme +set downe yf you lyste. But nowe to go forth, Imust remoue the hand to +the nexte counters, whiche are in the second lyne, and there must I take +vp those 4 counters, settynge downe for them my multiplyer 4 tymes, +whiche thynge other I maye do at 4 tymes seuerally, or elles I may +gather that hole summe in my mynde fyrste, and then set it downe: as to +saye 4 tymes 300 is 1200: 4 tymes 60 are 240: and 4 tymes 5 make 20: y^t +is in all 1460, y^t shall I set downe also: as here youse. + o + -----------+-------+-----------+-------------- + | | | + -----------+-------+--o-o-o-o--+--o----------- + | | o | + -X---------+-------+--o-o------+--o-o-o-o----- + | | o | o + ----o-o-o--+-------+-----------+--o----------- + o | | | + [->] ----o------+-------+-----------+-------------- + o | | | + -----------+--o-o--+-----------+-------------- + +[*124a] whiche yf I ioyne in one summe with the formar nombers, it wyll +appeare thus. + o + ---------+-------+---------- + | | o + ---------+-------+--o------- + | | + ---------+-------+--o-o----- + | | + --o-o-o--+-------+-o-------- + o | | + [->] --o------+-------+---------- + o | | + ---------+--o-o--+---------- + +Then to ende this multiplycation, I remoue the fynger to the lowest +lyne, where are onely 2, them do I take vp, and in theyr stede do I set +downe twyse 365, that is 730, for which I set [*124b] one in the space +aboue the thyrd lyne for 500, and 2 more in the thyrd lyne with that one +that is there all redye, and the reste in theyr order, {and} so haue I +ended the hole summe thus. + o + ---------+-----+------------ + | | o + ---------+-----+--o--------- + | | + ---------+-----+--o-o------- + | | o + --o-o-o--+-----+--o-o-o----- + o | | + --o------+-----+--o-o-o----- + o | | + ---------+-----+------------ + +Wherby you se, that 1542 (which is the nomber of yeares syth Ch[r]ystes +incarnation) beyng multyplyed by 365 (which is the nomber of dayes in +one yeare) dothe amounte vnto 562830, which declareth y^e no{m}ber of +daies sith Chrystes incarnatio{n} vnto the ende of 1542[{1}] yeares. +(besyde 385 dayes and 12 houres for lepe yeares). + +_S._ Now wyll I proue by an other exa{m}ple, as this: 40 labourers +(after 6d. y^e day for eche man) haue wrought 28 dayes, Iwold [*125a] +know what theyr wages doth amou{n}t vnto: In this case muste I worke +doublely: fyrst I must multyplye the nomber of the labourers by y^e +wages of a man for one day, so wyll y^e charge of one daye amount: then +secondarely shall I multyply that charge of one daye, by the hole nomber +of dayes, {and} so wyll the hole summe appeare: fyrst therefore I shall +set the su{m}mes thus. + + ------+-------------- + | + ------+-------------- + | + ------+-------------- + | + ------+--o-o-o-o----- + o | + --o---+-------------- + +Where in the fyrste space is the multyplyer (y^t is one dayes wages for +one man) {and} in the second space is set the nomber of the worke men to +be multyplyed: the{n} saye I, 6 tymes 4 (reckenynge that second lyne as +the lyne of vnites) maketh 24, for whiche summe I shulde set 2 counters +in the thyrde lyne, and 4 in the seconde, therfore do I set 2 in the +thyrde lyne, and let the 4 stand styll in the seconde lyne, thus.[*125b] + + -----+-------------- + | + -----+-------------- + | + -----+--o-o--------- + | + -----+--o-o-o-o----- + | + -----+-------------- + +So apwereth the hole dayes wages to be 240d. that is 20s. Then do I +multiply agayn the same summe by the no{m}ber of dayes and fyrste I +sette the nombers, thus. + + ---------+-------------- + | + ---------+-------------- + | + ---------+--o-o--------- + | + --o-o----+--o-o-o-o----- + o | + --o-o-o--+------------- + +The{n} bycause there are counters in dyuers lynes, Ishall begynne with +the hyghest, and take them vp, settynge for them the multyplyer so many +tymes, as I toke vp counters, y^t is twyse, then wyll y^e su{m}me stande +thus. + + -----+-------------- + | o + -----+-------------- + | o + -----+--o----------- + | + -----+--o-o-o-o----- + | + -----+-------------- + +Then come I to y^e seconde lyne, and take vp those 4 cou{n}ters, +settynge for them the multiplyer foure tymes, so wyll the hole summe +appeare thus.[*126a] + + -----+---------- + | o + -----+--o------- + | o + -----+--o-o----- + | + -----+--o-o----- + | + -----+---------- + +So is the hole wages of 40 workeme{n}, for 28 dayes (after 6d. eche +daye for a man) 6720d. that is 560s. or 28l'i. + + [Headnote: Division on the Counting Board.] + + [Sidenote: Diuision.] + +_M._ Now if you wold proue Multiplycatio{n}, the surest way is by +Dyuision: therfore wyll I ouer passe it tyll I haue taught you y^e arte +of Diuision, whiche you shall worke thus. Fyrste sette downe the Diuisor +for feare of forgettynge, and then set the nomber that shalbe deuided, +at y^e ryghte syde, so farre from the diuisor, that the quotient may be +set betwene them: as for exa{m}ple: Yf 225 shepe cost 45l'i. what dyd +euery shepe cost? To knowe this, Ishulde diuide the hole summe, that is +45l'i. by 225, but that can not be, therfore must I fyrste reduce that +45l'i. into a lesser denomination, as into shyllynges: then I multiply +45 by 20, and it is 900, that summe shall I diuide by the no{m}ber of +[*126b] shepe, whiche is 225, these two nombers therfore I sette thus. + + -------+-----+-------------- + | | + -------+-----+-------------- + | | o + --o-o--+-----+--o-o-o-o----- + | | + --o-o--+-----+-------------- + o | | + -------+-----+-------------- + +Then begynne I at the hyghest lyne of the diuident, and seke how often I +may haue the diuisor therin, and that maye I do 4 tymes, then say I, +4 tymes 2 are 8, whyche yf I take from 9, there resteth but 1, thus + + -------+-----------+-------- + | | + -------+-----------+-------- + | | + --o-o--+-----------+--o----- + | | + --o-o--+-----------+-------- + o | | + -------+--o-o-o-o--+-------- + +And bycause I founde the diuisor 4 tymes in the diuidente, Ihaue set +(as you se) 4 in the myddle roume, which [*127a] is the place of the +quotient: but now must I take the reste of the diuisor as often out of +the remayner: therfore come Ito the seconde lyne of the diuisor, sayeng +2 foure tymes make 8, take 8 from 10, {and} there resteth 2, thus. + + ----------+-----------+---------- + | | + -||-------+-----------+---------- + | | + -----o-o--+-----------+---------- + | | + -----o-o--+-----------+--o-o----- + o | | + ----------+--o-o-o-o--+---------- + +Then come I to the lowest nomber, which is 5, and multyply it 4 tymes, +so is it 20, that take I from 20, and there remayneth nothynge, so that +I se my quotient to be 4, whiche are in valewe shyllynges, for so was +the diuident: and therby I knowe, that yf 225 shepe dyd coste 45l'i. +euery shepe coste 4s. + +_S._ This can I do, as you shall perceaue by this exa{m}ple: Yf 160 +sowldyars do spende euery moneth 68l'i. what spendeth eche man? Fyrst +[*127b] bycause I can not diuide the 68 by 160, therfore I wyll turne +the pou{n}des into pennes by multiplicacio{n}, so shall there be +16320d. Nowe muste I diuide this su{m}me by the nomber of sowldyars, +therfore I set the{m} i{n} order, thus. + + ---------+-----+--o--------- + | | o + -||------+-----+--o--------- + | | + -----o---+-----+--o-o-o----- + o | | + -----o---+-----+--o-o------- + | | + ---------+-----+------------ + +Then begyn I at the hyghest place of the diuidente, sekynge my diuisor +there, whiche I fynde ones, Therfore set I 1 in the nether lyne. + +_M._ Not in the nether line of the hole summe, but in the nether lyne of +that worke, whiche is the thyrde lyne. + +_S._ So standeth it with reason. + +_M._ Then thus do they stande.[*128a] + + ---------+-----+------------ + | | + -||------+-----+------------ + | | + -----o---+--o--+--o-o-o----- + o | | + -----o---+-----+--o-o------- + | | + ---------+-----+------------ + +Then seke I agayne in the reste, how often I may fynde my diuisor, and I +se that in the 300 I myghte fynde 100 thre tymes, but then the 60 wyll +not be so often founde in 20, therfore I take 2 for my quotient: then +take I 100 twyse from 300, and there resteth 100, out of whiche with the +20 (that maketh 120) Imay take 60 also twyse, and then standeth the +nombers thus, + + ---------+-------+----- + | | + -||------+-------+----- + | | + -----o---+--o----+----- + o | | + -----o---+-------+----- + | | + ---------+--o-o--+----- + +[*128b] where I haue sette the quotient 2 in the lowest lyne: So is +euery sowldyars portion 102d. that is 8s. 6d. + +_M._ But yet bycause you shall perceaue iustly the reason of Diuision, +it shall be good that you do set your diuisor styll agaynst those +nombres fro{m} whiche you do take it: as by this example I wyll declare. +Yf y^e purchace of 200 acres of ground dyd coste 290l'i. what dyd one +acre coste? Fyrst wyl I turne the poundes into pennes, so wyll there be +69600d Then in settynge downe these nombers I shall do thus. + + ---------+-----+-------------- + | | o + ----o-o--+-----+--o----------- + | | o + -X-------+-----+--o-o-o-o----- + | | o + ---------+-----+--o----------- + | | + ---------+-----+-------------- + | | + ---------+-----+-------------- + +Fyrst set the diuident on the ryghte hande as it oughte, and then +[*129a] the diuisor on the lefte hande agaynst those nombers, fro{m} +which I entende to take hym fyrst as here you se, wher I haue set the +diuisor two lynes hygher the{n} is theyr owne place. + +_S._ This is lyke the order of diuision by the penne. + +_M._ Truth you say, and nowe must I set y^e quotient of this worke in +the thyrde lyne, for that is the lyne of vnities in respecte to the +diuisor in this worke. Then I seke howe often the diuisor maye be founde +in the diuident, {and} that I fynde 3 tymes, then set I 3 in the thyrde +lyne for the quotient, and take awaye that 60000 fro{m} the diuident, +and farther I do set the diuisor one line lower, as yow se here. + + ----------+---------+-------------- + | | o + -||--o-o--+---------+--o-o-o-o----- + | | o + ----------+--o-o-o--+----o--------- + | | + ----------+---------+-------------- + | | + ----------+---------+-------------- + +[*129b] And then seke I how often the diuisor wyll be taken from the +nomber agaynste it, whiche wyll be 4 tymes and 1 remaynynge. + +_S._ But what yf it chaunce that when the diuisor is so remoued, it can +not be ones taken out of the diuident agaynste it? + +_M._ Then must the diuisor be set in an other line lower. + +_S._ So was it in diuision by the penne, and therfore was there a cypher +set in the quotient: but howe shall that be noted here? + +_M._ Here nedeth no token, for the lynes do represente the places: onely +loke that you set your quotient in that place which standeth for vnities +in respecte of the diuisor: but now to returne to the example, Ifynde +the diuisor 4 tymes in the diuidente, and 1 remaynynge, for 4 tymes 2 +make 8, which I take from 9, and there resteth 1, as this figure +sheweth: + + ----------+-----------+--------- + | | + -||--o-o--+-----------+--o------ + | | o + ----------+--o-o-o----+--o------ + | | + ----------+--o-o-o-o--+--------- + | | + ----------+-----------+--------- + +and in the myddle space for the quotient I set 4 in the seconde lyne, +whiche is in this worke the place of vnities.[*130a] Then remoue I y^e +diuisor to the next lower line, and seke how often I may haue it in the +dyuident, which I may do here 8 tymes iust, and nothynge remayne, as in +this fourme, + + ----------+-----------+----- + | | + -||--o-o--+-----------+----- + | | + ----------+--o-o-o----+----- + | | + ----------+--o-o-o-o--+----- + | o | + ----------+--o-o-o----+----- + +where you may se that the hole quotient is 348d, that is 29s. wherby +I knowe that so moche coste the purchace of one aker. + +_S._ Now resteth the profes of Multiplycatio{n}, and also of Diuisio{n}. + +_M._ Ther best profes are eche [*130b] one by the other, for +Multyplication is proued by Diuision, and Diuision by Multiplycation, +as in the worke by the penne you learned. + +_S._ Yf that be all, you shall not nede to repete agayne that, y^t was +sufficye{n}tly taughte all redye: and excepte you wyll teache me any +other feate, here maye you make an ende of this arte I suppose. + +_M._ So wyll I do as touchynge hole nomber, and as for broken nomber, +Iwyll not trouble your wytte with it, tyll you haue practised this so +well, y^t you be full perfecte, so that you nede not to doubte in any +poynte that I haue taught you, and thenne maye I boldly enstructe you in +y^e arte of fractions or broken no{m}ber, wherin I wyll also showe you +the reasons of all that you haue nowe learned. But yet before I make an +ende, Iwyll showe you the order of co{m}men castyng, wher in are bothe +pennes, shyllynges, and poundes, procedynge by no grounded reason, but +onely by a receaued [*131a] fourme, and that dyuersly of dyuers men: for +marchau{n}tes vse one fourme, and auditors an other: + + [Headnote: Merchants' Casting Counters.] + + [Sidenote: Merchants' casting.] + +But fyrste for marchauntes fourme marke this example here, + + o o o o o + o + o o o o + o + o o o o o + o + o o o o o + +in which I haue expressed this summe 198 l'i.[{2}] 19s. 11d. So that +you maye se that the lowest lyne serueth for pe{n}nes, the next aboue +for shyllynges, the thyrde for poundes, and the fourth for scores of +pou{n}des. And farther you maye se, that the space betwene pennes and +shyllynges may receaue but one counter (as all other spaces lyke wayes +do) and that one standeth in that place for 6d. Lyke wayes betwene the +shyllynges {and} the pou{n}des, one cou{n}ter standeth for 10s. And +betwene the poundes and 20l'i. one counter standeth for 10 pou{n}des. +But besyde those you maye see at the left syde of shyllynges, that one +counter standeth alone, {and} betokeneth 5s. [*131b] So agaynste the +poundes, that one cou{n}ter standeth for 5l'i. And agaynst the 20 +poundes, the one counter standeth for 5 score pou{n}des, that is +100l'i. so that euery syde counter is 5 tymes so moch as one of them +agaynst whiche he standeth. + + [Sidenote: Auditors' casting.] + +Now for the accompt of auditors take this example. + + o o o o o o + o o o o o o o o o o o o + o o o o + +where I haue expressed y^e same su{m}me 198l'i. 19s. 11d. But here +you se the pe{n}nes stande toward y^e ryght hande, and the other +encreasynge orderly towarde the lefte hande. Agayne you maye se, that +auditours wyll make 2 lynes (yea and more) for pennes, shyllynges, {and} +all other valewes, yf theyr summes extende therto. Also you se, that +they set one counter at the ryght ende of eche rowe, whiche so set there +standeth for 5 of that roume: and on [*132a] the lefte corner of the +rowe it sta{n}deth for 10, of y^e same row. But now yf you wold adde +other subtracte after any of both those sortes, yf you marke y^e order +of y^t other feate which I taught you, you may easely do the same here +without moch teachynge: for in Additio{n} you must fyrst set downe one +su{m}me and to the same set the other orderly, and lyke maner yf you +haue many: but in Subtraction you must sette downe fyrst the greatest +summe, and from it must you abate that other euery denominatio{n} from +his dewe place. + +_S._ I do not doubte but with a lytell practise I shall attayne these +bothe: but how shall I multiply and diuide after these fourmes? + +_M._ You can not duely do none of both by these sortes, therfore in +suche case, you must resort to your other artes. + +_S._ Syr, yet I se not by these sortes how to expresse hu{n}dreddes, +yf they excede one hundred, nother yet thousandes. + +_M._ They that vse such accomptes that it excede 200 [*132b] in one +summe, they sette no 5 at the lefte hande of the scores of poundes, but +they set all the hundredes in an other farther rowe {and} 500 at the +lefte hand therof, and the thousandes they set in a farther rowe yet, +{and} at the lefte syde therof they sette the 5000, and in the space +ouer they sette the 10000, and in a hygher rowe 20000, whiche all I haue +expressed in this exa{m}ple, + + o o o o + o + o o o + o o o o + o o o + o o o o o + o + o o + o + o o o + o o + o + +which is 97869l'i. 12s. 9 d ob. q. for I had not told you before +where, nother how you shuld set downe farthynges, which (as you se here) +must be set in a voyde space sydelynge beneth the pennes: for q one +counter: for ob. 2 counters: for ob. q. 3 counters: {and} more there can +not be, for 4 farthynges [*133a] do make 1d. which must be set in his +dewe place. + + [Headnote: Auditors' Casting Counters.] + +And yf you desyre y^e same summe after audytors maner, lo here itis. + + o o o o o o + o o o o o o o o o o o o o o o o o o o + o o o o + o + +But in this thyng, you shall take this for suffycyent, and the reste you +shall obserue as you maye se by the working of eche sorte: for the +dyuers wittes of men haue inuented dyuers and sundry wayes almost +vnnumerable. But one feate I shall teache you, whiche not only for the +straungenes and secretnes is moche pleasaunt, but also for the good +co{m}moditie of it ryghte worthy to be well marked. This feate hath ben +vsed aboue 2000 yeares at the leaste, and yet was it neuer come{n}ly +knowen, especyally in Englysshe it was neuer taughte yet. This is the +arte of nombrynge on the hand, with diuers gestures of the fyngers, +expressynge any summe conceaued in the [*133b] mynde. And fyrst to +begynne, yf you wyll expresse any summe vnder 100, you shall expresse it +with your lefte hande: and from 100 vnto 10000, you shall expresse it +with your ryght hande, as here orderly by this table folowynge you may +perceaue. + + + Here foloweth the table + of the arte of the + hande+ + + + + +The arte of nombrynge by the hande. + + [Transcriber's Note: + + Footnote 3 reads: + "Bracket ([) denotes new paragraph in original." + For this e-text, the brackets have been omitted in favor of restoring + the paragraph breaks. Changes of speaker (M, S) are also marked by + paragraphs, as in the previous selection. + + The illustration includes the printed page number 134; there is + therefore no sidenote *134a. The sidenote for "4" is missing.] + + +[Illustration: (Numbers as described in text)] + + [Sidenote: 1] + +[*134b] In which as you may se 1 is expressed by y^e lyttle fynger of +y^e lefte hande closely and harde croked. + + [Sidenote: 2] + +[{3}]2 is declared by lyke bowynge of the weddynge fynger (whiche is the +nexte to the lyttell fynger) together with the lytell fynger. + + [Sidenote: 3] + +3 is signified by the myddle fynger bowed in lyke maner, with those +other two. + +4 is declared by the bowyng of the myddle fynger and the rynge fynger, +or weddynge fynger, with the other all stretched forth. + + [Sidenote: 5, 6] + +5 is represented by the myddle fynger onely bowed. + +And 6 by the weddynge fynger only crooked: and this you may marke in +these a certayne order. But now 7, 8, and 9, are expressed w{i}t{h} the +bowynge of the same fyngers as are 1, 2, and 3, but after an other +fourme. + + [Sidenote: 7] + +For 7 is declared by the bowynge of the lytell fynger, as is 1, saue +that for 1 the fynger is clasped in, harde {and} [*135a] rounde, but for +to expresse 7, you shall bowe the myddle ioynte of the lytell fynger +only, and holde the other ioyntes streyght. + +_S._ Yf you wyll geue me leue to expresse it after my rude maner, thus I +vnderstand your meanyng: that 1 is expressed by crookynge in the lyttell +fynger lyke the head of a bysshoppes bagle: and 7 is declared by the +same fynger bowed lyke a gybbet. + +_M._ So I perceaue, you vnderstande it. + + [Sidenote: 8] + +Then to expresse 8, you shall bowe after the same maner both the lyttell +fynger and the rynge fynger. + + [Sidenote: 9, 10] + +And yf you bowe lyke wayes with them the myddle fynger, then doth it +betoken 9. + +Now to expresse 10, you shall bowe your fore fynger rounde, and set the +ende of it on the hyghest ioynte of the thombe. + + [Sidenote: 20] + +And for to expresse 20, you must set your fyngers streyght, and the ende +of your thombe to the partitio{n} of the [*135b] fore moste and myddle +fynger. + + [Sidenote: 30] + +30 is represented by the ioynynge together of y^e headdes of the +foremost fynger and the thombe. + + [Sidenote: 40] + +40 is declared by settynge of the thombe crossewayes on the foremost +fynger. + + [Sidenote: 50] + +50 is signified by ryght stretchyng forth of the fyngers ioyntly, and +applyenge of the thombes ende to the partition of the myddle fynger +{and} the rynge fynger, or weddynge fynger. + + [Sidenote: 60] + +60 is formed by bendynge of the thombe croked and crossynge it with the +fore fynger. + + [Sidenote: 70] + +70 is expressed by the bowynge of the foremost fynger, and settynge the +ende of the thombe between the 2 foremost or hyghest ioyntes of it. + + [Sidenote: 80] + +80 is expressed by settynge of the foremost fynger crossewayes on the +thombe, so that 80 dyffereth thus fro{m} 40, that for 80 the forefynger +is set crosse on the thombe, and for 40 the thombe is set crosse ouer +y^e forefinger. + + [Sidenote: 90] + +[*136a] 90 is signified, by bendynge the fore fynger, and settyng the +ende of it in the innermost ioynte of y^e thombe, that is euen at the +foote of it. And thus are all the no{m}bers ended vnder 100. + +[Sidenote: 11, 12, 13, 21, 22, 23] + +_S._ In dede these be all the nombers fro{m} 1 to 10, {and} then all the +tenthes within 100, but this teacyed me not how to expresse 11, 12, 13, +{et}c. 21, 22, 23, {et}c. and such lyke. + +_M._ You can lytell vnderstande, yf you can not do that without +teachynge: what is 11? is it not 10 and 1? then expresse 10 as you were +taught, and 1 also, and that is 11: and for 12 expresse 10 and 2: for 23 +set 20 and 3: and so for 68 you muste make 60 and there to 8: and so of +all other sortes. + + [Sidenote: 100] + +But now yf you wolde represente 100 other any nomber aboue it, you muste +do that with the ryghte hande, after this maner. [You must expresse 100 +in the ryght hand, with the lytell fynger so bowed as you dyd expresse 1 +in the left hand. + + [Sidenote: 200] + +[*136b] And as you expressed 2 in the lefte hande, the same fasshyon in +the ryght hande doth declare 200. + + [Sidenote: 300] + +The fourme of 3 in the ryght hand standeth for 300. + + [Sidenote: 400] + +The fourme of 4, for 400. + + [Sidenote: 500] + +Lykewayes the fourme of 5, for 500. + + [Sidenote: 600] + +The fourme of 6, for 600. And to be shorte: loke how you did expresse +single vnities and tenthes in the lefte hande, so must you expresse +vnities {and} tenthes of hundredes, in the ryghte hande. + + [Sidenote: 900] + +_S._ I vnderstande you thus: that yf I wold represent 900, Imust so +fourme the fyngers of my ryghte hande, as I shuld do in my left hand to +expresse 9, + + [Sidenote: 1000] + +And as in my lefte hand I expressed 10, so in my ryght hande must I +expresse 1000. + +And so the fourme of euery tenthe in the lefte hande serueth to expresse +lyke no{m}ber of thousa{n}des, + + [Sidenote: 4000] + +so y^e fourme of 40 standeth for 4000. + + [Sidenote: 8000] + +The fourme of 80 for 8000. + + [Sidenote: 9000] + + [*137a] + + And the fourme of 90 (whiche is + the greatest) for 9000, and aboue that + I can not expresse any nomber. _M._ + No not with one fynger: how be it, + w{i}t{h} dyuers fyngers you maye expresse + 9999, and all at one tyme, and that lac + keth but 1 of 10000. So that vnder + 10000 you may by your fyngers ex- + presse any summe. And this shal suf- + fyce for Numeration on the fyngers. + And as for Addition, Subtraction, + Multiplicatio{n}, and Diuision (which + yet were neuer taught by any man as + farre as I do knowe) I wyll enstruct + you after the treatyse of fractions. + And now for this tyme fare well, + and loke that you cease not to + practyse that you haue lear + ned. _S._ Syr, with moste + harty mynde I thanke + you, bothe for your + good learnyng, {and} + also your good + cou{ns}el, which + (god wyllyng) I truste to folow. + + + Finis. + + + FOOTNOTES (Accomptynge by counters + _and_ The arte of nombrynge by the hande): + + [1: 1342 in original.] + [2: 168 in original.] + [3: Bracket ([) denotes new paragraph in original.] + + + + +APPENDIX I. + ++A Treatise on the Numeration of Algorism.+ + + +[_From a MS. of the 14th Century._] + +To alle suche even nombrys the most have cifrys as to ten. twenty. +thirtty. an hundred. an thousand and suche other. but ye schal +vnderstonde that a cifre tokeneth nothinge but he maketh other the more +significatyf that comith after hym. Also ye schal vnderstonde that in +nombrys composyt and in alle other nombrys that ben of diverse figurys +ye schal begynne in the ritht syde and to rekene backwarde and so he +schal be wryte as thus--1000. the sifre in the ritht side was first +wryte and yit he tokeneth nothinge to the secunde no the thridde but +thei maken that figure of 1 the more signyficatyf that comith after hem +by as moche as he born oute of his first place where he schuld yf he +stode ther tokene but one. And there he stondith nowe in the ferye place +he tokeneth a thousand as by this rewle. In the first place he tokeneth +but hymself. In the secunde place he tokeneth ten times hymself. In the +thridde place he tokeneth an hundred tymes himself. In the ferye he +tokeneth a thousand tymes himself. In the fyftye place he tokeneth ten +thousand tymes himself. In the sexte place he tokeneth an hundred +thousand tymes hymself. In the seveth place he tokeneth ten hundred +thousand tymes hymself, &c. And ye schal vnderstond that this worde +nombre is partyd into thre partyes. Somme is callyd nombre of digitys +for alle ben digitys that ben withine ten as ix, viii, vii, vi, v, iv, +iii, ii, i. Articules ben alle thei that mow be devyded into nombrys of +ten as xx, xxx, xl, and suche other. Composittys be alle nombrys that +ben componyd of a digyt and of an articule as fourtene fyftene thrittene +and suche other. Fourtene is componyd of four that is a digyt and of ten +that is an articule. Fyftene is componyd of fyve that is a digyt and of +ten that is an articule and so of others . . . . . . But as to this +rewle. In the firste place he tokeneth but himself that is to say he +tokeneth but that and no more. If that he stonde in the secunde place he +tokeneth ten tymes himself as this figure 2 here 21. this is oon and +twenty. This figure 2 stondith in the secunde place and therfor he +tokeneth ten tymes himself and ten tymes 2 is twenty and so forye of +every figure and he stonde after another toward the lest syde he schal +tokene ten tymes as moche more as he schuld token and he stode in that +place ther that the figure afore him stondeth: lo an example as thus +9634. This figure of foure that hath this schape 4 tokeneth but himself +for he stondeth in the first place. The figure of thre that hath this +schape 3 tokeneth ten tyme himself for he stondeth in the secunde place +and that is thritti. The figure of sexe that hath this schape 6 tokeneth +ten tyme more than he schuld and he stode in the place yer the figure of +thre stondeth for ther he schuld tokene but sexty. And now he tokeneth +ten tymes that is sexe hundrid. The figure of nyne that hath this schape +9 tokeneth ten tymes more than he schulde and he stode in the place ther +the figure of 6 stondeth inne for thanne he schuld tokene but nyne +hundryd. And in the place that he stondeth inne nowe he tokeneth nine +thousand. Alle the hole nombre of these foure figurys. Nine thousand +sexe hundrid and foure and thritti. + + + + +APPENDIX II. + +Carmen de Algorismo. + + +[_From a B.M. MS., 8 C. iv., with additions from 12 E. 1 & Eg. 2622._] + + Hec algorismus ars presens dicitur[{1}]; in qua + Talibus Indorum[{2}] fruimur his quinque figuris. + 0. 9. 8. 7. 6. 5. 4. 3. 2. 1. + Prima significat unum: duo vero secunda: + Tercia significat tria: sic procede sinistre 4 + Donec ad extremam venies, qua cifra vocatur; + [{3}][Que nil significat; dat significare sequenti.] + Quelibet illarum si primo limite ponas, + Simpliciter se significat: si vero secundo, 8 + Se decies: sursum procedas multiplicando.[{4}] + [Namque figura sequens quevis signat decies plus, + Ipsa locata loco quam significet pereunte: 12 + Nam precedentes plus ultima significabit.] + [{5}]Post predicta scias quod tres breuiter numerorum + Distincte species sunt; nam quidam digiti sunt; + Articuli quidam; quidam quoque compositi sunt. 16 + [Sunt digiti numeri qui citra denarium sunt; + Articuli decupli degitorum; compositi sunt + Illi qui constant ex articulis digitisque.] + Ergo, proposito numero tibi scribere, primo 20 + Respicias quis sit numerus; quia si digitus sit, + [{5}][Una figura satis sibi; sed si compositus sit,] + Primo scribe loco digitum post articulum fac + Articulus si sit, cifram post articulum sit, 24 + [Articulum vero reliquenti in scribe figure.] + Quolibet in numero, si par sit prima figura, + Par erit et totum, quicquid sibi continetur; + Impar si fuerit, totum sibi fiet et impar. 28 + Septem[{6}] sunt partes, non plures, istius artis; + Addere, subtrahere, duplare, dimidiare; + Sexta est diuidere, set quinta est multiplicare; + Radicem extrahere pars septima dicitur esse. 32 + Subtrahis aut addis a dextris vel mediabis; + A leua dupla, diuide, multiplicaque; + Extrahe radicem semper sub parte sinistra. + + [Sidenote: Addition.] + + Addere si numero numerum vis, ordine tali 36 + Incipe; scribe duas primo series numerorum + Prima sub prima recte ponendo figuram, + Et sic de reliquis facias, si sint tibi plures. + Inde duas adde primas hac condicione; 40 + Si digitus crescat ex addicione priorum, + Primo scribe loco digitum, quicunque sit ille; + Si sit compositus, in limite scribe sequenti + Articulum, primo digitum; quia sic iubet ordo. 44 + Articulus si sit, in primo limite cifram, + Articulum vero reliquis inscribe figuris; + Vel per se scribas si nulla figura sequatur. + Si tibi cifra superueniens occurrerit, illam 48 + Deme suppositam; post illic scribe figuram: + Postea procedas reliquas addendo figuras. + + [Sidenote: Subtraction.] + + A numero numerum si sit tibi demere cura, + Scribe figurarum series, vt in addicione; 52 + Maiori numero numerum suppone minorem, + Siue pari numero supponatur numerus par. + Postea si possis a prima subtrahe primam, + Scribens quod remanet, cifram si nil remanebit. 56 + Set si non possis a prima demere primam; + Procedens, vnum de limite deme sequenti; + Et demptum pro denario reputabis ab illo, + Subtrahe totaliter numerum quem proposuisti. 60 + Quo facto, scribe supra quicquit remanebit, + Facque novenarios de cifris, cum remanebis, + Occurrant si forte cifre, dum demseris vnum; + Postea procedas reliquas demendo figuras. 64 + + [Sidenote: Proof.] + + [{7}][Si subtracio sit bene facta probare valebis, + Quas subtraxisti primas addendo figuras. + Nam, subtractio si bene sit, primas retinebis, + Et subtractio facta tibi probat additionem.] 68 + + [Sidenote: Duplation.] + + Si vis duplare numerum, sic incipe; solam + Scribe figurarum seriem, quamcumque voles que + Postea procedas primam duplando figuram; + Inde quod excrescet, scribens, vbi iusserit ordo, 72 + Juxta precepta que dantur in addicione. + Nam si sit digitus, in primo limite scribe; + Articulus si sit, in primo limite cifram, + Articulum vero reliquis inscribe figuris; 76 + Vel per se scribas, si nulla figura sequatur: + Compositus si sit, in limite scribe sequenti + Articulum primo, digitum; quia sic jubet ordo: + Et sic de reliquis facias, si sint tibi plures. 80 + [{8}][Si super extremam nota sit, monadem dat eidem, + Quod tibi contingit, si primo dimidiabis.] + + [Sidenote: Mediation.] + + Incipe sic, si vis aliquem numerum mediare: + Scribe figurarum seriem solam, velud ante; 84 + Postea procedens medias, et prima figura + Si par aut impar videas; quia si fuerit par, + Dimidiabis eam, scribens quicquit remanebit; + Impar si fuerit, vnum demas, mediare, 88 + Nonne presumas, sed quod superest mediabis; + Inde super tractum, fac demptum quod notat unum; + Si monos, dele; sit ibi cifra post nota supra. + Postea procedas hac condicione secunda:[{9}] 92 + Impar[{10}] si fuerit hic vnum deme priori, + Inscribens quinque, nam denos significabit + Monos prdictam: si vero secunda dat vnam, + Illa deleta, scribatur cifra; priori 96 + Tradendo quinque pro denario mediato; + Nec cifra scribatur, nisi inde figura sequatur: + Postea procedas reliquas mediando figuras, + Quin supra docui, si sint tibi mille figure. 100 + [{11}][Si mediatio sit bene facta probare valebis, + Duplando numerum quem primo dimidiasti.] + Si super extremam nota sit monades dat eidem + Quod contingat cum primo dimiabis + Atque figura prior nuper fuerit mediando.] + + [Sidenote: Multiplication.] + + Si tu per numerum numerum vis multiplicare, + Scribe duas, quascunque volis, series numerorum; 104 + Ordo tamen seruetur vt vltima multiplicandi + Ponatur super anteriorem multiplicantis; + [{12}][A leua relique sint scripte multiplicantes.] + In digitum cures digitum si ducere, major 108 + Per quantes distat a denis respice, debes + Namque suo decuplo tociens delere minorem; + Sicque tibi numerus veniens exinde patebit. + Postea procedas postremam multiplicando, 112 + Juste multiplicans per cunctas inferiores, + Condicione tamen tali; quod multiplicantis + Scribas in capite, quicquid processerit inde; + Set postquam fuerit hec multiplicata, figure 116 + Anteriorentur seriei multiplicantis; + Et sic multiplica, velut istam multiplicasti, + Qui sequitur numerum scriptum quicunque figuris. + Set cum multiplicas, primo sic est operandum, 120 + Si dabit articulum tibi multiplicacio solum; + Proposita cifra, summam transferre memento. + Sin autem digitus excrescerit articulusque, + Articulus supraposito digito salit ultra; 124 + Si digitus tamen, ponas illum super ipsam, + Subdita multiplicans hanc que super incidit illi + Delet eam penitus, scribens quod provenit inde; + Sed si multiplices illam posite super ipsam, 128 + Adiungens numerum quem prebet ductus earum; + Si supraimpositam cifra debet multiplicare, + Prorsus eam delet, scribi que loco cifra debet, + [{12}][Si cifra multiplicat aliam positam super ipsam, 132 + Sitque locus supra vacuus super hanc cifra fiet;] + Si supra fuerit cifra semper pretereunda est; + Si dubites, an sit bene multiplicando secunda, + Diuide totalem numerum per multiplicantem, 136 + Et reddet numerus emergens inde priorem. + + [Sidenote: Mental Multiplication.] + + [{13}][Per numerum si vis numerum quoque multiplicare + Tantum per normas subtiles absque figuris + Has normas poteris per versus scire sequentes. 140 + Si tu per digitum digitum quilibet multiplicabis + Regula precedens dat qualiter est operandum + Articulum si per reliquum vis multiplicare + In proprium digitum debebit uterque resolvi 144 + Articulus digitos post per se multiplicantes + Ex digitis quociens teneret multiplicatum + Articuli faciunt tot centum multiplicati. + Articulum digito si multiplicamus oportet 148 + Articulum digitum sumi quo multiplicare + Debemus reliquum quod multiplicaris ab illis + Per reliquo decuplum sic omne latere nequibit + In numerum mixtum digitum si ducere cures 152 + Articulus mixti sumatur deinde resolvas + In digitum post hec fac ita de digitis nec + Articulusque docet excrescens in detinendo + In digitum mixti post ducas multiplicantem 156 + De digitis ut norma docet sit juncta secundo + Multiplica summam et postea summa patebit + Junctus in articulum purum articulumque + [{14}][Articulum purum comittes articulum que] 160 + Mixti pro digitis post fiat et articulus vt + Norma jubet retinendo quod egreditur ab illis + Articuli digitum post in digitum mixti duc + Regula de digitis ut percipit articulusque 164 + Ex quibus excrescens summe tu junge priori + Sic manifesta cito fiet tibi summa petita. + Compositum numerum mixto sic multiplicabis + Vndecies tredecem sic est ex hiis operandum 168 + In reliquum primum demum duc post in eundem + Unum post deinde duc in tercia deinde per unum + Multiplices tercia demum tunc omnia multiplicata + In summa duces quam que fuerit te dices 172 + Hic ut hic mixtus intentus est operandum + Multiplicandorum de normis sufficiunt hec.] + + [Sidenote: Division.] + + Si vis dividere numerum, sic incipe primo; + Scribe duas, quascunque voles, series numerorum; 176 + Majori numero numerum suppone minorem, + [{15}][Nam docet ut major teneat bis terve minorem;] + Et sub supprima supprimam pone figuram, + Sic reliquis reliquas a dextra parte locabis; 180 + Postea de prima primam sub parte sinistra + Subtrahe, si possis, quociens potes adminus istud, + Scribens quod remanet sub tali conditione; + Ut totiens demas demendas a remanente, 184 + Que serie recte ponentur in anteriori, + Unica si, tantum sit ibi decet operari; + Set si non possis a prima demere primam, + Procedas, et eam numero suppone sequenti; 188 + Hanc uno retrahendo gradu quo comites retrahantur, + Et, quotiens poteris, ab eadem deme priorem, + Ut totiens demas demendas a remanenti, + Nec plus quam novies quicquam tibi demere debes, 192 + Nascitur hinc numerus quociens supraque sequentem + Hunc primo scribas, retrahas exinde figuras, + Dum fuerit major supra positus inferiori, + Et rursum fiat divisio more priori; 196 + Et numerum quotiens supra scribas pereunti, + Si fiat saliens retrahendo, cifra locetur, + Et pereat numero quotiens, proponas eidem + Cifram, ne numerum pereat vis, dum locus illic 200 + Restat, et expletis divisio non valet ultra: + Dum fuerit numerus numerorum inferiore seorsum + Illum servabis; hinc multiplicando probabis, + + [Sidenote: Proof.] + + Si bene fecisti, divisor multiplicetur 204 + Per numerum quotiens; cum multiplicaveris, adde + Totali summ, quod servatum fuit ante, + Reddeturque tibi numerus quem proposuisti; + Et si nil remanet, hunc multiplicando reddet, 208 + + [Sidenote: Square Numbers.] + + Cum ducis numerum per se, qui provenit inde + Sit tibi quadratus, ductus radix erit hujus, + Nec numeros omnes quadratos dicere debes, + Est autem omnis numerus radix alicujus. 212 + Quando voles numeri radicem querere, scribi + Debet; inde notes si sit locus ulterius impar, + Estque figura loco talis scribenda sub illo, + Que, per se dicta, numerum tibi destruat illum, 216 + Vel quantum poterit ex inde delebis eandem; + Vel retrahendo duples retrahens duplando sub ista + Que primo sequitur, duplicatur per duplacationem, + Post per se minuens pro posse quod est minuendum. 220 + [{16}]Post his propones digitum, qui, more priori + Per precedentes, post per se multiplicatus, + Destruat in quantum poterit numerum remanentem, + Et sic procedens retrahens duplando figuram, 224 + Preponendo novam donec totum peragatur, + Subdupla propriis servare docetque duplatis; + Si det compositum numerum duplacio, debet + Inscribi digitus a parte dextra parte propinqua, 228 + Articulusque loco quo non duplicata resessit; + Si dabit articulum, sit cifra loco pereunte + Articulusque locum tenet unum, de duplicata resessit; + Si donet digitum, sub prima pone sequente, 232 + Si supraposita fuerit duplicata figura + Major proponi debet tantummodo cifra, + Has retrahens solito propones more figuram, + Usque sub extrema ita fac retrahendo figuras, 236 + Si totum deles numerum quem proposuisti, + Quadratus fuerit, de dupla quod duplicasti, + Sicque tibi radix illius certa patebit, + Si de duplatis fit juncta supprima figura; 240 + Radicem per se multiplices habeasque + Primo propositum, bene te fecisse probasti; + Non est quadratus, si quis restat, sed habentur + Radix quadrati qui stat major sub eadem; 244 + Vel quicquid remanet tabula servare memento; + Hoc casu radix per se quoque multiplicetur, + Vel sic quadratus sub primo major habetur, + Hinc addas remanens, et prius debes haberi; 248 + Si locus extremus fuerit par, scribe figuram + Sub pereunte loco per quam debes operari, + Que quantum poterit supprimas destruat ambas, + Vel penitus legem teneas operando priorem, 252 + Si suppositum digitus suo fine repertus, + Omnino delet illic scribi cifra debet, + A leva si qua sit ei sociata figura; + Si cifre remanent in fine pares decet harum 256 + Radices, numero mediam proponere partem, + Tali quesita radix patet arte reperta. + Per numerum recte si nosti multiplicare + Ejus quadratum, numerus qui pervenit inde 260 + Dicetur cubicus; primus radix erit ejus; + Nec numeros omnes cubicatos dicere debes, + Est autem omnis numerus radix alicujus; + + [Sidenote: Cube Root.] + + Si curas cubici radicem qurere, primo 264 + Inscriptum numerum distinguere per loca debes; + Que tibi mille notant a mille notante suprema + Initiam, summa operandi parte sinistra, + Illic sub scribas digitum, qui multiplicatus 268 + In semet cubice suprapositum sibi perdat, + Et si quid fuerit adjunctum parte sinistra + Si non omnino, quantum poteris minuendo, + Hinc triplans retrahe saltum, faciendo sub illa 272 + Que manet a digito deleto terna, figuram + Illi propones quo sub triplo asocietur, + Ut cum subtriplo per eam tripla multiplicatur; + Hinc per eam solam productum multiplicabis, 276 + Postea totalem numerum, qui provenit inde + A suprapositis respectu tolle triplate + Addita supprimo cubice tunc multiplicetur, + Respectu cujus, numerus qui progredietur 280 + Ex cubito ductu, supra omnes adimetur; + Tunc ipsam delens triples saltum faciendo, + Semper sub ternas, retrahens alias triplicatas + Ex hinc triplatis aliam propone figuram, 284 + Que per triplatas ducatur more priori; + Primo sub triplis sibi junctis, postea perse, + In numerum ducta, productum de triplicatis: + Utque prius dixi numerus qui provenit inde 288 + A suprapositis has respiciendo trahatur, + Huic cubice ductum sub primo multiplicabis, + Respectumque sui, removebis de remanenti, + Et sic procedas retrahendo triplando figuram. 292 + Et proponendo nonam, donec totum peragatur, + Subtripla sub propriis servare decet triplicatis; + Si nil in fine remanet, numerus datus ante + Est cubicus; cubicam radicem sub tripla prebent, 296 + Cum digito juncto quem supprimo posuisti, + Hec cubice ducta, numerum reddant tibi primum. + Si quid erit remanens non est cubicus, sed habetur + Major sub primo qui stat radix cubicam, 300 + Servari debet quicquid radice remansit, + Extracto numero, decet hec addi cubicato. + Quo facto, numerus reddi debet tibi primus. + Nam debes per se radicem multiplicare 304 + Ex hinc in numerum duces, qui provenit inde + Sub primo cubicus major sic invenietur; + Illi jungatur remanens, et primus habetur, + Si per triplatum numerum nequeas operari; 308 + Cifram propones, nil vero per hanc operare + Set retrahens illam cum saltu deinde triplata, + Propones illi digitum sub lege priori, + Cumque cifram retrahas saliendo, non triplicabis, 312 + Namque nihil cifre triplacio dicitur esse; + At tu cum cifram protraxeris aut triplicata, + Hanc cum subtriplo semper servare memento: + Si det compositum, digiti triplacio debet 316 + Illius scribi, digitus saliendo sub ipsam; + Digito deleto, que terna dicitur esse; + Jungitur articulus cum triplata pereunte, + Set facit hunc scribi per se triplacio prima, 320 + Que si det digitum per se scribi facit illum; + Consumpto numero, si sole fuit tibi cifre + Triplato, propone cifram saltum faciendo, + Cumque cifram retrahe triplam, scribendo figuram, 324 + Preponas cifre, sic procedens operare, + Si tres vel duo serie in sint, pone sub yma, + A dextris digitum servando prius documentum. + Si sit continua progressio terminus nuper 328 + Per majus medium totalem multiplicato; + Si par, per medium tunc multiplicato sequentem. + Set si continua non sit progressio finis: + Impar, tunc majus medium si multiplicabis, 332 + Si par per medium sibi multiplicato propinquum. 333 + + +FOOTNOTES (Appendix II, Carmen de Algorismo): + + [1: "Hec prsens ars dicitur algorismus ab Algore rege ejus + inventore, vel dicitur ab _algos_ quod est ars, et _rodos_ quod est + numerus; qu est ars numerorum vel numerandi, ad quam artem bene + sciendum inveniebantur apud Indos bis quinque (id est decem) + figur." --_Comment. Thom de Novo-Mercatu._ MS. Bib. Reg. Mus. + Brit. 12 E.1.] + + [2: "H necessari figur sunt Indorum characteros." _MS. de + numeratione._ Bib. Sloan. Mus. Brit. 513, fol. 58. "Cum vidissem + Yndos constituisse IX literas in universo numero suo propter + dispositionem suam quam posuerunt, volui patefacere de opere quod + sit per eas aliquidque esset levius discentibus, si Deus voluerit. + Si autem Indi hoc voluerunt et intentio illorum nihil novem literis + fuit, causa que mihi potuit. Deus direxit me ad hoc. Si vero alia + dicam preter eam quam ego exposui, hoc fecerunt per hoc quod ego + exposui, eadem tam certissime et absque ulla dubitatione poterit + inveniri. Levitasque patebit aspicientibus et discentibus." MS. + U.L.C., Ii. vi. 5, f.102.] + + [3: From Eg. 2622.] + + [4: 8 C. iv. inserts + Nullum cipa significat: dat significare sequenti.] + + [5: From 12 E. 1.] + + [6: + En argorisme devon prendre + Vii especes . . . . + Adision subtracion + Doubloison mediacion + Monteploie et division + Et de radix eustracion + A chez vii especes savoir + Doit chascun en memoire avoir + Letres qui figures sont dites + Et qui excellens sont ecrites. --MS. _Seld. Arch._ B.26.] + + [7: From 12 E. 1.] + + [8: From 12 E. 1.] + + [9: 8 C. iv. inserts + Atque figura prior nuper fuerit mediando.] + + [10: _I.e._ figura secundo loco posita.] + + [11: So 12 E. 1; 8 C. iv. inserts-- + + [12: 12 E. 1 inserts.] + + [13: 12 E. 1 inserts to l. 174.] + + [14: 12 E. 1 omits, Eg. 2622 inserts.] + + [15: 12 E. 1 inserts.] + + [16: 8 C. iv. inserts-- + Hinc illam dele duplans sub ei psalliendo + Que sequitur retrahens quicquid fuerit duplicatum.] + + + + +INDEX OF TECHNICAL TERMS[1*] + + [Footnote 1*: This Index has been kindly prepared by Professor + J.B. Dale, of King's College, University of London, and the + best thanks of the Society are due to him for his valuable + contribution.] + + [Transcriber's Note: + The Technical Terms and Glossary (following) refer to page and line + numbers in the printed book. Information in [[double brackets]] has + been added by the transcriber to aid in text searching.] + + + +algorisme+, 33/12; +algorym+, +augrym+, 3/3; the art of computing, + using the so-called Arabic numerals. + The word in its various forms is derived from the Arabic + _al-Khowarazmi_ (i.e. the native of Khwarazm (Khiva)). This was the + surname of Ja'far Mohammad ben Musa, who wrote a treatise early in + the 9th century (see p.xiv). + The form _algorithm_ is also found, being suggested by a supposed + derivation from the Greek +arithmos+ (number). + + +antery+, 24/11; to move figures to the right of the position in + which they are first written. This operation is performed repeatedly + upon the multiplier in multiplication, and upon certain figures + which arise in the process of root extraction. + + +anterioracioun+, 50/5; the operation of moving figures to the + right. [[written anteriorac{i}o{u}n or anterioracio{u}n]] + + +article+, 34/23; +articul+, 5/31; +articuls+, 9/36, 29/7,8; + anumber divisible by ten without remainder. [[also articull{e}]] + + +cast+, 8/12; to add one number to another. + 'Addition is a _casting_ together of two numbers into one number,' + 8/10. + + +cifre+, 4/1; the name of the figure 0. The word is derived from the + Arabic _sifr_ = empty, nothing. Hence _zero_. + A cipher is the symbol of the absence of number or of zero quantity. + It may be used alone or in conjunction with digits or other ciphers, + and in the latter case, according to the position which it occupies + relative to the other figures, indicates the absence of units, or + tens, or hundreds, etc. The great superiority of the Arabic to all + other systems of notation resides in the employment of this symbol. + When the cipher is not used, the place value of digits has to be + indicated by writing them in assigned rows or columns. Ciphers, + however, may be interpolated amongst the significant figures used, + and as they sufficiently indicate the positions of the empty rows or + columns, the latter need not be indicated in any other way. The + practical performance of calculations is thus enormously facilitated + (see p.xvi). + + +componede+, 33/24; +composyt+, 5/35; with reference to numbers, one + compounded of a multiple of ten and a digit. + [[written componed{e}]] + + +conuertide+ = conversely, 46/29, 47/9. + [[written co{n}u{er}tid{e} or {con}u{er}tid{e}]] + + +cubicede+, 50/13; +to be c.+, to have its cube root found. + [[written cubiced{e}]] + + +cubike nombre+, 47/8; anumber formed by multiplying a given number + twice by itself, _e.g._ 27 = 3נ3נ3. Now called simply a cube. + [[written cubik{e} ...]] + + +decuple+, 22/12; the product of a number by ten. Tenfold. + + +departys+ = divides, 5/29. [[written dep{ar}tys]] + + +digit+, 5/30; +digitalle+, 33/24; anumber less than ten, + represented by one of the nine Arabic numerals. + [[written digitall{e}]] + + +dimydicion+, 7/23; the operation of dividing a number by two. + Halving. [[written dimydicio]] + + +duccioun+, multiplication, 43/9. [[written duccio{u}n]] + + +duplacion+, 7/23, 14/15; the operation of multiplying a number by + two. Doubling. + [[written duplacio or duplacio[n~] with fancy "n"]] + + +i-mediet+ = halved, 19/23. + + +intercise+ = broken, 46/2; intercise Progression is the name given + to either of the Progressions 1, 3, 5, 7, etc.; 2, 4, 6, 8, etc., + in which the common difference is2. [[written int{er}cise]] + + +lede into+, multiply by, 47/18. + [[words always separated, as "lede ... into"]] + + +lyneal nombre+, 46/14; a number such as that which expresses the + measure of the length of a line, and therefore is not _necessarily_ + the product of two or more numbers (_vide_ Superficial, Solid). This + appears to be the meaning of the phrase as used in _The Art of + Nombryng_. It is possible that the numbers so designated are the + prime numbers, that is, numbers not divisible by any other number + except themselves and unity, but it is not clear that this + limitation is intended. + + +mediacioun+, 16/36, 38/16; dividing by two (see also +dimydicion+). + [[written mediacio[n~] with fancy "n", generally without "u"]] + + +medlede nombre+, 34/1; anumber formed of a multiple of ten and a + digit (_vide_ componede, composyt). [[written medled{e} ...]] + + +medye+, 17/8, to halve; +mediete+, halved, 17/30; +ymedit+, 20/9. + + +naturelle progressioun+, 45/22; the series of numbers 1, 2, 3, etc. + [[written naturell{e} p{ro}gressio{u}n]] + + +produccioun+, multiplication, 50/11. [[written produccio{u}n]] + + +quadrat nombre+, 46/12; a number formed by multiplying a given + number by itself, _e.g._ 9 = 3נ3, asquare. + + +rote+, 7/25; +roote+, 47/11; root. The roots of squares and cubes + are the numbers from which the squares and cubes are derived by + multiplication into themselves. + + +significatyf+, significant, 5/14; The significant figures of a + number are, strictly speaking, those other than zero, _e.g._ in 3 6 + 5 0 4 0 0, the significant figures are 3, 6, 5, 4. Modern usage, + however, regards all figures between the two extreme significant + figures as significant, even when some are zero. Thus, in the above + example, 3 6 5 0 4 are considered significant. + + +solide nombre+, 46/37; anumber which is the product of three other + numbers, _e.g._ 66 = 11נ2נ3. [[usually written solid{e}]] + + +superficial nombre+, 46/18; anumber which is the product of two + other numbers, _e.g._ 6 = 2נ3. + [[written sup{er}ficial or sup{er}ficiall{e}]] + + +ternary+, consisting of three digits, 51/7. + [[written t{er}nary]] + + +vnder double+, a digit which has been doubled, 48/3. + + +vnder-trebille+, a digit which has been trebled, 49/28; + +vnder-triplat+, 49/39. + [[written vnder-trebill{e}, vnder-t{r}iplat]] + + +w+, a symbol used to denote half a unit, 17/33 + [[printed as superscript^w]] + + + + +GLOSSARY + + [Transcriber's Note: + + Words whose first appearance is earlier than the page cited in the + Glossary are identified in double-bracketed notes. To aid in text + searching, words written with internal {italics} are also noted, + and context is given for common words.] + + + +ablacioun+, taking away, 36/21 [[written ablacio{u}n]] + +addyst+, haddest, 10/37 + +agregacioun+, addition, 45/22. (First example in N.E.D., 1547.) + [[written ag{r}egacio{u}n]] + +a-[gh]enenes+, against, 23/10 + +allgate+, always, 8/39 + +als+, as, 22/24 + +and+, if, 29/8; + +&+, 4/27; + +& yf+, 20/7 + +a-nendes+, towards, 23/15 + +aproprede+, appropriated, 34/27 [[written ap{ro}pred{e}]] + +apwereth+, appears, 61/8 + +a-risy[gh]t+, arises, 14/24 + +a-rowe+, in a row, 29/10 + +arsemetrike+, arithmetic, 33/1 [[written arsemetrik{e}]] + +ayene+, again, 45/15 + + +bagle+, crozier, 67/12 + +bordure+ = ordure, row, 43/30 [[written bordur{e}]] + +borro+, _inf._ borrow, 11/38; + _imp. s._ +borowe+, 12/20; + _pp._ +borwed+, 12/15; + +borred+, 12/19 + +boue+, above, 42/34 + + +caputule+, chapter, 7/26 [[written caputul{e}]] + +certayn+, assuredly, 18/34 [[written c{er}tay[n~]]] + +clepede+, called, 47/7 [[written cleped{e}]] + +competently+, conveniently, 35/8 + +compt+, count, 47/29 + +contynes+, contains, 21/12; [[written {con}tynes]] + _pp._ +contenythe+, 38/39 [[written co{n}tenyth{e}]] + +craft+, art, 3/4 + + +distingue+, divide, 51/5 + + +egalle+, equal, 45/21 [[written egall{e}]] + +excep+, except, 5/16] + +exclusede+, excluded, 34/37 [[written exclused{e}]] + +excressent+, resulting, 35/16 [[written exc{re}ssent]] + +exeant+, resulting, 43/26 + +expone+, expound, 3/23 + + +ferye+ = fere, fourth, 70/12 + +figure+ = figures, 5/1 [[written fig{ure}]] + +for-by+, past, 12/11 + +fors; no f.+, no matter, 22/24 + +forseth+, matters, 53/30 + +forye+ = fore, forth, 71/8] + +fyftye+ = fyfte, fifth, 70/16 + + +grewe+, Greek, 33/13 + + +haluendel+, half, 16/16; + +haldel+, 19/4; + _pl._ +haluedels+, 16/16 + +hayst+, hast, 17/3, 32 + +hast+, haste, 22/25 [[in "haue hastto"]] + +heer+, higher, 9/35 + +here+, their, 7/26 [[in "in her{e} caputul{e}"]] + +here-a-fore+, heretofore, 13/7 [[written her{e}-a-for{e}]] + +heyth+, was called, 3/5 + +hole+, whole, 4/39; + +holle+, 17/1; + +hoole+, of three dimensions, 46/15 + +holdye+, holds good, 30/5 + +how be it that+, although, 44/4 + + +lede+ = lete, let, 8/37 + +lene+, lend, 12/39 + +lest+, least, 43/27 [[in "at the lest"]] + +lest+ = left, 71/9 [[in "the lest syde"]] + +leue+, leave, 6/5; + _pr. 3 s._ +leues+, remains, 11/19; [[first in 10/40]] + +leus+, 11/28; + _pp._ +laft+, left, 19/24 + +lewder+, more ignorant, 3/3 [[written lewd{er}]] + +lust+, desirest to, 45/13 + +ly[gh]t+, easy, 15/31 + +lymytes+, limits, 34/18; + +lynes+, 34/12; + +lynees+, 34/17; + Lat. limes, _pl._ limites. + + +maystery+, achievement; [[written mayst{er}y]] + +no m.+, no achievement, i.e. easy, 19/10 + +me+, _indef. pron._ one, 42/1 [[first in 34/16]] + +mo+, more, 9/16 + +moder+ = more (Lat. majorem), 43/22 + +most+, must, 30/3 [[first in 3/12 and many more]] + +multipliede+, +to be m.+ = multiplying, 40/9 + +mynvtes+, the sixty parts into which a unit is divided, 38/25 + [[written mynvt{es}]] + +myse-wro[gh]t+, mis-wrought, 14/11 + + +nether+, nor, 34/25 [[in "It was, netheris"]] + +nex+, next, 19/9 + +no[gh]t+, nought, 5/7 [[first in 4/8]] + +note+, not, 30/5 + + +oo+, one, 42/20; +o+, 42/21 [[first in 34/27; 33/22]] + +omest+, uppermost, higher, 35/26; + +omyst+, 35/28 + +omwhile+, sometimes, 45/31 [[first in 39/17]] + +on+, one, 8/29 [[in "on vnder an-o{er}"]] + +opyne+, plain, 47/8 [[written opyn{e}]] + +or+, before, 13/25 [[in "or ou be-gan"]] + +or+ = e o{er}, the other, 28/34 [[in "or by-twene"]] + +ordure+, order, 34/9; + row, 43/1 [[word form is "order"]] + +other+, or, 33/13, 43/26; + [[in "art other craft" on 33/13, "other how oft" on 43/26; + note also "one other other" on 35/24]] + +other ... or+, either .. . or, 38/37 + [[in "other it is even or od{e}" on 38/37; + there are earlier occurrences]] + +ouerer+, upper, 42/15 [[written ou{er}er]] + +ouer-hippede+, passed over, 43/19 [[written ou{er}-hipped{e}]] + + +recte+, directly, 27/20 [[in "stondes not recte"; + also on 26/31 in "recte ou{er} his hede"]] + +remayner+, remainder, 56/28 + +representithe+, represented, 39/14 [[written rep{re}sentith{e}]] + +resteth+, remains, 63/29 [[first in 57/29 and others]] + +rewarde+, regard, 48/6 [[written reward{e}]] + +rew+, row, 4/8 + +rewle+, row, 4/20, 7/12; + [[in "place of e rewle", "e rewle of fig{ure}s"]] + +rewele+, 4/18; + +rewles+, rules, 5/33 + + +s.+ = scilicet, 3/8 [[in "s. Algorism{us}"]] + +sentens+, meaning, 14/29 + +signifye(tyf)+, 5/13. The last three letters are added above the + line, evidently because of the word 'significatyf' in l.14. + But the 'Solucio,' which contained the word, has been omitted. + +sithen+, since, 33/8 + +some+, sum, result, 40/17, 32 + [[first in 36/21 in "me may see a some", then in "the same some" + and "to someof"]] + +sowne+, pronounce, 6/29 + +singillatim+, singly, 7/25 + +spices+, species, kinds, 34/4 [[first in 5/34 and others]] + +spyl+, waste, 14/26 + +styde+, stead, 18/20 + +subtrahe+, subtract, 48/12; + _pp._ +subtrayd+, 13/21 + +sythes+, times, 21/16 + + +ta[gh]t+, taught, 16/36 + +take+, _pp._ taken; + +t. fro+, starting from, 45/22 [[in "fro oone or tweyn{e} take"]] + +taward+, toward, 23/34 + +thou[gh]t+, though, 5/20 + +trebille+, multiply by three, 49/26 [[written trebill{e}]] + +twene+, two, 8/11 [[first in 4/23]] + +ow+, though, 25/15 [[in "ow {o}u take"]] + +ow[gh]t+, thought; + +be .+, mentally, 28/4 + +us+ = is, this, 20/33 [[in "us nombur 214"]] + + +vny+, unite, 45/10 + + +wel+, wilt, 14/31 [[in "If {o}u wel"]] + +wete+, wit, 15/16; + +wyte+, know, 8/38; + _pr. 2 s._ +wost+, 12/38 + +wex+, become, 50/18 + +where+, whether, 29/12 + [[written wher{e} in "wher{e} in e secunde,or"]] + +wher-thurghe+, whence, 49/15 [[written Wher-thurgh{e}]] + +worch+, work, 8/19; [[first in 7/35]] + +wrich+, 8/35; + +wyrch+, 6/19; + _imp. s._ +worch+, 15/9; [[first in 9/6]] + _pp._ +y-wroth+, 13/24 + +write+, written, 29/19; + [[first in 6/37 in "hast write", "be write"]] + +y-write+, 16/1 + +wryrchynge+ = wyrchynge, working, 30/4 [[written wryrchyng{e}]] + +w^t+, with, 55/8 + + +y-broth+, brought, 21/18 + +ychon+, each one, 29/10 [[written ycho[n~]]] + +ydo+, done, added, 9/6 + [[first in 8/37 in "haue ydo"; 9/6 in "ydo all to-ged{er}"]] + +ylke+, same, 5/12 + +y-lyech+, alike, 22/23 + +y-my[gh]t+, been able, 12/2 + +y-now[gh]t+, enough, 15/31; + +ynov[gh]t+, 18/34 + +yove+, given, 45/33 + +y^t+, that, 52/8 + +y-write+, _v._ +write.+ + +y-wroth+, _v._ +worch.+ + + + * * * * * + * * * * + * * * * * + + +MARGINAL NOTES: + ++Headnotes+ have been moved to the beginning of the appropriate +paragraph. Headnotes were omitted from the two Appendixes, as sidenotes +give the same information. + ++Line Numbers+ are cited in the Index and Glossary. They have been +omitted from the e-text except in the one verse selection (App. II, +_Carmen de Algorismo_). Instead, the Index and Glossary include +supplemental information to help locate each word. + ++Numbered Notes+: + + Numbered sidenotes show page or leaf numbers from the original MSS. + In the e-text, the page number is shown as [*123b] inline; mid-word + page breaks are marked with a supplemental asterisk [*]. Numbers are + not used. + + Footnotes give textual information such as variant readings. They + have been numbered sequentially within each title, with numbers + shown as [{1}] to avoid confusion with bracked text--including + single numerals--in the original. Editorial notes are shown as [1*]. + When a footnote calls for added text, the addition is shown in the + body text with [[double brackets]]. + ++Sidenotes+ giving a running synopsis of the text have been moved to the +beginning of each paragraph, where they are shown as a single note. + + +ERRORS AND ANOMALIES (Noted by Transcriber): + +Introduction: + + dated Mij^c + [_In this and the remainder of the paragraph, the letter shown as + ^c is printed directly above the preceding j._] + +The Crafte of Nombrynge: + + sursu{m} {pr}ocedas m{u}ltiplicando + [_Italicized as shown: error for "p{ro}cedas"?_] + Sidenote: Our author makes a slip here + [_Elsewhere in the book, numerical errors are corrected in the + body text, with a footnote giving the original form._] + ten tymes so mych is e nounb{re} + [_text unchanged: error for "as"?_] + 6 tymes 24, [{19}]en take + [_misplaced footnote anchor in original: + belongs with "6 times 24"_] + Fn. 7: 'Subt{ra}has a{u}t addis a dext{ri}s [_open quote missing_] + +The Art of Nombryng: + + oone of the digitis as .10. of 1.. 20. of. 2. + [_text unchanged: error for "as .10. of .1. 20. of .2."?_] + sette a-side half of tho m{inutes} + [_text unchanged: error for "the"?_] + and. 10. as before is come therof + [_text unchanged: error for "and .10."?_] + Sidenote: Where to set the quotiente [_spelling (1922) unchanged_] + Sidenote: Definition of Progression. [_f in "of" illegible_] + Sidenote: ... giving the value of ab.^2 [_That is, "a(b^2)."_] + +Accomptynge by counters: + + For example of the [*117a.] ly[*]nes + [_final . in sidenote missing or invisible_] + [_also in 121b, 122a] + which in the fyrst summe is 5 + [_invisible "5" supplied by transcriber_] + [*116a (_sic_).] + [_Editor's "sic": page numbering jumps back to 116 instead of the + expected 123, and continues from 116._] + [*123a] ... set downe y^e multiplyer .v. tymes, as here youse + [_Diagram shown as printed, with 35500 for 36500 in one column, + and apparent misplaced "thousands" marker_] + 365 (which is the nomber of dayes ... [_open ( missing_] + +The arte of nombrynge by the hande: + + for 1 the fynger is clasped in + [_In at least one printing of the text, "clasped" is misprinted + as "elasped"_] + but this teacyed me not [_text unchanged_] + +Appendix I: A Treatise on the Numeration of Algorism: + + _See Introduction and Glossary for long s:f and :y errors_ + +Appendix II: Carmen de Algorismo: + + _In this selection, errors that are not explained in footnotes were + assumed to be typographic._ + + l. 99 Postea procedas [procdeas] + l. 163 Articuli digitum post in digitum mixti duc [post iu] + + + + + + +End of Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +*** END OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARiTHMETICS IN ENGLISH *** + +***** This file should be named 25664-8.txt or 25664-8.zip ***** +This and all associated files of various formats will be found in: + http://www.gutenberg.org/2/5/6/6/25664/ + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + +Updated editions will replace the previous one--the old editions +will be renamed. + +Creating the works from public domain print editions means that no +one owns a United States copyright in these works, so the Foundation +(and you!) can copy and distribute it in the United States without +permission and without paying copyright royalties. Special rules, +set forth in the General Terms of Use part of this license, apply to +copying and distributing Project Gutenberg-tm electronic works to +protect the PROJECT GUTENBERG-tm concept and trademark. Project +Gutenberg is a registered trademark, and may not be used if you +charge for the eBooks, unless you receive specific permission. If you +do not charge anything for copies of this eBook, complying with the +rules is very easy. You may use this eBook for nearly any purpose +such as creation of derivative works, reports, performances and +research. They may be modified and printed and given away--you may do +practically ANYTHING with public domain eBooks. Redistribution is +subject to the trademark license, especially commercial +redistribution. + + + +*** START: FULL LICENSE *** + +THE FULL PROJECT GUTENBERG LICENSE +PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK + +To protect the Project Gutenberg-tm mission of promoting the free +distribution of electronic works, by using or distributing this work +(or any other work associated in any way with the phrase "Project +Gutenberg"), you agree to comply with all the terms of the Full Project +Gutenberg-tm License (available with this file or online at +http://gutenberg.org/license). + + +Section 1. General Terms of Use and Redistributing Project Gutenberg-tm +electronic works + +1.A. By reading or using any part of this Project Gutenberg-tm +electronic work, you indicate that you have read, understand, agree to +and accept all the terms of this license and intellectual property +(trademark/copyright) agreement. If you do not agree to abide by all +the terms of this agreement, you must cease using and return or destroy +all copies of Project Gutenberg-tm electronic works in your possession. +If you paid a fee for obtaining a copy of or access to a Project +Gutenberg-tm electronic work and you do not agree to be bound by the +terms of this agreement, you may obtain a refund from the person or +entity to whom you paid the fee as set forth in paragraph 1.E.8. + +1.B. "Project Gutenberg" is a registered trademark. It may only be +used on or associated in any way with an electronic work by people who +agree to be bound by the terms of this agreement. There are a few +things that you can do with most Project Gutenberg-tm electronic works +even without complying with the full terms of this agreement. See +paragraph 1.C below. There are a lot of things you can do with Project +Gutenberg-tm electronic works if you follow the terms of this agreement +and help preserve free future access to Project Gutenberg-tm electronic +works. See paragraph 1.E below. + +1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" +or PGLAF), owns a compilation copyright in the collection of Project +Gutenberg-tm electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an +individual work is in the public domain in the United States and you are +located in the United States, we do not claim a right to prevent you from +copying, distributing, performing, displaying or creating derivative +works based on the work as long as all references to Project Gutenberg +are removed. Of course, we hope that you will support the Project +Gutenberg-tm mission of promoting free access to electronic works by +freely sharing Project Gutenberg-tm works in compliance with the terms of +this agreement for keeping the Project Gutenberg-tm name associated with +the work. You can easily comply with the terms of this agreement by +keeping this work in the same format with its attached full Project +Gutenberg-tm License when you share it without charge with others. + +1.D. The copyright laws of the place where you are located also govern +what you can do with this work. Copyright laws in most countries are in +a constant state of change. If you are outside the United States, check +the laws of your country in addition to the terms of this agreement +before downloading, copying, displaying, performing, distributing or +creating derivative works based on this work or any other Project +Gutenberg-tm work. The Foundation makes no representations concerning +the copyright status of any work in any country outside the United +States. + +1.E. Unless you have removed all references to Project Gutenberg: + +1.E.1. The following sentence, with active links to, or other immediate +access to, the full Project Gutenberg-tm License must appear prominently +whenever any copy of a Project Gutenberg-tm work (any work on which the +phrase "Project Gutenberg" appears, or with which the phrase "Project +Gutenberg" is associated) is accessed, displayed, performed, viewed, +copied or distributed: + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + +1.E.2. If an individual Project Gutenberg-tm electronic work is derived +from the public domain (does not contain a notice indicating that it is +posted with permission of the copyright holder), the work can be copied +and distributed to anyone in the United States without paying any fees +or charges. If you are redistributing or providing access to a work +with the phrase "Project Gutenberg" associated with or appearing on the +work, you must comply either with the requirements of paragraphs 1.E.1 +through 1.E.7 or obtain permission for the use of the work and the +Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or +1.E.9. + +1.E.3. If an individual Project Gutenberg-tm electronic work is posted +with the permission of the copyright holder, your use and distribution +must comply with both paragraphs 1.E.1 through 1.E.7 and any additional +terms imposed by the copyright holder. Additional terms will be linked +to the Project Gutenberg-tm License for all works posted with the +permission of the copyright holder found at the beginning of this work. + +1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm +License terms from this work, or any files containing a part of this +work or any other work associated with Project Gutenberg-tm. + +1.E.5. Do not copy, display, perform, distribute or redistribute this +electronic work, or any part of this electronic work, without +prominently displaying the sentence set forth in paragraph 1.E.1 with +active links or immediate access to the full terms of the Project +Gutenberg-tm License. + +1.E.6. You may convert to and distribute this work in any binary, +compressed, marked up, nonproprietary or proprietary form, including any +word processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenberg-tm work in a format other than +"Plain Vanilla ASCII" or other format used in the official version +posted on the official Project Gutenberg-tm web site (www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original "Plain Vanilla ASCII" or other +form. Any alternate format must include the full Project Gutenberg-tm +License as specified in paragraph 1.E.1. + +1.E.7. Do not charge a fee for access to, viewing, displaying, +performing, copying or distributing any Project Gutenberg-tm works +unless you comply with paragraph 1.E.8 or 1.E.9. + +1.E.8. You may charge a reasonable fee for copies of or providing +access to or distributing Project Gutenberg-tm electronic works provided +that + +- You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenberg-tm works calculated using the method + you already use to calculate your applicable taxes. The fee is + owed to the owner of the Project Gutenberg-tm trademark, but he + has agreed to donate royalties under this paragraph to the + Project Gutenberg Literary Archive Foundation. Royalty payments + must be paid within 60 days following each date on which you + prepare (or are legally required to prepare) your periodic tax + returns. Royalty payments should be clearly marked as such and + sent to the Project Gutenberg Literary Archive Foundation at the + address specified in Section 4, "Information about donations to + the Project Gutenberg Literary Archive Foundation." + +- You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenberg-tm + License. You must require such a user to return or + destroy all copies of the works possessed in a physical medium + and discontinue all use of and all access to other copies of + Project Gutenberg-tm works. + +- You provide, in accordance with paragraph 1.F.3, a full refund of any + money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days + of receipt of the work. + +- You comply with all other terms of this agreement for free + distribution of Project Gutenberg-tm works. + +1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm +electronic work or group of works on different terms than are set +forth in this agreement, you must obtain permission in writing from +both the Project Gutenberg Literary Archive Foundation and Michael +Hart, the owner of the Project Gutenberg-tm trademark. Contact the +Foundation as set forth in Section 3 below. + +1.F. + +1.F.1. Project Gutenberg volunteers and employees expend considerable +effort to identify, do copyright research on, transcribe and proofread +public domain works in creating the Project Gutenberg-tm +collection. Despite these efforts, Project Gutenberg-tm electronic +works, and the medium on which they may be stored, may contain +"Defects," such as, but not limited to, incomplete, inaccurate or +corrupt data, transcription errors, a copyright or other intellectual +property infringement, a defective or damaged disk or other medium, a +computer virus, or computer codes that damage or cannot be read by +your equipment. + +1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right +of Replacement or Refund" described in paragraph 1.F.3, the Project +Gutenberg Literary Archive Foundation, the owner of the Project +Gutenberg-tm trademark, and any other party distributing a Project +Gutenberg-tm electronic work under this agreement, disclaim all +liability to you for damages, costs and expenses, including legal +fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT +LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE +PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE +TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE +LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR +INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH +DAMAGE. + +1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a +defect in this electronic work within 90 days of receiving it, you can +receive a refund of the money (if any) you paid for it by sending a +written explanation to the person you received the work from. If you +received the work on a physical medium, you must return the medium with +your written explanation. The person or entity that provided you with +the defective work may elect to provide a replacement copy in lieu of a +refund. If you received the work electronically, the person or entity +providing it to you may choose to give you a second opportunity to +receive the work electronically in lieu of a refund. If the second copy +is also defective, you may demand a refund in writing without further +opportunities to fix the problem. + +1.F.4. Except for the limited right of replacement or refund set forth +in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + +1.F.5. Some states do not allow disclaimers of certain implied +warranties or the exclusion or limitation of certain types of damages. +If any disclaimer or limitation set forth in this agreement violates the +law of the state applicable to this agreement, the agreement shall be +interpreted to make the maximum disclaimer or limitation permitted by +the applicable state law. The invalidity or unenforceability of any +provision of this agreement shall not void the remaining provisions. + +1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the +trademark owner, any agent or employee of the Foundation, anyone +providing copies of Project Gutenberg-tm electronic works in accordance +with this agreement, and any volunteers associated with the production, +promotion and distribution of Project Gutenberg-tm electronic works, +harmless from all liability, costs and expenses, including legal fees, +that arise directly or indirectly from any of the following which you do +or cause to occur: (a) distribution of this or any Project Gutenberg-tm +work, (b) alteration, modification, or additions or deletions to any +Project Gutenberg-tm work, and (c) any Defect you cause. + + +Section 2. Information about the Mission of Project Gutenberg-tm + +Project Gutenberg-tm is synonymous with the free distribution of +electronic works in formats readable by the widest variety of computers +including obsolete, old, middle-aged and new computers. It exists +because of the efforts of hundreds of volunteers and donations from +people in all walks of life. + +Volunteers and financial support to provide volunteers with the +assistance they need, is critical to reaching Project Gutenberg-tm's +goals and ensuring that the Project Gutenberg-tm collection will +remain freely available for generations to come. In 2001, the Project +Gutenberg Literary Archive Foundation was created to provide a secure +and permanent future for Project Gutenberg-tm and future generations. +To learn more about the Project Gutenberg Literary Archive Foundation +and how your efforts and donations can help, see Sections 3 and 4 +and the Foundation web page at http://www.pglaf.org. + + +Section 3. Information about the Project Gutenberg Literary Archive +Foundation + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the +state of Mississippi and granted tax exempt status by the Internal +Revenue Service. The Foundation's EIN or federal tax identification +number is 64-6221541. Its 501(c)(3) letter is posted at +http://pglaf.org/fundraising. Contributions to the Project Gutenberg +Literary Archive Foundation are tax deductible to the full extent +permitted by U.S. federal laws and your state's laws. + +The Foundation's principal office is located at 4557 Melan Dr. S. +Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at +809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact +information can be found at the Foundation's web site and official +page at http://pglaf.org + +For additional contact information: + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. Information about Donations to the Project Gutenberg +Literary Archive Foundation + +Project Gutenberg-tm depends upon and cannot survive without wide +spread public support and donations to carry out its mission of +increasing the number of public domain and licensed works that can be +freely distributed in machine readable form accessible by the widest +array of equipment including outdated equipment. Many small donations +($1 to $5,000) are particularly important to maintaining tax exempt +status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United +States. Compliance requirements are not uniform and it takes a +considerable effort, much paperwork and many fees to meet and keep up +with these requirements. We do not solicit donations in locations +where we have not received written confirmation of compliance. To +SEND DONATIONS or determine the status of compliance for any +particular state visit http://pglaf.org + +While we cannot and do not solicit contributions from states where we +have not met the solicitation requirements, we know of no prohibition +against accepting unsolicited donations from donors in such states who +approach us with offers to donate. + +International donations are gratefully accepted, but we cannot make +any statements concerning tax treatment of donations received from +outside the United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation +methods and addresses. Donations are accepted in a number of other +ways including checks, online payments and credit card donations. +To donate, please visit: http://pglaf.org/donate + + +Section 5. General Information About Project Gutenberg-tm electronic +works. + +Professor Michael S. Hart is the originator of the Project Gutenberg-tm +concept of a library of electronic works that could be freely shared +with anyone. For thirty years, he produced and distributed Project +Gutenberg-tm eBooks with only a loose network of volunteer support. + + +Project Gutenberg-tm eBooks are often created from several printed +editions, all of which are confirmed as Public Domain in the U.S. +unless a copyright notice is included. Thus, we do not necessarily +keep eBooks in compliance with any particular paper edition. + + +Most people start at our Web site which has the main PG search facility: + + http://www.gutenberg.org + +This Web site includes information about Project Gutenberg-tm, +including how to make donations to the Project Gutenberg Literary +Archive Foundation, how to help produce our new eBooks, and how to +subscribe to our email newsletter to hear about new eBooks. diff --git a/25664-8.zip b/25664-8.zip Binary files differnew file mode 100644 index 0000000..d2c26f6 --- /dev/null +++ b/25664-8.zip diff --git a/25664-h.zip b/25664-h.zip Binary files differnew file mode 100644 index 0000000..d4d1378 --- /dev/null +++ b/25664-h.zip diff --git a/25664-h/25664-h.htm b/25664-h/25664-h.htm new file mode 100644 index 0000000..ade4b35 --- /dev/null +++ b/25664-h/25664-h.htm @@ -0,0 +1,12561 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" +"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> + +<html xmlns="http://www.w3.org/1999/xhtml"> + +<head> +<title>The Earliest Arithmetics in English</title> +<meta http-equiv = "Content-Type" content = "text/html; charset=UTF-8" /> + +<!-- xhtml to allow future replacement of imgs with xml entities --> + +<style type = "text/css"> + +body {margin-left: 10%; margin-right: 10%;} + +div.titlepage, div.intro, div.craft, div.art, div.count, div.app +{padding-top: 2em; padding-bottom: 2em;} + +div.maintext {margin-right: 12%; margin-left: 8%;} + +hr {width: 80%; margin-top: 1em; margin-bottom: 1em; text-align: center;} +hr.mid {width: 40%;} +hr.tiny {width: 20%;} + +sup {font-size: 80%; line-height: 50%; vertical-align: 80%;} + +img {text-decoration: none; border: none;} + + +/* anchors */ +a {text-decoration: none;} +a.tag {text-decoration: none; vertical-align: .5em; font-size: 67%; +padding-left: .25em; line-height: .1em;} +table a.tag {padding-left: 0;} +a.terms {color: inherit; background-color: inherit; +border-bottom: 1px solid #76F;} +a.gloss {color: inherit; background-color: inherit; +border-bottom: 1px dotted #76F;} + + +h1, h2, h3, h4, h5, h6 {text-align: center; font-style: normal; +font-weight: normal; line-height: 1.5; +margin-top: 1.5em; margin-bottom: .5em;} + +h1 {font-size: 250%;} +h2 {font-size: 200%;} +h3 {font-size: 150%;} +h4 {font-size: 120%;} +div.endnote h4 {margin-top: .5em;} +h5 {font-size: 100%;} +h6 {font-size: 85%;} + +div.titlepage h1, div.titlepage h2 {margin-top: 0em; margin-bottom: 0em; line-height: 1.25;} +div.titlepage h2 {font-family: sans-serif;} + +h2.one {font-size: 105%;} +h2.two {font-size: 90%;} +h2.three {font-size: 75%;} + +div.intro h4 {font-variant: small-caps;} +div.intro h5 {text-align: left; margin-left: 2em; margin-right: 2em; +text-indent: -1em; line-height: 1.2;} + +div.maintext h5 {font-weight: bold; line-height: 1.2;} + + +p {margin-top: .5em; margin-bottom: 0em; line-height: 1.2;} + +p.inset, div.inset {padding-left: 1em;} +div.inset p + p {margin-top: .33em;} + +p.nospace {margin-top: 0;} +p.center {text-align: center;} +p.wide {line-height: 2em;} + +p.allclear {clear: both; padding-top: .1em;} +p.rightclear {clear: right; padding-top: .1em;} + +p.illustration {text-align: center; margin-top: 1em; margin-bottom: 1em;} + +p.subhead {text-align: center; margin-top: 2em; margin-bottom: 1.5em; +font-size: 92%;} + +div.verse {margin: .5em 0 .5em 2em; clear: both;} +div.craft div.verse {font-weight: bold;} +div.verse p {margin-top: 0; margin-left: 4em; text-indent: -4em;} +div.verse p.halfline {margin-left: 12em;} +div.verse p.stanza {margin-top: .5em;} +div.verse p.pilcrow {text-indent: -4.75em;} +div.verse p.pilcrow.plus {text-indent: -5.5em;} + +div.hanging p {margin-left: 1.5em; text-indent: -1.5em;} + +div.index p, div.glossary p {margin-left: 1.75em; text-indent: -1.75em; +margin-top: .25em; font-size: 92%; clear: right;} +div.index p.inset {padding-left: 0; text-indent: 0;} +div.glossary p.inset {padding-left: 0; margin-left: 3.5em;} + + +/* footnotes */ + +p.footnote {margin: 1em 2em; font-size: 95%;} +div.footnote {margin: 2em 1em 1em; font-size: 95%;} +div.footnote p {margin-top: .2em;} +div.footnote div.verse p {margin-top: 0;} + + +/* tables */ + +table {margin-left: auto; margin-right: auto; margin-top: 1em; +margin-bottom: 1em;} + +td {vertical-align: top; text-align: left; padding: .1em;} + +table.center td {text-align: center;} +tr.middle td {vertical-align: middle;} + +td.number {text-align: right;} + + +/* outlined tables */ + +table.grid {border-collapse: collapse; font-size: 92%;} +div.intro table.grid {margin-left: 1em;} + +table.grid td {padding: .25em;} +table.grid.center td {text-align: center;} +table.grid.right td {text-align: right;} + +table.outline td, td.grid {border: 1px solid #000;} + +col.outline {border-right: 1px solid #000; border-left: 1px solid #000;} +tr.outline td {border-top: 1px solid #000; +border-bottom: 1px solid #000;} +tr.underline td {border-bottom: 1px solid #000;} + +table.outline td.edge, tr.outline td.edge, tr.underline td.edge +{border-top: hidden; border-right: hidden; border-bottom: hidden;} +table.outline td.double {border-right: 4px double #000;} + +table.grid td.edge {padding-left: 1em; text-align: left;} + +table.grid.float {margin-left: 1em; margin-right: 0; +padding: .1em 0; float: right; +clear: right;} +table.grid.floatleft {margin-left: 0; margin-right: 1em; +padding: .1em 0; float: left; clear: left;} + +table.grid td {text-align: right;} +table.grid td.words {text-align: left; padding-left: .5em; +padding-right: .5em;} + +table.grid p {margin-top: 0em; margin-left: 1em; text-indent: -1em; +line-height: normal;} + +/* table for counters */ + +table.backline, table.noline {border-collapse: collapse; font-size: 67%; +font-family: sans-serif; white-space: nowrap;} + +table.backline.float, table.noline.float +{margin-left: 1em; margin-right: 0; margin-bottom: .5em; float: right; clear: right;} +table.backline.floatleft +{margin-left: 0; margin-right: 1em; margin-bottom: .5em; float: left; clear: left;} + +table.noline.float {margin-top: 2em;} + +table.backline tr {background-repeat: repeat-x; +background-position: 0 60%; +background-image: url("images/line.gif");} +table.backline td {padding: 0 .5em 0 .83em; +height: 1em; vertical-align: middle; letter-spacing: .33em; +font-weight: bold;} +table.backline tr td.plain {background-color: #FFF;} + +table.noline td {padding: 0 .5em; line-height: .67em; font-weight: bold;} + +span.five {font-size: 2em; line-height: .5em; +letter-spacing: .1em; font-weight: normal; margin-left: -.17em;} + +table.backline.small td {font-weight: normal;} + +col.rightline {border-right: 1px solid #000;} + + +table.gloss {margin-left: 0; margin-bottom: 0;} +tr.gloss td {font-size: 80%; text-align: center;} +tr.orig td {text-align: center;} +table.gloss + table.gloss {margin-top: 0;} + +/* conditional */ + +table.toc p, table.index p {margin-top: 0em; +margin-left: 2em; text-indent: -2em; line-height: normal;} +table.index td.number {vertical-align: bottom;} + + +/* floats */ + +span.firstword {font-variant: small-caps;} + +span.dropcap {font-size: 260%; float: left; margin: 0; +font-weight: normal;} + +div.craft span.dropcap {float: none; margin: 0; line-height: 50%;} +div.art span.dropcap, div.count span.dropcap +{font-size: 390%; margin-top: -.15em; margin-bottom: -.3em;} +p.inset span.dropcap {margin-left: -.45em;} + +span.float {float: right; font-size: 88%; margin: .25em 0 .25em .5em;} +span.float.box {border: 1px solid #000; padding: .1em .3em;} + +span.gap {word-spacing: .75em; padding-left: 1.5em;} + + +/* sidenotes */ + +span.linenum {position: absolute; left: 5%; width: 10%; +text-indent: 0; font-size: 75%; padding-top: .33em;} +/* also for leaf/folio numbers */ + +span.sidenote {width: 20%; float: right; clear: right; font-size: 80%; +line-height: 1em; text-indent: 0em; margin-top: 0em; margin-right: -25%; +padding-left: 1em;} + +span.sidenote.original {font-size: 88%; width: 18%;} + +span.finger.right {position: absolute; left: 85%;} +span.finger.left {position: absolute; right: 90%;} + + + +/* headnotes */ +p.headnote {margin: 1em 0% .5em -25%; clear: both;} +span.headnote {padding: .3em 1em .3em; border: 1px solid #CCC; +font-style: italic;} +span.headnote.float {float: left; margin: .5em 1em .25em -25%; +font-size: 100%;} + + +/* text formatting */ + +span.smallroman {text-transform: lowercase; font-variant: small-caps;} +span.smallcaps {font-variant: small-caps; font-style: normal;} +span.smaller {font-size: 88%;} + +span.greek {border-bottom: 1px dotted #666;} + +/* my additions */ + +/* correction popup */ + +ins.correction {text-decoration: none; border-bottom: thin dotted red;} + +/* page number */ + +span.pagenum {position: absolute; right: 2%; font-size: 95%; +font-weight: normal; font-style: normal; text-align: right; +text-indent: 0em;} + +/* Transcriber's Note */ + +div.mynote, p.mynote, span.mynote {background-color: #DDE; color: #000; +font-family: sans-serif; font-size: 90%;} + +div.mynote {margin: 1em 5%; padding: .5em 1em 1em;} +p.mynote, div.glossary p.mynote {margin: 1em 5%; text-indent: 0; +padding: 1em;} +div.mynote a, span.mynote a {text-decoration: none;} + +span.mynote {margin-left: 2em; padding: .25em .5em; font-size: 80%; +text-indent: 0em; white-space: nowrap;} + +div.endnote {padding: .5em 1em 1em; margin: 1em; border: 3px ridge #A9F; +font-family: sans-serif; font-size: 90%;} + +div.contents {font-family: sans-serif; font-size: 95%; margin-top: 4em; margin-bottom: 4em;} +div.contents p {margin-left: 1.5em; text-indent: -1.5em;} + +</style> +</head> + +<body> + + +<pre> + +Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + + +Title: The Earliest Arithmetics in English + +Author: Anonymous + +Editor: Robert Steele + +Release Date: June 1, 2008 [EBook #25664] + +Language: English + +Character set encoding: UTF-8 + +*** START OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH *** + + + + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + + + + + +</pre> + + +<div class = "mynote"> +<p><a name = "start" id = "start">This text</a> includes characters that +will only display in UTF-8 (Unicode) file encoding:</p> + +<p class = "inset"> +ȝ, ſ (yogh, long s)<br /> +ɳ, łł (n with curl, crossed l: see below)<br /> +φ (Greek phi, sometimes used in printed text for 0) +</p> + +<p>If any of these characters do not display properly, or if the +apostrophes and quotation marks in this paragraph appear as garbage, you +may have an incompatible browser or unavailable fonts. First, make sure +that the browser’s “character set” or “file encoding” is set to Unicode +(UTF-8). You may also need to change your browser’s default font.</p> + +<p>In <i>The Crafte of Nombrynge</i>, final <b>n</b> was sometimes +written with an extra curl as +<img src = "images/n_curl.gif" width = "17" height = "18" +alt = "n with curl" />. +It has been rendered as <b>ɳ</b> for visual effect; the character is not +intended to convey phonetic information. In the same selection, the +numeral “0” was sometimes printed as Greek φ (phi); this has been +retained for the e-text. Double <b>l</b> with a line +<img src = "images/l_pair.gif" width = "15" height = "19" +alt = "joined ll" /> +is shown as <b>łł</b>. The first few occurrences of <b>d</b> +(for “pence”) were printed with a curl as +<img src = "images/d_curl.gif" width = "15" height = "19" +alt = "d with curl" />. +The letter is shown with the same <b>d’</b> used in the +remainder of the text.</p> + +<p>The word “withdraw” or “w<i>i</i>t<i>h</i>draw” was inconsistently +hyphenated; it was left as printed, and line-end hyphens were retained. +All brackets [ ] are in the original.</p> + +<p>The diagrams in “Accomptynge by Counters” may not line up perfectly +in all browsers, but the contents should still be intelligible.</p> + +<p>The original text contained at least five types of marginal note. +Details are given at the <a href = "#endnote">end of the e-text</a>.</p> + +<p>Typographical errors are shown in the text with <ins class = +"correction" title = "like this">mouse-hover popups</ins>. Other +underlined words are cross-references to the <a class = "terms" href = +"#terms">Index of Technical Terms</a> and the <a class = "gloss" href = +"#glossary">Glossary</a>.</p> +</div> + +<div class = "titlepage"> + +<p class = "illustration"> +<img src = "images/title_main.png" width = "375" height = "219" alt = +"The Earliest Arithmetics in English / Early English Text Society. / +Extra Series, No. CXVIII. / 1922 (for 1916)." /> +</p> + +</div> + + +<hr class = "mid" /> +<div class = "contents"> +<h4><a name = "contents" id = "contents">Contents</a><br /> +<span class = "smaller">(added by transcriber)</span></h4> + +<table class = "toc" summary = "table of contents"> +<tr> +<td> +<a href = "#intro">Introduction</a> +</td> +<td class = "number">v</td> +</tr> +<tr> +<td> +<a href = "#crafte">The Crafte of Nombrynge</a> +</td> +<td class = "number">3</td> +</tr> +<tr> +<td> +<a href = "#art">The Art of Nombryng</a> +</td> +<td class = "number">33</td> +</tr> +<tr> +<td> +<a href = "#count">Accomptynge by Counters</a> +</td> +<td class = "number">52</td> +</tr> +<tr> +<td> +<p><a href = "#hand">The arte of nombrynge by the hande</a></p> +</td> +<td class = "number">66</td> +</tr> +<tr> +<td> +<p><a href = "#app1"><span class = "smallcaps">App. I.</span> A Treatise +on the Numeration of Algorism</a></p> +</td> +<td class = "number">70</td> +</tr> +<tr> +<td> +<p><a href = "#app2"><span class = "smallcaps">App. II.</span> Carmen de +Algorismo</a></p> +</td> +<td class = "number">72</td> +</tr> +<tr> +<td> +<a href = "#terms">Index of Technical Terms</a> +</td> +<td class = "number">81</td> +</tr> +<tr> +<td> +<a href = "#glossary">Glossary</a> +</td> +<td class = "number">83</td> +</tr> +</table> +</div> + +<hr class = "mid" /> + +<div class = "titlepage"> +<h1>The Earliest Arithmetics<br /> +in English</h1> + +<p> <br /> </p> + +<h2 class = "two">EDITED WITH INTRODUCTION</h2> + +<h2 class = "three">BY</h2> + +<h2 class = "one">ROBERT STEELE</h2> + +<p> <br /> </p> + +<p> <br /> </p> + +<h2 class = "two">LONDON:</h2> +<h2 class = "three">PUBLISHED FOR THE EARLY ENGLISH TEXT SOCIETY</h2> +<h2 class = "two">BY HUMPHREY MILFORD, OXFORD UNIVERSITY PRESS,</h2> +<h2 class = "three">AMEN CORNER, E.C. 4.<br /> +1922.</h2> + +</div> + +<div class = "intro"> + +<span class = "pagenum">v</span> +<a name = "page_v" id = "page_v"> </a> +<h3><a name = "intro" id = "intro">INTRODUCTION</a></h3> + + +<p><span class = "firstword">The</span> number of English arithmetics +before the sixteenth century is very small. This is hardly to be +wondered at, as no one requiring to use even the simplest operations of +the art up to the middle of the fifteenth century was likely to be +ignorant of Latin, in which language there were several treatises in a +considerable number of manuscripts, as shown by the quantity of them +still in existence. Until modern commerce was fairly well established, +few persons required more arithmetic than addition and subtraction, and +even in the thirteenth century, scientific treatises addressed to +advanced students contemplated the likelihood of their not being able to +do simple division. On the other hand, the study of astronomy +necessitated, from its earliest days as a science, considerable skill +and accuracy in computation, not only in the calculation of astronomical +tables but in their use, a knowledge of which latter was fairly +common from the thirteenth to the sixteenth centuries.</p> + +<p>The arithmetics in English known to me are:—</p> + +<div class = "inset hanging"> +<p>(1) Bodl. 790 G. VII. (2653) f. 146-154 (15th c.) <i>inc.</i> “Of +angrym ther be IX figures in numbray . . .” A mere +unfinished fragment, only getting as far as Duplation.</p> + +<p>(2) Camb. Univ. LI. IV. 14 (III.) f. 121-142 (15th c.) <i>inc.</i> +“Al maner of thyngis that prosedeth ffro the frist +begynnyng . . .”</p> + +<p>(3) Fragmentary passages or diagrams in Sloane 213 f. 120-3 +(a fourteenth-century counting board), Egerton 2852 f. 5-13, +Harl. 218 f. 147 and</p> + +<p>(4) The two MSS. here printed; Eg. 2622 f. 136 and Ashmole 396 +f. 48. All of these, as the language shows, are of the fifteenth +century.</p> +</div> + +<p>The <span class = "smallcaps">Crafte of Nombrynge</span> is one of a +large number of scientific treatises, mostly in Latin, bound up together +as Egerton MS. 2622 in the British Museum Library. It measures +7” × 5”, 29-30 lines to the page, in a rough hand. The English +is N.E. Midland in dialect. It is a translation and amplification of one +of the numerous glosses on the <i>de algorismo</i> of Alexander de Villa +Dei (c. 1220), such as that of +<span class = "pagenum">vi</span> +<a name = "page_vi" id = "page_vi"> </a> +Thomas of Newmarket contained in the British Museum MS. Reg. 12, +E. 1. A fragment of another translation of the same gloss was +printed by Halliwell in his <i>Rara Mathematica</i> (1835) p. 29.<a +class = "tag" name = "tag_intro1" id = "tag_intro1" href = +"#note_intro1">1</a> It corresponds, as far as p. 71, l. 2, +roughly to p. 3 of our version, and from thence to the end +p. 2, ll. 16-40.</p> + +<p>The <span class = "smallcaps">Art of Nombryng</span> is one of the +treatises bound up in the Bodleian MS. Ashmole 396. It measures +11½” × 17¾”, and is written with thirty-three lines to the +page in a fifteenth century hand. It is a translation, rather literal, +with amplifications of the <i>de arte numerandi</i> attributed to John +of Holywood (Sacrobosco) and the translator had obviously a poor MS. +before him. The <i>de arte numerandi</i> was printed in 1488, 1490 +(<i>s.n.</i>), 1501, 1503, 1510, 1517, 1521, 1522, 1523, 1582, and by +Halliwell separately and in his two editions of <i>Rara Mathematica</i>, +1839 and 1841, and reprinted by Curze in 1897.</p> + +<p>Both these tracts are here printed for the first time, but the first +having been circulated in proof a number of years ago, in an endeavour +to discover other manuscripts or parts of manuscripts of it, Dr. David +Eugene Smith, misunderstanding the position, printed some pages in a +curious transcript with four facsimiles in the <i>Archiv für die +Geschichte der Naturwissenschaften und der Technik</i>, 1909, and +invited the scientific world to take up the “not unpleasant task” of +editing it.</p> + +<p><span class = "smallcaps">Accomptynge by Counters</span> is reprinted +from the 1543 edition of Robert Record’s Arithmetic, printed by +R. Wolfe. It has been reprinted within the last few years by Mr. +F. P. Barnard, in his work on Casting Counters. It is the earliest +English treatise we have on this variety of the Abacus (there are Latin +ones of the end of the fifteenth century), but there is little doubt in +my mind that this method of performing the simple operations of +arithmetic is much older than any of the pen methods. At the end of the +treatise there follows a note on merchants’ and auditors’ ways of +setting down sums, and lastly, a system of digital numeration which +seems of great antiquity and almost world-wide extension.</p> + +<p>After the fragment already referred to, I print as an appendix +the ‘Carmen de Algorismo’ of Alexander de Villa Dei in an enlarged and +corrected form. It was printed for the first time by Halliwell in +<i>Rara Mathemathica</i>, but I have added a number of stanzas from +<span class = "pagenum">vii</span> +<a name = "page_vii" id = "page_vii"> </a> +various manuscripts, selecting various readings on the principle that +the verses were made to scan, aided by the advice of my friend Mr. +Vernon Rendall, who is not responsible for the few doubtful lines I have +conserved. This poem is at the base of all other treatises on the +subject in medieval times, but I am unable to indicate its sources.</p> + + +<h4><a name = "intro_subject" id = "intro_subject"> +The Subject Matter.</a></h4> + +<p>Ancient and medieval writers observed a distinction between the +Science and the Art of Arithmetic. The classical treatises on the +subject, those of Euclid among the Greeks and Boethius among the Latins, +are devoted to the Science of Arithmetic, but it is obvious that coeval +with practical Astronomy the Art of Calculation must have existed and +have made considerable progress. If early treatises on this art existed +at all they must, almost of necessity, have been in Greek, which was the +language of science for the Romans as long as Latin civilisation +existed. But in their absence it is safe to say that no involved +operations were or could have been carried out by means of the +alphabetic notation of the Greeks and Romans. Specimen sums have indeed +been constructed by moderns which show its possibility, but it is absurd +to think that men of science, acquainted with Egyptian methods and in +possession of the abacus,<a class = "tag" name = "tag_intro2" id = +"tag_intro2" href = "#note_intro2">2</a> were unable to devise methods +for its use.</p> + + +<h4><a name = "intro_instruments" id = "intro_instruments"> +The Pre-Medieval Instruments Used in Calculation.</a></h4> + +<p>The following are known:—</p> + +<p>(1) A flat polished surface or tablets, strewn with sand, on which +figures were inscribed with a stylus.</p> + +<p>(2) A polished tablet divided longitudinally into nine columns (or +more) grouped in threes, with which counters were used, either plain or +marked with signs denoting the nine numerals, etc.</p> + +<p>(3) Tablets or boxes containing nine grooves or wires, in or on which +ran beads.</p> + +<p>(4) Tablets on which nine (or more) horizontal lines were marked, +each third being marked off.</p> + +<p>The only Greek counting board we have is of the fourth class and was +discovered at Salamis. It was engraved on a block of marble, and +measures 5 feet by 2½. Its chief part consists of eleven parallel lines, +the 3rd, 6th, and 9th being marked with a cross. Another section +consists of five parallel lines, and there are three +<span class = "pagenum">viii</span> +<a name = "page_viii" id = "page_viii"> </a> +rows of arithmetical symbols. This board could only have been used with +counters (<i>calculi</i>), preferably unmarked, as in our treatise of +<i>Accomptynge by Counters</i>.</p> + + +<h4><a name = "intro_roman" id = "intro_roman"> +Classical Roman Methods of Calculation.</a></h4> + +<p>We have proof of two methods of calculation in ancient Rome, one by +the first method, in which the surface of sand was divided into columns +by a stylus or the hand. Counters (<i>calculi</i>, or <i>lapilli</i>), +which were kept in boxes (<i>loculi</i>), were used in calculation, as +we learn from Horace’s schoolboys (Sat. 1. vi. 74). For the sand +see Persius I. 131, “Nec qui abaco numeros et secto in pulvere +metas scit risisse,” Apul. Apolog. 16 (pulvisculo), Mart. Capella, lib. +vii. 3, 4, etc. Cicero says of an expert calculator “eruditum +attigisse pulverem,” (de nat. Deorum, ii. 18). Tertullian calls a +teacher of arithmetic “primus numerorum arenarius” (de Pallio, <i>in +fine</i>). The counters were made of various materials, ivory +principally, “Adeo nulla uncia nobis est eboris, etc.” (Juv. XI. 131), +sometimes of precious metals, “Pro calculis albis et nigris aureos +argenteosque habebat denarios” (Pet. Arb. Satyricon, 33).</p> + +<p>There are, however, still in existence four Roman counting boards of +a kind which does not appear to come into literature. A typical one +is of the third class. It consists of a number of transverse wires, +broken at the middle. On the left hand portion four beads are strung, on +the right one (or two). The left hand beads signify units, the right +hand one five units. Thus any number up to nine can be represented. This +instrument is in all essentials the same as the Swanpan or Abacus in use +throughout the Far East. The Russian stchota in use throughout Eastern +Europe is simpler still. The method of using this system is exactly the +same as that of <i>Accomptynge by Counters</i>, the right-hand five bead +replacing the counter between the lines.</p> + + +<h4><a name = "intro_abacus" id = "intro_abacus"> +The Boethian Abacus.</a></h4> + +<p>Between classical times and the tenth century we have little or no +guidance as to the art of calculation. Boethius (fifth century), at the +end of lib. II. of his <i>Geometria</i> gives us a figure of an +abacus of the second class with a set of counters arranged within it. It +has, however, been contended with great probability that the whole +passage is a tenth century interpolation. As no rules are given for its +use, the chief value of the figure is that it gives the signs of the +<span class = "pagenum">ix</span> +<a name = "page_ix" id = "page_ix"> </a> +nine numbers, known as the Boethian “apices” or “notae” (from whence our +word “notation”). To these we shall return later on.</p> + + +<h4><a name = "intro_abacists" id = "intro_abacists"> +The Abacists.</a></h4> + +<p>It would seem probable that writers on the calendar like Bede (<span +class = "smallroman">A.D.</span> 721) and Helpericus (<span class = +"smallroman">A.D.</span> 903) were able to perform simple calculations; +though we are unable to guess their methods, and for the most part they +were dependent on tables taken from Greek sources. We have no early +medieval treatises on arithmetic, till towards the end of the tenth +century we find a revival of the study of science, centring for us round +the name of Gerbert, who became Pope as Sylvester II. in 999. His +treatise on the use of the Abacus was written (c. 980) to a friend +Constantine, and was first printed among the works of Bede in the Basle +(1563) edition of his works, I. 159, in a somewhat enlarged form. +Another tenth century treatise is that of Abbo of Fleury (c. 988), +preserved in several manuscripts. Very few treatises on the use of the +Abacus can be certainly ascribed to the eleventh century, but from the +beginning of the twelfth century their numbers increase rapidly, to +judge by those that have been preserved.</p> + +<p>The Abacists used a permanent board usually divided into twelve +columns; the columns were grouped in threes, each column being called an +“arcus,” and the value of a figure in it represented a tenth of what it +would have in the column to the left, as in our arithmetic of position. +With this board counters or jetons were used, either plain or, more +probably, marked with numerical signs, which with the early Abacists +were the “apices,” though counters from classical times were sometimes +marked on one side with the digital signs, on the other with Roman +numerals. Two ivory discs of this kind from the Hamilton collection may +be seen at the British Museum. Gerbert is said by Richer to have made +for the purpose of computation a thousand counters of horn; the usual +number of a set of counters in the sixteenth and seventeenth centuries +was a hundred.</p> + +<p>Treatises on the Abacus usually consist of chapters on Numeration +explaining the notation, and on the rules for Multiplication and +Division. Addition, as far as it required any rules, came naturally +under Multiplication, while Subtraction was involved in the process of +Division. These rules were all that were needed in Western Europe in +centuries when commerce hardly existed, and astronomy was unpractised, +and even they were only required in the preparation +<span class = "pagenum">x</span> +<a name = "page_x" id = "page_x"> </a> +of the calendar and the assignments of the royal exchequer. In England, +for example, when the hide developed from the normal holding of a +household into the unit of taxation, the calculation of the geldage in +each shire required a sum in division; as we know from the fact that one +of the Abacists proposes the sum: “If 200 marks are levied on the county +of Essex, which contains according to Hugh of Bocland 2500 hides, how +much does each hide pay?”<a class = "tag" name = "tag_intro3" id = +"tag_intro3" href = "#note_intro3">3</a> Exchequer methods up to the +sixteenth century were founded on the abacus, though when we have +details later on, a different and simpler form was used.</p> + +<p>The great difficulty of the early Abacists, owing to the absence of a +figure representing zero, was to place their results and operations in +the proper columns of the abacus, especially when doing a division sum. +The chief differences noticeable in their works are in the methods for +this rule. Division was either done directly or by means of differences +between the divisor and the next higher multiple of ten to the divisor. +Later Abacists made a distinction between “iron” and “golden” methods of +division. The following are examples taken from a twelfth century +treatise. In following the operations it must be remembered that a +figure asterisked represents a counter taken from the board. A zero +is obviously not needed, and the result may be written down in +words.</p> + +<h5>(<i>a</i>) <span class = "smallcaps">Multiplication.</span> 4600 +× 23.</h5> + +<table class = "grid center" summary = "example"> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col /> +<tr class = "outline"> +<td colspan = "3">Thousands</td> +<td colspan = "3"> </td> +<td class = "edge"> </td> +</tr> +<tr class = "outline middle"> +<td>H<br />u<br />n<br />d<br />r<br />e<br />d<br />s</td> +<td>T<br />e<br />n<br />s</td> +<td>U<br />n<br />i<br />t<br />s</td> +<td>H<br />u<br />n<br />d<br />r<br />e<br />d<br />s</td> +<td>T<br />e<br />n<br />s</td> +<td>U<br />n<br />i<br />t<br />s</td> +<td class = "edge"> </td> +</tr> +<tr class = "outline"> +<td> </td> +<td> </td> +<td>4</td> +<td>6</td> +<td> </td> +<td> </td> +<td class = "edge"><b>Multiplicand.</b></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>1</td> +<td>8</td> +<td> </td> +<td> </td> +<td class = "edge">600 × 3.</td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>2</td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge">4000 × 3.</td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>2</td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge">600 × 20.</td> +</tr> +<tr> +<td> </td> +<td>8</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge">4000 × 20.</td> +</tr> +<tr class = "outline"> +<td>1</td> +<td> </td> +<td>5</td> +<td>8</td> +<td> </td> +<td> </td> +<td class = "edge">Total product.</td> +</tr> +<tr class = "outline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td>3</td> +<td class = "edge"><b>Multiplier.</b></td> +</tr> +</table> + +<span class = "pagenum">xi</span> +<a name = "page_xi" id = "page_xi"> </a> + +<h5>(<i>b</i>) <span class = "smallcaps">Division: direct.</span> +100,000 ÷ 20,023. Here each counter in turn is a separate divisor.</h5> + +<table class = "grid center" summary = "example"> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col /> +<tr class = "outline"> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td class = "edge"> </td> +</tr> +<tr class = "outline"> +<td> </td> +<td>2</td> +<td> </td> +<td> </td> +<td>2</td> +<td>3</td> +<td class = "edge"><b>Divisors.</b></td> +</tr> +<tr> +<td> </td> +<td>2</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge"><p>Place greatest divisor to right of +dividend.</p></td> +</tr> +<tr> +<td>1</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge"><b>Dividend.</b></td> +</tr> +<tr> +<td> </td> +<td>2</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge">Remainder.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td> </td> +<td class = "edge"> </td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>9</td> +<td>9</td> +<td> </td> +<td> </td> +<td class = "edge">Another form of same.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>8</td> +<td> </td> +<td class = "edge"><p>Product of 1st Quotient and 20.</p></td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>9</td> +<td>9</td> +<td>2</td> +<td> </td> +<td class = "edge">Remainder.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>2</td> +<td class = "edge"><p>Product of 1st Quotient and 3.</p></td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>9</td> +<td>9</td> +<td> </td> +<td>8</td> +<td class = "edge"><b>Final remainder.</b></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +<td class = "edge">Quotient.</td> +</tr> +</table> + +<h5>(<i>c</i>) <span class = "smallcaps">Division by Differences.</span> +900 ÷ 8. Here we divide by (10-2).</h5> + +<table class = "grid center" summary = "example"> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col /> +<tr class = "outline"> +<td> </td> +<td> </td> +<td> </td> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td class = "edge"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td class = "edge">Difference.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>8</td> +<td class = "edge">Divisor.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td><a class = "tag" name = "tag_intro4" id = "tag_intro4" href = +"#note_intro4">4</a>9</td> +<td> </td> +<td> </td> +<td class = "edge"><b>Dividend.</b></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>1</td> +<td>8</td> +<td> </td> +<td class = "edge"><p>Product of difference by 1st +Quotient (9).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td> </td> +<td class = "edge"><p>Product of difference by 2nd +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>1</td> +<td> </td> +<td> </td> +<td class = "edge">Sum of 8 and 2.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td> </td> +<td class = "edge"><p>Product of difference by 3rd +Quotient (1).</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +<td class = "edge"><p>Product of difference by 4th Quot. (2). +<b>Remainder.</b></p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td class = "edge">4th Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td class = "edge">3rd Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td class = "edge">2nd Quotient.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td> </td> +<td class = "edge">1st Quotient.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>1</td> +<td>2</td> +<td class = "edge"><p><b>Quotient.</b> (<b>Total of all +four.</b>)</p></td> +</tr> +</table> + +<span class = "pagenum">xii</span> +<a name = "page_xii" id = "page_xii"> </a> + +<h5><span class = "smallcaps">Division.</span> 7800 ÷ 166.</h5> + +<table class = "grid center" summary = "example"> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col /> +<tr class = "outline"> +<td colspan = "3">Thousands</td> +<td colspan = "3"> </td> +<td class = "edge"> </td> +</tr> +<tr class = "outline"> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td class = "edge"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td>4</td> +<td class = "edge"><p>Differences (making 200 trial divisor).</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>6</td> +<td>6</td> +<td class = "edge">Divisors.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>7</td> +<td>8</td> +<td> </td> +<td> </td> +<td class = "edge"><b>Dividends.</b></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge"><p>Remainder of greatest dividend.</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>2</td> +<td> </td> +<td class = "edge"><p>Product of 1st difference (4) by 1st +Quotient (3).</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td> </td> +<td> </td> +<td class = "edge"><p>Product of 2nd difference (3) by 1st +Quotient (3).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>2</td> +<td>8</td> +<td>2</td> +<td> </td> +<td class = "edge">New dividends.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td>4</td> +<td> </td> +<td class = "edge"><p>Product of 1st and 2nd difference by 2nd +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>1</td> +<td>1</td> +<td>6</td> +<td> </td> +<td class = "edge">New dividends.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td> </td> +<td class = "edge"><p>Product of 1st difference by 3rd +Quotient (5).</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>5</td> +<td> </td> +<td class = "edge"><p>Product of 2nd difference by 3rd +Quotient (5).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>3</td> +<td>3</td> +<td> </td> +<td class = "edge">New dividends.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td> </td> +<td class = "edge"><p>Remainder of greatest dividend.</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td>4</td> +<td class = "edge"><p>Product of 1st and 2nd difference by 4th +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>6</td> +<td>4</td> +<td class = "edge"><p><b>Remainder</b> (less than divisor).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td class = "edge">4th Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>5</td> +<td class = "edge">3rd Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td class = "edge">2nd Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td> </td> +<td class = "edge">1st Quotient.</td> +</tr> +<tr class = "outline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +<td>6</td> +<td class = "edge"><b>Quotient.</b></td> +</tr> +</table> + + +<span class = "pagenum">xiii</span> +<a name = "page_xiii" id = "page_xiii"> </a> + +<h5><span class = "smallcaps">Division.</span> 8000 ÷ 606.</h5> + +<table class = "grid center" summary = "example"> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col class = "outline" /> +<col /> +<tr class = "outline"> +<td colspan = "3">Thousands</td> +<td colspan = "3"> </td> +<td class = "edge"> </td> +</tr> +<tr class = "outline"> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td>H.</td> +<td>T.</td> +<td>U.</td> +<td class = "edge"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td> </td> +<td class = "edge"><p>Difference (making 700 trial divisor).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +<td class = "edge">Difference.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>6</td> +<td> </td> +<td>6</td> +<td class = "edge">Divisors.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>8</td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge"><b>Dividend.</b></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td> </td> +<td> </td> +<td class = "edge">Remainder of dividend.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td>4</td> +<td> </td> +<td class = "edge"><p>Product of difference 1 and 2 with 1st +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>1</td> +<td>9</td> +<td>4</td> +<td> </td> +<td class = "edge">New dividends.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td> </td> +<td> </td> +<td class = "edge"><p>Remainder of greatest dividend.</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td>4</td> +<td class = "edge"><p>Product of difference 1 and 2 with 2nd +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td><a class = "tag" href = "#note_intro4">4</a>1</td> +<td>3</td> +<td>3</td> +<td>4</td> +<td class = "edge">New dividends.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>3</td> +<td> </td> +<td> </td> +<td class = "edge"><p>Remainder of greatest dividend.</p></td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td>4</td> +<td class = "edge"><p>Product of difference 1 and 2 with 3rd +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>7</td> +<td>2</td> +<td>8</td> +<td class = "edge">New dividends.</td> +</tr> +<tr class = "underline"> +<td> </td> +<td> </td> +<td> </td> +<td>6</td> +<td> </td> +<td>6</td> +<td class = "edge"><p>Product of divisors by 4th +Quotient (1).</p></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>2</td> +<td>2</td> +<td class = "edge"><b>Remainder.</b></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td class = "edge">4th Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td class = "edge">3rd Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td class = "edge">2nd Quotient.</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td> </td> +<td class = "edge">1st Quotient.</td> +</tr> +<tr class = "outline"> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>3</td> +<td class = "edge"><b>Quotient.</b></td> +</tr> +</table> + +<p>The chief Abacists are Gerbert (tenth century), Abbo, and Hermannus +Contractus (1054), who are credited with the revival of the art, +Bernelinus, Gerland, and Radulphus of Laon (twelfth century). We know as +English Abacists, Robert, bishop of Hereford, 1095, “abacum et lunarem +compotum et celestium cursum astrorum rimatus,” Turchillus Compotista +(Thurkil), and through him of Guilielmus R. . . . “the +best of living computers,” Gislebert, and Simonus de Rotellis (Simon of +the Rolls). They flourished most probably in the +<span class = "pagenum">xiv</span> +<a name = "page_xiv" id = "page_xiv"> </a> +first quarter of the twelfth century, as Thurkil’s treatise deals also +with fractions. Walcher of Durham, Thomas of York, and Samson of +Worcester are also known as Abacists.</p> + +<p>Finally, the term Abacists came to be applied to computers by manual +arithmetic. A MS. Algorithm of the thirteenth century (Sl. 3281, +f. 6, b), contains the following passage: “Est et alius modus +secundum operatores sive practicos, quorum unus appellatur Abacus; et +modus ejus est in computando per digitos et junctura manuum, et iste +utitur ultra Alpes.”</p> + +<p>In a composite treatise containing tracts written <span class = +"smallroman">A.D.</span> 1157 and 1208, on the calendar, the abacus, the +manual calendar and the manual abacus, we have a number of the methods +preserved. As an example we give the rule for multiplication (Claud. A. +IV., f. 54 vo). “Si numerus multiplicat alium numerum auferatur +differentia majoris a minore, et per residuum multiplicetur articulus, +et una differentia per aliam, et summa proveniet.” Example, +8 × 7. The difference of 8 is 2, of 7 is 3, the next article +being 10; 7 - 2 is 5. 5 × 10 = 50; 2 × 3 = +6. 50 + 6 = 56 answer. The rule will hold in such cases as +17 × 15 where the article next higher is the same for both, +<i>i.e.</i>, 20; but in such a case as 17 × 9 the difference +for each number must be taken from the higher article, <i>i.e.</i>, the +difference of 9 will be 11.</p> + + +<h4><a name = "intro_algorists" id = "intro_algorists"> +The Algorists.</a></h4> + +<p>Algorism (augrim, augrym, algram, agram, algorithm), owes its name to +the accident that the first arithmetical treatise translated from the +Arabic happened to be one written by Al-Khowarazmi in the early ninth +century, “de numeris Indorum,” beginning in its Latin form “Dixit +Algorismi. . . .” The translation, of which only one MS. +is known, was made about 1120 by Adelard of Bath, who also wrote on the +Abacus and translated with a commentary Euclid from the Arabic. It is +probable that another version was made by Gerard of Cremona (1114-1187); +the number of important works that were not translated more than once +from the Arabic decreases every year with our knowledge of medieval +texts. A few lines of this translation, as copied by Halliwell, are +given on p. 72, note 2. Another translation still seems to +have been made by Johannes Hispalensis.</p> + +<p>Algorism is distinguished from Abacist computation by recognising +seven rules, Addition, Subtraction, Duplation, Mediation, +Multiplication, Division, and Extraction of Roots, to which were +afterwards +<span class = "pagenum">xv</span> +<a name = "page_xv" id = "page_xv"> </a> +added Numeration and Progression. It is further distinguished by the use +of the zero, which enabled the computer to dispense with the columns of +the Abacus. It obviously employs a board with fine sand or wax, and +later, as a substitute, paper or parchment; slate and pencil were also +used in the fourteenth century, how much earlier is unknown.<a class = +"tag" name = "tag_intro5" id = "tag_intro5" href = "#note_intro5">5</a> +Algorism quickly ousted the Abacus methods for all intricate +calculations, being simpler and more easily checked: in fact, the +astronomical revival of the twelfth and thirteenth centuries would have +been impossible without its aid.</p> + +<p>The number of Latin Algorisms still in manuscript is comparatively +large, but we are here only concerned with two—an Algorism in +prose attributed to Sacrobosco (John of Holywood) in the colophon of a +Paris manuscript, though this attribution is no longer regarded as +conclusive, and another in verse, most probably by Alexander de +Villedieu (Villa Dei). Alexander, who died in 1240, was teaching in +Paris in 1209. His verse treatise on the Calendar is dated 1200, and it +is to that period that his Algorism may be attributed; Sacrobosco died +in 1256 and quotes the verse Algorism. Several commentaries on +Alexander’s verse treatise were composed, from one of which our first +tractate was translated, and the text itself was from time to time +enlarged, sections on proofs and on mental arithmetic being added. We +have no indication of the source on which Alexander drew; it was most +likely one of the translations of Al-Khowarasmi, but he has also the +Abacists in mind, as shewn by preserving the use of differences in +multiplication. His treatise, first printed by Halliwell-Phillipps in +his <i>Rara Mathematica</i>, is adapted for use on a board covered with +sand, a method almost universal in the thirteenth century, as some +passages in the algorism of that period already quoted show: “Est et +alius modus qui utitur apud Indos, et doctor hujusmodi ipsos erat quidem +nomine Algus. Et modus suus erat in computando per quasdam figuras +scribendo in pulvere. . . .” “Si voluerimus depingere in +pulvere predictos digitos secundum consuetudinem +algorismi . . .” “et sciendum est quod in nullo loco +minutorum sive secundorum . . . in pulvere debent scribi +plusquam sexaginta.”</p> + + +<h4><a name = "intro_modern" id = "intro_modern">Modern +Arithmetic.</a></h4> + +<p>Modern Arithmetic begins with Leonardi Fibonacci’s treatise “de +Abaco,” written in 1202 and re-written in 1228. It is modern +<span class = "pagenum">xvi</span> +<a name = "page_xvi" id = "page_xvi"> </a> +rather in the range of its problems and the methods of attack than in +mere methods of calculation, which are of its period. Its sole interest +as regards the present work is that Leonardi makes use of the digital +signs described in Record’s treatise on <i>The arte of nombrynge by the +hand</i> in mental arithmetic, calling it “modus Indorum.” Leonardo also +introduces the method of proof by “casting out the nines.”</p> + + +<h4><a name = "intro_digital" id = "intro_digital">Digital +Arithmetic.</a></h4> + +<p>The method of indicating numbers by means of the fingers is of +considerable age. The British Museum possesses two ivory counters marked +on one side by carelessly scratched Roman numerals IIIV and VIIII, and +on the other by carefully engraved digital signs for 8 and 9. +Sixteen seems to have been the number of a complete set. These counters +were either used in games or for the counting board, and the Museum +ones, coming from the Hamilton collection, are undoubtedly not later +than the first century. Frohner has published in the <i>Zeitschrift des +Münchener Alterthumsvereins</i> a set, almost complete, of them with a +Byzantine treatise; a Latin treatise is printed among Bede’s works. +The use of this method is universal through the East, and a variety of +it is found among many of the native races in Africa. In medieval Europe +it was almost restricted to Italy and the Mediterranean basin, and in +the treatise already quoted (Sloane 3281) it is even called the Abacus, +perhaps a memory of Fibonacci’s work.</p> + +<p>Methods of calculation by means of these signs undoubtedly have +existed, but they were too involved and liable to error to be much +used.</p> + + +<h4><a name = "intro_arabic" id = "intro_arabic"> +The Use of “Arabic” Figures.</a></h4> + +<p>It may now be regarded as proved by Bubnov that our present numerals +are derived from Greek sources through the so-called Boethian “apices,” +which are first found in late tenth century manuscripts. That they were +not derived directly from the Arabic seems certain from the different +shapes of some of the numerals, especially the 0, which stands for 5 in +Arabic. Another Greek form existed, which was introduced into Europe by +John of Basingstoke in the thirteenth century, and is figured by Matthew +Paris (V. 285); but this form had no success. The date of the +introduction of the zero has been hotly debated, but it seems obvious +that the twelfth century Latin translators from the Arabic were +<span class = "pagenum">xvii</span> +<a name = "page_xvii" id = "page_xvii"> </a> +perfectly well acquainted with the system they met in their Arabic text, +while the earliest astronomical tables of the thirteenth century I have +seen use numbers of European and not Arabic origin. The fact that Latin +writers had a convenient way of writing hundreds and thousands without +any cyphers probably delayed the general use of the Arabic notation. Dr. +Hill has published a very complete survey of the various forms of +numerals in Europe. They began to be common at the middle of the +thirteenth century and a very interesting set of family notes concerning +births in a British Museum manuscript, Harl. 4350 shows their extension. +The first is dated <ins class = "correction" +title = "c printed directly above j">Mij<sup>c</sup></ins>. lviii., +the second Mij<sup>c</sup>. lxi., the third Mij<sup>c</sup>. 63, the +fourth 1264, and the fifth 1266. Another example is given in a set of +astronomical tables for 1269 in a manuscript of Roger Bacon’s works, +where the scribe began to write MCC6. and crossed out the figures, +substituting the “Arabic” form.</p> + + +<h4><a name = "intro_board" id = "intro_board"> +The Counting Board.</a></h4> + +<p>The treatise on pp. 52-65 is the only one in English known on the +subject. It describes a method of calculation which, with slight +modifications, is current in Russia, China, and Japan, to-day, though it +went out of use in Western Europe by the seventeenth century. In Germany +the method is called “Algorithmus Linealis,” and there are several +editions of a tract under this name (with a diagram of the counting +board), printed at Leipsic at the end of the fifteenth century and the +beginning of the sixteenth. They give the nine rules, but “Capitulum de +radicum extractione ad algoritmum integrorum reservato, cujus species +per ciffrales figuras ostenduntur ubi ad plenum de hac tractabitur.” The +invention of the art is there attributed to Appulegius the +philosopher.</p> + +<p>The advantage of the counting board, whether permanent or constructed +by chalking parallel lines on a table, as shown in some +sixteenth-century woodcuts, is that only five counters are needed to +indicate the number nine, counters on the lines representing units, and +those in the spaces above representing five times those on the line +below. The Russian abacus, the “tchatui” or “stchota” has ten beads on +the line; the Chinese and Japanese “Swanpan” economises by dividing the +line into two parts, the beads on one side representing five times the +value of those on the other. The “Swanpan” has usually many more lines +than the “stchota,” allowing for more extended calculations, see Tylor, +<i>Anthropology</i> (1892), p. 314.</p> + +<span class = "pagenum">xviii</span> +<a name = "page_xviii" id = "page_xviii"> </a> +<p>Record’s treatise also mentions another method of counter notation +(p. 64) “merchants’ casting” and “auditors’ casting.” These were +adapted for the usual English method of reckoning numbers up to 200 by +scores. This method seems to have been used in the Exchequer. +A counting board for merchants’ use is printed by Halliwell in +<i>Rara Mathematica</i> (p. 72) from Sloane MS. 213, and two others +are figured in Egerton 2622 f. 82 and f. 83. The latter is +said to be “novus modus computandi secundum inventionem Magistri Thome +Thorleby,” and is in principle, the same as the “Swanpan.”</p> + +<p>The Exchequer table is described in the <i>Dialogus de Scaccario</i> +(Oxford, 1902), p. 38.</p> + +<div class = "footnote"> + +<p> +<a name = "note_intro1" id = "note_intro1" href = "#tag_intro1">1.</a> +Halliwell printed the two sides of his leaf in the wrong order. This and +some obvious errors of transcription—‘ferye’ for ‘ferthe,’ ‘lest’ +for ‘left,’ etc., have not been corrected in the reprint on +pp. 70-71.</p> + +<p> +<a name = "note_intro2" id = "note_intro2" href = "#tag_intro2">2.</a> +For Egyptian use see Herodotus, ii. 36, Plato, <i>de Legibus</i>, +VII.</p> + +<p> +<a name = "note_intro3" id = "note_intro3" href = "#tag_intro3">3.</a> +See on this Dr. Poole, <i>The Exchequer in the Twelfth Century</i>, +Chap. III., and Haskins, <i>Eng. Hist. Review</i>, 27, 101. The hidage +of Essex in 1130 was 2364 hides.</p> + +<p> +<a name = "note_intro4" id = "note_intro4" href = "#tag_intro4">4.</a> +These figures are removed at the next step.</p> + +<p> +<a name = "note_intro5" id = "note_intro5" href = "#tag_intro5">5.</a> +Slates are mentioned by Chaucer, and soon after (1410) Prosdocimo de +Beldamandi speaks of the use of a “lapis” for making notes on by +calculators.</p> + +</div> + +</div> <!-- end div intro --> + +<div class = "titlepage"> + +<p> </p> + +<p class = "illustration"> +<img src = "images/title_inner.png" width = "324" height = "71" +alt = "The Earliest Arithmetics in English." +title = "The Earliest Arithmetics in English." /></p> + +<p> </p> + +</div> + +<div class = "maintext"> + +<div class = "craft"> + +<span class = "pagenum">3</span> +<a name = "page3" id = "page3"> </a> + +<p class = "illustration"> +<a name = "crafte" id = "crafte"> +<img src = "images/title_craft.png" width = "350" height = "36" +alt = "The Crafte of Nombrynge." +title = "The Crafte of Nombrynge." /></a></p> + +<hr class = "tiny" /> + +<p class = "subhead"><i>Egerton</i> 2622.</p> + +<span class = "linenum">leaf 136 <i>a</i>.</span> + +<div class = "verse"> +<p><span class = "dropcap">H</span>Ec algorism<i>us</i> ars +p<i>re</i>sens dicit<i>ur</i>; in qua</p> +<p>Talib<i>us</i> indor<i>um</i> fruim<i>ur</i> bis +qui<i>n</i>q<i>ue</i> figuris.</p> +</div> + +<p> +<span class = "sidenote">A derivation of Algorism.</span> +This boke is called þe boke of <a class = "terms" name = "algorym" id = +"algorym" href = "#terms_algorisme">algorym</a>, or Augrym aft<i>er</i> +<a class = "gloss" name = "lewder" id = "lewder" href = +"#gloss_lewder">lewd<i>er</i></a> vse. And þis boke tretys þe <a class = +"gloss" name = "craft" id = "craft" href = "#gloss_craft">Craft</a> of +Nombryng, þe quych crafte is called also Algorym. Ther was a kyng of +Inde, þe quich <a class = "gloss" name = "heyth" id = "heyth" href = +"#gloss_heyth">heyth</a> Algor, & he made þis craft. And +aft<i>er</i> his name he called hit algory<i>m</i>; +<span class = "sidenote">Another derivation of the word.</span> +or els anoþ<i>er</i> cause is quy it is called Algorym, for þe latyn +word of hit <a class = "gloss" name = "sc" id = "sc" href = +"#gloss_sc">s.</a> Algorism<i>us</i> com<i>es</i> of Algos, grece, +q<i>uid</i> e<i>st</i> ars, latine, craft oɳ englis, and rides, +q<i>uid</i> e<i>st</i> <i>nu</i>me<i>rus</i>, latine, +A nomb<i>ur</i> oɳ englys, inde d<i>icitu</i>r Algorism<i>us</i> +p<i>er</i> addic<i>i</i>one<i>m</i> hui<i>us</i> sillabe m<i>us</i> +& subtracc<i>i</i>onem d & e, q<i>ua</i>si ars num<i>er</i>andi. +¶ fforthermor<i>e</i> ȝe <a class = "gloss" name = "most1" id = +"most1" href = "#gloss_most">most</a> vnd<i>ir</i>stonde þ<i>a</i>t in +þis craft ben vsid teen figurys, as here ben<i>e</i> writen for +ensampul, φ 9 8 7 6 5 4 3 2 1. ¶ <a class = "gloss" name += "expone" id = "expone" href = "#gloss_expone">Expone</a> þe too +v<i>er</i>sus afor<i>e</i>: this p<i>re</i>sent craft ys called +Algorism<i>us</i>, in þe quych we vse teen signys of Inde. Questio. +¶ Why teɳ fyguris of Inde? Solucio. for as I haue sayd afore þai +wer<i>e</i> fonde fyrst in Inde of a kyng<i>e</i> of þat Cuntre, +þ<i>a</i>t was called Algor.</p> + +<p class = "headnote"><span class = "headnote"> +Notation and Numeration.</span></p> + +<span class = "sidenote">v<i>ersus</i> [in margin].</span> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Prima sig<i>nifica</i>t unu<i>m</i>; duo ve<i>r</i>o +s<i>e</i>c<i>un</i>da:</p> +<p class = "pilcrow"> +¶ Tercia sig<i>nifica</i>t tria; sic procede sinistre.</p> +<p class = "pilcrow"> +¶ Don<i>e</i>c ad extrema<i>m</i> venias, que cifra voca<i>tur</i>.</p> +</div> + +<h5>¶ Cap<i>itulu</i>m primum de significac<i>i</i>o<i>n</i>e +figurar<i>um</i>.</h5> + +<p> +<span class = "sidenote original">Expo<i>sitio</i> v<i>ersus</i>.</span> +In þis verse is notifide þe significac<i>i</i>on of þese figur<i>is</i>. +And þus expone the verse. +<span class = "sidenote">The meaning and place of the figures.</span> +Þe first signifiyth on<i>e</i>, þe secu<i>n</i>de +<span class = "linenum">leaf 136 <i>b</i>.</span> +signi*fiyth tweyn<i>e</i>, þe thryd signifiyth thre, & the fourte +signifiyth 4. ¶ And so forthe towarde þe lyft syde of þe tabul or +of þe boke þ<i>a</i>t þe figures ben<i>e</i> writen<i>e</i> in, til þat +þ<i>o</i>u come to the last figure, þ<i>a</i>t is +<span class = "pagenum">4</span> +<a name = "page4" id = "page4"> </a> +called a <a class = "terms" name = "cifre" id = "cifre" href = +"#terms_cifre">cifre</a>. ¶ Questio. In quych syde sittes þe first +figur<i>e</i>? Soluc<i>io</i>, forsothe loke quich figure is first in þe +ryȝt side of þe bok or of þe tabul, & þ<i>a</i>t same is þe first +figur<i>e</i>, for þ<i>o</i>u schal write bakeward, as here, 3. 2. 6. 4. +1. 2. 5. +<span class = "sidenote">Which figure is read first.</span> +The fig<i>ur</i>e of 5. was first <a class = "gloss" name = "write1" id += "write1" href = "#gloss_write">write</a>, & he is þe first, for he +sittes oɳ þe riȝt syde. And the fig<i>ur</i>e of 3 is last. +¶ Neu<i>er</i>-þe-les wen he says ¶ P<i>ri</i>ma +sig<i>nifica</i>t vnu<i>m</i> &c., þat is to say, þe first betokenes +on<i>e</i>, þe secu<i>n</i>de. 2. & fore-þ<i>er</i>-mor<i>e</i>, he +vnd<i>ir</i>stondes <a class = "gloss" name = "noght1" id = "noght1" +href = "#gloss_noght">noȝt</a> of þe first fig<i>ur</i>e of eu<i>er</i>y +<a class = "gloss" name = "rew" id = "rew" href = "#gloss_rew">rew</a>. +¶ But he vnd<i>ir</i>stondes þe first figure þ<i>a</i>t is in þe +nomb<i>ur</i> of þe forsayd teen figuris, þe quych is on<i>e</i> of +þ<i>e</i>se. 1. And þe secu<i>n</i>de 2. & so forth.</p> + +<span class = "sidenote">v<i>ersus</i> [in margin].</span> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Quelib<i>et</i> illar<i>um</i> si pr<i>im</i>o limite ponas,</p> +<p class = "pilcrow"> +¶ Simplicite<i>r</i> se significat: si v<i>er</i>o se<i>cun</i>do,</p> +<p>Se decies: sursu<i>m</i> <ins class = "correction" title = "italics as shown: error for ‘p{ro}’?"><i>pr</i>ocedas</ins> +m<i>u</i>ltiplicando.</p> +<p class = "pilcrow"> +¶ Na<i>m</i>q<i>ue</i> figura seque<i>n</i>s q<i>uam</i>uis signat +decies pl<i>us.</i></p> +<p class = "pilcrow"> +¶ Ipsa locata loco quam sign<i>ific</i>at p<i>ertin</i>ente.</p> +</div> + +<p><span class = "sidenote">Expo<i>sitio</i> [in margin].</span> +¶ Expone þis v<i>er</i>se þus. Eu<i>er</i>y of þese figuris +bitokens hym selfe & no mor<i>e</i>, yf he stonde in þe first place +of þe <a class = "gloss" name = "rewele" id = "rewele" href = +"#gloss_rewle">rewele</a> / this worde Simplicit<i>er</i> in þat verse +it is no more to say but þat, & no mor<i>e</i>. +<span class = "sidenote">An explanation of the principles of +notation.</span> +¶ If it stonde in the secu<i>n</i>de place of þe <a class = "gloss" +name = "rewle" id = "rewle" href = "#gloss_rewle">rewle</a>, he betokens +ten<i>e</i> tymes hym selfe, as þis figur<i>e</i> 2 here 20 tokens ten +tyme hym selfe, +<span class = "linenum">leaf 137 <i>a</i>.</span> +*þat is twenty, for he hym selfe betokenes twey<i>ne</i>, & ten +tymes <a class = "gloss" name = "twene1" id = "twene1" href = +"#gloss_twene">twene</a> is twenty. And for he stondis oɳ þe lyft side +& in þe secu<i>n</i>de place, he betokens ten tyme hy<i>m</i> selfe. +And so go forth. ¶ ffor eu<i>er</i>y <a class = "gloss" name = +"figure" id = "figure" href = "#gloss_figure">fig<i>ure</i></a>, & +he stonde aft<i>ur</i> a-noþ<i>er</i> toward the lyft side, he schal +betoken<i>e</i> ten tymes as mich mor<i>e</i> as he schul betoken & +he stode in þe place þ<i>ere</i> þat þe fig<i>ure</i> a-for<i>e</i> hym +stondes. +<span class = "sidenote">An example:</span> +loo an ensampull<i>e</i>. 9. 6. 3. 4. Þe fig<i>ure</i> of +4. þ<i>a</i>t hase þis schape <a href = "images/num4_full.png" target = +"_blank"><img src = "images/num4_full.png" width = "11" height = "14" +alt = "{4}" /></a>. betokens bot hymselfe, for he stondes in þe first +place. +<span class = "sidenote">units,</span> +The fig<i>ure</i> of 3. þat hase þis schape <a href = +"images/num3_full.png" target = "_blank"><img src = +"images/num3_full.png" width = "7" height = "15" alt = "{3}" /></a>. +betokens ten tymes mor<i>e</i> þen he schuld <a class = "gloss" name = +"amp" id = "amp" href = "#gloss_and">&</a> he stde þ<i>ere</i> +þ<i>a</i>t þe fig<i>ure</i> of 4. stondes, þ<i>a</i>t is thretty. +<span class = "sidenote">tens,</span> +The fig<i>ure</i> of 6, þ<i>a</i>t hase þis schape <a href = +"images/num6_full.png" target = "_blank"><img src = +"images/num6_full.png" width = "8" height = "14" alt = "{6}" /></a>, +betokens ten tymes mor<i>e</i> þan he schuld & he stode þ<i>ere</i> +as þe fig<i>ure</i> of <a href = "images/num3_full.png" target = +"_blank"><img src = "images/num3_full.png" width = "7" height = "15" alt += "{3}" /></a>. stondes, for þ<i>ere</i> he schuld tokyn<i>e</i> bot +sexty, & now he betokens ten tymes mor<i>e</i>, þat is sex hundryth. +<span class = "sidenote">hundreds,</span> +The fig<i>ure</i> of 9. þ<i>a</i>t hase þis schape <a href = +"images/num9_full.png" target = "_blank"><img src = +"images/num9_full.png" width = "8" height = "15" alt = "{9}" /></a>. +betokens ten tymes mor<i>e</i> þan<i>e</i> he schuld & he stode in +þe place þ<i>ere</i> þe fig<i>ure</i> of sex stondes, for þen he schuld +betoken to 9. hundryth, and in þe place þ<i>ere</i> he stondes now he +betokens 9. þousande. +<span class = "sidenote">thousands.</span> +Al þe <a class = "gloss" name = "hole" id = "hole" href = +"#gloss_hole">hole</a> nomb<i>ur</i> is 9 thousande sex hundryth & +four<i>e</i> & thretty. ¶ fforthermor<i>e</i>, when +<span class = "pagenum">5</span> +<a name = "page5" id = "page5"> </a> +þ<i>o</i>u schalt rede a nomb<i>ur</i> of fig<i>ure</i>, +<span class = "sidenote">How to read the number.</span> +þ<i>o</i>u schalt begyn<i>e</i> at þe last fig<i>ure</i> in the lyft +side, & rede so forth to þe riȝt side as her<i>e</i> 9. 6. +3. 4. Thou schal begyn to rede at þe fig<i>ure</i> of 9. & rede +forth þus. 9. +<span class = "linenum">leaf 137 <i>b</i>.</span> +*thousand sex hundryth thritty & foure. But when þ<i>o</i>u +schall<i>e</i> write, þ<i>o</i>u schalt be-gynne to write at þe ryȝt +side.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Nil cifra sig<i>nifica</i>t s<i>ed</i> dat signa<i>re</i> +sequenti.</p> +</div> + +<p><span class = "sidenote">The meaning and use of the cipher.</span> +Expone þis v<i>er</i>se. A cifre tokens <a class = "gloss" name = +"noght" id = "noght" href = "#gloss_noght">noȝt</a>, bot he makes þe +fig<i>ure</i> to betoken þat comes aft<i>ur</i> hym mor<i>e</i> þan he +schuld & he wer<i>e</i> away, as þus 1φ. her<i>e</i> þe +fig<i>ure</i> of on<i>e</i> tokens ten, & yf þe cifre wer<i>e</i> +away<a class = "tag" name = "tag_craft1" id = "tag_craft1" href = +"#note_craft1">1</a> & no fig<i>ure</i> by-for<i>e</i> hym he schuld +token bot on<i>e</i>, for þan he sch<i>ul</i>d stonde in þe first place. +¶ And þe cifre tokens nothyng hym selfe. for al þe nomb<i>ur</i> of +þe <a class = "gloss" name = "ylke" id = "ylke" href = +"#gloss_ylke">ylke</a> too fig<i>ure</i>s is bot ten. ¶ Questio. +Why says he þat a cifre makys a fig<i>ure</i> to <a class = "gloss" name += "signifyetyf" id = "signifyetyf" href = "#gloss_signifyetyf">signifye +(tyf)</a> mor<i>e</i> &c. ¶ I speke for þis worde <a class = +"terms" name = "significatyf" id = "significatyf" href = +"#terms_significatyf">significatyf</a>, ffor sothe it may happe +aft<i>ur</i> a cifre schuld come a-noþ<i>ur</i> cifre, as þus 2φφ. And +ȝet þe secunde cifre shuld token neu<i>er</i> þe mor<i>e</i> <a class = +"gloss" name = "excep" id = "excep" href = "#gloss_excep">excep</a> he +schuld kepe þe ord<i>er</i> of þe place. and a cifre is no fig<i>ure</i> +significatyf.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Q<i>ua</i>m p<i>re</i>cedentes plus ulti<i>m</i>a significabit /</p> +</div> + +<p><span class = "sidenote">The last figure means more than all the +others, since it is of the highest value.</span> +Expone þis v<i>er</i>se þus. Þe last figu<i>re</i> schal token +mor<i>e</i> þan all<i>e</i> þe oþ<i>er</i> afor<i>e</i>, <a class = +"gloss" name = "thought" id = "thought" href = +"#gloss_thought">thouȝt</a> þ<i>ere</i> wer<i>e</i> a hundryth thousant +figures afor<i>e</i>, as þus, 16798. Þe last fig<i>ure</i> þat is 1. +betokens ten thousant. And all<i>e</i> þe oþ<i>er</i> fig<i>ure</i>s +b<i>e</i>n bot betoken<i>e</i> bot sex thousant seuyn<i>e</i> +h<i>u</i>ndryth nynty & 8. ¶ And ten thousant is mor<i>e</i> +þen all<i>e</i> þat nomb<i>ur</i>, <i>er</i>go þe last figu<i>re</i> +tokens mor<i>e</i> þan all þe nomb<i>ur</i> afor<i>e</i>.</p> + +<p class = "headnote"><span class = "headnote"> +The Three Kinds of Numbers</span></p> + +<div class = "verse"> +<span class = "linenum">leaf 138 <i>a</i>.</span> +<p class = "pilcrow plus"> +* ¶ Post p<i>re</i>dicta scias breuit<i>er</i> q<i>uod</i> tres +num<i>er</i>or<i>um</i></p> +<p>Distincte species sunt; nam quidam digiti sunt;</p> +<p>Articuli quidam; quidam q<i>uoque</i> compositi sunt.</p> +</div> + +<h5>¶ Capit<i>ulu</i>m 2<sup>m</sup> de t<i>ri</i>plice divisione +nu<i>mer</i>or<i>um</i>.</h5> + +<p>¶ The auctor of þis tretis <a class = "terms" name = "departys" id = +"departys" href = "#terms_departys">dep<i>ar</i>tys</a> þis worde a +nomb<i>ur</i> into 3 p<i>ar</i>tes. Some nomb<i>ur</i> is called +digit<i>us</i> latine, a <a class = "terms" name = "digit" id = +"digit" href = "#terms_digit">digit</a> in englys. +<span class = "sidenote">Digits.</span> +So<i>m</i>me nomb<i>ur</i> is called articul<i>us</i> latine. An +<a class = "terms" name = "articul" id = "articul" href = +"#terms_article">Articul</a> in englys. +<span class = "sidenote">Articles.</span> +Some nomb<i>ur</i> is called a <a class = "terms" name = "composyt" id = +"composyt" href = "#terms_componede">composyt</a> in englys. +<span class = "sidenote">Composites.</span> +¶ Expone þis v<i>er</i>se. know þ<i>o</i>u aft<i>ur</i> þe forsayd +<a class = "gloss" name = "rewles" id = "rewles" href = +"#gloss_rewle">rewles</a> þ<i>a</i>t I sayd afore, þat þ<i>ere</i> ben +thre <a class = "gloss" name = "spices1" id = "spices1" href = +"#gloss_spices">spices</a> of nomb<i>ur</i>. Oon<i>e</i> is a digit, +Anoþ<i>er</i> is an Articul, & þe toþ<i>er</i> a Composyt. +v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +Digits, Articles, and Composites.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Sunt digiti num<i>er</i>i qui cit<i>ra</i> denariu<i>m</i> +s<i>u</i>nt.</p> +</div> + +<p><span class = "sidenote">What are digits.</span> +¶ Her<i>e</i> he telles qwat is a digit, Expone v<i>er</i>su<i>s</i> +sic. Nomb<i>ur</i>s digitus ben<i>e</i> all<i>e</i> nomb<i>ur</i>s þat +ben w<i>i</i>t<i>h</i>-inne ten, as nyne, 8. 7. 6. 5. 4. 3. +2. 1.</p> + +<span class = "pagenum">6</span> +<a name = "page6" id = "page6"> </a> +<div class = "verse"> +<p class = "pilcrow"> +¶ Articupli decupli degito<i>rum</i>; compositi s<i>u</i>nt</p> +<p>Illi qui constant ex articulis degitisq<i>ue</i>.</p> +</div> + +<p>¶ Her<i>e</i> he telles what is a composyt and what is an<i>e</i> +articul. Expone sic v<i>er</i>sus. +<span class = "sidenote">What are articles.</span> +¶ Articulis ben<a class = "tag" name = "tag_craft2" id = +"tag_craft2" href = "#note_craft2">2</a> +all<i>e</i> þ<i>a</i>t may be deuidyt into nomb<i>urs</i> of ten & +nothyng<i>e</i> <a class = "gloss" name = "leue" id = "leue" href = +"#gloss_leue">leue</a> ou<i>er</i>, as twenty, thretty, fourty, +a hundryth, a thousand, & such oþ<i>er</i>, ffor twenty +may be dep<i>ar</i>tyt in-to 2 nomb<i>ur</i>s of ten, fforty in to +four<i>e</i> nomb<i>ur</i>s of ten, & so forth.</p> + +<p><span class = "linenum">leaf 138 <i>b</i>.</span> +<span class = "sidenote">What numbers are composites.</span> +*Compositys beɳ nomb<i>ur</i>s þat bene componyt of a digyt & of an +articull<i>e</i> as fouretene, fyftene, sextene, & such oþ<i>er</i>. +ffortene is co<i>m</i>ponyd of four<i>e</i> þat is a digit & of ten +þat is an articull<i>e</i>. ffiftene is componyd of 5 & ten, & +so of all oþ<i>er</i>, what þat þai ben. Short-lych eu<i>er</i>y +nomb<i>ur</i> þat be-gynnes w<i>i</i>t<i>h</i> a digit & endyth in a +articull<i>e</i> is a composyt, as fortene bygennyng<i>e</i> by +four<i>e</i> þat is a digit, & endes in ten.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Ergo, p<i>ro</i>posito nu<i>mer</i>o tibi scriber<i>e</i>, +p<i>ri</i>mo</p> +<p>Respicias quid sit nu<i>merus</i>; si digitus sit</p> +<p>P<i>ri</i>mo scribe loco digitu<i>m</i>, si compositus sit</p> +<p>P<i>ri</i>mo scribe loco digitu<i>m</i> post articulu<i>m</i>; +sic.</p> +</div> + +<p><span class = "sidenote">How to write a number,</span> +¶ here he telles how þ<i>o</i>u schalt <a class = "gloss" name = "wyrch" +id = "wyrch" href = "#gloss_worch">wyrch</a> whan þ<i>o</i>u schalt +write a nomb<i>ur</i>. Expone v<i>er</i>su<i>m</i> sic, & fac iuxta +expon<i>ent</i>is sentencia<i>m</i>; whan þ<i>o</i>u hast a +nomb<i>ur</i> to write, loke fyrst what man<i>er</i> nomb<i>ur</i> it ys +þ<i>a</i>t þ<i>o</i>u schalt write, whether it be a digit or a composit +or an Articul. +<span class = "sidenote">if it is a digit;</span> +¶ If he be a digit, write a digit, as yf it be seuen, write seuen +& write þ<i>a</i>t digit in þe first place toward þe ryght side. +<span class = "sidenote">if it is a composite.</span> +If it be a composyt, write þe digit of þe composit in þe first place +& write þe articul of þat digit in þe secunde place next toward þe +lyft side. As yf þ<i>o</i>u schal write sex & twenty. write þe digit +of þe nomb<i>ur</i> in þe first place þat is sex, and write þe articul +next aft<i>ur</i> þat is twenty, as þus 26. +<span class = "sidenote">How to read it.</span> +But whan þ<i>o</i>u schalt <a class = "gloss" name = "sowne" id = +"sowne" href = "#gloss_sowne">sowne</a> or speke +<span class = "linenum">leaf 139 <i>a</i>.</span> +*or rede an Composyt þou schalt first sowne þe articul & +aft<i>ur</i> þe digit, as þ<i>o</i>u seyst by þe comyn<i>e</i> speche, +Sex & twenty & nouȝt twenty & sex. v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Articul<i>us</i> si sit, in p<i>ri</i>mo limite cifram,</p> +<p>Articulu<i>m vero</i> reliq<i>ui</i>s insc<i>ri</i>be +figur<i>is</i>.</p> +</div> + +<p><span class = "sidenote">How to write Articles:</span> +¶ Here he tells how þ<i>o</i>u schal write when þe nombre þ<i>a</i>t +þ<i>o</i>u hase to write is an Articul. Expone v<i>er</i>sus sic & +fac s<i>ecundu</i>m sentenciam. Ife þe nomb<i>ur</i> þ<i>a</i>t +þ<i>o</i>u hast write be an Articul, write first a cifre & +aft<i>ur</i> þe cifer write an Articull<i>e</i> þus. 2φ. +<span class = "sidenote">tens,</span> +fforthermor<i>e</i> þ<i>o</i>u schalt vnd<i>ir</i>stonde yf þ<i>o</i>u +haue an Articul, loke how +<span class = "pagenum">7</span> +<a name = "page7" id = "page7"> </a> +mych he is, yf he be w<i>i</i>t<i>h</i>-ynne an hundryth, þ<i>o</i>u +schalt write bot on<i>e</i> cifre, afore, as her<i>e</i> .9φ. +<span class = "sidenote">hundreds,</span> +If þe articull<i>e</i> be by hym-silfe & be an hundrid euen<i>e</i>, +þen schal þ<i>o</i>u write .1. & 2 cifers afor<i>e</i>, þat he may +stonde in þe thryd place, for eu<i>er</i>y fig<i>ure</i> in þe thryd +place schal token a hundrid tymes hym selfe. +<span class = "sidenote">thousands, &c.</span> +If þe articul be a thousant or thousandes<a class = "tag" name = +"tag_craft3" id = "tag_craft3" href = "#note_craft3">3</a> +and he stonde by hy<i>m</i> selfe, write afor<i>e</i> 3 cifers & so +forþ of al oþ<i>er</i>.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Quolib<i>et</i> in nu<i>mer</i>o, si par sit p<i>ri</i>ma figura,</p> +<p>Par erit & to<i>tu</i>m, quicquid sibi +co<i>n</i>ti<i>nua</i>t<i>ur</i>;</p> +<p>Imp<i>ar</i> si fu<i>er</i>it, totu<i>m</i> tu<i>n</i>c fiet +<i>et</i> impar.</p> +</div> + +<p><span class = "sidenote">To tell an even number</span> +¶ Her<i>e</i> he teches a gen<i>er</i>all<i>e</i> rewle þ<i>a</i>t yf þe +first fig<i>ure</i> in þe <a class = "gloss" name = "rewle2" id = +"rewle2" href = "#gloss_rewle">rewle</a> of fig<i>ure</i>s token a +nomb<i>ur</i> þat is euen<i>e</i> al þ<i>a</i>t nomb<i>ur</i> of +fig<i>ur</i>ys in þat rewle schal be euen<i>e</i>, as her<i>e</i> +þ<i>o</i>u may see 6. 7. 3. 5. 4. Computa & p<i>ro</i>ba. +<span class = "sidenote">or an odd.</span> +¶ If þe first +<span class = "linenum">leaf 139 <i>b</i>.</span> +*fig<i>ur</i>e token an nomb<i>ur</i> þat is ode, all<i>e</i> þat +nomb<i>ur</i> in þat rewle schall<i>e</i> be ode, as her<i>e</i> 5 6 7 8 +6 7. Computa & p<i>ro</i>ba. v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Septe<i>m</i> su<i>n</i>t partes, no<i>n</i> pl<i>u</i>res, istius +artis;</p> +<p class = "pilcrow"> +¶ Adder<i>e</i>, subt<i>ra</i>her<i>e</i>, duplar<i>e</i>, +dimidiar<i>e</i>,</p> +<p>Sextaq<i>ue</i> diuider<i>e</i>, s<i>ed</i> qui<i>n</i>ta +m<i>u</i>ltiplicar<i>e</i>;</p> +<p>Radice<i>m</i> ext<i>ra</i>her<i>e</i> p<i>ar</i>s septi<i>m</i>a +dicitur esse.</p> +</div> + +<p class = "headnote"><span class = "headnote"> +The Seven Rules of Arithmetic.</span></p> + +<p><span class = "sidenote">The seven rules.</span> +¶ Her<i>e</i> telles þ<i>a</i>t þ<i>er</i> beɳ .7. spices or +p<i>ar</i>tes of þis craft. The first is called addicioñ, þe secunde is +called subtraccioñ. The thryd is called <a class = "terms" name = +"duplacion" id = "duplacion" href = "#terms_duplacion">duplacioñ</a>. +The 4. is called <a class = "terms" name = "dimydicion" id = +"dimydicion" href = "#terms_dimydicion">dimydicioñ</a>. The 5. is called +m<i>u</i>ltiplicacioñ. The 6 is called diuisioñ. The 7. is called +extraccioñ of þe <a class = "terms" name = "rote" id = "rote" href = +"#terms_rote">Rote</a>. What all þese spices ben<i>e</i> hit +schall<i>e</i> be tolde singillati<i>m</i> in <a class = "gloss" name = +"here" id = "here" href = "#gloss_here">her<i>e</i></a> <a class = +"gloss" name = "caputule" id = "caputule" href = +"#gloss_caputule">caputul<i>e</i></a>.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Subt<i>ra</i>his aut addis a dext<i>ri</i>s vel mediabis:</p> +</div> + +<p><span class = "sidenote">Add, subtract, or halve, from right to +left.</span> +Thou schal be-gynne in þe ryght side of þe boke or of a tabul. loke +wer<i>e</i> þ<i>o</i>u wul be-gynne to write latyn or englys in a boke, +& þ<i>a</i>t schall<i>e</i> be called þe lyft side of the boke, þat +þ<i>o</i>u writest toward þ<i>a</i>t side schal be called þe ryght side +of þe boke. V<i>er</i>sus.</p> + +<div class = "verse"> +<p>A leua dupla, diuide, m<i>u</i>ltiplica.</p> +</div> + +<p>Here he telles þe in quych side of þe boke or of þe tabul þ<i>o</i>u +schall<i>e</i> be-gyn<i>e</i> to wyrch duplacioñ, diuisioñ, and +m<i>u</i>ltiplicacioñ. +<span class = "sidenote">Multiply or divide from left to right.</span> +Thou schal begyn<i>e</i> to <a class = "gloss" name = "worch1" id = +"worch1" href = "#gloss_worch">worch</a> in þe lyft side of þe boke or +of þe tabul, but yn what wyse þ<i>o</i>u schal wyrch in hym <b>dicetur +<a class = "gloss" name = "singillatim" id = "singillatim" href = +"#gloss_singillatim">singillatim</a> in seque<i>n</i>tib<i>us</i> +capi<i>tulis</i> et de vtilitate cui<i>us</i>li<i>bet</i> art<i>is</i> +& sic Completur</b> +<span class = "linenum">leaf <ins class = "correction" title = "error for ‘140a’?">140</ins>.</span> +*<b>p<i>ro</i>hemi<i>um</i> & sequit<i>ur</i> tractat<i>us</i> & +p<i>ri</i>mo de arte addic<i>ion</i>is que p<i>ri</i>ma ars est in +ordine.</b></p> + +<span class = "pagenum">8</span> +<a name = "page8" id = "page8"> </a> + +<p class = "headnote"><span class = "headnote"> +The Craft of Addition.</span></p> + +<div class = "verse"> +<p><span class = "dropcap">A</span>dder<i>e</i> si nu<i>mer</i>o +num<i>e</i>ru<i>m</i> vis, ordine tali</p> +<p>Incipe; scribe duas p<i>rim</i>o series nu<i>mer</i>or<i>um</i></p> +<p>P<i>ri</i>ma<i>m</i> sub p<i>ri</i>ma recte pone<i>n</i>do +figura<i>m</i>,</p> +<p>Et sic de reliq<i>ui</i>s facias, si sint tibi plures.</p> +</div> + +<p><span class = "sidenote">Four things must be known:</span> +¶ Her<i>e</i> by-gynnes þe craft of Addicioñ. In þis craft þ<i>o</i>u +most knowe foure thyng<i>es</i>. ¶ Fyrst þ<i>ou</i> most know what +is addicioñ. Next þ<i>o</i>u most know how mony rewles of figurys þou +most haue. ¶ Next þ<i>o</i>u most know how mony diue<i>r</i>s casys +happes in þis craft of addicioñ. ¶ And next qwat is þe +p<i>ro</i>fet of þis craft. +<span class = "sidenote">what it is;</span> +¶ As for þe first þou most know þat addicioñ is a <a class = +"terms" name = "castyng" id = "castyng" href = "#terms_cast">castyng</a> +to-ged<i>ur</i> of twoo nomburys in-to on<i>e</i> nombr<i>e</i>. As yf I +aske qwat is <a class = "gloss" name = "twene" id = "twene" href = +"#gloss_twene">twene</a> & thre. Þ<i>o</i>u wyl <a class = "terms" +name = "cast" id = "cast" href = "#terms_cast">cast</a> þese twene +nomb<i>re</i>s to-ged<i>ur</i> & say þ<i>a</i>t it is fyue. +<span class = "sidenote">how many rows of figures;</span> +¶ As for þe secunde þou most know þ<i>a</i>t þou schall<i>e</i> haue +tweyne rewes of figures, on<i>e</i> vndur a-nother, as her<i>e</i> +þ<i>o</i>u mayst se. +<span class = "float"> +1234<br /> +2168.</span> +<span class = "sidenote">how many cases;</span> +¶ As for þe thryd þou most know þ<i>a</i>t ther<i>e</i> ben foure +diu<i>er</i>se cases. +<span class = "sidenote">what is its result.</span> +As for þe forthe þ<i>o</i>u most know þ<i>a</i>t þe p<i>ro</i>fet of þis +craft is to telle what is þe hole nomb<i>ur</i> þ<i>a</i>t comes of +diu<i>er</i>se nomburis. Now as to þe texte of oure verse, he teches +ther<i>e</i> how þ<i>o</i>u schal <a class = "gloss" name = "worch" id = +"worch" href = "#gloss_worch">worch</a> in þis craft. ¶ He says yf +þ<i>o</i>u wilt cast on<i>e</i> nomb<i>ur</i> to anoþ<i>er</i> +nomb<i>ur</i>, þou most by-gynne on þis wyse. +<span class = "sidenote">How to set down the sum.</span> +¶ ffyrst write +<span class = "linenum">leaf 140 <i>b</i>.</span> +*two rewes of figuris & nombris so þat þ<i>o</i>u write þe first +figur<i>e</i> of þe hyer nomb<i>ur</i> euen<i>e</i> vnd<i>ir</i> the +first fig<i>ure</i> of þe nether nomb<i>ur</i>, +<span class = "float"> +123<br /> +234.</span> +And þe secunde of þe nether nomb<i>ur</i> euen<i>e</i> vnd<i>ir</i> þe +secunde of þe hyer, & so forthe of eu<i>er</i>y fig<i>ur</i>e of +both þe rewes as þ<i>o</i>u mayst se.</p> + +<p class = "headnote"><span class = "headnote"> +The Cases of the Craft of Addition.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Inde duas adde p<i>ri</i>mas hac condic<i>i</i>one:</p> +<p>Si digitus crescat ex addic<i>i</i>one prior<i>um</i>;</p> +<p>P<i>ri</i>mo scribe loco digitu<i>m</i>, quicu<i>n</i>q<i>ue</i> sit +ille.</p> +</div> + +<p>¶ Here he teches what þ<i>o</i>u schalt do when þ<i>o</i>u hast write +too rewes of figuris <a class = "gloss" name = "on" id = "on" href = +"#gloss_on">on</a> vnder an-oþ<i>er</i>, as I sayd be-for<i>e</i>. +<span class = "sidenote">Add the first figures;</span> +¶ He says þ<i>o</i>u schalt take þe first fig<i>ur</i>e of þe heyer +nomb<i>re</i> & þe fyrst figur<i>e</i> of þe neþ<i>er</i> nombre, +& cast hem to-ged<i>er</i> vp-on þis condicioɳ. Thou schal loke +qweþ<i>er</i> þe nombe<i>r</i> þat comys þ<i>ere</i>-of be a digit or +no. +<span class = "sidenote">rub out the top figure;</span> +¶ If he be a digit þ<i>o</i>u schalt do away þe first fig<i>ur</i>e +of þe hyer nomb<i>re</i>, and write þ<i>ere</i> in his stede þat he +stode Inne þe digit, þ<i>a</i>t comes of þe ylke 2 fig<i>ur</i>es, & +so +<span class = "sidenote">write the result in its place.</span> +<a class = "gloss" name = "wrich" id = "wrich" href = +"#gloss_worch">wrich</a> forth oɳ oþ<i>er</i> figures yf þ<i>ere</i> be +ony moo, til þ<i>o</i>u come to þe ende toward þe lyft side. And +<a class = "gloss" name = "lede" id = "lede" href = "#gloss_lede">lede</a> +þe nether fig<i>ure</i> stonde still eu<i>er</i>-mor<i>e</i> til +þ<i>o</i>u haue <a class = "gloss" name = "ydo1" id = "ydo1" href = +"#gloss_ydo">ydo</a>. ffor þ<i>ere</i>-by þ<i>o</i>u schal <a class = +"gloss" name = "wyte" id = "wyte" href = "#gloss_wete">wyte</a> +wheþ<i>er</i> þ<i>o</i>u hast don<i>e</i> wel or no, as I schal tell þe +aft<i>er</i>ward in þe ende of þis Chapt<i>er</i>. ¶ And loke +<a class = "gloss" name = "allgate" id = "allgate" href = +"#gloss_allgate">allgate</a> +<span class = "linenum">leaf 141 <i>a</i>.</span> +þat þou be-gynne to worch in þis Craft of Addi*cioɳ in þe ryȝt side, +<span class = "pagenum">9</span> +<a name = "page9" id = "page9"> </a> +<span class = "sidenote">Here is an example.</span> +here is an ensampul of þis case. +<span class = "float"> +1234<br /> +2142.</span> +Caste 2 to four<i>e</i> & þat wel be sex, do away 4. & write in +þe same place þe fig<i>ur</i>e of sex. ¶ And lete þe fig<i>ur</i>e +of 2 in þe nether rewe stonde stil. When þ<i>o</i>u hast do so, cast 3 +& 4 to-ged<i>ur</i> and þat wel be seuen þ<i>a</i>t is a digit. Do +away þe 3, & set þ<i>ere</i> seueɳ, and lete þe neþ<i>er</i> +fig<i>ure</i> stonde still<i>e</i>, & so <a class = "gloss" name = +"worch_imp1" id = "worch_imp1" href = "#gloss_worch">worch</a> forth +bakward til þ<i>o</i>u hast <a class = "gloss" name = "ydo" id = "ydo" +href = "#gloss_ydo">ydo</a> all to-ged<i>er</i>.</p> + +<div class = "verse"> +<p>Et si composit<i>us</i>, in limite scribe seque<i>n</i>te</p> +<p>Articulum, p<i>ri</i>mo digitum; q<i>uia</i> sic iubet ordo.</p> +</div> + +<p>¶ Here is þe secunde case þ<i>a</i>t may happe in þis craft. And þe +case is þis, +<span class = "sidenote">Suppose it is a Composite, set down the digit, +and carry the tens.</span> +yf of þe casting of 2 nomburis to-ged<i>er</i>, as of þe fig<i>ur</i>e +of þe hyer rewe & of þe figure of þe neþ<i>er</i> rewe come a +Composyt, how schalt þ<i>ou</i> worch. Þ<i>us</i> þ<i>o</i>u schalt +worch. Thou shalt do away þe fig<i>ur</i>e of þe hyer nomb<i>er</i> þat +was cast to þe figure of þe neþ<i>er</i> nomber. ¶ And write +þ<i>ere</i> þe digit of þe Composyt. And set þe articul of þe composit +next aft<i>er</i> þe digit in þe same rewe, yf þ<i>ere</i> be no +<a class = "gloss" name = "mo" id = "mo" href = "#gloss_mo">mo</a> +fig<i>ur</i>es aft<i>er</i>. But yf þ<i>ere</i> be mo figuris +aft<i>er</i> þat digit. And þere he schall be rekend for hym selfe. And +when þ<i>o</i>u schalt adde þ<i>a</i>t ylke figure þ<i>a</i>t berys þe +articull<i>e</i> ou<i>er</i> his hed to þe figur<i>e</i> vnd<i>er</i> +hym, þ<i>o</i>u schalt cast þat articul to þe figure þ<i>a</i>t hase hym +ou<i>er</i> his hed, & þ<i>ere</i> þat Articul schal tokeɳ hym +selfe. +<span class = "sidenote">Here is an example.</span> +lo an Ensampull +<span class = "linenum">leaf 141 <i>b</i>.</span> +*of all. +<span class = "float"> +326<br /> +216.</span> +Cast 6 to 6, & þ<i>ere</i>-of wil arise twelue. do away þe hyer 6 +& write þ<i>ere</i> 2, þ<i>a</i>t is þe digit of þis composit. And +þe<i>n</i> write þe articull<i>e</i> þat is ten ou<i>er</i> þe figuris +hed of twene as þ<i>us</i>. +<span class = "float"> + 1<br /> +322<br /> +216.</span> +Now cast þe articull<i>e</i> þ<i>a</i>t standus vpon þe fig<i>ur</i>is +of twene hed to þe same fig<i>ur</i>e, & reken þat articul bot for +on<i>e</i>, and þan þ<i>ere</i> wil arise thre. Þan cast þat thre to þe +neþ<i>er</i> figure, þat is on<i>e</i>, & þat wul be four<i>e</i>. +do away þe fig<i>ur</i>e of 3, and write þ<i>ere</i> a fig<i>ur</i>e of +foure. and lete þe neþ<i>er</i> fig<i>ur</i>e stonde stil, & þan +worch forth. vn<i>de</i> <i>ver</i>sus.</p> + + +<div class = "verse"> +<p class = "pilcrow"> +¶ Articulus si sit, in p<i>ri</i>mo limite cifram,</p> +<p class = "pilcrow"> +¶ Articulu<i>m</i> v<i>er</i>o reliquis inscribe figuris,</p> +<p>Vel p<i>er</i> se scribas si nulla figura sequat<i>ur</i>.</p> +</div> + +<p>¶ Her<i>e</i> he puttes þe thryde case of þe craft of Addicioɳ. & +þe case is þis. +<span class = "sidenote">Suppose it is an Article, set down a cipher and +carry the tens.</span> +yf of Addiciouɳ of 2 figuris a-ryse an Articull<i>e</i>, how schal +þ<i>o</i>u do. thou most do away þe <a class = "gloss" name = "heer" id += "heer" href = "#gloss_heer">heer</a> fig<i>ur</i>e þ<i>a</i>t was +addid to þe neþ<i>er</i>, & write þ<i>ere</i> a cifre, and sett þe +<a class = "terms" name = "articuls" id = "articuls" href = +"#terms_article">articuls</a> on þe figuris hede, yf þ<i>a</i>t +þ<i>ere</i> come ony aft<i>er</i>. And wyrch þan as I haue tolde þe in +þe secunde case. An ensampull. +<span class = "float"> +25.<br /> +15</span> +Cast 5 to 5, þat wylle be ten. now do away þe hyer 5, & write +þ<i>ere</i> a cifer. And sette ten vpon þe figuris hed of 2. And reken +it but for on þus. lo +<span class = "sidenote">Here is an example.</span> +<span class = "pagenum">10</span> +<a name = "page10" id = "page10"> </a> +an Ensampull<i>e</i> +<span class = "float box"> +1 <br /> +2φ<br /> +15</span> +And +<span class = "linenum">leaf 142 <i>a</i>.</span> +*þan worch forth. But yf þ<i>ere</i> come no figure aft<i>er</i> þe +cifre, write þe articul next hym in þe same rewe as here +<span class = "float box"> +5<br /> +5</span> +cast 5 to 5, and it wel be ten. do away 5. þat is þe hier 5. and write +þ<i>ere</i> a cifre, & write aft<i>er</i> hym þe articul as þus +<span class = "float box"> +1φ<br /> + 5</span> +And þan þ<i>o</i>u hast done.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si tibi cifra sup<i>er</i>ueniens occurrerit, illa<i>m</i></p> +<p>Dele sup<i>er</i>posita<i>m</i>; fac illic scribe figura<i>m</i>,</p> +<p>Postea procedas reliquas addendo figuras.</p> +</div> + +<p><span class = "sidenote">What to do when you have a cipher in the top +row.</span> +¶ Her<i>e</i> he putt<i>es</i> þe fourt case, & it is þis, þat +yf þ<i>ere</i> come a cifer in þe hier rewe, how þ<i>o</i>u schal do. +þus þ<i>o</i>u schalt do. do away þe cifer, & sett þ<i>ere</i> þe +digit þ<i>a</i>t comes of þe addiciou<i>n</i> as þus +<span class = "float"> +1φφ84.<br /> +17743</span> +<span class = "sidenote">An example of all the difficulties.</span> +In þis ensampul ben all<i>e</i> þe four<i>e</i> cases. Cast 3 to foure, +þ<i>a</i>t wol be seueɳ. do away 4. & write þ<i>ere</i> seueɳ; þan +cast 4 to þe figur<i>e</i> of 8. þ<i>a</i>t wel be 12. do away 8, & +sett þ<i>ere</i> 2. þat is a digit, and sette þe articul of þe composit, +þat is ten, vpon þe cifers hed, & reken it for hym selfe þat is on. +þan cast on<i>e</i> to a cifer, & hit wull<i>e</i> be but on, for +noȝt & on makes but on<i>e</i>. þan cast 7. þ<i>a</i>t stondes +vnd<i>er</i> þat on to hym, & þat wel be 8. do away þe cifer & +þat 1. & sette þ<i>ere</i> 8. þan go forthermor<i>e</i>. cast þe +oþ<i>er</i> 7 to þe cifer þ<i>a</i>t stondes ou<i>er</i> hy<i>m</i>. +þ<i>a</i>t wul be bot seuen, for þe cifer betokens noȝt. do away þe +cifer & sette þ<i>ere</i> seueɳ, +<span class = "linenum">leaf 142 <i>b</i>.</span> +*& þen go forþ<i>er</i>mor<i>e</i> & cast 1 to 1, & þat wel +be 2. do away þe hier 1, & sette þ<i>ere</i> 2. þan hast þ<i>o</i>u +do. And yf þ<i>o</i>u haue wel ydo þis nomber þat is sett +her<i>e</i>-aft<i>er</i> wel be þe nomber þat schall<i>e</i> aryse of +all<i>e</i> þe addicioɳ as her<i>e</i> 27827. ¶ Sequi<i>tu</i>r +alia sp<i>eci</i>es.</p> + +<p class = "headnote"><span class = "headnote"> +The Craft of Subtraction.</span></p> + +<div class = "verse"> +<p>A nu<i>mer</i>o num<i>er</i>u<i>m</i> si sit tibi demer<i>e</i> +cura</p> +<p>Scribe figurar<i>um</i> series, vt in addicione.</p> +</div> + +<p><span class = "sidenote">Four things to know about +subtraction:</span> +¶ This is þe Chapt<i>er</i> of subtraccioɳ, in the quych þou most +know foure nessessary thyng<i>es</i>. the first what is subtraccioɳ. þe +secunde is how mony nombers þou most haue to subt<i>ra</i>ccioɳ, the +thryd is how mony maners of cases þ<i>ere</i> may happe in þis craft of +subtraccioɳ. The fourte is qwat is þe p<i>ro</i>fet of þis craft. +¶ As for +<span class = "sidenote">the first;</span> +þe first, þ<i>o</i>u most know þ<i>a</i>t subtraccioɳ is drawyng<i>e</i> +of on<i>e</i> nowmb<i>er</i> oute of anoþ<i>er</i> nomber. +<span class = "sidenote">the second;</span> +As for þe secunde, þou most knowe þ<i>a</i>t þou most haue two rewes of +figuris on<i>e</i> vnd<i>er</i> anoþ<i>er</i>, as þ<i>o</i>u <a class = +"gloss" name = "addyst" id = "addyst" href = "#gloss_addyst">addyst</a> +in addicioɳ. +<span class = "sidenote">the third;</span> +As for þe thryd, þ<i>o</i>u moyst know þ<i>a</i>t four<i>e</i> +man<i>er</i> of diu<i>er</i>se casis mai happe in þis craft. +<span class = "sidenote">the fourth.</span> +¶ As for þe fourt, þou most know þ<i>a</i>t þe p<i>ro</i>fet of þis +craft is whenne þ<i>o</i>u hasse taken þe lasse nomber out of þe +mor<i>e</i> to telle what þ<i>ere</i> <a class = "gloss" name = "leues1" +id = "leues1" href = "#gloss_leue">leues</a> ou<i>er</i> +<span class = "pagenum">11</span> +<a name = "page11" id = "page11"> </a> +þ<i>a</i>t. & þ<i>o</i>u most be-gynne to wyrch in þ<i>is</i> craft +in þe ryght side of þe boke, as þ<i>o</i>u diddyst in addicioɳ. +V<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Maiori nu<i>mer</i>o num<i>er</i>u<i>m</i> suppone minorem,</p> +<p class = "pilcrow"> +¶ Siue pari nu<i>mer</i>o supponat<i>ur</i> num<i>er</i>us par.</p> +</div> + +<p><span class = "linenum">leaf 143 <i>a</i>.</span> +* ¶ Her<i>e</i> he telles þat +<span class = "sidenote">Put the greater number above the less.</span> +þe hier nomber most be mor<i>e</i> þen þe neþ<i>er</i>, or els eueɳ as +mych. but he may not be lasse. And þe case is þis, þou schalt drawe þe +neþ<i>er</i> nomber out of þe hyer, & þou mayst not do þ<i>a</i>t yf +þe hier nomber wer<i>e</i> lasse þan þat. ffor þ<i>o</i>u mayst not draw +sex out of 2. But þ<i>o</i>u mast draw 2 out of sex. And þou maiste draw +twene out of twene, for þou schal leue noȝt of þe hier twene vn<i>de</i> +v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +The Cases of the Craft of Subtraction.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Postea si possis a prima subt<i>ra</i>he p<i>ri</i>ma<i>m</i></p> +<p>Scribens quod remanet.</p> +</div> + +<p><span class = "sidenote">The first case of subtraction.</span> +Her<i>e</i> is þe first case put of subtraccioɳ, & he says þou +schalt begynne in þe ryght side, & draw þe first fig<i>ure</i> of þe +neþ<i>er</i> rewe out of þe first fig<i>ure</i> of þe hier rewe. qwether +þe hier fig<i>ur</i>e be mor<i>e</i> þen þe neþ<i>er</i>, or eueɳ as +mych. And þat is notified in þe vers when he says “Si possis.” Whan +þ<i>o</i>u has þus ydo, do away þe hiest fig<i>ur</i>e & sett +þ<i>ere</i> þat <a class = "gloss" name = "leues" id = "leues" href = +"#gloss_leue">leues</a> of þe subtraccioɳ, +<span class = "sidenote">Here is an example.</span> +lo an Ensampull<i>e</i> +<span class = "float box"> +234<br /> +122</span> +draw 2 out of 4. þan leues 2. do away 4 & write þ<i>ere</i> 2, & +latte þe neþ<i>er</i> figur<i>e</i> sto<i>n</i>de stille, & so go +<a class = "gloss" name = "forby" id = "forby" href = +"#gloss_forby">for-by</a> oþ<i>er</i> figuris till þ<i>o</i>u come to þe +ende, þan hast þ<i>o</i>u do.</p> + +<div class = "verse"> +<p class = "halfline"> +¶ Cifram si nil remanebit.</p> +</div> + +<p><span class = "sidenote">Put a cipher if nothing remains.</span> +¶ Her<i>e</i> he putt<i>es</i> þe secunde case, & hit is þis. +yf it happe þ<i>a</i>t qwen þ<i>o</i>u hast draw on neþ<i>er</i> +fig<i>ure</i> out of a hier, & þ<i>er</i>e leue noȝt aft<i>er</i> þe +subt<i>ra</i>ccioɳ, þus +<span class = "linenum">leaf 143 <i>b</i>.</span> +*þou schalt do. þ<i>o</i>u schall<i>e</i> do away þe hier fig<i>ur</i>e +& write þ<i>ere</i> a cifer, as +<span class = "sidenote">Here is an example.</span> +lo an Ensampull +<span class = "float box"> +24<br /> +24</span> +Take four<i>e</i> out of four<i>e</i> þan <a class = "gloss" name = +"leus" id = "leus" href = "#gloss_leue">leus</a> noȝt. +þ<i>er</i>efor<i>e</i> do away þe hier 4 & set þ<i>ere</i> a cifer, +þan take 2 out of 2, þan leues noȝt. do away þe hier 2, & set +þ<i>ere</i> a cifer, and so worch whar<i>e</i> so eu<i>er</i> þis +happe.</p> + +<div class = "verse"> +<p>Sed si no<i>n</i> possis a p<i>ri</i>ma dem<i>er</i>e +p<i>ri</i>ma<i>m</i></p> +<p>P<i>re</i>cedens vnu<i>m</i> de limite deme seque<i>n</i>te,</p> +<p>Quod demptu<i>m</i> p<i>ro</i> denario reputabis ab illo</p> +<p>Subt<i>ra</i>he to<i>ta</i>lem num<i>er</i>u<i>m</i> qu<i>em</i> +p<i>ro</i>posuisti</p> +<p>Quo facto sc<i>ri</i>be super quicquid remaneb<i>i</i>t.</p> +</div> + +<p><span class = "sidenote">Suppose you cannot take the lower figure +from the top one, borrow ten;</span> +Her<i>e</i> he puttes þe thryd case, þe quych is þis. yf it happe þat þe +neþ<i>er</i> fig<i>ur</i>e be mor<i>e</i> þen þe hier fig<i>ur</i>e þat +he schall<i>e</i> be draw out of. how schall<i>e</i> þou do. þus +þ<i>o</i>u schall<i>e</i> do. þou schall<i>e</i> <a class = "gloss" name += "borro" id = "borro" href = "#gloss_borro">borro</a> .1. oute of þe +next fig<i>ur</i>e þat comes aft<i>er</i> in þe same rewe, for þis case +may neu<i>er</i> happ but yf þ<i>ere</i> come figures aft<i>er</i>. þan +þ<i>o</i>u schalt sett +<span class = "pagenum">12</span> +<a name = "page12" id = "page12"> </a> +þat on ou<i>er</i> þe hier figur<i>es</i> hed, of the quych þou woldist +y-draw oute þe neyþ<i>er</i> fig<i>ur</i>e yf þ<i>o</i>u haddyst +<a class = "gloss" name = "ymyght" id = "ymyght" href = +"#gloss_ymyght">y-myȝt</a>. Whane þou hase þus ydo þou schall<i>e</i> +rekene þ<i>a</i>t .1. for ten. +<span class = "sidenote">take the lower number from ten;</span> +¶. And out of þat ten þ<i>o</i>u schal draw þe neyþermost fig<i>ur</i>e, +And all<i>e</i> þ<i>a</i>t leues þou schall<i>e</i> +<span class = "sidenote">add the answer to the top number.</span> +adde to þe figur<i>e</i> on whos hed þat .1. stode. And þen þ<i>o</i>u +schall<i>e</i> do away all<i>e</i> þat, & sett þ<i>ere</i> +all<i>e</i> that arisys of the addicioɳ of þe ylke 2 fig<i>ur</i>is. And +yf yt +<span class = "linenum">leaf 144 <i>a</i>.</span> +*happe þat þe fig<i>ur</i>e of þe quych þ<i>o</i>u schalt borro on be +hym self but 1. If þ<i>o</i>u schalt þat on<i>e</i> & sett it vppoɳ +þe oþ<i>er</i> figur<i>is</i> hed, and sett in þ<i>a</i>t 1. place a +cifer, yf þ<i>ere</i> come mony figur<i>es</i> aft<i>er</i>. +<span class = "sidenote">Example.</span> +lo an Ensampul. +<span class = "float box"> +2122<br /> +1134</span> +take 4 out of 2. it wyl not be, þerfor<i>e</i> borro on<i>e</i> of þe +next figur<i>e</i>, þ<i>a</i>t is 2. and sett þat ou<i>er</i> þe hed of +þe fyrst 2. & rekene it for ten. and þere þe secunde stondes write +1. for þ<i>o</i>u tokest on out of hy<i>m</i>. þan take þe neþ<i>er</i> +fig<i>ur</i>e, þat is 4, out of ten. And þen leues 6. cast to 6 þe +fig<i>ur</i>e of þat 2 þat stode vnd<i>er</i> þe hedde of 1. þat was +<a class = "gloss" name = "borwed" id = "borwed" href = +"#gloss_borro">borwed</a> & rekened for ten, and þat wylle be 8. do +away þ<i>a</i>t 6 & þat 2, & sette þ<i>ere</i> 8, & lette þe +neþ<i>er</i> fig<i>ur</i>e stonde stille. Whanne þ<i>o</i>u hast do þus, +go to þe next fig<i>ur</i>e þ<i>a</i>t is now bot 1. but first yt was 2, +& þ<i>ere</i>-of was <a class = "gloss" name = "borred" id = +"borred" href = "#gloss_borro">borred</a> 1. +<span class = "sidenote">How to ‘Pay back’ the borrowed ten.</span> +þan take out of þ<i>a</i>t þe fig<i>ur</i>e vnd<i>er</i> hym, þ<i>a</i>t +is 3. hit wel not be. þer-for<i>e</i> <a class = "gloss" name = "borowe" +id = "borowe" href = "#gloss_borro">borowe</a> of the next +fig<i>ur</i>e, þe quych is bot 1. Also take & sett hym ou<i>er</i> +þe hede of þe fig<i>ure</i> þat þou woldest haue y-draw oute of þe +nether figure, þe quych was 3. & þou myȝt not, & rekene +þ<i>a</i>t borwed 1 for ten & sett in þe same place, of þe quych +place þ<i>o</i>u tokest hy<i>m</i> of, a cifer, for he was bot 1. +Whanne þ<i>o</i>u hast þ<i>us</i> ydo, take out of þat 1. þ<i>a</i>t is +rekent for ten, þe neþ<i>er</i> figure of 3. And þ<i>ere</i> +leues 7. +<span class = "linenum">leaf 144 <i>b</i>.</span> +*cast þe ylke 7 to þe fig<i>ur</i>e þat had þe ylke ten vpon his hed, þe +quych fig<i>ur</i>e was 1, & þat wol be 8. þan do away +þ<i>a</i>t 1 and þ<i>a</i>t 7, & write þ<i>ere</i> 8. & þan +wyrch forth in oþ<i>er</i> figuris til þ<i>o</i>u come to þe ende, & +þan þ<i>o</i>u hast þe do. V<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Facque nonenarios de cifris, cu<i>m</i> remeabis</p> +<p class = "pilcrow"> +¶ Occ<i>ur</i>rant si forte cifre; dum demps<i>er</i>is vnum</p> +<p class = "pilcrow"> +¶ Postea p<i>ro</i>cedas reliquas deme<i>n</i>do figuras.</p> +</div> + +<p><span class = "sidenote">A very hard case is put.</span> +¶ Her<i>e</i> he putt<i>es</i> þe fourte case, þe quych is þis, yf it +happe þat þe neþ<i>er</i> fig<i>ur</i>e, þe quych þ<i>o</i>u schalt draw +out of þe hier fig<i>ur</i>e be mor<i>e</i> pan þe hier figur +ou<i>er</i> hym, & þe next fig<i>ur</i>e of two or of thre or of +foure, or how mony þ<i>ere</i> be by cifers, how wold þ<i>o</i>u do. +Þ<i>o</i>u <a class = "gloss" name = "wost" id = "wost" href = +"#gloss_wete">wost</a> wel þ<i>o</i>u most nede borow, & þ<i>o</i>u +mayst not borow of þe cifers, for þai haue noȝt þat þai may <a class = +"gloss" name = "lene" id = "lene" href = "#gloss_lene">lene</a> or +spar<i>e</i>. Ergo<a class = "tag" name = "tag_craft4" id = "tag_craft4" +href = "#note_craft4">4</a> +how +<span class = "pagenum">13</span> +<a name = "page13" id = "page13"> </a> +woldest þ<i>o</i>u do. Certayɳ þus most þ<i>o</i>u do, þ<i>o</i>u most +borow on of þe next figure significatyf in þat rewe, for þis case may +not happe, but yf þ<i>ere</i> come figures significatyf aft<i>er</i> the +cifers. Whan þ<i>o</i>u hast borowede þ<i>a</i>t 1 of the next figure +significatyf, sett þ<i>a</i>t on ou<i>er</i> þe hede of þ<i>a</i>t +fig<i>ur</i>e of þe quych þ<i>o</i>u wold haue draw þe neþ<i>er</i> +figure out yf þ<i>o</i>u hadest myȝt, & reken it for ten as +þo<i>u</i> diddest i<i>n</i> þe oþ<i>er</i> case <a class = "gloss" name += "hereafore" id = "hereafore" href = +"#gloss_hereafore">her<i>e</i>-a-for<i>e</i></a>. Whaɳ þ<i>o</i>u hast +þus y-do loke how mony cifers þ<i>ere</i> wer<i>e</i> bye-twene þat +figur<i>e</i> significatyf, & þe fig<i>ur</i>e of þe quych +þ<i>o</i>u woldest haue y-draw the +<span class = "linenum">leaf 145 <i>a</i>.</span> +*neþ<i>er</i> figure, and of eu<i>er</i>y of þe ylke cifers make a +figur<i>e</i> of 9. +<span class = "sidenote">Here is an example.</span> +lo an Ensampull<i>e</i> after. +<span class = "float box"> +40002<br /> +10004</span> +Take 4 out of 2. it wel not be. borow 1 out of be next figure +significatyf, þe quych is 4, & þen leues 3. do away þ<i>a</i>t +figur<i>e</i> of 4 & write þ<i>ere</i> 3. & sett þ<i>a</i>t 1 +vppon þe fig<i>ur</i>e of 2 hede, & þan take 4 out of ten, & þan +þere leues 6. Cast 6 to the fig<i>ur</i>e of 2, þ<i>a</i>t wol be 8. do +away þat 6 & write þ<i>er</i>e 8. Whan þ<i>o</i>u hast þus y-do make +of eu<i>er</i>y 0 betweyn 3 & 8 a figure of 9, & þan worch forth +in goddes name. +<span class = "sidenote">Sic.</span> +<span class = "float box"> +39998<br /> +10004</span> +& yf þ<i>o</i>u hast wel y-do þ<i>o</i>u<a class = "tag" name = +"tag_craft5" id = "tag_craft5" href = "#note_craft5">5</a> +schalt haue þis nomb<i>er</i></p> + + +<p class = "headnote"><span class = "headnote"> +How to prove the Subtraction.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si subt<i>ra</i>cc<i>i</i>o sit b<i>e</i>n<i>e</i> facta +p<i>ro</i>bar<i>e</i> valebis</p> +<p>Quas s<i>u</i>btraxisti p<i>ri</i>mas addendo figuras.</p> +</div> + +<p><span class = "sidenote">How to prove a subtraction sum.</span> +¶ Her<i>e</i> he teches þe Craft how þ<i>o</i>u schalt know, whan +þ<i>o</i>u hast subt<i>ra</i>yd, wheþ<i>er</i> þou hast wel ydo or no. +And þe Craft is þis, ryght as þ<i>o</i>u <a class = "gloss" name = +"subtrayd" id = "subtrayd" href = "#gloss_subtrahe">subtrayd</a> þe +neþ<i>er</i> figures fro þe hier figures, ryȝt so adde þe same +neþ<i>er</i> figures to þe hier figures. And yf þ<i>o</i>u haue well +<a class = "gloss" name = "ywroth" id = "ywroth" href = +"#gloss_worch">y-wroth</a> a-for<i>e</i> þou schalt haue þe hier nombre +þe same þ<i>o</i>u haddest <a class = "gloss" name = "or" id = "or" href += "#gloss_or">or</a> þou be-gan to worch. as for þis I bade þou schulde +kepe þe neþ<i>er</i> figures stylle. +<span class = "sidenote">Here is an example.</span> +lo an +<span class = "linenum">leaf 145 <i>b</i>.</span> +*Ensampull<i>e</i> of all<i>e</i> þe 4 cases toged<i>re</i>. worche +well<i>e</i> þis case +<span class = "float box"> +40003468<br /> +20004664</span> +And yf þou worch well<i>e</i> whan þou hast all<i>e</i> subtrayd þe +þ<i>a</i>t hier nombr<i>e</i> her<i>e</i>, þis schall<i>e</i> be þe +nombre here foloyng whan þ<i>o</i>u hast subtrayd. +<span class = "float box"> +39998804<br /> +20004664</span> +<span class = "sidenote">Our author makes a slip here (3 +for 1).</span> +And þou schalt know þ<i>us</i>. adde þe neþ<i>er</i> rowe of þe same +nombre to þe hier rewe as þus, cast 4 to 4. þat wol be 8. do away þe 4 +& write þ<i>ere</i> 8. by þe first case of addicioɳ. þan cast 6 to 0 +þat wol be 6. do away þe 0, & write þere 6. þan cast 6 to 8, +þ<i>a</i>t wel be 14. do away 8 & write þ<i>ere</i> a fig<i>ur</i>e +of 4, þat is þe digit, and write a fig<i>ur</i>e of 1. þ<i>a</i>t schall +be-token ten. þ<i>a</i>t is þe articul vpon þe hed of 8 next +aft<i>er</i>, þan reken þ<i>a</i>t 1. for 1. & cast it to 8. þat +schal be 9. cast to þat 9 þe neþ<i>er</i> fig<i>ur</i>e vnd<i>er</i> þat +þe quych is 4, & þat schall<i>e</i> be 13. do away þat 9 & sett +þ<i>er</i>e 3, & sett a figure of 1. þ<i>a</i>t schall be 10 vpon þe +next figur<i>is</i> hede þe +<span class = "pagenum">14</span> +<a name = "page14" id = "page14"> </a> +quych is 9. by þe secu<i>n</i>de case þ<i>a</i>t þ<i>o</i>u hadest in +addicioɳ. þan cast 1 to 9. & þat wol be 10. do away þe 9. & þat +1. And write þ<i>ere</i> a cifer. and write þe articull<i>e</i> þat is +1. betokenyng<i>e</i> 10. vpon þe hede of þe next figur<i>e</i> toward +þe lyft side, þe quych +<span class = "linenum">leaf 146 <i>a</i>.</span> +*is 9, & so do forth tyl þ<i>o</i>u come to þe last 9. +<span class = "sidenote">He works his proof through,</span> +take þe figur<i>e</i> of þat 1. þe quych þ<i>o</i>u schalt fynde +ou<i>er</i> þe hed of 9. & sett it ou<i>er</i> þe next figures hede +þat schal be 3. ¶ Also do away þe 9. & set þ<i>ere</i> a +cifer, & þen cast þat 1 þat stondes vpon þe hede of 3 to þe same 3, +& þ<i>a</i>t schall<i>e</i> make 4, þen caste to þe ylke 4 the +figur<i>e</i> in þe neyþ<i>er</i> rewe, þe quych is 2, and þat +schall<i>e</i> be 6. +<span class = "sidenote">and brings out a result.</span> +<span class = "float box"> +60003468<br /> +20004664</span> +And þen schal þ<i>o</i>u haue an Ensampull<i>e</i> aȝeyɳ, loke & se, +& but þ<i>o</i>u haue þis same þ<i>o</i>u hase <a class = "gloss" +name = "mysewroght" id = "mysewroght" href = +"#gloss_mysewroght">myse-wroȝt</a>.</p> + + +<p class = "headnote"><span class = "headnote"> +The Craft of Duplation.</span></p> + +<h5>Sequit<i>ur</i> de duplac<i>i</i>one</h5> + +<div class = "verse"> +<p><span class = "dropcap">S</span>i vis duplar<i>e</i> +num<i>er</i>u<i>m</i>, sic i<i>n</i>cipe p<i>rim</i>o</p> +<p>Scribe fig<i>ur</i>ar<i>um</i> serie<i>m</i> +q<i>ua</i>mcu<i>n</i>q<i>ue</i> vel<i>is</i> tu.</p> +</div> + +<p><span class = "sidenote">Four things must be known in +Duplation.</span> +¶ This is the Chaptur<i>e</i> of <a class = "terms" name = +"duplacion2" id = "duplacion2" href = "#terms_duplacion">duplacioɳ</a>, +in þe quych craft þ<i>o</i>u most haue & know 4 thing<i>es</i>. +¶ Þe first þ<i>a</i>t þ<i>o</i>u most know is what is duplacioɳ. þe +secu<i>n</i>de is how mony rewes of fig<i>ur</i>es þ<i>o</i>u most haue +to þis craft. ¶ þe thryde is how many cases may<a class = "tag" +name = "tag_craft6" id = "tag_craft6" href = "#note_craft6">6</a> +happe in þis craft. ¶ þe fourte is what is þe p<i>ro</i>fet of þe +craft. +<span class = "sidenote">Here they are.</span> +¶ As for þe first. duplacioɳ is a doublyng<i>e</i> of a nombre. +¶ As for þe secu<i>n</i>de þ<i>o</i>u most +<span class = "linenum">leaf 146 <i>b</i>.</span> +*haue on nombre or on rewe of figures, the quych called nu<i>merus</i> +dupland<i>us</i>. As for þe thrid þ<i>o</i>u most know þat 3 +diu<i>er</i>se cases may hap in þis craft. As for þe fourte. qwat is þe +p<i>ro</i>fet of þis craft, & þ<i>a</i>t is to know what <a class = +"gloss" name = "arisyght" id = "arisyght" href = +"#gloss_arisyght">a-risyȝt</a> of a nombre I-doublyde. +<span class = "sidenote">Mind where you begin.</span> +¶ fforþ<i>er</i>-mor<i>e</i>, þ<i>o</i>u most know & take gode +hede in quych side þ<i>o</i>u schall<i>e</i> be-gyn in þis craft, or +ellis þ<i>o</i>u mayst <a class = "gloss" name = "spyl" id = "spyl" href += "#gloss_spyl">spyl</a> all<i>e</i> þ<i>i</i> lab<i>er</i> þ<i>er</i>e +aboute. c<i>er</i>teyn þ<i>o</i>u schalt begyɳ in the lyft side in þis +Craft. thenke wel ou<i>er</i> þis verse. ¶ <a class = "tag" name = +"tag_craft7" id = "tag_craft7" href = "#note_craft7">7</a>A leua dupla, +diuide, m<i>u</i>ltiplica.<a class = "tag" href = +"#note_craft7">7</a></p> + +<p>The <a class = "gloss" name = "sentens" id = "sentens" href = +"#gloss_sentens">sentens</a> of þes verses afor<i>e</i>, as þ<i>o</i>u +may see if þ<i>o</i>u take hede. +<span class = "sidenote">Remember your rules.</span> +As þe text of þis verse, þat is to say, ¶ Si vis duplare. þis is þe +sentence. ¶ If þ<i>o</i>u <a class = "gloss" name = "wel" id = +"wel" href = "#gloss_wel">wel</a> double a nombre þus þ<i>o</i>u most +be-gynɳ. Write a rewe of figures of what nomb<i>re</i> þou welt. +v<i>er</i>sus.</p> + +<div class = "verse"> +<p>Postea p<i>ro</i>cedas p<i>ri</i>ma<i>m</i> duplando +figura<i>m</i></p> +<p>Inde q<i>uo</i>d excrescit scribas vbi iusserit ordo</p> +<p>Iuxta p<i>re</i>cepta tibi que dant<i>ur</i> in addic<i>i</i>one.</p> +</div> + +<p><span class = "sidenote">How to work a sum.</span> +¶ Her<i>e</i> he telles how þ<i>o</i>u schalt worch in þis Craft. he +says, fyrst, whan þ<i>o</i>u hast writen þe nombre þ<i>o</i>u schalt +be-gyn at þe first +<span class = "pagenum">15</span> +<a name = "page15" id = "page15"> </a> +figur<i>e</i> in the lyft side, & doubull<i>e</i> þat fig<i>ur</i>e, +& þe nombre þat comes þ<i>ere</i>-of þ<i>o</i>u schalt write as +þ<i>o</i>u diddyst in addicioɳ, as ¶ I schal telle þe in þe case. +v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +The Cases of the Craft of Duplation.</span></p> + +<span class = "linenum">leaf 147 <i>a</i>.</span> +<div class = "verse"> +<p class = "pilcrow plus">* ¶ Nam si sit digitus in primo limite +scribas.</p> +</div> + +<p><span class = "sidenote">If the answer is a digit,</span> +¶ Her<i>e</i> is þe first case of þis craft, þe quych is þis. yf of +duplacioɳ of a figur<i>e</i> arise a digit. what schal þ<i>o</i>u do. +þus þ<i>o</i>u schal do. +<span class = "sidenote">write it in the place of the top figure.</span> +do away þe fig<i>ur</i>e þat was doublede, & sett þ<i>ere</i> þe +diget þat comes of þe duplacioɳ, as þus. 23. double 2, & þ<i>a</i>t +wel be 4. do away þe figur<i>e</i> of 2 & sett þ<i>ere</i> a +figur<i>e</i> of 4, & so <a class = "gloss" name = "worch_imp" id = +"worch_imp" href = "#gloss_worch">worch</a> forth till<i>e</i> +þ<i>o</i>u come to þe ende. v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Articul<i>us</i> si sit, in p<i>ri</i>mo limite cifram,</p> +<p class = "pilcrow"> +¶ Articulu<i>m</i> v<i>er</i>o reliquis inscribe figuris;</p> +<p class = "pilcrow"> +¶ Vel p<i>er</i> se scribas, si nulla figura sequat<i>ur</i>.</p> +</div> + +<p><span class = "sidenote">If it is an article,</span> +¶ Here is þe secunde case, þe quych is þis yf þ<i>ere</i> come an +articull<i>e</i> of þe duplacioɳ of a fig<i>ur</i>e þ<i>o</i>u schalt do +ryȝt as þ<i>o</i>u diddyst in addicioɳ, þat is to <a class = "gloss" +name = "wete" id = "wete" href = "#gloss_wete">wete</a> þat þ<i>o</i>u +schalt do away þe figur<i>e</i> þat is doublet & +<span class = "sidenote">put a cipher in the place, and ‘carry’ the +tens.</span> +sett þ<i>ere</i> a cifer, & write þe articull<i>e</i> ou<i>er</i> þe +next figur<i>is</i> hede, yf þ<i>ere</i> be any aft<i>er</i>-warde +toward þe lyft side as þus. 25. begyn at the lyft side, and +doubull<i>e</i> 2. þat wel be 4. do away þat 2 & sett þere 4. þan +doubul 5. þat wel be 10. do away 5, & sett þ<i>ere</i> a 0, & +sett 1 vpon þe next figur<i>is</i> hede þe quych is 4. & þen draw +downe 1 to 4 & þat woll<i>e</i> be 5, & þen do away þ<i>a</i>t 4 +& þat 1, & sett þ<i>ere</i> 5. for þat 1 schal be rekened in þe +drawyng<i>e</i> toged<i>re</i> for 1. wen +<span class = "linenum">leaf 147 <i>b</i>.</span> +*þou hast ydon þou schalt haue þis nomb<i>r</i>e 50. +<span class = "sidenote">If there is no figure to ‘carry’ them to, write +them down.</span> +yf þ<i>ere</i> come no figur<i>e</i> aft<i>er</i> þe fig<i>ur</i>e +þ<i>a</i>t is addit, of þe quych addicioɳ comes an articull<i>e</i>, +þ<i>o</i>u schalt do away þe figur<i>e</i> þ<i>a</i>t is dowblet & +sett þ<i>ere</i> a 0. & write þe articul next by in þe same rewe +toward þe lyft syde as þus, 523. double 5 þat woll be ten. do away þe +figur<i>e</i> 5 & set þ<i>ere</i> a cifer, & sett þe articul +next aft<i>er</i> in þe same rewe toward þe lyft side, & þou schalt +haue þis nombre 1023. þen go forth & double þe oþ<i>er</i> nombers +þe quych is <a class = "gloss" name = "lyght" id = "lyght" href = +"#gloss_lyght">lyȝt</a> <a class = "gloss" name = "ynowght" id = +"ynowght" href = "#gloss_ynowght">y-nowȝt</a> to do. v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Compositus si sit, in limite sc<i>ri</i>be seq<i>uen</i>te</p> +<p>Articulu<i>m</i>, p<i>ri</i>mo digitu<i>m</i>; q<i>uia</i> sic iubet +ordo:</p> +<p>Et sic de reliq<i>ui</i>s facie<i>n</i>s, si sint tibi plures.</p> +</div> + +<p><span class = "sidenote">If it is a Composite,</span> +¶ Her<i>e</i> he putt<i>es</i> þe Thryd case, þe quych is þis, yf of +duplacioɳ of a fig<i>ur</i>e come a Composit. þ<i>o</i>u schalt do away +þe fig<i>u</i>re þ<i>a</i>t is doublet & set þ<i>ere</i> a digit of +þe Composit, +<span class = "sidenote">write down the digit, and ‘carry’ the +tens.</span> +& sett þe articull<i>e</i> ou<i>er</i> þe next figures hede, & +aft<i>er</i> draw hym downe w<i>i</i>t<i>h</i> þe figur<i>e</i> +ou<i>er</i> whos hede he stondes, & make þ<i>ere</i>-of an nombre as +þ<i>o</i>u hast done +<span class = "pagenum">16</span> +<a name = "page16" id = "page16"> </a> +afore, & yf þ<i>ere</i> come no fig<i>ur</i>e aft<i>er</i> þat digit +þat þ<i>o</i>u hast <a class = "gloss" name = "ywrite" id = "ywrite" +href = "#gloss_write">y-write</a>, þa<i>n</i> set þe articull<i>e</i> +next aft<i>er</i> hym in þe same rewe as þus, 67: double 6 þat wel be +12, do away 6 & write þ<i>ere</i> þe digit +<span class = "linenum">leaf 148 <i>a</i>.</span> +*of 12, þe quych is 2, +<span class = "sidenote">Here is an example.</span> +and set þe articull<i>e</i> next aft<i>er</i> toward þe lyft side in þe +same rewe, for þ<i>ere</i> comes no figur<i>e</i> aft<i>er</i>. þan +dowble þat oþ<i>er</i> figur<i>e</i>, þe quych is 7, þat wel be 14. +the quych is a Composit. þen do away 7 þat þ<i>o</i>u doublet & sett +þe þe diget of hy<i>m</i>, the quych is 4, sett þe articull<i>e</i> +ou<i>er</i> þe next figur<i>es</i> hed, þe quych is 2, & þen draw to +hym þat on, & make on nombre þe quych schall<i>e</i> be 3. And þen +yf þ<i>o</i>u haue wel y-do þ<i>o</i>u schall<i>e</i> haue þis nombre of +þe duplacioɳ, 134. v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si super ext<i>re</i>ma<i>m</i> nota sit monade<i>m</i> dat +eid<i>em</i></p> +<p>Quod t<i>ibi</i> <i>con</i>tingat si p<i>ri</i>mo dimidiabis.</p> +</div> + +<p><span class = "sidenote">How to double the mark for one-half.</span> +¶ Her<i>e</i> he says, yf ou<i>er</i> þe fyrst fig<i>ur</i>e in þe +ryȝt side be such a merke as is her<i>e</i> made, <a class = "terms" +name = "sup_w" id = "sup_w" href = "#terms_sup_w"><sup>w</sup></a>, +þ<i>o</i>u schall<i>e</i> fyrst doubull<i>e</i> þe figur<i>e</i>, the +quych stondes vnd<i>er</i> þ<i>a</i>t merke, & þen þou schalt doubul +þat merke þe quych stond<i>es</i> for <a class = "gloss" name = +"haluendel" id = "haluendel" href = "#gloss_haluendel">haluendel</a> on. +for too <a class = "gloss" name = "haluedels" id = "haluedels" href = +"#gloss_haluendel">haluedels</a> makes on, & so þ<i>a</i>t wol be +on. cast þ<i>a</i>t on to þat duplacioɳ of þe figur<i>e</i> ou<i>er</i> +whos hed stode þat merke, & write it in þe same place þ<i>ere</i> +þat þe figur<i>e</i> þe quych was doublet stode, as þus 23<sup>w</sup>. +double 3, þat wol be 6; doubul þat halue on, & þat wol be on. cast +on to 6, þ<i>a</i>t wel be 7. do away 6 & þat 1, & sett +þ<i>ere</i> 7. þan hase þou do. as for þat figur<i>e</i>, þan go +<span class = "linenum">leaf 148 <i>b</i>.</span> +*to þe oþ<i>er</i> fig<i>ure</i> & worch forth. +<span class = "sidenote">This can only stand over the first +figure.</span> +& þ<i>o</i>u schall neu<i>er</i> haue such a merk but ou<i>er</i> þe +hed of þe furst figure in þe ryght side. And ȝet it schal not happe but +yf it were y-halued a-for<i>e</i>, þus þ<i>o</i>u schalt +vnd<i>er</i>stonde þe verse. ¶ Si sup<i>er</i> +ext<i>re</i>ma<i>m</i> &c. Et nota, talis fig<i>ur</i>a <sup>w</sup> +significans medietate<i>m</i>, unitat<i>is</i> veniat, <i>i.e.</i> +contingat u<i>e</i>l fiat sup<i>er</i> ext<i>re</i>ma<i>m</i>, +<i>i.e.</i> sup<i>er</i> p<i>ri</i>ma<i>m</i> figura<i>m</i> in +ext<i>re</i>mo sic v<i>er</i>sus dextram ars dat: <i>i.e.</i> reddit +monade<i>m</i>. <i>i.e.</i> vnitate<i>m</i> eide<i>m</i>. <i>i.e.</i> +eidem note & declina<i>tur</i> hec monos, d<i>i</i>s, di, dem, +&c. ¶ Quod <i>er</i>g<i>o</i> to<i>tum</i> ho<i>c</i> dabis +monade<i>m</i> note <i>con</i>ting<i>et</i>. <i>i.e.</i> eveniet tibi si +dimidiasti, <i>i.e.</i> accipisti u<i>e</i>l subtulisti medietatem +alicuius unius, in cuius principio sint figura nu<i>mer</i>u<i>m</i> +denotans i<i>m</i>pare<i>m</i> p<i>rim</i>o <i>i.e.</i> principiis.</p> + +<p class = "headnote"><span class = "headnote"> +The Craft of Mediation.</span></p> + +<h5>¶ Sequit<i>ur</i> de mediacione.</h5> + +<div class = "verse"> +<p><span class = "dropcap">I</span>ncipe sic, si vis alique<i>m</i> +nu<i>me</i>ru<i>m</i> mediar<i>e</i>:</p> +<p>Sc<i>ri</i>be figurar<i>um</i> seriem sola<i>m</i>, velut +an<i>te</i>.</p> +</div> + +<p><span class = "sidenote">The four things to be known in +mediation:</span> +¶ In þis Chapter is <a class = "gloss" name = "taght" id = "taght" +href = "#gloss_taght">taȝt</a> þe Craft of <a class = "terms" name = +"mediacioun" id = "mediacioun" href = +"#terms_mediacioun">mediaciouɳ</a>, in þe quych craft þ<i>o</i>u most +know 4 thynges. ffurst what is mediacioɳ. the secunde how mony rewes of +figur<i>es</i> þ<i>o</i>u most haue in þe wyrchyng<i>e</i> of þis craft. +þe thryde how mony diu<i>er</i>se cases may happ in þis craft.<a class = +"tag" name = "tag_craft8" id = "tag_craft8" href = "#note_craft8">8</a> +<span class = "sidenote">the first</span> +¶ As for þe furst, þ<i>o</i>u schalt vndurstonde þat mediacioɳ is a +<span class = "pagenum">17</span> +<a name = "page17" id = "page17"> </a> +takyng out of halfe a nomber out of a <a class = "gloss" name = "holle" +id = "holle" href = "#gloss_hole">holle</a> nomber, +<span class = "linenum">leaf 149 <i>a</i>.</span> +*as yf þ<i>o</i>u +<span class = "sidenote">the second;</span> +wolde take 3 out of 6. ¶ As for þe secunde, þ<i>o</i>u schalt know +þ<i>a</i>t þ<i>o</i>u most haue on<i>e</i> rewe of figures, & no +moo, as þ<i>o</i>u <a class = "gloss" name = "hayst" id = "hayst" href = +"#gloss_hayst">hayst</a> in þe +<span class = "sidenote">the third;</span> +craft of duplacioɳ. ¶ As for the thryd, þou most vnd<i>er</i>stonde +þat +<span class = "sidenote">the fourth.</span> +5 cases may happe in þis craft. ¶ As for þe fourte, þou +schall<i>e</i> know þat the p<i>ro</i>fet of þis craft is when +þ<i>o</i>u hast take away þe haluendel of a nomb<i>re</i> to telle qwat +þer<i>e</i> schall<i>e</i> leue. ¶ Incipe sic, &c. The sentence +of þis verse is þis. yf þ<i>o</i>u wold <a class = "terms" name = +"medye" id = "medye" href = "#terms_medye">medye</a>, þat is to say, +take halfe out of þe holle, or halfe out of halfe, þou most begynne +þ<i>us</i>. +<span class = "sidenote">Begin thus.</span> +Write on<i>e</i> rewe of figur<i>es</i> of what nombre þou wolte, as +þ<i>o</i>u dyddyst be-for<i>e</i> in þe Craft of duplacioɳ. +v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Postea p<i>ro</i>cedas medians, si p<i>ri</i>ma figura</p> +<p>Si par aut i<i>m</i>par videas.</p> +</div> + +<p>¶ Her<i>e</i> he says, when þ<i>o</i>u hast write a rewe of figures, +þ<i>o</i>u schalt +<span class = "sidenote">See if the number is even or odd.</span> +take hede wheþ<i>er</i> þe first figur<i>e</i> be eueɳ or odde in +nombre, & vnd<i>er</i>stonde þ<i>a</i>t he spekes of þe first figure +in þe ryȝt side. And i<i>n</i> the ryght side þ<i>o</i>u schall<i>e</i> +begynne in þis Craft.</p> + +<div class = "verse"> +<p class = "halfline"> +¶ Quia si fu<i>er</i>it par,</p> +<p>Dimidiab<i>is</i> eam, scribe<i>n</i>s quicq<i>ui</i>d remanebit:</p> +</div> + +<p><span class = "sidenote">If it is even, halve it, and write the +answer in its place.</span> +¶ Her<i>e</i> is the first case of þis craft, þe quych is þis, yf +þe first figur<i>e</i> be euen. þou schal take away fro þe figur<i>e</i> +euen halfe, & do away þat fig<i>ur</i>e and set þ<i>ere</i> þat +leues ou<i>er</i>, as þus, 4. take +<span class = "linenum">leaf 149 <i>b</i>.</span> +*halfe out of 4, & þan þ<i>ere</i> leues 2. do away 4 & sett +þ<i>ere</i> 2. þis is lyght y-nowȝt. v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +The Mediation of an Odd Number.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Impar si fu<i>er</i>it vnu<i>m</i> demas mediar<i>e</i></p> +<p>Quod no<i>n</i> p<i>re</i>sumas, s<i>ed</i> quod sup<i>er</i>est +mediabis</p> +<p>Inde sup<i>er</i> tractu<i>m</i> fac demptu<i>m</i> quod no<i>ta</i>t +vnu<i>m</i>.</p> +</div> + +<p><span class = "sidenote">If it is odd, halve the even number less +than it.</span> +Her<i>e</i> is þe secunde case of þis craft, the quych is þis. yf þe +first figur<i>e</i> betoken<i>e</i> a nombre þat is odde, the quych odde +schal not be <a class = "terms" name = "mediete" id = "mediete" href = +"#terms_medye">mediete</a>, þen þ<i>o</i>u schalt medye þat nombre þat +leues, when the odde of þe same nomb<i>re</i> is take away, & write +þat þ<i>a</i>t leues as þ<i>o</i>u diddest in þe first case of þis +craft. Whaɳ þ<i>o</i>u <a class = "gloss" name = "hayst2" id = "hayst2" +href = "#gloss_hayst">hayst</a> write þat. for þ<i>a</i>t þat leues, +<span class = "sidenote">Then write the sign for one-half over +it.</span> +write such a merke as is her<i>e</i> <sup>w</sup> vpon his hede, þe +quych merke schal betokeɳ halfe of þe odde þat was take away. +<span class = "sidenote">Here is an example.</span> +lo an Ensampull. 245. the first figur<i>e</i> her<i>e</i> is +betokenyng<i>e</i> odde nombre, þe quych is 5, for 5 is odde; +þ<i>er</i>e-for<i>e</i> do away þat þ<i>a</i>t is odde, þe quych is 1. +þen leues 4. þen medye 4 & þen leues 2. do away 4. & sette +þ<i>ere</i> 2, & make such a merke <sup>w</sup> upon his hede, þat +is to say ou<i>er</i> his hede of 2 as þus. 242.<sup>w</sup> And þen +worch forth in þe oþ<i>er</i> figures tyll þ<i>o</i>u come to þe ende. +by þe furst case as þ<i>o</i>u schalt +<span class = "pagenum">18</span> +<a name = "page18" id = "page18"> </a> +vnd<i>er</i>stonde þat +<span class = "sidenote">Put the mark only over the first figure.</span> +þ<i>o</i>u schalt +<span class = "linenum">leaf 150 <i>a</i>.</span> +*neu<i>er</i> make such a merk but ou<i>er</i> þe first fig<i>ur</i>e +hed in þe riȝt side. Wheþ<i>er</i> þe other fig<i>ur</i>es þat comyɳ +aft<i>er</i> hym be eueɳ or odde. v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +The Cases of the Craft of Mediation.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si monos, dele; sit t<i>ibi</i> cifra post no<i>ta</i> supra.</p> +</div> + +<p><span class = "sidenote">If the first figure is one put a +cipher.</span> +¶ Here is þe thryde case, þe quych yf the first figur<i>e</i> be a +figur<i>e</i> of 1. þ<i>o</i>u schalt do away þat 1 & set +þ<i>ere</i> a cifer, & a merke ou<i>er</i> þe cifer as þus, 241. do +away 1, & sett þ<i>ere</i> a cifer w<i>i</i>t<i>h</i> a merke +ou<i>er</i> his hede, & þen hast þ<i>o</i>u ydo for þat 0. as þus +0<sup>w</sup> þen worch forth in þe oþer fig<i>ur</i>ys till þ<i>o</i>u +come to þe ende, for it is lyght as dyche water. vn<i>de</i> +v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Postea p<i>ro</i>cedas hac condic<i>i</i>one secu<i>n</i>da:</p> +<p>Imp<i>ar</i> si fu<i>er</i>it hinc vnu<i>m</i> deme +p<i>ri</i>ori,</p> +<p>Inscribens quinque, nam denos significabit</p> +<p>Monos p<i>re</i>d<i>ict</i>am.</p> +</div> + +<p><span class = "sidenote">What to do if any other figure is +odd.</span> +¶ Her<i>e</i> he putt<i>es</i> þe fourte case, þe quych is þis. yf +it happeɳ the secunde figur<i>e</i> betoken odde nombre, þou schal do +away on of þat odde nombre, þe quych is significatiue by þ<i>a</i>t +figure 1. þe quych 1 schall be rekende for 10. Whan þ<i>o</i>u hast take +away þ<i>a</i>t 1 out of þe nombre þ<i>a</i>t is signifiede by þat +figur<i>e</i>, þ<i>o</i>u schalt medie þ<i>a</i>t þat leues ou<i>er</i>, +& do away þat figur<i>e</i> þat is medied, & sette in his +<a class = "gloss" name = "styde" id = "styde" href = +"#gloss_styde">styde</a> halfe of þ<i>a</i>t nombre. +<span class = "sidenote">Write a figure of five over the next lower +number’s head.</span> +¶ Whan þ<i>o</i>u hase so done, þ<i>o</i>u schalt write +<span class = "linenum">leaf 150 <i>b</i>.</span> +*a figure of 5 ou<i>er</i> þe next figur<i>es</i> hede by-for<i>e</i> +toward þe ryȝt side, for þat 1, þe quych made odd nombr<i>e</i>, schall +stonde for ten, & 5 is halfe of 10; so þ<i>o</i>u most write 5 for +his haluendell<i>e</i>. +<span class = "sidenote">Example.</span> +lo an Ensampull<i>e</i>, 4678. begyɳ in þe ryȝt side as þ<i>o</i>u most +nedes. medie 8. þen þ<i>o</i>u schalt leue 4. do away þat 8 & sette +þ<i>ere</i> 4. þen out of 7. take away 1. þe quych makes odde, & +sett 5. vpon þe next figur<i>es</i> hede afor<i>e</i> toward þe ryȝt +side, þe quych is now 4. but afor<i>e</i> it was 8. for þat 1 schal be +rekenet for 10, of þe quych 10, 5 is halfe, as þou knowest wel. Whan +þ<i>o</i>u hast þus ydo, medye þ<i>a</i>t þe quych leues aft<i>er</i> þe +takying<i>e</i> away of þat þat is odde, þe quych leuyng<i>e</i> +schall<i>e</i> be 3; +<span class = "float"> + <span class = "smaller">5</span><br /> +4634.</span> +do away 6 & sette þ<i>er</i>e 3, & þou schalt haue such a nombre +aft<i>er</i> go forth to þe next fig<i>ur</i>e, & medy þat, & +worch forth, for it is lyȝt <a class = "gloss" name = "ynovght" id = +"ynovght" href = "#gloss_ynowght">ynovȝt</a> to þe <a class = "gloss" +name = "certayn" id = "certayn" href = +"#gloss_certayn">c<i>er</i>tayɳ</a>.</p> + +<div class = "verse"> +<p class = "halfline"> +¶ Si v<i>er</i>o s<i>e</i>c<i>un</i>da dat vnu<i>m</i>.</p> +<p>Illa deleta, sc<i>ri</i>bat<i>ur</i> cifra; p<i>ri</i>ori</p> +<p class = "pilcrow"> +¶ Tradendo quinque pro denario mediato;</p> +<p>Nec cifra sc<i>ri</i>batur, nisi dei<i>n</i>de fig<i>ur</i>a +seq<i>u</i>at<i>ur</i>:</p> +<p>Postea p<i>ro</i>cedas reliq<i>ua</i>s mediando figuras</p> +<p>Vt sup<i>ra</i> docui, si sint tibi mille figure.</p> +</div> + +<p><span class = "pagenum">19</span> +<a name = "page19" id = "page19"> </a> +¶ Her<i>e</i> he putt<i>es</i> þe 5 case, þe quych is +<span class = "linenum">leaf 151 <i>a</i>.</span> +*þis: +<span class = "sidenote">If the second figure is one, put a cipher, and +write five over the next figure.</span> +yf þe secunde figur<i>e</i> be of 1, as þis is here 12, þou schalt do +away þat 1 & sett þ<i>ere</i> a cifer. & sett 5 ou<i>er</i> þe +next fig<i>ur</i>e hede afor<i>e</i> toward þe riȝt side, as þou diddyst +afor<i>e</i>; & þat 5 schal be <a class = "gloss" name = "haldel" id += "haldel" href = "#gloss_haluendel">haldel</a> of þat 1, þe quych 1 is +rekent for 10. lo an Ensampull<i>e</i>, 214. medye 4. þ<i>a</i>t +schall<i>e</i> be 2. do away 4 & sett þ<i>ere</i> 2. þe<i>n</i> go +forth to þe next figur<i>e</i>. þe quych is bot 1. do away þat 1. & +sett þ<i>ere</i> a cifer. & set 5 vpon þe figur<i>es</i> hed +afor<i>e</i>, þe quych is nowe 2, & þen þou schalt haue þis +no<i>m</i>b<i>re</i> +<span class = "float"> + <span class = "smaller">5</span><br /> +202,</span> +þen worch forth to þe <a class = "gloss" name = "nex" id = "nex" href = +"#gloss_nex">nex</a> fig<i>ur</i>e. And also it is no <a class = "gloss" +name = "maystery" id = "maystery" href = +"#gloss_maystery">mayst<i>er</i>y</a> yf þ<i>ere</i> come no +figur<i>e</i> after þat on is medyet, þ<i>o</i>u schalt write no 0. ne +nowȝt ellis, but set 5 ou<i>er</i> þe next fig<i>ur</i>e afor<i>e</i> +toward þe ryȝt, as þus 14. +<span class = "sidenote">How to halve fourteen.</span> +medie 4 then leues 2, do away 4 & sett þ<i>ere</i> 2. þen medie 1. +þe q<i>ui</i>ch is rekende for ten, þe halue<i>n</i>del þ<i>ere</i>-of +wel be 5. sett þ<i>a</i>t 5 vpon þe hede of þ<i>a</i>t figur<i>e</i>, þe +quych is now 2, +<span class = "float"> + <span class = "smaller">5</span><br /> +2,</span> +& do away þ<i>a</i>t 1, & þou schalt haue þis nombre yf +þ<i>o</i>u worch wel, vn<i>de</i> v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +How to prove the Mediation.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si mediacio sit b<i>e</i>n<i>e</i> f<i>ac</i>ta p<i>ro</i>bar<i>e</i> +valeb<i>is</i></p> +<p class = "pilcrow"> +¶ Duplando num<i>er</i>u<i>m</i> que<i>m</i> p<i>ri</i>mo +di<i>m</i>ediasti</p> +</div> + +<p><span class = "sidenote">How to prove your mediation.</span> +¶ Her<i>e</i> he telles þe how þou schalt know wheþ<i>er</i> þou hase +wel ydo or no. doubul +<span class = "linenum">leaf 151 <i>b</i>.</span> +*þe nombre þe quych þ<i>o</i>u hase mediet, and yf þ<i>o</i>u haue wel +y-medyt after þe dupleacioɳ, þou schalt haue þe same nombre þat +þ<i>o</i>u haddyst in þe tabull<i>e</i> or þ<i>o</i>u began to medye, as +þus. +<span class = "sidenote">First example.</span> +¶ The furst ensampull<i>e</i> was þis. 4. þe quych <a class = +"terms" name = "imediet" id = "imediet" href = +"#terms_imediet">I-mediet</a> was <a class = "gloss" name = "laft" id = +"laft" href = "#gloss_leue">laft</a> 2, þe whych 2 was write in þe +place þ<i>a</i>t 4 was write afor<i>e</i>. Now doubull<i>e</i> þat 2, +& þ<i>o</i>u schal haue 4, as þ<i>o</i>u hadyst afor<i>e</i>. +<span class = "sidenote">The second.</span> +þe secunde Ensampull<i>e</i> was þis, 245. When þ<i>o</i>u haddyst +mediet all<i>e</i> þis nomb<i>re</i>, yf þou haue wel ydo þou schalt +haue of þ<i>a</i>t mediacioɳ þis nombre, 122<sup>w</sup>. Now +doubull<i>e</i> þis nombre, & begyn in þe lyft side; doubull<i>e</i> +1, þat schal be 2. do away þat 1 & sett þ<i>ere</i> 2. þen +doubull<i>e</i> þ<i>a</i>t oþ<i>er</i> 2 & sett þ<i>ere</i> 4, þen +doubull<i>e</i> þat oþ<i>er</i> 2, & þat wel be 4. þe<i>n</i> doubul +þat merke þat stondes for halue on. & þat schall<i>e</i> be 1. Cast +þat on to 4, & it schall<i>e</i> be 5. do away þat 2 & þat +merke, & sette þ<i>ere</i> 5, & þen þ<i>o</i>u schal haue þis +nombre 245. & þis wos þe same nombur þ<i>a</i>t þ<i>o</i>u haddyst +or þ<i>o</i>u began to medye, as þ<i>o</i>u mayst se yf þou take hede. +<span class = "sidenote">The third example.</span> +The nombre þe quych þou haddist for an Ensampul in þe 3 case of +mediacioɳ to be mediet was þis 241. whan þ<i>o</i>u haddist medied +all<i>e</i> þis nombur truly +<span class = "linenum">leaf 152 <i>a</i>.</span> +*by eu<i>er</i>y figur<i>e</i>, þou schall haue be þ<i>a</i>t mediacioɳ +þis nombur 120<sup>w</sup>. Now dowbul þis nomb<i>ur</i>, & begyn in +þe lyft side, as I tolde þe in þe Craft of duplacioɳ. þus +doubull<i>e</i> þe fig<i>ur</i>e of 1, þat wel be 2. do +<span class = "pagenum">20</span> +<a name = "page20" id = "page20"> </a> +away þat 1 & sett þ<i>ere</i> 2, þen doubul þe next figur<i>e</i> +afore, the quych is 2, & þat wel be 4; do away 2 & set +þ<i>ere</i> 4. þen doubul þe cifer, & þat wel be noȝt, for a 0 is +noȝt. And twyes noȝt is but noȝt. þ<i>ere</i>for<i>e</i> doubul the +merke aboue þe cifers hede, þe quych betokenes þe halue<i>n</i>del of 1, +& þat schal be 1. do away þe cifer & þe merke, & sett +þ<i>ere</i> 1, & þen þ<i>o</i>u schalt haue þis nombur 241. And þis +same nombur þ<i>o</i>u haddyst afore or þ<i>o</i>u began to medy, +<a class = "gloss" name = "and_yf" id = "and_yf" href = "#gloss_and">& +yf</a> þ<i>o</i>u take gode hede. +<span class = "sidenote">The fourth example.</span> +¶ The next ensampul þat had in þe 4 case of mediacioɳ was þis 4678. +Whan þ<i>o</i>u hast truly <a class = "terms" name = "ymedit" id = +"ymedit" href = "#terms_medye">ymedit</a> all<i>e</i> þis nombur fro þe +begynnyng<i>e</i> to þe endyng<i>e</i>, þ<i>o</i>u schalt haue of þe +mediacioɳ þis nombur +<span class = "float"> + <span class = "smaller">5</span><br /> +2334.</span> +Now doubul this nombur & begyn in þe lyft side, & +doubull<i>e</i> 2 þat schal be 4. do away 2 and sette þere 4; þen +doubul<i>e</i> 3, þ<i>a</i>t wol be 6; do away 3 & sett þ<i>ere</i> +6, þen doubul þat oþ<i>er</i> 3, & þat wel be 6; do away 3 & set +þ<i>ere</i> +<span class = "linenum">leaf 152 <i>b</i>.</span> +*6, þen doubul þe 4, þat welle be 8; þen doubul 5. þe quych stondes +ou<i>er</i> þe hed of 4, & þat wol be 10; cast 10 to 8, & +þ<i>a</i>t schal be 18; do away 4 & þat 5, & sett þ<i>ere</i> 8, +& sett that 1, þe quych is an articul of þe Composit þe quych is 18, +ou<i>er</i> þe next figur<i>es</i> hed toward þe lyft side, þe quych is +6. drav þ<i>a</i>t 1 to 6, þe quych 1 in þe dravyng schal be rekente bot +for 1, & þ<i>a</i>t 1 & þ<i>a</i>t 6 togedur wel be 7. do away +þat 6 & þat 1. the quych stondes ou<i>er</i> his hede, & sett +ther 7, & þen þou schalt haue þis nombur 4678. And þis same nombur +þ<i>o</i>u hadyst or þ<i>o</i>u began to medye, as þ<i>o</i>u mayst see +in þe secunde Ensampul þat þou had in þe 4 case of mediacioɳ, þat was +þis: +<span class = "sidenote">The fifth example.</span> +when þ<i>o</i>u had mediet truly all<i>e</i> the nombur, +a p<i>ri</i>ncipio usque ad fine<i>m</i>. þ<i>o</i>u schalt haue of +þat mediacioɳ þis nombur +<span class = "float"> + <span class = "smaller">5</span><br /> +102.</span> +Now doubul 1. þat wel be 2. do away 1 & sett þ<i>ere</i> 2. þen +doubul 0. þ<i>a</i>t will be noȝt. þ<i>ere</i>for<i>e</i> take þe 5, þe +quych stondes ou<i>er</i> þe next figur<i>es</i> hed, & doubul it, +& þat wol be 10. do away þe 0 þat stondes betwene þe two +fig<i>u</i>r<i>i</i>s, & sette þ<i>ere</i> in his stid 1, for +þ<i>a</i>t 1 now schal stonde in þe secunde place, wher<i>e</i> he schal +betoken 10; þen doubul 2, þat wol be 4. do away 2 & sett þere 4. +& +<span class = "linenum">leaf 153 <i>a</i>.</span> +*þou schal haue <a class = "gloss" name = "thus" id = "thus" href = +"#gloss_thus">þus</a> nombur 214. þis is þe same nu<i>m</i>bur þat +þ<i>o</i>u hadyst or þ<i>o</i>u began to medye, as þ<i>o</i>u may see. +And so do eu<i>er</i> mor<i>e</i>, yf þ<i>o</i>u wil knowe wheþ<i>er</i> +þou hase wel ymedyt or no. ¶. doubull<i>e</i> þe nu<i>m</i>bur þat +comes aft<i>er</i> þe mediaciouɳ, & þ<i>o</i>u schal haue þe same +nombur þ<i>a</i>t þ<i>o</i>u hadyst or þ<i>o</i>u began to medye, yf +þ<i>o</i>u haue welle ydo. or els doute þe noȝt, but yf þ<i>o</i>u haue +þe same, þ<i>o</i>u hase faylide in þ<i>i</i> Craft.</p> + + +<p class = "headnote"><span class = "headnote"> +The Craft of Multiplication.</span></p> + +<h5>Sequitur de multiplicatione.</h5> + +<span class = "pagenum">21</span> +<a name = "page21" id = "page21"> </a> + +<p class = "headnote"><span class = "headnote"> +To write down a Multiplication Sum.</span></p> + +<div class = "verse"> +<p><span class = "dropcap">S</span> i tu p<i>er</i> +num<i>er</i>u<i>m</i> num<i>er</i>u<i>m</i> vis +m<i>u</i>ltiplicar<i>e</i></p> +<p>Scribe duas q<i>ua</i>scu<i>nque</i> velis series +nu<i>me</i>ror<i>um</i></p> +<p>Ordo s<i>er</i>vet<i>ur</i> vt vltima m<i>u</i>ltiplicandi</p> +<p>Ponat<i>ur</i> sup<i>er</i> ant<i>er</i>iorem +multiplicant<i>is</i></p> +<p>A leua reliq<i>u</i>e sint scripte m<i>u</i>ltiplicantes.</p> +</div> + +<p><span class = "sidenote">Four things to be known of +Multiplication:</span> +¶ Her<i>e</i> be-gynnes þe Chapt<i>r</i>e of m<i>u</i>ltiplicatioɳ, +in þe quych þou most know 4 thynges. ¶ Ffirst, qwat is +m<i>u</i>ltiplicacioɳ. The secunde, how mony cases may hap in +multiplicacioɳ. The thryde, how mony rewes of figur<i>es</i> þ<i>ere</i> +most be. ¶ The 4. what is þe p<i>ro</i>fet of þis craft. +<span class = "sidenote">the first:</span> +¶ As for þe first, þ<i>o</i>u schal vnd<i>er</i>stonde þat +m<i>u</i>ltiplicacioɳ is a bryngyng<i>e</i> to-ged<i>er</i> of 2 +thyng<i>es</i> in on nombur, þe quych on nombur <a class = "gloss" name += "contynes" id = "contynes" href = +"#gloss_contynes"><i>con</i>tynes</a> so mony tymes on, howe +<span class = "linenum">leaf 153 <i>b</i>.</span> +*mony tymes þ<i>ere</i> ben vnytees in þe nowmb<i>re</i> of þat 2, as +twyes 4 is 8. now her<i>e</i> ben þe 2 nomb<i>er</i>s, of þe quych too +nowmbr<i>e</i>s on is betokened be an adu<i>er</i>be, þe quych is þe +worde twyes, & þis worde thryes, & þis worde four<i>e</i> +<a class = "gloss" name = "sythes" id = "sythes" href = +"#gloss_sythes">sythes</a>,<a class = "tag" name = "tag_craft9" id = +"tag_craft9" href = "#note_craft9">9</a> +& so furth of such other lyke wordes. ¶ And tweyn nombres schal +be tokenyde be a nowne, as þis worde four<i>e</i> showys þes tweyɳ +nombres <a class = "gloss" name = "ybroth" id = "ybroth" href = +"#gloss_ybroth">y-broth</a> in-to on hole nombur, þat is 8, for twyes 4 +is 8, as þ<i>o</i>u wost wel. ¶ And þes nomb<i>re</i> 8 conteynes +as oft tymes 4 as þ<i>ere</i> ben vnites in þ<i>a</i>t other +nomb<i>re</i>, þe quych is 2, for in 2 ben 2 vnites, & so oft tymes +4 ben in 8, as þ<i>o</i>u wottys wel. +<span class = "sidenote">the second:</span> +¶ ffor þe secu<i>n</i>de, þ<i>o</i>u most know þat þ<i>o</i>u most +haue too rewes of figures. +<span class = "sidenote">the third:</span> +¶ As for þe thryde, þ<i>o</i>u most know þ<i>a</i>t 8 man<i>er</i> +of diu<i>er</i>se case may happe in þis craft. +<span class = "sidenote">the fourth.</span> +The p<i>ro</i>fet of þis Craft is to telle when a nomb<i>re</i> is +m<i>u</i>ltiplyed be a noþ<i>er</i>, qwat co<i>m</i>mys +þ<i>ere</i> of. ¶ fforthermor<i>e</i>, as to þe sentence of +our<i>e</i> verse, yf þ<i>o</i>u wel m<i>u</i>ltiply a nombur be +a-noþ<i>er</i> nomb<i>ur</i>, þou schalt write +<span class = "linenum">leaf 154 <i>a</i>.</span> +*a rewe of figures of what nomb<i>ur</i>s so eu<i>er</i> þ<i>o</i>u +welt, +<span class = "sidenote">The multiplicand.</span> +& þat schal be called Num<i>erus</i> m<i>u</i>ltiplicand<i>us</i>, +Anglice, þe nomb<i>ur</i> the quych to be m<i>u</i>ltiplied. þen +þ<i>o</i>u schalt write a-nother rewe of figur<i>e</i>s, by þe quych +þ<i>o</i>u schalt m<i>u</i>ltiplie the nombre þat is to be +m<i>u</i>ltiplied, of þe quych nomb<i>ur</i> þe furst fig<i>ur</i>e +schal be write vnd<i>er</i> þe last figur<i>e</i> of þe nomb<i>ur</i>, +þe quych is to be m<i>u</i>ltiplied. +<span class = "sidenote">How to set down the sum.</span> +And so write forthe toward þe lyft side, as her<i>e</i> you may se, +<span class = "float box"> + 67324<br /> +1234</span> +And þis on<i>e</i> nomb<i>ur</i> schall<i>e</i> be called nu<i>meru</i>s +m<i>u</i>ltiplicans. An<i>gli</i>ce, þe nomb<i>ur</i> +m<i>u</i>ltipliyng<i>e</i>, for he schall<i>e</i> m<i>u</i>ltiply þe +hyer nounb<i>ur</i>, as þus on<i>e</i> tyme 6. And so forth, as I schal +telle the aft<i>er</i>warde. And þou schal begyn in þe lyft side. +<span class = "sidenote">Two sorts of Multiplication: mentally,</span> +¶ ffor-þ<i>ere</i>-more þou schalt vndurstonde þat þ<i>ere</i> is +two man<i>ur</i>s of m<i>u</i>ltiplicacioɳ; one ys of þe +wyrchyng<i>e</i> of þe boke only in þe mynde of a mon. fyrst he +<span class = "pagenum">22</span> +<a name = "page22" id = "page22"> </a> +teches of þe fyrst man<i>er</i> of duplacioɳ, þe quych is be +wyrchyng<i>e</i> of tabuls. +<span class = "sidenote">and on paper.</span> +Aft<i>er</i>warde he wol teche on þe secunde man<i>er</i>. vn<i>de</i> +v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +To multiply one Digit by another.</span></p> + +<div class = "verse"> +<p>In digitu<i>m</i> cures digitu<i>m</i> si duc<i>er</i>e +ma<i>i</i>or</p> +<span class = "linenum">leaf 154 <i>b</i>.</span> +<p class = "pilcrow"> +* P<i>er</i> qua<i>n</i>tu<i>m</i> distat a denis respice debes</p> +<p class = "pilcrow"> +¶ Namq<i>ue</i> suo decuplo totiens deler<i>e</i> +mi<i>n</i>ore<i>m</i></p> +<p>Sitq<i>ue</i> tibi nu<i>meru</i>s veniens exinde patebit.</p> +</div> + +<p><span class = "sidenote">How to multiply two digits.</span> +¶ Her<i>e</i> he teches a rewle, how þ<i>o</i>u schalt fynde þe +nounb<i>r</i>e þat comes by þe m<i>u</i>ltiplicacioɳ of a digit be +anoþ<i>er</i>. loke how mony [vny]tes ben. bytwene þe mor<i>e</i> digit +and 10. And reken ten for on vnite. +<span class = "sidenote">Subtract the greater from ten;</span> +And so oft do away þe lasse nounbre out of his owne <a class = "terms" +name = "decuple" id = "decuple" href = "#terms_decuple">decuple</a>, þat +is to say, fro þat nounb<i>r</i>e þat is ten tymes so mych <ins class = +"correction" title = "error for ‘as’?">is</ins> þe nounb<i>re</i> +þ<i>a</i>t comes of þe m<i>u</i>ltiplicacioɳ. As yf þ<i>o</i>u wol +m<i>u</i>ltiply 2 be 4. loke how mony vnitees ben by-twene þe quych is +þe mor<i>e</i> nounb<i>re</i>, & be-twene ten. C<i>er</i>ten +þ<i>ere</i> wel be vj vnitees by-twene 4 & ten. yf þ<i>o</i>u reken +þ<i>ere</i> w<i>i</i>t<i>h</i> þe ten þe vnite, as þou may se. +<span class = "sidenote">take the less so many times from ten times +itself.</span> +so mony tymes take 2. out of his decuple, þe quych is 20. for 20 is þe +decuple of 2, 10 is þe decuple of 1, 30 is þe decuple of 3, 40 is þe +decuple of 4, And þe oþ<i>er</i> digetes til þ<i>o</i>u come to ten; +& whan þ<i>o</i>u +<span class = "sidenote">Example.</span> +hast y-take so mony tymes 2 out of twenty, þe quych is sex tymes, +þ<i>o</i>u schal leue 8 as þ<i>o</i>u wost wel, for 6 times 2 is twelue. +take [1]2 out of twenty, & þ<i>ere</i> schal leue 8. bot yf bothe þe +digett<i>es</i> +<span class = "linenum">leaf 155 <i>a</i>.</span> +*ben <a class = "gloss" name = "ylyech" id = "ylyech" href = +"#gloss_ylyech">y-lyech</a> mych as her<i>e</i>. 222 or too tymes +twenty, þen it is <a class = "gloss" name = "fors" id = "fors" href = +"#gloss_fors">no fors</a> quych of hem tweyn þ<i>o</i>u take out of here +decuple. <a class = "gloss" name = "als" id = "als" href = +"#gloss_als">als</a> mony +<span class = "sidenote">Better use this table, though.</span> +tymes as þ<i>a</i>t is fro 10. but neu<i>er</i>-þe-lesse, yf þ<i>o</i>u +haue <a class = "gloss" name = "hast" id = "hast" href = +"#gloss_hast">hast</a> to worch, þ<i>o</i>u schalt haue her<i>e</i> a +tabul of figures, wher<i>e</i>-by þ<i>o</i>u schalt se a-nonɳ ryght what +is þe nounbre þ<i>a</i>t comes of þe multiplicacioɳ of 2 digittes. þus +þ<i>o</i>u schalt worch in þis fig<i>ur</i>e.</p> + +<table class = "grid right" summary = "example"> +<tr> +<td class = "grid"> 1</td> +<td colspan = "9"></td> +</tr> +<tr> +<td class = "grid">2</td> +<td class = "grid">4</td> +<td colspan = "8"></td> +</tr> +<tr> +<td class = "grid">3</td> +<td class = "grid">6</td> +<td class = "grid">9</td> +<td colspan = "7"> </td> +</tr> +<tr> +<td class = "grid">4</td> +<td class = "grid">8</td> +<td class = "grid">12</td> +<td class = "grid">16</td> +<td colspan = "6"> </td> +</tr> +<tr> +<td class = "grid">5</td> +<td class = "grid">10</td> +<td class = "grid">15</td> +<td class = "grid">20</td> +<td class = "grid">25</td> +<td colspan = "5"> </td> +</tr> +<tr> +<td class = "grid">6</td> +<td class = "grid">12</td> +<td class = "grid">18</td> +<td class = "grid">24</td> +<td class = "grid">30</td> +<td class = "grid">36</td> +<td colspan = "4"> </td> +</tr> +<tr> +<td class = "grid">7</td> +<td class = "grid">14</td> +<td class = "grid">21</td> +<td class = "grid">28</td> +<td class = "grid">35</td> +<td class = "grid">42</td> +<td class = "grid">49</td> +<td colspan = "3"> </td> +</tr> +<tr> +<td class = "grid">8</td> +<td class = "grid">16</td> +<td class = "grid">24</td> +<td class = "grid">32</td> +<td class = "grid">40</td> +<td class = "grid">48</td> +<td class = "grid">56</td> +<td class = "grid">64</td> +<td colspan = "2"> </td> +</tr> +<tr> +<td class = "grid">9</td> +<td class = "grid">18</td> +<td class = "grid">27</td> +<td class = "grid">36</td> +<td class = "grid">45</td> +<td class = "grid">54</td> +<td class = "grid">63</td> +<td class = "grid">72</td> +<td class = "grid">81</td> +<td> </td> +</tr> +<tr> +<td class = "grid">1</td> +<td class = "grid">2</td> +<td class = "grid">3</td> +<td class = "grid">4</td> +<td class = "grid">5</td> +<td class = "grid">6</td> +<td class = "grid">7</td> +<td class = "grid">8</td> +<td class = "grid">9</td> +<td class = "grid"> </td> +</tr> +</table> + +<p><span class = "sidenote">How to use it.</span> +yf þe fig<i>ur</i>e, þe quych schall<i>e</i> be m<i>u</i>ltiplied, be +euen<i>e</i> as mych as þe diget be, þe quych þat oþ<i>er</i> +figur<i>e</i> schal be m<i>u</i>ltiplied, as two tymes twayɳ, or thre +tymes 3. or sych other. +<span class = "sidenote">The way to use the Multiplication table.</span> +loke qwer<i>e</i> þat fig<i>ur</i>e sittes in +<span class = "pagenum">23</span> +<a name = "page23" id = "page23"> </a> +þe lyft side of þe t<i>ri</i>angle, & loke qwer<i>e</i> þe diget +sittes in þe neþ<i>er</i> most rewe of þe triangle. & go fro hym +vpwarde in þe same rewe, þe quych rewe gose vpwarde til þ<i>o</i>u come +agaynes þe oþ<i>er</i> digette þat sittes in þe lyft side of þe +t<i>ri</i>angle. And þat nounbre, þe quych þou +<span class = "linenum">leaf 155 <i>b</i>.</span> +fyn*des þ<i>ere</i> is þe nounbre þat comes of the m<i>u</i>ltiplicacioɳ +of þe 2 digittes, as yf þou wold wete qwat is 2 tymes 2. loke +quer<i>e</i> sittes 2 in þe lyft side i<i>n</i> þe first rewe, he sittes +next 1 in þe lyft side al on hye, as þ<i>o</i>u may se; þe[<i>n</i>] +loke qwer<i>e</i> sittes 2 in þe lowyst rewe of þe t<i>ri</i>angle, +& go fro hym vpwarde in þe same rewe tyll<i>e</i> þou come <a class += "gloss" name = "aghenenes" id = "aghenenes" href = +"#gloss_aghenenes">a-ȝenenes</a> 2 in þe hyer place, & þer þou +schalt fynd ywrite 4, & þat is þe nounb<i>r</i>e þat comes of þe +multiplicacioɳ of two tymes tweyn is 4, as þow wotest well<i>e</i>. yf +þe diget. the quych is m<i>u</i>ltiplied, be mor<i>e</i> þan þe +oþ<i>er</i>, þou schalt loke qwer<i>e</i> þe mor<i>e</i> diget sittes in +þe lowest rewe of þe t<i>ri</i>angle, & go vpwarde in þe same rewe +tyl<a class = "tag" name = "tag_craft10" id = "tag_craft10" href = +"#note_craft10">10</a> +þ<i>o</i>u come <a class = "gloss" name = "anendes" id = "anendes" href += "#gloss_anendes">a-nendes</a> þe lasse diget in the lyft side. And +þ<i>ere</i> þ<i>o</i>u schalt fynde þe no<i>m</i>b<i>r</i>e þat comes of +þe m<i>u</i>ltiplicacioɳ; but þ<i>o</i>u schalt vnd<i>er</i>stonde þat +þis rewle, þe quych is in þis v<i>er</i>se. ¶ In digitu<i>m</i> +cures, &c., noþ<i>er</i> þis t<i>ri</i>angle schall<i>e</i> not +s<i>er</i>ue, bot to fynde þe nounbres þ<i>a</i>t comes of the +m<i>u</i>ltiplicacioɳ þat comes of 2 articuls or <i>com</i>posites, þe +nedes no craft but yf þou wolt m<i>u</i>ltiply in þi mynde. And +<span class = "linenum">leaf 156 <i>a</i>.</span> +*þere-to þou schalt haue a craft aft<i>er</i>warde, for þou schall wyrch +w<i>i</i>t<i>h</i> digettes in þe tables, as þou schalt know +aft<i>er</i>warde. v<i>er</i>sus.</p> + +<p class = "headnote"><span class = "headnote"> +To multiply one Composite by another.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Postea p<i>ro</i>cedas postrema<i>m</i> +m<i>u</i>ltiplica<i>n</i>do</p> +<p>[Recte multiplicans per cu<i>n</i>ctas i<i>n</i>feriores]</p> +<p>Condic<i>i</i>onem tamen t<i>a</i>li q<i>uod</i> +m<i>u</i>ltiplicant<i>es</i></p> +<p>Scribas in capite quicq<i>ui</i>d p<i>ro</i>cesserit inde</p> +<p>Sed postq<i>uam</i> fuit hec m<i>u</i>ltiplicate fig<i>ur</i>e</p> +<p>Anteriorent<i>ur</i> serei m<i>u</i>ltiplica<i>n</i>t<i>is</i></p> +<p>Et sic m<i>u</i>ltiplica velut isti m<i>u</i>ltiplicasti</p> +<p>Qui sequit<i>ur</i> nu<i>mer</i>u<i>m</i> sc<i>ri</i>ptu<i>m</i> +quiscu<i>n</i>q<i>ue</i> figur<i>is</i>.</p> +</div> + +<p><span class = "sidenote">How to multiply one number by +another.</span> +¶ Her<i>e</i> he teches how þ<i>o</i>u schalt wyrch in þis craft. +þou schalt m<i>ul</i>tiplye þe last figur<i>e</i> of þe nombre, and quen +þ<i>o</i>u hast so ydo þou schalt draw all<i>e</i> þe figures of þe +neþ<i>er</i> nounbre mor<i>e</i> <a class = "gloss" name = "taward" id = +"taward" href = "#gloss_taward">taward</a> þe ryȝt side, so qwe<i>n</i> +þ<i>o</i>u hast m<i>u</i>ltiplyed þe last figur<i>e</i> of þe heyer +nounbre by all<i>e</i> þe neþ<i>er</i> figures. +<span class = "sidenote">Multiply the ‘last’ figure of the higher by the +‘first’ of the lower number.</span> +And sette þe nounbir þat comes þer-of ou<i>er</i> þe last figur<i>e</i> +of þe neþ<i>er</i> nounb<i>re</i>, & þen þou schalt sette al þe +oþ<i>er</i> fig<i>ur</i>es of þe neþ<i>er</i> nounb<i>re</i> mor<i>e</i> +ner<i>e</i> to þe ryȝt side. ¶ And whan þou hast m<i>u</i>ltiplied +þat figur<i>e</i> þat schal be m<i>u</i>ltiplied þe next aft<i>er</i> +<span class = "pagenum">24</span> +<a name = "page24" id = "page24"> </a> +hym by al þe neþ<i>er</i> figures. And worch as þou dyddyst afor<i>e</i> +til +<span class = "linenum">leaf 156 <i>b</i>.</span> +*þou come to þe ende. And þou schalt vnd<i>er</i>stonde þat eu<i>er</i>y +figur<i>e</i> of þe hier nounb<i>re</i> schal be m<i>u</i>ltiplied be +all<i>e</i> þe figur<i>e</i>s of the neþ<i>er</i> nounbre, yf þe hier +nounb<i>re</i> be any figur<i>e</i> þen on<i>e</i>. +<span class = "sidenote">Set the answer over the first of the +lower:</span> +lo an Ensampul her<i>e</i> folowyng<i>e</i>. +<span class = "float box"> + 2465.<br /> +232</span> +þou schalt begyne to m<i>u</i>ltiplye in þe lyft side. M<i>u</i>ltiply 2 +be 2, and twyes 2 is 4. set 4 +<span class = "sidenote">then multiply the second of the lower, and so +on.</span> +ou<i>er</i> þe hed of þ<i>a</i>t 2, þen m<i>u</i>ltiplie þe same hier 2 +by 3 of þe nether nounbre, as thryes 2 þat schal be 6. set 6 ou<i>er</i> +þe hed of 3, þan m<i>u</i>ltiplie þe same hier 2 by þat 2 þe quych +stondes vnd<i>er</i> hym, þ<i>a</i>t wol be 4; do away þe hier 2 & +sette þ<i>ere</i> 4. +<span class = "sidenote">Then antery the lower number:</span> +¶ Now þ<i>o</i>u most <a class = "terms" name = "antery" id = +"antery" href = "#terms_antery">antery</a> þe nether nounbre, þat is to +say, þ<i>o</i>u most sett þe neþ<i>er</i> nounbre more towarde þe ryȝt +side, as þus. Take þe neþ<i>er</i> 2 toward þe ryȝt side, & sette it +eueɳ vnd<i>er</i> þe 4 of þe hyer nounb<i>r</i>e, & ant<i>er</i>y +all<i>e</i> þe figures þat comes aft<i>er</i> þat 2, as þus; sette 2 +vnd<i>er</i> þe 4. þen sett þe figur<i>e</i> of 3 þ<i>ere</i> þat þe +figure of 2 stode, þe quych is now vndur þ<i>a</i>t 4 in þe hier +nounbre; þen sett þe oþer figur<i>e</i> of 2, þe quych is þe last +fig<i>ur</i>e toward þe lyft side of þe neþ<i>er</i> nomb<i>er</i> +þ<i>ere</i> þe figur<i>e</i> of 3 stode. +<span class = "sidenote">as thus.</span> +þen þ<i>o</i>u schalt haue such a nombre. +<span class = "float box"> +464465<br /> + 232</span> +<span class = "linenum">leaf 157 <i>a</i>.</span> +* ¶ Now m<i>u</i>ltiply 4, þe quych comes next aft<i>er</i> 6, by þe +last 2 of þe neþ<i>er</i> nounbur toward þe lyft side. as 2 tymes 4, þat +wel be 8. sette þat 8 ou<i>er</i> þe figure the quych stondes +ou<i>er</i> þe hede of þat 2, þe quych is þe last figur<i>e</i> of þe +neþ<i>er</i> nounbre; þan multiplie þat same 4 by 3, þat comes in þe +neþ<i>er</i> rewe, þat wol be 12. sette þe digit of þe composyt +ou<i>er</i> þe figure þe quych stondes ou<i>er</i> þe hed of þat 3, +& sette þe articule of þis co<i>m</i>posit ou<i>er</i> al þe figures +þat stondes ou<i>er</i> þe neþ<i>er</i> 2 hede. +<span class = "sidenote">Now multiply by the last but one of the +higher:</span> +þen m<i>u</i>ltiplie þe same 4 by þe 2 in þe ryȝt side in þe +neþ<i>er</i> nounbur, þat wol be 8. do away 4. & sette þ<i>ere</i> +8. Eu<i>er</i> mor<i>e</i> qwen þ<i>o</i>u m<i>u</i>ltiplies þe hier +figur<i>e</i> by þat figur<i>e</i> þe quych stondes vnd<i>er</i> hym, +þou schalt do away þat hier figur<i>e</i>, & sett þer þat nounbre þe +quych comes of m<i>u</i>ltiplicacioɳ of ylke digittes. +<span class = "sidenote">as thus.</span> +Whan þou hast done as I haue byde þe, þ<i>o</i>u schalt haue suych an +ord<i>er</i> of figur<i>e</i> as is her<i>e</i>, +<span class = "float box"> + <span class = "smaller">1</span><br /> + <span class = "smaller">82</span><br /> +4648[65]<br /> + 232.</span> +þen take and ant<i>er</i>y þi neþ<i>er</i> figures. And sett þe fyrst +fig<i>ur</i>e of þe neþ<i>er</i> figures<a class = "tag" name = +"tag_craft11" id = "tag_craft11" href = "#note_craft11">11</a> +vndre be figur<i>e</i> of 6. ¶ And draw al þe oþ<i>er</i> figures +of þe same rewe to hym-warde, +<span class = "linenum">leaf 157 <i>b</i>.</span> +*as þ<i>o</i>u diddyst afore. þen m<i>u</i>ltiplye 6 be 2, & sett +þat þe quych comes ou<i>er</i> þ<i>ere</i>-of ou<i>er</i> al þe +oþ<i>er</i> figures hedes þat stondes ou<i>er</i> þat 2. þen +m<i>u</i>ltiply 6 be 3, & sett all<i>e</i> þat comes þ<i>ere</i>-of +vpon all<i>e</i> þe figur<i>e</i>s hedes þat standes ou<i>er</i> þat 3; +þa<i>n</i> m<i>u</i>ltiplye 6 be 2, þe quych +<span class = "pagenum">25</span> +<a name = "page25" id = "page25"> </a> +stondes vnd<i>er</i> þat 6, þen do away 6 & write þ<i>ere</i> þe +digitt of þe composit þat schal come þ<i>ere</i>of, & sette þe +articull ou<i>er</i> all<i>e</i> þe figures þat stondes ou<i>er</i> þe +hede of þat 3 as her<i>e</i>, +<span class = "float box"> + 11<br /> + 121<br /> + 828<br /> +464825<br /> + 232</span> +<span class = "sidenote">Antery the figures again, and multiply by +five:</span> +þen ant<i>er</i>y þi figures as þou diddyst afor<i>e</i>, and +m<i>u</i>ltipli 5 be 2, þat wol be 10; sett þe 0 ou<i>er</i> all þe +figures þ<i>a</i>t stonden ou<i>er</i> þat 2, & sett þ<i>a</i>t 1. +ou<i>er</i> the next figures hedes, all<i>e</i> on hye towarde þe lyft +side. þen m<i>u</i>ltiplye 5 be 3. þat wol be 15, write 5 ou<i>er</i> þe +figures hedes þat stonden ou<i>er</i> þ<i>a</i>t 3, & sett þat 1 +ou<i>er</i> þe next figur<i>e</i>s hedes toward þe lyft side. þen +m<i>u</i>ltiplye 5 be 2, þat wol be 10. do away þat 5 & sett +þ<i>ere</i> a 0, & sett þat 1 ou<i>er</i> þe figures hedes þat +stonden ou<i>er</i> 3. And þen +<span class = "linenum">leaf 158 <i>a</i>.</span> +þou schalt haue such a nounbre as here stondes aftur.* +<span class = "float box"> + 11<br /> + 1101<br /> + 1215<br /> + 82820<br /> +4648<br /> + 232</span> +¶ Now draw all<i>e</i> þese figures downe toged<i>er</i> as þus, 6.8.1. +& 1 draw to-gedur; þat wolle be 16, do away all<i>e</i> þese figures +saue 6. lat hym stonde, for <a class = "gloss" name = "thow" id = "thow" +href = "#gloss_thow">þow</a> þ<i>o</i>u take hym away þou most write þer +þe same aȝene. þ<i>ere</i>for<i>e</i> late hym stonde, & sett 1 +ou<i>er</i> þe figur<i>e</i> hede of 4 toward þe lyft side; þen draw on +to 4, þat woll<i>e</i> be 5. +<span class = "sidenote">Then add all the figures above the line:</span> +do away þat 4 & þat 1, & sette þ<i>ere</i> 5. þen draw 4221 +& 1 toged<i>ur</i>, þat wol be 10. do away all<i>e</i> þat, & +write þere þat 4 & þat 0, & sett þat 1 ou<i>er</i> þe next +figur<i>es</i> hede toward þe lyft side, þe quych is 6. þen draw þat 6 +& þat 1 togedur, & þat wolle be 7; do away 6 & sett +þ<i>ere</i> 7, þen draw 8810 & 1, & þat wel be 18; do away +all<i>e</i> þe figures þ<i>a</i>t stondes ou<i>er</i> þe hede of þat 8, +& lette 8 stonde stil, & write þat 1 ou<i>er</i> þe next +fig<i>u</i>r<i>is</i> hede, þe quych is a 0. þen do away þat 0, & +sett þ<i>ere</i> 1, þe quych stondes ou<i>er</i> þe 0. hede. þen draw 2, +5, & 1 toged<i>ur</i>, þat woll<i>e</i> be 8. þen do away +all<i>e</i> þat, & write þ<i>ere</i> 8. +<span class = "sidenote">and you will have the answer.</span> +¶ And þen þou schalt haue þis nounbre, 571880.</p> + +<p class = "headnote"><span class = "headnote"> +The Cases of this Craft.</span></p> + +<span class = "linenum">leaf 158 <i>b</i>.</span> +<div class = "verse"> +<p class = "pilcrow plus"> +* ¶ S<i>ed</i> cu<i>m</i> m<i>u</i>ltiplicabis, p<i>ri</i>mo sic +e<i>st</i> op<i>er</i>andu<i>m</i>,</p> +<p>Si dabit articulu<i>m</i> tibi m<i>u</i>ltiplicacio solu<i>m</i>;</p> +<p>P<i>ro</i>posita cifra su<i>m</i>ma<i>m</i> t<i>ra</i>nsferre +meme<i>n</i>to.</p> +</div> + +<p><span class = "sidenote">What to do if the first multiplication +results in an article.</span> +¶ Her<i>e</i> he puttes þe fyrst case of þis craft, þe quych is +þis: yf þ<i>ere</i> come an articulle of þe m<i>u</i>ltiplicacioɳ ysette +befor<i>e</i> the articull<i>e</i> in þe lyft side as þus +<span class = "float box"> + 51<br /> +23.</span> +multiplye 5 by 2, þat wol be 10; sette ou<i>er</i> þe hede of þat 2 a 0, +& sett þat on, þat is þe articul, in þe lyft side, þat is next hym, +þen þ<i>o</i>u schalt haue þis nounbre +<span class = "float box"> +1051.<br /> + 23</span> +¶ And þen worch forth as þou diddist afore. And þ<i>o</i>u schalt +vnd<i>er</i>stonde þat þ<i>o</i>u schalt write no 0. but whan þat place +where þou schal write þat 0 has no figure afore hy<i>m</i> noþ<i>er</i> +aft<i>er</i>. v<i>er</i>sus.</p> + +<span class = "pagenum">26</span> +<a name = "page26" id = "page26"> </a> +<div class = "verse"> +<p class = "pilcrow"> +¶ Si aut<i>em</i> digitus excreu<i>er</i>it +articul<i>us</i>q<i>ue</i>.</p> +<p>Articul<i>us</i><a class = "tag" name = "tag_craft12" id = +"tag_craft12" href = "#note_craft12">12</a> +sup<i>ra</i>p<i>osit</i>o digito salit vltra.</p> +</div> + +<p><span class = "sidenote">What to do if the result is a composite +number.</span> +¶ Her<i>e</i> is þe secunde case, þe quych is þis: yf hit happe þat +þ<i>ere</i> come a composyt, þou schalt write þe digitte ou<i>er</i> þe +hede of þe neþ<i>er</i> figur<i>e</i> by þe quych þ<i>o</i>u multipliest +þe hier figure; and sett þe articull<i>e</i> next hym toward þe lyft +side, as þou diddyst afore, as þ<i>us</i> +<span class = "float box"> + 83.<br /> +83</span> +Multiply 8 by 8, þat wol be 64. Write þe 4 ou<i>er</i> 8, þat is to say, +ou<i>er</i> þe hede of þe neþ<i>er</i> 8; & set 6, þe quych +<span class = "linenum">leaf 159 <i>a</i>.</span> +*is an articul, next aft<i>er</i>. +And þen þou schalt haue such a nounb<i>r</i>e as is her<i>e</i>, +<span class = "float box"> +6483<a class = "tag" name = "tag_craft13" id = "tag_craft13" href = +"#note_craft13">13</a>,<br /> + 83</span> +And þen worch forth.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si digitus t<i>amen</i> ponas ip<i>su</i>m sup<i>er</i> +ip<i>s</i>am.</p> +</div> + +<p><span class = "sidenote">What if it be a digit.</span> +¶ Her<i>e</i> is þe thryde case, þe quych is þis: yf hit happe þat of þi +m<i>u</i>ltiplicaciouɳ come a digit, þ<i>o</i>u schalt write þe digit +ou<i>er</i> þe hede of þe neþ<i>er</i> figur<i>e</i>, by the quych þou +m<i>u</i>ltipliest þe hier<i>e</i> figur<i>e</i>, for þis nedes no +Ensampul.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Subdita m<i>u</i>ltiplica non hanc que [incidit] illi</p> +<p>Delet ea<i>m</i> penit<i>us</i> scribens quod p<i>ro</i>uenit +inde.</p> +</div> + +<p><span class = "sidenote">The fourth case of the craft.</span> +¶ Her<i>e</i> is þe 4 case, þe quych is: yf hit be happe þat þe +neþ<i>er</i> figur<i>e</i> schal multiplye þat figur<i>e</i>, þe quych +stondes ou<i>er</i> þat figures hede, þou schal do away þe hier +figur<i>e</i> & sett þ<i>er</i>e þat þ<i>a</i>t comys of þ<i>a</i>t +m<i>u</i>ltiplicacioɳ. As yf þ<i>er</i>e come of þat +m<i>u</i>ltiplicacioɳ an articuls þou schalt write þere þe hier +figur<i>e</i> stode a 0. ¶ And write þe articuls in þe lyft side, +yf þat hit be a digit write þ<i>er</i>e a digit. yf þat h<i>i</i>t be a +composit, write þe digit of þe composit. And þe articul in þe lyft side. +al þis is lyȝt y-nowȝt, þ<i>er</i>e-for<i>e</i> þer nedes no +Ensampul.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ S<i>ed</i> si m<i>u</i>ltiplicat alia<i>m</i> ponas sup<i>er</i> +ip<i>s</i>am</p> +<p>Adiu<i>n</i>ges num<i>er</i>u<i>m</i> que<i>m</i> p<i>re</i>bet +duct<i>us</i> ear<i>um</i>.</p> +</div> + +<span class = "linenum">leaf 159 <i>b</i>.</span> + +<p><span class = "sidenote">The fifth case of the craft.</span> +¶ Her<i>e</i> is þe 5 case, þe quych is þis: yf *þe neþ<i>er</i> +figur<i>e</i> schul m<i>u</i>ltiplie þe hier, and þat hier figur<i>e</i> +is not <a class = "gloss" name = "recte1" id = "recte1" href = +"#gloss_recte">recte</a> ou<i>er</i> his hede. And þat neþ<i>er</i> +figur<i>e</i> hase oþ<i>er</i> figures, or on figure ou<i>er</i> his +hede by m<i>u</i>ltiplicacioɳ, þat hase be afor<i>e</i>, þou schalt +write þat nounbre, þe quych comes of þat, ou<i>er</i> all<i>e</i> þe +ylke figures hedes, as þus here: +<span class = "float box"> + 236<br /> +234</span> +Multiply 2 by 2, þat wol be 4; set 4 ou<i>er</i> þe hede of þat 2. þen<a +class = "tag" name = "tag_craft14" id = "tag_craft14" href = +"#note_craft14">14</a> +m<i>u</i>ltiplies þe hier 2 by þe neþ<i>er</i> 3, þat wol be 6. set +ou<i>er</i> his hede 6, multiplie þe hier 2 by þe neþ<i>er</i> 4, þat +wol be 8. do away þe hier 2, þe quych stondes ou<i>er</i> þe hede of þe +figur<i>e</i> of 4, +<span class = "pagenum">27</span> +<a name = "page27" id = "page27"> </a> +and set þ<i>er</i>e 8. And þou schalt haue þis nounb<i>re</i> here +<span class = "float box"> +46836<br /> +234</span> +And antery þi figur<i>e</i>s, þat is to say, set þi neþ<i>er</i> 4 +vnd<i>er</i> þe hier 3, and set þi 2 other figures ner<i>e</i> hym, so +þat þe neþ<i>er</i> 2 stonde vnd<i>ur</i> þe hier 6, þe quych 6 stondes +in þe lyft side. And þat 3 þat stondes vndur 8, as þus aftur ȝe +may se, +<span class = "float box"> +46836<br /> + 234</span> +Now worch forthermor<i>e</i>, And m<i>u</i>ltiplye þat hier 3 by 2, þat +wol be 6, set þ<i>a</i>t 6 þe quych stondes ou<i>er</i> þe hede of þat +2, And þen worch as I taȝt þe afore.</p> + +<span class = "linenum">leaf 160 <i>a</i>.</span> +<div class = "verse"> +<p class = "pilcrow plus"> +* ¶ Si sup<i>ra</i>posita cifra debet m<i>u</i>ltiplicar<i>e</i></p> +<p>Prorsus ea<i>m</i> deles & ibi scribi cifra debet.</p> +</div> + +<p><span class = "sidenote">The sixth case of the craft.</span> +¶ Her<i>e</i> is þe 6 case, þe quych is þis: yf hit happe þat þe +figur<i>e</i> by þe quych þou schal m<i>u</i>ltiplye þe hier +figur<i>e</i>, þe quych stondes ryght ou<i>er</i> hym by a 0, þou schalt +do away þat figur<i>e</i>, þe quych ou<i>er</i> þat cifre hede. +¶ And write þ<i>ere</i> þat nounbre þat comes of þe +m<i>u</i>ltiplicacioɳ as þus, 23. do away 2 and sett þ<i>er</i>e a 0. +vn<i>de</i> v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si cifra m<i>u</i>ltiplicat alia<i>m</i> posita<i>m</i> sup<i>er</i> +ip<i>s</i>am</p> +<p>Sitq<i>ue</i> locus sup<i>ra</i> vacu<i>us</i> sup<i>er</i> hanc +cifra<i>m</i> fiet.</p> +</div> + +<p><span class = "sidenote">The seventh case of the craft.</span> +¶ Her<i>e</i> is þe 7 case, þe quych is þis: yf a 0 schal +m<i>u</i>ltiply a figur<i>e</i>, þe quych stondes not <a class = "gloss" +name = "recte" id = "recte" href = "#gloss_recte">recte</a> ou<i>er</i> +hym, And ou<i>er</i> þat 0 stonde no thyng, þou schalt write ou<i>er</i> +þat 0 anoþ<i>er</i> 0 as þus: +<span class = "float box"> + 24<br /> +03</span> +multiplye 2 be a 0, it wol be nothyng<i>e</i>. write þere a 0 +ou<i>er</i> þe hede of þe neþ<i>er</i> 0, And þen worch forth til þou +come to þe ende.</p> + + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si sup<i>ra</i><a class = "tag" name = "tag_craft15" id = +"tag_craft15" href = "#note_craft15">15</a> fuerit cifra sem<i>per</i> +e<i>st</i> p<i>re</i>t<i>er</i>eunda.</p> +</div> + +<p><span class = "sidenote">The eighth case of the craft.</span> +¶ Her<i>e</i> is þe 8 case, þe quych is þis: yf þ<i>ere</i> be a 0 +or mony cifers in þe hier rewe, þ<i>o</i>u schalt not m<i>u</i>ltiplie +hem, bot let hem stonde. And antery þe figures beneþe to þe next +figur<i>e</i> sygnificatyf as þus: +<span class = "float box"> +00032.<br /> +22</span> +Ou<i>er</i>-lepe all<i>e</i> þese cifers & sett þat +<span class = "linenum">leaf 160 <i>b</i>.</span> +*neþ<i>er</i> 2 þat stondes toward þe ryght side, and sett hym +vnd<i>ur</i> þe 3, and sett þe oþ<i>er</i> nether 2 nere hym, so þat he +stonde vnd<i>ur</i> þe thrydde 0, þe quych stondes next 3. And þan +worch. vnd<i>e</i> v<i>er</i>sus.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si dubites, an sit b<i>e</i>n<i>e</i> m<i>u</i>ltiplicac<i>i</i>o +facta,</p> +<p>Diuide totalem nu<i>mer</i>u<i>m</i> p<i>er</i> +multiplicante<i>m</i>.</p> +</div> + +<p><span class = "sidenote">How to prove the multiplication.</span> +¶ Her<i>e</i> he teches how þou schalt know wheþ<i>er</i> þou hase +wel I-do or no. And he says þat þou schalt deuide all<i>e</i> þe +nounb<i>r</i>e þat comes of þe m<i>u</i>ltiplicacioɳ by þe neþ<i>er</i> +figures. And þen þou schalt haue þe same nounbur þat þ<i>o</i>u hadyst +in þe begynnyng<i>e</i>. but ȝet þou hast not þe craft of dyuisioɳ, but +þ<i>o</i>u schalt haue hit aft<i>er</i>warde.</p> + +<span class = "pagenum">28</span> +<a name = "page28" id = "page28"> </a> +<div class = "verse"> +<p class = "pilcrow"> +¶ P<i>er</i> num<i>er</i>u<i>m</i> si vis nu<i>mer</i>u<i>m</i> +q<i>u</i>oq<i>ue</i> m<i>u</i>ltiplicar<i>e</i></p> +<p class = "pilcrow"> +¶ T<i>antu</i>m p<i>er</i> normas subtiles absq<i>ue</i> figuris</p> +<p>Has normas pot<i>er</i>is p<i>er</i> v<i>er</i>sus scir<i>e</i> +sequentes.</p> +</div> + +<p><span class = "sidenote">Mental multiplication.</span> +¶ Her<i>e</i> he teches þe to m<i>u</i>ltiplie <a class = "gloss" name = +"thowght" id = "thowght" href = "#gloss_thowght">be þowȝt</a> figures in +þi mynde. And þe sentence of þis v<i>er</i>se is þis: yf þo<i>u</i> wel +m<i>u</i>ltiplie on nounbre by anoþ<i>er</i> in þi mynde, þ<i>o</i>u +schal haue þ<i>er</i>eto rewles in þe v<i>er</i>ses þat schal come +aft<i>er</i>.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Si tu p<i>er</i> digitu<i>m</i> digitu<i>m</i> vis +m<i>u</i>ltiplicar<i>e</i></p> +<p>Re<i>gula</i> p<i>re</i>cedens dat qualit<i>er</i> est +op<i>er</i>andu<i>m</i>.</p> +</div> + +<p><span class = "sidenote">Digit by digit is easy.</span> +¶ Her<i>e</i> he teches a rewle as þou hast afor<i>e</i> to +m<i>u</i>ltiplie a digit be anoþ<i>er</i>, as yf þou wolde wete qwat is +sex tymes 6. þou +<span class = "linenum">leaf 161 <i>a</i>.</span> +*schalt wete by þe rewle þat I taȝt þe befor<i>e</i>, yf þou haue mynde +þ<i>er</i>of.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Articulu<i>m</i> si p<i>er</i> reliquu<i>m</i> reliquu<i>m</i> vis +m<i>u</i>lti<i>plica</i>r<i>e</i></p> +<p>In p<i>ro</i>p<i>r</i>iu<i>m</i> digitu<i>m</i> debet +vt<i>er</i>q<i>ue</i> resolui.</p> +<p class = "pilcrow"> +¶ Articul<i>us</i> digitos post se m<i>u</i>ltiplicantes</p> +<p>Ex digit<i>us</i> quociens retenerit +m<i>u</i>ltipli<i>ca</i>r<i>i</i></p> +<p>Articuli faciu<i>n</i>t tot centu<i>m</i> m<i>u</i>ltiplicati.</p> +</div> + +<p><span class = "sidenote">The first case of the craft.</span> +¶ Her<i>e</i> he teches þe furst rewle, þe quych is þis: yf þou wel +m<i>u</i>ltiplie an articul be anoþ<i>er</i>, so þat both þe articuls +bene w<i>i</i>t<i>h</i>-Inne an hundreth, þus þ<i>o</i>u schalt do. +<span class = "sidenote">Article by article;</span> +take þe digit of bothe the articuls, for eu<i>er</i>y articul hase a +digit, þen m<i>u</i>ltiplye þat on digit by þat oþ<i>er</i>, and loke +how mony vnytes ben in þe nounbre þat comes of þe m<i>u</i>ltiplicacioɳ +of þe 2 digittes, & so mony hundrythes ben in þe nounb<i>re</i> þat +schal come of þe m<i>u</i>ltiplicacioɳ of þe ylke 2 articuls as þus. +<span class = "sidenote">an example:</span> +yf þ<i>o</i>u wold wete qwat is ten tymes ten. take þe digit of ten, þe +quych is 1; take þe digit of þat oþ<i>er</i> ten, þe quych is on. +¶ Also m<i>u</i>ltiplie 1 be 1, as on tyme on þat is but 1. In on +is but on vnite as þou wost welle, þ<i>er</i>efor<i>e</i> ten tymes ten +is but a hundryth. +<span class = "sidenote">another example:</span> +¶ Also yf þou wold wete what is twenty tymes 30. take þe digit of +twenty, þat is 2; & take þe digitt of thrytty, þat is 3. +m<i>u</i>ltiplie 3 be 2, þat is 6. Now in 6 ben 6 vnites, ¶ And so +mony hundrythes ben in 20 tymes 30*, +<span class = "linenum">leaf 161 <i>b</i>.</span> +þ<i>ere</i>for<i>e</i> 20 tymes 30 is 6 hundryth eueɳ. loke & se. +¶ But yf it be so þat on<i>e</i> articul be w<i>i</i>t<i>h</i>-Inne +an hundryth, <a class = "gloss" name = "or2" id = "or2" href = +"#gloss_or2">or</a> by-twene an hundryth and a thowsande, so þat it be +not a þowsande fully. þen loke how mony vnytes ben in þe nounbur þat +comys of þe m<i>u</i>ltiplicacioɳ <a class = "tag" name = "tag_craft16" +id = "tag_craft16" href = "#note_craft16">16</a>And so mony tymes<a +class = "tag" href = "#note_craft16">16</a> of 2 digitt<i>es</i> of ylke +articuls, so mony thowsant ben in þe nounbre, the qwych comes of þe +m<i>u</i>ltiplicacioɳ. And so mony tymes ten thowsand schal be in þe +nounbre þat comes of þe m<i>u</i>ltiplicacion of +<span class = "pagenum">29</span> +<a name = "page29" id = "page29"> </a> +2 articuls, as yf þ<i>o</i>u wold wete qwat is 4 hundryth tymes [two +hundryth]. Multiply 4 be 2,<a class = "tag" name = "tag_craft17" id = +"tag_craft17" href = "#note_craft17">17</a> +þat wol be 8. in 8 ben 8 vnites. +<span class = "headnote float"> +How to work subtly without Figures.</span> +<span class = "sidenote">Mental multiplication.</span> +¶ And so mony tymes ten thousand be in 4 hundryth tymes [2]<a class = +"tag" href = "#note_craft17">17</a> hundryth, þ<i>a</i>t is 80 thousand. +Take hede, I schall telle þe a +<span class = "sidenote">Another example.</span> +gen<i>e</i>rall<i>e</i> rewle whan þ<i>o</i>u hast 2 articuls, And þou +wold wete qwat comes of þe m<i>u</i>ltiplicacioɳ of hem 2. +m<i>u</i>ltiplie þe digit of þ<i>a</i>t on <a class = "terms" name = +"articuls2" id = "articuls2" href = "#terms_article">articuls</a>, and +kepe þat nounbre, þen loke how mony cifers schuld go befor<i>e</i> þat +on articuls, <a class = "gloss" name = "and" id = "and" href = +"#gloss_and">and</a> he wer<i>e</i> <a class = "gloss" name = "write" id += "write" href = "#gloss_write">write</a>. Als mony cifers schuld go +befor<i>e</i> þat other, & he wer<i>e</i> write of cifers. And haue +all<i>e</i> þe ylke cifers toged<i>ur</i> in þi mynde, +<span class = "linenum">leaf 162 <i>a</i>.</span> +*<a class = "gloss" name = "arowe" id = "arowe" href = +"#gloss_arowe">a-rowe</a> <a class = "gloss" name = "ychon" id = "ychon" +href = "#gloss_ychon">ychoɳ</a> aftur other, and in þe last plase set þe +nounbre þat comes of þe m<i>u</i>ltiplicacioɳ of þe 2 digittes. And loke +in þi mynde in what place he stondes, <a class = "gloss" name = "where" +id = "where" href = "#gloss_where">wher<i>e</i></a> in þe secunde, or in +þe thryd, or in þe 4, or wher<i>e</i> ellis, and loke qwat þe figures +by-token in þat place; & so mych is þe nounbre þat +<span class = "sidenote">Another example.</span> +comes of þe 2 articuls y-m<i>u</i>ltiplied to-ged<i>ur</i> as þus: yf +þ<i>o</i>u wold wete what is 20 thousant tymes 3 þowsande. +m<i>u</i>ltiply þe digit of þat articull<i>e</i> þe quych is 2 by þe +digitte of þat oþ<i>er</i> articul þe quych is 3, þat wol be 6. þen loke +how mony cifers schal go to 20 thousant as hit schuld be write in a +tabul. c<i>er</i>tainly 4 cifers schuld go to 20 þowsant. ffor þis +figure 2 in þe fyrst place betokenes twene. +<span class = "sidenote">Notation.</span> +¶ In þe secunde place hit betokenes twenty. ¶ In þe 3. place +hit betokenes 2 hundryth. .¶. In þe 4 place 2 thousant. ¶ In þe 5 +place h<i>i</i>t betokenes twenty þousant. þ<i>ere</i>for<i>e</i> he +most haue 4 cifers a-for<i>e</i> hym þat he may sto<i>n</i>de in þe 5 +place. kepe þese 4 cifers in thy mynde, þen loke how mony cifers goɳ to +3 thousant. Certayn to 3 thousante +<span class = "linenum">leaf 162 <i>b</i>.</span> +*goɳ 3 cifers afor<i>e</i>. Now cast ylke 4 cifers þat schuld go to +twenty thousant, And thes 3 cifers þat schuld go afor<i>e</i> 3 +thousant, & sette hem in rewe ychoɳ aft<i>er</i> oþ<i>er</i> in þi +mynde, as þai schuld stonde in a tabull<i>e</i>. And þen schal þou haue +7 cifers; þen sett þat 6 þe quych comes of þe m<i>u</i>ltiplicacioɳ of +þe 2 digitt<i>es</i> aft<i>u</i>r þe ylke cifers in þe 8 place as yf þat +hit stode in a tabul. And loke qwat a figur<i>e</i> of 6 schuld betoken +in þe 8 place. yf hit wer<i>e</i> in a tabul & so mych it is. & +yf þat figure of 6 stonde in þe fyrst place he schuld betoken but 6. +¶ In þe 2 place he schuld betoken sexty. ¶ In the 3 place he +schuld betokeɳ sex hundryth. +<span class = "sidenote">Notation again.</span> +¶ In þe 4 place sex thousant. ¶ In þe 5 place sexty þowsant. +¶ In þe sext place sex hundryth þowsant. ¶ In þe 7 place sex +þowsant thousant<i>es</i>. ¶ In þe 8 place sexty þowsant +thousantes. þ<i>er</i>for<i>e</i> sett 6 in octauo loco, And he schal +betoken sexty þowsant +<span class = "pagenum">30</span> +<a name = "page30" id = "page30"> </a> +thousantes. +<span class = "sidenote">Mental multiplication.</span> +And so mych is twenty þowsant tymes 3 thousant, ¶ And þis rewle is +gen<i>er</i>all<i>e</i> for all<i>e</i> man<i>er</i> of articuls, +Whethir þai be hundryth or þowsant; but þ<i>o</i>u <a class = "gloss" +name = "most" id = "most" href = "#gloss_most">most</a> know well þe +craft of þe <a class = "gloss" name = "wryrchynge" id = "wryrchynge" +href = "#gloss_wryrchynge">wryrchyng<i>e</i></a> in þe tabull<i>e</i> +<span class = "linenum">leaf 163 <i>a</i>.</span> +*or þou know to do þus in þi mynde aftur þis rewle. Thou most þat þis +rewle <a class = "gloss" name = "holdythe" id = "holdythe" href = +"#gloss_holdythe">holdyþe</a> <a class = "gloss" name = "note" id = +"note" href = "#gloss_note">note</a> but wher<i>e</i> þ<i>ere</i> ben 2 +articuls and no mo of þe quych ayther of hem hase but on figur<i>e</i> +significatyf. As twenty tymes 3 thousant or 3 hundryth, and such +oþ<i>ur</i>.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Articulum digito si m<i>u</i>ltiplicare o<i>portet</i></p> +<p>Articuli digit[i sumi quo multiplicate]</p> +<p>Debem<i>us</i> reliquu<i>m</i> quod m<i>u</i>ltiplicat<i>ur</i> ab +ill<i>is</i></p> +<p>P<i>er</i> reliq<i>u</i>o decuplu<i>m</i> sic su<i>m</i>ma<i>m</i> +later<i>e</i> neq<i>ui</i>b<i>i</i>t.</p> +</div> + +<p><span class = "sidenote">The third case of the craft;</span> +¶ Her<i>e</i> he puttes þe thryde rewle, þe quych is þis. yf +þ<i>o</i>u wel m<i>u</i>ltiply in þi mynde, And þe Articul be a digitte, +þou schalt loke þat þe digitt be w<i>i</i>t<i>h</i>-Inne an hundryth, +þen þou schalt m<i>u</i>ltiply the digitt of þe Articulle by þe oþer +digitte. And eu<i>er</i>y vnite in þe nounbre þat schall<i>e</i> come +þ<i>ere</i>-of schal betoken ten. As þus: +<span class = "sidenote">an example.</span> +yf þat þ<i>o</i>u wold wete qwat is twyes 40. m<i>u</i>ltiplie þe +digitt<i>e</i> of 40, þe quych is 4, by þe oþ<i>er</i> diget, þe quych +is 2. And þat wolle be 8. And in þe nombre of 8 ben 8 vnites, & +eu<i>er</i>y of þe ylke vnites schuld stonde for 10. þ<i>ere</i>-fore +þ<i>ere</i> schal be 8 tymes 10, þat wol be 4 score. And so mony is +twyes 40. ¶ If þe articul be a hundryth or be 2 hundryth And a +þowsant, so þat hit be notte a thousant, +<span class = "linenum">leaf 163 <i>b</i>.</span> +*worch as þo<i>u</i> dyddyst afor<i>e</i>, saue þ<i>o</i>u schalt rekene +eu<i>er</i>y vnite for a hundryth.</p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ In nu<i>mer</i>u<i>m</i> mixtu<i>m</i> digitu<i>m</i> si ducer<i>e</i> +cures</p> +<p>Articul<i>us</i> mixti sumat<i>ur</i> deinde resoluas</p> +<p>In digitu<i>m</i> post fac respectu de digitis</p> +<p>Articul<i>us</i>q<i>ue</i> docet excrescens in diriua<i>n</i>do</p> +<p>In digitu<i>m</i> mixti post ducas +m<i>u</i>ltiplica<i>n</i>te<i>m</i></p> +<p class = "pilcrow"> +¶ De digitis vt norma <a class = "tag" name = "tag_craft18" id = +"tag_craft18" href = "#note_craft18">18</a>[docet] de [hunc]</p> +<p>Multiplica si<i>mu</i>l et sic postea summa patebit.</p> +</div> + +<p><span class = "sidenote">The fourth case of the craft:</span> +Here he puttes þe 4 rewle, þe quych is þis: yf þou m<i>u</i>ltipliy on +composit be a digit as 6 tymes 24, <ins class = "correction" title = +"footnote tag positioned as shown"><a class = "tag" name = "tag_craft19" +id = "tag_craft19" href = "#note_craft19">19</a></ins>þen take þe diget +of þat composit, & m<i>u</i>ltiply þ<i>a</i>t digitt by þat +oþ<i>er</i> diget, and kepe þe nomb<i>ur</i> þat comes þ<i>ere</i>-of. +þen take þe digit of þat composit, & m<i>u</i>ltiply þat digit by +anoþ<i>er</i> diget, by þe quych þ<i>o</i>u hast m<i>u</i>ltiplyed þe +diget of þe articul, and loke qwat comes þ<i>ere</i>-of. +<span class = "sidenote">Composite by digit.</span> +þen take þ<i>o</i>u þat nounbur, & cast hit to þat other nounbur þat +þ<i>o</i>u secheste as þus yf þou wel +<span class = "pagenum">31</span> +<a name = "page31" id = "page31"> </a> +wete qwat comes of 6 tymes 4 & twenty. +<span class = "sidenote">Mental multiplication.</span> +multiply þat articull<i>e</i> of þe composit by þe digit, þe quych is 6, +as yn þe thryd rewle þ<i>o</i>u was tauȝt, And þat schal be 6 +scor<i>e</i>. þen m<i>u</i>ltiply þe diget of þe <i>com</i>posit, +<span class = "linenum">leaf 164 <i>a</i>.</span> +*þe quych is 4, and m<i>u</i>ltiply þat by þat other diget, þe quych is +6, as þou wast tauȝt in þe first rewle, yf þ<i>o</i>u haue mynde +þ<i>er</i>of, & þat wol be 4 & twenty. cast all ylke nounburs +to-ged<i>ir</i>, & hit schal be 144. And so mych is 6 tymes 4 & +twenty.</p> + +<p class = "headnote"><span class = "headnote"> +How to multiply without Figures.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Duct<i>us</i> in articulu<i>m</i> num<i>erus</i> si +<i>com</i>posit<i>us</i> sit</p> +<p>Articulu<i>m</i> puru<i>m</i> comites articulu<i>m</i> +q<i>u</i>o<i>que</i></p> +<p>Mixti pro digit<i>is</i> post fiat [et articulus vt]</p> +<p>Norma iubet [retinendo quod extra dicta ab illis]</p> +<p>Articuli digitu<i>m</i> post tu mixtu<i>m</i> digitu<i>m</i> duc</p> +<p>Re<i>gula</i> de digitis nec p<i>re</i>cipit +articul<i>us</i>q<i>ue</i></p> +<p>Ex quib<i>us</i> exc<i>re</i>scens su<i>m</i>me tu iunge +p<i>ri</i>ori</p> +<p>Sic ma<i>n</i>ifesta cito fiet t<i>ibi</i> su<i>m</i>ma petita.</p> +</div> + +<p><span class = "sidenote">The fifth case of the craft:</span> +¶ Her<i>e</i> he puttes þe 5 rewle, þe quych is þis: yf þ<i>o</i>u +wel m<i>u</i>ltiply an Articul be a composit, m<i>u</i>ltiplie þat +Articul by þe articul of þe composit, and worch as þou wos tauȝt in þe +secunde rewle, of þe quych rewle þe v<i>er</i>se begynnes þus. +<span class = "sidenote">Article by Composite.</span> +¶ Articulu<i>m</i> si p<i>er</i> Relicu<i>m</i> vis +m<i>u</i>ltiplicare. þen m<i>u</i>ltiply þe diget of þe composit by þat +oþ<i>ir</i> articul aft<i>ir</i> þe doctrine of þe 3 rewle. take +þ<i>er</i>of gode hede, I p<i>ra</i>y þe as þus. Yf þ<i>o</i>u wel +wete what is 24 tymes ten. +<span class = "sidenote">An example.</span> +Multiplie ten by 20, þat wel be 2 hundryth. þen m<i>u</i>ltiply þe diget +of þe 10, þe quych is 1, by þe diget of þe composit, þe quych is 4, +& þ<i>a</i>t +<span class = "linenum">leaf 164 <i>b</i>.</span> +*wol be 4. þen reken eu<i>er</i>y vnite þat is in 4 for 10, & þat +schal be 40. Cast 40 to 2 hundryth, & þat wol be 2 hundryth & +40. And so mych is 24 tymes ten.</p> + +<p class = "headnote"><span class = "headnote"> +How to work without Figures.</span></p> + +<div class = "verse"> +<p class = "pilcrow"> +¶ Compositu<i>m</i> num<i>er</i>u<i>m</i> mixto si[c] +m<i>u</i>ltiplicabis</p> +<p>Vndecies tredeci<i>m</i> sic e<i>st</i> ex hiis op<i>er</i>andum</p> +<p>In reliquu<i>m</i> p<i>rimu</i>m demu<i>m</i> duc post in +eund<i>em</i></p> +<p>Vnu<i>m</i> post den<i>u</i>m duc in t<i>ri</i>a dei<i>n</i>de +p<i>er</i> vnu<i>m</i></p> +<p>Multiplices<i>que</i> dem<i>u</i>m int<i>ra</i> o<i>mn</i>ia +m<i>u</i>ltiplicata</p> +<p>In su<i>m</i>ma decies q<i>ua</i>m si fu<i>er</i>it t<i>ibi</i> +doces</p> +<p>Multiplicandor<i>um</i> de normis sufficiunt h<i>ec</i>.</p> +</div> + +<p><span class = "sidenote">The sixth case of the craft:</span> +¶ Here he puttes þe 6 rewle, & þe last of all<i>e</i> +multiplicacioɳ, þe quych is þis: yf þ<i>o</i>u wel m<i>u</i>ltiplye a +<i>com</i>posit by a-noþ<i>er</i> composit, þou schalt do þus. +<span class = "sidenote">Composite by Composite.</span> +m<i>u</i>ltiplie þ<i>a</i>t on composit, qwych þ<i>o</i>u welt of the +twene, by þe articul of þe toþ<i>er</i> composit, as þ<i>o</i>u +wer<i>e</i> tauȝt in þe 5 rewle, þen m<i>u</i>ltiplie þ<i>a</i>t same +composit, þe quych þou hast m<i>u</i>ltiplied by þe oþ<i>er</i> articul, +by þe digit of þe oþ<i>er</i> composit, +<span class = "sidenote">Mental multiplication.</span> +as +<span class = "pagenum">32</span> +<a name = "page32" id = "page32"> </a> +þ<i>o</i>u was tauȝt in þe 4 rewle. +<span class = "sidenote">An example</span> +As þus, yf þou wold wete what is 11 tymes 13, as þ<i>o</i>u was tauȝt in +þe 5 rewle, & þat schal be an hundryth & ten, aft<i>er</i>warde +m<i>u</i>ltiply þat same co<i>m</i>posit þ<i>a</i>t þ<i>o</i>u hast +m<i>u</i>ltiplied, þe quych is a .11. And m<i>u</i>ltiplye hit be þe +digit of þe oþ<i>er</i> composit, þe quych is 3, for 3 is þe digit of +13, And þat wel be 30. þen take þe digit of þat composit, þe quych +composit þou m<i>u</i>ltiplied by þe digit of þ<i>a</i>t oþ<i>er</i> +<i>com</i>posit, +<span class = "linenum">leaf 165 <i>a</i>.</span> +*þe quych is a 11. +<span class = "sidenote">of the sixth case of the craft.</span> +¶ Also of the quych 11 on is þe digit. m<i>u</i>ltiplie þat digitt +by þe digett of þat oth<i>er</i> composit, þe quych diget is 3, as +þ<i>o</i>u was tauȝt in þe first rewle i<i>n</i> þe begynnyng<i>e</i> of +þis craft. þe quych rewle begynn<i>es</i> “In digitu<i>m</i> cures.” And +of all<i>e</i> þe m<i>u</i>ltiplicacioɳ of þe 2 digitt comys thre, for +onys 3 is but 3. Now cast all<i>e</i> þese nounbers toged<i>ur</i>, the +quych is þis, a hundryth & ten & 30 & 3. And al þat wel +be 143. Write 3 first in þe ryght side. And cast 10 to 30, þat wol be +40. set 40 next aft<i>ur</i> towarde þe lyft side, And set aftur a +hundryth as her<i>e</i> an Ensampull<i>e</i>, 143.</p> + +<p class = "center">(Cetera desunt.)</p> + +<hr class = "mid" /> + +<div class = "footnote"> + +<p><a name = "note_craft1" id = "note_craft1" href = +"#tag_craft1">1.</a> +In MS, ‘awiy.’</p> + +<p><a name = "note_craft2" id = "note_craft2" href = +"#tag_craft2">2.</a> +‘ben’ repeated in MS.</p> + +<p><a name = "note_craft3" id = "note_craft3" href = +"#tag_craft3">3.</a> +In MS. ‘thausandes.’</p> + +<p><a name = "note_craft4" id = "note_craft4" href = +"#tag_craft4">4.</a> +Perhaps “So.”</p> + +<p><a name = "note_craft5" id = "note_craft5" href = +"#tag_craft5">5.</a> +‘hali’ marked for erasure in MS.</p> + +<p><a name = "note_craft6" id = "note_craft6" href = +"#tag_craft6">6.</a> +‘moy’ in MS.</p> + +<p><a name = "note_craft7" id = "note_craft7" href = +"#tag_craft7">7.</a> +<ins class = "correction" title = "open quote missing">‘S</ins>ubt<i>ra</i>has a<i>u</i>t addis a dext<i>ri</i>s +<i>ve</i>l medi<i>a</i>b<i>is</i>’ added on margin of MS.</p> + +<p><a name = "note_craft8" id = "note_craft8" href = +"#tag_craft8">8.</a> +After ‘craft’ insert ‘the .4. what is þe p<i>ro</i>fet of þis +craft.’</p> + +<p><a name = "note_craft9" id = "note_craft9" href = +"#tag_craft9">9.</a> +After ‘sythes’ insert ‘& þis wordes fyue sithe & sex +sythes.’</p> + +<p><a name = "note_craft10" id = "note_craft10" href = +"#tag_craft10">10.</a> +‘t’l’ marked for erasure before ‘tyl’ in MS.</p> + +<p><a name = "note_craft11" id = "note_craft11" href = +"#tag_craft11">11.</a> +Here ‘of þe same rew’ is marked for erasure in MS.</p> + +<p><a name = "note_craft12" id = "note_craft12" href = +"#tag_craft12">12.</a> +‘s<i>ed</i>’ deleted in MS.</p> + +<p><a name = "note_craft13" id = "note_craft13" href = +"#tag_craft13">13.</a> +6883 in MS.</p> + +<p><a name = "note_craft14" id = "note_craft14" href = +"#tag_craft14">14.</a> +‘þen’ overwritten on ‘þat’ marked for erasure.</p> + +<p><a name = "note_craft15" id = "note_craft15" href = +"#tag_craft15">15.</a> +‘Supra’ inserted in MS. in place of ‘cifra’ marked for erasure.</p> + +<p><a name = "note_craft16" id = "note_craft16" href = +"#tag_craft16">16–16.</a> +Marked for erasure in MS.</p> + +<p><a name = "note_craft17" id = "note_craft17" href = +"#tag_craft17">17.</a> +4 in MS.</p> + +<p><a name = "note_craft18" id = "note_craft18" href = +"#tag_craft18">18.</a> +docet. decet MS.</p> + +<p><a name = "note_craft19" id = "note_craft19" href = +"#tag_craft19">19.</a> +‘4 times 4’ in MS.</p> + +</div> + +</div> <!-- end div craft --> + +<div class = "art"> + +<span class = "pagenum">33</span> +<a name = "page33" id = "page33"> </a> + +<p class = "illustration"> +<a name = "art" id = "art"> +<img src = "images/title_art.png" width = "411" height = "108" +alt = "The Art of Nombryng. / a translation of / +John of Holywood’s De Arte Numerandi." +title = "The Art of Nombryng. /a translation of / +John of Holywood’s De Arte Numerandi." /></a></p> + +<hr class = "tiny" /> + +<p class = "subhead">[<i>Ashmole MS. 396, fol. 48.</i>]</p> + +<p class = "inset"><b><span class = "dropcap">B</span>oys seying in the +begynnyng of his <a class = "gloss" name = "arsemetrike" id = +"arsemetrike" href = +"#gloss_arsemetrike">Arsemetrik<i>e</i></a>:—All<i>e</i> +<span class = "linenum">Fol. 48.</span> +thynges that ben<i>e</i> fro the first begynnyng of thynges have +p<i>ro</i>ceded<i>e</i>, and come forth<i>e</i>, And by reso<i>u</i>n of +nombre ben formed<i>e</i>; And in wise as they ben<i>e</i>, So +oweth<i>e</i> they to be knowen<i>e</i>; wherfor in +vniu<i>er</i>sall<i>e</i> knowlechyng of thynges the Art of nombrynge is +best, and most operatyf<i>e</i>.</b></p> + +<p><span class = "dropcap">T</span>herfore <a class = "gloss" name = +"sithen" id = "sithen" href = "#gloss_sithen">sithen</a> the science of +the whiche at this tyme we +<span class = "sidenote">The name of the art.</span> +intenden<i>e</i> to write of standith<i>e</i> all<i>e</i> and about +nombre: ffirst we most se, what is the p<i>ro</i>pre name +therof<i>e</i>, and fro whens the name come: Afterward<i>e</i> what is +nombre, And how manye spices of nombre ther ben. The name is +cleped<i>e</i> Algorisme, +<span class = "sidenote">Derivation of Algorism.</span> +had<i>e</i> out of Algor<i>e</i>, other of Algos, in <a class = "gloss" +name = "grewe" id = "grewe" href = "#gloss_grewe">grewe</a>, That is +clepid<i>e</i> in englissh<i>e</i> art <a class = "gloss" name = "other" +id = "other" href = "#gloss_other">other</a> craft, And of +Rithm<i>us</i> that is called<i>e</i> nombre. So <a class = "terms" name += "algorisme" id = "algorisme" href = "#terms_algorisme">algorisme</a> +is cleped<i>e</i> the art of nombryng, +<span class = "sidenote">Another.</span> +other it is had of<i>e</i> en or in, and gogos that is +introduccio<i>u</i>n, and Rithm<i>us</i> nombre, that is to say +Interduccio<i>u</i>n of nombre. +<span class = "sidenote">Another.</span> +And thirdly it is had<i>e</i> of the name of a kyng that is +cleped<i>e</i> Algo and Rythm<i>us</i>; So called<i>e</i> +Algorism<i>us</i>. +<span class = "sidenote">Kinds of numbers.</span> +Sothely .2. maner<i>e</i> of nombres ben notified<i>e</i>; +Formall<i>e</i>,<a class = "tag" name = "tag_art1" id = "tag_art1" href += "#note_art1">1</a> +as nombr<i>e</i> i<i>s</i> vnitees gadred<i>e</i> to-gedres; +Materiall<i>e</i>,<a class = "tag" name = "tag_art2" id = "tag_art2" +href = "#note_art2">2</a> +as nombr<i>e</i> is a colleccio<i>u</i>n of vnitees. Other nombr<i>e</i> +is a multitude had<i>e</i> out of vnitees, vnitee is that thynge wher-by +eu<i>er</i>y thynge is called<i>e</i> oone, other <a class = "gloss" +name = "o1" id = "o1" href = "#gloss_oo">o</a> thynge. Of nombres, that +one is cleped<i>e</i> <a class = "terms" name = "digitalle" id = +"digitalle" href = "#terms_digit">digitall<i>e</i></a>, that +other<i>e</i> Article, Another a nombre <a class = "terms" name = +"componede" id = "componede" href = +"#terms_componede">componed<i>e</i></a> oþ<i>er</i> myxt. Another +digitall<i>e</i> is a nombre w<i>i</i>t<i>h</i>-in .10.; Article is +þ<i>a</i>t nombre that may be dyvyded<i>e</i> in .10. p<i>ar</i>ties +egally, And that there +<span class = "pagenum">34</span> +<a name = "page34" id = "page34"> </a> +leve no residue; Componed<i>e</i> or <a class = "terms" name = "medlede" +id = "medlede" href = "#terms_medlede">medled<i>e</i></a> is that nombre +that is come of a digite and of an <a class = "terms" name = "article" +id = "article" href = "#terms_article">article</a>. And +vndrestand<i>e</i> wele that all<i>e</i> nombres betwix .2. articles +next is a nombr<i>e</i> componed<i>e</i>. +<span class = "sidenote">The 9 rules of the Art.</span> +Of this art ben<i>e</i> .9. <a class = "gloss" name = "spices" id = +"spices" href = "#gloss_spices">spices</a>, that is forto sey, +num<i>er</i>acio<i>u</i>n, addicio<i>u</i>n, Subtraccio<i>u</i>n, +Mediac<i>i</i>o<i>u</i>n, Duplacio<i>u</i>n, Multipliacio<i>u</i>n, +Dyvysio<i>u</i>n, Progressio<i>u</i>n, And of Rootes the +extraccio<i>u</i>n, and that may be had<i>e</i> in .2. maners, that is +to sey in nombres quadrat, and in cubic<i>es</i>: Amonge the +which<i>e</i>, ffirst of Num<i>er</i>acio<i>u</i>n, and +aft<i>er</i>ward<i>e</i> of þe oþ<i>er</i>s by <a class = "gloss" name = +"ordure" id = "ordure" href = "#gloss_ordure">ordure</a>, y entende +to write.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter I. Numeration.</span></p> + +<span class = "linenum">Fol. 48 <i>b</i>.</span> +<h5>*For-soth<i>e</i> num<i>er</i>acio<i>u</i>n is of eu<i>er</i>y +numbre by competent figures an artificiall<i>e</i> +rep<i>re</i>sentacio<i>u</i>n.</h5> + +<p><span class = "sidenote">Figures, differences, places, and +limits.</span> +Sothly figure, difference, places, and <a class = "gloss" name = "lynes" +id = "lynes" href = "#gloss_lymytes">lynes</a> supposen o thyng other +the same, But they ben sette here for dyue<i>r</i>s resons. ffigure is +cleped<i>e</i> for p<i>ro</i>traccio<i>u</i>n of figuracio<i>u</i>n; +Difference is called<i>e</i> for therby is shewed<i>e</i> eu<i>er</i>y +figure, how it hath<i>e</i> difference fro the figures before them: +place by cause of space, where-in <a class = "gloss" name = "me1" id = +"me1" href = "#gloss_me">me</a> writeth<i>e</i>: <a class = "gloss" name += "lynees" id = "lynees" href = "#gloss_lymytes">lynees</a>, for that is +ordeyned<i>e</i> for the p<i>re</i>sentacio<i>u</i>n of eu<i>er</i>y +figure. +<span class = "sidenote">The 9 figures.</span> +And vnderstonde that ther ben .9. <a class = "gloss" name = "lymytes" id += "lymytes" href = "#gloss_lymytes">lymytes</a> of figures that +rep<i>re</i>senten the .9. digit<i>es</i> that ben these. 0. 9. 8. 7. 6. +5. 4. 3. 2. 1. +<span class = "sidenote">The cipher.</span> +The .10. is cleped<i>e</i> theta, or a cercle, other a cifre, other a +figure of nought for nought it signyfieth<i>e</i>. Nathelesse she +holdyng that place giveth<i>e</i> others for to signyfie; for +with<i>e</i>-out cifre or cifres a pure article may not be writte. +<span class = "sidenote">The numeration</span> +And sithen that by these .9. figures significatif<i>es</i> +Ioyned<i>e</i> w<i>i</i>t<i>h</i> cifre or w<i>i</i>t<i>h</i> cifres +all<i>e</i> nombres ben and may be rep<i>re</i>sented<i>e</i>, It was, +<a class = "gloss" name = "nether" id = "nether" href = +"#gloss_nether">nether</a> is, no nede to fynde any more figures. +<span class = "sidenote">of digits,</span> +And note wele that eu<i>er</i>y digite shall<i>e</i> be writte +w<i>i</i>t<i>h</i> <a class = "gloss" name = "oo1" id = "oo1" href = +"#gloss_oo">oo</a> figure allone to it <a class = "gloss" name = +"aproprede" id = "aproprede" href = +"#gloss_aproprede">ap<i>ro</i>pred<i>e</i></a>. +<span class = "sidenote">of articles,</span> +And all<i>e</i> articles by a cifre, ffor eu<i>er</i>y article is +named<i>e</i> for oone of the digitis as <ins class = "correction" title += "punctuated as shown: error for ‘.10. of .1. 20. of .2.’?">.10. of 1.. +20. of. 2.</ins> and so of the others, &c. And all<i>e</i> nombres +digitall<i>e</i> owen to be sette in the first difference: All<i>e</i> +articles in the seconde. Also all<i>e</i> nombres fro .10. til an .100. +[which] is excluded<i>e</i>, with .2. figures mvst be writte; And yf it +be an article, by a cifre first put, and the figure y-writte +toward<i>e</i> the lift hond<i>e</i>, that signifieth<i>e</i> the digit +of the which<i>e</i> the article is named<i>e</i>; +<span class = "sidenote">of composites.</span> +And yf it be a nombre componed<i>e</i>, ffirst write the digit that is a +part of that componed<i>e</i>, and write to the lift side the article as +it is seid<i>e</i> be-fore. All<i>e</i> nombre that is fro an +hundred<i>e</i> tille a thousand<i>e</i> <a class = "gloss" name = +"exclusede" id = "exclusede" href = +"#gloss_exclusede">exclused<i>e</i></a>, owith<i>e</i> to be writ by .3. +figures; and all<i>e</i> nombre that is fro a thousand<i>e</i> +<span class = "pagenum">35</span> +<a name = "page35" id = "page35"> </a> +til .x. Mł. mvst be writ by .4. figures; And so forthe. +<span class = "sidenote">The value due to position.</span> +And vnderstond<i>e</i> wele that eu<i>er</i>y figure sette in the first +place signyfieth<i>e</i> his digit; In the second<i>e</i> place .10. +tymes his digit; In the .3. place an hundred<i>e</i> so moche; In the +.4. place a thousand<i>e</i> so moche; In the .5. place .x. +thousand<i>e</i> so moch<i>e</i>; In the .6. place an hundred<i>e</i> +thousand<i>e</i> so moch<i>e</i>; In the .7. place a thousand<i>e</i> +thousand<i>e</i>. And so infynytly mvltiplying by +<span class = "linenum">Fol. 49.</span> +*these .3. 10, 100, 1000. And vnderstand<i>e</i> wele that <a class = +"gloss" name = "competently" id = "competently" href = +"#gloss_competently">competently</a> me may sette vpon figure in the +place of a thousand<i>e</i>, a prik<i>e</i> to shewe how many +thousand<i>e</i> the last figure shall<i>e</i> rep<i>re</i>sent. +<span class = "sidenote">Numbers are written from right to left.</span> +We writen<i>e</i> in this art to the lift side-ward<i>e</i>, as +arabien<i>e</i> writen<i>e</i>, that weren fynders of this science, +other<i>e</i> for this reso<i>u</i>n, that for to kepe a custumable +ordr<i>e</i> in redyng, Sette we all<i>e</i>-wey the more nombre +before.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter II. Addition.</span></p> + +<p><span class = "sidenote">Definition.</span> +<span class = "dropcap">A</span>ddicio<i>u</i>n is of nombre other of +nombres vnto nombre or to nombres aggregacio<i>u</i>n, that me may see +that that is come therof as <a class = "gloss" name = "excressent" id = +"excressent" href = "#gloss_excressent">exc<i>re</i>ssent</a>. In +addicio<i>u</i>n, 2. ordres of figures and .2. nombres ben necessary, +that is to sey, a nombre to be added<i>e</i> and the nombre wherto +the addic<i>i</i>oun shold<i>e</i> be made to. The nombre to be +added<i>e</i> is that þat shold<i>e</i> be added<i>e</i> therto, and +shall<i>e</i> be vnderwriten; the nombre vnto the which<i>e</i> +addicio<i>u</i>n shall<i>e</i> be made to is that nombre that +resceyueth<i>e</i> the addicion of þat other, and shall<i>e</i> be +writen above; +<span class = "sidenote">How the numbers should be written.</span> +and it is convenient that the lesse nombre be vnderwrit, and the more +added<i>e</i>, than the contrary. But whether it happ<i>e</i> one +<a class = "gloss" name = "other1" id = "other1" href = +"#gloss_other">other</a> other, the same comyth<i>e</i> of, Therfor, yf +þow wilt adde nombre to nombre, write the nombre wherto the +addicio<i>u</i>n shall<i>e</i> be made in the <a class = "gloss" name = +"omest" id = "omest" href = "#gloss_omest">omest</a> ordre by his +differences, so that the first of the lower ordre be vndre the first of +the <a class = "gloss" name = "omyst" id = "omyst" href = +"#gloss_omest">omyst</a> ordre, and so of others. +<span class = "sidenote">The method of working.</span> +That done, adde the first of the lower ordre to the first of the omyst +ordre. And of such<i>e</i> addicio<i>u</i>n, other þ<i>er</i>e +grow<i>i</i>t<i>h</i> therof a digit, An article, other a +composed<i>e</i>. +<span class = "sidenote">Begin at the right.</span> +If it be digit<i>us</i>, In the place of the omyst shalt thow write the +digit excrescyng, as thus:—</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>2</td> +</tr> +<tr> +<td class = "words">To whom it shal be added<i>e</i></td> +<td>1</td> +</tr> +<tr> +<td class = "words">The nombre to be added<i>e</i></td> +<td>1</td> +</tr> +</table> + +<p><span class = "sidenote">The Sum is a digit,</span> +If the article; in the place of the omyst put a-way by a cifre writte, +and the digit transferred<i>e</i>, of þe which<i>e</i> the article toke +his name, toward<i>e</i> the lift side, and be it added<i>e</i> to the +next figure folowyng, yf ther be any figure folowyng; or no, and yf it +be not, leve it [in the] void<i>e</i>, as thus:—</p> + +<span class = "pagenum">36</span> +<a name = "page36" id = "page36"> </a> +<span class = "sidenote">or an article,</span> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>10</td> +</tr> +<tr> +<td class = "words">To whom it shall<i>e</i> be added<i>e</i></td> +<td>7</td> +</tr> +<tr> +<td class = "words">The nombre to be added<i>e</i></td> +<td>3</td> +</tr> +</table> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">Resultans</td> +<td>2</td> +<td>7</td> +<td>8</td> +<td>2</td> +<td>7</td> +</tr> +<tr> +<td class = "words">Cui d<i>ebet</i> addi</td> +<td>1</td> +<td>0</td> +<td>0</td> +<td>8</td> +<td>4</td> +</tr> +<tr> +<td class = "words">Num<i>erus</i> addend<i>us</i></td> +<td>1</td> +<td>7</td> +<td>7</td> +<td>4</td> +<td>3</td> +</tr> +</table> + +<p class = "allclear"> +And yf it happe that the figure folowyng wherto the addicio<i>u</i>n +shall<i>e</i> be made by [the cifre of] an article, it sette a-side;</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>17</td> +</tr> +<tr> +<td class = "words">To whom it shall<i>e</i> be added<i>e</i></td> +<td>10</td> +</tr> +<tr> +<td class = "words">The nombre to be added<i>e</i></td> +<td>7</td> +</tr> +</table> + +<p class = "nospace"> +In his place write the +<span class = "linenum">Fol. 49 <i>b</i>.</span> +*[digit of the] Article as thus:—</p> + +<p class = "allclear"> +And yf it happe that a figure of .9. by the figure that me mvst adde +[one] to,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>10</td> +</tr> +<tr> +<td class = "words">To whom it shall<i>e</i> be added<i>e</i></td> +<td>9</td> +</tr> +<tr> +<td class = "words">The nombre to be added<i>e</i></td> +<td>1</td> +</tr> +</table> + +<p class = "nospace"> +In the place of that 9. put a cifre <i>and</i> write þe article +toward<i>e</i> þe lift hond<i>e</i> as bifore, and thus:—</p> + +<p class = "allclear"> +<span class = "sidenote">or a composite.</span> +And yf<a class = "tag" name = "tag_art3" id = "tag_art3" href = +"#note_art3">3</a> +[therefrom grow a] nombre componed,<a class = "tag" name = "tag_art4" id += "tag_art4" href = "#note_art4">4</a> +[in the place of the nombre] put a-way<a class = "tag" name = "tag_art5" +id = "tag_art5" href = "#note_art5">5</a></p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>12</td> +</tr> +<tr> +<td class = "words">To whom it shall<i>e</i> be added<i>e</i></td> +<td>8</td> +</tr> +<tr> +<td class = "words">The nombre to be added<i>e</i></td> +<td>4</td> +</tr> +</table> + +<p class = "nospace"> +[let] the digit [be]<a class = "tag" name = "tag_art6" id = "tag_art6" +href = "#note_art6">6</a> +writ þ<i>a</i>t is part of þ<i>a</i>t co<i>m</i>posid<i>e</i>, and þan +put to þe lift side the article as before, and þus:—</p> + +<p class = "allclear"> +<span class = "sidenote">The translator’s note.</span> +This done, adde the seconde to the second<i>e</i>, and write above +oþ<i>er</i> as before. Note wele þ<i>a</i>t in addic<i>i</i>ons and in +all<i>e</i> spices folowyng, whan he seith<i>e</i> one the other +shall<i>e</i> be writen aboue, and me most vse eu<i>er</i> figure, as +that eu<i>er</i>y figure were sette by half<i>e</i>, and by +hym-self<i>e</i>.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter III. Subtraction.</span></p> + +<p><span class = "sidenote">Definition of Subtraction.</span> +<span class = "dropcap">S</span>ubtraccio<i>u</i>n is of .2. +p<i>ro</i>posed<i>e</i> nombres, the fyndyng of the excesse of the more +to the lasse: Other subtraccio<i>u</i>n is <a class = "gloss" name = +"ablacioun" id = "ablacioun" href = +"#gloss_ablacioun">ablacio<i>u</i>n</a> of o nombre fro a-nother, that +me may see a <a class = "gloss" name = "some1" id = "some1" href = +"#gloss_some">some</a> left. The lasse of the more, or even of even, may +be w<i>i</i>t<i>h</i>draw; The more fro the lesse may neu<i>er</i> be. +<span class = "sidenote">How it may be done.</span> +And sothly that nombre is more that hath<i>e</i> more figures, So that +the last be signyficatife<i>s</i>: And yf ther ben as many in that one +as in that other, me most deme it by the last, other by the next last. +<span class = "sidenote">What is required.</span> +More-ou<i>er</i> in w<i>i</i>t<i>h</i>-drawyng .2. nombres ben +necessary; A nombre to be w<i>i</i>t<i>h</i>draw, And a nombre that +me shall<i>e</i> w<i>i</i>t<i>h</i>-draw of. The nombre to be +w<i>i</i>t<i>h</i>-draw shall<i>e</i> be writ in the lower ordre by his +differences; +<span class = "sidenote">Write the greater number above.</span> +The +<span class = "pagenum">37</span> +<a name = "page37" id = "page37"> </a> +nombre fro the which<i>e</i> me shall<i>e</i> with<i>e</i>-draw in the +omyst ordre, so that the first be vnder the first, the second<i>e</i> +vnder the second<i>e</i>, And so of all<i>e</i> others. +<span class = "sidenote">Subtract the first figure if possible.</span> +With<i>e</i>-draw therfor the first of the lower<i>e</i> ordre fro the +first of the ordre above his hede, and that wolle be <a class = "gloss" +name = "other_or1" id = "other_or1" href = "#gloss_other">other</a> more +or lesse, oþ<i>er</i> egall<i>e</i>.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The remanent</td> +<td>20</td> +</tr> +<tr> +<td class = "words">Wherof me shall<i>e</i> w<i>i</i>t<i>h</i>draw</td> +<td>22</td> +</tr> +<tr> +<td class = "words">The nombre to be w<i>i</i>t<i>h</i>draw</td> +<td>2</td> +</tr> +</table> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The remanent</td> +<td>2</td> +<td>2</td> +</tr> +<tr> +<td class = "words">Wherof me shall<i>e</i> w<i>i</i>t<i>h</i>-draw</td> +<td>2</td> +<td>8</td> +</tr> +<tr> +<td class = "words">Þe nombre to be w<i>i</i>t<i>h</i>draw</td> +<td></td> +<td>6</td> +</tr> +</table> + +<p class = "nospace"> +yf it be egall<i>e</i> or even the figure sette beside, put in his place +a cifre. And yf it be more put away þ<i>er</i>fro als many of vnitees +the lower figure conteyneth<i>e</i>, and writ the residue as thus</p> + +<span class = "linenum">Fol. 50.</span> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">*Remane<i>n</i>s</td> +<td>2</td> +<td>2</td> +<td>1</td> +<td>8</td> +<td>2</td> +<td>9</td> +<td>9</td> +<td>9</td> +<td>8</td> +</tr> +<tr> +<td class = "words"><p>A quo sit subtraccio</p></td> +<td>8</td> +<td>7</td> +<td>2</td> +<td>4</td> +<td>3</td> +<td>0</td> +<td>0</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words"><p>Numerus subt<i>ra</i>hend<i>us</i></p></td> +<td>6</td> +<td>5</td> +<td><a class = "tag" name = "tag_art7" id = "tag_art7" href = +"#note_art7">7</a></td> +<td>[6]</td> +<td>.</td> +<td>.</td> +<td>.</td> +<td>.</td> +<td>6</td> +</tr> +</table> + +<p class = "rightclear"> +<span class = "sidenote">If it is not possible ‘borrow ten,’</span> +And yf it be lesse, by-cause the more may not be w<i>i</i>t<i>h</i>-draw +ther-fro, borow an vnyte of the next figure that is worth<i>e</i> 10. Of +that .10. and of the figure that ye wold<i>e</i> have +w<i>i</i>t<i>h</i>-draw fro +<span class = "sidenote">and then subtract.</span> +be-fore to-gedre Ioyned<i>e</i>,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The remanent</td> +<td>1</td> +<td>8</td> +</tr> +<tr> +<td class = "words">Wherof me shall<i>e</i> w<i>i</i>t<i>h</i>-draw</td> +<td>2</td> +<td>4</td> +</tr> +<tr> +<td class = "words">The nombre to be w<i>i</i>t<i>h</i>-draw</td> +<td>0</td> +<td>6</td> +</tr> +</table> + +<p class = "nospace"> +w<i>i</i>t<i>h</i>-draw þe figure be-nethe, and put the residue in the +place of the figure put a-side as þ<i>us</i>:—</p> + +<p><span class = "sidenote">If the second figure is one.</span> +And yf the figure wherof me shal borow the vnyte be one, put it a-side, +and write a cifre in the place þ<i>er</i>of, lest the figures folowing +faile of thair<i>e</i> nombre, and þan worch<i>e</i> as it +shew<i>i</i>t<i>h</i> in this figure here:—</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The remanent</td> +<td>3</td> +<td>0</td> +<td>9<a class = "tag" name = "tag_art8" id = "tag_art8" href = +"#note_art8">8</a></td> +</tr> +<tr> +<td class = "words">Wherof me shal w<i>i</i>t<i>h</i>-draw</td> +<td>3</td> +<td>1</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The nombre to be w<i>i</i>t<i>h</i>-draw</td> +<td>.</td> +<td>.</td> +<td>3</td> +</tr> +</table> + +<p><span class = "sidenote">If the second figure is a cipher.</span> +And yf the vnyte wherof me shal borow be a cifre, go ferther to the +figure signyficatif<i>e</i>, and ther borow one, and reto<i>ur</i>nyng +bak<i>e</i>, in the place of eu<i>er</i>y cifre þ<i>a</i>t ye +passid<i>e</i> ou<i>er</i>, sette figures of .9. as here it is +specified<i>e</i>:—</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The remenaunt</td> +<td>2</td> +<td>9</td> +<td>9</td> +<td>9</td> +<td>9</td> +</tr> +<tr> +<td class = "words">Wherof me shall<i>e</i> w<i>i</i>t<i>h</i>-draw</td> +<td>3</td> +<td>0</td> +<td>0</td> +<td>0</td> +<td>3</td> +</tr> +<tr> +<td class = "words">The nombre to be w<i>i</i>t<i>h</i>-draw</td> +<td></td> +<td></td> +<td></td> +<td></td> +<td>4</td> +</tr> +</table> + +<p>And whan me cometh<i>e</i> to the nombre wherof me intendith<i>e</i>, +there remayneth<i>e</i> all<i>e</i>-wayes .10. ffor þe which<i>e</i> +.10. &c. +<span class = "sidenote">A justification of the rule given.</span> +The reson why þat for eu<i>er</i>y cifre left behynde me setteth figures +ther of .9. this it is:—If fro the .3. place me borowed<i>e</i> an +vnyte, that vnyte by respect of the figure that he came fro +rep<i>re</i>sentith an .C., In the +<span class = "pagenum">38</span> +<a name = "page38" id = "page38"> </a> +place of that cifre [passed over] is left .9., [which is worth ninety], +and yit it remayneth<i>e</i> as .10., And the same reson<i>e</i> +wold<i>e</i> be yf me had<i>e</i> borowed<i>e</i> an vnyte fro the .4., +.5., .6., place, or ony other so vpward<i>e</i>. This done, withdraw the +second<i>e</i> of the lower ordre fro the figure above his hede of þe +omyst ordre, and wirch<i>e</i> as before. +<span class = "sidenote">Why it is better to work from right to +left.</span> +And note wele that in addicion or in subtracc<i>i</i>o<i>u</i>n me may +wele fro the lift side begynne and ryn to the right side, But it wol be +more p<i>ro</i>fitabler to be do, as it is taught. +<span class = "sidenote">How to prove subtraction,</span> +And yf thow wilt p<i>ro</i>ve yf thow have do wele or no, The figures +that thow hast withdraw, adde them <a class = "gloss" name = "ayene" id += "ayene" href = "#gloss_ayene">ayene</a> to the omyst figures, and they +wolle accorde w<i>i</i>t<i>h</i> the first that thow haddest yf thow +have labored wele; +<span class = "sidenote">and addition.</span> +and in like wise in addicio<i>u</i>n, whan thow hast added<i>e</i> +all<i>e</i> thy figures, w<i>i</i>t<i>h</i>draw them that thow first +<span class = "linenum">Fol. 50 <i>b</i>.</span> +*addest, and the same wolle reto<i>ur</i>ne. The subtraccio<i>u</i>n is +none other but a p<i>ro</i>uff<i>e</i> of the addicio<i>u</i>n, and the +contrarye in like wise.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter IV. Mediation.</span></p> + +<p><span class = "sidenote">Definition of mediation.</span> +<span class = "dropcap">M</span><a class = "terms" name = "mediacioun2" +id = "mediacioun2" href = "#terms_mediacioun">ediacio<i>u</i>n</a> is +the fyndyng of the halfyng of eu<i>er</i>y nombre, that it may be +seyn<i>e</i> what and how moch<i>e</i> is eu<i>er</i>y half<i>e</i>. In +halfyng ay oo order of figures and oo nombre is necessary, that is to +sey the nombre to be halfed<i>e</i>. Therfor yf thow wilt half any +nombre, write that nombre by his differences, and +<span class = "sidenote">Where to begin.</span> +begynne at the right, that is to sey, fro the first figure to the right +side, so that it be signyficatif<i>e</i> other rep<i>re</i>sent vnyte or +eny other digitall<i>e</i> nombre. If it be vnyte write in his place a +cifre for the +<span class = "sidenote">If the first figure is unity.</span> +figures folowyng, [lest they signify less], and write that vnyte +w<i>i</i>t<i>h</i>out in the table, other resolue it in .60. <a class = +"gloss" name = "mynvtes" id = "mynvtes" href = +"#gloss_mynvtes">mynvt<i>es</i></a> and sette a-side half of <ins class += "correction" title = "error for the?">tho</ins> m<i>inutes</i> so, and +reserve the remen<i>au</i>nt w<i>i</i>t<i>h</i>out in the table, as thus +.30.; other sette w<i>i</i>t<i>h</i>out thus .<i>dī</i>: that +kepeth<i>e</i> none ordre of place, Nathelesse it hath<i>e</i> +signyficacio<i>u</i>n. And yf the other figure signyfie any other +digital nombre fro vnyte forth<i>e</i>, oþ<i>er</i> the nombre is +od<i>e</i> or even<i>e</i>.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">Halfed<i>e</i></td> +<td>2</td> +<td>2</td> +</tr> +<tr> +<td class = "words">to be halfed<i>e</i></td> +<td>4</td> +<td>4</td> +</tr> +</table> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">halfed<i>e</i></td> +<td>2</td> +<td>3</td> +<td class = "edge">[di]</td> +</tr> +<tr> +<td class = "words">To be halfed<i>e</i></td> +<td>4</td> +<td>7</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "sidenote">What to do if it is not unity.</span> +If it be even, write this half in this wise:—</p> + +<p>And if it be odde, Take the next even vndre hym conteyned<i>e</i>, +and put his half in the place of that odde, and of þe vnyte that +remayneth<i>e</i> to be halfed<i>e</i> do thus:—</p> + +<p><span class = "sidenote">Then halve the second figure.</span> +This done, the second<i>e</i> is to be halfed<i>e</i>, yf it be a cifre +put it be-side, and yf it be significatif<i>e</i>, <a class = "gloss" +name = "other_or" id = "other_or" href = "#gloss_other">other it is even +or od<i>e</i></a>: If it be even, write in the place of þe nombres +wiped<i>e</i> out the half<i>e</i>; yf it be od<i>e</i>, take the next +even vnder it <a class = "gloss" name = "contenythe" id = "contenythe" +href = "#gloss_contynes">co<i>n</i>tenyth<i>e</i></a>, and in the place +of the Impar sette a-side put half of the even: The +<span class = "pagenum">39</span> +<a name = "page39" id = "page39"> </a> +vnyte that remayneth<i>e</i> to be halfed<i>e</i>, respect had<i>e</i> +to them before, is worth<i>e</i> .10.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">Halfed<i>e</i></td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td class = "words">to be halfed<i>e</i></td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "sidenote">If it is odd, add 5 to the figure +before.</span> +Dyvide that .10. in .2., 5. is, and sette a-side that one, and adde that +other to the next figure p<i>re</i>cedent as here:—</p> + +<p>And yf þe addicio<i>u</i>n shold<i>e</i> be made to a cifre, sette it +a-side, and write in his place .5.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">doubled<i>e</i></td> +<td>2</td> +<td>6</td> +<td>8</td> +<td>9</td> +<td>0</td> +<td>10</td> +<td>17</td> +<td>4</td> +</tr> +<tr> +<td class = "words">to be doubled<i>e</i></td> +<td>1</td> +<td>3</td> +<td>4</td> +<td>4</td> +<td>5</td> +<td>5</td> +<td>8</td> +<td>7</td> +</tr> +</table> + +<p class = "nospace"> +And vnder this fo<i>ur</i>me me shall<i>e</i> write and worch<i>e</i>, +till<i>e</i> the totall<i>e</i> nombre be halfed<i>e</i>.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter V. Duplation.</span></p> + +<p><span class = "sidenote">Definition of Duplation.</span> +<span class = "dropcap">D</span>uplicacio<i>u</i>n is ag<i>re</i>gacion +of nombre [to itself] þat me may se the nombre growen. In +doublyng<i>e</i> ay is but one ordre of figures necessarie. And me most +be-gynne w<i>i</i>t<i>h</i> the lift side, other of the more figure, And +after the nombre of the more figure <a class = "gloss" name = +"representithe" id = "representithe" href = +"#gloss_representithe">rep<i>re</i>sentith<i>e</i></a>. +<span class = "linenum">Fol. 51.</span> +*In the other .3. before we begynne all<i>e</i> way fro the right side +and fro the lasse nombre, +<span class = "sidenote">Where to begin.</span> +In this spice and in all<i>e</i> other folowyng we wolle begynne fro the +lift side, ffor and me bigon th<i>e</i> double fro the first, <a class = +"gloss" name = "omwhile1" id = "omwhile1" href = +"#gloss_omwhile">omwhile</a> me myght double oo thynge twyes. +<span class = "sidenote">Why.</span> +And how be it that me myght double fro the right, that wold<i>e</i> be +harder in techyng and in workyng. Therfor yf thow wolt double any +nombre, write that nombre by his differences, and double the last. And +of that doubly<i>n</i>g other growith<i>e</i> a nombre digital, article, +or componed<i>e</i>. [If it be a digit, write it in the place of the +first digit.]</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">double</td> +<td>10</td> +</tr> +<tr> +<td class = "words">to be doubled<i>e</i></td> +<td>5</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "sidenote">What to do with the result.</span> +If it be article, write in his place a cifre and transferre the article +toward<i>e</i> the lift, as thus:—</p> + +<p>And yf the nombre be componed<i>e</i>,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">doubled<i>e</i></td> +<td>16</td> +</tr> +<tr> +<td class = "words">to be doubled<i>e</i></td> +<td>8</td> +</tr> +</table> + +<p class = "nospace"> +write a digital that is part of his composicio<i>u</i>n, and sette the +article to the lift hand<i>e</i>, as thus:—</p> + +<p>That done, me most double the last save one, and what groweth<i>e</i> +þ<i>er</i>of me most worche as before. And yf a cifre be, touch<i>e</i> +it not. But yf any nombre shall<i>e</i> be added<i>e</i> to the +cifre,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">doubled<i>e</i></td> +<td>6</td> +<td>0</td> +<td>6</td> +</tr> +<tr> +<td class = "words">to be doubled<i>e</i></td> +<td>3</td> +<td>0</td> +<td>3</td> +</tr> +</table> + +<p class = "nospace"> +in þe place of þe figure wiped<i>e</i> out me most write the nombre to +be added<i>e</i>, as thus:—</p> + +<p>In the same wise me shall<i>e</i> wirch<i>e</i> of all<i>e</i> +others. +<span class = "sidenote">How to prove your answer.</span> +And this p<i>ro</i>bacio<i>u</i>n:</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">Doubled<i>e</i></td> +<td>6</td> +<td>1</td> +<td>8</td> +</tr> +<tr> +<td class = "words">to be doubled<i>e</i></td> +<td>3</td> +<td>0</td> +<td>9</td> +</tr> +</table> + +<p class = "nospace"> +If thow truly double the halfis, and truly half the doubles, the same +nombre and figure shall<i>e</i> mete, such<i>e</i> as thow +labo<i>ur</i>ed<i>e</i> vpon<i>e</i> first, And of the contrarie.</p> + +<span class = "pagenum">40</span> +<a name = "page40" id = "page40"> </a> +<p class = "headnote"><span class = "headnote"> +Chapter VI. Multiplication.</span></p> + +<p><span class = "sidenote">Definition of Multiplication.</span> +<span class = "dropcap">M</span>ultiplicacio<i>u</i>n of nombre by +hym-self other by a-nother, w<i>i</i>t<i>h</i> p<i>ro</i>posid<i>e</i> +.2. nombres, [is] the fyndyng of the third<i>e</i>, That so oft +conteyneth<i>e</i> that other, as ther ben vnytes in the oþ<i>er</i>. In +multiplicacio<i>u</i>n .2. nombres pryncipally ben necessary, that is to +sey, the nombre multiplying and the nombre to be multiplied<i>e</i>, as +here;—twies fyve. +<span class = "sidenote">Multiplier.</span> +[The number multiplying] is designed<i>e</i> adu<i>er</i>bially. +<span class = "sidenote">Multiplicand.</span> +The nombre to be multiplied<i>e</i> resceyveth<i>e</i> a +no<i>m</i>i<i>n</i>all<i>e</i> appellacio<i>u</i>n, as twies .5. 5. is +the nombre multiplied<i>e</i>, and twies is the nombre to be <a class = +"gloss" name = "multipliede" id = "multipliede" href = +"#gloss_multipliede">multipliede</a>.</p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Resultans</td> +<td><a class = "tag" name = "tag_art9" id = "tag_art9" href = +"#note_art9">9</a></td> +<td>1</td> +<td>0</td> +<td class = "double">1</td> +<td>3</td> +<td>2</td> +<td>6</td> +<td>6</td> +<td>8</td> +<td>0</td> +<td>0</td> +<td>8</td> +</tr> +<tr> +<td class = "words">Multiplicand<i>us</i></td> +<td>.</td> +<td>.</td> +<td>5</td> +<td class = "double">.</td> +<td>.</td> +<td>4</td> +<td>.</td> +<td>3</td> +<td>4</td> +<td>0</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words">Multiplicans</td> +<td>.</td> +<td>2</td> +<td>2</td> +<td class = "double">.</td> +<td>3</td> +<td>3</td> +<td>2</td> +<td>2</td> +<td>2</td> +<td>.</td> +<td>.</td> +<td>.</td> +</tr> +</table> + +<p><span class = "sidenote">Product.</span> +Also me may thervpon<i>e</i> to assigne the. 3. nombre, the +which<i>e</i> is +<span class = "linenum">Fol. 51 <i>b</i>.</span> +*cleped<i>e</i> p<i>ro</i>duct or p<i>ro</i>venient, of takyng out of +one fro another: as twyes .5 is .10., 5. the nombre to be +multiplied<i>e</i>, and .2. the multipliant, <ins class = "correction" +title = "error for ‘and .10.’?">and. 10.</ins> as before is come therof. +And vnderstonde wele, that of the multipliant may be made the nombre to +be multiplied<i>e</i>, and of the contrarie, remaynyng eu<i>er</i> the +same <a class = "gloss" name = "some" id = "some" href = +"#gloss_some">some</a>, and herof<i>e</i> cometh<i>e</i> the comen +speche, that seith<i>e</i> all nombre is converted<i>e</i> by +Multiplying in hym-self<i>e</i>. +<span class = "headnote float"> +The Cases of Multiplication.</span></p> + +<span class = "sidenote">There are 6 rules of Multiplication.</span> + +<table class = "grid outline float" summary = "example"> +<tr> +<td>1</td> +<td>2</td> +<td>3</td> +<td>4</td> +<td>5</td> +<td>6</td> +<td>7</td> +<td>8</td> +<td>9</td> +<td>10</td> +</tr> +<tr> +<td>2</td> +<td>4</td> +<td>6</td> +<td>8</td> +<td>10</td> +<td>10<a class = "tag" name = "tag_art10" id = "tag_art10" href = +"#note_art10">10</a></td> +<td>14</td> +<td>16</td> +<td>18</td> +<td>20</td> +</tr> +<tr> +<td>3</td> +<td>6</td> +<td>9</td> +<td>12</td> +<td>15</td> +<td>18</td> +<td>21</td> +<td>24</td> +<td>27</td> +<td>30</td> +</tr> +<tr> +<td>4</td> +<td>8</td> +<td>12</td> +<td>16</td> +<td>20</td> +<td>24</td> +<td>28</td> +<td>32</td> +<td>36</td> +<td>40</td> +</tr> +<tr> +<td>5</td> +<td>10</td> +<td>15</td> +<td>20</td> +<td>25</td> +<td>30</td> +<td>35</td> +<td>40</td> +<td>45</td> +<td>50</td> +</tr> +<tr> +<td>6</td> +<td>12</td> +<td>18</td> +<td>24</td> +<td>30</td> +<td>36</td> +<td>42</td> +<td>48</td> +<td>56</td> +<td>60</td> +</tr> +<tr> +<td>7</td> +<td>14</td> +<td>21</td> +<td>28</td> +<td>35</td> +<td>42</td> +<td>49</td> +<td>56</td> +<td>63</td> +<td>70</td> +</tr> +<tr> +<td>8</td> +<td>16</td> +<td>24</td> +<td>32</td> +<td>40</td> +<td>48</td> +<td>56</td> +<td>64</td> +<td>72</td> +<td>80</td> +</tr> +<tr> +<td>9</td> +<td>18</td> +<td>27</td> +<td>36</td> +<td>45</td> +<td>54</td> +<td>63</td> +<td>72</td> +<td>81</td> +<td>90</td> +</tr> +<tr> +<td>10</td> +<td>20</td> +<td>30</td> +<td>40</td> +<td>50</td> +<td>60</td> +<td>70</td> +<td>80</td> +<td>90</td> +<td>100</td> +</tr> +</table> + +<p class = "nospace"> +And ther ben .6 rules of Multiplicacio<i>u</i>n; +<span class = "sidenote">(1) Digit by digit.</span> +ffirst, yf a digit multiplie a digit, considr<i>e</i> how many of +vnytees ben betwix the digit by multiplying and his .10. beth<i>e</i> +to-gedre accompted<i>e</i>, and so oft w<i>i</i>t<i>h</i>-draw the digit +multiplying, vnder the article of his +deno<i>m</i>i<i>n</i>acio<i>u</i>n. Example of grace. If thow wolt wete +how moch<i>e</i> is .4. tymes .8., +<a class = "tag" name = "tag_art11" id = "tag_art11" href = +"#note_art11">11</a>se how many vnytees ben betwix .8.<a class = "tag" +name = "tag_art12" id = "tag_art12" href = "#note_art12">12</a> +and .10. to-geder rekened<i>e</i>, and it shew<i>i</i>t<i>h</i> that +.2.: withdraw ther-for the quat<i>e</i>rnary, of the article of his +deno<i>m</i>i<i>n</i>acion twies, of .40., And ther remayneth<i>e</i> +.32., that is, to <a class = "gloss" name = "some2" id = "some2" href = +"#gloss_some">some</a> of all<i>e</i> the multiplicacio<i>u</i>n. +<span class = "sidenote">See the table above.</span> +Wher-vpon for more evidence and declaracion the seid<i>e</i> table is +made. +<span class = "sidenote">(2) Digit by article.</span> +Whan a digit multiplieth<i>e</i> an article, thow most bryng the digit +into þe digit, of þe which<i>e</i> the article [has]<a class = "tag" +name = "tag_art13" id = "tag_art13" href = "#note_art13">13</a> +his name, and eu<i>er</i>y vnyte +<span class = "pagenum">41</span> +<a name = "page41" id = "page41"> </a> +shall<i>e</i> stond<i>e</i> for .10., and eu<i>er</i>y article an .100. +<span class = "sidenote">(3) Composite by digit.</span> +Whan the digit multiplieth<i>e</i> a nombre componed<i>e</i>, þ<i>o</i>u +most bryng the digit into aiþ<i>er</i> part of the nombre +componed<i>e</i>, so þ<i>a</i>t digit be had into digit by the first +rule, into an article by þe second<i>e</i> rule; and +aft<i>er</i>ward<i>e</i> Ioyne the p<i>ro</i>duccio<i>u</i>n, and +þ<i>er</i>e wol be the some totall<i>e</i>.</p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Resultans</td> +<td>1</td> +<td>2</td> +<td class = "double">6</td> +<td>7</td> +<td>3</td> +<td class = "double">6</td> +<td>1</td> +<td>2</td> +<td class = "double">0</td> +<td>1</td> +<td>2</td> +<td>0</td> +<td>8</td> +</tr> +<tr> +<td class = "words">Multiplicand<i>us</i></td> +<td> </td> +<td> </td> +<td class = "double">2</td> +<td> </td> +<td>3</td> +<td class = "double">2</td> +<td> </td> +<td> </td> +<td class = "double">6</td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +</tr> +<tr> +<td class = "words">Multiplicans</td> +<td> </td> +<td>6</td> +<td class = "double">3</td> +<td>2</td> +<td>3</td> +<td class = "double"> </td> +<td> </td> +<td>2</td> +<td class = "double">0</td> +<td> </td> +<td>3</td> +<td>0</td> +<td>2</td> +</tr> +</table> + +<p><span class = "sidenote">(4) Article by article.</span> +Whan an article multiplieth<i>e</i> an article, the digit wherof he is +named<i>e</i> is to be brought Into the digit wherof the oþ<i>er</i> is +named<i>e</i>, and eu<i>er</i>y vnyte wol be worth<i>e</i> +<span class = "linenum">Fol. 52.</span> +*an .100., and eu<i>er</i>y article. a .1000. +<span class = "sidenote">(5) Composite by article.</span> +Whan an article multiplieth<i>e</i> a nombre componed<i>e</i>, thow most +bryng the digit of the article into aither part of the nombre +componed<i>e</i>; and Ioyne the p<i>ro</i>duccio<i>u</i>n, and +eu<i>er</i>y article wol be worth<i>e</i> .100., and eu<i>er</i>y vnyte +.10., and so woll<i>e</i> the some be open<i>e</i>. +<span class = "sidenote">(6) Composite by composite.</span> +Whan a nombre componed<i>e</i> multiplieth<i>e</i> a nombre +componed<i>e</i>, eu<i>er</i>y p<i>ar</i>t of the nombre multiplying is +to be had<i>e</i> into eu<i>er</i>y p<i>ar</i>t of the nombre to be +multiplied<i>e</i>, and so shall<i>e</i> the digit be had<i>e</i> twies, +onys in the digit, that other in the article. The article also twies, +ones in the digit, that other in the article. Therfor yf thow wilt any +nombre by hym-self other by any other multiplie, write the nombre to be +multiplied<i>e</i> in the ou<i>er</i> ordre by his differences, +<span class = "sidenote">How to set down your numbers.</span> +The nombre multiplying in the lower ordre by his differences, so that +the first of the lower ordre be vnder the last of the ou<i>er</i> ordre. +This done, of the multiplying, the last is to be had<i>e</i> into the +last of the nombre to be multiplied<i>e</i>. Wherof than wolle grow a +digit, an article, other a nombre componed<i>e</i>. +<span class = "sidenote">If the result is a digit,</span></p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>6</td> +</tr> +<tr> +<td class = "words">To be multiplied<i>e</i></td> +<td>3</td> +</tr> +<tr> +<td class = "words">Þe nombre multipliyng</td> +<td>2</td> +</tr> +</table> + +<p class = "nospace"> +If it be a digit, even above the figure multiplying is hede write his +digit that come of, as it appereth<i>e</i> here:—</p> + +<p><span class = "sidenote">an article,</span> +And yf an article had be writ ou<i>er</i> the fig<i>ur</i>e multiplying +his hede, put a cifre þ<i>er</i> and transferre the article +toward<i>e</i> the lift hand<i>e</i>, as thus:—</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>1</td> +<td>0</td> +</tr> +<tr> +<td class = "words">to be multiplied<i>e</i></td> +<td></td> +<td>5</td> +</tr> +<tr> +<td class = "words">þe nombre m<i>u</i>ltipliyng</td> +<td></td> +<td>2</td> +</tr> +</table> + +<p><span class = "sidenote">or a composite.</span> +And yf a nombre componed<i>e</i> be writ ou<i>er</i> the figure +multyplying is hede, write the digit in the nombre componed<i>e</i> is +place, and sette the article to the lift hand<i>e</i>, as +thus:—</p> + +<span class = "pagenum">42</span> +<a name = "page42" id = "page42"> </a> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">Resultant</td> +<td>1</td> +<td>2</td> +</tr> +<tr> +<td class = "words">to be multiplied<i>e</i></td> +<td></td> +<td>4</td> +</tr> +<tr> +<td class = "words">the nombre multipliyng</td> +<td></td> +<td>3</td> +</tr> +</table> + +<p><span class = "sidenote">Multiply next by the last but one, and so +on.</span> +This done, <a class = "gloss" name = "me" id = "me" href = +"#gloss_me">me</a> most bryng the last save one of the multipliyng into +the last of þe nombre to be multiplied<i>e</i>, and se what +comyth<i>e</i> therof as before, and so do w<i>i</i>t<i>h</i> +all<i>e</i>, tille me come to the first of the nombre multiplying, that +must be brought into the last of the nombre to be multiplied<i>e</i>, +wherof growith<i>e</i> oþ<i>er</i> a digit, an article, +<span class = "linenum">Fol. 52 <i>b</i>.</span> +*other a nombre componed<i>e</i>.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">Resultant</td> +<td>6</td> +<td>6</td> +</tr> +<tr> +<td class = "words">to be multiplied<i>e</i></td> +<td></td> +<td>3</td> +</tr> +<tr> +<td class = "words">the nombre m<i>u</i>ltipliyng</td> +<td>2</td> +<td>2</td> +</tr> +</table> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>1</td> +<td>1</td> +<td>0</td> +</tr> +<tr> +<td class = "words">to be multiplied<i>e</i></td> +<td></td> +<td></td> +<td>5</td> +</tr> +<tr> +<td class = "words">þe nombre m<i>u</i>ltiplying</td> +<td></td> +<td>2</td> +<td>2</td> +</tr> +</table> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>1</td> +<td>3<a class = "tag" name = "tag_art15" id = "tag_art15" href = +"#note_art15">15</a></td> +<td>2</td> +</tr> +<tr> +<td class = "words">to be m<i>u</i>ltiplied<i>e</i></td> +<td></td> +<td></td> +<td>4</td> +</tr> +<tr> +<td class = "words">þe nombr<i>e</i> m<i>u</i>ltiplia<i>n</i>t</td> +<td></td> +<td>3</td> +<td>3</td> +</tr> +</table> + +<p class = "nospace"> +If it be a digit, In the place of the <a class = "gloss" name = "ouerer" +id = "ouerer" href = "#gloss_ouerer">ou<i>er</i>er</a>, sette a-side, as +here:</p> + +<p>If an article happe, there put a cifre in his place, and put hym to +the lift hand<i>e</i>, as here:</p> + +<p>If it be a nombre componed<i>e</i>, in the place of the ou<i>er</i>er +sette a-side, write a digit that<a class = "tag" name = "tag_art14" id = +"tag_art14" href = "#note_art14">14</a> +is a p<i>ar</i>t of the componed<i>e</i>, and sette on the left +hond<i>e</i> the article, as here:</p> + +<p><span class = "sidenote">Then antery the multiplier one place.</span> +That done, sette forward<i>e</i> the figures of the nombre multiplying +by <a class = "gloss" name = "oo" id = "oo" href = "#gloss_oo">oo</a> +difference, so that the first of the multipliant be vnder the last save +one of the nombre to be multiplied<i>e</i>, the other by <a class = +"gloss" name = "o" id = "o" href = "#gloss_oo">o</a> place sette +forward<i>e</i>. Than me shall<i>e</i> bryng<i>e</i> the last of the +m<i>u</i>ltipliant in hym to be multiplied<i>e</i>, vnder the +which<i>e</i> is the first multipliant. +<span class = "sidenote">Work as before.</span> +And than wolle growe oþ<i>er</i> a digit, an article, or a +componed<i>e</i> nombre. If it be a digit, adde hym even above his hede; +If it be an article, transferre hym to the lift side; And if it be a +nombre componed<i>e</i>, adde a digit to the figure above his hede, and +sette to the lift hand<i>e</i> the article. And all<i>e</i>-wayes +eu<i>er</i>y figure of the nombre multipliant is to be brought to the +last save one nombre to be multiplied<i>e</i>, til me come to the first +of the multipliant, where me shall<i>e</i> wirche as it is seid<i>e</i> +before of the first, and aft<i>er</i>ward<i>e</i> to put forward<i>e</i> +the figures by o difference and one till<i>e</i> they all<i>e</i> be +multiplied<i>e</i>. +<span class = "sidenote">How to deal with ciphers.</span> +And yf it happe that the first figure of þe multipliant be a cifre, and +<a class = "gloss" name = "boue" id = "boue" href = +"#gloss_boue">boue</a> it is sette the figure signyficatif<i>e</i>, +write a cifre in the place of the figur<i>e</i> sette a-side, as thus, +<i>et</i>c.:</p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>1</td> +<td>2</td> +<td>0</td> +</tr> +<tr> +<td class = "words">to be multiplied<i>e</i></td> +<td></td> +<td></td> +<td>6</td> +</tr> +<tr> +<td class = "words">the multipliant</td> +<td></td> +<td>2</td> +<td>0</td> +</tr> +</table> + +<span class = "pagenum">43</span> +<a name = "page43" id = "page43"> </a> + +<p><span class = "sidenote">How to deal with ciphers.</span> +And yf a cifre happe in the lower <a class = "gloss" name = "order" id = +"order" href = "#gloss_ordure">order</a> be-twix the first and the last, +and even above be sette the fig<i>ur</i>e signyficatif,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">The resultant</td> +<td>2</td> +<td>2</td> +<td>6</td> +<td>4</td> +<td>4</td> +</tr> +<tr> +<td class = "words">To be multiplied<i>e</i></td> +<td></td> +<td></td> +<td>2</td> +<td>2</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The multipliant</td> +<td>1</td> +<td>0</td> +<td>2</td> +<td></td> +<td></td> +</tr> +</table> + +<p class = "nospace"> +leve it vntouched<i>e</i>, as here:—</p> + +<p>And yf the space above sette be void<i>e</i>, in that place write +thow a cifre. And yf the cifre happe betwix þe first and the last to be +m<i>u</i>ltiplied<i>e</i>, me most sette forward<i>e</i> the ordre of +the figures by thair<i>e</i> differences, for oft of <a class = "terms" +name = "duccioun" id = "duccioun" href = +"#terms_duccioun">duccio<i>u</i>n</a> of figur<i>e</i>s in cifres nought +is the resultant, as here,</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">Resultant</td> +<td>8</td> +<td>0</td> +<td>0</td> +<td>8</td> +<td> </td> +</tr> +<tr> +<td class = "words">to be m<i>u</i>ltiplied<i>e</i></td> +<td>4</td> +<td>0</td> +<td>0</td> +<td>4</td> +<td> </td> +</tr> +<tr> +<td class = "words">the m<i>u</i>ltipliant</td> +<td>2</td> +<td>.</td> +<td>.</td> +<td>.</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">Fol. 53.</span> +*wherof it is evident and open, yf that the first figure of the nombre +be to be multiplied<i>e</i> be a cifre, vndir it shall<i>e</i> be none +sette as here:—</p> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">Resultant</td> +<td>3</td> +<td>2</td> +<td>0<a class = "tag" name = "tag_art16" id = "tag_art16" href = +"#note_art16">16</a></td> +</tr> +<tr> +<td class = "words">To be m<i>u</i>ltiplied<i>e</i></td> +<td></td> +<td>8</td> +<td>0</td> +</tr> +<tr> +<td class = "words">The m<i>u</i>ltipliant</td> +<td></td> +<td>4</td> +<td></td> +</tr> +</table> + +<p><span class = "sidenote">Leave room between the rows of +figures.</span> +Vnder[stand] also that in multiplicacio<i>u</i>n, divisio<i>u</i>n, and +of rootis the extraccio<i>u</i>n, competently me may leve a mydel space +betwix .2. ordres of figures, that me may write there what is come of +addyng other with<i>e</i>-drawyng, lest any thynge shold<i>e</i> be +<a class = "gloss" name = "ouerhippede" id = "ouerhippede" href = +"#gloss_ouerhippede">ou<i>er</i>-hipped<i>e</i></a> and sette out of +mynde.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter VII. Division.</span></p> + +<p><span class = "sidenote">Definition of division.</span> +<span class = "dropcap">F</span>or to dyvyde oo nombre by a-nother, it +is of .2. nombres p<i>ro</i>posed<i>e</i>, It is forto depart the +<a class = "gloss" name = "moder" id = "moder" href = "#gloss_mo">moder</a> +nombre into as many p<i>ar</i>tis as ben of vnytees in the lasse nombre. +And note wele that in makyng<i>e</i> of dyvysio<i>u</i>n ther ben .3. +nombres necessary: +<span class = "sidenote">Dividend, Divisor, Quotient.</span> +that is to sey, the nombre to be dyvyded<i>e</i>; the nombre dyvydyng +and the nombre <a class = "gloss" name = "exeant" id = "exeant" href = +"#gloss_exeant">exeant</a>, <a class = "gloss" name = "other2" id = +"other2" href = "#gloss_other">other</a> how oft, or quocient. Ay +shall<i>e</i> the nombre that is to be dyvyded<i>e</i> be more, other at +the <a class = "gloss" name = "lest" id = "lest" href = +"#gloss_lest">lest</a> even<i>e</i> w<i>i</i>t<i>h</i> the nombre the +dyvysere, yf the nombre shall<i>e</i> be mad<i>e</i> by hole nombres. +<span class = "sidenote">How to set down your Sum.</span> +Therfor yf thow wolt any nombre dyvyde, write the nombre to be +dyvyded<i>e</i> in þe ou<i>er</i>er <a class = "gloss" name = "bordure" +id = "bordure" href = "#gloss_bordure">bordur<i>e</i></a> by his +differences, the dyviser<i>e</i> in the lower ordur<i>e</i> by his +differences, so that the last of the dyviser be vnder the last of the +nombre to be dyvyde, the next last vnder the next last, and so of the +others, yf it may competently be done; +<span class = "sidenote">An example.</span> +as here:—</p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">The residue</td> +<td></td> +<td>2</td> +<td>7</td> +</tr> +<tr> +<td class = "words">The quotient</td> +<td></td> +<td></td> +<td>5</td> +</tr> +<tr> +<td class = "words">To be dyvyded<i>e</i></td> +<td>3</td> +<td>4</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The dyvyser</td> +<td></td> +<td>6</td> +<td>3</td> +</tr> +</table> + +<span class = "pagenum">44</span> +<a name = "page44" id = "page44"> </a> +<span class = "sidenote">Examples.</span> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Residuu<i>m</i></td> +<td> </td> +<td> </td> +<td class = "double">8</td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td>2</td> +<td class = "double">7</td> +<td> </td> +<td>2</td> +<td>6</td> +</tr> +<tr> +<td class = "words">Quociens</td> +<td> </td> +<td>2</td> +<td class = "double">1</td> +<td>2</td> +<td class = "double">2</td> +<td> </td> +<td> </td> +<td class = "double">5</td> +<td> </td> +<td> </td> +<td>9</td> +</tr> +<tr> +<td class = "words">Diuidend<i>us</i></td> +<td>6</td> +<td>8</td> +<td class = "double">0</td> +<td>6</td> +<td class = "double">6</td> +<td>3</td> +<td>4</td> +<td class = "double">2</td> +<td>3</td> +<td>3</td> +<td>2</td> +</tr> +<tr> +<td class = "words">Diuiser</td> +<td>3</td> +<td>2</td> +<td class = "double"> </td> +<td>3</td> +<td class = "double"> </td> +<td> </td> +<td>6</td> +<td class = "double">3</td> +<td> </td> +<td>3</td> +<td>4</td> +</tr> +</table> + +<p><span class = "sidenote">When the last of the divisor must not be set +below the last of the dividend.</span> +And ther ben .2. causes whan the last figure may not be sette vnder the +last, other that the last of the lower nombre may not be +w<i>i</i>t<i>h</i>-draw of the last of the ou<i>er</i>er nombre for it +is lasse than the lower, other <a class = "gloss" name = +"how_be_it_that" id = "how_be_it_that" href = +"#gloss_how_be_it_that">how be it, that</a> it myght be +w<i>i</i>t<i>h</i>-draw as for hym-self fro the ou<i>er</i>er the +remenaunt may not so oft of them above, other yf þe last of the lower be +even to the figure above his hede, and þe next last oþ<i>er</i> the +figure be-fore þ<i>a</i>t be more þan the figure above sette. +<span class = "linenum">Fol. 53<sup>2</sup>.</span> +*These so ordeyned<i>e</i>, me most wirch<i>e</i> from the last figure +of þe nombre of the dyvyser, and se how oft it may be +w<i>i</i>t<i>h</i>-draw of +<span class = "sidenote">How to begin.</span> +and fro the figure aboue his hede, namly so that the remen<i>au</i>nt +may be take of so oft, and to se the residue as here:—</p> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">The residue</td> +<td></td> +<td>2</td> +<td>6</td> +</tr> +<tr> +<td class = "words">The quocient</td> +<td></td> +<td></td> +<td>9</td> +</tr> +<tr> +<td class = "words">To be dyvyded<i>e</i></td> +<td>3</td> +<td>3</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The dyvyser</td> +<td></td> +<td>3</td> +<td>4</td> +</tr> +</table> + +<p><span class = "sidenote">An example.</span> +And note wele that me may not with<i>e</i>-draw more than .9. tymes +nether lasse than ones. Therfor se how oft þe figures of the lower ordre +may be w<i>i</i>t<i>h</i>-draw fro the figures of the ou<i>er</i>er, and +the nombre that shew<i>i</i>t<i>h</i> þe q<i>u</i>ocient most be writ +ou<i>er</i> the hede of þat figure, vnder the which<i>e</i> the first +figure is, of the dyviser; +<span class = "sidenote">Where to set the <ins class = "correction" +title = "spelling (1922) unchanged">quotiente</ins></span> +And by that figure me most with<i>e</i>-draw all<i>e</i> oþ<i>er</i> +figures of the lower ordir and that of the figures aboue thair<i>e</i> +hedis. This so don<i>e</i>, me most sette forward<i>e</i> þe figures of +the diuiser by o difference toward<i>es</i> the right hond<i>e</i> and +worch<i>e</i> as before; and thus:— +<span class = "sidenote">Examples.</span></p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Residuu<i>m</i></td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>.</td> +<td>1</td> +<td>2</td> +</tr> +<tr> +<td class = "words">quo<i>ciens</i></td> +<td> </td> +<td> </td> +<td> </td> +<td>6</td> +<td>5</td> +<td class = "double">4</td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td>0</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words">Diuidend<i>us</i></td> +<td>3</td> +<td>5</td> +<td>5</td> +<td>1</td> +<td>2</td> +<td class = "double">2</td> +<td>8</td> +<td>8</td> +<td>6</td> +<td>3</td> +<td>7</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words">Diuisor</td> +<td> </td> +<td>5</td> +<td>4</td> +<td>3</td> +<td> </td> +<td class = "double"> </td> +<td>4</td> +<td>4</td> +<td>2</td> +<td>3</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">The quocient</td> +<td> </td> +<td> </td> +<td> </td> +<td>6</td> +<td>5</td> +<td>4</td> +</tr> +<tr> +<td class = "words">To be dyvyded<i>e</i></td> +<td>3</td> +<td>5</td> +<td>5</td> +<td>1</td> +<td>2</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The dyvyser</td> +<td> </td> +<td>5</td> +<td>4</td> +<td>3</td> +<td> </td> +<td> </td> +</tr> +</table> + +<p><span class = "sidenote">A special case.</span> +And yf it happ<i>e</i> after þe settyng forward<i>e</i> of the +fig<i>ur</i>es þ<i>a</i>t þe last of the divisor may not so oft be +w<i>i</i>t<i>h</i>draw of the fig<i>ur</i>e above his hede, above þat +fig<i>ur</i>e vnder the which<i>e</i> the first of the diuiser is writ +me most sette a cifre in ordre of the nombre quocient, and sette the +fig<i>ur</i>es forward<i>e</i> as be-fore be o difference alone, and so +me shall<i>e</i> do in all<i>e</i> nombres to be dyvided<i>e</i>, for +where the dyviser may +<span class = "pagenum">45</span> +<a name = "page45" id = "page45"> </a> +not be w<i>i</i>t<i>h</i>-draw me most sette there a cifre, and sette +forward<i>e</i> the figures; as here:—</p> + +<table class = "grid outline floatleft" summary = "example"> +<tr> +<td class = "words">The residue</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The quocient</td> +<td> </td> +<td> </td> +<td> </td> +<td>2</td> +<td>0</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words">To be dyvyded<i>e</i></td> +<td>8</td> +<td>8</td> +<td>6</td> +<td>3</td> +<td>7</td> +<td>0</td> +<td>4</td> +</tr> +<tr> +<td class = "words">The dyvyser</td> +<td>4</td> +<td>4</td> +<td>2</td> +<td>3</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p><span class = "sidenote">Another example.</span> +And me shall<i>e</i> not cesse fro such<i>e</i> settyng of +fig<i>ur</i>es forward<i>e</i>, nether of settyng<i>e</i> of þe quocient +into the dyviser, neþ<i>er</i> of subt<i>ra</i>ccio<i>u</i>n of the +dyvyser, till<i>e</i> the first of the dyvyser be +w<i>i</i>t<i>h</i>-draw fro þe first to be divided<i>e</i>. The +which<i>e</i> don<i>e</i>, or ought,<a class = "tag" name = "tag_art17" +id = "tag_art17" href = "#note_art17">17</a> oþ<i>er</i> nought +shall<i>e</i> remayne: and yf it be ought,<a class = "tag" href = +"#note_art17">17</a> +kepe it in the tables, And eu<i>er</i> <a class = "gloss" name = "vny" +id = "vny" href = "#gloss_vny">vny</a> it to þe diviser. And yf +þ<i>o</i>u wilt wete how many vnytees of þe divisio<i>u</i>n +<span class = "linenum">Fol. 53<sup>3</sup>.</span> +*wol growe to the nombre of the diviser<i>e</i>, +<span class = "sidenote">What the quotient shows.</span> +the nombre quocient wol shewe it: and whan such<i>e</i> divisio<i>u</i>n +is made, and þ<i>o</i>u <a class = "gloss" name = "lust" id = "lust" +href = "#gloss_lust">lust</a> p<i>ro</i>ve yf thow have wele done or +<span class = "sidenote">How to prove your division,</span> +no, Multiplie the quocient by the diviser, And the same fig<i>ur</i>es +wolle come ayene that thow haddest bifore and none other. And yf ought +be residue, than w<i>i</i>t<i>h</i> addicio<i>u</i>n therof +shall<i>e</i> come the same figures: And so multiplicacio<i>u</i>n +p<i>ro</i>vith<i>e</i> divisio<i>u</i>n, and dyvisio<i>u</i>n +multiplicacio<i>u</i>n: +<span class = "sidenote">or multiplication.</span> +as thus, yf multiplicacio<i>u</i>n be made, divide it by the +multipliant, and the nombre quocient wol shewe the nombre that was to be +multiplied<i>e</i>, <i>et</i>c.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter VIII. Progression.</span></p> + +<p><span class = "sidenote">Definition <ins class = "correction" title = +"f illegible">of</ins> Progression.</span> +<span class = "dropcap">P</span>rogressio<i>u</i>n is of nombre after +<a class = "gloss" name = "egalle" id = "egalle" href = +"#gloss_egalle">egall<i>e</i></a> excesse fro oone or tweyn<i>e</i> +<a class = "gloss" name = "take" id = "take" href = "#gloss_take">take</a> +<a class = "gloss" name = "agregacioun" id = "agregacioun" href = +"#gloss_agregacioun">ag<i>r</i>egacio<i>u</i>n</a>. of +p<i>ro</i>gressio<i>u</i>n one is <a class = "terms" name = "naturelle" +id = "naturelle" href = "#terms_naturelle">naturell<i>e</i></a> or +co<i>n</i>tynuell<i>e</i>, þ<i>a</i>t oþ<i>er</i> broken and +discontynuell<i>e</i>. +<span class = "sidenote">Natural Progression.</span> +Naturell<i>e</i> it is, whan me begynneth<i>e</i> w<i>i</i>t<i>h</i> +one, and kepeth<i>e</i> ordure ou<i>er</i>lepyng one; as .1. 2. 3. 4. 5. +6., <i>et</i>c., so þ<i>a</i>t the nombre folowyng<i>e</i> +passith<i>e</i> the other be-fore in one. +<span class = "sidenote">Broken Progression.</span> +Broken it is, whan me lepith<i>e</i> fro o nombre till<i>e</i> another, +and kepith<i>e</i> not the contynuel ordir<i>e</i>; as 1. 3. 5. 7. 9, +<i>et</i>c. Ay me may begynne w<i>i</i>t<i>h</i> .2., as þus; .2. 4. 6. +8., <i>et</i>c., and the nombre folowyng passeth<i>e</i> the others +by-fore by .2. And note wele, that naturell<i>e</i> +p<i>ro</i>gressio<i>u</i>n ay begynneth<i>e</i> w<i>i</i>t<i>h</i> one, +and Int<i>er</i>cise or broken p<i>ro</i>gressio<i>u</i>n, <a class = +"gloss" name = "omwhile" id = "omwhile" href = +"#gloss_omwhile">omwhile</a> begynnyth<i>e</i> w<i>i</i>th one, omwhile +w<i>i</i>t<i>h</i> twayn<i>e</i>. Of p<i>ro</i>gressio<i>u</i>n naturell +.2. rules ther be <a class = "gloss" name = "yove" id = "yove" href = +"#gloss_yove">yove</a>, of the which<i>e</i> the first is this; +<span class = "sidenote">The 1st rule for Natural Progression.</span> +whan the p<i>ro</i>gressio<i>u</i>n naturell<i>e</i> endith<i>e</i> in +even nombre, by the half therof multiplie þe next totall<i>e</i> +ou<i>er</i>er<i>e</i> nombre; Example of grace: .1. 2. 3. 4. Multiplie +.5. by .2. and so .10. cometh<i>e</i> of, that is the totall<i>e</i> +nombre þ<i>er</i>of. +<span class = "sidenote">The second rule.</span> +The second<i>e</i> rule is such<i>e</i>, whan the +p<i>ro</i>gressio<i>u</i>n naturell<i>e</i> endith<i>e</i> in nombre +od<i>e</i>. Take the more porcio<i>u</i>n of the oddes, and multiplie +therby the totall<i>e</i> nombre. Example of grace 1. 2. 3. 4. 5., +multiplie +<span class = "pagenum">46</span> +<a name = "page46" id = "page46"> </a> +.5. by .3, and thryes .5. shall<i>e</i> be resultant. so the nombre +totall<i>e</i> is .15. +<span class = "sidenote">The first rule of Broken Progression.</span> +Of p<i>ro</i>gresio<i>u</i>n <a class = "terms" name = "intercise" id = +"intercise" href = "#terms_intercise">int<i>er</i>cise</a>, ther ben +also .2.<a class = "tag" name = "tag_art18" id = "tag_art18" href = +"#note_art18">18</a> +rules; and þe first is þis: Whan the Int<i>er</i>cise p<i>ro</i>gression +endith<i>e</i> in even nombre by half therof multiplie the next nombre +to þat half<i>e</i> as .2.<a class = "tag" href = "#note_art18">18</a> +4. 6. Multiplie .4. by .3. so þat is thryes .4., and .12. the nombre of +all<i>e</i> the p<i>ro</i>gressio<i>u</i>n, woll<i>e</i> folow. +<span class = "sidenote">The second rule.</span> +The second<i>e</i> rule is this: whan the p<i>ro</i>gressio<i>u</i>n +int<i>er</i>scise endith<i>e</i> in od<i>e</i>, take þe more +porcio<i>u</i>n of all<i>e</i> þe nombre, +<span class = "linenum">Fol. 53<sup>4</sup>.</span> +*and multiplie by hym-self<i>e</i>; as .1. 3. 5. Multiplie .3. by +hym-self<i>e</i>, and þe some of all<i>e</i> wolle be .9., +<i>et</i>c.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter IX. Extraction of Roots.</span></p> + +<p><span class = "sidenote">The preamble of the extraction of +roots.</span> +<span class = "dropcap">H</span>ere folowith<i>e</i> the +extraccio<i>u</i>n of rotis, and first in nombre +q<i>ua</i>drat<i>es</i>. Wherfor me shall<i>e</i> se what is a <a class += "terms" name = "quadrat" id = "quadrat" href = "#terms_quadrat">nombre +quadrat</a>, and what is the rote of a nombre quadrat, and what it is to +draw out the rote of a nombre. And before other note this +divisio<i>u</i>n: +<span class = "sidenote">Linear, superficial, and solid numbers.</span> +Of nombres one is <a class = "terms" name = "lyneal" id = "lyneal" href += "#terms_lyneal">lyneal</a>, anoþ<i>er</i> <a class = "terms" name = +"superficial" id = "superficial" href = +"#terms_superficial">sup<i>er</i>ficiall<i>e</i></a>, anoþ<i>er</i> +quadrat, anoþ<i>er</i> cubik<i>e</i> or <a class = "gloss" name = +"hoole" id = "hoole" href = "#gloss_hole">hoole</a>. lyneal is that þat +is considred<i>e</i> after the p<i>ro</i>cesse, havyng<i>e</i> no +respect to the direccio<i>u</i>n of nombre in nombre, As a lyne +hath<i>e</i> but one dymensio<i>u</i>n that is to sey after the +length<i>e</i>. +<span class = "sidenote">Superficial numbers.</span> +Nombre sup<i>er</i>ficial is þ<i>a</i>t cometh<i>e</i> of ledyng<i>e</i> +of oo nombre into a-nother, wherfor it is called<i>e</i> +sup<i>er</i>ficial, for it hath<i>e</i> .2. nombres notyng or +mesuryng<i>e</i> hym, as a sup<i>er</i>ficiall<i>e</i> thyng<i>e</i> +hath<i>e</i> .2. dimensions, þ<i>a</i>t is to sey length<i>e</i> and +brede. +<span class = "sidenote">Square numbers.</span> +And for bycause a nombre may be had<i>e</i> in a-nother by .2. +man<i>er</i>s, þ<i>a</i>t is to sey other in hym-self<i>e</i>, +oþ<i>er</i> in anoþ<i>er</i>, Vnderstond<i>e</i> yf it be had in +hym-self, It is a quadrat. ffor dyvisio<i>u</i>n write by vnytes, +hath<i>e</i> .4. sides even as a quadrangill<i>e</i>. and yf the nombre +be had<i>e</i> in a-noþ<i>er</i>, the nombre is sup<i>er</i>ficiel and +not quadrat, as .2. had<i>e</i> in .3. maketh<i>e</i> .6. that is þe +first nombre sup<i>er</i>ficiell<i>e</i>; wherfor it is open þat +all<i>e</i> nombre quadrat is sup<i>er</i>ficiel, and not <a class = +"terms" name = "conuertide" id = "conuertide" href = +"#terms_conuertide">co<i>n</i>u<i>er</i>tid<i>e</i></a>. +<span class = "sidenote">The root of a square number.</span> +The rote of a nombre quadrat is þat nombre that is had of hym-self, as +twies .2. makith<i>e</i> 4. and .4. is the first nombre quadrat, and 2. +is his rote. 9. 8. 7. 6. 5. 4. 3. 2. 1. / The rote of the more quadrat +.3. 1. 4. 2. 6. +<span class = "sidenote">Notes of some examples of square roots here +interpolated.</span> +The most nombre quadrat 9. 8. 7. 5. 9. 3. 4. 7. 6. / the remenent +ou<i>er</i> the quadrat .6. 0. 8. 4. 5. / The first caas of nombre +quadrat .5. 4. 7. 5. 6. The rote .2. 3. 4. The second<i>e</i> caas .3. +8. 4. 5. The rote .6. 2. The third<i>e</i> caas .2. 8. 1. 9. The rote +.5. 3. The .4. caas .3. 2. 1. The rote .1. 7. / The 5. caas .9. 1. 2. 0. +4. / The rote 3. 0. 2. +<span class = "sidenote">Solid numbers.</span> +The <a class = "terms" name = "solide" id = "solide" href = +"#terms_solide">solid<i>e</i> nombre</a> or cubik<i>e</i> is þat +þ<i>a</i>t comytħe of double ledyng of nombre in nombre; +<span class = "sidenote">Three dimensions of solids.</span> +And it is cleped<i>e</i> a solid<i>e</i> body that hath<i>e</i> +þ<i>er</i>-in .3 +<span class = "pagenum">47</span> +<a name = "page47" id = "page47"> </a> +[dimensions] þat is to sey, length<i>e</i>, brede, and thiknesse. so +þ<i>a</i>t nombre hath<i>e</i> .3. nombres to be brought forth<i>e</i> +in hym. But nombre may be had<i>e</i> twies in nombre, for other it is +had<i>e</i> in hym-self<i>e</i>, oþ<i>er</i> in a-noþ<i>er</i>. +<span class = "sidenote">Cubic numbers.</span> +If a nombre be had<i>e</i> twies in hym-self, oþ<i>er</i> ones in his +quadrat, þ<i>a</i>t is the same, þ<i>a</i>t a <a class = "terms" name = +"cubike" id = "cubike" href = "#terms_cubike">cubik<i>e</i></a> +<span class = "linenum">Fol. 54.</span> +*is, And is the same that is solide. And yf a nombre twies be +had<i>e</i> in a-noþ<i>er</i>, the nombre is <a class = "gloss" name = +"clepede" id = "clepede" href = "#gloss_clepede">cleped<i>e</i></a> +solide and not cubik<i>e</i>, as twies .3. and þ<i>a</i>t .2. +makith<i>e</i> .12. +<span class = "sidenote">All cubics are solid numbers.</span> +Wherfor it is <a class = "gloss" name = "opyne" id = "opyne" href = +"#gloss_opyne">opyn<i>e</i></a> that all<i>e</i> cubik<i>e</i> nombre is +solid<i>e</i>, and not <a class = "terms" name = "conuertide2" id = +"conuertide2" href = +"#terms_conuertide"><i>con</i>u<i>er</i>tid<i>e</i></a>. Cubik<i>e</i> +is þ<i>a</i>t nombre þat comyth<i>e</i> of ledyng<i>e</i> of +hym-self<i>e</i> twyes, or ones in his quadrat. And here-by it is open +that o nombre is the <a class = "terms" name = "roote" id = "roote" href += "#terms_rote">roote</a> of a quadrat and of a cubik<i>e</i>. Natheles +the same nombre is not q<i>ua</i>drat and cubik<i>e</i>. +<span class = "sidenote">No number may be both linear and solid.</span> +Opyn<i>e</i> it is also that all<i>e</i> nombres may be a rote to a +q<i>ua</i>drat and cubik<i>e</i>, but not all<i>e</i> nombre quadrat or +cubik<i>e</i>. Therfor sithen þe ledyng<i>e</i> of vnyte in hym-self +ones or twies nought cometh<i>e</i> but vnytes, Seith<i>e</i> Boice in +Arsemetrik<i>e</i>, +<span class = "sidenote">Unity is not a number.</span> +that vnyte potencially is al nombre, and none in act. And +vndirstond<i>e</i> wele also that betwix euery .2. quadrat<i>es</i> ther +is a meene p<i>ro</i>porcionall<i>e</i>, +<span class = "sidenote">Examples of square roots.</span> +That is opened<i>e</i> thus; <a class = "terms" name = "lede_into" id = +"lede_into" href = "#terms_lede_into">lede the rote of o quadrat +into</a> the rote of the oþ<i>er</i> quadrat, and þan wolle þe meene +shew.</p> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Residuu<i>m</i></td> +<td> </td> +<td> </td> +<td>0</td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double">4</td> +<td> </td> +<td> </td> +<td>0</td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td>0</td> +<td> </td> +</tr> +<tr> +<td class = "words">Quadrand<i>e</i></td> +<td>4</td> +<td>3</td> +<td>5</td> +<td class = "double">6</td> +<td>3</td> +<td>0</td> +<td>2</td> +<td class = "double">9</td> +<td>1</td> +<td>7</td> +<td>4</td> +<td>2</td> +<td class = "double">4</td> +<td>1</td> +<td>9 </td> +<td>3</td> +<td>6</td> +</tr> +<tr> +<td class = "words">Duplum</td> +<td>1</td> +<td>2</td> +<td> </td> +<td class = "double"> </td> +<td>1</td> +<td>0</td> +<td> </td> +<td class = "double"> </td> +<td>2</td> +<td> </td> +<td>6</td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td>[8]</td> +<td><a class = "tag" name = "tag_art19" id = "tag_art19" href = +"#note_art19">19</a></td> +<td> </td> +</tr> +<tr> +<td class = "words">Subduplu<i>m</i></td> +<td> </td> +<td>6</td> +<td> </td> +<td class = "double">6</td> +<td> </td> +<td>5</td> +<td> </td> +<td class = "double">5</td> +<td>1</td> +<td> </td> +<td>3</td> +<td> </td> +<td class = "double">2</td> +<td> </td> +<td>4 </td> +<td> </td> +<td>4</td> +</tr> +</table> + +<p><span class = "sidenote">A note on mean proportionals.</span> +Also betwix the next .2. cubikis, me may fynde a double meene, that is +to sey a more meene and a lesse. The more meene thus, as to +bryng<i>e</i> the rote of the lesse into a quadrat of the more. The +lesse thus, If the rote of the more be brought Into the quadrat of the +lesse.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter X. Extraction of Square Root.</span></p> + +<p><span class = "dropcap">T</span>o<a class = "tag" name = "tag_art20" +id = "tag_art20" href = "#note_art20">20</a> draw a rote of the nombre +quadrat it is What-eu<i>er</i> nombre be p<i>ro</i>posed<i>e</i> to +fynde his rote and to se yf it be quadrat. +<span class = "sidenote">To find a square root.</span> +And yf it be not quadrat the rote of the most quadrat fynde out, vnder +the nombre p<i>ro</i>posed<i>e</i>. Therfor yf thow wilt the rote of any +quadrat nombre draw out, write the nombre by his differences, and +<a class = "gloss" name = "compt" id = "compt" href = +"#gloss_compt">compt</a> the nombre of the figures, and wete yf it be +od<i>e</i> or even. And yf +<span class = "sidenote">Begin with the last odd place.</span> +it be even, than most thow begynne worche vnder the last save one. And +yf it be od<i>e</i> w<i>i</i>t<i>h</i> the last; and forto sey it +shortly, al-weyes fro the last od<i>e</i> me shall<i>e</i> begynne. +Therfor vnder the last in an od place sette, +<span class = "sidenote">Find the nearest square root of that number, +subtract,</span> +me most fynd<i>e</i> a digit, the which<i>e</i> lad<i>e</i> in +hym-self<i>e</i> it puttith<i>e</i> away that, þat is ou<i>er</i> his +hede, oþ<i>er</i> as neigh<i>e</i> as me +<span class = "pagenum">48</span> +<a name = "page48" id = "page48"> </a> +may: suche a digit found<i>e</i> and w<i>i</i>t<i>h</i>draw fro his +ou<i>er</i>er, me most double that digit and sette the double vnder the +next figure toward<i>e</i> the right hond<i>e</i>, and his <a class = +"terms" name = "vnder_double" id = "vnder_double" href = +"#terms_vnder_double">vnder double</a> vnder hym. +<span class = "sidenote">double it,</span> +That done, than me most fy<i>n</i>d<i>e</i> a-noþ<i>er</i> digit vnder +the next figure bifore the doubled<i>e</i>, +<span class = "sidenote">and set the double one to the right.</span> +the which<i>e</i> +<span class = "linenum">Fol. 54 <i>b</i>.</span> +*brought in double setteth<i>e</i> a-way all<i>e</i> that is ou<i>er</i> +his hede as to <a class = "gloss" name = "rewarde" id = "rewarde" href = +"#gloss_rewarde">reward<i>e</i></a> of the doubled<i>e</i>: Than brought +into hym-self settith<i>e</i> all away in respect of hym-self, +<span class = "sidenote">Find the second figure by division.</span> +Other do it as nye as it may be do: other me may w<i>i</i>t<i>h</i>-draw +the digit +<a class = "tag" name = "tag_art21" id = "tag_art21" href = +"#note_art21">21</a>[last] found<i>e</i>, and lede hym in double or +double hym, and after in hym-self<i>e</i>; +<span class = "sidenote">Multiply the double by the second figure, and +add after it the square of the second figure, and subtract.</span> +Than Ioyne to-geder the p<i>ro</i>duccion<i>e</i> of them bothe, So that +the first figure of the last p<i>ro</i>duct be added<i>e</i> before the +first of the first p<i>ro</i>duct<i>es</i>, the second<i>e</i> of the +first, <i>et</i>c. and so forth<i>e</i>, <a class = "gloss" name = +"subtrahe" id = "subtrahe" href = "#gloss_subtrahe">subtrahe</a> fro the +totall<i>e</i> nombre in respect of þe digit.</p> + +<span class = "sidenote">Examples.</span> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">The residue</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td>5</td> +<td>4</td> +<td>3</td> +<td>2</td> +</tr> +<tr> +<td class = "words"><p>To be quadred<i>e</i></p></td> +<td>4</td> +<td>1</td> +<td>2</td> +<td>0</td> +<td class = "double">9</td> +<td>1</td> +<td>5</td> +<td>1</td> +<td>3</td> +<td class = "double">9</td> +<td>9</td> +<td>0</td> +<td>0</td> +<td>5</td> +<td>4</td> +<td>3</td> +<td>2</td> +</tr> +<tr> +<td class = "words">The double</td> +<td> </td> +<td>4</td> +<td>0</td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td>2</td> +<td> </td> +<td>4</td> +<td class = "double"> </td> +<td> </td> +<td>6</td> +<td> </td> +<td>0</td> +<td> </td> +<td> </td> +<td>0</td> +</tr> +<tr> +<td class = "words"><p>The vnder double</p></td> +<td>2</td> +<td> </td> +<td>0</td> +<td> </td> +<td class = "double">3</td> +<td>1</td> +<td> </td> +<td>2</td> +<td> </td> +<td class = "double">3</td> +<td>[3]</td> +<td> </td> +<td>[0]</td> +<td> </td> +<td>[0]</td> +<td> </td> +<td>0</td> +</tr> +</table> + +<p>And if it hap þ<i>a</i>t no digit may be found<i>e</i>, Than sette a +cifre vndre a cifre, and cesse not till<i>e</i> thow fynde a digit; and +whan thow hast founde it to double it, neþ<i>er</i> to sette the +doubled<i>e</i> forward<i>e</i> nether the vnder doubled<i>e</i>, +<span class = "sidenote">Special cases.</span> +Till thow fynde vndre the first figure a digit, the which<i>e</i> +lad<i>e</i> in all<i>e</i> double, settyng away all<i>e</i> that is +ou<i>er</i> hym in respect of the doubled<i>e</i>: Than lede hym into +hym-self<i>e</i>, and put a-way all<i>e</i> in regard<i>e</i> of hym, +other as nygh<i>e</i> as thow maist. +<span class = "sidenote">The residue.</span> +That done, other ought or nought wolle be the residue. If nought, than +it shewith<i>e</i> that a nombre componed<i>e</i> was the quadrat, and +his rote a digit last found<i>e</i> w<i>i</i>t<i>h</i> +vnder<i>e</i>-double other vndirdoubles, so that it be sette be-fore: +And yf ought<a class = "tag" name = "tag_art22" id = "tag_art22" href = +"#note_art22">22</a> +remayn<i>e</i>, that shew<i>i</i>t<i>h</i> that the nombre +p<i>ro</i>posed<i>e</i> was not quadrat,<a class = "tag" name = +"tag_art23" id = "tag_art23" href = "#note_art23">23</a> +but a digit [last found with the subduple or subduples +<span class = "pagenum">49</span> +<a name = "page49" id = "page49"> </a> +is]</p> + +<span class = "sidenote">This table is constructed for use in cube root +sums, giving the value of <ins class = "correction" title = "that is, ‘a(bˆ2).’">ab.<sup>2</sup></ins></span> + +<table class = "grid outline right" summary = "example"> +<tr> +<td class = "words">1</td> <!-- for extra spacing --> +<td>2</td> +<td>3</td> +<td>4</td> +<td>5</td> +<td>6</td> +<td>7 </td> +<td>8</td> +<td>9 </td> +</tr> +<tr> +<td class = "words">2</td> +<td>8</td> +<td>12</td> +<td>16</td> +<td>20</td> +<td>24</td> +<td>28 </td> +<td>32</td> +<td>36 </td> +</tr> +<tr> +<td class = "words">3</td> +<td>18</td> +<td>27</td> +<td>36</td> +<td>45</td> +<td>54</td> +<td>63 </td> +<td>72</td> +<td>81 </td> +</tr> +<tr> +<td class = "words">4</td> +<td>32</td> +<td>48</td> +<td>64</td> +<td>80</td> +<td>96</td> +<td>112<a class = "tag" name = "tag_art24" id = "tag_art24" href = +"#note_art24">24</a></td> +<td>128</td> +<td>144 </td> +</tr> +<tr> +<td class = "words">5</td> +<td>50</td> +<td>75</td> +<td>100</td> +<td>125</td> +<td>150</td> +<td>175 </td> +<td>200</td> +<td>225 </td> +</tr> +<tr> +<td class = "words">6</td> +<td>72</td> +<td>108</td> +<td>144</td> +<td>180</td> +<td>216</td> +<td>252 </td> +<td>288</td> +<td>324 </td> +</tr> +<tr> +<td class = "words">7</td> +<td>98</td> +<td>147</td> +<td>196</td> +<td>245</td> +<td>294</td> +<td>343 </td> +<td>393</td> +<td>441 </td> +</tr> +<tr> +<td class = "words">8</td> +<td>128</td> +<td>192</td> +<td>256</td> +<td>320</td> +<td>384</td> +<td>448 </td> +<td>512</td> +<td>576 </td> +</tr> +<tr> +<td class = "words">9</td> +<td>168</td> +<td>243</td> +<td>324</td> +<td>405</td> +<td>486</td> +<td>567 </td> +<td>648</td> +<td>729<a class = "tag" name = "tag_art25" id = "tag_art25" href = +"#note_art25">25</a></td> +</tr> +</table> + +<p>The rote of the most quadrat conteyned<i>e</i> vndre the nombre +p<i>ro</i>posed<i>e</i>. +<span class = "sidenote">How to prove the square root without or with a +remainder.</span> +Therfor yf thow wilt p<i>ro</i>ve yf thow have wele do or no, Multiplie +the digit last found<i>e</i> w<i>i</i>t<i>h</i> the vnder-double +oþ<i>er</i> vnder-doublis, and thow shalt fynde the same figures that +thow haddest before; And so that nought be the +<span class = "linenum">Fol. 55.</span> +*residue. And yf thow have any residue, than w<i>i</i>t<i>h</i> the +addicio<i>u</i>n þ<i>er</i>of that is res<i>er</i>ued<i>e</i> +w<i>i</i>t<i>h</i>-out in thy table, thow shalt fynd<i>e</i> thi first +figures as thow haddest them before, <i>et</i>c.</p> + +<p class = "headnote"><span class = "headnote"> +Chapter XI. Extraction of Cube Root.</span></p> + +<p><span class = "sidenote">Definition of a cubic number and a cube +root.</span> +<span class = "dropcap">H</span>eere folowith<i>e</i> the +extraccio<i>u</i>n of rotis in cubik<i>e</i> nombres; wher-for me most +se what is a nombre cubik<i>e</i>, and what is his roote, And what is +the extraccio<i>u</i>n of a rote. A nombre cubik<i>e</i> it is, as +it is before declared<i>e</i>, that cometh<i>e</i> of ledyng of any +nombre twies in hym-self<i>e</i>, other ones in his quadrat. The rote of +a nombre cubik<i>e</i> is the nombre that is twies had<i>e</i> in +hy<i>m</i>-self<i>e</i>, or ones in his quadrat. <a class = "gloss" name += "wherthurghe" id = "wherthurghe" href = +"#gloss_wherthurghe">Wher-thurgh<i>e</i></a> it is open, that +eu<i>er</i>y nombre quadrat or cubik<i>e</i> have the same rote, as it +is seid<i>e</i> before. And forto draw out the rote of a cubik<i>e</i>, +It is first to fynd<i>e</i> þe nombr<i>e</i> p<i>ro</i>posed<i>e</i> yf +it be a cubik<i>e</i>; And yf it be not, than thow most make +extraccio<i>u</i>n of his rote of the most cubik<i>e</i> vndre the +nombre p<i>ro</i>posid<i>e</i> his rote found<i>e</i>. Therfor +p<i>ro</i>posed<i>e</i> some nombre, whos cubical rote þ<i>o</i>u +woldest draw out; +<span class = "sidenote">Mark off the places in threes.</span> +First thow most compt the figures by fourthes, that is to sey in the +place of thousand<i>es</i>; +<span class = "sidenote">Find the first digit;</span> +And vnder the last thousand<i>e</i> place, thow most fynde a digit, the +which<i>e</i> lad<i>e</i> in hym-self cubikly puttith<i>e</i> a-way that +þat is ou<i>er</i> his hede as in respect of hym, other as nygh<i>e</i> +as thow maist. +<span class = "sidenote">treble it and place it under the next but one, +and multiply by the digit.</span> +That done, thow most <a class = "gloss" name = "trebille" id = +"trebille" href = "#gloss_trebille">trebill<i>e</i></a> the digit, and +that triplat is to be put vnder the .3. next figure toward<i>e</i> the +right hond<i>e</i>, And the <a class = "terms" name = "vnder_trebille" +id = "vnder_trebille" href = +"#terms_vnder_trebille">vnder-trebill<i>e</i></a> vnder the +trebill<i>e</i>; +<span class = "sidenote">Then find the second digit.</span> +Than me most fynd<i>e</i> a digit vndre the next figure bifore the +triplat, the which<i>e</i> w<i>i</i>t<i>h</i> his vnder-trebill<i>e</i> +had into a trebill<i>e</i>, aft<i>er</i>warde other vnder[trebille]<a +class = "tag" name = "tag_art26" id = "tag_art26" href = +"#note_art26">26</a> +had in his p<i>ro</i>duccio<i>u</i>n, putteth<i>e</i> a-way all<i>e</i> +that is ou<i>er</i> it in regard<i>e</i> of<a class = "tag" name = +"tag_art27" id = "tag_art27" href = "#note_art27">27</a> +[the triplat. Then lade in hymself puttithe away that þat is over his +hede as in respect of hym, other as nyghe as thou maist:] +<span class = "sidenote">Multiply the first triplate and the second +digit, twice by this digit.</span> +That done, thow most trebill<i>e</i> the digit ayene, and the triplat is +to be sette vnder the next .3. figure as before, And the +vnder-trebill<i>e</i> vnder the trebill<i>e</i>: and than most thow +sette forward<i>e</i> the first triplat w<i>i</i>t<i>h</i> his +vndre-trebill<i>e</i> by .2. differences. And than most thow fynde a +digit vnder the next figure before the triplat, the which<i>e</i> +with<i>e</i> his <a class = "terms" name = "vnder_triplat" id = +"vnder_triplat" href = "#terms_vnder_trebille">vnder-t<i>r</i>iplat</a> +had in his triplat afterward<i>e</i>, +<span class = "pagenum">50</span> +<a name = "page50" id = "page50"> </a> +<span class = "sidenote">Subtract.</span> +other vnder-treblis lad in p<i>ro</i>duct +<span class = "linenum">Fol. 55 <i>b</i>.</span> +*It sitteth<i>e</i> a-way ałł that is ou<i>er</i> his hede in respect of +the triplat than had in hym-self cubikly,<a class = "tag" name = +"tag_art28" id = "tag_art28" href = "#note_art28">28</a> +or as nygh<i>e</i> as ye may.</p> + +<span class = "sidenote">Examples.</span> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">Residuu<i>m</i></td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double">5 </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double">4</td> +<td> </td> +<td>1</td> +<td>0</td> +<td>1</td> +<td>9</td> +<td> </td> +</tr> +<tr> +<td class = "words">Cubicandu<i>s</i></td> +<td>8</td> +<td>3</td> +<td>6</td> +<td>5</td> +<td>4</td> +<td>3</td> +<td class = "double">2 </td> +<td>3</td> +<td>0</td> +<td>0</td> +<td>7</td> +<td>6</td> +<td class = "double">7</td> +<td>1</td> +<td>1</td> +<td>6</td> +<td>6</td> +<td>7</td> +<td> </td> +</tr> +<tr> +<td class = "words">Triplum</td> +<td> </td> +<td> </td> +<td>6</td> +<td>0</td> +<td> </td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>8</td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td> </td> +<td>4</td> +<td> </td> +<td> </td> +</tr> +<tr> +<td class = "words">Subt<i>r</i>iplu<i>m</i></td> +<td>2</td> +<td> </td> +<td> </td> +<td>0</td> +<td> </td> +<td> </td> +<td class = "double">[3]</td> +<td> </td> +<td> </td> +<td>6</td> +<td> </td> +<td> </td> +<td class = "double">7</td> +<td> </td> +<td>2</td> +<td> </td> +<td> </td> +<td>2</td> +<td> </td> +</tr> +</table> + +<p><span class = "sidenote">Continue this process till the first figure +is reached.</span> +Nother me shall<i>e</i> not cesse of the fyndyng<i>e</i> of that digit, +neither of his triplacio<i>u</i>n, neþ<i>er</i> of the triplat-is +<a class = "tag" name = "tag_art29" id = "tag_art29" href = +"#note_art29">29</a><a class = "terms" name = "anterioracioun" id = +"anterioracioun" href = +"#terms_anterioracioun">anteriorac<i>i</i>o<i>u</i>n</a>, that is to +sey, settyng forward<i>e</i> by .2. differences, Ne therof the +vndre-triple to be put vndre the triple, Nether of the +multiplicacio<i>u</i>n þ<i>er</i>of, Neither of the subtraccio<i>u</i>n, +till<i>e</i> it come to the first figure, vnder the which<i>e</i> is a +digitall<i>e</i> nombre to be found<i>e</i>, the which<i>e</i> +with<i>e</i> his vndre-treblis most be had<i>e</i> in tribles, +After-ward<i>e</i> w<i>i</i>t<i>h</i>out vnder-treblis to be had<i>e</i> +into <a class = "terms" name = "produccioun" id = "produccioun" href = +"#terms_produccioun">produccio<i>u</i>n</a>, settyng away all<i>e</i> +that is ou<i>er</i> the hed<i>e</i> of the triplat nombre, After had +into hymself<i>e</i> cubikly, +<span class = "sidenote">Examples.</span> +and sette all<i>e</i>-way that is ou<i>er</i> hym.</p> + +<table class = "grid outline float" summary = "example"> +<tr> +<td class = "words">To be <a class = "terms" name = "cubicede" id = +"cubicede" href = "#terms_cubicede">cubiced<i>e</i></a></td> +<td>1</td> +<td>7</td> +<td>2</td> +<td class = "double">8</td> +<td>3</td> +<td>2 </td> +<td>7</td> +<td>6</td> +<td>8</td> +</tr> +<tr> +<td class = "words">The triple</td> +<td> </td> +<td> </td> +<td>3</td> +<td class = "double">2</td> +<td> </td> +<td> </td> +<td> </td> +<td>9</td> +<td> </td> +</tr> +<tr> +<td class = "words">The vnder triple</td> +<td> </td> +<td> </td> +<td>1</td> +<td class = "double">2</td> +<td> </td> +<td>[3]</td> +<td> </td> +<td>3</td> +<td>3</td> +</tr> +</table> + +<p class = "nospace"> +Also note wele that the p<i>ro</i>ducc<i>i</i>on comyng<i>e</i> of the +ledyng of a digite found<i>e</i><a class = "tag" name = "tag_art30" id = +"tag_art30" href = "#note_art30">30</a> +me may adde to, and also w<i>i</i>t<i>h</i>-draw fro of the +totall<i>e</i> nombre sette above that digit so found<i>e</i>.<a class = +"tag" name = "tag_art31" id = "tag_art31" href = "#note_art31">31</a> +<span class = "sidenote">The residue.</span> +That done ought or nought most be the residue. If it be nought, It is +open that the nombre p<i>ro</i>posed<i>e</i> was a cubik<i>e</i> nombre, +And his rote a digit founde last w<i>i</i>t<i>h</i> the vnder-triples: +If the rote therof <a class = "gloss" name = "wex" id = "wex" href = +"#gloss_wex">wex</a> bad<i>e</i> in hym-self<i>e</i>, and +afterward<i>e</i> p<i>ro</i>duct they shall<i>e</i> make the first +fig<i>ur</i>es. And yf ought be in residue, kepe that +w<i>i</i>t<i>h</i>out in the table; and it is open<i>e</i> that the +nombre was not a cubik<i>e</i>. but a digit last founde +w<i>i</i>t<i>h</i> the vndirtriplis is rote of the most cubik<i>e</i> +vndre the nombre p<i>ro</i>posed<i>e</i> conteyned<i>e</i>, the +which<i>e</i> rote yf it be had<i>e</i> in hym-self<i>e</i>, +<span class = "sidenote">Special cases.</span> +And aft<i>er</i>ward<i>e</i> in a p<i>ro</i>duct of that shall<i>e</i> +growe the most cubik<i>e</i> vndre the nombre p<i>ro</i>posed<i>e</i> +conteyned<i>e</i>, And yf that be added<i>e</i> to a cubik<i>e</i> the +residue res<i>er</i>ued<i>e</i> in the table, woll<i>e</i> make the same +figures that ye had<i>e</i> first. +<span class = "sidenote">Special case.</span> +<span class = "linenum">Fol. 56.</span> +*And +<span class = "pagenum">51</span> +<a name = "page51" id = "page51"> </a> +yf no digit after the anterioracio<i>u</i>n<a class = "tag" name = +"tag_art32" id = "tag_art32" href = "#note_art32">32</a> +may not be found<i>e</i>, than put ther<i>e</i> a cifre vndre a cifre +vndir the third<i>e</i> figure, And put forward<i>e</i> þe +fig<i>ur</i>es. Note also wele that yf in the nombre +p<i>ro</i>posed<i>e</i> ther ben no place of thowsand<i>es</i>, me most +begynne vnder the first figure in the extraccio<i>u</i>n of the rote. +some vsen forto <a class = "gloss" name = "distingue" id = "distingue" +href = "#gloss_distingue">distingue</a> the nombre by threes, and ay +begynne forto wirch<i>e</i> vndre the first of the last <a class = +"terms" name = "ternary" id = "ternary" href = +"#terms_ternary">t<i>er</i>nary</a> other unco<i>m</i>plete nombre, the +which<i>e</i> maner of op<i>er</i>acio<i>u</i>n accordeth<i>e</i> +w<i>i</i>t<i>h</i> that before.</p> + +<span class = "sidenote">Examples.</span> + +<table class = "grid outline" summary = "example"> +<tr> +<td class = "words">The residue</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "double">0</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td>1</td> +<td>1</td> +</tr> +<tr> +<td class = "words">The cubicand<i>us</i></td> +<td>8 </td> +<td>0</td> +<td>0</td> +<td>0</td> +<td>0</td> +<td>0</td> +<td class = "double">0</td> +<td>8</td> +<td>2</td> +<td>4</td> +<td>2</td> +<td>4</td> +<td>1</td> +<td>9</td> +</tr> +<tr> +<td class = "words">The triple</td> +<td> </td> +<td> </td> +<td><a class = "tag" name = "tag_art33" id = "tag_art33" href = +"#note_art33">33</a> </td> +<td>0</td> +<td>0</td> +<td> </td> +<td class = "double"> </td> +<td> </td> +<td> </td> +<td>6</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td class = "words">The vndert<i>r</i>iple</td> +<td>[2]</td> +<td> </td> +<td> </td> +<td>0</td> +<td>0</td> +<td> </td> +<td class = "double"> </td> +<td>2</td> +<td> </td> +<td> </td> +<td>6</td> +<td>2</td> +<td> </td> +<td></td> +</tr> +</table> + +<p class = "nospace"> +And this at this tyme suffiseth<i>e</i> in extraccio<i>u</i>n of nombres +quadrat or cubik<i>es</i> <i>et</i>c.</p> + +<p class = "headnote"><span class = "headnote"> +Table of Numbers, &c.</span></p> + +<span class = "sidenote">A table of numbers; probably from the +Abacus.</span> + +<table class = "gloss" summary = "table of numbers"> +<tr class = "gloss"> +<td>1</td> +<td>2</td> +<td>3</td> +<td>4</td> +<td>5</td> +</tr> +<tr class = "orig"> +<td>one.</td> +<td>x.</td> +<td>an. hundred<i>e</i> /</td> +<td>a thowsand<i>e</i> /</td> +<td>x. thowsand<i>e</i> /</td> +</tr> +</table> + +<table class = "gloss" summary = "table of numbers"> +<tr class = "gloss"> +<td>6</td> +<td>7</td> +</tr> +<tr class = "orig"> +<td>An hundred<i>e</i> thowsand<i>e</i> /</td> +<td>A thowsand<i>e</i> tymes a thowsand<i>e</i> /</td> +</tr> +</table> + +<p class = "wide">x. thousand<i>e</i> tymes a thousand<i>e</i> / An +hundred<i>e</i> thousand<i>e</i> tymes a thousand<i>e</i> +A thousand<i>e</i> thousand<i>e</i> tymes a thousand<i>e</i> / this +is the x place <i>et</i>c.</p> + +<p class = "center">[Ende.]</p> + +<hr class = "mid" /> + +<div class = "footnote"> + +<p><a name = "note_art1" id = "note_art1" href = "#tag_art1">1.</a> +MS. Materiall<i>e</i>.</p> + +<p><a name = "note_art2" id = "note_art2" href = "#tag_art2">2.</a> +MS. Formall<i>e</i>.</p> + +<p><a name = "note_art3" id = "note_art3" href = "#tag_art3">3.</a> +‘the’ in MS.</p> + +<p><a name = "note_art4" id = "note_art4" href = "#tag_art4">4.</a> +‘be’ in MS.</p> + +<p><a name = "note_art5" id = "note_art5" href = "#tag_art5">5.</a> +‘and’ in MS.</p> + +<p><a name = "note_art6" id = "note_art6" href = "#tag_art6">6.</a> +‘is’ in MS.</p> + +<p><a name = "note_art7" id = "note_art7" href = "#tag_art7">7.</a> +6 in MS.</p> + +<p><a name = "note_art8" id = "note_art8" href = "#tag_art8">8.</a> +0 in MS.</p> + +<p><a name = "note_art9" id = "note_art9" href = "#tag_art9">9.</a> +2 in MS.</p> + +<p><a name = "note_art10" id = "note_art10" href = "#tag_art10">10.</a> +<i>sic.</i></p> + +<p><a name = "note_art11" id = "note_art11" href = "#tag_art11">11.</a> +‘And’ inserted in MS.</p> + +<p><a name = "note_art12" id = "note_art12" href = "#tag_art12">12.</a> +‘4 the’ inserted in MS.</p> + +<p><a name = "note_art13" id = "note_art13" href = "#tag_art13">13.</a> +‘to’ in MS.</p> + +<p><a name = "note_art14" id = "note_art14" href = "#tag_art14">14.</a> +‘that’ repeated in MS.</p> + +<p><a name = "note_art15" id = "note_art15" href = "#tag_art15">15.</a> +‘1’ in MS.</p> + +<p><a name = "note_art16" id = "note_art16" href = "#tag_art16">16.</a> +Blank in MS.</p> + +<p><a name = "note_art17" id = "note_art17" href = "#tag_art17">17.</a> +‘nought’ in MS.</p> + +<p><a name = "note_art18" id = "note_art18" href = "#tag_art18">18.</a> +3 written for 2 in MS.</p> + +<p><a name = "note_art19" id = "note_art19" href = "#tag_art19">19.</a> +7 in MS.</p> + +<p><a name = "note_art20" id = "note_art20" href = "#tag_art20">20.</a> +runs on in MS.</p> + +<p><a name = "note_art21" id = "note_art21" href = "#tag_art21">21.</a> +‘so’ in MS.</p> + +<p><a name = "note_art22" id = "note_art22" href = "#tag_art22">22.</a> +‘nought’ in MS.</p> + +<p><a name = "note_art23" id = "note_art23" href = "#tag_art23">23.</a> +MS. adds here: ‘wher-vpon<i>e</i> se the table in the next side of the +next leef<i>e</i>.’</p> + +<p><a name = "note_art24" id = "note_art24" href = "#tag_art24">24.</a> +110 in MS.</p> + +<p><a name = "note_art25" id = "note_art25" href = "#tag_art25">25.</a> +0 in MS.</p> + +<p><a name = "note_art26" id = "note_art26" href = "#tag_art26">26.</a> +double in MS.</p> + +<p><a name = "note_art27" id = "note_art27" href = "#tag_art27">27.</a> +‘it hym-self<i>e</i>’ in MS.</p> + +<p><a name = "note_art28" id = "note_art28" href = "#tag_art28">28.</a> +MS. adds here: ‘it setteth<i>e</i> a-way all<i>e</i> his respect.’</p> + +<p><a name = "note_art29" id = "note_art29" href = "#tag_art29">29.</a> +‘aucterioracio<i>u</i>n’ in MS.</p> + +<p><a name = "note_art30" id = "note_art30" href = "#tag_art30">30.</a> +MS. adds here: ’w<i>i</i>t<i>h</i> an vndre-triple / other of an +vndre-triple in a triple or triplat is And after-ward<i>e</i> +w<i>i</i>t<i>h</i> out vndre-triple other vndre-triplis in the +p<i>ro</i>duct and ayene that p<i>ro</i>duct that cometh<i>e</i> of the +ledyng<i>e</i> of a digit found<i>e</i> in hym-self<i>e</i> +cubicall<i>e</i>’ /</p> + +<p><a name = "note_art31" id = "note_art31" href = "#tag_art31">31.</a> +MS. adds here: ‘as ther had be a divisio<i>u</i>n made as it is +opened<i>e</i> before.’</p> + +<p><a name = "note_art32" id = "note_art32" href = "#tag_art32">32.</a> +MS. anteriocacio<i>u</i>n.</p> + +<p><a name = "note_art33" id = "note_art33" href = "#tag_art33">33.</a> +4 in MS.</p> + +</div> + +</div> <!-- end div art --> + + +<div class = "count"> + +<span class = "pagenum">52</span> +<a name = "page52" id = "page52"> </a> + +<p class = "illustration"> +<a name = "count" id = "count"> +<img src = "images/title_count.png" width = "323" height = "36" +alt = "Accomptynge by counters." +title = "Accomptynge by counters." /></a></p> + +<p class = "mynote"> +The original text was printed as a single continuous paragraph, with +no break between speakers; all examples were shown inline. It has been +broken up for this e-text.</p> + +<span class = "linenum">116 <i>b</i>.</span> + +<h4>* ¶ The seconde dialoge of accomptynge by counters.</h4> + +<p class = "inset"><i>Mayster.</i></p> + +<p><span class = "dropcap">N</span>owe that you haue learned the commen +kyndes of Arithmetyke with the penne, you shall se the same art in +cou<i>n</i>ters: whiche feate doth not only serue for them that can not +write and rede, but also for them that can do bothe, but haue not at +some tymes theyr penne or tables redye with them. This sorte is in two +fourmes co<i>m</i>menly. The one by lynes, and the other without lynes: +in that <a class = "gloss" name = "yt" id = "yt" href = +"#gloss_yt">y<sup>t</sup></a> hath lynes, the lynes do stande for the +order of places: and in y<sup>t</sup> that hath no lynes, there must be +sette in theyr stede so many counters as shall nede, for eche lyne one, +and they shall supplye the stede of the lynes.</p> + +<p><i>S.</i> By examples I shuld better p<i>er</i>ceaue your +meanynge.</p> + +<p><i>M.</i> For example of the +<span class = "linenum">117 <i>a</i></span> +ly*nes:</p> + +<table class = "backline small float" summary = "counters example"> +<tr> +<td> </td> +<td>1</td> +<td>0 0 0 0 0</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>0 0 0 0</td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>1</td> +<td>0 0 0</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>0 0</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td>0</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>1</td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Lo here you se .vi. lynes whiche stande for syxe places so that the +nethermost standeth for y<sup>e</sup> fyrst place, and the next aboue +it, for the second: and so vpward tyll you come to the hyghest, which is +the syxte lyne, and standeth for the syxte place. +<span class = "sidenote">Numeration.</span> +Now what is the valewe of euery place or lyne, you may perceaue by the +figures whiche I haue set on them, which is accordynge as you learned +before in the Numeration of figures by the penne: for the fyrste place +is the place of vnities or ones, and euery counter set in that lyne +betokeneth but one: <i>and</i> the seconde lyne is the place of 10, for +euery counter there, standeth for 10. The thyrd lyne the place of +hundredes: the fourth of thousandes: <i>and</i> so forth.</p> + +<p><i>S.</i> Syr I do perceaue that the same order is here of lynes, as +was in the other figures +<span class = "linenum">117 <i>b</i>.</span> +*by places, so that you shall not nede longer to stande about +Numeration, excepte there be any other difference.</p> + +<p><i>M.</i> Yf you do vndersta<i>n</i>de it, then how wyll you set +1543?</p> + +<table class = "backline small float" summary = "counters example"> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>1</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>5</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>4</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>3</td> +<td> </td> +</tr> +</table> + +<p><i>S.</i> Thus, as I suppose.</p> + +<p><i>M.</i> You haue set y<sup>e</sup> places truely, but your figures +be not mete for this vse: +<span class = "pagenum">53</span> +<a name = "page53" id = "page53"> </a> +for the metest figure in this behalfe, is the figure of a cou<i>n</i>ter +round, as you se here, where I haue expressed that same summe.</p> + +<table class = "backline float" summary = "counters example"> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>×</td> +<td>o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> </td> +</tr> +</table> + +<p><i>S.</i> So that you haue not one figure for 2, nor 3, nor 4, and so +forth, but as many digettes as you haue, you set in the lowest lyne: and +for euery 10 you set one in the second line: and so of other. But I know +not by what reason you set that one counter for 500 betwene two +lynes.</p> + +<p><i>M.</i> you shall remember this, that when so euer you nede to set +downe 5, 50, or 500, or 5000, or so forth any other nomber, whose +numerator +<span class = "linenum">118 <i>a</i>.</span> +*is 5, you shall set one counter for it, in the next space aboue the +lyne that it hath his denomination of, as in this example of that 500, +bycause the numerator is 5, it must be set in a voyd space: and bycause +the denominator is hundred, I knowe that his place is the voyde +space next aboue hundredes, that is to say, aboue the thyrd lyne. And +farther you shall marke, that in all workynge by this sorte, yf you +shall sette downe any summe betwene 4 and 10, for the fyrste parte of +that nomber you shall set downe 5, & then so many counters more, as +there reste no<i>m</i>bers aboue 5. And this is true bothe of digettes +and articles. And for example I wyll set downe this su<i>m</i>me +287965,</p> + +<table class = "backline float" summary = "counters example"> +<tr> +<td>X</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> o o</td> +</tr> +<tr> +<td> </td> +<td> o o<span class = "five">°</span>o</td> +</tr> +<tr> +<td>X</td> +<td> o o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +which su<i>m</i>me yf you marke well, you nede none other +exa<i>m</i>ples for to lerne the numeration of +<span class = "linenum">118 <i>b</i>.</span> +*this forme. But this shal you marke, that as you dyd in the other kynde +of arithmetike, set a pricke in the places of thousa<i>n</i>des, in this +worke you shall sette a starre, as you se here.</p> + +<p class = "headnote"><span class = "headnote"> +Addition on the Counting Board.</span></p> + +<p><span class = "sidenote">Addition.</span> +<i>S.</i> Then I perceave numeration, but I praye you, howe shall I do +in this arte to adde two summes or more together?</p> + +<p><i>M.</i> The easyest way in this arte is, to adde but 2 +su<i>m</i>mes at ones together: how be it you may adde more, as I wyll +tell you anone. Therfore when you wyll adde two su<i>m</i>mes, you shall +fyrst set downe one of them, it <a class = "gloss" name = "forseth" id = +"forseth" href = "#gloss_forseth">forseth</a> not whiche, <i>and</i> +then by it drawe a lyne crosse the other lynes. And afterward set downe +the other su<i>m</i>me, so that that lyne may be betwene them, as yf you +wolde adde 2659 to 8342, you must set your su<i>m</i>mes as you se +here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o<span class = "five">°</span>o o</td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +</table> + +<p class = "nospace"> +And then yf you lyst, you +<span class = "linenum">119 <i>a</i>.</span> +*may adde the one to the other in the same place, or els you may adde +them both together in a newe place: which waye, bycause it is moste +playnest, I wyll showe you fyrst. Therfore wyl I begynne at the +vnites, whiche in the fyrst su<i>m</i>me is but 2, <i>and</i> in +y<sup>e</sup> second su<i>m</i>me 9, that maketh 11, those do I take vp, +and for them I set 11 in the new roume, thus,</p> + +<span class = "pagenum">54</span> +<a name = "page54" id = "page54"> </a> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o<span class = "five">°</span>o o</td> +<td>o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td>o<span class = "five">°</span></td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td> <span class = "five">°</span></td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +Then do I take vp all y<sup>e</sup> articles vnder a hundred, which in +the fyrst su<i>m</i>me are 40, and in the second summe 50, that maketh +90: or you may saye better, that in the fyrste summe there are 4 +articles of 10, and in the seconde summe 5, which make 9, but then take +hede that you sette them in theyr +<span class = "linenum">119 <i>b</i>.</span> +*ryght lynes as you se here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o<span class = "five">°</span>o o</td> +<td>o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td>o<span class = "five">°</span></td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +Where I haue taken awaye 40 fro<i>m</i> the fyrste su<i>m</i>me, and 50 +from y<sup>e</sup> second, and in theyr stede I haue set 90 in the +thyrde, whiche I haue set playnely y<sup>t</sup> you myght well perceaue +it: how be it seynge that 90 with the 10 that was in y<sup>e</sup> thyrd +roume all redy, doth make 100, I myghte better for those 6 +cou<i>n</i>ters set 1 in the thyrde lyne, thus:</p> + +<table class = "backline floatleft" summary = "counters example"> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +For it is all one summe as you may se, but it is beste, neuer to set 5 +cou<i>n</i>ters in any line, for that may be done with 1 cou<i>n</i>ter +in a hygher place.</p> + +<p><i>S.</i> I iudge that good reaso<i>n</i>, for many are vnnedefull, +where one wyll serue.</p> + +<p><i>M.</i> Well, then +<span class = "linenum">120 <i>a</i>.</span> +*wyll I adde forth of hundredes: I fynde 3 in the fyrste summe, and +6 in the seconde, whiche make 900, them do I take vp <i>and</i> set in +the thyrd roume where is one hundred all redy, to whiche I put 900, and +it wyll be 1000, therfore I set one cou<i>n</i>ter in the fourth lyne +for them all, as you se here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o<span class = "five">°</span>o o</td> +<td>o o</td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +Then adde I y<sup>e</sup> thousandes together, whiche in the fyrst +su<i>m</i>me are 8000, <i>and</i> in y<sup>e</sup> second 2000, that +maketh 10000: them do I take vp fro<i>m</i> those two places, and for +them I set one counter in the fyfte lyne, and then appereth as +you se,</p> + +<table class = "backline floatleft" summary = "counters example"> +<tr> +<td> </td> +<td>o</td> +</tr> +<tr> +<td>X</td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +to be 11001, for so many doth amount of the addition of 8342 to +2659.</p> + +<p><span class = "linenum">120 <i>b</i>.</span> +*<i>S.</i> Syr, this I do perceave: but how shall I set one su<i>m</i>me +to an other, not chaungynge them to a thyrde place?</p> + +<p><i>M.</i> Marke well how I do it: I wyll adde together 65436, +and 3245, whiche fyrste I set downe thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o <span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o <span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Then do I begynne with the smalest, which in the fyrst summe is <ins +class = "correction" title = "invisible ‘5’ supplied by transcriber">5</ins>, that do I take vp, and wold put to the other 5 in +the seconde summe, sauynge that two counters can not be set in a voyd +place of 5, but for them bothe I must set 1 in the seconde lyne, which +is the place of 10, therfore I take vp the 5 of the fyrst su<i>m</i>me, +<i>and</i> the 5 of the seco<i>n</i>de, and for them I set 1 in the +seco<i>n</i>d lyne, +<span class = "linenum">121 <i>a</i>.</span> +*as you se here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +Then do I lyke wayes take vp the 4 counters of the fyrste su<i>m</i>me +<i>and</i> +<span class = "pagenum">55</span> +<a name = "page55" id = "page55"> </a> +seconde lyne (which make 40) and adde them to the 4 counters of the same +lyne, in the second su<i>m</i>me, and it maketh 80, But as I sayde I +maye not conueniently set aboue 4 cou<i>n</i>ters in one lyne, therfore +to those 4 that I toke vp in the fyrst su<i>m</i>me, I take one +also of the seconde su<i>m</i>me, and then haue I taken vp 50, for +whiche 5 counters I sette downe one in the space ouer y<sup>e</sup> +second lyne, as here doth appere.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">121 <i>b</i></span> +*and then is there 80, as well <a class = "gloss" name = "wt" id = "wt" +href = "#gloss_wt">w<sup>t</sup></a> those 4 counters, as yf I had set +downe y<sup>e</sup> other 4 also. Now do I take the 200 in the fyrste +su<i>m</i>me, and adde them to the 400 in the seconde summe, and it +maketh 600, therfore I take vp the 2 counters in the fyrste summe, and 3 +of them in the seconde summe, and for them 5 I set 1 in y<sup>e</sup> +space aboue, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o</td> +</tr> +</table> + +<p class = "nospace"> +Then I take y<sup>e</sup> 3000 in y<sup>e</sup> fyrste su<i>m</i>me, +vnto whiche there are none in the second summe agreynge, therfore I do +onely remoue those 3 counters from the fyrste summe into the seconde, as +here doth appere.</p> + +<table class = "backline floatleft" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> o<span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td> o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td>o <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td> o</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">122 <i>a</i></span> +*And so you see the hole su<i>m</i>me, that amou<i>n</i>teth of the +addytio<i>n</i> of 65436 with 3245 to be 6868[1]. And yf you haue marked +these two exa<i>m</i>ples well, you nede no farther enstructio<i>n</i> +in Addition of 2 only summes: but yf you haue more then two summes to +adde, you may adde them thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o o</td> +<td>o o o o</td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o</td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o</td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o<span class = "five">°</span></td> +<td> <span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Fyrst adde two of them, and then adde the thyrde, and y<sup>e</sup> +fourth, or more yf there be so many: as yf I wolde adde 2679 with 4286 +and 1391. Fyrste I adde the two fyrste summes thus. +<span class = "linenum">122 <i>b</i>.</span> +*And then I adde the thyrde thereto thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o</td> +<td>o<span class = "five">°</span></td> +<td>o o o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td>o<span class = "five">°</span>o o o</td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td> <span class = "five">°</span>o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td> <span class = "five">°</span></td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +And so of more yf you haue them.</p> + +<p class = "headnote"><span class = "headnote"> +Subtraction on the Counting Board.</span></p> + +<p><i>S.</i> Nowe I thynke beste that you passe forth to Subtraction, +except there be any wayes to examyn this maner of Addition, then I +thynke that were good to be knowen nexte.</p> + +<p><i>M.</i> There is the same profe here that is +<span class = "sidenote">Subtraction.</span> +in the other Addition by the penne, I meane Subtraction, for that +onely is a sure waye: but consyderynge that Subtraction must be fyrste +knowen, I wyl fyrste teache you the arte of Subtraction, and that +by this example: I wolde subtracte 2892 out of 8746. These summes +must I set downe as I dyd in Addition: but here it is best +<span class = "linenum">116 <i>a</i> <ins class = "correction" title = +"editor’s ‘sic’ for jump back in line numbering">(<i>sic</i>)</ins>.</span> +*to set the lesser no<i>m</i>ber fyrste, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o o</td> +<td>o o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Then shall I begynne to subtracte the greatest nombres fyrste (contrary +to the vse of the penne) +<span class = "pagenum">56</span> +<a name = "page56" id = "page56"> </a> +y<sup>t</sup> is the thousandes in this exa<i>m</i>ple: therfore I fynd +amongest the thousandes 2, for which I withdrawe so many fro<i>m</i> the +seconde summe (where are 8) and so remayneth there 6, as this +exa<i>m</i>ple showeth.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td>+</td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Then do I lyke wayes with the hundredes, of whiche in the fyrste summe +<span class = "linenum">116 <i>b</i>.</span> +*I fynde 8, and is the seconde summe but 7, out of whiche I can not take +8, therfore thus muste I do: I muste loke how moche my summe +dyffereth from 10, whiche I fynde here to be 2, then must I bate for my +su<i>m</i>me of 800, one thousande, and set downe the excesse of +hundredes, that is to saye 2, for so moche 100[0] is more then I shuld +take vp. Therfore fro<i>m</i> the fyrste su<i>m</i>me I take that 800, +and from the second su<i>m</i>me where are 6000, I take vp one +thousande, and leue 5000; but then set I downe the 200 unto the 700 +y<sup>t</sup> are there all redye, and make them 900 thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>+</td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td>o o<span class = "five">°</span>o o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Then come I to the articles of te<i>n</i>nes where in the fyrste +su<i>m</i>me I fynde 90, +<span class = "linenum">117 <i>a</i>.</span> +*and in the seconde su<i>m</i>me but only 40: Now consyderyng that 90 +can not be bated from 40, I loke how moche y<sup>t</sup> 90 doth +dyffer from the next summe aboue it, that is 100 (or elles whiche is all +to one effecte, I loke how moch 9 doth dyffer fro<i>m</i> 10) +<i>and</i> I fynd it to be 1, then in the stede of that 90, I do +take from the second summe 100: but consyderynge that it is 10 to moche, +I set downe 1 in y<sup>e</sup> nexte lyne beneth for it, as you se +here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>+</td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Sauynge that here I haue set one counter in y<sup>e</sup> space in stede +of 5 in y<sup>e</sup> nexte lyne. And thus haue I subtracted all saue +two, which I must bate from the 6 in the second summe, and there wyll +remayne 4, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td>=</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +</tr> +</table> + +<p class = "nospace"> +So y<sup>t</sup> yf I subtracte 2892 fro<i>m</i> 8746, the <a class = +"gloss" name = "remayner" id = "remayner" href = +"#gloss_remayner">remayner</a> wyll be 5854, +<span class = "linenum">117 <i>b</i>.</span> +*And that this is truely wrought, you maye proue by Addition: for yf you +adde to this remayner the same su<i>m</i>me that you dyd subtracte, then +wyll the formar su<i>m</i>me 8746 amount agayne.</p> + +<p><i>S.</i> That wyll I proue: and fyrst I set the su<i>m</i>me that +was subtracted, which was 2892, <i>and</i> the<i>n</i> the remayner +5854, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o o<span class = "five">°</span>o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o o o o</td> +</tr> +</table> + +<p class = "nospace"> +Then do I adde fyrst y<sup>e</sup> 2 to 4, whiche maketh 6, so take I vp +5 of those counters, and in theyr stede I sette 1 in the space, as here +appereth.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">118 <i>a</i>.</span> +*Then do I adde the 90 nexte aboue to the 50, and it maketh 140, +therfore I take vp those 6 counters, and for them I sette 1 to the +hundredes in y<sup>e</sup> thyrde lyne, <i>and</i> 4 in y<sup>e</sup> +<span class = "pagenum">57</span> +<a name = "page57" id = "page57"> </a> +second lyne, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> <span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +Then do I come to the hundredes, of whiche I fynde 8 in the fyrst summe, +and 9 in y<sup>e</sup> second, that maketh 1700, therfore I take vp +those 9 counters, and in theyr stede I sette 1 in the .iiii. lyne, and 1 +in the space nexte beneth, and 2 in the thyrde lyne, as you se here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +</table> + +<p class = "nospace"> +Then is there lefte in the fyrste summe but only 2000, whiche I shall +take vp from thence, and set +<span class = "linenum">118 <i>b</i>.</span> +*in the same lyne in y<sup>e</sup> second su<i>m</i>me, to y<sup>e</sup> +one y<sup>t</sup> is there all redy: <i>and</i> then wyll the hole +su<i>m</i>me appere (as you may wel se) to be 8746, which was +y<sup>e</sup> fyrst grosse summe, <i>and</i> therfore I do perceaue, +that I hadde well subtracted before.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td>o o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +And thus you may se how Subtraction maye be tryed by Addition.</p> + +<p><i>S.</i> I perceaue the same order here w<sup>t</sup> +cou<i>n</i>ters, y<sup>t</sup> I lerned before in figures.</p> + +<p><i>M.</i> Then let me se howe can you trye Addition by +Subtraction.</p> + +<p><i>S.</i> Fyrste I wyl set forth this exa<i>m</i>ple of +Additio<i>n</i> where I haue added 2189 to 4988, and the hole +su<i>m</i>me appereth to be 7177,</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td>o o o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td>o<span class = "five">°</span>o o o</td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">119 <i>a</i>.</span> +*Nowe to trye whether that su<i>m</i>me be well added or no, I wyll +subtract one of the fyrst two su<i>m</i>mes from the thyrd, and yf I +haue well done y<sup>e</sup> remayner wyll be lyke that other +su<i>m</i>me. As for example: I wyll subtracte the fyrste summe +from the thyrde, whiche I set thus in theyr order.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +Then do I subtract 2000 of the fyrste summe fro<i>m</i> y<sup>e</sup> +second su<i>m</i>me, and then remayneth there 5000 thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>X</td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +Then in the thyrd lyne, I subtract y<sup>e</sup> 100 of the fyrste +summe, fro<i>m</i> the second su<i>m</i>me, where is onely 100 also, and +then in y<sup>e</sup> thyrde lyne <a class = "gloss" name = "resteth1" +id = "resteth1" href = "#gloss_resteth">resteth</a> nothyng. Then in the +second lyne with his space ouer hym, I fynde 80, which I shuld +subtract +<span class = "linenum">119 <i>b</i>.</span> +*from the other su<i>m</i>me, then seyng there are but only 70 I must +take it out of some hygher summe, which is here only 5000, therfore I +take vp 5000, and seyng that it is to moch by 4920, I sette downe +so many in the seconde roume, whiche with the 70 beynge there all redy +do make 4990, & then the summes doth stande thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +</table> + +<p class = "nospace"> +Yet remayneth there in the fyrst su<i>m</i>me 9, to be bated from the +second summe, where in that place of vnities dothe appere only 7, then I +muste bate a hygher su<i>m</i>me, that is to saye 10, but seynge that 10 +is more then 9 (which I shulde abate) by 1, therfore shall I take vp one +counter from the seconde lyne, <i>and</i> set downe the same in the +fyrst +<span class = "linenum">120 <i>a</i>.</span> +*or +<span class = "pagenum">58</span> +<a name = "page58" id = "page58"> </a> +lowest lyne, as you se here.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +</table> + +<p class = "nospace"> +And so haue I ended this worke, <i>and</i> the su<i>m</i>me appereth to +be y<sup>e</sup> same, whiche was y<sup>e</sup> seconde summe of my +addition, and therfore I perceaue, I haue wel done.</p> + +<p><i>M.</i> To stande longer about this, it is but folye: excepte that +this you maye also vnderstande, that many do begynne to subtracte with +counters, not at the hyghest su<i>m</i>me, as I haue taught you, but at +the nethermoste, as they do vse to adde: and when the summe to be +abatyd, in any lyne appeareth greater then the other, then do they +borowe one of the next hygher roume, as for example: yf they shuld abate +1846 from 2378, they set y<sup>e</sup> summes thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o</td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o<span class = "five">°</span>o o</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">120 <i>b</i>.</span> +*And fyrste they take 6 whiche is in the lower lyne, and his space from +8 in the same roumes, in y<sup>e</sup> second su<i>m</i>me, and yet +there remayneth 2 counters in the lowest lyne. Then in the second lyne +must 4 be subtracte from 7, and so remayneth there 3. Then 8 in the +thyrde lyne and his space, from 3 of the second summe can not be, +therfore do they bate it from a hygher roume, that is, from 1000, and +bycause that 1000 is to moch by 200, therfore must I sette downe 200 in +the thyrde lyne, after I haue taken vp 1000 from the fourth lyne: then +is there yet 1000 in the fourth lyne of the fyrst summe, whiche yf I +withdrawe from the seconde summe, then doth all y<sup>e</sup> figures +stande in this order.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td></td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td>o o</td> +</tr> +</table> + +<p class = "nospace"> +So that (as you se) it differeth not greatly whether you begynne +subtractio<i>n</i> at the hygher lynes, or at +<span class = "linenum">121 <i>a</i>.</span> +*the lower. How be it, as some menne lyke the one waye beste, so some +lyke the other: therfore you now knowyng bothe, may vse whiche you +lyst.</p> + +<p class = "headnote"><span class = "headnote"> +Multiplication by Counters.</span></p> + +<p><span class = "sidenote">Multiplication.</span> +But nowe touchynge Multiplicatio<i>n</i>: you shall set your +no<i>m</i>bers in two roumes, as you dyd in those two other kyndes, but +so that the multiplier be set in the fyrste roume. Then shall you begyn +with the hyghest no<i>m</i>bers of y<sup>e</sup> seconde roume, and +multiply them fyrst after this sort. Take that ouermost lyne in your +fyrst workynge, as yf it were the lowest lyne, setting on it some +mouable marke, as you lyste, and loke how many counters be in hym, take +them vp, and for them set downe the hole multyplyer, so many tymes as +you toke vp counters, reckenyng, I saye that lyne for the vnites: +<i>and</i> when you haue so done with the hygheest no<i>m</i>ber then +come to the nexte lyne beneth, <i>and</i> do euen so with it, and so +with y<sup>e</sup> next, tyll you haue done all. And yf there be any +nomber in a space, then for it +<span class = "linenum">121 <i>b</i>.</span> +*shall you take y<sup>e</sup> multiplyer 5 tymes, and then must you +recken that lyne for the vnites whiche is nexte beneth that space: or +els +<span class = "pagenum">59</span> +<a name = "page59" id = "page59"> </a> +after a shorter way, you shall take only halfe the multyplyer, but then +shall you take the lyne nexte aboue that space, for the lyne of vnites: +but in suche workynge, yf chau<i>n</i>ce your multyplyer be an odde +nomber, so that you can not take the halfe of it iustly, then muste you +take the greater halfe, and set downe that, as if that it were the iuste +halfe, and farther you shall set one cou<i>n</i>ter in the space beneth +that line, which you recken for the lyne of vnities, or els only remoue +forward the same that is to be multyplyed.</p> + +<p><i>S.</i> Yf you set forth an example hereto I thynke I shal perceaue +you.</p> + +<p><i>M.</i> Take this exa<i>m</i>ple: I wold multiply 1542 by 365, +therfore I set y<sup>e</sup> nombers thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">122 <i>a</i>.</span> +*Then fyrste I begynne at the 1000 in y<sup>e</sup> hyghest roume, as yf +it were y<sup>e</sup> fyrst place, & I take it vp, settynge downe +for it so often (that is ones) the multyplyer, which is 365, thus, as +you se here:</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +<td class = "plain"> </td> +</tr> +<tr> +<td>X</td> +<td> </td> +<td> <span class = "five">°</span></td> +<td> </td> +<td class = "plain"> +<img src = "images/finger_left.gif" width = "30" height = "13" +alt = "<--" /></td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> </td> +<td> <span class = "five">°</span></td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +<td class = "plain"> </td> +</tr> +</table> + +<p class = "nospace"> +where for the one counter taken vp from the fourth lyne, I haue +sette downe other 6, whiche make y<sup>e</sup> su<i>m</i>me of the +multyplyer, reckenynge that fourth lyne, as yf it were the fyrste: +whiche thyng I haue marked by the hand set at the begynnyng of +y<sup>e</sup> same,</p> + +<p><i>S.</i> I perceaue this well: for in dede, this summe that you haue +set downe is 365000, for so moche doth amount +<span class = "linenum">122 <i>b</i>.</span> +*of 1000, multiplyed by 365.</p> + +<p><i>M.</i> Well the<i>n</i> to go forth, in the nexte space I fynde +one counter which I remoue forward but take not vp, but do (as in such +case I must) set downe the greater halfe of my multiplier (seyng it is +an odde no<i>m</i>ber) which is 182, <i>and</i> here I do styll let that +fourth place stand, as yf it were y<sup>e</sup> fyrst:</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o</td> +<td>o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o<span class = "five">°</span>o o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o<span class = "five">°</span>o</td> +<td class = "plain"> +<img src = "images/finger_left.gif" width = "30" height = "13" +alt = "<--" /></td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +<td> </td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +<td> </td> +<td class = "plain"> </td> +</tr> +</table> + +<p class = "nospace"> +as in this fourme you se, where I haue set this multiplycatio<i>n</i> +with y<sup>e</sup> other: but for the ease of your +vndersta<i>n</i>dynge, I haue set a lytell lyne betwene them: now +shulde they both in one su<i>m</i>me stand thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o o o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o</td> +<td class = "plain"> +<img src = "images/finger_left.gif" width = "30" height = "13" +alt = "<--" /></td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> </td> +<td> <span class = "five">°</span></td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +<td class = "plain"> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">123 <i>a</i>.</span> +*Howe be it an other fourme to multyplye suche cou<i>n</i>ters i<i>n</i> +space is this: Fyrst to remoue the fynger to the lyne nexte benethe +y<sup>e</sup> space, <i>and</i> then to take vp y<sup>e</sup> +cou<i>n</i>ter, <i>and</i> to set downe y<sup>e</sup> multiplyer .v. +tymes, as here you se.</p> + +<!-- 5th column typo 35500 for 36500 --> + +<table class = "backline" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o<span class = "five">°</span></td> +<td><ins class = "correction" title = "shown as printed"> <span +class = "five">°</span></ins></td> +<td>o<span class = "five">°</span></td> +<td>o<span class = "five">°</span></td> +<td>o<span class = "five">°</span></td> +<td> </td> +</tr> +<tr> +<td> +<span class = "finger left"> +<img src = "images/finger.gif" width = "30" height = "13" +alt = "-->" /></span> +X</td> +<td>o o o</td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +<td> <span class = "five">°</span></td> +<td> <span class = "five">°</span></td> +<td> <span class = "five">°</span></td> +<td> <span class = "five">°</span></td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Which su<i>m</i>mes yf you do adde together into one su<i>m</i>me, you +shal p<i>er</i>ceaue that it wyll be y<sup>e</sup> +<span class = "pagenum">60</span> +<a name = "page60" id = "page60"> </a> +same y<sup>t</sup> appeareth of y<sup>e</sup> other worki<i>n</i>g +before, so that +<span class = "linenum">123 <i>b</i>.</span> +*bothe sortes are to one entent, but as the other is much shorter, so +this is playner to reason, for suche as haue had small exercyse in this +arte. Not withstandynge you maye adde them in your mynde before you +sette them downe, as in this exa<i>m</i>ple, you myghte haue sayde 5 +tymes 300 is 1500, <i>and</i> 5 tymes 60 is 300, also 5 tymes 5 is 25, +whiche all put together do make 1825, which you maye at one tyme set +downe yf you lyste. But nowe to go forth, I must remoue the hand to +the nexte counters, whiche are in the second lyne, and there must I take +vp those 4 counters, settynge downe for them my multiplyer 4 tymes, +whiche thynge other I maye do at 4 tymes seuerally, or elles I may +gather that hole summe in my mynde fyrste, and then set it downe: as to +saye 4 tymes 300 is 1200: 4 tymes 60 are 240: and 4 tymes 5 make 20: +y<sup>t</sup> is in all 1460, y<sup>t</sup> shall I set downe also: as +here you se.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +<td> </td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o o o o</td> +<td>o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td>X</td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o</td> +<td>o o o o</td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td>o o o</td> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o<span class = "five">°</span></td> +<td class = "plain"> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td> </td> +<td> </td> +<td> </td> +<td class = "plain"><img src = "images/finger_left.gif" width = "30" +height = "13" +alt = "<--" /></td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +<td> </td> +<td class = "plain"> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">124 <i>a</i>.</span> +*whiche yf I ioyne in one summe with the formar nombers, it wyll appeare +thus.</p> + +<table class = "backline floatleft" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td class = "plain"> </td> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td class = "plain"> </td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td class = "plain"> </td> +<td> </td> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td class = "plain"> +<img src = "images/finger.gif" width = "30" height = "13" +alt = "<--" /></td> +<td>o o o</td> +<td> </td> +<td>o</td> +</tr> +<tr> +<td class = "plain"> </td> +<td>o<span class = "five">°</span></td> +<td> </td> +<td> </td> +</tr> +<tr> +<td class = "plain"> </td> +<td> <span class = "five">°</span></td> +<td>o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then to ende this multiplycation, I remoue the fynger to the lowest +lyne, where are onely 2, them do I take vp, and in theyr stede do I set +downe twyse 365, that is 730, for which I set +<span class = "linenum">124 <i>b</i>.</span> +*one in the space aboue the thyrd lyne for 500, and 2 more in the thyrd +lyne with that one that is there all redye, and the reste in theyr +order, <i>and</i> so haue I ended the hole summe thus.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td>o o o</td> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +</tr> +<tr> +<td>o<span class = "five">°</span></td> +<td> </td> +<td>o o o</td> +</tr> +<tr> +<td> <span class = "five">°</span></td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Wherby you se, that 1542 (which is the nomber of yeares syth Ch[r]ystes +incarnation) beyng multyplyed by 365 <ins class = "correction" title = +"open parenthesis missing">(which</ins> is the nomber of dayes in one +yeare) dothe amounte vnto 562830, which declareth y<sup>e</sup> +no<i>m</i>ber of daies sith Chrystes incarnatio<i>n</i> vnto the ende of +1542<a class = "tag" name = "tag_count1" id = "tag_count1" href = +"#note_count1">1</a> +yeares. (besyde 385 dayes and 12 houres for lepe yeares).</p> + +<p><i>S.</i> Now wyll I proue by an other exa<i>m</i>ple, as this: 40 +labourers (after 6 d. y<sup>e</sup> day for eche man) haue wrought +28 dayes, I wold +<span class = "linenum">125 <i>a</i>.</span> +*know what theyr wages doth amou<i>n</i>t vnto: In this case muste I +worke doublely: fyrst I must multyplye the nomber of the labourers by +y<sup>e</sup> wages of a man for one day, so wyll y<sup>e</sup> charge +of one daye amount: then secondarely shall I multyply that charge of one +daye, by the hole nomber of dayes, <i>and</i> so wyll the hole summe +appeare: fyrst therefore I shall set the su<i>m</i>mes thus.</p> + +<table class = "backline floatleft" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td>o<span class = "five">°</span></td> +<td> </td> +</tr> +</table> + +<span class = "pagenum">61</span> +<a name = "page61" id = "page61"> </a> +<p class = "nospace"> +Where in the fyrste space is the multyplyer (y<sup>t</sup> is one dayes +wages for one man) <i>and</i> in the second space is set the nomber of +the worke men to be multyplyed: the<i>n</i> saye I, 6 tymes 4 +(reckenynge that second lyne as the lyne of vnites) maketh 24, for +whiche summe I shulde set 2 counters in the thyrde lyne, and 4 in the +seconde, therfore do I set 2 in the thyrde lyne, and let the 4 stand +styll in the seconde lyne, thus.* +<span class = "linenum">125 <i>b</i>.</span></p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +So <a class = "gloss" name = "apwereth" id = "apwereth" href = +"#gloss_apwereth">apwereth</a> the hole dayes wages to be 240d’. that is +20 s. Then do I multiply agayn the same summe by the no<i>m</i>ber +of dayes and fyrste I sette the nombers, thus.</p> + +<table class = "backline floatleft" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td>o o</td> +<td>o o o o</td> +</tr> +<tr> +<td>o<span class = "five">°</span>o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +The<i>n</i> bycause there are counters in dyuers lynes, I shall +begynne with the hyghest, and take them vp, settynge for them the +multyplyer so many tymes, as I toke vp counters, y<sup>t</sup> is twyse, +then wyll y<sup>e</sup> su<i>m</i>me stande thus.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then come I to y<sup>e</sup> seconde lyne, and take vp those 4 +cou<i>n</i>ters, settynge for them the multiplyer foure tymes, so wyll +the hole summe appeare thus.* +<span class = "linenum">126 <i>a</i>.</span></p> + +<table class = "backline floatleft" summary = "counters example"> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +So is the hole wages of 40 workeme<i>n</i>, for 28 dayes (after 6d’. +eche daye for a man) 6720d’. that is 560 s. or 28 l’i.</p> + +<p class = "headnote"><span class = "headnote"> +Division on the Counting Board.</span></p> + +<p><span class = "sidenote">Diuision.</span> +<i>M.</i> Now if you wold proue Multiplycatio<i>n</i>, the surest way is +by Dyuision: therfore wyll I ouer passe it tyll I haue taught you +y<sup>e</sup> arte of Diuision, whiche you shall worke thus. Fyrste +sette downe the Diuisor for feare of forgettynge, and then set the +nomber that shalbe deuided, at y<sup>e</sup> ryghte syde, so farre from +the diuisor, that the quotient may be set betwene them: as for +exa<i>m</i>ple: Yf 225 shepe cost 45 l’i. what dyd euery shepe +cost? To knowe this, I shulde diuide the hole summe, that is +45 l’i. by 225, but that can not be, therfore must I fyrste reduce +that 45 l’i. into a lesser denomination, as into shyllynges: then I +multiply 45 by 20, and it is 900, that summe shall I diuide by the +no<i>m</i>ber of +<span class = "linenum">126 <i>b</i>.</span> +*shepe, whiche is 225, these two nombers therfore I sette thus.</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>o o</td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td>o o</td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> <span class = "five">°</span></td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then begynne I at the hyghest lyne of the diuident, and seke how often I +may haue the diuisor therin, and that maye I do 4 tymes, then say I, 4 +tymes 2 are 8, whyche yf I take from 9, there resteth but 1, thus</p> + +<table class = "backline float" summary = "counters example"> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>o o</td> +<td> </td> +<td>o</td> +</tr> +<tr> +<td>o o</td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> <span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +And bycause I founde the diuisor 4 tymes in the diuidente, I haue +set (as you se) 4 in the myddle roume, which +<span class = "linenum">127 <i>a</i>.</span> +*is the place of the quotient: but now must I take the reste of the +diuisor as often out of the remayner: therfore come +<span class = "pagenum">62</span> +<a name = "page62" id = "page62"> </a> +I to the seconde lyne of the diuisor, sayeng 2 foure tymes make 8, +take 8 from 10, <i>and</i> there resteth 2, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td> <span class = "five">°</span></td> +<td>o o o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then come I to the lowest nomber, which is 5, and multyply it 4 tymes, +so is it 20, that take I from 20, and there remayneth nothynge, so that +I se my quotient to be 4, whiche are in valewe shyllynges, for so was +the diuident: and therby I knowe, that yf 225 shepe dyd coste +45 l’i. euery shepe coste 4 s.</p> + +<p><i>S.</i> This can I do, as you shall perceaue by this +exa<i>m</i>ple: Yf 160 sowldyars do spende euery moneth 68 l’i. +what spendeth eche man? Fyrst +<span class = "linenum">127 <i>b</i>.</span> +*bycause I can not diuide the 68 by 160, therfore I wyll turne the +pou<i>n</i>des into pennes by multiplicacio<i>n</i>, so shall there be +16320 d’. Nowe muste I diuide this su<i>m</i>me by the nomber of +sowldyars, therfore I set the<i>m</i> i<i>n</i> order, thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o</td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td> </td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then begyn I at the hyghest place of the diuidente, sekynge my diuisor +there, whiche I fynde ones, Therfore set I 1 in the nether lyne.</p> + +<p><i>M.</i> Not in the nether line of the hole summe, but in the nether +lyne of that worke, whiche is the thyrde lyne.</p> + +<p><i>S.</i> So standeth it with reason.</p> + +<p><i>M.</i> Then thus do they stande.* +<span class = "linenum">128 <i>a</i>.</span></p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td>o</td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td> </td> +<td>o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Then seke I agayne in the reste, how often I may fynde my diuisor, and I +se that in the 300 I myghte fynde 100 thre tymes, but then the 60 wyll +not be so often founde in 20, therfore I take 2 for my quotient: then +take I 100 twyse from 300, and there resteth 100, out of whiche with the +20 (that maketh 120) I may take 60 also twyse, and then standeth +the nombers thus,</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o</td> +<td>o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o<span class = "five">°</span></td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">128 <i>b</i>.</span> +*where I haue sette the quotient 2 in the lowest lyne: So is euery +sowldyars portion 102 d’. that is 8 s. 6 d’.</p> + +<p><i>M.</i> But yet bycause you shall perceaue iustly the reason of +Diuision, it shall be good that you do set your diuisor styll agaynst +those nombres fro<i>m</i> whiche you do take it: as by this example I +wyll declare. Yf y<sup>e</sup> purchace of 200 acres of ground dyd coste +290 l’i. what dyd one acre coste? Fyrst wyl I turne the poundes +into pennes, so wyll there be 69600 d’· Then in settynge downe +these nombers I shall do thus.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td> </td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td>X</td> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td>o <span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +Fyrst set the diuident on the ryghte hande as it oughte, and then +<span class = "linenum">129 <i>a</i>.</span> +*the diuisor on the lefte hande agaynst those nombers, fro<i>m</i> which +I entende to take hym fyrst as here you se, wher I haue set the diuisor +two lynes hygher the<i>n</i> is theyr owne place.</p> + +<p><i>S.</i> This is lyke the order of diuision by the penne. +<span class = "pagenum">63</span> +<a name = "page63" id = "page63"> </a></p> + +<p><i>M.</i> Truth you say, and nowe must I set y<sup>e</sup> quotient +of this worke in the thyrde lyne, for that is the lyne of vnities in +respecte to the diuisor in this worke. Then I seke howe often the +diuisor maye be founde in the diuident, <i>and</i> that I fynde 3 tymes, +then set I 3 in the thyrde lyne for the quotient, and take awaye that +60000 fro<i>m</i> the diuident, and farther I do set the diuisor one +line lower, as yow se here.</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td> </td> +<td>o<span class = "five">°</span>o o o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o</td> +<td> <span class = "five">°</span>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +<span class = "linenum">129 <i>b</i>.</span> +*And then seke I how often the diuisor wyll be taken from the nomber +agaynste it, whiche wyll be 4 tymes and 1 remaynynge.</p> + +<p><i>S.</i> But what yf it chaunce that when the diuisor is so remoued, +it can not be ones taken out of the diuident agaynste it?</p> + +<p><i>M.</i> Then must the diuisor be set in an other line lower.</p> + +<p><i>S.</i> So was it in diuision by the penne, and therfore was there +a cypher set in the quotient: but howe shall that be noted here?</p> + +<p><i>M.</i> Here nedeth no token, for the lynes do represente the +places: onely loke that you set your quotient in that place which +standeth for vnities in respecte of the diuisor: but now to returne to +the example, I fynde the diuisor 4 tymes in the diuidente, and 1 +remaynynge, for 4 tymes 2 make 8, which I take from 9, and there +<a class = "gloss" name = "resteth" id = "resteth" href = +"#gloss_resteth">resteth</a> 1, as this figure sheweth:</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td>o o</td> +<td> </td> +<td>o</td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o</td> +<td>o<span class = "five">°</span></td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +and in the myddle space for the quotient I set 4 in the seconde lyne, +whiche is in this worke the place of vnities.* +<span class = "linenum">130 <i>a</i>.</span> +Then remoue I y<sup>e</sup> diuisor to the next lower line, and seke how +often I may haue it in the dyuident, which I may do here 8 tymes iust, +and nothynge remayne, as in this fourme,</p> + +<table class = "backline float" summary = "counters example"> +<col /> +<col class = "rightline" /> +<col class = "rightline" /> +<col /> +<tr> +<td> </td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td>||</td> +<td> </td> +<td> </td> +<td> </td> +</tr> +<tr> +<td> </td> +<td>o o</td> +<td>o o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o o o o</td> +<td> </td> +</tr> +<tr> +<td> </td> +<td> </td> +<td>o<span class = "five">°</span>o o</td> +<td> </td> +</tr> +</table> + +<p class = "nospace"> +where you may se that the hole quotient is 348 d’, that is +29 s. wherby I knowe that so moche coste the purchace of one +aker.</p> + +<p><i>S.</i> Now resteth the profes of Multiplycatio<i>n</i>, and also +of Diuisio<i>n</i>.</p> + +<p><i>M.</i> Ther best profes are eche +<span class = "linenum">130 <i>b</i>.</span> +*one by the other, for Multyplication is proued by Diuision, and +Diuision by Multiplycation, as in the worke by the penne you +learned.</p> + +<p><i>S.</i> Yf that be all, you shall not nede to repete agayne that, +y<sup>t</sup> was sufficye<i>n</i>tly taughte all redye: and excepte you +wyll teache me any other feate, here maye you make an ende of this arte +I suppose.</p> + +<p><i>M.</i> So wyll I do as touchynge hole nomber, and as for broken +nomber, I wyll not trouble your wytte with it, tyll you haue +practised this so well, y<sup>t</sup> you be full perfecte, so that you +nede not to doubte in any poynte that I haue taught you, and thenne maye +I boldly enstructe you in y<sup>e</sup> arte of fractions or broken +no<i>m</i>ber, wherin I +<span class = "pagenum">64</span> +<a name = "page64" id = "page64"> </a> +wyll also showe you the reasons of all that you haue nowe learned. But +yet before I make an ende, I wyll showe you the order of +co<i>m</i>men castyng, wher in are bothe pennes, shyllynges, and +poundes, procedynge by no grounded reason, but onely by a receaued +<span class = "linenum">131 <i>a</i>.</span> +*fourme, and that dyuersly of dyuers men: for marchau<i>n</i>tes vse one +fourme, and auditors an other:</p> + +<p class = "headnote"><span class = "headnote"> +Merchants’ Casting Counters.</span></p> + +<p><span class = "sidenote">Merchants’ casting.</span> +But fyrste for marchauntes fourme marke this example here,</p> + +<table class = "noline float" summary = "merchant counters example"> +<tr> +<td>o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> o</td> +</tr> +<tr> +<td>o</td> +<td>o o o</td> +</tr> +<tr> +<td> </td> +<td> o</td> +</tr> +<tr> +<td>o</td> +<td>o o o o</td> +</tr> +<tr> +<td> </td> +<td> o</td> +</tr> +<tr> +<td> </td> +<td>o o o o o</td> +</tr> +</table> + +<p class = "nospace"> +in which I haue expressed this summe 198 l’i.<a class = "tag" name = +"tag_count2" id = "tag_count2" href = "#note_count2">2</a> 19 s. +11 d’. So that you maye se that the lowest lyne serueth for +pe<i>n</i>nes, the next aboue for shyllynges, the thyrde for poundes, +and the fourth for scores of pou<i>n</i>des. And farther you maye se, +that the space betwene pennes and shyllynges may receaue but one counter +(as all other spaces lyke wayes do) and that one standeth in that place +for 6 d’. Lyke wayes betwene the shyllynges <i>and</i> the +pou<i>n</i>des, one cou<i>n</i>ter standeth for 10 s. And betwene +the poundes and 20 l’i. one counter standeth for 10 pou<i>n</i>des. +But besyde those you maye see at the left syde of shyllynges, that one +counter standeth alone, <i>and</i> betokeneth 5 s. +<span class = "linenum">131 <i>b</i>.</span> +*So agaynste the poundes, that one cou<i>n</i>ter standeth for +5 l’i. And agaynst the 20 poundes, the one counter standeth for 5 +score pou<i>n</i>des, that is 100 l’i. so that euery syde counter +is 5 tymes so moch as one of them agaynst whiche he standeth. +<span class = "sidenote">Auditors’ casting.</span> +Now for the accompt of auditors take this example.</p> + +<table class = "noline float" summary = "merchant counters example"> +<tr> +<td> o</td> +<td>o o</td> +<td>o o</td> +<td> o</td> +</tr> +<tr> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +</tr> +<tr> +<td>o</td> +<td></td> +<td>o</td> +<td>o o</td> +</tr> +</table> + +<p class = "nospace"> +where I haue expressed y<sup>e</sup> same su<i>m</i>me 198 l’i. +19 s. 11 d’. But here you se the pe<i>n</i>nes stande toward +y<sup>e</sup> ryght hande, and the other encreasynge orderly towarde the +lefte hande. Agayne you maye se, that auditours wyll make 2 lynes (yea +and more) for pennes, shyllynges, <i>and</i> all other valewes, yf theyr +summes extende therto. Also you se, that they set one counter at the +ryght ende of eche rowe, whiche so set there standeth for 5 of that +roume: and on +<span class = "linenum">132 <i>a</i>.</span> +*the lefte corner of the rowe it sta<i>n</i>deth for 10, of +y<sup>e</sup> same row. But now yf you wold adde other subtracte after +any of both those sortes, yf you marke y<sup>e</sup> order of +y<sup>t</sup> other feate which I taught you, you may easely do the same +here without moch teachynge: for in Additio<i>n</i> you must fyrst set +downe one su<i>m</i>me and to the same set the other orderly, and lyke +maner yf you haue many: but in Subtraction you must sette downe fyrst +the greatest summe, and from it must you abate that other euery +denominatio<i>n</i> from his dewe place.</p> + +<p><i>S.</i> I do not doubte but with a +<span class = "pagenum">65</span> +<a name = "page65" id = "page65"> </a> +lytell practise I shall attayne these bothe: but how shall I multiply +and diuide after these fourmes?</p> + +<p><i>M.</i> You can not duely do none of both by these sortes, therfore +in suche case, you must resort to your other artes.</p> + +<p><i>S.</i> Syr, yet I se not by these sortes how to expresse +hu<i>n</i>dreddes, yf they excede one hundred, nother yet +thousandes.</p> + +<p><i>M.</i> They that vse such accomptes that it excede 200 +<span class = "linenum">132 <i>b</i>.</span> +*in one summe, they sette no 5 at the lefte hande of the scores of +poundes, but they set all the hundredes in an other farther rowe +<i>and</i> 500 at the lefte hand therof, and the thousandes they set in +a farther rowe yet, <i>and</i> at the lefte syde therof they sette the +5000, and in the space ouer they sette the 10000, and in a hygher rowe +20000, whiche all I haue expressed in this exa<i>m</i>ple,</p> + +<table class = "noline float" summary = "merchant counters example"> +<tr> +<td></td> +<td>o o o o</td> +</tr> +<tr> +<td></td> +<td> o</td> +</tr> +<tr> +<td>o</td> +<td>o o</td> +</tr> +<tr> +<td>o</td> +<td>o o o</td> +</tr> +<tr> +<td></td> +<td>o o o</td> +</tr> +<tr> +<td>o</td> +<td>o o o o</td> +</tr> +<tr> +<td></td> +<td> o</td> +</tr> +<tr> +<td></td> +<td>o o</td> +</tr> +<tr> +<td></td> +<td> o</td> +</tr> +<tr> +<td></td> +<td>o o o</td> +</tr> +<tr> +<td></td> +<td> o o</td> +</tr> +<tr> +<td></td> +<td> o</td> +</tr> +</table> + +<p class = "nospace"> +which is 97869 l’i. 12 s. 9 d’ ob. q. for I had not told you +before where, nother how you shuld set downe farthynges, which (as you +se here) must be set in a voyde space sydelynge beneth the pennes: for q +one counter: for ob. 2 counters: for ob. q. 3 counters: <i>and</i> more +there can not be, for 4 farthynges +<span class = "linenum">133 <i>a</i>.</span> +*do make 1 d’. which must be set in his dewe place.</p> + +<p class = "headnote"><span class = "headnote"> +Auditors’ Casting Counters.</span></p> + +<p>And yf you desyre y<sup>e</sup> same summe after audytors maner, lo +here it is.</p> + +<table class = "noline" summary = "merchant counters example"> +<tr> +<td></td> +<td> o o</td> +<td> o</td> +<td></td> +<td> o</td> +<td>o</td> +<td> o</td> +</tr> +<tr> +<td>o o o</td> +<td>o o</td> +<td>o o o</td> +<td>o o o</td> +<td>o o o</td> +<td>o o</td> +<td>o o o</td> +<td></td> +</tr> +<tr> +<td>o</td><td></td><td></td><td></td> +<td>o</td><td></td><td></td><td>o o</td> +</tr> +<tr> +<td></td><td></td><td></td><td></td> +<td></td><td></td><td></td><td>o</td> +</tr> +</table> + +<p class = "nospace"> +But in this thyng, you shall take this for suffycyent, and the reste you +shall obserue as you maye se by the working of eche sorte: for the +dyuers wittes of men haue inuented dyuers and sundry wayes almost +vnnumerable. But one feate I shall teache you, whiche not only for the +straungenes and secretnes is moche pleasaunt, but also for the good +co<i>m</i>moditie of it ryghte worthy to be well marked. This feate hath +ben vsed aboue 2000 yeares at the leaste, and yet was it neuer +come<i>n</i>ly knowen, especyally in Englysshe it was neuer taughte yet. +This is the arte of nombrynge on the hand, with diuers gestures of the +fyngers, expressynge any summe conceaued in the +<span class = "linenum">133 <i>b</i>.</span> +*mynde. And fyrst to begynne, yf you wyll expresse any summe vnder 100, +you shall expresse it with your lefte hande: and from 100 vnto 10000, +you shall expresse it with your ryght hande, as here orderly by this +table folowynge you may perceaue.</p> + +<h5>¶ Here foloweth the table<br /> +of the arte of the<br /> +hande</h5> + +<p> </p> + +<span class = "pagenum">66</span> +<a name = "page66" id = "page66"> </a> + +<p class = "illustration"> +<a name = "hand" id = "hand"> +<img src = "images/title_hand.png" width = "472" height = "35" +alt = "The arte of nombrynge by the hande." +title = "The arte of nombrynge by the hande." /></a></p> + +<span class = "linenum"> +<img src = "images/num_134.png" width = "32" height = "17" +alt = "page number ‘134’ from original illustration" +title = "page number ‘134’ from original illustration" /></span> + +<p class = "illustration"> +<img src = "images/hand_count.png" width = "410" height = "612" +alt = "hand numbering as described in text" /></p> + +<p><span class = "sidenote">1</span> +<span class = "linenum">134 <i>b</i>.</span> +*In which as you may se 1 is expressed by y<sup>e</sup> lyttle fynger of +y<sup>e</sup> lefte hande closely and harde croked.</p> + +<p><span class = "sidenote">2</span> +<a class = "tag" name = "tag_count3" id = "tag_count3" href = +"#note_count3">3</a>2 is declared by lyke bowynge of the weddynge fynger +(whiche is the nexte to the lyttell fynger) together with the lytell +fynger.</p> + +<p><span class = "sidenote">3</span> +3 is signified by the myddle fynger bowed in lyke maner, with those +other two.</p> + +<p><span class = "sidenote"><ins class = "correction" title = "missing sidenote added by transcriber"><i> 4 </i></ins></span> +4 is declared by the bowyng of the myddle fynger and the rynge +<span class = "pagenum">67</span> +<a name = "page67" id = "page67"> </a> +fynger, or weddynge fynger, with the other all stretched forth.</p> + +<p><span class = "sidenote">5</span> +5 is represented by the myddle fynger onely bowed.</p> + +<p><span class = "sidenote">6</span> +And 6 by the weddynge fynger only crooked: and this you may marke in +these a certayne order. But now 7, 8, and 9, are expressed +w<i>i</i>t<i>h</i> the bowynge of the same fyngers as are 1, 2, and 3, +but after an other fourme.</p> + +<p><span class = "sidenote">7</span> +For 7 is declared by the bowynge of the lytell fynger, as is 1, saue +that for 1 the fynger is <ins class = "correction" title = "in at least one printing, text reads ‘elapsed’">clasped</ins> in, harde <i>and</i> +<span class = "linenum">135 <i>a</i>.</span> +*rounde, but for to expresse 7, you shall bowe the myddle ioynte of the +lytell fynger only, and holde the other ioyntes streyght.</p> + +<p><i>S.</i> Yf you wyll geue me leue to expresse it after my rude +maner, thus I vnderstand your meanyng: that 1 is expressed by crookynge +in the lyttell fynger lyke the head of a bysshoppes <a class = "gloss" +name = "bagle" id = "bagle" href = "#gloss_bagle">bagle</a>: and 7 is +declared by the same fynger bowed lyke a gybbet.</p> + +<p><i>M.</i> So I perceaue, you vnderstande it.</p> + +<p><span class = "sidenote">8</span> +Then to expresse 8, you shall bowe after the same maner both the lyttell +fynger and the rynge fynger.</p> + +<p><span class = "sidenote">9</span> +And yf you bowe lyke wayes with them the myddle fynger, then doth it +betoken 9.</p> + +<p><span class = "sidenote">10</span> +Now to expresse 10, you shall bowe your fore fynger rounde, and set the +ende of it on the hyghest ioynte of the thombe.</p> + +<p><span class = "sidenote">20</span> +And for to expresse 20, you must set your fyngers streyght, and the ende +of your thombe to the partitio<i>n</i> of the +<span class = "linenum">135 <i>b</i>.</span> +*fore moste and myddle fynger.</p> + +<p><span class = "sidenote">30</span> +30 is represented by the ioynynge together of y<sup>e</sup> headdes of +the foremost fynger and the thombe.</p> + +<p><span class = "sidenote">40</span> +40 is declared by settynge of the thombe crossewayes on the foremost +fynger.</p> + +<p><span class = "sidenote">50</span> +50 is signified by ryght stretchyng forth of the fyngers ioyntly, and +applyenge of the thombes ende to the partition of the myddle fynger +<i>and</i> the rynge fynger, or weddynge fynger.</p> + +<p><span class = "sidenote">60</span> +60 is formed by bendynge of the thombe croked and crossynge it with the +fore fynger.</p> + +<p><span class = "sidenote">70</span> +70 is expressed by the bowynge of the foremost fynger, and settynge the +ende of the thombe between the 2 foremost or hyghest ioyntes of it.</p> + +<p><span class = "sidenote">80</span> +80 is expressed by settynge of the foremost fynger crossewayes on the +thombe, so that 80 dyffereth thus fro<i>m</i> 40, that for 80 the +forefynger is set crosse on the thombe, and for 40 the thombe is set +crosse ouer y<sup>e</sup> forefinger.</p> + +<p><span class = "sidenote">90</span> +<span class = "linenum">136 <i>a</i>.</span> +*90 is signified, by bendynge the fore fynger, and settyng the ende of +it in the innermost ioynte of y<sup>e</sup> thombe, that is euen at the +foote of it. And thus are all the no<i>m</i>bers ended vnder 100.</p> + +<p><i>S.</i> In dede these be all the nombers fro<i>m</i> 1 to 10, +<i>and</i> then all the +tenthes within 100, +<span class = "sidenote">11, 12, 13,<br /> +21, 22, 23</span> +but this <ins class = "correction" title = "spelling unchanged">teacyed</ins> me not how to expresse 11, 12, 13, <i>et</i>c. +21, 22, 23, <i>et</i>c. and such lyke.</p> + +<p><i>M.</i> You can lytell vnderstande, yf you can not do that without +teachynge: what is +<span class = "pagenum">68</span> +<a name = "page68" id = "page68"> </a> +11? is it not 10 and 1? then expresse 10 as you were taught, and 1 also, +and that is 11: and for 12 expresse 10 and 2: for 23 set 20 and 3: and +so for 68 you muste make 60 and there to 8: and so of all other +sortes.</p> + +<p><span class = "sidenote">100</span> +But now yf you wolde represente 100 other any nomber aboue it, you muste +do that with the ryghte hande, after this maner.</p> + +<p>You must expresse 100 in the ryght hand, with the lytell fynger so +bowed as you dyd expresse 1 in the left hand.</p> + +<p><span class = "sidenote">200</span> +<span class = "linenum">136 <i>b</i>.</span> +*And as you expressed 2 in the lefte hande, the same fasshyon in the +ryght hande doth declare 200.</p> + +<p><span class = "sidenote">300</span> +The fourme of 3 in the ryght hand standeth for 300.</p> + +<p><span class = "sidenote">400</span> +The fourme of 4, for 400.</p> + +<p><span class = "sidenote">500</span> +Lykewayes the fourme of 5, for 500.</p> + +<p><span class = "sidenote">600</span> +The fourme of 6, for 600. And to be shorte: loke how you did expresse +single vnities and tenthes in the lefte hande, so must you expresse +vnities <i>and</i> tenthes of hundredes, in the ryghte hande.</p> + +<p><span class = "sidenote">900</span> +<i>S.</i> I vnderstande you thus: that yf I wold represent 900, +I must so fourme the fyngers of my ryghte hande, as I shuld do in +my left hand to expresse 9, +<span class = "sidenote">1000</span> +And as in my lefte hand I expressed 10, so in my ryght hande must I +expresse 1000.</p> + +<p>And so the fourme of euery tenthe in the lefte hande serueth to +expresse lyke no<i>m</i>ber of thousa<i>n</i>des, +<span class = "sidenote">4000</span> +so y<sup>e</sup> fourme of 40 standeth for 4000.</p> + +<p><span class = "sidenote">8000</span> +The fourme of 80 for 8000.</p> + +<span class = "sidenote">9000</span> +<span class = "linenum">137 <i>a</i>.</span> +<p class = "center">*And the fourme of 90 (whiche is<br /> +the greatest) for 9000, and aboue that<br /> +I can not expresse any nomber. <i>M.</i><br /> +No not with one fynger: how be it,<br /> +w<i>i</i>t<i>h</i> dyuers fyngers you maye expresse<br /> +9999, and all at one tyme, and that lac<br /> +keth but 1 of 10000. So that vnder<br /> +10000 you may by your fyngers ex-<br /> +presse any summe. And this shal suf-<br /> +fyce for Numeration on the fyngers.<br /> +And as for Addition, Subtraction,<br /> +Multiplicatio<i>n</i>, and Diuision (which<br /> +yet were neuer taught by any man as<br /> +farre as I do knowe) I wyll enstruct<br /> +you after the treatyse of fractions.<br /> +And now for this tyme fare well,<br /> +<span class = "pagenum">69</span> +<a name = "page69" id = "page69"> </a> +and loke that you cease not to<br /> +practyse that you haue lear<br /> +ned. <i>S.</i> Syr, with moste<br /> +harty mynde I thanke<br /> +you, bothe for your<br /> +good learnyng, <i>and</i><br /> +also your good<br /> +cou<i>ns</i>el, which<br /> +(god wyllyng) I truste to folow.</p> + +<p class = "center">Finis.</p> + +<hr class = "mid" /> + +<div class = "footnote"> + +<p><a name = "note_count1" id = "note_count1" href = +"#tag_count1">1.</a> +1342 in original.</p> + +<p><a name = "note_count2" id = "note_count2" href = +"#tag_count2">2.</a> +168 in original.</p> + +<p><a name = "note_count3" id = "note_count3" href = +"#tag_count3">3.</a> +Bracket ([) denotes new paragraph in original.</p> +<p class = "mynote"> +For this e-text, the brackets have been omitted in favor of restoring +the paragraph breaks. Numbers 200 and up were printed as separate +paragraphs and are unchanged. Sidenote 4 was missing and has been +supplied by the transcriber; the pairs 5, 6 and 9, 10 (originally on one +line) have been separated.</p> + +</div> + +</div> <!-- end div count --> + +<div class = "app"> + +<span class = "pagenum">70</span> +<a name = "page70" id = "page70"> </a> + +<h3><a name = "app1" id = "app1">APPENDIX I.</a></h3> + +<hr class = "tiny" /> + +<p class = "illustration"> +<img src = "images/title_app1.png" width = "441" height = "71" +alt = "A Treatise on the Numeration of Algorism." +title = "A Treatise on the Numeration of Algorism." /></p> + + +<p class = "subhead">[<i>From a MS. of the 14th Century.</i>]</p> + +<p>To alle suche even nombrys the most have cifrys as to ten. twenty. +thirtty. an hundred. an thousand and suche other. but ye schal +vnderstonde that a cifre tokeneth nothinge but he maketh other the more +significatyf that comith after hym. Also ye schal vnderstonde that in +nombrys composyt and in alle other nombrys that ben of diverse figurys +ye schal begynne in the ritht syde and to rekene backwarde and so he +schal be wryte as thus—1000. the sifre in the ritht side was first +wryte and yit he tokeneth nothinge to the secunde no the thridde but +thei maken that figure of 1 the more signyficatyf that comith after hem +by as moche as he born oute of his first place where he schuld yf he +stode ther tokene but one. And there he stondith nowe in the <a class = +"gloss" name = "ferye" id = "ferye" href = "#gloss_ferye">ferye</a> +place he tokeneth a thousand as by this rewle. In the first place he +tokeneth but hymself. In the secunde place he tokeneth ten times +hymself. In the thridde place he tokeneth an hundred tymes himself. In +the ferye he tokeneth a thousand tymes himself. In the <a class = +"gloss" name = "fyftye" id = "fyftye" href = "#gloss_fyftye">fyftye</a> +place he tokeneth ten thousand tymes himself. In the sexte place he +tokeneth an hundred thousand tymes hymself. In the seveth place he +tokeneth ten hundred thousand tymes hymself, &c. And ye schal +vnderstond that this worde nombre is partyd into thre partyes. Somme is +callyd nombre of digitys for alle ben digitys that ben withine ten as +ix, viii, vii, vi, v, iv, iii, ii, i. Articules ben alle thei that mow +be devyded into nombrys of ten as xx, xxx, xl, and suche other. +Composittys be alle nombrys that ben componyd of a digyt and of an +articule as fourtene fyftene thrittene and suche other. Fourtene is +componyd of four that is a digyt +<span class = "pagenum">71</span> +<a name = "page71" id = "page71"> </a> +and of ten that is an articule. Fyftene is componyd of fyve that is a +digyt and of ten that is an articule and so of others +. . . . . . But as to this rewle. In the firste +place he tokeneth but himself that is to say he tokeneth but that and no +more. If that he stonde in the secunde place he tokeneth ten tymes +himself as this figure 2 here 21. this is oon and twenty. This figure 2 +stondith in the secunde place and therfor he tokeneth ten tymes himself +and ten tymes 2 is twenty and so <a class = "gloss" name = "forye" id = +"forye" href = "#gloss_forye">forye</a> of every figure and he stonde +after another toward the <a class = "gloss" name = "lest2" id = "lest2" +href = "#gloss_lest2">lest</a> syde he schal tokene ten tymes as moche +more as he schuld token and he stode in that place ther that the figure +afore him stondeth: lo an example as thus 9634. This figure of foure +that hath this schape 4 tokeneth but himself for he stondeth in the +first place. The figure of thre that hath this schape 3 tokeneth ten +tyme himself for he stondeth in the secunde place and that is thritti. +The figure of sexe that hath this schape 6 tokeneth ten tyme more than +he schuld and he stode in the place yer the figure of thre stondeth for +ther he schuld tokene but sexty. And now he tokeneth ten tymes that is +sexe hundrid. The figure of nyne that hath this schape 9 tokeneth ten +tymes more than he schulde and he stode in the place ther the figure of +6 stondeth inne for thanne he schuld tokene but nyne hundryd. And in the +place that he stondeth inne nowe he tokeneth nine thousand. Alle the +hole nombre of these foure figurys. Nine thousand sexe hundrid and foure +and thritti.</p> + + + + +<span class = "pagenum">72</span> +<a name = "page72" id = "page72"> </a> + +<h3><a name = "app2" id = "app2">APPENDIX II.</a></h3> + +<hr class = "tiny" /> + +<p class = "illustration"> +<img src = "images/title_app2.png" width = "288" height = "35" +alt = "Carmen de Algorismo." +title = "Carmen de Algorismo." /></p> + +<p class = "subhead">[<i>From a B.M. MS., </i>8<i> C. </i>iv.<i>, with +additions from </i>12<i> E. </i>1<i> & Eg. </i>2622<i>.</i>]</p> + +<div class = "verse"> +<p>Hec algorismus ars presens dicitur<a class = "tag" name = "tag_app_1" +id = "tag_app_1" href = "#note_app_1">1</a>; in qua</p> +<p>Talibus Indorum<a class = "tag" name = "tag_app_2" id = "tag_app_2" +href = "#note_app_2">2</a> fruimur his quinque figuris.</p> +<p><span class = "gap">0. 9. 8. 7. 6. 5. 4. 3. 2. 1.</span></p> +<p>Prima significat unum: duo vero secunda:</p> +<span class = "linenum">4</span> +<p>Tercia significat tria: sic procede sinistre</p> +<p>Donec ad extremam venies, qua cifra vocatur;</p> +<p><a class = "tag" name = "tag_app_3" id = "tag_app_3" href = +"#note_app_3">3</a>[Que nil significat; dat significare sequenti.]</p> +<p>Quelibet illarum si primo limite ponas,</p> +<span class = "linenum">8</span> +<p>Simpliciter se significat: si vero secundo,</p> +<p>Se decies: sursum procedas multiplicando.<a class = "tag" name = +"tag_app_4" id = "tag_app_4" href = "#note_app_4">4</a></p> +<p>[Namque figura sequens quevis signat decies plus,</p> +<span class = "linenum">12</span> +<p>Ipsa locata loco quam significet pereunte:</p> +<p>Nam precedentes plus ultima significabit.]</p> + +<p class = "stanza"> +<a class = "tag" name = "tag_app_5" id = "tag_app_5" href = +"#note_app_5">5</a>Post predicta scias quod tres breuiter numerorum</p> +<p>Distincte species sunt; nam quidam digiti sunt;</p> +<span class = "linenum">16</span> +<p>Articuli quidam; quidam quoque compositi sunt.</p> +<p>[Sunt digiti numeri qui citra denarium sunt;</p> +<p>Articuli decupli degitorum; compositi sunt</p> +<p>Illi qui constant ex articulis digitisque.]</p> +<span class = "linenum">20</span> +<p>Ergo, proposito numero tibi scribere, primo</p> +<p>Respicias quis sit numerus; quia si digitus sit,</p> +<p><a class = "tag" href = "#note_app_5">5</a>[Una figura satis sibi; +sed si compositus sit,]</p> +<p>Primo scribe loco digitum post articulum fac</p> +<span class = "linenum">24</span> +<p>Articulus si sit, cifram post articulum sit,</p> +<p>[Articulum vero reliquenti in scribe figure.]</p> +<span class = "pagenum">73</span> +<a name = "page73" id = "page73"> </a> +<p>Quolibet in numero, si par sit prima figura,</p> +<p>Par erit et totum, quicquid sibi continetur;</p> +<span class = "linenum">28</span> +<p>Impar si fuerit, totum sibi fiet et impar.</p> + +<p class = "stanza"> +Septem<a class = "tag" name = "tag_app_6" id = "tag_app_6" href = +"#note_app_6">6</a> sunt partes, non plures, istius artis;</p> +<p>Addere, subtrahere, duplare, dimidiare;</p> +<p>Sexta est diuidere, set quinta est multiplicare;</p> +<span class = "linenum">32</span> +<p>Radicem extrahere pars septima dicitur esse.</p> +<p>Subtrahis aut addis a dextris vel mediabis;</p> +<p>A leua dupla, diuide, multiplicaque;</p> +<p>Extrahe radicem semper sub parte sinistra.</p> + +<span class = "linenum">36</span> +<p class = "stanza"> +<span class = "sidenote">Addition.</span> +Addere si numero numerum vis, ordine tali</p> +<p>Incipe; scribe duas primo series numerorum</p> +<p>Prima sub prima recte ponendo figuram,</p> +<p>Et sic de reliquis facias, si sint tibi plures.</p> +<span class = "linenum">40</span> +<p>Inde duas adde primas hac condicione;</p> +<p>Si digitus crescat ex addicione priorum,</p> +<p>Primo scribe loco digitum, quicunque sit ille;</p> +<p>Si sit compositus, in limite scribe sequenti</p> +<span class = "linenum">44</span> +<p>Articulum, primo digitum; quia sic iubet ordo.</p> +<p>Articulus si sit, in primo limite cifram,</p> +<p>Articulum vero reliquis inscribe figuris;</p> +<p>Vel per se scribas si nulla figura sequatur.</p> +<span class = "linenum">48</span> +<p>Si tibi cifra superueniens occurrerit, illam</p> +<p>Deme suppositam; post illic scribe figuram:</p> +<p>Postea procedas reliquas addendo figuras.</p> + +<p class = "stanza"> +<span class = "sidenote">Subtraction.</span> +A numero numerum si sit tibi demere cura,</p> +<span class = "linenum">52</span> +<p>Scribe figurarum series, vt in addicione;</p> +<p>Maiori numero numerum suppone minorem,</p> +<p>Siue pari numero supponatur numerus par.</p> +<p>Postea si possis a prima subtrahe primam,</p> +<span class = "linenum">56</span> +<p>Scribens quod remanet, cifram si nil remanebit.</p> +<p>Set si non possis a prima demere primam;</p> +<p>Procedens, vnum de limite deme sequenti;</p> +<span class = "pagenum">74</span> +<a name = "page74" id = "page74"> </a> +<p>Et demptum pro denario reputabis ab illo,</p> +<span class = "linenum">60</span> +<p>Subtrahe totaliter numerum quem proposuisti.</p> +<p>Quo facto, scribe supra quicquit remanebit,</p> +<p>Facque novenarios de cifris, cum remanebis,</p> +<p>Occurrant si forte cifre, dum demseris vnum;</p> +<span class = "linenum">64</span> +<p>Postea procedas reliquas demendo figuras.</p> + +<p class = "stanza"> +<span class = "sidenote">Proof.</span> +<a class = "tag" name = "tag_app_7" id = "tag_app_7" href = +"#note_app_7">7</a>[Si subtracio sit bene facta probare valebis,</p> +<p>Quas subtraxisti primas addendo figuras.</p> +<p>Nam, subtractio si bene sit, primas retinebis,</p> +<span class = "linenum">68</span> +<p>Et subtractio facta tibi probat additionem.]</p> + +<p class = "stanza"> +<span class = "sidenote">Duplation.</span> +Si vis duplare numerum, sic incipe; solam</p> +<p>Scribe figurarum seriem, quamcumque voles que</p> +<p>Postea procedas primam duplando figuram;</p> +<span class = "linenum">72</span> +<p>Inde quod excrescet, scribens, vbi iusserit ordo,</p> +<p>Juxta precepta que dantur in addicione.</p> +<p>Nam si sit digitus, in primo limite scribe;</p> +<p>Articulus si sit, in primo limite cifram,</p> +<span class = "linenum">76</span> +<p>Articulum vero reliquis inscribe figuris;</p> +<p>Vel per se scribas, si nulla figura sequatur:</p> +<p>Compositus si sit, in limite scribe sequenti</p> +<p>Articulum primo, digitum; quia sic jubet ordo:</p> +<span class = "linenum">80</span> +<p>Et sic de reliquis facias, si sint tibi plures.</p> +<p><a class = "tag" name = "tag_app_8" id = "tag_app_8" href = +"#note_app_8">8</a>[Si super extremam nota sit, monadem dat eidem,</p> +<p>Quod tibi contingit, si primo dimidiabis.]</p> + +<p class = "stanza"> +<span class = "sidenote">Mediation.</span> +Incipe sic, si vis aliquem numerum mediare:</p> +<span class = "linenum">84</span> +<p>Scribe figurarum seriem solam, velud ante;</p> +<p>Postea procedens medias, et prima figura</p> +<p>Si par aut impar videas; quia si fuerit par,</p> +<p>Dimidiabis eam, scribens quicquit remanebit;</p> +<span class = "linenum">88</span> +<p>Impar si fuerit, vnum demas, mediare,</p> +<p>Nonne presumas, sed quod superest mediabis;</p> +<p>Inde super tractum, fac demptum quod notat unum;</p> +<p>Si monos, dele; sit ibi cifra post nota supra.</p> +<span class = "linenum">92</span> +<p>Postea procedas hac condicione secunda:<a class = "tag" name = +"tag_app_9" id = "tag_app_9" href = "#note_app_9">9</a></p> +<p>Impar<a class = "tag" name = "tag_app_10" id = "tag_app_10" href = +"#note_app_10">10</a> si fuerit hic vnum deme priori,</p> +<p>Inscribens quinque, nam denos significabit</p> +<p>Monos prædictam: si vero secunda dat vnam,</p> +<span class = "linenum">96</span> +<p>Illa deleta, scribatur cifra; priori</p> +<span class = "pagenum">75</span> +<a name = "page75" id = "page75"> </a> +<p>Tradendo quinque pro denario mediato;</p> +<p>Nec cifra scribatur, nisi inde figura sequatur:</p> +<p>Postea <ins class = "correction" title = "text reads ‘procdeas’">procedas</ins> reliquas mediando figuras,</p> +<span class = "linenum">100</span> +<p>Quin supra docui, si sint tibi mille figure.</p> +<p><a class = "tag" name = "tag_app_11" id = "tag_app_11" href = +"#note_app_11">11</a>[Si mediatio sit bene facta probare valebis,</p> +<p>Duplando numerum quem primo dimidiasti.]</p> + +<p class = "stanza"> +<span class = "sidenote">Multiplication.</span> +Si tu per numerum numerum vis multiplicare,</p> +<span class = "linenum">104</span> +<p>Scribe duas, quascunque volis, series numerorum;</p> +<p>Ordo tamen seruetur vt vltima multiplicandi</p> +<p>Ponatur super anteriorem multiplicantis;</p> +<p><a class = "tag" name = "tag_app_12" id = "tag_app_12" href = +"#note_app_12">12</a>[A leua relique sint scripte multiplicantes.]</p> +<span class = "linenum">108</span> +<p>In digitum cures digitum si ducere, major</p> +<p>Per quantes distat a denis respice, debes</p> +<p>Namque suo decuplo tociens delere minorem;</p> +<p>Sicque tibi numerus veniens exinde patebit.</p> +<span class = "linenum">112</span> +<p>Postea procedas postremam multiplicando,</p> +<p>Juste multiplicans per cunctas inferiores,</p> +<p>Condicione tamen tali; quod multiplicantis</p> +<p>Scribas in capite, quicquid processerit inde;</p> +<span class = "linenum">116</span> +<p>Set postquam fuerit hec multiplicata, figure</p> +<p>Anteriorentur seriei multiplicantis;</p> +<p>Et sic multiplica, velut istam multiplicasti,</p> +<p>Qui sequitur numerum scriptum quicunque figuris.</p> +<span class = "linenum">120</span> +<p>Set cum multiplicas, primo sic est operandum,</p> +<p>Si dabit articulum tibi multiplicacio solum;</p> +<p>Proposita cifra, summam transferre memento.</p> +<p>Sin autem digitus excrescerit articulusque,</p> +<span class = "linenum">124</span> +<p>Articulus supraposito digito salit ultra;</p> +<p>Si digitus tamen, ponas illum super ipsam,</p> +<p>Subdita multiplicans hanc que super incidit illi</p> +<p>Delet eam penitus, scribens quod provenit inde;</p> +<span class = "linenum">128</span> +<p>Sed si multiplices illam posite super ipsam,</p> +<p>Adiungens numerum quem prebet ductus earum;</p> +<p>Si supraimpositam cifra debet multiplicare,</p> +<p>Prorsus eam delet, scribi que loco cifra debet,</p> +<span class = "linenum">132</span> +<p><a class = "tag" href = "#note_app_12">12</a>[Si cifra multiplicat +aliam positam super ipsam,</p> +<p>Sitque locus supra vacuus super hanc cifra fiet;]</p> +<span class = "pagenum">76</span> +<a name = "page76" id = "page76"> </a> +<p>Si supra fuerit cifra semper pretereunda est;</p> +<p>Si dubites, an sit bene multiplicando secunda,</p> +<span class = "linenum">136</span> +<p>Diuide totalem numerum per multiplicantem,</p> +<p>Et reddet numerus emergens inde priorem.</p> + + + +<span class = "sidenote">Mental Multiplication.</span> + +<p><a class = "tag" name = "tag_app_13" id = "tag_app_13" href = +"#note_app_13">13</a>[Per numerum si vis numerum quoque multiplicare</p> +<p>Tantum per normas subtiles absque figuris</p> +<span class = "linenum">140</span> +<p>Has normas poteris per versus scire sequentes.</p> +<p>Si tu per digitum digitum quilibet multiplicabis</p> +<p>Regula precedens dat qualiter est operandum</p> +<p>Articulum si per reliquum vis multiplicare</p> +<span class = "linenum">144</span> +<p>In proprium digitum debebit uterque resolvi</p> +<p>Articulus digitos post per se multiplicantes</p> +<p>Ex digitis quociens teneret multiplicatum</p> +<p>Articuli faciunt tot centum multiplicati.</p> +<span class = "linenum">148</span> +<p>Articulum digito si multiplicamus oportet</p> +<p>Articulum digitum sumi quo multiplicare</p> +<p>Debemus reliquum quod multiplicaris ab illis</p> +<p>Per reliquo decuplum sic omne latere nequibit</p> +<span class = "linenum">152</span> +<p>In numerum mixtum digitum si ducere cures</p> +<p>Articulus mixti sumatur deinde resolvas</p> +<p>In digitum post hec fac ita de digitis nec</p> +<p>Articulusque docet excrescens in detinendo</p> +<span class = "linenum">156</span> +<p>In digitum mixti post ducas multiplicantem</p> +<p>De digitis ut norma docet sit juncta secundo</p> +<p>Multiplica summam et postea summa patebit</p> +<p>Junctus in articulum purum articulumque</p> +<span class = "linenum">160</span> +<p><a class = "tag" name = "tag_app_14" id = "tag_app_14" href = +"#note_app_14">14</a>[Articulum purum comittes articulum que]</p> +<p>Mixti pro digitis post fiat et articulus vt</p> +<p>Norma jubet retinendo quod egreditur ab illis</p> +<p>Articuli digitum post <ins class = "correction" title = "text reads ‘iu’">in</ins> digitum mixti duc</p> +<span class = "linenum">164</span> +<p>Regula de digitis ut percipit articulusque</p> +<p>Ex quibus excrescens summe tu junge priori</p> +<p>Sic manifesta cito fiet tibi summa petita.</p> +<p>Compositum numerum mixto sic multiplicabis</p> +<span class = "linenum">168</span> +<p>Vndecies tredecem sic est ex hiis operandum</p> +<p>In reliquum primum demum duc post in eundem</p> +<p>Unum post deinde duc in tercia deinde per unum</p> +<p>Multiplices tercia demum tunc omnia multiplicata</p> +<span class = "linenum">172</span> +<p>In summa duces quam que fuerit te dices</p> +<span class = "pagenum">77</span> +<a name = "page77" id = "page77"> </a> +<p>Hic ut hic mixtus intentus est operandum</p> +<p>Multiplicandorum de normis sufficiunt hec.]</p> + + +<span class = "sidenote">Division.</span> + +<p>Si vis dividere numerum, sic incipe primo;</p> +<span class = "linenum">176</span> +<p>Scribe duas, quascunque voles, series numerorum;</p> +<p>Majori numero numerum suppone minorem,</p> +<p><a class = "tag" name = "tag_app_15" id = "tag_app_15" href = +"#note_app_15">15</a>[Nam docet ut major teneat bis terve minorem;]</p> + +<p>Et sub supprima supprimam pone figuram,</p> +<span class = "linenum">180</span> +<p>Sic reliquis reliquas a dextra parte locabis;</p> +<p>Postea de prima primam sub parte sinistra</p> +<p>Subtrahe, si possis, quociens potes adminus istud,</p> +<p>Scribens quod remanet sub tali conditione;</p> +<span class = "linenum">184</span> +<p>Ut totiens demas demendas a remanente,</p> +<p>Que serie recte ponentur in anteriori,</p> +<p>Unica si, tantum sit ibi decet operari;</p> +<p>Set si non possis a prima demere primam,</p> +<span class = "linenum">188</span> +<p>Procedas, et eam numero suppone sequenti;</p> +<p>Hanc uno retrahendo gradu quo comites retrahantur,</p> +<p>Et, quotiens poteris, ab eadem deme priorem,</p> +<p>Ut totiens demas demendas a remanenti,</p> +<span class = "linenum">192</span> +<p>Nec plus quam novies quicquam tibi demere debes,</p> +<p>Nascitur hinc numerus quociens supraque sequentem</p> +<p>Hunc primo scribas, retrahas exinde figuras,</p> +<p>Dum fuerit major supra positus inferiori,</p> +<span class = "linenum">196</span> +<p>Et rursum fiat divisio more priori;</p> +<p>Et numerum quotiens supra scribas pereunti,</p> +<p>Si fiat saliens retrahendo, cifra locetur,</p> +<p>Et pereat numero quotiens, proponas eidem</p> +<span class = "linenum">200</span> +<p>Cifram, ne numerum pereat vis, dum locus illic</p> +<p>Restat, et expletis divisio non valet ultra:</p> +<p>Dum fuerit numerus numerorum inferiore seorsum</p> +<p>Illum servabis; hinc multiplicando probabis,</p> + +<span class = "sidenote">Proof.</span> + +<span class = "linenum">204</span> +<p>Si bene fecisti, divisor multiplicetur</p> +<p>Per numerum quotiens; cum multiplicaveris, adde</p> +<p>Totali summæ, quod servatum fuit ante,</p> +<p>Reddeturque tibi numerus quem proposuisti;</p> +<span class = "linenum">208</span> +<p>Et si nil remanet, hunc multiplicando reddet,</p> + +<span class = "sidenote">Square Numbers.</span> + +<p>Cum ducis numerum per se, qui provenit inde</p> +<p>Sit tibi quadratus, ductus radix erit hujus,</p> +<p>Nec numeros omnes quadratos dicere debes,</p> +<span class = "linenum">212</span> +<p>Est autem omnis numerus radix alicujus.</p> +<span class = "pagenum">78</span> +<a name = "page78" id = "page78"> </a> +<p>Quando voles numeri radicem querere, scribi</p> +<p>Debet; inde notes si sit locus ulterius impar,</p> +<p>Estque figura loco talis scribenda sub illo,</p> +<span class = "linenum">216</span> +<p>Que, per se dicta, numerum tibi destruat illum,</p> +<p>Vel quantum poterit ex inde delebis eandem;</p> +<p>Vel retrahendo duples retrahens duplando sub ista</p> +<p>Que primo sequitur, duplicatur per duplacationem,</p> +<span class = "linenum">220</span> +<p>Post per se minuens pro posse quod est minuendum.</p> +<p><a class = "tag" name = "tag_app_16" id = "tag_app_16" href = +"#note_app_16">16</a>Post his propones digitum, qui, more priori</p> +<p>Per precedentes, post per se multiplicatus,</p> +<p>Destruat in quantum poterit numerum remanentem,</p> +<span class = "linenum">224</span> +<p>Et sic procedens retrahens duplando figuram,</p> +<p>Preponendo novam donec totum peragatur,</p> +<p>Subdupla propriis servare docetque duplatis;</p> +<p>Si det compositum numerum duplacio, debet</p> +<span class = "linenum">228</span> +<p>Inscribi digitus a parte dextra parte propinqua,</p> +<p>Articulusque loco quo non duplicata resessit;</p> +<p>Si dabit articulum, sit cifra loco pereunte</p> +<p>Articulusque locum tenet unum, de duplicata resessit;</p> +<span class = "linenum">232</span> +<p>Si donet digitum, sub prima pone sequente,</p> +<p>Si supraposita fuerit duplicata figura</p> +<p>Major proponi debet tantummodo cifra,</p> +<p>Has retrahens solito propones more figuram,</p> +<span class = "linenum">236</span> +<p>Usque sub extrema ita fac retrahendo figuras,</p> +<p>Si totum deles numerum quem proposuisti,</p> +<p>Quadratus fuerit, de dupla quod duplicasti,</p> +<p>Sicque tibi radix illius certa patebit,</p> +<span class = "linenum">240</span> +<p>Si de duplatis fit juncta supprima figura;</p> +<p>Radicem per se multiplices habeasque</p> +<p>Primo propositum, bene te fecisse probasti;</p> +<p>Non est quadratus, si quis restat, sed habentur</p> +<span class = "linenum">244</span> +<p>Radix quadrati qui stat major sub eadem;</p> +<p>Vel quicquid remanet tabula servare memento;</p> +<p>Hoc casu radix per se quoque multiplicetur,</p> +<p>Vel sic quadratus sub primo major habetur,</p> +<span class = "linenum">248</span> +<p>Hinc addas remanens, et prius debes haberi;</p> +<p>Si locus extremus fuerit par, scribe figuram</p> +<p>Sub pereunte loco per quam debes operari,</p> +<p>Que quantum poterit supprimas destruat ambas,</p> +<span class = "pagenum">79</span> +<a name = "page79" id = "page79"> </a> +<span class = "linenum">252</span> +<p>Vel penitus legem teneas operando priorem,</p> +<p>Si suppositum digitus suo fine repertus,</p> +<p>Omnino delet illic scribi cifra debet,</p> +<p>A leva si qua sit ei sociata figura;</p> +<span class = "linenum">256</span> +<p>Si cifre remanent in fine pares decet harum</p> +<p>Radices, numero mediam proponere partem,</p> +<p>Tali quesita radix patet arte reperta.</p> +<p>Per numerum recte si nosti multiplicare</p> +<span class = "linenum">260</span> +<p>Ejus quadratum, numerus qui pervenit inde</p> +<p>Dicetur cubicus; primus radix erit ejus;</p> +<p>Nec numeros omnes cubicatos dicere debes,</p> +<p>Est autem omnis numerus radix alicujus;</p> + +<span class = "sidenote">Cube Root.</span> + +<span class = "linenum">264</span> +<p>Si curas cubici radicem quærere, primo</p> +<p>Inscriptum numerum distinguere per loca debes;</p> +<p>Que tibi mille notant a mille notante suprema</p> +<p>Initiam, summa operandi parte sinistra,</p> +<span class = "linenum">268</span> +<p>Illic sub scribas digitum, qui multiplicatus</p> +<p>In semet cubice suprapositum sibi perdat,</p> +<p>Et si quid fuerit adjunctum parte sinistra</p> +<p>Si non omnino, quantum poteris minuendo,</p> +<span class = "linenum">272</span> +<p>Hinc triplans retrahe saltum, faciendo sub illa</p> +<p>Que manet a digito deleto terna, figuram</p> +<p>Illi propones quo sub triplo asocietur,</p> +<p>Ut cum subtriplo per eam tripla multiplicatur;</p> +<span class = "linenum">276</span> +<p>Hinc per eam solam productum multiplicabis,</p> +<p>Postea totalem numerum, qui provenit inde</p> +<p>A suprapositis respectu tolle triplate</p> +<p>Addita supprimo cubice tunc multiplicetur,</p> +<span class = "linenum">280</span> +<p>Respectu cujus, numerus qui progredietur</p> +<p>Ex cubito ductu, supra omnes adimetur;</p> +<p>Tunc ipsam delens triples saltum faciendo,</p> +<p>Semper sub ternas, retrahens alias triplicatas</p> +<span class = "linenum">284</span> +<p>Ex hinc triplatis aliam propone figuram,</p> +<p>Que per triplatas ducatur more priori;</p> +<p>Primo sub triplis sibi junctis, postea per se,</p> +<p>In numerum ducta, productum de triplicatis:</p> +<span class = "linenum">288</span> +<p>Utque prius dixi numerus qui provenit inde</p> +<p>A suprapositis has respiciendo trahatur,</p> +<p>Huic cubice ductum sub primo multiplicabis,</p> +<p>Respectumque sui, removebis de remanenti,</p> +<span class = "linenum">292</span> +<p>Et sic procedas retrahendo triplando figuram.</p> +<span class = "pagenum">80</span> +<a name = "page80" id = "page80"> </a> +<p>Et proponendo nonam, donec totum peragatur,</p> +<p>Subtripla sub propriis servare decet triplicatis;</p> +<p>Si nil in fine remanet, numerus datus ante</p> +<span class = "linenum">296</span> +<p>Est cubicus; cubicam radicem sub tripla prebent,</p> +<p>Cum digito juncto quem supprimo posuisti,</p> +<p>Hec cubice ducta, numerum reddant tibi primum.</p> +<p>Si quid erit remanens non est cubicus, sed habetur</p> +<span class = "linenum">300</span> +<p>Major sub primo qui stat radix cubicam,</p> +<p>Servari debet quicquid radice remansit,</p> +<p>Extracto numero, decet hec addi cubicato.</p> +<p>Quo facto, numerus reddi debet tibi primus.</p> +<span class = "linenum">304</span> +<p>Nam debes per se radicem multiplicare</p> +<p>Ex hinc in numerum duces, qui provenit inde</p> +<p>Sub primo cubicus major sic invenietur;</p> +<p>Illi jungatur remanens, et primus habetur,</p> +<span class = "linenum">308</span> +<p>Si per triplatum numerum nequeas operari;</p> +<p>Cifram propones, nil vero per hanc operare</p> +<p>Set retrahens illam cum saltu deinde triplata,</p> +<p>Propones illi digitum sub lege priori,</p> +<span class = "linenum">312</span> +<p>Cumque cifram retrahas saliendo, non triplicabis,</p> +<p>Namque nihil cifre triplacio dicitur esse;</p> +<p>At tu cum cifram protraxeris aut triplicata,</p> +<p>Hanc cum subtriplo semper servare memento:</p> +<span class = "linenum">316</span> +<p>Si det compositum, digiti triplacio debet</p> +<p>Illius scribi, digitus saliendo sub ipsam;</p> +<p>Digito deleto, que terna dicitur esse;</p> +<p>Jungitur articulus cum triplata pereunte,</p> +<span class = "linenum">320</span> +<p>Set facit hunc scribi per se triplacio prima,</p> +<p>Que si det digitum per se scribi facit illum;</p> +<p>Consumpto numero, si sole fuit tibi cifre</p> +<p>Triplato, propone cifram saltum faciendo,</p> +<span class = "linenum">324</span> +<p>Cumque cifram retrahe triplam, scribendo figuram,</p> +<p>Preponas cifre, sic procedens operare,</p> +<p>Si tres vel duo serie in sint, pone sub yma,</p> +<p>A dextris digitum servando prius documentum.</p> +<span class = "linenum">328</span> +<p>Si sit continua progressio terminus nuper</p> +<p>Per majus medium totalem multiplicato;</p> +<p>Si par, per medium tunc multiplicato sequentem.</p> +<p>Set si continua non sit progressio finis:</p> +<span class = "linenum">332</span> +<p>Impar, tunc majus medium si multiplicabis,</p> +<span class = "linenum">333</span> +<p>Si par per medium sibi multiplicato propinquum.</p> + +</div> <!-- end div verse --> + +<hr class = "tiny" /> + +<div class = "footnote"> + +<p><a name = "note_app_1" id = "note_app_1" href = "#tag_app_1">1.</a> +“Hec præsens ars dicitur algorismus ab Algore rege ejus inventore, vel +dicitur ab <i>algos</i> quod est ars, et <i>rodos</i> quod est numerus; +quæ est ars numerorum vel numerandi, ad quam artem bene sciendum +inveniebantur apud Indos bis quinque (id est decem) figuræ.” +—<i>Comment. Thomæ de Novo-Mercatu.</i> MS. Bib. Reg. Mus. Brit. +12 E. 1.</p> + +<p><a name = "note_app_2" id = "note_app_2" href = "#tag_app_2">2.</a> +“Hæ necessariæ figuræ sunt Indorum characteros.” <i>MS. de +numeratione.</i> Bib. Sloan. Mus. Brit. 513, fol. 58. “Cum vidissem +Yndos constituisse <span class = "smallroman">IX</span> literas in +universo numero suo propter dispositionem suam quam posuerunt, volui +patefacere de opere quod sit per eas aliquidque esset levius +discentibus, si Deus voluerit. Si autem Indi hoc voluerunt et intentio +illorum nihil novem literis fuit, causa que mihi potuit. Deus direxit me +ad hoc. Si vero alia dicam preter eam quam ego exposui, hoc fecerunt per +hoc quod ego exposui, eadem tam certissime et absque ulla dubitatione +poterit inveniri. Levitasque patebit aspicientibus et discentibus.” MS. +U.L.C., Ii. vi. 5, f. 102.</p> + +<p><a name = "note_app_3" id = "note_app_3" href = "#tag_app_3">3.</a> +From Eg. 2622.</p> + +<p><a name = "note_app_4" id = "note_app_4" href = "#tag_app_4">4.</a> +8 C. iv. inserts Nullum cipa significat: dat significare sequenti.</p> + +<p><a name = "note_app_5" id = "note_app_5" href = "#tag_app_5">5.</a> +From 12 E. 1.</p> + +<p><a name = "note_app_6" id = "note_app_6" href = +"#tag_app_5">6.</a></p> +<div class = "verse"> +<p>En argorisme devon prendre</p> +<p>Vii especes . . . .</p> +<p>Adision subtracion</p> +<p>Doubloison mediacion</p> +<p>Monteploie et division</p> +<p>Et de radix eustracion</p> +<p>A chez vii especes savoir</p> +<p>Doit chascun en memoire avoir</p> +<p>Letres qui figures sont dites</p> +<p>Et qui excellens sont ecrites.—MS. <i>Seld. Arch.</i> +B. 26.</p> +</div> + +<p><a name = "note_app_7" id = "note_app_7" href = "#tag_app_7">7.</a> +From 12 E. 1.</p> + +<p><a name = "note_app_8" id = "note_app_8" href = "#tag_app_8">8.</a> +From 12 E. 1.</p> + +<p><a name = "note_app_9" id = "note_app_9" href = "#tag_app_9">9.</a> +8 C. iv. inserts Atque figura prior nuper fuerit mediando.</p> + +<p><a name = "note_app_10" id = "note_app_10" href = +"#tag_app_10">10.</a> +<i>I.e.</i> figura secundo loco posita.</p> + +<p><a name = "note_app_11" id = "note_app_11" href = +"#tag_app_11">11.</a> +So 12 E. 1; 8 C. iv. inserts—</p> +<div class = "verse"> +<p>Si super extremam nota sit monades dat eidem</p> +<p>Quod contingat cum primo dimiabis</p> +<p>Atque figura prior nuper fuerit mediando.</p> +</div> + +<p><a name = "note_app_12" id = "note_app_12" href = +"#tag_app_12">12.</a> +12 E. 1 inserts.</p> + +<p><a name = "note_app_13" id = "note_app_13" href = +"#tag_app_13">13.</a> +12 E. 1 inserts to l. 174.</p> + +<p><a name = "note_app_14" id = "note_app_14" href = +"#tag_app_14">14.</a> +12 E. 1 omits, Eg. 2622 inserts.</p> + +<p><a name = "note_app_15" id = "note_app_15" href = +"#tag_app_15">15.</a> +12 E. 1 inserts.</p> + +<p><a name = "note_app_16" id = "note_app_16" href = +"#tag_app_16">16.</a> +8 C. iv. inserts—</p> +<div class = "verse"> +<p>Hinc illam dele duplans sub ei psalliendo</p> +<p>Que sequitur retrahens quicquid fuerit duplicatum.</p> +</div> + +</div> + +</div> <!-- end div app --> + +</div> <!-- end div maintext --> + +<hr class = "mid" /> + +<div class = "index"> + +<span class = "pagenum">81</span> +<a name = "page81" id = "page81"> </a> + +<h3><a name = "terms" id = "terms">INDEX OF TECHNICAL TERMS</a><a class += "tag" name = "tag_terms1" id = "tag_terms1" href = +"#note_terms1">1</a></h3> + +<p><a name = "terms_algorisme" id = +"terms_algorisme"><b>algorisme</b></a>, +<a href = "#algorisme">33/12</a>; +<b>algorym</b>, <b>augrym</b>, <a href = "#algorym">3/3</a>; +the art of computing, using the so-called Arabic numerals.</p> + +<p class = "inset"> +The word in its various forms is derived from the Arabic +<i>al-Khowarazmi</i> (i.e. the native of Khwarazm (Khiva)). This was the +surname of Ja’far Mohammad ben Musa, who wrote a treatise early in the +9th century (see p. xiv).</p> + +<p class = "inset"> +The form <i>algorithm</i> is also found, being suggested by a supposed +derivation from the Greek <span class = "greek" title = +"arithmos">ἀριθμός</span> (number).</p> + +<p><a name = "terms_antery" id = "terms_antery"><b>antery</b></a>, +<a href = "#antery">24/11</a>; +to move figures to the right of the position in which they are first +written. This operation is performed repeatedly upon the multiplier in +multiplication, and upon certain figures which arise in the process of +root extraction.</p> + +<p><a name = "terms_anterioracioun" id = +"terms_anterioracioun"><b>anterioracioun</b></a>, +<a href = "#anterioracioun">50/5</a>; +the operation of moving figures to the right.</p> + +<p><a name = "terms_article" id = "terms_article"><b>article</b></a>, +<a href = "#article">34/23</a>; +<b>articul</b>, <a href = "#articul">5/31</a>; +<b>articuls</b>, <a href = "#articuls">9/36</a>, +<a href = "#articuls2">29/7,8</a>; +a number divisible by ten without remainder.</p> + +<p><a name = "terms_cast" id = "terms_cast"><b>cast</b></a>, +<a href = "#cast">8/12</a>; +to add one number to another.</p> + +<p class = "inset"> +‘Addition is a <i>casting</i> together of two numbers into one number,’ +<a href = "#castyng">8/10</a>.</p> + +<p><a name = "terms_cifre" id = "terms_cifre"><b>cifre</b></a>, +<a href = "#cifre">4/1</a>; +the name of the figure 0. The word is derived from the Arabic +<i>sifr</i> = empty, nothing. Hence <i>zero</i>.</p> + +<p class = "inset"> +A cipher is the symbol of the absence of number or of zero quantity. It +may be used alone or in conjunction with digits or other ciphers, and in +the latter case, according to the position which it occupies relative to +the other figures, indicates the absence of units, or tens, or hundreds, +etc. The great superiority of the Arabic to all other systems of +notation resides in the employment of this symbol. When the cipher is +not used, the place value of digits has to be indicated by writing them +in assigned rows or columns. Ciphers, however, may be interpolated +amongst the significant figures used, and as they sufficiently indicate +the positions of the empty rows or columns, the latter need not be +indicated in any other way. The practical performance of calculations is +thus enormously facilitated (see <a href = +"#intro_modern">p. xvi</a>).</p> + +<p><a name = "terms_componede" id = +"terms_componede"><b>componede</b></a>, <a href = +"#componede">33/24</a>; +<b>composyt</b>, <a href = "#composyt">5/35</a>; +with reference to numbers, one compounded of a multiple of ten and a +digit.</p> + +<p><a name = "terms_conuertide" id = +"terms_conuertide"><b>conuertide</b></a> = conversely, +<a href = "#conuertide">46/29</a>, +<a href = "#conuertide2">47/9</a>.</p> + +<p><a name = "terms_cubicede" id = "terms_cubicede"><b>cubicede</b></a>, +<a href = "#cubicede">50/13</a>; +<b>to be c.</b>, to have its cube root found.</p> + +<span class = "pagenum">82</span> +<a name = "page82" id = "page82"> </a> + +<p><a name = "terms_cubike" id = "terms_cubike"><b>cubike +nombre</b></a>, +<a href = "#cubike">47/8</a>; +a number formed by multiplying a given number twice by itself, +<i>e.g.</i> 27 = 3 × 3 × 3. Now called simply a +cube.</p> + +<p><a name = "terms_decuple" id = "terms_decuple"><b>decuple</b></a>, +<a href = "#decuple">22/12</a>; +the product of a number by ten. Tenfold.</p> + +<p><a name = "terms_departys" id = "terms_departys"><b>departys</b></a> += divides, +<a href = "#departys">5/29</a>.</p> + +<p><a name = "terms_digit" id = "terms_digit"><b>digit</b></a>, +<a href = "#digit">5/30</a>; +<b>digitalle</b>, <a href = "#digitalle">33/24</a>; +a number less than ten, represented by one of the nine Arabic +numerals.</p> + +<p><a name = "terms_dimydicion" id = +"terms_dimydicion"><b>dimydicion</b></a>, +<a href = "#dimydicion">7/23</a>; +the operation of dividing a number by two. Halving.</p> + +<p><a name = "terms_duccioun" id = "terms_duccioun"><b>duccioun</b></a>, +multiplication, <a href = "#duccioun">43/9</a>.</p> + +<p><a name = "terms_duplacion" id = +"terms_duplacion"><b>duplacion</b></a>, +<a href = "#duplacion">7/23</a>, +<a href = "#duplacion2">14/15</a>; the operation of multiplying a number +by two. Doubling.</p> + +<p><a name = "terms_imediet" id = "terms_imediet"><b>i-mediet</b></a> = +halved, <a href = "#imediet">19/23</a>.</p> + +<p><a name = "terms_intercise" id = +"terms_intercise"><b>intercise</b></a> = broken, <a href = +"#intercise">46/2</a>; +intercise Progression is the name given to either of the Progressions 1, +3, 5, 7, etc.; 2, 4, 6, 8, etc., in which the common difference +is 2.</p> + +<p><a name = "terms_lede_into" id = "terms_lede_into"><b>lede +into</b></a>, multiply by, <a href = "#lede_into">47/18</a>.</p> + +<p><a name = "terms_lyneal" id = "terms_lyneal"><b>lyneal +nombre</b></a>, <a href = "#lyneal">46/14</a>; +a number such as that which expresses the measure of the length of a +line, and therefore is not <i>necessarily</i> the product of two or more +numbers (<i>vide</i> Superficial, Solid). This appears to be the meaning +of the phrase as used in <i>The Art of Nombryng</i>. It is possible that +the numbers so designated are the prime numbers, that is, numbers not +divisible by any other number except themselves and unity, but it is not +clear that this limitation is intended.</p> + +<p><a name = "terms_mediacioun" id = +"terms_mediacioun"><b>mediacioun</b></a>, +<a href = "#mediacioun">16/36</a>, +<a href = "#mediacioun2">38/16</a>; dividing by two (see also +<b>dimydicion</b>).</p> + +<p><a name = "terms_medlede" id = "terms_medlede"><b>medlede +nombre</b></a>, +<a href = "#medlede">34/1</a>; +a number formed of a multiple of ten and a digit (<i>vide</i> +componede, composyt).</p> + +<p><a name = "terms_medye" id = "terms_medye"><b>medye</b></a>, +<a href = "#medye">17/8</a>, to halve; +<b>mediete</b>, halved, <a href = "#mediete">17/30</a>; +<b>ymedit</b>, <a href = "#ymedit">20/9</a>.</p> + +<p><a name = "terms_naturelle" id = "terms_naturelle"><b>naturelle +progressioun</b></a>, +<a href = "#naturelle">45/22</a>; +the series of numbers 1, 2, 3, etc.</p> + +<p><a name = "terms_produccioun" id = +"terms_produccioun"><b>produccioun</b></a>, multiplication, +<a href = "#produccioun">50/11</a>.</p> + +<p><a name = "terms_quadrat" id = "terms_quadrat"><b>quadrat +nombre</b></a>, +<a href = "#quadrat">46/12</a>; +a number formed by multiplying a given number by itself, <i>e.g.</i> 9 = +3 × 3, a square.</p> + +<p><a name = "terms_rote" id = "terms_rote"><b>rote</b></a>, +<a href = "#rote">7/25</a>; +<b>roote</b>, <a href = "#roote">47/11</a>; +root. The roots of squares and cubes are the numbers from which the +squares and cubes are derived by multiplication into themselves.</p> + +<p><a name = "terms_significatyf" id = +"terms_significatyf"><b>significatyf</b></a>, significant, +<a href = "#significatyf">5/14</a>; +The significant figures of a number are, strictly speaking, those other +than zero, <i>e.g.</i> in 3 6 5 0 4 0 0, the significant +figures are 3, 6, 5, 4. Modern usage, however, regards all figures +between the two extreme significant figures as significant, even when +some are zero. Thus, in the above example, 3 6 5 0 4 are +considered significant.</p> + +<p><a name = "terms_solide" id = "terms_solide"><b>solide +nombre</b></a>, <a href = "#solide">46/37</a>; +a number which is the product of three other numbers, <i>e.g.</i> +66 = 11 × 2 × 3.</p> + +<p><a name = "terms_superficial" id = "terms_superficial"><b>superficial +nombre</b></a>, <a href = "#superficial">46/18</a>; +a number which is the product of two other numbers, <i>e.g.</i> 6 = +2 × 3.</p> + +<p><a name = "terms_ternary" id = "terms_ternary"><b>ternary</b></a>, +consisting of three digits, <a href = "#ternary">51/7</a>.</p> + +<p><a name = "terms_vnder_double" id = "terms_vnder_double"><b>vnder +double</b></a>, a digit which has been doubled, +<a href = "#vnder_double">48/3</a>.</p> + +<p><a name = "terms_vnder_trebille" id = +"terms_vnder_trebille"><b>vnder-trebille</b></a>, a digit which has been +trebled, +<a href = "#vnder_trebille">49/28</a>; +<b>vnder-triplat</b>, <a href = "#vnder_triplat">49/39</a>.</p> + +<p><a name = "terms_sup_w" id = "terms_sup_w"><b>w</b></a>, +a symbol used to denote half a unit, <a href = "#sup_w">17/33</a>.</p> + +</div> <!-- end div index --> + +<p class = "footnote"> +<a name = "note_terms1" id = "note_terms1" href = "#tag_terms1">1.</a> +This Index has been kindly prepared by Professor J. B. Dale, of +King’s College, University of London, and the best thanks of the Society +are due to him for his valuable contribution.</p> + +<hr class = "mid" /> + +<div class = "glossary"> + +<span class = "pagenum">83</span> +<a name = "page83" id = "page83"> </a> + +<h3><a name = "glossary" id = "glossary">GLOSSARY</a></h3> + +<p class = "mynote"> +Words whose first appearance is earlier than the page cited in the +Glossary are identified in supplementary notes, and both occurrences are +marked in the main text.</p> + +<p><a name = "gloss_ablacioun" id = +"gloss_ablacioun"><b>ablacioun</b></a>, taking away, <a href = +"#ablacioun">36/21</a></p> + +<p><a name = "gloss_addyst" id = "gloss_addyst"><b>addyst</b></a>, +haddest, <a href = "#addyst">10/37</a></p> + +<p><a name = "gloss_agregacioun" id = +"gloss_agregacioun"><b>agregacioun</b></a>, addition, <a href = +"#agregacioun">45/22</a>. (First example in N.E.D., 1547.)</p> + +<p><a name = "gloss_aghenenes" id = +"gloss_aghenenes"><b>a-ȝenenes</b></a>, against, <a href = +"#aghenenes">23/10</a></p> + +<p><a name = "gloss_allgate" id = "gloss_allgate"><b>allgate</b></a>, +always, <a href = "#allgate">8/39</a></p> + +<p><a name = "gloss_als" id = "gloss_als"><b>als</b></a>, as, <a href = +"#als">22/24</a></p> + +<p><a name = "gloss_and" id = "gloss_and"><b>and</b></a>, if, <a href = +"#and">29/8</a>;</p> +<p class = "inset"> +<b>&</b>, <a href = "#amp">4/27</a>;</p> +<p class = "inset"> +<b>& yf</b>, <a href = "#and_yf">20/7</a></p> + +<p><a name = "gloss_anendes" id = "gloss_anendes"><b>a-nendes</b></a>, +towards, <a href = "#anendes">23/15</a></p> + +<p><a name = "gloss_aproprede" id = +"gloss_aproprede"><b>aproprede</b></a>, appropriated, <a href = +"#aproprede">34/27</a></p> + +<p><a name = "gloss_apwereth" id = "gloss_apwereth"><b>apwereth</b></a>, +appears, <a href = "#apwereth">61/8</a></p> + +<p><a name = "gloss_arisyght" id = "gloss_arisyght"><b>a-risyȝt</b></a>, +arises, <a href = "#arisyght">14/24</a></p> + +<p><a name = "gloss_arowe" id = "gloss_arowe"><b>a-rowe</b></a>, in a +row, <a href = "#arowe">29/10</a></p> + +<p><a name = "gloss_arsemetrike" id = +"gloss_arsemetrike"><b>arsemetrike</b></a>, arithmetic, <a href = +"#arsemetrike">33/1</a></p> + +<p><a name = "gloss_ayene" id = "gloss_ayene"><b>ayene</b></a>, again, +<a href = "#ayene">45/15</a></p> + + +<p><a name = "gloss_bagle" id = "gloss_bagle"><b>bagle</b></a>, crozier, +<a href = "#bagle">67/12</a></p> + +<p><a name = "gloss_bordure" id = "gloss_bordure"><b>bordure</b></a> = +ordure, row, <a href = "#bordure">43/30</a></p> + +<p><a name = "gloss_borro" id = "gloss_borro"><b>borro</b></a>, +<i>inf.</i> borrow, <a href = "#borro">11/38</a>;</p> +<p class = "inset"> +<i>imp. s.</i> <b>borowe</b>, <a href = "#borowe">12/20</a>;</p> +<p class = "inset"> +<i>pp.</i> <b>borwed</b>, <a href = "#borwed">12/15</a>;</p> +<p class = "inset"> +<b>borred</b>, <a href = "#borred">12/19</a></p> + +<p><a name = "gloss_boue" id = "gloss_boue"><b>boue</b></a>, above, +<a href = "#boue">42/34</a></p> + + +<p><a name = "gloss_caputule" id = "gloss_caputule"><b>caputule</b></a>, +chapter, <a href = "#caputule">7/26</a></p> + +<p><a name = "gloss_certayn" id = "gloss_certayn"><b>certayn</b></a>, +assuredly, <a href = "#certayn">18/34</a></p> + +<p><a name = "gloss_clepede" id = "gloss_clepede"><b>clepede</b></a>, +called, <a href = "#clepede">47/7</a></p> + +<p><a name = "gloss_competently" id = +"gloss_competently"><b>competently</b></a>, conveniently, <a href = +"#competently">35/8</a></p> + +<p><a name = "gloss_compt" id = "gloss_compt"><b>compt</b></a>, count, +<a href = "#compt">47/29</a></p> + +<p><a name = "gloss_contynes" id = "gloss_contynes"><b>contynes</b></a>, +contains, <a href = "#contynes">21/12</a>;</p> +<p class = "inset"> +<i>pp.</i> <b>contenythe</b>, <a href = "#contenythe">38/39</a></p> + +<p><a name = "gloss_craft" id = "gloss_craft"><b>craft</b></a>, art, +<a href = "#craft">3/4</a></p> + + +<p><a name = "gloss_distingue" id = +"gloss_distingue"><b>distingue</b></a>, divide, <a href = +"#distingue">51/5</a></p> + + +<p><a name = "gloss_egalle" id = "gloss_egalle"><b>egalle</b></a>, +equal, <a href = "#egalle">45/21</a></p> + +<p><a name = "gloss_excep" id = "gloss_excep"><b>excep</b></a>, except, +<a href = "#excep">5/16</a></p> + +<p><a name = "gloss_exclusede" id = +"gloss_exclusede"><b>exclusede</b></a>, excluded, <a href = +"#exclusede">34/37</a></p> + +<p><a name = "gloss_excressent" id = +"gloss_excressent"><b>excressent</b></a>, resulting, <a href = +"#excressent">35/16</a></p> + +<p><a name = "gloss_exeant" id = "gloss_exeant"><b>exeant</b></a>, +resulting, <a href = "#exeant">43/26</a></p> + +<p><a name = "gloss_expone" id = "gloss_expone"><b>expone</b></a>, +expound, <a href = "#expone">3/23</a></p> + + +<p><a name = "gloss_ferye" id = "gloss_ferye"><b>ferye</b></a> = ferþe, +fourth, <a href = "#ferye">70/12</a></p> + +<p><a name = "gloss_figure" id = "gloss_figure"><b>figure</b></a> = +figures, <a href = "#figure">5/1</a></p> + +<p><a name = "gloss_forby" id = "gloss_forby"><b>for-by</b></a>, past, +<a href = "#forby">12/11</a></p> + +<p><a name = "gloss_fors" id = "gloss_fors"><b>fors; no f.</b></a>, no +matter, <a href = "#fors">22/24</a></p> + +<p><a name = "gloss_forseth" id = "gloss_forseth"><b>forseth</b></a>, +matters, <a href = "#forseth">53/30</a></p> + +<p><a name = "gloss_forye" id = "gloss_forye"><b>forye</b></a> = forþe, +forth, <a href = "#forye">71/8</a></p> + +<p><a name = "gloss_fyftye" id = "gloss_fyftye"><b>fyftye</b></a> = +fyftþe, fifth, <a href = "#fyftye">70/16</a></p> + + +<p><a name = "gloss_grewe" id = "gloss_grewe"><b>grewe</b></a>, Greek, +<a href = "#grewe">33/13</a></p> + + +<p><a name = "gloss_haluendel" id = +"gloss_haluendel"><b>haluendel</b></a>, half, <a href = +"#haluendel">16/16</a>;</p> +<p class = "inset"> +<b>haldel</b>, <a href = "#haldel">19/4</a>;</p> +<p class = "inset"> +<i>pl.</i> <b>haluedels</b>, <a href = "#haluedels">16/16</a></p> + +<p><a name = "gloss_hayst" id = "gloss_hayst"><b>hayst</b></a>, hast, +<a href = "#hayst">17/3</a>, 32</p> + +<p><a name = "gloss_hast" id = "gloss_hast"><b>hast</b></a>, haste, +<a href = "#hast">22/25</a></p> + +<p><a name = "gloss_heer" id = "gloss_heer"><b>heer</b></a>, higher, +<a href = "#heer">9/35</a></p> + +<p><a name = "gloss_here" id = "gloss_here"><b>here</b></a>, their, +<a href = "#here">7/26</a></p> + +<p><a name = "gloss_hereafore" id = +"gloss_hereafore"><b>here-a-fore</b></a>, heretofore, <a href = +"#hereafore">13/7</a></p> + +<p><a name = "gloss_heyth" id = "gloss_heyth"><b>heyth</b></a>, was +called, <a href = "#heyth">3/5</a></p> + +<p><a name = "gloss_hole" id = "gloss_hole"><b>hole</b></a>, whole, +<a href = "#hole">4/39</a>;</p> +<p class = "inset"> +<b>holle</b>, <a href = "#holle">17/1</a>;</p> +<p class = "inset"> +<b>hoole</b>, of three dimensions, <a href = "#hoole">46/15</a></p> + +<p><a name = "gloss_holdythe" id = "gloss_holdythe"><b>holdyþe</b></a>, +holds good, <a href = "#holdythe">30/5</a></p> + +<p><a name = "gloss_how_be_it_that" id = "gloss_how_be_it_that"><b>how +be it that</b></a>, although, <a href = "#how_be_it_that">44/4</a></p> + + +<p><a name = "gloss_lede" id = "gloss_lede"><b>lede</b></a> = lete, let, +<a href = "#lede">8/37</a></p> + +<p><a name = "gloss_lene" id = "gloss_lene"><b>lene</b></a>, lend, +<a href = "#lene">12/39</a></p> + +<p><a name = "gloss_lest" id = "gloss_lest"><b>lest</b></a>, least, +<a href = "#lest">43/27</a></p> + +<p><a name = "gloss_lest2" id = "gloss_lest2"><b>lest</b></a> = left, +<a href = "#lest2">71/9</a></p> + +<p><a name = "gloss_leue" id = "gloss_leue"><b>leue</b></a>, leave, +<a href = "#leue">6/5</a>;</p> +<p class = "inset"> +<i>pr. 3 s.</i> <b>leues</b>, remains, <a href = "#leues">11/19</a>; +<span class = "mynote">First used in <a href = +"#leues1">10/40</a></span></p> +<p class = "inset"> +<b>leus</b>, <a href = "#leus">11/28</a>;</p> +<p class = "inset"> +<i>pp.</i> <b>laft</b>, left, <a href = "#laft">19/24</a></p> + +<p><a name = "gloss_lewder" id = "gloss_lewder"><b>lewder</b></a>, more +ignorant, <a href = "#lewder">3/3</a></p> + +<p><a name = "gloss_lust" id = "gloss_lust"><b>lust</b></a>, desirest +to, <a href = "#lust">45/13</a></p> + +<p><a name = "gloss_lyght" id = "gloss_lyght"><b>lyȝt</b></a>, easy, +<a href = "#lyght">15/31</a></p> + +<p><a name = "gloss_lymytes" id = "gloss_lymytes"><b>lymytes</b></a>, +limits, <a href = "#lymytes">34/18</a>;</p> +<p class = "inset"> +<b>lynes</b>, <a href = "#lynes">34/12</a>;</p> +<p class = "inset"> +<b>lynees</b>, <a href = "#lynees">34/17</a>;</p> +<p class = "inset"> +Lat. limes, <i>pl.</i> limites.</p> + + +<p><a name = "gloss_maystery" id = "gloss_maystery"><b>maystery</b></a>, +achievement;</p> +<p class = "inset"> +<b>no m.</b>, no achievement, i.e. easy, <a href = +"#maystery">19/10</a></p> + +<p><a name = "gloss_me" id = "gloss_me"><b>me</b></a>, <i>indef. +pron.</i> one, <a href = "#me">42/1</a> +<span class = "mynote">First used in <a href = +"#me1">34/16</a></span></p> + +<p><a name = "gloss_mo" id = "gloss_mo"><b>mo</b></a>, more, <a href = +"#mo">9/16</a> +<span class = "pagenum">84</span> +<a name = "page84" id = "page84"> </a></p> +<p class = "inset"> +<b>moder</b> = more (Lat. majorem), <a href = "#moder">43/22</a></p> + +<p><a name = "gloss_most" id = "gloss_most"><b>most</b></a>, must, +<a href = "#most">30/3</a> +<span class = "mynote">First used in <a href = +"#most1">3/12</a></span></p> + +<p><a name = "gloss_multipliede" id = +"gloss_multipliede"><b>multipliede</b></a>, <b>to be m.</b> = +multiplying, <a href = "#multipliede">40/9</a></p> + +<p><a name = "gloss_mynvtes" id = "gloss_mynvtes"><b>mynvtes</b></a>, +the sixty parts into which a unit is divided, <a href = +"#mynvtes">38/25</a></p> + +<p><a name = "gloss_mysewroght" id = +"gloss_mysewroght"><b>myse-wroȝt</b></a>, mis-wrought, <a href = +"#mysewroght">14/11</a></p> + + +<p><a name = "gloss_nether" id = "gloss_nether"><b>nether</b></a>, nor, +<a href = "#nether">34/25</a></p> + +<p><a name = "gloss_nex" id = "gloss_nex"><b>nex</b></a>, next, +<a href = "#nex">19/9</a></p> + +<p><a name = "gloss_noght" id = "gloss_noght"><b>noȝt</b></a>, nought, +<a href = "#noght">5/7</a> +<span class = "mynote">First used in <a href = +"#noght1">4/8</a></span></p> + +<p><a name = "gloss_note" id = "gloss_note"><b>note</b></a>, not, +<a href = "#note">30/5</a></p> + + +<p><a name = "gloss_oo" id = "gloss_oo"><b>oo</b></a>, one, <a href = +"#oo">42/20</a>; <b>o</b>, <a href = "#o">42/21</a> +<span class = "mynote">First used in <a href = +"#oo1">34/27</a> (oo); <a href = +"#o1">33/22</a> (o)</span></p> + +<p><a name = "gloss_omest" id = "gloss_omest"><b>omest</b></a>, +uppermost, higher, <a href = "#omest">35/26</a>;</p> +<p class = "inset"> +<b>omyst</b>, <a href = "#omyst">35/28</a></p> + +<p><a name = "gloss_omwhile" id = "gloss_omwhile"><b>omwhile</b></a>, +sometimes, <a href = "#omwhile">45/31</a> +<span class = "mynote">First used in <a href = +"#omwhile1">39/17</a></span></p> + +<p><a name = "gloss_on" id = "gloss_on"><b>on</b></a>, one, <a href = +"#on">8/29</a></p> + +<p><a name = "gloss_opyne" id = "gloss_opyne"><b>opyne</b></a>, plain, +<a href = "#opyne">47/8</a></p> + +<p><a name = "gloss_or" id = "gloss_or"><b>or</b></a>, before, <a href = +"#or">13/25</a></p> + +<p><a name = "gloss_or2" id = "gloss_or2"><b>or</b></a> = þe +oþ<i>er</i>, the other, <a href = "#or">28/34</a></p> + +<p><a name = "gloss_ordure" id = "gloss_ordure"><b>ordure</b></a>, +order, <a href = "#ordure">34/9</a>;</p> +<p class = "inset"> +row, <a href = "#order">43/1</a> +<span class = "mynote">Word form is “order”</span></p> + +<p><a name = "gloss_other" id = "gloss_other"><b>other</b></a>, or, +<a href = "#other">33/13</a>, <a href = "#other2">43/26</a>; +<span class = "mynote">Note also “one other other” in <a href = +"#other1">35/24</a></span></p> +<p class = "inset"> +<b>other . . . or</b>, either . . . or, <a href = "#other_or">38/37</a> +<span class = "mynote">First used in <a href = +"#other_or1">37/5</a></span></p> + +<p><a name = "gloss_ouerer" id = "gloss_ouerer"><b>ouerer</b></a>, +upper, <a href = "#ouerer">42/15</a></p> + +<p><a name = "gloss_ouerhippede" id = +"gloss_ouerhippede"><b>ouer-hippede</b></a>, passed over, <a href = +"#ouerhippede">43/19</a></p> + + +<p><a name = "gloss_recte" id = "gloss_recte"><b>recte</b></a>, +directly, <a href = "#recte">27/20</a> +<span class = "mynote">First used in <a href = +"#recte1">26/31</a></span></p> + +<p><a name = "gloss_remayner" id = "gloss_remayner"><b>remayner</b></a>, +remainder, <a href = "#remayner">56/28</a></p> + +<p><a name = "gloss_representithe" id = +"gloss_representithe"><b>representithe</b></a>, represented, <a href = +"#representithe">39/14</a></p> + +<p><a name = "gloss_resteth" id = "gloss_resteth"><b>resteth</b></a>, +remains, <a href = "#resteth">63/29</a> +<span class = "mynote">First used in <a href = +"#resteth1">57/29</a></span></p> + +<p><a name = "gloss_rewarde" id = "gloss_rewarde"><b>rewarde</b></a>, +regard, <a href = "#rewarde">48/6</a></p> + +<p><a name = "gloss_rew" id = "gloss_rew"><b>rew</b></a>, row, <a href = +"#rew">4/8</a></p> + +<p><a name = "gloss_rewle" id = "gloss_rewle"><b>rewle</b></a>, row, +<a href = "#rewle">4/20</a>, <a href = "#rewle2">7/12</a>;</p> +<p class = "inset"> +<b>rewele</b>, <a href = "#rewele">4/18</a>;</p> +<p class = "inset"> +<b>rewles</b>, rules, <a href = "#rewles">5/33</a></p> + + +<p><a name = "gloss_sc" id = "gloss_sc"><b>s.</b></a> = scilicet, +<a href = "#sc">3/8</a></p> + +<p><a name = "gloss_sentens" id = "gloss_sentens"><b>sentens</b></a>, +meaning, <a href = "#sentens">14/29</a></p> + +<p><a name = "gloss_signifyetyf" id = +"gloss_signifyetyf"><b>signifye(tyf)</b></a>, <a href = +"#signifyetyf">5/13</a>. The last three letters are added above the +line, evidently because of the word ‘significatyf’ in l. 14. But +the ‘Solucio,’ which contained the word, has been omitted.</p> + +<p><a name = "gloss_sithen" id = "gloss_sithen"><b>sithen</b></a>, +since, <a href = "#sithen">33/8</a></p> + +<p><a name = "gloss_some" id = "gloss_some"><b>some</b></a>, sum, +result, <a href = "#some">40/17</a>, 32 +<span class = "mynote">First used in <a href = +"#some1">36/21</a></span></p> + +<p><a name = "gloss_sowne" id = "gloss_sowne"><b>sowne</b></a>, +pronounce, <a href = "#sowne">6/29</a></p> + +<p><a name = "gloss_singillatim" id = +"gloss_singillatim"><b>singillatim</b></a>, singly, <a href = +"#singillatim">7/25</a></p> + +<p><a name = "gloss_spices" id = "gloss_spices"><b>spices</b></a>, +species, kinds, <a href = "#spices">34/4</a><span class = "mynote">First +used in <a href = "#spices1">5/34</a></span></p> + +<p><a name = "gloss_spyl" id = "gloss_spyl"><b>spyl</b></a>, waste, +<a href = "#spyl">14/26</a></p> + +<p><a name = "gloss_styde" id = "gloss_styde"><b>styde</b></a>, stead, +<a href = "#styde">18/20</a></p> + +<p><a name = "gloss_subtrahe" id = "gloss_subtrahe"><b>subtrahe</b></a>, +subtract, <a href = "#subtrahe">48/12</a>;</p> +<p class = "inset"> +<i>pp.</i> <b>subtrayd</b>, <a href = "#subtrayd">13/21</a></p> + +<p><a name = "gloss_sythes" id = "gloss_sythes"><b>sythes</b></a>, +times, <a href = "#sythes">21/16</a></p> + + +<p><a name = "gloss_taght" id = "gloss_taght"><b>taȝt</b></a>, taught, +<a href = "#taght">16/36</a></p> + +<p><a name = "gloss_take" id = "gloss_take"><b>take</b></a>, <i>pp.</i> +taken;</p> +<p class = "inset"> +<b>t. fro</b>, starting from, <a href = "#take">45/22</a></p> + +<p><a name = "gloss_taward" id = "gloss_taward"><b>taward</b></a>, +toward, <a href = "#taward">23/34</a></p> + +<p><a name = "gloss_thought" id = "gloss_thought"><b>thouȝt</b></a>, +though, <a href = "#thought">5/20</a></p> + +<p><a name = "gloss_trebille" id = "gloss_trebille"><b>trebille</b></a>, +multiply by three, <a href = "#trebille">49/26</a></p> + +<p><a name = "gloss_twene" id = "gloss_twene"><b>twene</b></a>, two, +<a href = "#twene">8/11</a> +<span class = "mynote">First used in <a href = +"#twene1">4/23</a></span></p> + +<p><a name = "gloss_thow" id = "gloss_thow"><b>þow</b></a>, though, +<a href = "#thow">25/15</a></p> + +<p><a name = "gloss_thowght" id = "gloss_thowght"><b>þowȝt</b></a>, +thought;</p> +<p class = "inset"> +<b>be þ.</b>, mentally, <a href = "#thowght">28/4</a></p> + +<p><a name = "gloss_thus" id = "gloss_thus"><b>þus</b></a> = þis, this, +<a href = "#thus">20/33</a></p> + + +<p><a name = "gloss_vny" id = "gloss_vny"><b>vny</b></a>, unite, +<a href = "#vny">45/10</a></p> + + +<p><a name = "gloss_wel" id = "gloss_wel"><b>wel</b></a>, wilt, +<a href = "#wel">14/31</a></p> + +<p><a name = "gloss_wete" id = "gloss_wete"><b>wete</b></a>, wit, +<a href = "#wete">15/16</a>;</p> +<p class = "inset"> +<b>wyte</b>, know, <a href = "#wyte">8/38</a>;</p> +<p class = "inset"> +<i>pr. 2 s.</i> <b>wost</b>, <a href = "#wost">12/38</a></p> + +<p><a name = "gloss_wex" id = "gloss_wex"><b>wex</b></a>, become, +<a href = "#wex">50/18</a></p> + +<p><a name = "gloss_where" id = "gloss_where"><b>where</b></a>, whether, +<a href = "#where">29/12</a></p> + +<p><a name = "gloss_wherthurghe" id = +"gloss_wherthurghe"><b>wher-thurghe</b></a>, whence, <a href = +"#wherthurghe">49/15</a></p> + +<p><a name = "gloss_worch" id = "gloss_worch"><b>worch</b></a>, work, +<a href = "#worch">8/19</a>; +<span class = "mynote">First used in <a href = +"#worch1">7/35</a></span></p> +<p class = "inset"> +<b>wrich</b>, <a href = "#wrich">8/35</a>;</p> +<p class = "inset"> +<b>wyrch</b>, <a href = "#wyrch">6/19</a>;</p> +<p class = "inset"> +<i>imp. s.</i> <b>worch</b>, <a href = "#worch">15/9</a>; +<span class = "mynote">First used in <a href = +"#worch1">9/6</a></span></p> +<p class = "inset"> +<i>pp.</i> <b>y-wroth</b>, <a href = "#ywroth">13/24</a></p> + +<p><a name = "gloss_write" id = "gloss_write"><b>write</b></a>, written, +<a href = "#write">29/19</a>; +<span class = "mynote">First used in <a href = +"#write1">4/5</a></span></p> +<p class = "inset"> +<b>y-write</b>, <a href = "#ywrite">16/1</a></p> + +<p><a name = "gloss_wryrchynge" id = +"gloss_wryrchynge"><b>wryrchynge</b></a> = wyrchynge, working, <a href = +"#wryrchynge">30/4</a></p> + +<p><a name = "gloss_wt" id = "gloss_wt"><b>w<sup>t</sup></b></a>, with, +<a href = "#wt">55/8</a></p> + + +<p><a name = "gloss_ybroth" id = "gloss_ybroth"><b>y-broth</b></a>, +brought, <a href = "#ybroth">21/18</a></p> + +<p><a name = "gloss_ychon" id = "gloss_ychon"><b>ychon</b></a>, each +one, <a href = "#ychon">29/10</a></p> + +<p><a name = "gloss_ydo" id = "gloss_ydo"><b>ydo</b></a>, done, added, +<a href = "#ydo">9/6</a> +<span class = "mynote">First used in <a href = +"#ydo1">8/37</a></span></p> + +<p><a name = "gloss_ylke" id = "gloss_ylke"><b>ylke</b></a>, same, +<a href = "#ylke">5/12</a></p> + +<p><a name = "gloss_ylyech" id = "gloss_ylyech"><b>y-lyech</b></a>, +alike, <a href = "#ylyech">22/23</a></p> + +<p><a name = "gloss_ymyght" id = "gloss_ymyght"><b>y-myȝt</b></a>, been +able, <a href = "#ymyght">12/2</a></p> + +<p><a name = "gloss_ynowght" id = "gloss_ynowght"><b>y-nowȝt</b></a>, +enough, <a href = "#ynowght">15/31</a>;</p> +<p class = "inset"> +<b>ynovȝt</b>, <a href = "#ynovght">18/34</a></p> + +<p><a name = "gloss_yove" id = "gloss_yove"><b>yove</b></a>, given, +<a href = "#yove">45/33</a></p> + +<p><a name = "gloss_yt" id = "gloss_yt"><b>y<sup>t</sup></b></a>, that, +<a href = "#yt">52/8</a></p> + +<p><b>y-write</b>, <i>v.</i> <a href = +"#gloss_write"><b>write.</b></a></p> + +<p><b>y-wroth</b>, <i>v.</i> <a href = +"#gloss_worch"><b>worch.</b></a></p> + +</div> <!-- end div glossary --> + +<div class = "endnote"> +<h4><a name = "endnote" id = "endnote">MARGINAL NOTES</a></h4> + +<p><b>Headnotes</b> have been moved to the beginning of the appropriate +paragraph. Headnotes were omitted from the two Appendixes, as sidenotes +give the same information.</p> + +<p><b>Line Numbers</b> are cited in the Index and Glossary. They have +been omitted from the e-text except in the one verse selection +(App. II, <i>Carmen de Algorismo</i>). Instead, the Index and +Glossary are linked directly to each word.</p> + +<p><b>Numbered Notes</b>:</p> + +<p class = "inset"> +Numbered sidenotes show page or leaf numbers from the original MSS. In +the e-text, sidenote numbers have been replaced with simple +asterisks.</p> + +<p class = "inset"> +Footnotes give textual information such as variant readings. They +have been numbered sequentially within each title.</p> + +<p><b>Sidenotes</b> giving a running synopsis of the text have been kept +as close as possible to their original format and location.</p> + +</div> + + + + + + + + +<pre> + + + + + +End of Project Gutenberg's The Earliest Arithmetics in English, by Anonymous + +*** END OF THIS PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH *** + +***** This file should be named 25664-h.htm or 25664-h.zip ***** +This and all associated files of various formats will be found in: + http://www.gutenberg.org/2/5/6/6/25664/ + +Produced by Louise Hope, David Starner and the Online +Distributed Proofreading Team at http://www.pgdp.net + + +Updated editions will replace the previous one--the old editions +will be renamed. + +Creating the works from public domain print editions means that no +one owns a United States copyright in these works, so the Foundation +(and you!) can copy and distribute it in the United States without +permission and without paying copyright royalties. Special rules, +set forth in the General Terms of Use part of this license, apply to +copying and distributing Project Gutenberg-tm electronic works to +protect the PROJECT GUTENBERG-tm concept and trademark. Project +Gutenberg is a registered trademark, and may not be used if you +charge for the eBooks, unless you receive specific permission. If you +do not charge anything for copies of this eBook, complying with the +rules is very easy. You may use this eBook for nearly any purpose +such as creation of derivative works, reports, performances and +research. They may be modified and printed and given away--you may do +practically ANYTHING with public domain eBooks. Redistribution is +subject to the trademark license, especially commercial +redistribution. + + + +*** START: FULL LICENSE *** + +THE FULL PROJECT GUTENBERG LICENSE +PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK + +To protect the Project Gutenberg-tm mission of promoting the free +distribution of electronic works, by using or distributing this work +(or any other work associated in any way with the phrase "Project +Gutenberg"), you agree to comply with all the terms of the Full Project +Gutenberg-tm License (available with this file or online at +http://gutenberg.org/license). + + +Section 1. General Terms of Use and Redistributing Project Gutenberg-tm +electronic works + +1.A. By reading or using any part of this Project Gutenberg-tm +electronic work, you indicate that you have read, understand, agree to +and accept all the terms of this license and intellectual property +(trademark/copyright) agreement. If you do not agree to abide by all +the terms of this agreement, you must cease using and return or destroy +all copies of Project Gutenberg-tm electronic works in your possession. +If you paid a fee for obtaining a copy of or access to a Project +Gutenberg-tm electronic work and you do not agree to be bound by the +terms of this agreement, you may obtain a refund from the person or +entity to whom you paid the fee as set forth in paragraph 1.E.8. + +1.B. "Project Gutenberg" is a registered trademark. It may only be +used on or associated in any way with an electronic work by people who +agree to be bound by the terms of this agreement. There are a few +things that you can do with most Project Gutenberg-tm electronic works +even without complying with the full terms of this agreement. See +paragraph 1.C below. There are a lot of things you can do with Project +Gutenberg-tm electronic works if you follow the terms of this agreement +and help preserve free future access to Project Gutenberg-tm electronic +works. See paragraph 1.E below. + +1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" +or PGLAF), owns a compilation copyright in the collection of Project +Gutenberg-tm electronic works. Nearly all the individual works in the +collection are in the public domain in the United States. If an +individual work is in the public domain in the United States and you are +located in the United States, we do not claim a right to prevent you from +copying, distributing, performing, displaying or creating derivative +works based on the work as long as all references to Project Gutenberg +are removed. Of course, we hope that you will support the Project +Gutenberg-tm mission of promoting free access to electronic works by +freely sharing Project Gutenberg-tm works in compliance with the terms of +this agreement for keeping the Project Gutenberg-tm name associated with +the work. You can easily comply with the terms of this agreement by +keeping this work in the same format with its attached full Project +Gutenberg-tm License when you share it without charge with others. + +1.D. The copyright laws of the place where you are located also govern +what you can do with this work. Copyright laws in most countries are in +a constant state of change. If you are outside the United States, check +the laws of your country in addition to the terms of this agreement +before downloading, copying, displaying, performing, distributing or +creating derivative works based on this work or any other Project +Gutenberg-tm work. The Foundation makes no representations concerning +the copyright status of any work in any country outside the United +States. + +1.E. Unless you have removed all references to Project Gutenberg: + +1.E.1. The following sentence, with active links to, or other immediate +access to, the full Project Gutenberg-tm License must appear prominently +whenever any copy of a Project Gutenberg-tm work (any work on which the +phrase "Project Gutenberg" appears, or with which the phrase "Project +Gutenberg" is associated) is accessed, displayed, performed, viewed, +copied or distributed: + +This eBook is for the use of anyone anywhere at no cost and with +almost no restrictions whatsoever. You may copy it, give it away or +re-use it under the terms of the Project Gutenberg License included +with this eBook or online at www.gutenberg.org + +1.E.2. If an individual Project Gutenberg-tm electronic work is derived +from the public domain (does not contain a notice indicating that it is +posted with permission of the copyright holder), the work can be copied +and distributed to anyone in the United States without paying any fees +or charges. If you are redistributing or providing access to a work +with the phrase "Project Gutenberg" associated with or appearing on the +work, you must comply either with the requirements of paragraphs 1.E.1 +through 1.E.7 or obtain permission for the use of the work and the +Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or +1.E.9. + +1.E.3. If an individual Project Gutenberg-tm electronic work is posted +with the permission of the copyright holder, your use and distribution +must comply with both paragraphs 1.E.1 through 1.E.7 and any additional +terms imposed by the copyright holder. Additional terms will be linked +to the Project Gutenberg-tm License for all works posted with the +permission of the copyright holder found at the beginning of this work. + +1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm +License terms from this work, or any files containing a part of this +work or any other work associated with Project Gutenberg-tm. + +1.E.5. Do not copy, display, perform, distribute or redistribute this +electronic work, or any part of this electronic work, without +prominently displaying the sentence set forth in paragraph 1.E.1 with +active links or immediate access to the full terms of the Project +Gutenberg-tm License. + +1.E.6. You may convert to and distribute this work in any binary, +compressed, marked up, nonproprietary or proprietary form, including any +word processing or hypertext form. However, if you provide access to or +distribute copies of a Project Gutenberg-tm work in a format other than +"Plain Vanilla ASCII" or other format used in the official version +posted on the official Project Gutenberg-tm web site (www.gutenberg.org), +you must, at no additional cost, fee or expense to the user, provide a +copy, a means of exporting a copy, or a means of obtaining a copy upon +request, of the work in its original "Plain Vanilla ASCII" or other +form. Any alternate format must include the full Project Gutenberg-tm +License as specified in paragraph 1.E.1. + +1.E.7. Do not charge a fee for access to, viewing, displaying, +performing, copying or distributing any Project Gutenberg-tm works +unless you comply with paragraph 1.E.8 or 1.E.9. + +1.E.8. You may charge a reasonable fee for copies of or providing +access to or distributing Project Gutenberg-tm electronic works provided +that + +- You pay a royalty fee of 20% of the gross profits you derive from + the use of Project Gutenberg-tm works calculated using the method + you already use to calculate your applicable taxes. The fee is + owed to the owner of the Project Gutenberg-tm trademark, but he + has agreed to donate royalties under this paragraph to the + Project Gutenberg Literary Archive Foundation. Royalty payments + must be paid within 60 days following each date on which you + prepare (or are legally required to prepare) your periodic tax + returns. Royalty payments should be clearly marked as such and + sent to the Project Gutenberg Literary Archive Foundation at the + address specified in Section 4, "Information about donations to + the Project Gutenberg Literary Archive Foundation." + +- You provide a full refund of any money paid by a user who notifies + you in writing (or by e-mail) within 30 days of receipt that s/he + does not agree to the terms of the full Project Gutenberg-tm + License. You must require such a user to return or + destroy all copies of the works possessed in a physical medium + and discontinue all use of and all access to other copies of + Project Gutenberg-tm works. + +- You provide, in accordance with paragraph 1.F.3, a full refund of any + money paid for a work or a replacement copy, if a defect in the + electronic work is discovered and reported to you within 90 days + of receipt of the work. + +- You comply with all other terms of this agreement for free + distribution of Project Gutenberg-tm works. + +1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm +electronic work or group of works on different terms than are set +forth in this agreement, you must obtain permission in writing from +both the Project Gutenberg Literary Archive Foundation and Michael +Hart, the owner of the Project Gutenberg-tm trademark. Contact the +Foundation as set forth in Section 3 below. + +1.F. + +1.F.1. Project Gutenberg volunteers and employees expend considerable +effort to identify, do copyright research on, transcribe and proofread +public domain works in creating the Project Gutenberg-tm +collection. Despite these efforts, Project Gutenberg-tm electronic +works, and the medium on which they may be stored, may contain +"Defects," such as, but not limited to, incomplete, inaccurate or +corrupt data, transcription errors, a copyright or other intellectual +property infringement, a defective or damaged disk or other medium, a +computer virus, or computer codes that damage or cannot be read by +your equipment. + +1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right +of Replacement or Refund" described in paragraph 1.F.3, the Project +Gutenberg Literary Archive Foundation, the owner of the Project +Gutenberg-tm trademark, and any other party distributing a Project +Gutenberg-tm electronic work under this agreement, disclaim all +liability to you for damages, costs and expenses, including legal +fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT +LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE +PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE +TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE +LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR +INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH +DAMAGE. + +1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a +defect in this electronic work within 90 days of receiving it, you can +receive a refund of the money (if any) you paid for it by sending a +written explanation to the person you received the work from. If you +received the work on a physical medium, you must return the medium with +your written explanation. The person or entity that provided you with +the defective work may elect to provide a replacement copy in lieu of a +refund. If you received the work electronically, the person or entity +providing it to you may choose to give you a second opportunity to +receive the work electronically in lieu of a refund. If the second copy +is also defective, you may demand a refund in writing without further +opportunities to fix the problem. + +1.F.4. Except for the limited right of replacement or refund set forth +in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER +WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. + +1.F.5. Some states do not allow disclaimers of certain implied +warranties or the exclusion or limitation of certain types of damages. +If any disclaimer or limitation set forth in this agreement violates the +law of the state applicable to this agreement, the agreement shall be +interpreted to make the maximum disclaimer or limitation permitted by +the applicable state law. The invalidity or unenforceability of any +provision of this agreement shall not void the remaining provisions. + +1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the +trademark owner, any agent or employee of the Foundation, anyone +providing copies of Project Gutenberg-tm electronic works in accordance +with this agreement, and any volunteers associated with the production, +promotion and distribution of Project Gutenberg-tm electronic works, +harmless from all liability, costs and expenses, including legal fees, +that arise directly or indirectly from any of the following which you do +or cause to occur: (a) distribution of this or any Project Gutenberg-tm +work, (b) alteration, modification, or additions or deletions to any +Project Gutenberg-tm work, and (c) any Defect you cause. + + +Section 2. Information about the Mission of Project Gutenberg-tm + +Project Gutenberg-tm is synonymous with the free distribution of +electronic works in formats readable by the widest variety of computers +including obsolete, old, middle-aged and new computers. It exists +because of the efforts of hundreds of volunteers and donations from +people in all walks of life. + +Volunteers and financial support to provide volunteers with the +assistance they need, is critical to reaching Project Gutenberg-tm's +goals and ensuring that the Project Gutenberg-tm collection will +remain freely available for generations to come. In 2001, the Project +Gutenberg Literary Archive Foundation was created to provide a secure +and permanent future for Project Gutenberg-tm and future generations. +To learn more about the Project Gutenberg Literary Archive Foundation +and how your efforts and donations can help, see Sections 3 and 4 +and the Foundation web page at http://www.pglaf.org. + + +Section 3. Information about the Project Gutenberg Literary Archive +Foundation + +The Project Gutenberg Literary Archive Foundation is a non profit +501(c)(3) educational corporation organized under the laws of the +state of Mississippi and granted tax exempt status by the Internal +Revenue Service. The Foundation's EIN or federal tax identification +number is 64-6221541. Its 501(c)(3) letter is posted at +http://pglaf.org/fundraising. Contributions to the Project Gutenberg +Literary Archive Foundation are tax deductible to the full extent +permitted by U.S. federal laws and your state's laws. + +The Foundation's principal office is located at 4557 Melan Dr. S. +Fairbanks, AK, 99712., but its volunteers and employees are scattered +throughout numerous locations. Its business office is located at +809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email +business@pglaf.org. Email contact links and up to date contact +information can be found at the Foundation's web site and official +page at http://pglaf.org + +For additional contact information: + Dr. Gregory B. Newby + Chief Executive and Director + gbnewby@pglaf.org + + +Section 4. Information about Donations to the Project Gutenberg +Literary Archive Foundation + +Project Gutenberg-tm depends upon and cannot survive without wide +spread public support and donations to carry out its mission of +increasing the number of public domain and licensed works that can be +freely distributed in machine readable form accessible by the widest +array of equipment including outdated equipment. Many small donations +($1 to $5,000) are particularly important to maintaining tax exempt +status with the IRS. + +The Foundation is committed to complying with the laws regulating +charities and charitable donations in all 50 states of the United +States. Compliance requirements are not uniform and it takes a +considerable effort, much paperwork and many fees to meet and keep up +with these requirements. We do not solicit donations in locations +where we have not received written confirmation of compliance. To +SEND DONATIONS or determine the status of compliance for any +particular state visit http://pglaf.org + +While we cannot and do not solicit contributions from states where we +have not met the solicitation requirements, we know of no prohibition +against accepting unsolicited donations from donors in such states who +approach us with offers to donate. + +International donations are gratefully accepted, but we cannot make +any statements concerning tax treatment of donations received from +outside the United States. U.S. laws alone swamp our small staff. + +Please check the Project Gutenberg Web pages for current donation +methods and addresses. Donations are accepted in a number of other +ways including checks, online payments and credit card donations. +To donate, please visit: http://pglaf.org/donate + + +Section 5. General Information About Project Gutenberg-tm electronic +works. + +Professor Michael S. Hart is the originator of the Project Gutenberg-tm +concept of a library of electronic works that could be freely shared +with anyone. For thirty years, he produced and distributed Project +Gutenberg-tm eBooks with only a loose network of volunteer support. + + +Project Gutenberg-tm eBooks are often created from several printed +editions, all of which are confirmed as Public Domain in the U.S. +unless a copyright notice is included. Thus, we do not necessarily +keep eBooks in compliance with any particular paper edition. + + +Most people start at our Web site which has the main PG search facility: + + http://www.gutenberg.org + +This Web site includes information about Project Gutenberg-tm, +including how to make donations to the Project Gutenberg Literary +Archive Foundation, how to help produce our new eBooks, and how to +subscribe to our email newsletter to hear about new eBooks. + + +</pre> + +</body> +</html> diff --git a/25664-h/images/d_curl.gif b/25664-h/images/d_curl.gif Binary files differnew file mode 100644 index 0000000..e37b8b8 --- /dev/null +++ b/25664-h/images/d_curl.gif diff --git a/25664-h/images/finger.gif b/25664-h/images/finger.gif Binary files differnew file mode 100644 index 0000000..76742ba --- /dev/null +++ b/25664-h/images/finger.gif diff --git a/25664-h/images/finger_left.gif b/25664-h/images/finger_left.gif Binary files differnew file mode 100644 index 0000000..3a6b5c9 --- /dev/null +++ b/25664-h/images/finger_left.gif diff --git a/25664-h/images/hand_count.png b/25664-h/images/hand_count.png Binary files differnew file mode 100644 index 0000000..7cbffd5 --- /dev/null +++ b/25664-h/images/hand_count.png diff --git a/25664-h/images/l_pair.gif b/25664-h/images/l_pair.gif Binary files differnew file mode 100644 index 0000000..f0f4213 --- /dev/null +++ b/25664-h/images/l_pair.gif diff --git a/25664-h/images/line.gif b/25664-h/images/line.gif Binary files differnew file mode 100644 index 0000000..a8bd407 --- /dev/null +++ b/25664-h/images/line.gif diff --git a/25664-h/images/n_curl.gif b/25664-h/images/n_curl.gif Binary files differnew file mode 100644 index 0000000..7e02739 --- /dev/null +++ b/25664-h/images/n_curl.gif diff --git a/25664-h/images/num3_full.png b/25664-h/images/num3_full.png Binary files differnew file mode 100644 index 0000000..abf5abe --- /dev/null +++ b/25664-h/images/num3_full.png diff --git a/25664-h/images/num4_full.png b/25664-h/images/num4_full.png Binary files differnew file mode 100644 index 0000000..eda8a2c --- /dev/null +++ b/25664-h/images/num4_full.png diff --git a/25664-h/images/num6_full.png b/25664-h/images/num6_full.png Binary files differnew file mode 100644 index 0000000..8505546 --- /dev/null +++ b/25664-h/images/num6_full.png diff --git a/25664-h/images/num9_full.png b/25664-h/images/num9_full.png Binary files differnew file mode 100644 index 0000000..6f1b07c --- /dev/null +++ b/25664-h/images/num9_full.png diff --git a/25664-h/images/num_134.png b/25664-h/images/num_134.png Binary files differnew file mode 100644 index 0000000..670a8b9 --- /dev/null +++ b/25664-h/images/num_134.png diff --git a/25664-h/images/title_app1.png b/25664-h/images/title_app1.png Binary files differnew file mode 100644 index 0000000..0409a77 --- /dev/null +++ b/25664-h/images/title_app1.png diff --git a/25664-h/images/title_app2.png b/25664-h/images/title_app2.png Binary files differnew file mode 100644 index 0000000..77f7278 --- /dev/null +++ b/25664-h/images/title_app2.png diff --git a/25664-h/images/title_art.png b/25664-h/images/title_art.png Binary files differnew file mode 100644 index 0000000..449b986 --- /dev/null +++ b/25664-h/images/title_art.png diff --git a/25664-h/images/title_count.png b/25664-h/images/title_count.png Binary files differnew file mode 100644 index 0000000..83d179e --- /dev/null +++ b/25664-h/images/title_count.png diff --git a/25664-h/images/title_craft.png b/25664-h/images/title_craft.png Binary files differnew file mode 100644 index 0000000..876be8f --- /dev/null +++ b/25664-h/images/title_craft.png diff --git a/25664-h/images/title_hand.png b/25664-h/images/title_hand.png Binary files differnew file mode 100644 index 0000000..c631db4 --- /dev/null +++ b/25664-h/images/title_hand.png diff --git a/25664-h/images/title_inner.png b/25664-h/images/title_inner.png Binary files differnew file mode 100644 index 0000000..99320b9 --- /dev/null +++ b/25664-h/images/title_inner.png diff --git a/25664-h/images/title_main.png b/25664-h/images/title_main.png Binary files differnew file mode 100644 index 0000000..f6e57d0 --- /dev/null +++ b/25664-h/images/title_main.png diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000..6312041 --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,11 @@ +This eBook, including all associated images, markup, improvements, +metadata, and any other content or labor, has been confirmed to be +in the PUBLIC DOMAIN IN THE UNITED STATES. + +Procedures for determining public domain status are described in +the "Copyright How-To" at https://www.gutenberg.org. + +No investigation has been made concerning possible copyrights in +jurisdictions other than the United States. Anyone seeking to utilize +this eBook outside of the United States should confirm copyright +status under the laws that apply to them. diff --git a/README.md b/README.md new file mode 100644 index 0000000..07cd296 --- /dev/null +++ b/README.md @@ -0,0 +1,2 @@ +Project Gutenberg (https://www.gutenberg.org) public repository for +eBook #25664 (https://www.gutenberg.org/ebooks/25664) |
